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COMPLEX ANALYSIS IN ONE AND SEVERAL VARIABLES

So-Chin Chen

Abstract. This is an expository article concerning complex analysis,
in particular, several complex variables. Several subjects are discussed
here to demonstrate the development and the diversity of several complex
variables. Hopefully, the brief introduction to complex analysis in several
variables would motivate the reader’s interests to this subject.

The purpose of this article is to give a brief expository introduction to
complex analysis, in particular, to several complex variables. Complex analysis
differs dramatically between one and several variables. Many fundamental
features change when space dimension jumps from one to greater than one.
For instance, any domain D on the complex plane is a domain of holomorphy,
that is, there is a holomorphic function f on D which cannot be extended
holomorphically across any boundary point of D. In C", n > 2, this is not
the case. It is easy to construct a domain D C C", n > 2, such that any
holomorphic function f on D extends holomorphically to a fixed strictly larger
domain D; containing D. Another effect is that the set of singularities of a
meromorphic function g in C is always discrete, e.g., g(z) = 1/z has a pole at
zero and is holomorphic otherwise. Such an effect cannot happen in several
variables due to the Hartogs extension theorem. As a matter of fact, every
function f holomorphic on D \ K, where K is a compact subset of D such
that D\ K is connected, extends holomorphically to D. Also, there does not
exist an analog of the famous Riemann mapping theorem for one variable in
higher-dimensional spaces. Even the open unit ball and polydisc in C™*, n > 2,
are not biholomorphically equivalent. This fundamental discovery is due to H.
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Poincaré. It indicates that the classification of domains in several variables is
extremely difficult. Thus, new ideas and methods are needed for investigating
these problems.

Obviously, it is not possible to survey every aspect of complex analysis in
such a short article. Instead, we shall address only to several main features that
set up the courses of complex analysis in one and several variables. We hope
that this would motivate the reader’s interests for exploring several complex
variables.

The author is indebted to Mei-Chi Shaw who had read the manuscript and
provided many helpful suggestions.

1. COMPLEX STRUCTURE

Let us recall, when we first learned one complex variable, how we defined
the holomorphic functions. A C'-function f(z) = u(z) + iv(2) is called holo-
morphic on the domain D C C if the derivative

(1.1) () = tim LW /()

w—z W — 2
exists for all z € D, where z = x 4 iy. The existence of (1.1) is equivalent to
the so-called Cauchy-Riemann equations:

(1.2) uzp(z) = vy(2) and wuy(z) = —vg(2).

In my own opinion, it seems that this definition cannot faithfully reflect the
complex structure on C. Thus, we would like to look at this problem from
a slightly different point of view. We first give the definition for a complex
structure here.

Definition 1.3. Let V be a real vector space of real dimension 2m. A
complex structure J on V is an endomorphism from V onto V such that
J?=-1.

From the definition a complex structure J on an even-dimensional real
vector space V is an isomorphism of V with J? = —1. With such a structure,
V' can be naturally converted into a complex vector space of complex dimension
m as follows. For « = a +ib € C and x € V, define

(1.4) axr = (a+ib)x = ax + bJz.

A routine calculation shows that (V,.J) is indeed a vector space over C with
multiplication defined by (1.4). Let z1,- -+ , 2, € V be m linearly independent
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vectors over R. Then we claim that z1, Jx1, -+ , Zm, JT, form a basis for V
over R. For if

(1.5) a1x1 +biJry 4+ -+ amTm + b J Ty, =0,
where aq,b1, -+, am, by, € R, after applying J to (1.5), we would get
(1.6) arJzry —bix1 + -+ amJTm — bxm = 0.
This implies
(af + 0wy + -+ + (a2, + b)) zm =0,

and hence
a1:b1:---:am:bm:0.

This proves the claim. It follows immediately from the above arguments that
x1,-- , &y, form a basis for (V,J) over C. Thus, dim¢(V, J) = m.
On the other hand, one may complexify V by letting

(1.7) CV =V @ C.

Then CV is a complex vector space of complex dimension 2m with multipli-
cation given by

Bl ®a) =z (fa),

where z € V and «, 8 € C. Now the complex structure J on V' can be extended
to CV by
J(rz®a)=(Jz)®a.

Still we have J? = —1. This means that the eigenvalues of J, acting on CV/,
are i and —i. Let V19 and V! be the eigenspaces of J corresponding to the
eigenvalues i and —i, respectively. Then V19 and V%! are conjugate C-linear
isomorphic with dim¢ V™Y = dim¢ V%! = m and we have

(1.8) CV=VerC=V"gVvol
It is then important to observe the following:

Lemma 1.9 (V,J) is C-linear isomorphic to V' as complex vector
spaces.

Proof. We observe that if z® 1 € V19, then

(Jr)@l=Jx®l)=i(rx1l).
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Hence 1
:c®1:§(x®1—(<]x)®i).

On the other hand, for any = € V, if we set
w=zr®1l-(Jr)®1,
then w € V10 since
Jw=(Jr)@l+i(z®1) =iw.
Thus, a direct calculation shows that the mapping

p: (V) — VIO
T —r®l—(Jr)®1

is a C-linear isomorphism. This proves the lemma. [

Lemma 1.9 shows that the piece V10 carries naturally the structure in-
duced by J. Now we return to the analysis on C. First, we may identify C
with R? via sending z = x +iy to (x,y). The tangent space T,(C) at the point
p, viewed as a vector space over R, is spanned by

ne-{(3), (%))

Define a complex structure J on T),(C) by

((),)= ), = (@), =G,

Then the complexified tangent space CT},(C) can be written as
CT,(C) =T,°(C) & T} (C).

Any vector v, € T,°(C) is called a vector of type (1,0), and vp € T9H(C) is
called a vector of type (0,1). It is also easily seen that T, g ’O(C) is spanned by

ON L0 (9 _1f9 9
0z p_2 ox Ox p_2 or 0y),
By duality, J also induces a complex structure J* on the cotangent space

T5(C) by
J*((dx)p) = —(dy), and J*((dy)p) = (dx),.
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As before, the complexified cotangent space CT,;(C) can be decomposed as
* *1,0 x0,1
CT,;(C)=T","(C)oT","(C).

Any 1-form w € T*Il,’o((C) is called a (1,0)-form, and @ € T*g’l((C) is called a
(0,1)-form. We see easily that T*;’O((C) (T*g’l((C)) is generated by

dz =dzx +idy (dz = dz —idy).

The importance of T *11;0 (C) is that it reflects the structure induced from
J. Thus, we make the following definition.

Definition 1.10. A C'-function f defined on C is called holomorphic if
df reflects such a structure, that is, if df is sitting in 7%°(C) completely.

For any C'-function f, we have

af af
df = Bq:d x + a—y
af 8f
azd et &
Hence, f is holomorphic if and only if
of
(1.11) i 0.

If f = uw+ dv, then condition (1.11) is equivalent to the Cauchy-Riemann
equations:

0 0 0 0
(1.12) T and =2

or Oy oy Ox
From here the theory of one complex variable follows.

For higher-dimensional complex Euclidean spaces, a similar procedure can

be carried out. We identify C", n > 2, with R?" via sending z = (21, , 2,)
to (x1,y1, -+ ,Tn,Yn), where z; = x; +iy; for 1 < j < n. The real tangent

space Zp(((ln) at the point p is spanned by
"\ Oz, p’ OYn » '

wer-{(2)(2),
())-(), = (%)),

Define a complex structure J on 7,,(C") by
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for 1 < j < n. Then the complexified tangent space CT,(C") can be decom-
posed as
CT,(C") = T,°(C™) & T (C™).

Any vector v, € T °(C") is called a vector of type (1,0), and Up € T (Cm) is
called a vector of type (0,1). Thus, Tp"*(C") (T'(C™)) is spanned by

oY _1(0 oY ((0) _L(0 0
0z; p_ 2\ Ox; 0y, » 8@ 0z 8y]

for 1 < j < n. By duality, J also induces a complex structure J* on the
cotangent space T, (C") by

J*((dzj)p) = —(dy;)p and  J*((dy;)p) = (dzj)p

for 1 < j < n. As before, the complexified cotangent space CT}; (C™) can be
decomposed as

CT;(C™) =T*°(C") & T*)' (C™).
Any 1-form w € T*;’O(C") is called a (1,0)-form, and @ € T*g’l((C”) is called
a (0,1)-form. It follows that T*};O(C") (T*g’l(C")) is generated by

dz; = dx; +idy; (d?j =dx; — idyj)

for1 <j<n.
As before, we shall call a C!'-function f(z) defined on a domain D in C"
holomorphic if df € T*1°(D). Since for any C'-function f we have
of , of of of

ot den + o dE e e dE,

df = al A1 2 07, 0%,

thus f is holomorphic if and only if

(1.13) 5;‘}:—0 for 1<j<n.

In other words, f is holomorphic if and only if f is holomorphic in each variable.
The set of holomorphic functions on D will be denoted by O(D).
2. DoMAINS OF HOLOMORPHY

In this section we shall discuss the domains of holomorphy. Let D be a
domain in C", n > 1. We first make the following definition.
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Definition 2.1. D is called a domain of holomorphy if there is a holomor-
phic function f defined on D that is singular at every boundary point, that
is, f cannot be extended holomorphically across any boundary point.

In one complex variable, every domain is a domain of holomorphy. One
way to see this fact is as follows. Let D be a domain on the complex plane, and
let p € bD be a boundary point of D. Then g(z) = 1/(z — p) is a holomorphic
function on D, but singular at p. To construct a holomorphic function f on
D that is singular at every boundary point, we use the following fact.

Theorem 2.2. Let K be a compact subset of D in C and let 29 € D\ K.
If the component of D\ K that contains zo is not relatively compact in D, then
there is a holomorphic function h(z) on D such that |h(zo)| > supsex|h(z)].

The proof of Theorem 2.2 uses the Runge approximation theorem. Actu-
ally, we can make |h(z)| arbitrarily large and sup.ex|h(z)| arbitrarily small.
For instance, if we set m = (|h(z0)| + sup.ex|h(2)])/2, then (h/m)!, for large
I € N, will do the job.

Now, let P be the set containing all points in D with rational coordinates.
Clearly, P is countable and dense in D. Let {(;}°; be a sequence of points in
D such that every point belonging to P appears infinitely many times in the
sequence. Next, we exhaust D by a sequence of increasingly compact subsets
{K;}32, of D defined as follows:

K; = {z € D|dist(z,D°) > '} N B(0;j), jEN,

where dist(z, D¢) denotes the distance from z to the complement of D and

B(0;j) = {z € C| |2| < j}. Hence, we have K; C Kj1, where K;;; is the
interior of K. For each i, denote by B¢, the largest disc centered at ¢; and
contained in D. Then, inductively choose a subseqence { K} of {K} such

that for each j, pick a z; € (B¢, \ Kn;) N K and a fj(z) € O(D) satisfying

nj41o
1
’f](Z)‘ < E, S Knj,
and
j—1
115z =) 1 fi(z) + 5+ 1.
i=1

It follows that

hz) =) fi(2)
j=1
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defines a holomorphic function on D and that

Jj—1 00
Gl > 15z = Y1 iz = D 1fiz)] = 4,
i=1 i=j+1
which implies h(z) is singular at every boundary point of D. For if h(z) extends

holomorphically across some boundary point, then h(z) would be bounded on
B, for some ¢;. Obviously, it contradicts the construction of h.

We now move to higher-dimensional Euclidean spaces. We see that the
phenomenon is totally different. Let us start with the following simple example
in C2. We consider the domain D defined by

D = {(21,22) e C?

1
5 < |z2] < 1 and |z1]| < 1}

U{(zl, 22) eC?

1 1
|z2] < 5 and |z1| < 2}.

For any f € O(D), set

w — 29

F(Z):Zlm'/FM dw,

where I' = {w € C| |w| = 3/4}. Then it is not hard to see that F|p = f on
D and F € O(D;), where D1 = {(21,22)| |21] < 1 and |z2| < 1}. This implies
that D is not a domain of holomorphy since any holomorphic function f on
D can be holomorphically extended to a strictly larger set D; via applying
Cauchy integral formula in z5. It also indicates that the analog of Theorem
2.2 in higher-dimensional case in general need not hold.

Thus, it becomes fundamental to determine whether a given domain D is a
domain of holomorphy or not. When n = 1, the key in the above construction
of a holomorphic function singular at every boundary point is Theorem 2.2. We
observe that one of the crucial hypotheses stated in Theorem 2.2 is to exclude
the points sitting in the components, which are relatively compact in D, of
the complement of K due to the maximum modulus principle. Technically, to
avoid such a difficulty one may enlarge K by considering the holomorphically
convex hull of K. Define

(2.4) Kp = {z € D| |f(2)| <supkl|f] for all f € O(D)}.

From Definition 2.4, it is clear that if z € D\I?D, then there is f € O(D) such
that |f(z)| > sup i |f|. This is exactly the property required in Theorem 2.2.

K=K p, we shall call K holomorphically convex.
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Forn =1, K p = KU; K, where Kj is a component, relatively compact in
D, of the complement of K in C. Obv10usly, if K is a compact subset of D, so
is K D- When n>1, K p is still a closed subset of D if K is a compact subset of
D. But K p in general need not be compact in D. Again, we use the domain D
defined by (2.3) to illustrate this effect. Let K = {(3/4, (3/4)e%);0 € [0,2x]}
be a compact subset of D. Since any function holomorphic in D can be
extended holomorphically to Dy, it is easily seen by the maximum modulus

principle that
~ 3 1 3
= — — < —

which is clearly not relatively compact in D. Hence, we make the following
definition.

Definition 2.5. Let D be a domain in C". D is called holomorphically
convex if Kp is relatively compact in D for any compact subset K of D.

Since holomorphically convex hull of a compact set is always contained in
the geometrically convex hull of this set, it follows that we have

Lemma 2.6. Any convex domain is holomorphically convex.

It turns out that holomorphic convexity is the right condition for charac-
terizing domains of holomorphy in C”.

Theorem 2.7. Let D be a domain in C*, n > 1. Then the following
statements are equivalent:

(1) D is a domain of holomorphy.

(2) dist (K, D¢) = dist (Kp, D) for every compact subset K in D, where
dist(K, D) denotes the distance between K and D¢ = C™\ D.

(3) D is holomorphically conver.

Theorem 2.7 is due to H. Cartan and P. Thullen [14].

Thus, any convex domain is a domain of holomorphy according to Theo-
rem 2.7. Before proving Theorem 2.7 we first introduce some terminologies.
Denote by P(a;r) = H?:l B(aj;rj) a polydisc in C", n > 2, centered at
a = (a1, ,ap) with multiradii r = (r1,--- ,7ry,), r; > 0. Then we have the
following Cauchy integral formula on polydiscs.

Theorem 2.8. Iff € O(P(a;r)) N C(P(a;r)), then

Clv e 7Cn)
ry (G —21) (G — 2n)

dgy -+ - dCn

n
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for z € P(a;r), where I'; = {¢; € C| | —aj| =15}, 1 <j<n.

The proof is a direct application of the Cauchy integral formula in one
variable. Theorem 2.8 also indicates that power series representation and the
identity theorem for holomorphic functions in several variables are valid. Now
we return to the proof of Theorem 2.7.

Proof of Theorem 2.7. (2) = (3) is obvious. The proof of (3) = (1) is
similar to the one that we adopted for n = 1 with compact subsets and discs
being replaced by holomorphically convex compact subsets and polydiscs re-
spectively. This is possible since by hypothesis the domain is holomorphically
convex. Thus, we need to show (1) = (2).

Let P(0;7) be a polydisc centered at zero with multiradii r = (ry,---, 7).
For each z € D, we set

dr(z) = sup{\ > 0| {z} + A\P(0;r) C D}.
To prove (1) = (2), we first show:

Lemma 2.9. Let K be a compact subset of D, and let f € O(D). Suppose
that

|f(2)] < 0r(2) for z€ K.

Let ¢ be a fixed point in I?D. Then any g € O(D) extends holomorphically to
DU ({¢}+ [f(OP(0;7)).

Proof. For each 0 < t < 1, the union of the polydiscs centered at z € K,

K= {J (=} +tlf(2)| P(0: 1)),

zeK

is a compact subset of D. Hence, there exists M; > 0 such that |g(z)| < M,
on K;. Using Cauchy’s estimates of g, we obtain

9%9 () |¢led |al o
2= (DI

(2.10) o < M,

for z € K and all multiindices o« = (o, -+, ) with o] = a1 + -+ + ay,
where a; € {0} UN. Here, by definition, 0%g/92z* = 9!®lg/92{" - .- 922" and
re =r{"-rin. Since (aig/ﬁz“)(z)f(z)m' is holomorphic on D, by definition,
(2.10) also holds for z € Kp. Letting ¢ tend to one, we see that g(z) extends
holomorphically to D U ({¢} + |f(¢)|P(0;7)). This proves the lemma. ]
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Now, we write

dist(z, D¢)=sup{r > 0| z+aw € D for all w € C", |w| <1 and
acC, |a| <7}
— inf dy(2),
wl<1 wl2)
where

dy(z) =sup{r >0| z+aw e D for all a€C, |a] <r}.

Fix a w, and we may assume that w = (1,0,---,0). Denote by P; = P(0;7(j))
the polydisc with multiradii r(j) = (1,1/4,---,1/7) for j € N. Then it is easily
seen that

lim 8,5y (2) = dw(2).

J]—00

Thus, given € > 0, if j is sufficiently large, we have
(2.11) dist (K, D) < (1 +€)d,(;y(2), =z € K.

We let f(z) = dist (K, D) /(1 + €) be the constant function. Since D is a
domain of holomorphy, using estimate (2.11), Lemma 2.9 shows that

dist(K, D) < (1 + €)8,;5(¢) < (1 + €)dw(¢) for all ¢ € Kp.
Letting € tend to zero, we get

dist(K, D) < inf (inf d,(Q))
ceRp Iw|<1
= inf dist (¢, D)
(eEKDp

= dist (Kp, D°).

Since dist(Kp, D°) < dist(K, D°) is obvious, this proves (1) = (2) and hence
Theorem 2.7. ]

It is now clear that, in order to be a domain of holomorphy, D must be
holomorphically convex. However, such a condition is difficult to verify. Thus,
we need to develop other equivalent conditions that can be actually computed.
When the domain D C C", n > 2, has smooth boundary, we also make the
following definition.
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Definition 2.12. Let D ¢ C*, n > 2, be a smooth bounded domain, and
let r be a smooth defining function for D. D is said to be (Levi) pseudoconvex
(or strongly Levi pseudoconvex) if

(2.13) Z 82‘76745]{;(2)0/]‘616 >0 (or >0)
Gk=1_"17

for any 2z € bD and a = (a1, -+ ,a,) € C" with > 77, a;(0r/0z;)(z) = 0.

By a smooth defining function for D we mean r : U — R a smooth function
on some open neighborhood U of D such that D = {z € U| r(z) < 0} and
bD = {z € U| r(z) = 0}, the boundary of D, and that |dr| # 0 on bD.
The Hermitian form (2.13) is called the Levi form of D. Thus, the domain
D is pseudoconvex (or strongly pseudoconvex) if the Levi form is positive
semi-definite (or positive definite) at every boundary point when applied to
tangential type (1,0) vector fields on the boundary. It can also be easily verified
that the semi-definiteness or definiteness of the Levi form is independent of
the choice of the defining function for D.

The concept of pseudoconvexity is fundamental in several complex vari-
ables. It can be shown that if the domain D has smooth boundary, then D is
a domain of holomorphy if and only if D is pseudoconvex. Condition (2.13) is
computable. The Levi form can be computed easily to determine if a domain
is a domain of holomorphy. However, we shall not get into the details of the
proof here.

For materials of this section the reader is referred to the books [23], [37],
[46] and [48].

3. HARTOGS EXTENSION THEOREM

Another peculiar phenomenon that occurs in several complex variables is
the so-called Hartogs extension theorem. In one variable there are meromor-
phic functions that have singularities at certain discrete set of a domain. For
instance, g(z) = 1/z has a singularity at zero and is holomorphic otherwise.
Such a phenomenon does not occur in several variables. As a matter of fact, if
D is a domain in C", n > 1, and K is a compact subset of D such that D\ K
is connected, then every f € O(D \ K) extends holomorphically to D. This
also implies that D \ K cannot be a domain of holomorphy.

To exploit this phenomenon, we start with the Cauchy integral formula in

C.
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Lemma 3.1. Let D be a bounded domain in C with C' boundary. If
f € CY(D), we have

I 1 e dc+//D czwdc)

for any z € D.

The proof is an easy consequence of Stokes’ theorem. In what follows we
shall assume that D is a bounded domain in C with smooth boundary such
that C\ D is connected. For any f € C*(D), k € N, set

(3.3) u(z) = 2% / /D g(_oz dc A de.

Then, we have the following solvability theorem for the Cauchy-Riemann op-
erator in D.

Theorem 3.4. Let D be as above and f, u be given as in (3.3). Then we
have
(1) v € C¥(D) and Ou/0Z = f in D, and
(2) w is supported in D if and only if

(3.5) / [ 1O¢m acndc =0 forme {o}uN.

Proof. (1) follows immediately from Lemma 3.1. To prove (2), we first
observe that u is continuous on C and holomorphic on C \ D. Now assume
that (3.5) holds. If z satisfies |z| > || for all ( € D, we have

Ry
= 5 D (/ FOG™ dendc )=

Since u(z) is holomorphic on C\ D, the identity theorem shows that u(z) = 0
for all z € C\ D.

Conversely, if u is supported on D, by reversing the above arguments for
z outside a large disc centered at the origin, it is easy to see that (3.5) must
hold. This proves the theorem. [
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Thus, it is in general not possible to get a solution of compact support
to the Cauchy-Riemann equation in one variable even when f has compact
support. However, this is not the case in several variables as shown in the
next theorem. There always exists a solution with compact support to the
Cauchy-Riemann equation for a given form with compact support.

We consider the inhomogeneous Cauchy-Riemann equations in C*, n > 2,

(3.6) ou = Z 9%, dzj
j

]_
where f is a (0,1)-form of class C* with k > 1. Write f as f = Z?Zl fidz;.

. -2 = 7 - . = . .
Since 9° = d 0 @ = 0, a necessary condition for solving the d-equation is

n
(3.7) gf = Z gfj Ndzj = 0.
j=1
More explicitly, the equation (3.6) is overdetermined. In order to solve (3.6)
for some function wu, it is necessary from (3.7) that the f;’s satisfy the following
compatibility conditions:

of; 0
(3.8) é = @,
aZk 82’]'
forall 1 <j<k<n.
Then we have the following theorem:

Theorem 3.9. Let f; € CE(C"), k€ N, n>2 and 1 < j < n, such that
(3.8) is satisfied. Then there is a function u € CE(C") satisfying (3.6). In
particular, u vanishes on the unbounded component of C™ \ (U; supp f;).

Proof. Set

fl C) Z27 7Zn) =
2m/ ¢ A de

fl <+Z17227"'72n) =
27”/ : dC A dC.

It is easily seen that u € C¥(C"), k € N, from differentiation under the integral
sign. We also have u(z) = 0 when |z2| 4 - - - 4 |zy| is sufficiently large, since f
vanishes on the set.

By Theorem 3.4, we have

7% = fi(z).
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For j > 1, using the compatibility condition (3.8), we obtain

Cv 29, 7Z’Vl> _
3(
32'] 27 // de A dq

_f]

Hence, u(z) is a solution to the d-equation (3.6). In particular, u is holomor-
phic on the unbounded component of the complement of the support of f.
Since u(z) = 0 when |z2| + - - - + | z,| is sufficiently large, we see from the iden-
tity theorem for holomorphic functions that « must be zero on the unbounded
component of the complement of the support of f. This completes the proof
of the theorem. ]

Using Theorem 3.9, we can easily prove the Hartogs extension theorem.

Theorem 3.10 (Hartogs). Let D be a bounded domain in C"™ withn > 2,
and let K be a compact subset of D so that D \ K is connected. Then any

holomorphic function f defined on D\ K can be extended holomorphically to
D.

Proof. Choose a cut-off function ¢ € C§°(D) such that ¢ = 1 in some open

neighborhood of K. Then —f(9¢) € C(O‘(il)((C”) satisfies the compatibility

conditions (3.8), and it has compact support. By Theorem 3.9, there is a
u € C3°(C™) such that

U = — fgﬁ
and v = 0 in some open neighborhood of C™ \ D. Then, it is easily seen that
F=01-0f-u
is the desired holomorphic extension of f. [

Theorem 3.10 implies that the set of singularities of a meromorphic func-
tion cannot be relatively compact in the domain in several complex variables.
Theorem 3.10 was proved by F. Hartogs [34]. The proof of Theorem 3.10 we
present here is essentially based on Theorem 3.9, the existence of compactly
supported solutions to the Cauchy-Riemann equations; see [30].

For further study of the materials of this section, the reader is referred to
the books [23], [37], [46] and [48].

4. CLASSIFICATION OF DOMAINS
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In complex analysis, classification of domains is always a fundamental prob-
lem. When n = 1, the problem is completely understood when the domain is
simply connected due to the following famous Riemann mapping theorem.

Theorem 4.1 (Riemann Mapping Theorem). Let D be a proper sub-
domain of C. If D is simply-connected, then D is biholomorphically equivalent
to the unit disc A = {z € C| |z| < 1}.

It is remarkable to note that the classification problem of simply con-
nected domains in one variable can be reduced to a topological condition
of the domains. Thus, we are curious about what will happen in several
variables. In 1907, H. Poincaré discovered that the unit ball B, and A"
cannot be biholomorphically equivalent to each other in C*, n > 2. Here
By ={(z1," " ,2n) € C" | |21/ 4+ -+ |2a|* < 1} is the open unit ball and A"
is the Cartesian product of n copies of A in C". This discovery reveals that
the classification problem in several variables is quite complicated. In fact, at
present it is still far from being understood. So we first present a proof to this
nonequivalence theorem.

A holomorphic mapping f from D; into D9 in C™ is called a biholomor-
phism if f is one-to-one and onto. In this case, f~! is also a one-to-one
holomorphic mapping from Dy onto D;.

Theorem 4.2 (Poincaré). There exists no biholomorphic map

f: A" — B, forn>2.

Proof. We shall assume that n = 2. The proof is the same for n > 2.
Suppose that f = (fi, f2) : A? — By is a biholomorphism. Let (z,w) be
the coordinates in C2. For any point sequence {z;} in A with |z;| — 1 as
j — o0, the sequence gj(w) = f(zj,w) : A — By is uniformly bounded.
Hence, by Montel’s theorem, there is a subsequence, still denoted by g;(w),
that converges uniformly on compact subsets of /A to a holomorphic map
G(w) = (G1(w),Ga(w)) : A — Bs. Since f is a biholomorphism, we must
have |G(w)| = 1 for all w € A. Hence, |G'(w)| = 0 for all w € A, which
implies G'(w) =0 on A. It follows that

(4.3) lim f, (2, w) = G'(w) = 0.
j—o00

Equation (4.3) implies that for each fixed w € A, f,(z,w), when viewed as
a function of z alone, is continuous up to the boundary with boundary value
identically equal to zero. Therefore, by the maximum modulus principle we
get

fuw(z,w) =0 forall (z,w) € A%
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This implies that f is independent of w, contradicting the fact that f is a
biholomorphic map. This completes the proof of the theorem. [

The proof we presented here is based on the idea of R. Remmert and K.
Stein [49], not the original one found by H. Poincaré. See also the books by R.
Narasimhan [47] and R. M. Range [48]. Thus, the main task of this section is
to discuss how one approaches the classification problem in several variables
during the last few decades.

Note first that the boundary of a smooth bounded domain D in C is a
finite union of smooth closed curves. A curve in general does not carry any
information induced from the ambient complex structure. Thus, it is of less
use to study the boundary geometry in treating the classification problem
when n = 1. In several variables the situation is completely different as we
see now.

Let M be a smooth hypersurface in C*, n > 2. Then M is a smooth
submanifold of real dimension 2n — 1 greater than or equal to three. Let
CT(M) be the complexified tangent bundle on M. In CT'(M), there is a
natural subbundle 71°(M) induced from the complex structure of the ambient
space, that is, TV0(M) = CT(M) N T (C"). Hence, dimcTHO(M) =n — 1
and

CT(M) =T (M) T (M) E,

where T%' (M) = T10(M) and E is a line bundle.

Definition 4.4. The subbundle T%°(M) is called the Cauchy-Riemann
structure on M, and we call (M, T%°(M)) a CR manifold. Any smooth section
of THO(M) (T%(M)) is called a type (1,0) ((0,1)) vector field on M.

See also [13] and [23]. With this CR structure on M one can study the
geometry and calculate the invariants resulting from it. For instance, the
number of positive eigenvalues of the Levi form associated with the boundaries
of pseudoconvex domains is a C'R invariant. The geometry on a C'R manifold
is one of the main research subjects in several complex variables which has
been intensively studied by many authors. The paper by S. S. Chern and
J. Moser [24] is an excellent reference for dealing with the C'R invariants, a
subject that is beyond the scope of this article.

We make the following definitions.

Definition 4.5. Let M and N be two smooth hypersurfaces in C", n > 2,
and let ¢ : M — N be a smooth mapping. ¢ is said to be a C'R mapping if
0T (M) c TYO(N). If ¢ is a diffeomorphic C'R mapping, we say that M is
CR diffeomorphic to N.



548 So-Chin Chen

Definition 4.6. A C! function f on M is called a CR function if Lf =0
for any type (0,1) vector field L on M.

Thus, if f € C*(D) N O(D), where D is a domain in C", n > 2, with
smooth boundary, the restriction of f to the boundary is automatically a CR
function on bD. We also have the following immediate consequence.

Corollary 4.7. Let o : M — N be a smooth mapping between two smooth
hypersurfaces in C", n > 2. Then, ¢ is a CR mapping if and only if ¢,
1<j<mn,is a CR function on M, where ¢ = (p1,--+ ,n).

So far we have done a very brief introduction to the C'R manifolds. From
here a natural question arises. Since the boundaries carry rich information of
the C'R geometry, why not use the various C'R invariants naturally attached to
the boundaries to classify domains? If this is the case, then the investigation of
the C'R invariants attached to the boundaries will give us a method to tackle
the classification problem. It sounds reasonable to do so, provided that one
can make clear first what the connection between C'R diffeomorphisms of the
boundaries and biholomorphisms of the domains is. The remainder of this
section is thus devoted to explain this scheme.

From now on, we shall always confine ourselves to smooth bounded pseu-
doconvex domains D in C™ with n > 2 unless the contrary is explicitly
stated. The extension from a C'R diffeomorphism between two boundaries
bD;, i = 1,2, to a biholomorphism between D; and D- is considerably much
easier than the other direction. This can be done via the aid of the generalized
version of the Hartogs extension theorem.

Theorem 4.8. Let D be a smooth bounded domain in C"™ with connected
boundary, and let f be a smooth CR function defined on bD. Then, f extends
holomorphically to a function F € C*°(D) N O(D) such that Flyp = f.

For a proof of Theorem 4.8, the reader is referred to [35] or [48]. Using
Theorem 4.8, one can easily prove the following extension theorem from the
boundaries to the domains.

Theorem 4.9. Let f : bDy — bDy be a CR diffeomorphism between
two connected boundaries. Then f extends smoothly to a CR diffeomorphism
between D1 and Ds, that is, f (and f~1) extends smoothly to D1 (D3) such
that f : D1 — Dy is a biholomorphism.

Proof. According to Theorem 4.8, f (f~!) extends smoothly to Dy ( D)
such that f (f~!) is holomorphic in D; (D). Using the fact that f is a
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CR diffeomorphism between bD; and bDs, we deduce that det(f')(z) # 0
for z € Dj, where (f') is the complex Jacobian of f. Thus, f is locally a
biholomorphism. Similar arguments also hold for f~1. Tt follows that f (f~1)
must map Dp (Ds2) into Do (D1). Since f is one-to-one on the boundary bDy,
f must be a biholomorphism (see also [22]). This proves the theorem. [

Thus, it remains to see how to extend smoothly a biholomorphism from
the domains to their closures. Before we proceed any further, let us digress a
little to introduce the Bergman projection and Bergman kernel function.

For any domain D in C", let H(D) be the space of square integrable
holomorphic functions on D. Obviously, H(D) is a closed subspace of L?(D),
and hence is itself a separable Hilbert space. If D = C", then H(C"™) = {0}.
Thus, we are interested in the case when H(D) is nontrivial, in particular,
when D is bounded. Since H(D) is a closed subspace of L?(D), we may
consider the orthogonal projection from L?(D) onto H (D).

Definition 4.10. The orthogonal projection P from L?(D) onto H(D) is
called the Bergman projection on D.

On the other hand, one may construct a reproducing kernel for H(D) as
follows. For any w € D, let A,, be the point evaluation map

Ay :H(D)— C
[ fw).

It is easily verified by Cauchy’s estimate that A,, satisfies
(4.11) [Auw(F)] = [f(w)] < cd(w)™ [ f [lL2(p),

where d(w) is the distance from w to the complement of D, and the constant
¢ depends only on the space dimension n. Hence, by the Riesz representation
theorem, there is a unique element, denoted by Kp(-,w), in H(D) such that

fw) = Au(f) = (F. Kp(-w)) = /D F(2) Kz, w)dVs

for all f € H(D). It is easy to check that K(z,w) = K(w, z) and
| Kp(-sw)|lr2py < cd(w)™™  for any w € D.

The function Kp(z, w) thus defined is called the Bergman kernel function for
D.
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For any f € L%(D), write f = f1 + fa, where f1 € H(D) and f» € H(D)" .
We have

Pf=fi= [ Kp(ufiave = [ Kz w)f(wdvi.
D D
Thus, we have the following representation of the Bergman projection.

Theorem 4.12. The Bergman projection Pp : L?>(D) — H(D) is repre-
sented by

Pof(e) = [ KGw)fw)av,
for all f € L*(D) and z € D.

Now, we return to the problem of how to extend a biholomorphism of
domains smoothly up to the boundaries. This extension problem is proved
case by case. The first significant achievement in this aspect is due to C.
Fefferman [31], who proved the following fundamental result.

Theorem 4.13 (Fefferman). Let f be a biholomorphism between two
smooth bounded strongly pseudoconver domains D1 and Do. Then f extends
smoothly to a CR diffeomorphism between D1 and Ds.

It follows from Theorem 4.13 that if two strongly pseudoconvex domains
have different C'R invariants attached to the boundaries, then there is no bi-
holomorphism between them. The proof of Theorem 4.13 relies heavily on the
detailed analysis of the Bergman kernel function near the strongly pseudo-
convex boundary. In this case, the boundary behavior of the Bergman kernel
function has the following expression:

(_<§<)§+ 1 3(2) log(—r(2)),

(4.14) Kp(z,z) =
where r is a strictly plurisubharmonic defining function for D, ¢, € C*® (D)
and ¢ # 0 near bD. By a smooth (strictly) plurisubharmonic function we
mean a smooth real-valued function such that the complex Hessian is positive
(definite) semi-definite at every point of the domain.

However, it seems not easy to extend Fefferman’s approach to weakly pseu-
doconvex domains. Around 1980, S. Bell and E. Ligocka [7] proposed a new
approach to this extension problem. We describe it here.

First, we introduce a condition concerning the regularity of the Bergman
projection operator which is useful in proving the regularity of a biholomorphic
mapping near the boundary.



Complex Analysis in One and Several Variables 901

Definition 4.15. A smooth bounded domain D in C™ is said to satisfy
condition R if the Bergman projection P associated with D maps C>(D)
continuously into C*°(D) N O(D).

Various equivalent statements of conditin R are given in the next theorem.

Theorem 4.16. Let D be a smooth bounded domain in C" with Bergman
projection P and Bergman kernel function K(z,w). The following conditions
are equivalent:

(1) D satisfies condition R.

(2) For each positive integer s, there is a nonnegative integer m = mg such
that P is bounded from W5T™(D) to H*(D).

(3) For each multiindex «, there are constants ¢ = ¢, and m = m, such
that

(67

K(evw)| < adtw) ™

sup 92

zeD

where d(w) is the distance from the point w to the boundary bD.

For a proof of Theorem 4.16, see [6] and [23]. Here W (D) is the completion
of C§°(D) in W#(D), the Sobolev space of order s on D, and H*(D) = W#(D)N
O(D).

Condition R in general does not hold on smooth bounded domain. A
smooth bounded non-pseudoconvex domain in C? on which condition R fails
was constructed by D. Barrett [2]. However, the powerfulness of condition R
still can be seen from the following important result proved by S. Bell and E.
Ligocka [7].

Theorem 4.17 (Bell-Ligocka). Let D; and D2 be two smooth bounded
domains (not necessarily pseudoconvex) in C™, n > 2, and let f be a biholo-
morphic mapping from Dy onto Do. Suppose that condition R holds on both
D1 and Dy, then f extends smoothly to the boundary.

Note that if both D; and Dy are assumed to be pseudoconvex, then the
assertion of Theorem 4.17 is still valid if condition R holds only on one of the
domains D; and Ds; see [4]. Roughly speaking, to prove Theorem 4.17 we first
construct, under condition R, local holomorphic coordinates smooth up to the
boundary near a boundary point. Then we show that the biholomorphic map
becomes linear in this coordinate system. Hence, it extends smoothly up to
the boundary.
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Theorem 4.17 indicates that condition R is sufficient for the extension
problem of biholomorphic map. Thus, it becomes extremely important to ver-
ify the validity of condition R on a given domain, in particular, on a smooth
bounded pseudoconvex domain in view of the non-pseudoconvex counterex-
ample discovered by D. Barrett. Obviously, from Theorem 4.16, the regular-
ity of the Bergman projection is closely related to that of the Bergman kernel
function. Unfortunately, the Bergman kernel function in general cannot be ob-
tained explicitly. Therefore, it is not easy to get the regularity of the Bergman
projection directly from the Bergman kernel function unless on certain very
special domains, say, balls or Reinhardt domains (domains that are invariant
under rotations in each variable).

Usually, condition R on pseudoconvex domains is verified through the so-
called O-Neumann problem which had been intensively studied long before
condition R was proposed. The d-Neumann problem can be formulated as fol-
lows. For any smooth bounded pseudoconvex domain D C C", n > 2, denote

by L%p " (D) the space of all (p,q)-forms with square integrable coefficients.

Hence, any f € L%p q)(D) can be written as

/
(4.18) f= > frud ndz’,
l|=p,|J|=¢
where I = (i1, ,ip), J = (j1,-,Jq) are increasing multi-indices with

is,jt € N, dz! = dzgy A= A dzi,, dz’ = dzj A -+ A dzj,, and the prime
means that the summation ranges only over those increasing multi-indices.

The coefficients f; ; are defined to be anti-symmetric in I and J. The inner

product on L%p 2 (D) is defined by

(f,9) = Z//DfI,JgI,J dv

for f,g € L%p,q)(D)-

The O operator acts on L%p q)(D) in the distribution sense. Hence, f €

L}, (D) is in the domain of 0 if 9f € L{, (D), where

(4.19) af =" @fr.) ndz' ndz.

It is easily seen that 0 is a closed, linear, densely defined operator, and 0 forms
a complex, i.e., 9° = 0. The Hilbert space adjoint

(4.20) 9" L3, (D) = LY, 4 1)(D)
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of 0 is also a closed, linear, densely defined operator. Hence, g € Dom(g*)

if there is a h € L%p7q_1)(D) such that for any ¢ € Dom(d) N L%pﬂ_l)(D), we
have
(9,09) = (h, ¢).
We then define 9 g = h. Clearly, 8" also forms a complex, and we have
il el
L%nq—l)(D) g L%p,q)(D) ; L%p7q+1)(D)'

Then we form the complex Laplacian

(4.21) 0=090 +09: L}, (D) — L, (D)
on Dom(0J) = {f € Dom(d) NDom(d") | f € Dom(d") and d" f € Dom(d)}.
[ is a closed, linear, self-adjoint, densely defined operator.

The 0-Neumann problem is, given f € L? (D), to prove the existence

(,9)
and regularity of the solution u to the equation (4.21), i.e.,

(4.22) Ou = f.

Using Hilbert space techniques, the existence of the solution u in the L? sense
can be obtained. In fact, one can prove

Theorem 4.23 (Hérmander [36]). Let D be a bounded pseudoconvex
domain in C™*, n > 2. For each 0 < p <n, 1< q <n, there exists a bounded
operator N, 4y L%p 9 (D) — L%p 2 (D) such that:

1) R(N(p,g)) € Dom(Bp0))s Nip.g)Op.g) = Bip.g) Nip.g) = 1 on Dom(0gy, g)-
2) For any f € L%p’q) (D), f=00"N(p o f ©®0*ONp o) f-

(

(2)

(3) ON(p.) = Nip,g+1)0 on Dom(9d), 1 < g <n—1.
(4)

(5)

4) 0*Npg) = Nipg—1)0* on Dom(9%), 2 < g < n.
5) Let § be the diameter of D. The following estimates hold for any f €
L? (D):
(p,9)

ed?
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The operator N = N, ) is called the O-Neumann operator. Now, it is
clear how to relate the 9-Neumann operator with the Bergman projection. If

f € Dom(0) and g € H(D), then
(975*N(0,1)5f) = @g,N(O’l)gf) =0.

This shows E*N(m@f 1 H(D). On the other hand, using (1) and (3) of
Theorem 4.23, we have

A(f -0 Np1of)=0f — 99 Ny 1yof
=9f — (90" + 0 0)No.1)0f
—of - of
=0.
Hence,
(4.24) Pf=f—09 N.of

for f € Dom(d). However, (4.24) also holds for any f € L?(D) if 5*N(071)5 is
first viewed as a bounded operator on the dense subspace Dom(9) and then
extended by continuity to the whole space L?(D). Thus, using (4.24), the
regularity of the Bergman projection P will follow immediately from that of
the 0-Neumann operator N.

Vast efforts had been devoted to proving the regularity of the O-Neumann
problem in the last few decades. The program was first initiated by J. J. Kohn
[39] when D is a strongly pseudoconvex domain. In this case, a subelliptic
1/2-estimate for (p,q)-forms was established. To be more precise, we make
the following definition.

Definition 4.25. Let D be a smooth bounded pseudoconvex domain in
C", n > 2, and let 2y € bD. The 0-Neumann problem on D is said to satisfy a
subelliptic e-estimate for (p, g)-forms at zp, 0 < € < 1, if there exists an open
neighborhood U of 2y such that

(4.26) LFIZ<CUar 1>+ 1 f 1> +11£1%

- %

for f € Do) (D) = CE’;q)(D) N Dom(9") with supp(f) contained in U, where
|| - |le denotes the Sobolev e-norm and C' > 0 is independent of f.

Then, we have

Theorem 4.27 (Kohn). Let D be a smooth bounded strongly pseudocon-
vex domain in C", n > 2. Then subelliptic 1/2-estimate for (p,q)-forms holds
onD,0<p<nandl <qg<n-1.
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A complete characterization of subelliptic 1/2-estimate for (p, ¢)-forms at
zo was obtained by Hormander [36]. That is, (4.26) holds with ¢ = 1/2 for
(p, q)-forms at zp if and only if the Levi form at zy has either at least n — ¢
positive eigenvalues or at least g+ 1 negative eigenvalues. This is usually called
condition Z(q). See also [23] and [32].

In [45], it was shown through a general scheme that if (4.26) holds, then
the 0-Neumann operator N will gain 2¢ derivatives in Sobolev scale, that is,

(4.28) IENT llst2e < Cs(ICf lls + 11 F 1D,

where (,(’ € C§°(U) and ¢’ = 1 on the support of (. Thus, we have the
following theorem.

Theorem 4.29. The Bergman projection preserves Sobolev spaces W*(D),
s > 0, on any smooth bounded strongly pseudoconvex domain in C™, n > 2.
In particular, condition R holds on any smooth bounded strongly pseudoconvex
domain in C".

See also [44] and [23]. Using Theorems 4.17 and 4.29, we reestablish Fef-
ferman’s mapping theorem (Theorem 4.13).

Apart from strong pseudoconvexity, we begin to encounter the problem
caused by the vanishing of the Levi form. In [40], Kohn launched another
program to study the regularity of the J-Neumann problem on weakly pseu-
doconvex domains. When D is a smooth bounded pseudoconvex domain in
C?, the Levi form X is just a nonnegative function on the boundary. Hence,
D is strongly pseudoconvex at a boundary point zy if and only if A\(zg) > 0.
Let r be a smooth defining function for D, and let

_67“0 or 0

L= o 0m  9m0n

be the generator of the tangential type (1,0) vector fields on bD. Define the
subspaces L;’s inductively by

Ly =(L,L)

and
Ly = (Lr-1,[X,Y]) for XY €Ly 1, k>2.

Then we make the following definition of finite type.

Definition 4.30. Let D be a smooth bounded pseudoconvex domain in
C2. D is said to be of finite type at zg € bD if A\(z0) # 0 or X\(z9) # 0
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for some X € L. The order of finite type at zg € bD is defined to be 2 if
A(z0) # 0, and be 2+ k if A(z9) = 0 and k is the smallest positive integer such
that X A(z9) # 0 for some X € Lj. Otherwise, D is said of infinite type at zg.

Obviously, finite type is an open condition on the boundary. According
to Definition 4.30, strictly pseudoconvex boundary points are of type 2. Also,
due to pseudoconvexity of the domain, the type is always an even integer.
With this setup, Kohn was able to establish the subelliptic estimate at the
finite type points.

Theorem 4.31. Let D be a smooth bounded pseudoconvex domain in C2.
Suppose that D is of finite type m at zg € bD. Then a subelliptic 1/m-estimate
for the 0-Neumann problem holds at zg.

The necessity of a subelliptic 1/m-estimate at zp is due to P. Greiner [33].
The type condition in C? is equivalent to the largest order of contact that a
one-dimensional complex manifold can have with the boundary at zp. See also
[8]. If we move now to higher-dimensional spaces, the situation is becoming
more complicated.

In [43], Kohn introduced the concept of finite ideal type for the subelliptic-
ity of the -Neumann problem. Define the ideals I g of germs of C*°-functions
at a boundary point zg € bD inductively as follows:

Il(z0) = H\R/(r, coeff{Or A Or A (00r)"—1}),

where r is a smooth defining function for D and coeff{-} stands for the coeffi-
cients of the forms with respect to some holomorphic coordinate system, and,
for k > 2,

1(z0) = {/(I_, (z0). coeft{@fy A -~ A Df; A D A Dr A (90r)=a-7}),
where f1,---, fj € Il ;. Here ¥/T means the radical ideal of I, that is,
VI = {f | there exists g € I and m such that |f|™ < |g|}.
Then the following theorem was proved in [43].
Theorem 4.32. Let D be a smooth bounded pseudoconver domain in C™,
n > 2, and let zy be a boundary point. If 1 € I,Z(zo) for some k, then a

subelliptic e-estimate for the O-Neumann problem for (p,q)-forms holds at zo,
where 0 < € < 1/2.
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Conversely, if a subelliptic e-estimate for (p,q)-forms holds at zg, is it
necessary that 1 € I}!(z9) for some k? The necessity of the finite ideal type so
far is still open. When the defining function r is real analytic near zy, with
the aid of a theorem due to K. Diederich and J. E. Fornaess [29], we have a
complete characterization of the subellipticity of the O-Neumann problem at
20.

Theorem 4.33. Let D be a smooth bounded pseudoconver domain in C™,
n > 2, and let zg be a boundary point. If there exists a defining function r
which is real analytic near zy, then a subelliptic e-estimate for the O-Neumann
problem for (p, q)-forms holds at zy if and only if there does not exist germs
of complex variety of dimension q at zy in the boundary.

In particular, we have

Theorem 4.34. If D is a smooth bounded pseudoconvex domain in C",
n > 2, with real analytic boundary, then a subelliptic e-estimate for the O-
Neumann problem for (p,q)-forms, 0 <p <n,1<qg<n-—1, holds on D.

According to the theorem of Diederich and Fornaess [29], a smooth bounded
pseudoconvex domain with real analytic boundary does not contain any non-
trivial complex variety in the boundary. Hence, one may apply Theorem 4.33
to obtain Theorem 4.34.

On the other hand, using the order of contact of complex varieties with the
boundary at zp, D’Angelo [26] also introduced a notion of finite type which
we now present. Denote by v(f) the order of vanishing at the origin in C
of a smooth vector-valued function f defined in an open neighborhood of the
origin in C.

Definition 4.35. Let M be a smooth hypersurface of C" containing zg.
Let r be a local defining function for M near zy. Then 2 is called a point of
finite type if
v(rog)

(4.36) T"(r) = sgp ()

<7 <00,

where the supremum is taken over all germs of nonconstant holomorphic maps
g : C — C" with g(0) = zp. The least such number 7 is defined to be the
type of the point zp, denoted by A(M, zp). A smooth bounded domain D is
of finite type if every boundary point of D is of finite type.

See also the book by J. D’Angelo [27]. Thus, the type 7 of a point zg € bD
is equal to the largest order of contact of a one-dimensional complex variety
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can have with the boundary bD at zy. Then, the following theorem is proved
in [26].

Theorem 4.37. The type given by (4.36) is an open condition on the
boundary.

D. Catlin also proposed a notion of type condition closely related to the
one in the sense of Definition 4.35. Then, he proved the following result.

Theorem 4.38. Let D be a smooth bounded pseudoconver domain in C™,
n > 2, and let zy be a boundary point. Then a subelliptic e-estimate for the
0-Neumann problem holds at zg if and only if D is of finite type at zg.

Detailed proofs of Theorem 4.38 and related results can be found in [15,
16, 18]. So far, the quantitative estimate of € is not very precise. However, the
story of seeking a subelliptic e-estimate for the 9-Neumann problem almost
ended here.

Next, we need to treat the regularity of the O-Neumann problem on pseu-
doconvex domains with infinite type boundary points. For this situation, in
general, there is no subelliptic e-estimate. Thus, we are seeking for global
regularity of the &-Neumann problem.

In [17], a condition named property (P) was introduced by D. Catlin for
global regularity of the d-Neumann problem. Domains with property (P) may
be viewed as a generalization of finite type domains. Here is the definition.

Definition 4.39. Let D be a smooth bounded domain in C*, n > 2.
The boundary of D is said to satisfy property (P) if for every positive number
M > 0, there is a plurisubharmonic function A € C*°(D) with 0 < A <1 such
that

L EDY _
4.40 titr > M|t|*> forall ze€bD
( ) ‘kzl 8zjagk (Z) ] k= ‘ ‘ or a. z 9

where t = (t1,--- ,t,) € C".

See also the paper concerning B-regular set by N. Sibony [50]. Obviously,
property (P) implies the absence of any nontrivial complex variety on the
boundary bD.

Using property (P), Catlin was able to prove the following compactness
estimate for the O-Neumann problem on D.
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Theorem 4.41. Let D be a smooth bounded pseudoconvexr domain in C™,
n > 2. Suppose that bD satisfies property (P). Then, for any € > 0, there is a
C(e) > 0 such that

(4.42) LFI1> < e(2f 17 + 1187 f11%) + C( FI24
for f € Dom(9) NDom(d"), where || - || -1 denotes the Sobolev norm of order
—1 on D.

Now, combining Theorem 4.41 with a theorem of Kohn and Nirenberg [45]
gives the following consequence of property (P).

Theorem 4.43. Let D be a smooth bounded pseudocgnvex domain in C",
n > 2. Suppose that bD satisfies property (P). Then the O-Neumann problem
1s globally reqular on D.

Typical examples of pseudoconvex domains with property (P) are those
whose boundaries can be stratified by submanifolds M of holomorphic dimen-
sion zero. M is said of holomorphic dimension zero if the restriction of the
Levi form to type (1,0) vector fields tangent to M is positive. Thus, property
(P) provides us with a tool for proving the global regularity of the -Neumann
problem when the domain does not contain any complex variety on the bound-
ary. However, it was pointed out by Sibony [50] that there exists a smooth
bounded pseudoconvex domain D in C? with no analytic disc contained in
the boundary, yet property (P) fails on this domain. Whether the absence of
analytic disc on the boundary implies the global regularity of the O-Neumann
problem remains to be unknown.

On the other hand, a vector field technique is developed to prove the
global regularity of the 9-Neumann problem for general weakly pseudoconvex
domains. Let D C C*,n > 2, be a smooth bounded pseudoconvex domain,
and let 7 be a smooth defining function for D. Set

4 = or 0
4.44 L, = —
( ) " ‘VT‘Q Z::afj 82]‘
if [Vr| # 0, and
(4.45) L=2r 0 00 g cick<n

- 8748% B 6zk aZj

We have L,r = 1 in a neighborhood of the boundary and the L;;’s are tangent
to the level sets of r. Also, the Lj;’s span the space of tangential type (1,0)
vector fields at every boundary point of D.
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The main idea of this method is to construct a real tangential vector field
T on some open neighborhood of the boundary such that the commutators of
T with type (1,0) and (0,1) vector fields have small modulus in L,, direction
on the boundary. We formulate the required properties of T" in the following
condition:

Condition (T). For any given € > 0, there exists a smooth real vector
field T = T, depending on €, defined in some open neighborhood of D and
tangent to the boundary with the following properties:

(1) On the boundary, T can be expressed as
T = ac(2)(Ly, — Ly), mod (TH°(bD) @ T*1(bD)),

for some smooth function ac(z) with |ac(z)] > § > 0 for all z € bD,
where § is a positive constant independent of €.

(2) If V is any one of the vector fields Ly, Ly, Lji and fjk, 1<j<k<n,
then

[T, V]|yp = Ay(2)L,, mod (TY°D) e T%(bD), L,),

for some smooth function Ay (z) with sup |Ap(z)| < e.
bD

Using Condition (T), we can prove the following theorem.

Theorem 4.46. Let D be a smooth bounded pseudoconver domain in C™,
n > 2, with a smooth defining function r. Suppose that condition (T') holds on
D. Then the O-Neumann operator N maps W2 )(D), 0<p<n, 1<qg<n,

(p.a
boundedly into itself for each nonnegative real s.

A related version of Theorem 4.46 was obtained by H. P. Boas and E.
Straube [11]. They first proved the regularity for the Bergman projections
under a condition similar to condition (T). Then, using the equivalence of
regularity for the O-Neumann operators and the Bergman projections proved
earlier [10], they deduced the regularity for the d-Neumann operators. See
also [20]. Theorem 4.46 gives a direct treatment for the regularity of the
0-Neumann operators. A detailed proof of Theorem 4.46 can be found in [23].

Roughly speaking, to prove Theorem 4.46, using elliptic regularization
method (see the paper by J. J. Kohn and L. Nirenberg [45]), it suffices to
prove an a priori estimate for the solution u = N f to the d-Neumann problem.
Hence, we assume u is smooth up to the boundary and start to estimate

(4.47) |OT*u)|? + (|8 T*u|?
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for k € {0} UN. Commuting T* with & and 8 , we see that it suffices to
estimate

(4.48) 10, 77" | + || [0, T)T* Lulf?,

modulo some lower order terms that can be controlled by the induction hy-
potheses. The most difficult terms to estimate in (4.48) occur when [0, T or
[5*,T] gives nontrivial component in L,-direction. The assumption, condi-
tion (T), is used here to guarantee that such terms can be absorbed by the
left-hand side, namely, (4.47). This proves Theorem 4.46.

So far, the vector field method can be well applied to two large classes of
pseudoconvex domains to obtain the regularity of the O-Neumann operators.
Unlike pseudoconvex domains of finite type, both cases allow the boundaries
of the domains to contain a large piece of complex variety. One is the case
when the domain has a plurisubharmonic defining function. The other case
is when the domain enjoys a circular transverse symmetry. We now describe
them below.

Definition 4.49. Let D be a smooth bounded domain in C*, n > 2. r
is called a smooth plurisubharmonic defining function for D if r is a defining
function for D and plurisubharmonic on the boundary bD.

Thus, if D has a plurisubharmonic defining function, then D is automat-
ically pseudoconvex. It is crucial to observe that if r is a plurisubharmonic
defining function, then, for each k, the derivatives of Or/0z; of type (0,1) in
the directions that lie in the null space of the Levi form must vanish. This
observation enables us to construct the required real tangential vector fields
T such that the commutators of 7' and type (1,0) (or (0,1)) vector fields have
small modulus in the L,-direction. Using Theorem 4.46, we have the following
theorem.

Theorem 4.50. Let D C C™,n > 2, be a smooth bounded pseudoconvex
domain admitting a plurisubharmonic defining function r(z). Then the O-
Neumann operator N is exactly reqular on W(an) (D) for0<p<n,1<q¢g<n
and all real s > 0.

By “exactly regular” we mean that the O-Neumann operator N pre-
serves W(Sp’q)(D) for all s > 0. For a proof of Theorem 4.50, the reader is
refered to [11] and [23].

Theorem 4.50 can be applied to the class of convex domains. Let D be a
smooth bounded convex domain in RY, N > 2, containing the origin. For any
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x € RY, the Minkowski functional y(x) is defined by
(4.51) p(z) =1inf{\ > 0| z € AD},

where AD = {\t | t € D}. It is not hard to verify that the Minkowski
functional y is a plurisubharmonic defining function for D. Thus, we have

Theorem 4.52. Let D be a smooth bounded convex domain in C™, n > 2.
Then the O-Neumann operator N is exactly reqular on W(‘; q)(D) for0 <p<n,
1<qg<n and all real s > 0.

For a proof of Theorem 4.52, the reader is refered to [11], [21] and [23].
The other important class of pseudoconvex domains that satisfy the hy-
potheses of condition (T) are circular domains with transverse symmetries.

Definition 4.53. A domain D in C" is called circular if e’ -z = (ewzl, R
¢?2,) € Dforany z € D and § € R. D is called Reinhardt if (€1 2y, --- e 2,) €
D for any z € D and 64,---,0, € R, and D is called complete Reinhardt if
z= (21, ,%p) € D implies (wy,--- ,wy) € D for all |w;| < |z;],1 <j < n.

Thus, a Reinhardt domain is automatically circular. Let D be a smooth
bounded circular domain in C",n > 2. Define r(z) by

_ [ d(#,bD)  for z ¢ D,
(4.54) r(z) = { —d(z,bD) for z € D,

where d(z,bD) denotes the distance from z to the boundary bD. It is easy to
see that r is a smooth defining function for D such that r(z) = r(e? - 2) and
that |Vr| = 1 on the boundary. Denote by A the map of the S'-action on D
from S x D to D defined by

A:S'xD—=D

(ew?Z) — eié‘ e (eiezl’ . ’eie

Zn).
For each fixed 6, A is an automorphism of D and A can be extended smoothly
to a map from S' x D to D. Hence, for each fixed z € D, we consider the
orbit of z, namely, the map
7, :S' =D
ei@ 0

— ez,

Then, 7, induces a vector field 7 on D, in fact on C"?, by

~ 0 . x=_ O
=1 Zi— — 1 Zi—,
9:0) ; 10z ; 10z

0
(4.55) T, = 7,. (ae
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where 7, , is the differential map induced by m,. Note that T" is tangent to
the level sets of r. In particular, T is tangent to the boundary of D.

Definition 4.56. Let K be a compact subset of the boundary of a smooth
bounded circular domain D. D is said to have transverse circular symmetry on
K if for each point z € K the vector field T" defined in (4.55) is not contained
in 72°(bD) & T (bD).

Transverse symmetry was first introduced by D. Barrett in [1]. It is obvious
from (4.55) and Definition 4.56 that D has transverse circular symmetry on
the whole boundary if and only if 377 2;(0r/02;)(2) # 0 on bD. Then, we

prove

Theorem 4.57. Let D C C",n > 2, be a smooth bounded circular pseu-
doconvex domain with a smooth defining function r defined by (4.54). Suppose
that 377 2j(Or/0zj)(2) # 0 on the boundary. Then the O-Neumann problem
1s exactly regular on D.

Proof. Let T be the vector field defined in (4.55). By assumption, T is
transversal to 719 (bD)® T (bD) everywhere on the boundary. The key of the
proof is to observe that Tr = 0, [T, 0/0%;] = i0/0%; and [T, 0/0z;] = —i0/0z;.
Hence, we have

[T, Lji| = —2iLjy,
forall 1 <j <k <mn, and
[T, Lu]lbp = [T, Ln]lop = 0,

where L, and Lj; are defined in (4.44) and (4.45). It follows that condition
(T) holds on D. By Theorem 4.46, this proves Theorem 4.57. [

Next a geometric argument shows that a complete Reinhardt domain al-
ways enjoys transverse circular symmetry.

Theorem 4.58. Let D C C™, n > 2, be a smooth bounded complete Rein-
hardt pseudoconvex domain with a smooth defining functionr(z) = r(e 2z, -
for all 01,--- .0, € R. Then, we have >7%_, 2j(0r/0z;) # 0 on bD. In
particular, the 0-Neumann operator N is exactly regular on W(Sp’q)(D) for
0<p<n,1<qg<nandall real s > 0.

Theorems 4.57 and 4.58 can be found in [19] or [23].

Now, it is natural to ask whether the vector field method can be applied to
any weakly pseudoconvex domain or not. Unfortunately, the answer is nega-
tive. An important counterexample known as “worm domain” was contructed

, €

0

nzn)
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by K. Diederich and J. E. Fornaess in [28]. Let us present it here (see Kiselman
[38]).
Let f > m/2. Fix a smooth function n : R — R with the following

properties:

(1) n(z) >0, n is even and convex;

(2) n7H(0) = Ig_r/2, where Ig_. /o =[-8+ /2,8 —m/2];

(3) there exists an @ > 0 such that n(z) > 1if x < —a or > q;
(4) o

4) n'(z) #0if n(x) = 1.

Note that (4) follows from (1) and (2). The existence of such a function is
obvious. Define

(4.59) Dg = {(z1,22) € C* | r(z) < 0},

where 7(z) = |21 + e822* |2 4 (log|22|2) — 1 is the defining function for Dg.
It is not hard to see that Dg has smooth boundary and is defined locally
by a plurisubharmonic function. Thus, we have:

Proposition 4.60. For each fixed 3 > /2, Dg is a smooth bounded
pseudoconver domain in C2.

Dy is strictly pseudoconvex everywhere except on the closure of the annulus
A, where
A =1{(0,2) € C? |log|z|* < 8 —n/2}.

The following result shows that for each fixed 3 > 7/2, there is no C? global
defining function which is plurisubharmonic on the boundary of Dg.

Theorem 4.61. For any (3 > /2, there is no C? defining function p(z)
for Dg such that p(z) is plurisubharmonic on the boundary of Dg.

Proof. Let p(z) be such a C? defining function for D that is plurisubhar-
monic on the boundary bDg. Then there is a C'! positive function i defined
in some neighborhood of bDg such that p(z) = hr. A direct calculation shows
that the complex Hessian of p(z) acting on any (a,3) € C? for any point
p € A C bDg is given by

L, (p; (a, B)) =2Re [aﬁ <’h n ‘9h> pilog m,z}

Z9 822

+ [h + 2Re<§he“°g|22l2>] laf®.

<1

(4.62)
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Since, by assumption, (4.62) is always nonnegative, we must have

(m + (9h> ei10g|22‘2 = 0
Z9 822

on A, or, equivalently,

(9 —il 2
—(he~leelz2l"y =
852( € )

on A. Consequently,
. 2
g(z2) = h(0, 22)67“%‘22'

is a holomorphic function on the annulus A. It follows that
9(22)e 187 = (0, zp)e 2008 = ¢

is also locally a holomorphic function on A, and hence it must be a constant
¢, since the right-hand side is real. This implies that

h(0, z9) = ce?™r8*2

is a well-defined, C! positive function on A, which is impossible. This proves
Theorem 4.61. [

In particular, Theorem 4.50 is not applicable to worm domains. Actually,
D. Barrett [3] was able to show the following:

Theorem 4.63. For any [ > /2, the Bergman projection on Dg does
not map W¥(Dg) into Wk(Dg) when k > 7 /(28 — ).

Basically, the idea of the proof is that we first dilate the z;-component
of Dg to an unbounded worm domain Dj; for zp belonging to {zo € C |
|log |22]%| < 8 — 7/2}. The Bergman kernel function on Dj; can be related to
the weighted Bergman kernel function on a horizontal strip Ig of the complex
plane. Now, using the explicit asymptotic expansion of the weighted Bergman
kernel function on Ig, we deduce the assertion of the theorem.

With Barrett’s result at hand, it was finally proved by M. Christ [25] that
the Bergman projection is not globally regular on worm domains. Namely, we
have

Theorem 4.64. Condition R fails on worm domain Dg for any B > m/2.

To prove Theorem 4.64, he showed that for each § > 7/2, there is a
sequence of positive numbers {s; = s(3);}72; tending to infinity such that
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if f e C(O;’I)(ﬁg) and Nf = Ny 1) f € C(Ozfl)(ﬁ/g) (this would be the case if
condition R holds on Dg; see [9]), then, for each j, the following estimate

holds:
(4.65) I NF llwssi g < Ci ll f llwsipy)

for some C; > 0. Since C*(Dp) is dense in every W¥(Dg), k > 0, (4.65) will
violate Barrett’s result. This proves Theorem 4.64.

It might be interesting if one can reprove Theorem 4.64 via a direct treat-
ment of the Bergman kernel function on Dg. This will shed more insights
into the behavior of the Bergman projection near the weakly pseudoconvex
boundary points on worm domains.

Although condition R fails on weakly pseudoconvex domains in general,
yet the classification problem still remains. A complete understanding of the
classification problem of domains in C"*, n > 2, is still far from reach. It is
possible that any biholomorphic map between two smooth bounded domains
extends automatically smoothly up to the boundary without any additional
assumption. New ideas and techniques are needed for further investigations.
Hopefully, one can get a clearer picture of it in the near future. See also the
survey papers by S. Bell [5] and H. P. Boas and E. Straube [12]. Finally, we
should also note that if the metric is changed, then it is always possible to
obtain Sobolev estimates for the weighted 9-Neumann problem. See [41, 42].

I think it is about time to stop at this stage. If, after reading this article,
the reader wishes to learn more about several complex variables, I highly
recommend the books by S.-C. Chen and M.-C. Shaw [23], G. B. Folland and
J. J. Kohn [32], L. Hérmander [37], S. Krantz [46], R. Narasimhan [47] and R.
M. Range [48].
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