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DFT functionals in WIEN2k
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1-electron equations (Kohn Sham)
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 Exc = Ex + Ec : exchange-correlation energy
 Vxc =            : exchange–correlation potential

 Both, Exc and Vxc are unknown and must be approximated
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Approximations for Exc (Jacob’s ladder 1)

 1. Local density approximation (LDA):            xc = f ()
 2. Generalized gradient approximation (GGA): xc = f ()
 3. Meta-GGA: xc = f (),     =
 4. use of occupied orbitals (e.g., Hartree-Fock)

 hybrid-DFT (PBE0, HSE, YS-PBE0)

 5. use of unoccupied orbitals (e.g., RPA)

 1J. P. Perdew et al., J. Chem. Phys. 123, 062201 (2005)



GGA functionals

 A huge number of GGA functionals have been proposed:

where Fxc is the enhancement factor

 specialized GGAs (WC, PBESOL) give much 
better lattice parameters than PBE
these GGAs are „soft“

 „hard“ GGAs (RPBE) are much better for 
atomization energies of molecules

 PBE is a good compromise for both quantities

 HTBS might be better (except alkali atoms)
 Haas,Tran,Blaha,Schwarz, Phys.Rev. B83, 205117 (2011)
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Performance of GGAs in solids and molecules
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Trends of GGAs:

 Structural properties
 on average GGAs are better than LDA, but

 LDA still best for 5d-series (Pt, Au). PBE too large !
 PBE best for 3d series (Fe, Ni, ..). LDA too small !
 WC, PBEsol, HTBS  best compromise for all elements
 van der Waals: LDA overbinds, GGAs underbind (sometimes non-bonding !)

 Cohesive properties:
 (hard) GGAs much better than LDA 

 Electronic structure: 
 LDA and GGAs very similar
 band gaps underestimated by 50 % ( TB-mBJ)

 Strongly correlated electrons (3d, 4f)
 often LDA and GGA give qualitatively wrong results: metal instead of 

insulator, too small magnetic moments or even non-magnetic instead of 
AFM cuprates, no (too small) structural distortions, orbital order, ….



meta-GGAs

 Perdew,Kurth,Zupan,Blaha (1999):

 use laplacian of , or kinetic energy density 

 analytic form for Vxc not possible (Vxc = dExc/d) , SCF very difficult

 best meta-GGAs today describe structural parameters like WC 
or PBEsol, but have better atomization energies: 
 revTPSS by Perdew et al. (2009) 
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Band gaps by a semi-local potential

 Becke-Johnson potential  (J. Chem. Phys. 124, 221101 (2006))
 local potential designed to reproduce non-local OEP potentials in atoms

modified Becke-Johnson potential

c depends on the density
properties of a material

+ gaps of „GW“ quality
+ good for correlated

TM-oxides
- NO energy (only V)

F.Tran P.Blaha
PRL 102, 226401 (2009)



1. Prepare the input files for an usual PBE (or LDA) calculation

2. run scf cycle (+ structure optimization, ….)

3. save_lapw     case_pbe

3. init_mbj_lapw   (phase 1, creates case.inm_vresp, sets R2V in case.in0)

4. run(sp)_lapw -i 1  (Run one PBE cycle to create case.vresp and case.r2v)

5. rm *.broyd*

6. init_mbj_lapw  (phase 2) 

 sets indxc=28 (MBJ) in case.in0 and generates case.in0_grr with indxc=50;

 select mBJ-parameters, see Koller et al. PRB 85, 155109 (2012) 

7. run(sp)_lapw -i 80     (mBJ calculations need more cycles than PBE)

How to run a calculation with the MBJ potential?



semilocal functionals available in WIEN2k

Functional Authors Year indxc (case.in0)

LDA Dirac, Slater, etc. 1930 - … 5

GGA:

PBE Perdew et al 1996 13

WC Wu, Cohen 2005 11

PBEsol Perdew et al. 2007 19

HTBS Haas et al. 2011 46

TB-mBJ* Tran, Blaha 2009 28, 50

meta-GGA:

revTPSS** Perdew et al. 2009 29

* only a potential (Exc = LDA)
** only Exc (Vxc = PBE)



more “non-local” functionals (“beyond DFT”)

 Self-Interaction correction (Perdew,Zunger 1981; Svane+ Temmermann)
 vanishes for Bloch-states, select “localized states” by hand

 LDA+U DMFT (dynamical mean field theory)
 approximate HF for selected “highly-correlated” electrons (3d,4f,5f)
 empirical parameter U

 Optimized Exact exchange (OEP, similar to HF, but with a local DFT based 
potential, expensive, numerically problematic, correlation ??)

 Hartree-Fock
 neglects correlation, which for most solids is essential

 Hybrid functionals (mixing of DFT+ HF)

 GW method:   calculate the quasiparticle self energy  

 a available for WIEN2k
M. Scheffler et al.
(very expensive)



Hartree-Fock

kinetic E + external V

classic Coulomb energy
of electrons

exchange energy

• This leads to a „non-local“ (orbital dependent) potential.

• It treats „exchange“ (e--e- interaction between e- of same spin, 
Pauli-principle, Slater det.) exactly, but neglects „correlation“ completely.

• Correlation can be treated by perturbation methods (MP2), 
„coupled cluster“ (CCSD), or CI methods, using „many“ 
Slater determinants.



PBE0:   Exc
PBE0 [] = Exc

PBE [] +  (Ex
HF[] – Ex

PBE[])  =0.25



screened full-hybrid functionals

● 1/r  is decomposed into a short-range and long-range component using
an exponential (or the error function)

HSE06 functional:
=0.11 bohr-1

exponential with
=3/2  is very

similar

YS-PBE0: Tran,Blaha, 
PRB 83, 235118 (2011)

screened functionals improve k-mesh convergence dramatically
13

=1 =0.165



2 parameters: mixing  and screening 

 gaps: strong correlation between  and 
 formation energies: < 0.7 has little influence 



band gaps of YS-PBE0 with =0.25

 strong improvement over PBE, but
 gaps of “insulators” still strongly underestimated



adapt  for each individual system 

 optimal  found by fit to exp. as function of 1/0 (dielectric 
constant)

 yields much better gaps

=0.25



speed-up by “diagonal-only” approximation



band gap comparison

 standard full hybrids (fixed ) work well for semiconductors
(1/0) improves the results significantly 
 “diagonal-only” approximation works in most cases (speed-up)



hybrid functionals in WIEN2k

 expensive (10-100 times more than LDA)

 k-point and mpi-version (useful already for medium sized cases)
 for bigger cases use  a „reduced“ k-mesh for the potential (must be 

compatible with full mesh  (like 4x4x4 and 2x2x2)
 consider non-scf calculations (for DOS, bands) or even the „diagonal“ 

approximation PBE00 (Tran, Physics Letters A 376 (2012) 879) 

 for setup follow the UG 4.5.8;   run_lapw -hf
 works well for semiconductors and TM-oxides

 mixing parameter  (like the U in LDA+U)
 should be bigger for large gap insulators
  should be VERY small for (magn.) metals
 hybrids localize TM-d and O-p states

 structural parameters depend mainly on the 
underlying GGA, but are always a bit smaller
than plain GGA.



onsite-hybrid-DFT for “correlated electrons”

 select certain electrons within an atomic sphere 
 mainly 3d or 4f states, since only those valence electrons are 

sufficiently localized (and require stronger exchange potentials)
 same spirit and speed as LDA+U (with parameter  instead of U)

 cp $WIENROOT/SRC_templates/template.ineece case.ineece

 runsp -eece

(Tran et al. PRB 74, 155108 (2006))

Exc
PBE0 [] = Exc

PBE [] +  (Ex
HF[sel] – Ex

PBE[sel])



Failure of the independent particle approximation

 expect large excitonic effects when (localized)
electrons are excited into the conduction bands
(optics, XAS, EELS)

 the remaining hole and the excited electron may
interact strongly with each other



fully relativistic electron-hole interaction (BSE)

 Bethe-Salpeter-equation: L(12;1’2’)
 solving a 2-particle (e- - h) equation of

large dimension ( Nv Nc Nk ~ 100000)

single particle APW (WIEN2k)
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attractive screened static Coulomb interaction W; W~-1

e-h exchange with bare Coulomb potential v



Excitons  in LiF

 BSE calculations are very expensive 
 (code available on request, needs hundrets of cores …. + memory)

R. Laskowski, P. Blaha, Phys. Rev. B, 81, 075418 (2010)



Ca-L23 edge in CaF2 (Ca-2p  Ca-3d)

 experiment

 “ground-state” DOS

 “core-hole” calc.(ratio 2:1)

BSE with p1/2 and p3/2 together

 BSE for L2 and L3 separately

 BSE without direct term Heh
dir

 BSE without exchange term Heh
x

p3/2 p1/2


