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Pose estimation for augmented reality:
a hands-on survey

Eric Marchand, Hideaki Uchiyama and Fabien Spindler

Abstract—Augmented reality (AR) allows to seamlessly insert virtual objects in an image sequence. In order to accomplish this goal, it is important
that synthetic elements are rendered and aligned in the scene in an accurate and visually acceptable way. The solution of this problem can be related
to a pose estimation or, equivalently, a camera localization process. This paper aims at presenting a brief but almost self-contented introduction to the
most important approaches dedicated to vision-based camera localization along with a survey of several extension proposed in the recent years. For
most of the presented approaches, we also provide links to code of short examples. This should allow readers to easily bridge the gap between
theoretical aspects and practical implementations.

Index Terms—Survey, augmented reality, vision-based camera localization, pose estimation, PnP, SLAM, motion estimation, homography, keypoint
matching, code examples.

F

1 INTRODUCTION

Augmented reality (AR) allows to seamlessly insert virtual objects
in an image sequence. A widely acknowledged definition of
augmented reality is due to Azuma in the first survey dedicated
to the subject [7]. An AR system should combine real and virtual
objects, be interactive in real time, register real and virtual
objects. It has to be noted that this definition does not focus
on specific technologies for localization and visualization. Back
in 1997, registration was considered as "one of the most basic
problems currently limiting augmented reality [7]".

Pose estimation: a "basic problem" for augmented reality.

AR has been intrinsically a multidisciplinary and old research area.
It is clear that real and virtual world registration issues received
a large amount of interest. From a broader point of view, this is
a motion tracking issue. To achieve this task, many sensors have
been considered: mechanical devices, ultrasonic devices, magnetic
sensors, inertial devices, GPS, compass, and obviously, optical
sensors [146]. To paraphrase [146], there was no silver bullet to
solve this problem but vision-based techniques rapidly emerged.

Indeed, with respect to other sensors, a camera combined
with a display is an appealing configuration. As pointed out
in [9], such a setup provides vision-based feedback that allows
to effectively close the loop between the localization process
and the display. This also reduces the need for heavy calibration
procedure. Nevertheless, when Azuma’s survey [7] was published,
only few vision-based techniques meeting his definition existed.

Until the early 2000s, almost all the vision-based registration
techniques relied on markers. Then various markerless approaches
quickly emerged in the literature. On one hand, markerless model-
based tracking techniques improve clearly (but are in line with)
marker-based methods. On the other hand, with the ability to easily
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match keypoints like SIFT, and the perfect knowledge of multi-
view geometry, new approaches based on an image model and
on the estimation of the displacement of the camera [122] arose.
Finally, the late 2000s saw the introduction of keyframe-based
Simultaneous Localization and Mapping (SLAM) [57] that, as a
sequel of structure from motion approaches (widely used in off-
line compositing for the movie industry), allows to get rid of a
model of the scene.

Although vision-based registration is still a difficult problem,
mature solutions may now be proposed to the end-users and real-
world or industrial applications can be foreseen (if not already
seen). Meanwhile, many open source software libraries (OpenCV,
ViSP, Vuforia,...) and commercial SDK (Metaio (now with Apple),
Wikitude, AugmentedPro, Diotasoft,...) have been released provid-
ing developers with easy-to-use interfaces and efficient registration
processes. It therefore allows fast prototyping of AR systems.

Rationale.

Unfortunately, using such libraries, end-users may widely consider
the underlying technologies and methodological aspects as black
boxes. Our goal is then to present, in the reminder of the paper, a
brief but almost self-contained introduction to the most important
approaches dedicated to camera localization along with a survey
of the extensions that have been proposed in the recent years. We
also try to link these methodological concepts to the main libraries
and SDK available on the market.

The aim of this paper is then to provide researchers and
practitioners with an almost comprehensive and consolidated in-
troduction to effective tools for facilitating research in augmented
reality. It is also dedicated to academics involved in teaching
augmented reality at the undergraduate and graduate level. For
most of the presented approaches, we also provide links to code
of short examples. This should allow readers to easily bridge
the gap between theoretical aspects and practice. These examples
have been written using both OpenCV and the ViSP library [79]
developed at Inria.

http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html
http://www.irisa.fr/lagadic/visp
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Choices have to be made.

A comprehensive description of all the existing vision-based lo-
calization techniques used in AR is, at least in a journal paper, out
of reach and choices have to be made. For example, we disregard
Bayesian frameworks (Extended Kalman Filter). Although such
methods were widely used in the early 2000s, it appears that
EKF is less and less used nowadays for the profit of deterministic
approaches (to mitigate this assertion, it is acknowledged that they
are still useful when considering sensor fusion). Not considering
display technologies (e.g., optical see-through HMD), we also
disregard eyes/head/display calibration issues. As pointed out
in [146], many other sensors exist and can be jointly used with
cameras. We acknowledge that this provides robustness to the
localization process. Nevertheless, as stated, we clearly focus in
this paper, only on the image-based pose estimation process.

Related work.

In the past, two surveys related to AR (in general) have been
published in 1997 [7] and 2001 [8]. These surveys have been
completed in 2008 by an analysis of 10 years of publications
in ISMAR [151]. Demonstrating the interest for vision-based
localization, it appears that more than 20% of the papers are
related to "tracking" and then to vision-based registration (and they
are also among the most cited papers). In [146] the use of other
sensors and hybrid systems is explored. Dealing more precisely
with 3D tracking, a short monograph was proposed in [65].

To help the students, engineers, or researchers pursue further
research and development in this very active research area, we
explain and discuss the various classes of approaches that have
been considered in the literature and that we found important
for vision-based AR. We hope this article will be accessible and
interesting to experts and students alike.

2 OVERVIEW OF THE PROBLEM

The goal of augmented reality is to insert virtual information in
the real world providing the end-user with additional knowledge
about the scene. The added information, usually virtual objects,
must be precisely aligned with the real world. Figure 1 shows
how these two worlds can be combined into a single and coherent
image.

Fig. 1. AR Principle and considered coordinate systems: to achieve a coherent
compositiong, computer graphics (CG) camera and real one should be located
at the very same position and have the same parameters.

From the real world side, we have the scene and the camera.
Let us denote Fc the camera frame, Fw the scene frame (or world

frame). On the virtual side, we have a virtual world with various
virtual objects whose position are expressed in the virtual world
frame FCGw (computer graphics (CG) frame). To render the virtual
scene, a virtual (CG) camera is added to the system. Let us denote
FCGc the virtual camera frame. For simplicity and without loss of
generality, let us assume that the world frame and the virtual world
are the same (FCGw =Fw). To create an image of the virtual world
that is consistent with the real camera current view, CG camera and
real one should be located at the very same position and have the
same parameters (focal, viewing angle, etc). Once the real and CG
cameras are perfectly aligned, a compositing step simply provides
the resulting augmented image.

Within this process, the only unknown is the real camera
position in the world frame (we denote cTw the transformation
that fully defines the position of Fw wrt. Fc). Vision-based AR is
thus restricted to a camera pose estimation problem. Any error in
the estimation of the camera position in the world reference frame
appears to the user as inconsistencies.

Pose estimation is a problem which found its origin in pho-
togrammetry where it is known as space resection. A simple
definition could be: "given a set of correspondences between 3D
features and their projections in the images plane, pose estimation
consists in computing the position and orientation of the camera".
There are many ways to present the solutions to this inverse
problem. We made the choice to divide the paper according to
available data: do we have 3D models (or can we acquire them?)
or do we restrict to planar scenes? The paper is then organized as
follow:

• In Section 3, we chose to consider first the general case
where 3D models are available or can be built on-line.
We first review in Section 3.1 the solutions based on
classical pose estimation methods (known as PnP). We
then show in Section 3.2 a generalization of the previous
method to handle far more complex 3D model. When 3D
models are not a priori available, they can be estimated
on-line thanks to Simultaneous Localization and Mapping
(SLAM) techniques (see Section 3.3). Finally when 3D
data can be directly measured, registration with the 3D
model can be done directly in the 3D space. This is the
objective of Section 3.4.

• It appears that the problem could be easily simplified when
the scene is planar. This is the subject of Section4. In that
case, the pose estimation could be handled as a camera
motion estimation process.

• From a practical point of view, the development of actual
AR applications rises the question of the features extrac-
tion and of the matching issues between image features.
This issue will be discussed in Section 5.

Overall, whatever the method chosen, it will be seen that
pose estimation is an optimization problem. The quality of the
estimated pose is highly dependent on the quality of the mea-
surements. We therefore also introduce in Section 3.1.3 robust
estimation process able to deal with spurious data (outliers) which
is fundamental for real-life applications.

3 POSE ESTIMATION RELYING ON A 3D MODEL

In this section we assume that a 3D model of the scene is available
or can be estimated on-line. As stated in the previous section, the
pose should be estimated knowing the correspondences between
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2D measurements in the images and 3D features of the model. It
is first necessary to properly state the problem. We will consider
here that these features are 3D points and their 2D projections (as
a pixel) in the image.

Let us denote Fc the camera frame and cTw the transformation
that fully defines the position of Fw wrt. Fc (see Figure 2). cTw,
is a homogeneous matrix defined such that:

cTw =

( cRw
ctw

03×1 1

)
(1)

where cRw and ctw are the rotation matrix and translation vector
that define the position of the camera in the world frame (note that
cRw being a rotation matrix, it should respect the orthogonality
constraints).

Fig. 2. Rigid transformation cTw between world frame Fw and camera frame Fc
and perspective projection

The perspective projection x̄ = (u,v,1)> of a point wX =
(wX ,wY,wZ,1)> will be given by (see Figure 2):

x̄ = K Π
cTw

wX (2)

where x̄ are the coordinates, expressed in pixel, of the point in the
image; K is the camera intrinsic parameters matrix and is defined
by:

K =

 px 0 u0

0 py v0

0 0 1


where (u0,v0,1)> are the coordinates of the principal point (the
intersection of the optical axes with the image plane) and px (resp
py) is the ratio between the focal length of the lens f and the
size of the pixel lx: px = f/lx (resp, ly being the height of a pixel,
py = f/ly). Π the projection matrix is given, in the case of a
perspective projection model, by:

Π =

 1 0 0 0
0 1 0 0
0 0 1 0


The intrinsic parameters can be easily obtained through an off-line
calibration step (e.g. [20], [149]). Therefore, when considering the
AR problem, we shall consider image coordinates expressed in the
normalized metric space x = K−1x̄. Let us note that we consider
here only a pure perspective projection model but it is clear that
any model with distortion can be easily considered and handled.
From now, we will always consider that the camera is calibrated
and that the coordinates are expressed in the normalized space.

If we have N points wXi, i = 1..N whose coordinates expressed
in Fw are given by wXi = (wXi,

wYi,
wZi,1)>, the projection xi =

(xi,yi,1)> of these points in the image plane is then given by:

xi = Π
cTw

wXi. (3)

Knowing 2D-3D point correspondences, xi and wXi, pose estima-
tion consists in solving the system given by the set of equations (3)
for cTw. This is an inverse problem that is known as the Perspec-
tive from N Points problem or PnP (Perspective-n-point).

3.1 Pose estimation from a known 3D model

In this paragraph, we review methods allowing to solve the set of
equations (3) for the pose cTw. Among various solutions, we will
explain more deeply two classical algorithms widely considered
in augmented reality: one method that does not require any
initialization of the pose (Direct Linear Transform) and a method
based on a gradient approach that needs an initial pose but which
can be consider as the "gold standard" solution [48]. We will also
discuss more complex, but also more efficient, solutions to the
pose estimation issue. Optimization procedure in the presence
of spurious data (outliers) is also considered. In each case, a
comprehensive description of each methods will be given.

3.1.1 P3P: solving pose estimation with the smallest subset of
correspondences

P3P is an important and old problem for which many solutions
have been proposed. Theoretically, since the pose can be rep-
resented by six independent parameters, three points should be
sufficient to solve this problem.

Most of the P3P approaches rely on a 2 steps solution. First
an estimation of the unknown depth cZi of each point (in the
camera frame) is done thanks to constraints (law of cosines)
given by the triangle CXiX j for which the distance between Xi

and X j and the angle between the two directions CXi and CX j

are known and measured. The estimation of the points depth is
usually done by solving a fourth order polynomial equation [39]
[105] [41] [5]. Once the three points coordinates are known in
the camera frame, the second step consists in estimating the rigid
transformation cTw that maps the coordinates expressed in the
camera frame to the coordinates expressed in the world frame
(3D-3D registration, see Section 3.4). The rotation represented
by quaternions can be obtained using a close form solution [49].
Alternatively least squares solution that use the Singular Value
Decomposition (SVD) [5] can also be considered. Since a fourth
order polynomial equation as to be solved, the problem features
up to four possible solutions. It is then necessary to have at least a
fourth point to disambiguate the obtained results [39] [48].

More recently, Kneip et al. [62] propose a novel closed-form
solution that directly computes the rigid transformation between
the camera and world frames cTw. This is made possible by
introducing first a new intermediate camera frame centered in
C whose x axes is aligned with the direction of the first point
X1 and secondly a new world frame centered in X1 and whose
x axes is aligned with the direction of the first point X2. Their
relative position and orientation can be represented using only two
parameters. These parameters can then be computed by solving
a fourth order polynomial equation. A final substitution allows
computing cTw. The proposed algorithm is much faster than the
other solutions since it avoids the estimation of the 3D points depth
in the camera frame and the estimation of the 3D-3D registration
step. Kneip’s P3P implementation is available in OpenGV [59].

Although P3P is a well-known solution to the pose estimation
problem, other PnP approaches that use more points (n > 3) were
usually preferred. Indeed pose accuracy usually increases with the
number of points. Nevertheless within an outliers rejection process
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such as RANSAC, being fast to compute and requiring only three
points correspondences, fast P3P such as [59] is the solution to
chose (see Section 3.1.3). P3P is also an interesting solution to
bootstrap a non-linear optimization process that minimizes the
reprojection error as will be seen in Section 3.1.2.

3.1.2 PnP: pose estimation from N point correspondences

PnP considered an over-constrained and generic solution to the
pose estimation problem from 2D-3D point correspondences. Here
again, as for the P3P, one can consider multi-stage methods
that estimate the coordinates of the points [105] or of virtual
points [67] in the camera frame and then achieve a 3D-3D
registration process [105]. On the other side, direct or one stage
minimization approaches have been proposed.

Among the former, [105] extended their P3P algorithm to P4P,
P5P and finally to PnP. In the EPnP approach [67] the 3D point
coordinates are expressed as a weighted sum of four virtual control
points. The pose problem is then reduced to the estimation of
the coordinates of these control points in the camera frame. The
main advantage of this latter approach is its reduced computational
complexity, which is linear wrt. the number of points.

Within the latter one step approaches, the Direct Linear Trans-
form (DLT) is certainly the oldest one [48], [129]. Although not
very accurate, this solution and its sequels have historically widely
been considered in AR application. PnP is intrinsically a non-
linear problem; nevertheless a solution relying on the resolution
of a linear system can be considered. It consists in solving the
homogeneous linear system built from equations (3), for the
12 parameters of the matrix cTw. Indeed, considering that the
homogeneous matrix to be estimated is defined by:

cTw =


r1 tx
r2 ty
r3 tz

03×1 1


where r1, r2 and r3 are the rows of the rotation matrix cRw and
ctw = (tx, ty, tz). Developing (3) yields to solve the system:

Ah =


...

Ai
...

h = 0 (4)

with Ai given by [129]:

Ai =

( wXi
wYi

wZi 1 0 0 0 0
0 0 0 0 wXi

wYi
wZi 1

−xi
wXi −xi

wYi −xi
wZi −xi

−yi
wXi −yi

wYi −yi
wZi −yi

)
(5)

and
h =

(
r1, tx, r2, ty, r3, tz

)>
is a vector representation of cTw. The solution of this homoge-
neous system is the eigenvector of A corresponding to its minimal
eigenvalue (computed through a Singular Value Decomposition of
A). An orthonormalization of the obtained rotation matrix is then
necessary1.

Obviously and unfortunately, being over-parameterized, this
solution is very sensitive to noise and a solution that explicitly

1. The source code of the DLT algorithm is proposed as a supplementary
material of this paper and is available here.

considers the non-linear constraints of the system should be
preferred.

An alternative and very elegant solution, which takes these
non-linear constraints into account, has been proposed in [28]
[93]. Considering that the pose estimation problem is linear
under the scaled orthographic projection model (weak perspective
projection) [48] [28], Dementhon proposed to iteratively go back
from the scaled orthographic projection model to the perspective
one. POSIT is a standard approach used to solve the PnP problem.
An advantage of this approach is that it does not require any
initialization. It inherently enforces the non-linear constraints and
is computationally cheap. A drawback is that POSIT is not directly
suited for coplanar points. Nevertheless an extension of POSIT
has been proposed in [93]. Its implementation is available in
OpenCV [20] or in ViSP [79] and it has widely been used in
AR application (see Section 3.1.4).

In our opinion, the "gold-standard" solution to the PnP consists
in estimating the six parameters of the transformation cTw by
minimizing the norm of the reprojection error using a non-linear
minimization approach such as a Gauss-Newton of a Levenberg-
Marquardt technique. Minimizing this reprojection error provides
the Maximum Likelihood estimate when a Gaussian noise is
assumed on measurements (ie, on point coordinates xi). Another
advantage of this approach is that it allows easily integrating the
non-linear correlations induced by the PnP problem and provides
an optimal solution to the problem. The results corresponding to
this example is shown on Figure 4. Denoting q ∈ se(3) a minimal
representation of cTw (q = (ctw,θu)> where θ and u are the angle
and the axis of the rotation cRw), the problem can be formulated
as:

q̂ = argmin
q

N

∑
i=1

d
(
xi,Π

cTw
wXi
)2

(6)

where d(x,x′) is the Euclidian distance between two points x and
x′. The solution of this problem relies on an iterative minimization
process such as a Gauss-Newton method.

Solving equation (6) consists in minimizing the cost function
E(q) = ‖e(q)‖ defined by:

E(q) = e(q)>e(q), with e(q) = x(q)−x (7)

where x(q) = (...,π(cTw
wXi), ...)

> and x = (..., x̃i, ...)
> where

x̃i = (xi,yi) is a Euclidian 2D point and π(X) is the projection
function that project a 3D point X into x̃. . The solution consists
in linearizing e(q) = 0. A first order Taylor expansion of the error
is given by:

e(q+δq)≈ e(q)+J(q)δq (8)

where J(q) is the Jacobian of e(q) in q. With the Gauss-Newton
method the solution consists in minimizing E(q+δq) where:

E(q+δq) = ‖e(q+δq)‖ ≈ ‖e(q)+J(q)δq‖ (9)

This minimization problem can be solved by an iterative least
square approach (ILS), see Figure 3, and we have:

δq =−J(q)+e(q) (10)

http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html
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where J+ is the pseudo inverse2 of the 2N× 6 Jacobian J given
by [78]:

J =


...

− 1
Zi

0 xi
Zi

xiyi −(1+ x2
i ) yi

0 − 1
Zi

yi
Zi

1+ y2
i −xiyi −xi

...

 . (11)

Since we have an iterative method, the pose is updated at each
iteration:

qk+1 = qk⊕δq = expδq q

where ⊕ denotes the composition operation over se(3) obtained
via the exponential map [76]. A complete derivation of this
problem, including the derivation of the Jacobian, is given in [22]3.

Fig. 3. Iterative minimization of the pose: overview of the non-linear least
squares problem (here in 1D).

However, the algorithm requires a good initial guess cTw in
order to converge to the globally optimal solution. If this is not the
case only a local minima is attained. Olsson et al. [94] propose
a Branch-and-Bound algorithm that allows retrieving a global
minimum but this drastically increases the computational cost.
Another iterative method have been proposed in [74] where the
authors proposed to minimize an algebraic error which is faster to
converge but that remains unfortunately sensitive to local minima.

When complexity is of interest (i.e., when N increases), non-
iterative PnP algorithms with a linear complexity have been pro-
posed. A first accurate O(N) solution to the PnP was EPnP [67].
Later, other O(N) solutions such as OPnP [150], GPnP [60],
UPnP [61] were proposed and are of interest when the number
of point correspondences increases.

As can be seen, many approaches have been proposed to solve
the pose estimation from point correspondences. In our opinion,
the choice of the "best" method widely depends on the number
N of points, the noise level, the number of correspondence errors,
etc. Indeed, in real life applications such as AR, pose estimation
is plagued by spurious data and embedding PnP in dedicated
algorithms has then to be considered. This is the purpose of
Section 3.1.3. A discussion about possible choices in an AR

2. An alternative to the pseudo-inverse to solve this system is to consider
the QR decomposition of J(q).

3. The source code of the pose estimation using a non-linear minimisation
technique is also proposed as a supplementary material of this paper and is
available here

context is proposed in Section 3.1.4. Let us finally note that the
specific (and simpler) case of coplanar points will be reviewed in
Section 4.

3.1.3 Dealing with spurious data

Whatever the method chosen to solve the PnP, the solution must
deal with the problem of robustness so as to account for noise in
real video acquisition, occlusion phenomena, changes in illumi-
nation, miss-tracking or errors in the correspondences and, more
generally, for any perturbation that may be found in the video.
Using a robust low-level feature extraction is certainly useful but
usually not sufficient since it is not possible to model all possible
perturbations.

As a solution, a robust estimation process is usually incor-
porated into pose estimation. Voting techniques, Random Sample
Consensus (RANSAC) [39], M-Estimators [50], Least-Median of
Squares (LMedS) [109] have been widely used to solve this issue.
How to consider robust parameters estimation in computer vision
algorithm has been reviewed in [126].

Random Sample Consensus (RANSAC).

RANSAC is an iterative method proposed in [39] to solve the P3P
problem. Since then, it has been applied to many computer vision
problems such as PnP, visual SLAM, homography estimation,
fundamental or essential matrix estimation, etc. The goal is to
divide the data in two sets: the inliers and the outliers (spurious
data). We present this algorithm in the case of a PnP problem
but it is worth keeping in mind that it applies to most estimation
problems (especially those presented in the reminder of this paper
in Section 3.3, 3.4 and 4).

Let us assume that we have a set of pairs of matched 2D-
3D points (correspondences): (xi,

wXi). Among these data let us
assume that some matches are wrong. RANSAC uses the smallest
set of possible correspondences and proceeds iteratively to enlarge
this set with consistent data. At iteration k of the algorithm, it:

1) draws a minimal number (e.g., 3 for a P3P, 4 for a
P4P) of randomly selected correspondences Sk (a random
sample).

2) computes the pose cT̂w from these minimal set of point
correspondences using the P3P, DLT, POSIT or EPnP (or
any other approach that does not require an initialization).

3) determines the number Ck of points from the whole set of
all correspondences that are consistent with the estimated
parameters cT̂w with a predefined tolerance ε (that is for
which d(x,Π cT̂w

wX)2 ≤ ε). If Ck > C∗ then we retain
the randomly selected set of correspondences Sk as the
best one (to date) : S∗ = Sk and C∗ =Ck.

4) repeats steps 1 to 3

The C∗ correspondences that participate to the consensus obtained
from S∗ are the inliers. The others are the outliers. A more accurate
PnP approach considering all the determined inliers can then be
considered to estimate the final pose. It has to be noted that
the number of iterations, which ensures a probability p that at
least one sample with only inliers is drawn, can be determined
automatically. It is given by [39]:

N =
log(1− p)

log(1− (1−η)n)

where η is the probability that a correspondence is an outlier and
s is the size of the sample. For the P4P problem (n = 4) when data

http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html
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is contaminated with 10% of outliers, 5 iterations are required to
ensure that p = 0.99 and with 50% of outliers 72 iterations are
necessary.

IRLS : using M-estimator.

M-estimators are a generalization of maximum likelihood estima-
tion and least squares. Therefore they are well suited to detect and
reject outliers in a least square or iterative least square approach.
With respect to RANSAC, which aggregates a set of inliers from
a minimal number of correspondences, M-estimators use as many
data as possible to obtain an initial solution and then iterate to
reject outliers.

M-estimators are more general than least squares because they
permit the use of different minimization functions not necessarily
corresponding to normally distributed data. Many functions have
been proposed in the literature that allow uncertain measures
to have less influence on the final result and in some cases to
completely reject the measures. In other words, the objective
function is modified to reduce the sensitivity to outliers. The robust
optimization problem is then given by:

q̂ = argmin
q

N

∑
i=1

ρ
(
d(xi,Π

cTw
wXi)

)
(12)

where ρ(u) is a M-estimator [50] that grows sub-quadratically and
is monotonically non-decreasing with increasing |u|. Iteratively
Reweighted Least Squares (IRLS) is a common method of ap-
plying the M-estimator [50], [126]. It converts the M-estimation
problem into an equivalent weighted least-squares problem.

The basic idea is no longer to minimize the error e(q) = x(q)−
x as defined in (7) but the error e(q) = W(x(q)− x) where W is
a diagonal weighting matrix where each element of the diagonal
wi reflects the confidence in the i-th feature (when wi = 0, its
influence in the least square problem is null, when equal to 1, its
influence is maximal). This minimization problem can be solved
by an IRLS approach. Equation (10) is then replaced by:

δq =−(WJ(q))+W e(q). (13)

Weights are recomputed at each iteration according to the cur-
rent estimate of the position q. Many M-estimator ρ(u) (Beaton
Tuckey, Cauchy, Huber,...) can be considered leading to various
ways to compute the confidence. A comprehensive way to com-
pute the weights is given in [126] or in [24] using the Tukey loss
function (which allows to completely rejects outliers and gives
them a zero weight).

RANSAC or M-estimatiors are two classical ways to ensure
robust estimation. They can be considered for pose estimation
but as will be shown in the reminder of this survey, these are
generic tools that allow treating the fundamental problem of the
outliers. Almost all the approaches presented in this paper can take
advantage of these methods that must be considered for real-life
applications.

3.1.4 Example of PnP in AR applications and discussion

All the PnP approaches presented in Sections 3.1.1 and 3.1.2
can now run in real-time even when a large number of point
correspondences are considered. For AR application, rather than
computational efficiency (as soon as real-time requirement are
met), accuracy is the key criterion in order to avoid jitter effects.

POSIT has been widely used in AR contexts with artificial
landmarks such as in [30], [113] or in [18], [68], [78], [117] for
pose initialization. A result of these PnP methods is reported in
Figure 4. Four points are considered to compute the pose. A planar
version of POSIT [93] is considered in the very first image of
the sequence while a non-linear estimation technique [78] is then
considered (a video is available here).

Fig. 4. Pose estimation using planar version of POSIT [93] followed by a non-
linear estimation process [78] to improve the registration.

Alternatively other approaches to pose estimation can be
considered. ARToolkit [54] uses an iterative search for the pose.
A very efficient solution for planar target pose estimation is
considered in [115] and has been used in ARToolkit+ [145].

Although markers were used in the previous examples, key-
points (see Section 5) have also been widely considered in the
literature (see, for example, Figure 5). A non-linear minimization
technique is for example considered in [144] [96] using SIFT and
FERNS. In any case, robust process using RANSAC or IRLS
is usually considered [113]. Also considering keypoints, these
methods are also used for fast re-localization issue [6] [81] in
environments that have been previously reconstructed using a
SLAM approach (see Section 3.3).Int J Comput Vis

Fig. 8 Real images. Top. Left: Calibrated reference image. Right: Re-
projection of the model of the box on three video frames. The camera
pose has been computed using the set of correspondences depicted by

the thin blue lines. Bottom. Left: Calibrated reference image. Right: Re-
projection of the building model on three video frames. The registration
remains accurate even when the target object is partially occluded

As in the non-planar case, the EPnP solution proposed
here is much faster than the others. For example for n = 10
and a tilt of 30◦, our solution is about 200 times faster than
AD, 30 times faster than LHM, even though the MATLAB
code for the latter is not optimized.

5.2 Real Images

We tested our algorithm on noisy correspondences, that may
include erroneous ones, obtained on real images with our
implementation of the keypoint recognition method of (Lep-
etit and Fua 2006). Some frames of two video sequences are
shown in Fig. 8. For each case, we trained the method on
a calibrated reference image of the object to be detected,
for which the 3D model was known. These reference im-
ages are depicted in Fig. 8-left. At run time, the method
generates about 200 correspondences per image. To filter
out the erroneous ones, we use RANSAC on small sub-
sets made of 7 correspondences from which we estimate the
pose using our PnP method. This is effective because, even
though our algorithm is designed to work with a large num-
ber of correspondences, it is also faster than other algorithms
for small numbers of points, as discussed above. Further-
more, once the set of inliers has been selected, we use all
of them to refine the camera pose. This gives a new set of
inliers and the estimation is iterated until no additional in-
liers are found. Figure 8-right shows different frames of the
sequences, where the 3D model has been reprojected using
the retrieved pose.

6 Conclusion

We have proposed an O(n) non-iterative solution to the PnP
problem that is faster and more accurate than the best cur-
rent techniques. It is only slightly less accurate than one the
most recent iterative ones (Lu et al. 2000) but much faster
and more stable. Furthermore, when the output of our al-
gorithm is used to initialize a Gauss-Newton optimization,
the precision is highly improved with a negligible amount
of additional time.

Our central idea—expressing the 3D points as a weighted
sum of four virtual control points and solving in terms of
their coordinates—is very generic. We demonstrated it in
the context of the PnP problem but it is potentially applica-
ble to problems ranging from the estimation of the Essential
matrix from a large number of points for Structure-from-
Motion applications (Stewènius et al. 2006) to shape recov-
ery of deformable surfaces. The latter is particularly promis-
ing because there have been many approaches to parame-
terizing such surfaces using control points (Sederberg and
Parry 1986; Chang and Rockwood 1994), which would fit
perfectly into our framework and allow us to recover not
only pose but also shape. This is what we will focus on in
future research.

Acknowledgements The authors would like to thank Dr. Adnan
Ansar for providing the code of his PnP algorithm. This work was sup-
ported in part by the Swiss National Science Foundation and by funds
of the European Commission under the IST-project 034307 DYVINE
(Dynamic Visual Networks).

Fig. 5. Pose estimation using the EPnP algorithm [67]: reference image on the
left ; projection of the model of the box after pose estimation computed using
EPnP using correspondences shown by blue lines.

As can be seen, users tend to favor a PnP that does not require
any initialization (such as EPnP) along with a RANSAC. An
iterative estimation process based on a non-linear minimization
approach improve the obtain results. Although P3P was not, to
date, the most popular approach, but this tends to change. Indeed
since the size of the environment increases, the need for faster
algorithms (e.g., [62]) now become prevalent (especially in a
SLAM context, see Section 3.3). Time computation of various
PnP approaches with respect to N is reported in e.g. [150] [61].

3.2 Extension to markerless model-based tracking

Various authors have proposed different formulations of the pose
estimation problem, which do not require the need of markers
or keypoints matching process [23], [24], [31], [73], [99], [120],
[140]. Although one can find some differences in these various
solutions, the main idea is the following: as for equation (6) which
is based on the distance between two points, the idea here is to

https://www.youtube.com/watch?v=eKakRZvgGXM&spfreload=10
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define a distance between a contour point in the image and the
projected 3D line underlying the corresponding 3D model.

Assuming an estimate of the pose is known, the 3D model
is first projected into the image according to that pose. Contour
L(q) is sampled (black points in Figure 6) and a search is
performed along the edge normal to the contour (dashed lines)
to find strong gradients in the next frame. Usually the point of
maximum likelihood with respect to the initial sampled point xi

is selected from this exploration step. It is denoted by xi i in the
following (white points in Figure 6).

Fig. 6. Markerless model-based tracking: search for point correspondences
between two frames and distance to be minimized.

A non linear optimization approach is then used to estimate
the camera pose which minimizes the errors between the selected
points and the projected edges [24], [31], that is:

q̂ = argmin
q ∑

i
d⊥(L(q), xi) (14)

where d⊥(L(q), xi) is the squared distance between the point
xi and the projection of the contour of the model for the pose
q. This minimization process is usually handled thanks to a
Gauss-Newton or a Levenberg-Marquardt minimization approach
as presented in Section 3.1.2. The main difference with respect
to Section 3.1.2 is that a point-to-contour distance is considered
rather than a point-to-point distance. The earliest approaches that
consider these markerless model based tracking algorithms mainly
consider models composed with segments (see Figure 7).

Fig. 7. Markerless model-based tracking [31] [140] [24].

Weighted numerical nonlinear optimization techniques like
Newton-Raphson or Levenberg-Marquardt are usually considered.
To reject outliers, methods like RANSAC [18] or the use of
M-Estimators such as the Tukey estimator [24], [31], [140]
are common trends to make the algorithm robust to occlusions
and illumination variations. But the robustness deteriorates when
ambiguities between different edges occur, especially between
geometrical and texture edges of the scene. One way to address
this issue has been to fuse the information of edge features with
information given by particular keypoints [23], [98], [104] or
by other sensors [56]. Other solutions have considered multiple
hypotheses for potential edge-locations in the image [99], [133],
[140].

One of the drawbacks of these methods is that the 3D model
is usually made of segments, which implies dealing with simple
objects or manually pre-processing the CAD model. This is why

more recent approaches proposed to render the 3D model (which
can be arbitrarily complex) using a 3D rendering engine and a
GPU [147] [99] [23]. This allows automatically managing the
projection of the model and determining visible and prominent
edges from the rendered scene. An advantage of these techniques
is to automatically handle the hidden faces removal process and to
implicitly handle self-occlusions (see Figure 8).

Fig. 8. Markerless model-based tracking [147] [100] [23]: GPU is used to render
complex models and to ensure hidden faces removal.

Open source code for markerless model-based tracking exists
in ViSP [24] from Inria4, or in openTL from DLR. A commercial
library was also available from Metaio (see Figure 9).

Fig. 9. Metaio model-based tracker

3.3 Pose from an a priori unknown model: Simultaneous Lo-
calization and Mapping

The previous approaches require a 3D model of the object or of
the environment. Since a comprehensive or even a sparse 3D
knowledge is not always easily available, the development of
pose estimation methods that involve less constraining knowledge
about the observed scene has been considered. The idea is then
to perform the estimation of the scene structure and the camera
localization within the same framework. This problem originally
known as the structure from motion issue was handled off-line due
to the high computational complexity of the solution. For real-time
AR, although the theoretical problem is similar, solutions have
evolved in the recent years and are now very efficient. This leads
to vision-based SLAM (vision-based Simultaneous Localization
And Mapping or vSLAM) that received much attention in both
the robotics and AR community.

Considering monocular SLAM, two methodologies have been
widely considered. The former is based on Bayesian filtering
approaches. In [27], it is proposed to integrate data thanks to
an Extended Kalman Filter whereas in [32] (inspired from Fast-
SLAM) a particle filter is considered. Within these approaches,
measurements are sequentially integrated within the filter, up-
dating the probability density associated with the state of the
system (the camera position, its velocity and the scene structure).
All past poses being marginalized, the number of parameters to
be estimated only grows with the size of the map. The latter
approach is based on the minimization of reprojection errors

4. We propose as a supplementary material of this paper (here) an example
of how to deal with such a such model-based tracker. The interested reader
could easily access the full source code of the tracker in ViSP [79].

http://visp.inria.fr
http://www.opentl.org
http://www.metaio.com
http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html
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(as in Section 3.1.2). It is known as a bundle adjustment (BA)
method [134] [84] [57], which had proved to be very efficient
and accurate in off-line applications. In [127], it has been shown
that, once the "past" poses sequence has been sparsified (choosing
adequately a reduced set of keyframes), the problem becomes
tractable and BA proved to be superior to filter-based SLAM.

Thus, denoting [q]M = (q1, . . . ,qt) a sequence of t camera
positions (keyframes) and [wX]N = (wX1, . . . ,

wXN) a set of N 3D
points, the goal is, as for the PnP problem to minimize the error
between the observations and the reprojection of 3D points. The
error to be minimized is then given by:

([q̂]t , [ŵX]N) = (15)

arg min
([q]t ,[wX]N )

t

∑
j=1

N

∑
i=1

d
(
x ji ,Π

jTw
wXi)

)2

It is obvious that the complexity of the problem increases with the
number of keyframes.

Initialization being an important issue, camera motion between
a given keyframe and the current one is estimated using e.g. [91]
and points are triangulated. [84] and [92] proposed to perform the
BA only on a sliding window (which may lead to a camera drift)
while Parallel Tracking and Mapping (PTAM) [57] considers in
parallel a local BA with a tracking method that involves only a
localization process as in 3.1.2 with points that have been already
reconstructed (see Figure 10).

Fig. 10. Parallel Tracking and Mapping (PTAM) [57] (a video is available here)

[84] [92] and [57], have clearly demonstrated the feasibility of
a deterministic SLAM system for augmented reality on a PC [57]
and on mobile devices [58]. Companies such as Metaio, 13th
Lab (now with Oculus) or Qualcomm provide industrial and cost
effective frameworks5.

Nevertheless, such SLAM based approaches lack absolute
localization and are computationally expensive in large environ-
ments. To achieve real-time requirement and to cope with scale
factor and the lack of absolute positioning issues, it has been
proposed to decouple the localization and the mapping step. Map-
ping is handled by a full scale BA or a keyframe based BA. It is
processed to fix scale factor and define the reference frame. Then,
only a tracking (PnP) is performed on-line providing an absolute
and reliable pose to the end-user. Such an approach has been
successfully used for vehicle localization [110] and augmented
reality [144] [81] [143] (see Figure 11). Another interesting
approach that merges model-based tracking (Section 3.2) with

5. Remark: It has to be noted that for post-production scenario, since
real-time constraints are not relevant, all the image of the sequence can
be considered (no sparsification of the sequence by keyframe selection is
done) within BA methods. Commercial systems such as Boujou from 2D3
(now from Vicon) or MatchMover from Realviz (now in Maya) exploit these
very efficient techniques and are widely used in the cinema industry for
special effects production. Along with camera localization and scene structure,
these softwares are also able to estimate the camera intrinsic parameters and
subsequently also handled non-calibrated image sequences.

SLAM has been proposed in [116] for piecewise planar scene
and in [19] [131] for more complex 3D models. The approach
proposed in [131] has been adopted in the Diotasoft product (see
Figure 12).

Fig. 11. AR system that considers first an off-line SLAM approach followed by an
on-line PnP [81]. The reduced computational complexity allows an implementa-
tion on a smartphone (a video is available here).

Fig. 12. Merging model-based tracking and SLAM [131] as proposed in Diotasoft
tools.

In vSLAM approaches like PTAM, only few pixels contribute
to the pose and structure estimation process. As in Section 4.2,
dense or direct approaches such as DTAM [90], [34] or [137] allow
each pixel contributing to the registration process (optimization
is performed directly over image pixel intensities). This is also
the case for LSD-SLAM [33]. This latter approach is a keyframe
method that builds a semi-dense map, which provides far more in-
formation about the scene than feature-based approaches. Another
interesting feature of LSD-SLAM is that it does not estimate a
rigid transformation between two camera positions but a similarity
transform which allows solving the scale estimation issue thanks
to a scale-drift aware image alignment process. It demonstrated
very impressive results showing that scene reconstruction and
camera localization can be achieved in real-time without GPU ac-
celeration [114]. A sequel of this work demonstrated that it could
run in real-time on a smartphone. It can also be noted that the
code has been released to the community [33]. Considering only
pixel intensities, these approaches do not need feature extraction
and matching process and provide a dense or semi-dense map of
the environment. Nevertheless, the underlying illumination model
assumes photometric consistency (mainly valid for Lambertian
surfaces) which is not always realistic in real scenes and imposes
small baselines between frames.

Over the years, EKF based vSLAM has been progressively
replaced by keyframe and BA-based methods. This was certainly
due to [84] and PTAM [57] which demonstrated that a real-
time implementation of BA was possible. Now, real-time bundle
adjustments can operate on large-scale environment [33]. For AR
applications, with respect to sparse SLAM approaches, such dense
or semi-dense map, obtained thanks to direct methods, can be
considered to build meshes of the environment and ease interaction
between real and virtual worlds.

3.4 Registration in the 3D space

So far we considered a 2D-3D registration process. With some
devices (e.g., multiple cameras systems) it is possible to get

https://www.youtube.com/watch?v=Y9HMn6bd-v8
http://www.diotasoft.com
https://www.youtube.com/watch?v=ibEsHg2k1yQ
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directly the 3D coordinates of the observed points. In this case,
the registration can be done directly in the 3D space. The observed
point cX has to be registered with the model point wX up to the
transformation cTw that needs to be estimated.

Denoting q ∈ se(3) a minimal representation of cTw (as in
Section 3.1.2), the problem can be formulated as:

q̂ = argmin
q

N

∑
i=1

(cXi− cTw
wXi)

2 (16)

and solved using closed form solutions (e.g., [49]) or robust
Gauss-Newton or Levenberg-Marquardt approaches. This is a
trivial problem when the matching between cXi and wXi is known
(even with some outliers). When this matching is unknown,
Iterative Closest Point ICP [16] is a simple and attractive solution
to this problem. More efficient solutions than ICP were proposed
in [40] [112]. These approaches are used in rigid body target
localization used both in augmented and virtual reality [101]
(see Figure 13) and proposed in commercial products such as in
iotracker or in ART Advanced Realtime Tracking.

Fig. 13. Pose from rigid body targets and multiple cameras [101]. Position of
each element of the constellation are first estimated using triangulation tech-
niques. A rigid transformation is then computed from 3D measurements.

In late 2010 a new sensor, the kinect, has been introduced by
Primesense and Microsoft. The originality of this sensor is that it
is able to provide in real time a dense 3D representation of the
environment. Prior to the introduction of this cheap sensor, only
expensive time-of-flight camera, heavy structured light systems
and stereovision cameras existed. Kinect integrates a structured
light (infra-red) depth sensor able to provide depth map at 30Hz.
KinectFusion [89] was one of the first systems that enables scene
reconstruction and consequently camera localization in real-time
and in a way compatible with interactive applications [53] (see
Figure 14). The idea is to simultaneously localize the camera
and fuse live dense depth data building a global model of the
scene. Indeed, estimation of the 6dof camera pose is equivalent
to finding the pose that aligns the depth map data onto the
current model [89]. This can be done by a modified version of
the ICP [16], where the expensive closest point computation is
replaced by a projective data-association [17] that allows obtaining
fast dense correspondences using closest point approximation. A
fast point-to-plane ICP (based on a Gauss-Newton minimization
approach) is finally used to register the current dense 3D map
with the global model. The camera is then localized and the global
model improved6.

It remains that these methods consider specific sensors. Recent
vSLAM approaches, such as [90] [33], that consider only monoc-
ular cameras now provide similar results and may be considered
as more generic choices.

6. Note that such approaches are also widely used for scene reconstruction.
They are able to provide precise models, which can later be used in markerless
model-based localization methods (see Section 3.2).

Fig. 14. Particles that interact with the reconstructed scene while camera motion
is estimated thanks to KinectFusion [89] [53]

4 POSE ESTIMATION FOR PLANAR SCENES

The previous approaches require a 3D model of the tracked
object. Since such 3D knowledge is not always easily available
(although we have seen that it can be computed on-line), it is
also possible to overcome the pose computation considering less
constraining knowledge about the viewed scene. In this section,
the proposed method copes with this problem by using, at most,
the 2D information extracted from the images and the geometrical
constraints inherent to a moving vision system. The objective
is therefore to estimate the camera displacement between the
acquisitions of two images instead of the camera pose. The 3D
model is then replaced by a reference (localized) image.

For augmented reality applications, the pose between the cam-
era and the world coordinates system is required. If an initial pose
0T̂w is known7, computing the current pose from the estimated
displacement is straightforward and is given by:

nT̂w =
M

∏
n=1

nT̂n−1
0T̂w. (17)

Usually the current image is registered with an image I0 in a
database for which the pose 0Tw has been computed off-line.
Computing 0T̂w may require the introduction of 3D information
and solutions have been presented in Section 3 and in 4.1.3.

Let us note that drift, due to error accumulation, is inherent
to this kind of approach since estimated camera displacements are
successively integrated. To limit the drift, it is possible to compute
the motion no longer between two successive frames as in (17),
but between the current frame and a reference frame (say frame
0) [44]:

nTw = nT0
0Tw (18)

Other solutions to limit drift have been proposed in e.g. [140].

4.1 Motion estimation through points correspondences

As stated our goal will be to estimate the 3D motion undergone
by the camera between the acquisitions of two images using only
2D image information. An efficient solution to motion estimation
through points correspondences relies on the estimation of a
homography.

4.1.1 Overview: the homography

In [122], it has been proposed to restrict the general case to a sim-
ple yet common special case: planar scene. This widely simplifies
the pose estimation process. If we now consider a 2D motion

7. To simplify the notation we note kTw the position of the camera which
acquires frame k and subsequently kTh the displacement of the camera between
frames k and h.

http://www.iotracker.com
http://www.ar-tracking.com/
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model noted w that transfers a point x1 in image I1 to a point
x2 in image I2 according to a set h of parameters (h can account
for a simple translation, an affine motion model, a homography,
etc.): x2 = w(x1,h). From a general point of view, there does not
exist a 2D motion model or transfer function w(.) that account
for any 3D scene and any camera motion. Nevertheless, it can be
demonstrated that, when the scene is planar, the coordinates of
these two points are linked thanks to a homography 2H1 such that

x2 = w(x1,h) = 2H1x1 (19)

with
2H1 = (2R1 +

2t1
1d

1n>) (20)

where 1n and 1d are the normal and distance to the origin of the
reference plane expressed in camera frame 1 (1n1X = 1d). Let
us note that when the camera undergoes a pure rotation motion,
2t1 = 0 and 2H1 =

2R1. In this special case, equation (19) is then
valid regardless the scene structure which has no longer to be
planar.

Note that, as for the pose, we can chain the homographies
between consecutive frames. We have:

nHw =
M

∏
n=1

nHn−1
0Hw and then nHw = nH0

0Hw (21)

where 0Hw is a homography that map points in frame I0 to planar
3D points expressed in world coordinates Fw.

4.1.2 Homography estimation

The estimation of 1H2 can be easily and precisely retrieved using a
Direct Linear Transform (DLT) algorithm8, see [48]. Equation (19)
can be rewritten as x2 × 2H1x1 = 0. If the j-th row of 2H1 is
denoted h>j , we have:

x2× 2H1x1 =

 y2h>3 x1−h>2 x1

h>1 x1− x2h>3 x1

x2h>2 x1− y2h>1 x1

 (22)

with x2 = (x2,y2,1). Finally, we have a homogeneous linear
system Aih = 0 for each corresponding points: 0> −x>1i

y2i x>1i

x>1i
0> −x2i x>1i

−y2i x>1i
x2i x>1i

0>


︸ ︷︷ ︸

Ai(3×9)

 h1

h2

h3


︸ ︷︷ ︸

h(9×1)

= 0 (23)

where 2 equations are linearly independent. For N matched points
we have a system Ah= 0 with A= (A1 . . .AN)

> (see Section 3.1.2
on how to minimize the algebraic distance defined by the norm of
‖Ah‖).

Another solution to estimate the homography is to consider the
minimization of a cost function, the geometric distance, defined
by:

ĥ = argmin
h

N

∑
i=1

d(x1i,
1H2x2i)

2 (24)

which can be solved directly for h which represents the 8 inde-
pendent parameters hk,k = 1...8 of the homography 1H2 using a
gradient approach such as a Gauss-Newton. Usually the symmetric
error distance ∑

N
i=1 d(x1i,

1H2x2i)
2 + d(x2i,

1 H−1
2 x1i)

2 could also
be considered to improve precision. Note that considering the

8. An example of the DLT code for homography estimation is proposed as a
supplementary material of this paper and is available here

geometric distance as in equation (24) or the algebraic one as
for the DLT is, here, equivalent [48].

Rather than solving (24) to estimate the parameters of H it
is also possible to directly perform the optimization over the
displacement parameters 1T2. In that case, thanks to (20), we
have [102]

q̂ = argmin
q

N

∑
i=1

d(x1i,(
2R1 +

2t1
1d

1n>)x2i)
2 (25)

where q is a minimal representation of 1T2. This latter method
does not require the homography decomposition.

4.1.3 From homography to pose computation

In the case of AR applications, one has to compute the pose nTw

with respect to a reference frame Fw. The homography can be
decomposed to retrieve the pose [48] [36]. Alternatively for planar
scenes, one can directly and easily compute the pose when the 3D
position of some points is known on the reference plane.

Thus to compute the initial pose 0Tw, we assume that all
the points lie in the plane wZ = 0. In that case each 3D point
coordinates is given by wX = (wX ,w Y,0,1)>. Their projections in
the image plane is then given by:

x0 = Π
0Tw

wX = Π
(

c1 c2 c3
0tw

)
wX
wY
0
1

 (26)

where ci is the i-th column of the rotation matrix 0Rw which can
be rewritten as:

x0 = Π
(

c1 c2
0tw

)
(wX ,w Y,1)>

= 0Hw(
wX ,w Y,1)> (27)

0Hw is a homography that maps the plane of the object (wZ = 0)
on the image plane. It can be easily computed using the DLT algo-
rithm presented in the previous paragraph. Knowing 0Hw, the pose
0Tw can be easily computed noting that (c1,c2,

0tw) = Π
−1 0Hw.

Considering that the rotation matrix is orthogonal, the third col-
umn of the rotation matrix is computed such that c3 = c1× c2.
This is an easy way to estimate pose when the scene is planar9.

Ultimately one wants to compute nTw. Like 0Tw that can be re-
trieved from 0Hw, nTw can be retrieved from the homography nHw.
Indeed, similar to equation (27), we have (c1,c2,

ntw) = Π
−1 nHw

(where ci is, here, the i-th column of the rotation matrix nRw) and
c3 = c1× c2. This gives the complete pose nTw.

4.1.4 Discussion

These motion estimation processes through point correspondences
have been widely studied e.g. [122] (see Figure 15, left). This is
one of the standard approaches for augmenting planar scene. It
can be extended to the case of multiple planes [121]. Non-planar
scene can be considered when pure rotational camera motions are
considered [122] [102]. Alternatively, multiple planar structures
can be considered [121] (see Figure 15, right).

As stated the current image is often registered with a localized
image in a database. This is the case for an augmented museum
application as shown on Figure 23 or for an augmented book
application as shown on Figure 16. For each reference image in

9. The code of this pose estimation method based on the DLT for homogra-
phy estimation is proposed as a supplementary material of this paper and is
available here.

http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html
http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html
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visitors find our campus’ mathematical and biological
research centers (Math RC and Bio RC).

In this application we used the ground plane and two
facades to compute the viewpoint. They’re drawn in blue
in Figure 8 (note that the cube in blue isn’t used for reg-
istration). Figure 8 also exhibits the points tracked in
each planar structure to recover the homography—the
algorithm considers the points drawn in red as outliers

and it discards them from the homography computation.
To recover the third plane’s orientation with respect

to the two others, we use a modeling tool inspired from
the work of Liebowitz et al.11 Because the plane is per-
pendicular to the ground plane, pointing out one seg-
ment on the plane lets us recover its planar equation.

We show some snapshots of the augmented scene in
Figure 9. We inserted a Mayan statue to add an exotic
dimension to our campus. The visual impression is good
and the annotations seem to be part of the scene. How-
ever, if we look carefully at the full video available at our
Web site (http://www.loria.fr./~gsimon/Cga), we
notice that the Mayan statue sometimes seems to slide
slightly along the ground.

Further discussion
In reviewing the three methods we proposed for solv-

ing the n-planes registration problem, one (LIN2) has
proven to be a good compromise between computation
rates and accuracy of the composition. Our implemen-
tation yields results comparable in accuracy with full
structure-and-motion methods but with better reliabil-
ity. We can apply this method to a wide range of envi-
ronments both for complex indoor and outdoor urban
scenes. The accuracy obtained on the viewpoint lets
annotations be displayed, providing the relevant, criti-
cal information for a user’s context.

We plan to investigate how to improve this framework
so it can handle long sequences. Indeed, the method
may progressively diverge because of successive approx-
imations. One way to look at this might involve consid-
ering homography with more distant images, or
performing a bundle adjustment on a small number of
images (the last five images, for example, in the spirit
of Fitzgibbon and Zisserman12). Of course, a hybrid sys-
tem could also increase robustness and avoid drift by
taking advantage of a partial 3D knowledge of the scene.

Finally, the possibility of recovering the scene’s mul-
tiplanar structure is currently under study. This will be
of particular interest when the observed scene’s struc-

Tracking
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7 Augmented sequence (we added a sofa chair).

8 Some inter-
mediary steps
toward the
augmented
campus. Here
we show the
planes used for
registration as
well as the
points used for
homography
computation. 

(a) (b) (c) (d)

(e) (f) (g) (h)

(a)

(b)

ture isn’t obvious, especially when
the observed planes aren’t perpen-
dicular. ■
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(a) (b)

(c) (d)

9 Some views of the augmented campus. Annotations have been added on the mathematical
and the biological research centers as well as a Mayan statue.

Fig. 15. Pose estimation through homography estimation for a single plane (left,
[122]) and for multiple planes (right, [121]).

the database, a pose 0Tw is estimated off-line using, for example,
the planar pose estimation method presented in Section 4.1.3. A
homography nH0 that links the current image In and the reference
one is estimated which allows to deduce the pose nT0 and finally,
according to equation (18), nTw.

Fig. 16. Augmented book [55]: Sift matching followed by a RANSAC based
homography estimation and augmented contents (see full video).

We quickly discuss in Section 5 the 2D point matching issue
which is fundamental in the development of such approaches.
In any case, AR based on homography estimation from point
correspondences has become a standard in the industry and many
commercial libraries providing such capabilities are now available
(Metaio, Vuforia from PTC Inc., Total Immersion, etc.)

4.2 Motion estimation using direct image registration

All the previous approaches consider pure geometric methods. An
alternative is to fully embed the motion estimation process in an
image processing process. The appearance-based approaches, also
known as template-based approaches, are different in the way that
there is no low-level tracking or matching processes. It is also
possible to consider that the 2D model is a reference image (or a
template). In this case, the goal is to estimate the motion (or warp)
between the current image and a reference template at the pixel
intensity level.

4.2.1 Template registration

Let us consider that the appearance of the object is learned from a
model defined as a reference image I0 at some pixel locations
x ∈ W (W is a set of pixels that defines the template to be
tracked) and that we seek its new location w(x,h) in an image
I. As seen in Section 4.1.1, h are parameters of a motion model.
In AR applications it is usually modeled by a homography and
is then defined by equation (19). It is then possible to directly
define this alignement or registration problem as a minimization
of the dissimilarity (or maximization of the similarity) between
the appearance in I0 at the positions x in a region W and in I at
the positions w(x,h). An analytic formulation of the registration
problem can then be written as:

ĥ = argmin
h ∑

x∈W
f (I0(x), I(w(x,h))) (28)

where f is, here, a dissimilarity function. The choice of the
similarity function is important. An obvious choice originates in
the brightness constancy constraint stating that:

I(x) = I(w(x,h)) = I0(x)

is to consider the sum of squared differences (SSD). In this case,
when the appearance is defined as the set of pixel intensities of the
patch and the dissimilarity function is the SSD, it leads typically
to the KLT (for Kanade-Lucas-Tomasi algorithm) [75], [118] for
small patches and translational model or to [10], [46] for large
template and affine motion. For augmented reality applications,
homography has to be preferred [13] as it allows inferring the
camera pose. The problem can be rewritten as:

ĥ = argmin
h

C(h) = ∑
x∈W

(I0(x)− I(w(x,h)))2 (29)

This is a non-linear optimization problem which, as for the pose
problem defined in Section 3.1.2, can be efficiently solved by a
Gauss-Newton method10.

Remark: the KLT.

The method presented in this paragraph considers a homography
estimation. When a small patch and a translation motion model is
considered, this leads to the KLT algorithm [75] used to track
points over frames. From these tracked points one can easily
compute the homography between two frames, using for example
the DLT approach presented in Section 4.1.2.

4.2.2 Extensions and improvements

The formulation presented in the previous section is the most
simple and intuitive. It is usually referred as the forward additional
approach and has been initially proposed in [75] (KLT). Other
approaches can be considered such as the forward compositional
approach [119], the inverse compositional approach [10] (for
which the pseudo-inverse of the Jacobian has to be computed
only once beforehand) or the Efficient Second Order Minimization
(ESM) method [13] (see Figure 19).

Considering a planar hypothesis, these methods are well suited
to augment planar targets such as painting in museum (see Fig-
ure 17) or books (see Figure 19).

Fig. 17. Direct image registration and camera localization in a museum [11] (see
full video).

Extensions of template trackers have been proposed to handle
efficiently blur [97] (see Figure 18) or degradation in image
resolution [52]. Extension to planar model can also be consid-
ered by adding a parallax term to the definition of a homogra-
phy [103]. Rather than a homography, motion models that include
deformations (modeled using radial basis functions or free form
deformation) have also been proposed [43].

https://www.youtube.com/watch?v=W1BhozWmqYg
http://youtu.be/uD_qxfpPX0E
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Fig. 18. Extension of template registration process to handle blur [97] or to
consider large template deformation [43].

Fig. 19. Companies such as Robocortex propose a SDK based on template
tracking methods (included in AugmentedPro) which can be integrated in third
party products such as xloudia (left) or Dassault Systemes 3DVIA (right, see
video).

However, the SSD is not effective in the case of illumination
changes and occlusions. Several solutions have been proposed to
add robustness toward these variations. The former solution is to
consider an M-Estimator (see Section 3.1.3) as proposed in, e.g.,
[46]. The later deals with the choice of the (dis-)similarity function
that is also important. Along with the SSD, one can consider local
zero-mean normalized cross correlation (ZNCC) [51], the Sum
of Conditional Variances (SCV) [107] or the mutual information
(MI) [25]. The later criterion, the mutual information, proposes
to maximize the information shared between the reference image
and the current one. MI has proved to be robust to occlusions
and illumination variations and can therefore be considered as a
good alignment measure for tracking and localization [25], [26].
In [25], it has been demonstrated that multimodal registration
(using e.g. infrared and visible image) can be handled using
mutual information as a similarity function (see Figure 20).

Fig. 20. Registration and homography estimation between infrared and visible
image (from Google Earth) for camera localization (and augmentation) [25].

4.3 Merging various cues to improve localization

It has been noted that it could be interesting to merge 2D-3D regis-
tration methods along with 2D-2D ones. Indeed, approaches which
directly compute the pose (Section 3) are intrinsically mono-
image processes and can be subject to jitter, whereas motion-
based methods (Section 4) consist in multi-view processes that are
subject to drift. Therefore, merging multiple cues from markerless

10. We propose as a supplementary material of this paper (here) an example
of how to use such tracker. The interested reader could easily access the full
source code of the tracker in ViSP [79].

model-tracking (Section 3.2) and motion-estimation has received
some interest in the AR community.

Most of the current approaches that integrate multiple cues
in a tracking process are probabilistic techniques. Most of these
approaches rely on the well-known Extended Kalman filter or par-
ticle filter [132] [64] [45] but non-linear optimization techniques
have also been considered (see Figure 21). In [141] the proposed
localization approach considers both 2D-3D matching against a
key-frame and 2D-2D temporal matching (which introduces mul-
tiple view spatio-temporal constraints in the tracking process). An
extension is proposed in [140] to integrate contribution of a model-
based tracker similar to [24], [31]. In [104], it is proposed to fuse
a classical model-based approach based on the edge extraction
and a temporal matching (motion estimation) relying on texture
analysis into a single non-linear objective function that has then to
be minimized. In [98], color cues along with keypoints matching
and edge-based model tracking are combined to provide a very
robust tracker.

Figure 1. Corridor Sequence, combining edges and feature points. First column: Using the
earlier tracker based on reference frames and interest points only, the 3D model edges are not
always reprojected at the right place because there is little texture. Four reference frames were used.
Second column: Simple-minded integration of edge-based information does not improve accuracy and,
sometimes, even degrades it. Third column: The integrated tracker we propose succesfully tracks
the sequence. As can be seen in the submitted video sequence, there is no jitter, and the 3D model
edges are always reprojected at the right places. No reference frame was used.

retain several. The correct one is selected during the
optimization of the pose parameters, using a robust
estimator that we developed for this purpose.

Considering several hypotheses makes the tracking
more robust because it is not perturbed by strong mis-
leading contours, and more accurate because all the
information is used. Our method is also fast: there is
not much additional computation cost, and the track-
ing easily runs in real-time. Finally, this method lets
us consider a much larger search-space, leading to im-
proved handling of large and high speed displacements.

As a result, we were able to increase the range of ap-
plicability of an earlier feature-points based tracker [20]
by allowing it to also use edge information. Not only
is the improved tracker able to handle both textured
and untextured objects but, unlike the earlier one, does
not require the use of keyframes to avoid drift. These
improvements are highlighted by Figs 2, 3 and 1.

The generality and robustness of this method make
it suitable for a direct application into AR scenarios,
where it can be a key feature for solving the registration
problem in real-time.

In the remainder of the paper, we first discuss re-
lated work. Section 3 explicits our approach to mul-
tiple hypotheses handling. Section 4 describes the in-
tegration of the two sources of information, and our
experiments and results are presented in Section 5.

2. Related Work

While interest points can be reliably characterized
by the neighbouring texture, contours information is
much more ambiguous, and it is necessary to consider
several possibilities when matching models against im-
age contours.

In the context of contour-based object recognition,

Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2004) 
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Fig. 21. Merging keypoints and model-based tracking in a single minimization
process [141] (left), [104] (middle), [98] (right). This allows to introduce a spatio-
temporal constraints in a model-based tracking approach.

5 MATCHING LOW-LEVEL FEATURES

At this point, the geometry that underlies the camera localization
problem has been reviewed. Formulation of the problem, along
with resolution techniques, has been exposed. Although an initial-
ization is always required (and can be quite complex), edge-based
model tracking (section 3.2) and template tracking algorithms
(section 4.2) act as tracking methods and can be considered
as self-contained. For other methods, PnP, SLAM, homography
from point correspondences, low level features extraction and
matching processes are required. A comprehensive review of all
the approaches proposed in the literature seems out of reach [136].
In this section, we review the main solutions that have been
considered in actual AR systems.

5.1 Fiducial marker detection and localization

Fiducial markers have been a basic tool in developing AR appli-
cations. Indeed, they allow achieving simultaneously both target
identification and camera localization. Such markers were first
introduced in [106] and extended to ARtoolkit [54], ARToolkit
plus [145], Studierstube Tracker, and ARTag [37] [38]. To sim-
plify the detection process and the underlying image processing
algorithm, their design is ultimately simplified. Square shape and
binary color combination are usually considered (see Figure 22).
More precisely, rectangle shape is first searched in a binarized
image, and then camera pose with respect to the rectangle is
computed from the known 3D coordinates of four corners of the
marker using approaches similar to those presented in section 3.1
or 4.1.3. The texture inside the marker is uniquely designed
for marker identification. Circular shape is often selected as an
alternative to square shape [86]. Since single circle is not sufficient

http://www.robocortex.com
http://www.augmentedpro.com
http://www.xloudia.com
http://www.3ds.com
http://www.public.robocortex.com/download/videos/robocortex_dassault_systemes.wmv
http://people.rennes.inria.fr/Eric.Marchand/pose-estimation/index.html


IEEE TRANS. ON VISUALIZATION AND COMPUTER GRAPHICS, TO APPEAR 2016 13

for camera localization, multiple circles are randomly [139],
circularly [14] or squarely [15] distributed on a plane.

Fig. 22. ARToolkit [54], Pokedex 3D (Nintendo), ARTag in the Magic Lens
system [37] (see video), circular Rune-Tag [14] (see video).

Although research related to markers is still active, the devel-
opment of keypoints matching methodologies in the late 1990s
allows augmented reality reaching a new maturity level.

5.2 Keypoints matching

In the previous sections, we mentioned that point correspondences
should be available beforehand. These correspondences are estab-
lished between 2D points in the image and points of a 3D reference
model for PnP (section 3.1) and between two 2D points located
on a plane for homography estimation (section 4.1).

In the literature, SIFT [72], which has been considered a
breakthrough for 2D points matching, was proposed in 1999 and
then various types of keypoint detectors and descriptors have been
considered. The common framework for 2D matching usually
consider three steps: keypoints extraction, description and match-
ing. First, among all the pixels in the image, a subset of pixels
of interest is selected according to a criterion of "cornerness".
For each selected pixel, its local texture is then converted into a
descriptor (a vector that intends to encode, in a unique way, the
keypoint and its local neighborhood). Finally, these descriptors
extracted in two images are matched to find correspondences.

As far as pose or homography estimation is concerned, key-
point descriptors on a reference model (3D or image model) are
first computed offline and stored in a descriptor database. Then,
on-line, keypoints are extracted from each image and matched, in
the descriptor space, with those in the database. Finally, camera
pose or displacement can be computed from these correspon-
dences (see Figure 16 and 23).

Feature extraction

From a captured image, local features are extracted according to
image properties computed from texture such as "cornerness".
Ideally, since a camera can freely move in AR applications,
such features should be extracted from perspectively transformed
images. This process should be highly repeatable and performed
in real time. Therefore, existing keypoint detectors are designed
to feature invariance properties with respect to geometric trans-
formation such as translation, rotation, affine transformation and
scale change.

Historically, Harris detector [47] is a widely used corner detec-
tor that computes the cornerness score of each pixel from gradients

!
Fig. 23. Keypoints matching framework. From a reference image (top), a set of
keypoints is extracted and the corresponding descriptor vectors are computed
off-line. In the current image, another set of keypoints are extracted and their
corresponding descriptor vectors are computed on-line and matched with those
of the reference image. Here SIFT were considered [72]. If the reference image
is localized (ie, 0Tw or 0Hw has been computed off-line, see section 4.1.3),
camera localization can then be computed thanks to a homography estimation).
CG image to be inserted and final augmentation (bottom). Image from [116] [11].

of an image patch. The cornerness score is then classified into flat,
edge and corner according to the intensity structure of the patch.
SUSAN is an alternative approach that selects a pixel as a corner
if it is not self-similar within a local image patch. The similarity
is computed between a pixel and its surrounding pixels in the
patch instead of computing gradients [125]. FAST [108] follows
SUSAN’s approach and considers only pixels on a circle for fast
extraction. FAST is computationally fast because it only computes
similarity with pixels selected with a machine learning technique.
AGAST [77] further improved computational cost against FAST
by dynamically changing the optimal configuration of pixels for
similarity measurement.

Since the keypoints mentioned above are not scale-invariant,
an image pyramid can be considered so that keypoints can be
detected under scale changes. But to deal with scale issue, several

https://www.youtube.com/watch?v=ItOtTdhDoto
https://www.youtube.com/watch?v=F4jdG7DJVSA 
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scale-invariant detectors based on scale space theory have been
proposed [70]. Generally, a linear Gaussian scale space is built
and local extrema on this space is selected as a keypoint. One of
the first scale-invariant keypoint detector used Laplacian of Gaus-
sian (LoG) [71]. But for efficiency issue, LoG is approximated by
a difference of Gaussian in SIFT [72], and is further accelerated
with GPU [123] so that it can be used in AR applications. In
SURF [12], the determinant of the Hessian is used as another
scale-space operator and is computed efficiently with integral
images. Recently, KAZE [2] employs a non-liner diffusion fil-
tering as a non-linear scale space so that object boundaries can be
retained and keypoints extraction be more robust, and accelerated
for real-time detection [3]. Note that non-maximum suppression
that selects only local extrema of cornerness scores within a region
is normally used after extraction because redundant keypoints can
be extracted and may cause false correspondences [88].

Feature description

The next step usually consists in computing a feature vector
that fully describes the keypoint and its local neighborhood. For
robustness issue, the resulting descriptor should be made invariant
to geometric and photometric variations. Rotation invariance is
normally achieved by assigning orientation to extracted keypoints
for orientation normalization. Orientation is computed by several
ways as the peak of histogram of gradient in an image patch [72]
and center of mass [42]. For each oriented keypoint, a feature
vector (a descriptor) is then computed. Roughly, a local keypoint
descriptor can be mainly classified into two approaches: histogram
of oriented gradients or intensity comparisons.

Histogram of oriented gradients used in SIFT [72], [124]
is computed such that an image patch is segmented into small
regions, and histogram of oriented gradients in each region is
computed and finally concatenated (see Figure 24). This well
preserves the shape and intensity information of an image patch.
A similar framework is used in SURF [12] and CARD [4].
Since feature descriptors from the methods above have floating-
point values, they can be compacted into a binary string with
machine learning techniques [128], [135]. Memory consumption
in a descriptor database and computational cost for matching is
then reduced.

Fig. 24. Histogram of oriented gradients (image from [72]): gradient is computed
in the neighborhood of the keypoint. 8 bins histogram of gradient are then
computed in each 4x4 region and concatenated to build the descriptor.

Intensity comparisons based approach has recently been con-
sidered. In BRIEF [21], a descriptor is composed of a binary
string in which each binary digit is computed from intensity
comparison between pairwise pixels (see different pattern in 25).
A binary value is described by 0 if a pixel is brighter and 1 if
darker in the comparison. The descriptor is then composed of
a binary string concatenating the result of a set of binary tests.
This means that a binary descriptor is directly computed from
the image patch while gradients based approaches need additional

computations. They are far more computationally efficient. To
increase the discriminative property of descriptors, different de-
signs of intensity comparisons have been proposed in ORB [111]
(rotation invariance), BRISK [69] (scale and rotation invariance),
and FREAK [1], LDB [148].

Fig. 25. Binary descriptors: a pattern is used for sampling the neighborhood of
the keypoint. Pattern for BRIEF [21] (left), BRISK [69] (center), Freak [1] (right)

Fig. 26. Game AR apps [83]. Matching using BRIEF descriptors [21] (see video1
and video2)

All the methods above need correct orientation assignment to
match before computing descriptors. This means that keypoints
are never matched if the orientation assignment failed. To avoid
computing orientation, rotation invariant descriptors have also
been proposed in [35], [130].

Since inertial sensors are now available in mobile phones,
gravity direction may be incorporated in keypoint descriptor [63].
According to gravity direction, a captured image is first rectified
and orientations from both texture and gravity are used to enhance
the distinctiveness of descriptors.

Matching

For AR applications, keypoints matching usually consider a near-
est neighbor searching approach. The idea is basically to find the
closest descriptor in the reference image in the descriptor space.
Since this is not a generic problem, various efficient solutions
for this problem have been already proposed [85]. If a feature
descriptor is binary, brute-force matching with hamming distance
(XOR) is used because it can be efficiently implemented with
common CPUs.

5.3 Alternative frameworks

Recently, keypoint matching has been formulated as a classifi-
cation problem [66], [95]. Compared to the classical framework
presented above, the view set of a keypoint under affine trans-
formations is compactly described and treated as one class. At
run-time, a classification technique is used for deciding to which
class an extracted keypoint belongs. In this approach, statistical
classification tools such as randomized trees [66] and random ferns
[95] are applied.

Enforcing geometrical constraints between keypoints can also
be used to ease matching. In [138], it is proposed to match
keypoint thanks to geometric features instead of using local image

https://www.youtube.com/watch?v=-ZNYoL8rzPY
https://www.youtube.com/watch?v=jBriQMdcGVA&spfreload=10
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patches. Geometrical relationship between neighbor keypoints is
used as a feature so that various kinds of rich and binary textures
can be detected.

Another interesting approach is to consider a contour-based
approach for non-textured objects [29] [80]. In [29], contours of
the objects are extracted with MSER [82] and cross ratios are
computed from bitangent of each contour as a descriptor.

Fig. 27. Pose from a single, closed object contour (MSER) [29] (see video), [80]

5.4 Chosing the "best" matching techniques.

It is difficult to state that one approach is better than the other.
This is usually a trade-off between stability, number of extracted
keypoints, recall, percentage of outliers, computational cost, etc.
It has to be noted that most of these low-level matching methods
are proposed in OpenCV or VLFeat [142]. This is the case for
SIFT, SURF, FAST, BRIEF, ORB, MSER, etc. It is then easy to
test each methods in a specific context and chose the most efficient
one. SIFT, which is patented in the US, have proved for year [72]
to be very efficient and a good choice (although quite heavy to
compute). From a practical point of view, it seems that FAST is
often used in augmented reality libraries; it is for example used in
Vuforia from Qualcomm or Zappar.

6 CONCLUSION

This survey is an attempt to cover the camera localization problem
for real-time augmented reality purposes. We mainly focus on
the geometrical aspects of the pose estimation seen here as an
alignment problem. We also provide hints to the low level image
processing techniques inherent to this process. Our goal in writing
this survey was to produce a guide for researchers, practitioners
and students involved in the development of AR applications. We
hope that the presented material and the accompanying examples
fulfill the initial objective.

We focused on one of the basic tools required in AR ap-
plications. Despite the tremendous progress in the area, much
work remain to be done. Five years ago, tracking reliability and
robustness (to occlusions, fast camera motions, cluttered scene,...)
was clearly an issue. This now has been clearly improved (thank
also to the joint use of computer vision techniques and other
sensors such as IMU). Beyond the camera localization one can
also consider occlusions detection and handling, dynamic scenes,
light source direction. For a precise rendering process, such issues
have to be considered.

The last decade has also seen the development of many
companies and start-ups involved in AR. Nevertheless few "killer
apps" emerged [87] in the industry. Still, most of the proposed
systems are prototypes. Scalability of the solutions, end-users and
market acceptance are clearly potential improvement areas that
must be considered by both academics and industries.
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