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1 Complex numbers

Let us start with a heuristic description of the passage from the set Q of all
rational numbers to the set R of all real numbers:

Rational numbers can be thought of as points on an infinite (horizontal)
line once one has specified the positions of 0 and 1 (with 1 lying to the right
hand side of the point 0). But the set Q of all such rational points does not
fill the entire line. Real numbers then are (or correspond to) the points on
that line, they form a set R ⊃ Q.

Indeed it turns out that the arithmetic operations on Q, i.e. addition and
multiplication, can be extended continuously from Q to R ⊃ Q such that the
following rules are satisfied:

1. The commutative laws: a+ b = b+ a, ab = ba

2. The associative laws: a+ (b+ c) = (a+ b) + c, a(bc) = (ab)c

3. The distributive law: a(b+ c) = ab+ ac

4. a+ 0 = a, a · 1 = a

5. The equation a+ x = 0 is solvable.

6. The equation ax = 1 is solvable for a 6= 0.

Remark 1.1. 1. Any set K with two distinguished elements 0, 1 ∈ K
and two binary operations + and · satisfying the above six conditions
is called a field.

2. The solution of the equation a + x = 0 resp. ax = 1 in a field K is
unique, we write it in the form x = −a resp. x = a−1. Fractions then
are defined as:

a

b
:= ab−1 = b−1a.

3. In a field K there are no zero divisors:

ab = 0⇐⇒ a = 0 ∨ b = 0,

since if ab = 0 and a 6= 0, we have:

0 = a−1 · (ab) = (a−1a)b = b.
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So it seems natural to ask whether the above extension process can be
continued:

Is there a field K % R the binary operations of which extend those on R?

If so, K becomes an R-vector space: The scalar multiplication

R×K −→ K

is the restriction of the field multiplication

K ×K −→ K.

If even n = dimK < ∞ we can choose a basis e1 := 1, e2, ..., en, such that
every element z ∈ K has the form

z = a+
n∑
µ=2

aµeµ

with unique real numbers a, a2, ..., an. Then the multiplication is determined
by the values

eµeν ∈ K, 2 ≤ µ, ν ≤ n.

For n = 2 there is only the square (e2)2 ∈ K to be considered. And by a good
choice of the second base vector e2 ∈ K \ R we can make it equal −1 ∈ R.

Proposition 1.2. Let K % R be a field. If dimK = 2 holds for the dimen-
sion of the real vector space K, there is an element i ∈ K such that

i2 = −1

and
K = R + Ri.

Before we prove Prop.1.2, we remark, that the statement is true whenever
dimK <∞, see Th.8.5.2.

Proof. Since dimK = 2, we have only to hunt for an element i ∈ K with
i2 = −1. Indeed, it is sufficient to find an element j ∈ K \ R with j2 ∈ R.
In that case we have j2 < 0: The case j2 = c ≥ 0 is impossible, since then

(j −
√
c)(j +

√
c) = j2 − c = 0,
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but the field K does not admit zero divisors. Finally we rescale j to

i :=
j√
|c|
,

where c = j2. To find j we start with any element e = e2 ∈ K \R and write

e2 = a+ be.

We write j = x+ ye and compute its square

(x+ ye)2 = x2 + 2xye+ (a+ be)y2 = (x2 + ay2) + (2x+ by)y · e

and see that j = b− 2e will do.

Of course we have still to make sure that such a field really exists: The
complex plane C is the real vector space

C := R2,

endowed with the following multiplication

(a, b) · (c, d) = (ac− bd, ad+ bc).

Then the map
R −→ C, a 7→ (a, 0)

preserves both addition and multiplication, and the second base vector i :=
(0, 1) satisfies

i2 = (−1, 0).

Identifying a ∈ R with (a, 0) ∈ C we arrive at

a+ bi = (a, b)

and thus
C = {a+ bi; a, b ∈ R}.

Both field operations have geometric interpretations: The addition is the
addition of vectors in the plane, while the multiplication is best understood
in polar coordinates. For ϕ ∈ R we define

e(ϕ) := cos(ϕ) + i sin(ϕ),
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any vector x+ iy 6= 0 then can be written

x+ iy = re(ϕ),

where r =
√
x2 + y2 is the length of the vector x+ iy and the angle ϕ is only

determined up to an integer multiple of 2π, i.e.

x+ iy = re(ϕ) = re(ϕ+ 2πk),∀k ∈ Z.

This ambiguity in the choice of the angle ϕ, as intuitive as it is, is very
important and should never be forgotten about: Indeed it is behind many
phenomena in complex analysis!

Let us now consider the product of two vectors in polar coordinates: We
obtain

re(ϕ) · se(ψ) = (rs)e(ϕ+ ψ)

as a consequence of the addition theorems for trigonometric functions. Thus
the length of the product of two vectors is the product of the lengths and
the angles add. With that formula in mind we easily check the above six
conditions - note in particular that

(re(ϕ))−1 = r−1e(−ϕ).

Let us add some useful remarks on the arithmetics of complex numbers: First
of all

(−i)2 = (−1)2i2 = i2 = −1,

so from the point of view of arithmetics, −i ∈ C should be as good as i ∈ C.
What do we mean by this? Let us consider the map

C −→ C, z = x+ iy 7→ z := x+ (−i)y = x− iy,

the reflection with respect to the ”real axis” R ⊂ C, also called complex
conjugation. It preserves both addition and multiplication

z + w = z + w, zw = z · w,

its fixed point set is the real line:

z = z ⇐⇒ z ∈ R.
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The real and imaginary part of a complex number z = x+ iy are defined as

Re(z) = x =
z + z

2
, Im(z) = y =

z − z
2i

,

its absolute value |z| ∈ R≥0 is nothing but its euclidean length

|z| :=
√
x2 + y2 =

√
zz.

In particular, for z = x+ iy 6= 0 we have

1

z
=

z

zz
=

z

|z|2
=

x

|z|2
− i y
|z|2

.

2 Elementary functions

Complex analysis deals with functions f : G −→ C defined on certain subsets
G ⊂ C. We shall discuss in this section some basic examples.

Let us start with R-linear maps f : C −→ C, i.e. endomorphisms of the
real vector space C. Such a map can uniquely be written

f(z) = f(x+ iy) = ax+ by

with complex coefficients a, b ∈ C. In fact a = f(1), b = f(i).
If we don’t want to split up into real and imaginary part, we can as well

rewrite

f(z) = cz + dz

with unique complex coefficients c, d ∈ C using the identities

x =
z + z

2
, y =

z − z
2i

,

such that

c =
1

2
(a− ib), d =

1

2
(a+ ib).

Note that an endomorphism f : C −→ C is even C-linear, i.e.

f(λz) = λf(z), ∀ λ ∈ C,
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iff d = 0. The condition is obviously sufficient; to see the necessity take λ = i
and compare the coefficients of the expressions for the right and the left hand
side.

Starting with the constant and R-linear maps and allowing all combi-
nations of them using sums and products we obtain the real polynomial
maps f : C −→ C; they are given as sums

f(z) = f(x+ iy) =
m∑
µ=0

n∑
ν=0

aµνx
µyν

with unique complex coefficients aµν ∈ C. The function f coincides with its
Taylor expansion at every point z0 = x0 + iy0 ∈ C, i.e.

f(z) = f(x+ iy) =
m∑
µ=0

n∑
ν=0

cµν(x− x0)µ(y − y0)ν

with

cµν =
1

µ!ν!

∂µ+νf

∂xµ∂yν
(z0).

As a consequence f ≡ 0 near z0 (by that we mean that f vanishes identically
on some open disc

Dr(z0) := {z ∈ C; |z − z0| < r}

of positive radius r) implies that cµν = 0 for all µ, ν. So we obtain the
following:

Theorem 2.1 (Weak Identity Theorem for R-polynomials.). Let f, g :
C −→ C be real polynomial maps, and D := Dr(z0) the disc with center z0

and radius r > 0. Then

f |D = g|D =⇒ f = g.

Proof. Apply the above reasoning to the difference f − g.

Finally, a real polynomial map may be written as a (z, z)-polynomial

f(z) =
m∑
µ=0

n∑
ν=0

bµνz
µzν .
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To see the uniqueness of the coefficients bµν ∈ C we may use an argument
analogous to the above one with the ”complex partial derivatives” ∂

∂z
, ∂
∂z

to
be introduced later on.

The complex polynomial maps f : C −→ C are the real polynomials
without z-terms, i.e.

f(z) =
m∑
µ=0

aµz
µ.

Though we can not draw the graph

Γf := {(z, f(z)), z ∈ C} ⊂ C2

of such a function, we want to study its ”geometry”: Here the following
concept is quite useful:

Definition 2.2. Let f : G −→ C be a complex valued function. The fiber
f−1(w) ⊂ G over a point w ∈ C is defined as the set

f−1(w) := {z ∈ G; f(z) = w},

so it consists of all points z ∈ G lying ”above” w ∈ C - where one thinks of
the map f as a sort of projection.

Let us consider the power map

f(z) = zn.

It is surjective: Its zero fiber consist of one point

f−1(0) = {0},

while for r > 0 the fibre

f−1(re(ϕ)) =

{
n
√
r · e

(
ϕ

n
+ k

2π

n

)
; k = 0, ..., n− 1

}
contains n different points. In particular f−1(1) ⊂ C is the set of n-th roots
of unity, which span a regular n-gon.

A rational function f : G −→ C is a function

f(z) =
p(z)

q(z)
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with complex polynomials p, q : C −→ C and q(z) 6= 0 for z ∈ G. So
the maximal choice of the domain of definition for a rational function is
G := C \N(q) with the finite set N(q) := {z ∈ C; q(z) = 0} of zeros of q.

The complex exponential map

exp : C −→ C

extends the real exponential function to a function on the entire plane C; it
is defined by

exp(z) = exp(x+ iy) := exe(y) = ex(cos(y) + i sin(y)).

It satisfies the functional equation

exp(z1 + z2) = exp(z1) exp(z2)

and attains all nonzero values:

exp(C) = C∗ := C \ {0}.

Namely, given w = se(ψ) ∈ C∗ the point z = ln(s) + iψ satisfies exp(z) = w.
Furthermore

exp−1(1) = 2πiZ.
Now the functional equation implies that the w-fiber looks as follows

exp−1(w) = z + exp−1(1) = z + 2πiZ,

since w = exp(z1) = exp(z) implies exp(z1 − z) = 1.

The complex trigonometric functions

sin(z) :=
1

2i
(exp(iz)− exp(−iz))

and

cos(z) :=
1

2
(exp(iz) + exp(−iz))

extend the real trigonometric functions from the real line R to the complex
plane C. They are 2π-periodic functions

sin(z + 2π) = sin(z), cos(z + 2π) = cos(z)

and satisfy
sin2(z) + cos2(z) = 1.

But that does not imply that the complex trigonometric functions are bounded!
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3 Convergence

Here we shall recall briefly some basic facts about convergence, continuity
and open sets: Nothing of that is specific for C but rather holds in any Rn.

Definition 3.1. A sequence (zν) of complex numbers is said to converge to
z0 ∈ C, iff limν→∞ |zν − z0| = 0.

Remark 3.2. 1. limν→∞ zν = z0 iff limν→∞ xν = x0 and limν→∞ yν = y0.
That follows from the estimates

|xν − x0|, |yν − y0| ≤ |zν − z0| ≤ |xν − x0|+ |yν − y0|.

2. The sum and the product of two convergent sequences is convergent,
the limit being the sum resp. product of the two limits.

3. If limν→∞ zν = z0 6= 0, then limν→∞
1
zν

= 1
z0

.

Definition 3.3. Let D := Dr(z0) be a disc and D∗ := D\{z0} the punctured
disc. Assume f : D∗ −→ C is a function. We write

lim
z→z0

f(z) = a,

if for any sequence (zν) ⊂ D∗ converging to z0 we have

lim
ν→∞

f(zν) = a.

The functions we are interested in are defined on open subsets of the
complex plane:

Definition 3.4. A set G ⊂ C is called open, if, given any point z0 ∈ G there
is some r = r(z0) > 0, such that Dr(z0) ⊂ G. By an open neighbourhood of
z0 ∈ C we mean any open set U 3 z0.

Remark 3.5. 1. Unions and finite intersections of open sets are open.

2. A sequence zν converges to z0 iff outside any open neighbourhood U of
z0 there are only finitely many zν .
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Definition 3.6. Let G ⊂ C be open. A function f : G −→ C is called
continuous at z0 ∈ G if

lim
z→z0

f(z) = f(z0).

It is called continuous if it is continuous at every point of G.

Remark 3.7. 1. The function f : G −→ C is continuous at z0 ∈ G if for
every open set V 3 f(z0) the inverse image

f−1(V ) := {z ∈ G; f(z) ∈ V }

contains some disk Dr(z0).

2. The function f : G −→ C is continuous if for every open set V the
inverse image f−1(V ) ⊂ G is open as well.

In order to construct interesting functions f : G −→ C one often repre-
sents them as limits: f(z) = limn→∞ fn(z) with functions fn : G −→ C. But
if we want to show that certain properties of the functions fn hold as well
for the limit f , we need that the convergence is uniform.

Example 3.8. Let

g(z) :=

{
3|z|2 − 2|z|3 , if |z| ≤ 1
1 , if |z| ≥ 1

.

Though the functions fn := gn : C −→ C are continuous, indeed even
differentiable, their pointwise limit, the function f : C −→ C with

f(z) :=

{
0 , if |z| < 1
1 , if |z| ≥ 1

is not!

Definition 3.9. A sequence of functions fn : G −→ C is said to converge
uniformly to a function f : G −→ C, if for any ε > 0 there is a natural
number n0, such that for n ≥ n0 the estimate |f(z) − fn(z)| < ε holds
simultaneously for all z ∈ G.

The uniform limit of a sequence of continuous functions is again contin-
uous:
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Proposition 3.10. If the sequence of continuous functions fn : G −→ C
converges uniformly to f : G −→ C, then the function f is continuous as
well.

Proof. We have to show that zν → z0 ∈ G implies f(zν)→ f(z0). Take some
ε > 0. Choose n ∈ N, such that the estimate |f(z) − fn(z)| < ε/3 holds
for all z ∈ G. Since fn is continuous at z0, we have fn(zν) → fn(z0). In
particular we can find a ν0 ∈ N, such that |fn(z0) − fn(zν)| < ε/3 holds for
ν ≥ ν0. Now

|f(z0)− f(zν)| = |(f(z0)− fn(z0)) + (fn(z0)− fn(zν)) + (fn(zν)− f(zν))|

≤ |f(z0)−fn(z0)|+ |fn(z0)−fn(zν)|+ |fn(zν)−f(zν)| ≤ ε/3 + ε/3 + ε/3 = ε.

Example 3.11. Let gν : G −→ C be continuous functions, assume that

|gν(z)| ≤ Rν , ∀ z ∈ G

with reals Rν > 0, such that
∑∞

ν=0Rν <∞. Then the function f : G −→ C
with

f(z) :=
∞∑
ν=0

gν(z)

is continuous, since the sequence of partial sums

fn(z) =
n∑
ν=0

gν(z)

converges uniformly to f . Namely, given ε > 0, choose n0 ∈ N such that∑∞
ν=n0

Rν < ε. Then for n ≥ n0 we have

|f(z)− fn(z)| =

∣∣∣∣∣
∞∑

ν=n+1

gν(z)

∣∣∣∣∣ ≤
∞∑

ν=n+1

|gν(z)| ≤
∞∑

ν=n+1

Rν < ε.

Finally we need the notion of a connected open set:

Definition 3.12. An open set G ⊂ C is called (path-)connected if for any
two points a, b ∈ G there is a path (=continuous map) γ : I := [0, 1] −→ G
with γ(0) = a, γ(1) = b. A connected open set is also called a domain.
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The following criterion is often quite useful:

Proposition 3.13. An open set G ⊂ C is a domain iff it can not be written

G = U ∪ V

as the disjoint union of two non-empty open sets U and V .

Proof. The condition is necessary: We show that a point a ∈ U can not be
connected to a point b ∈ V by a path γ : I := [0, 1] −→ G with γ(0) =
a, γ(1) = b. Otherwise denote t0 ∈ I the least upper bound (supremum)
of the set γ−1(U). Necessarily γ(t0) ∈ V - otherwise γ(t0) ∈ U , and by
continuity there would be some small interval ]t0 − ε, t0 + ε[ such that even
γ(]t0 − ε, t0 + ε[) ⊂ U , a contradiction to the fact that t0 is an upper bound
for the set γ−1(U). But if γ(t0) ∈ V , then, once again by continuity, γ(]t0 −
ε, t0 + ε[) ⊂ V for some ε > 0, so t0− ε is an upper bound for γ−1(U) as well
and t0 is not the least upper bound!

Now assume our criterion is satisfied. Take a point a ∈ G and define

U := {z ∈ G; there is a path in G connecting a with z}.

Furthermore let V := G \ U . We show that both U and V are open and
conclude G = U . Since ”being connectable by a path in G” is a transitive
relation - in fact an equivalence relation - on G, it follows that G is path-
connected.

The set U is open: Take z ∈ U and choose a disc Dr(z) ⊂ G. Obviously
all points in Dr(z) can be connected by a path in Dr(z) ⊂ G to its center z,
hence also to a ∈ G. So Dr(z) ⊂ U .

The complement V is open as well: Given z ∈ V choose again Dr(z) ⊂ G.
If some point of Dr(z) could be connected by a path in G with a, then z as
well - with other words, Dr(z) ⊂ V .

4 Logarithm functions

The real exponential function R −→ R>0 is bijective and has an inverse
function ln : R>0 −→ R, the natural logarithm. The complex exponential
map is not injective due to the ambiguity of the angle in the polar coordinate
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description of a complex number. Even worse, there is no unique maximal
domain of definition for the logarithm.

We start defining in general ”logarithm functions” or ”branches of the
logarithm”:

Definition 4.1. Let G ⊂ C be a domain. A continuous function g : G −→ C
is called a branch of the logarithm on G if exp(g(z)) = z, ∀z ∈ G.

Though the terminology: ”the logarithm” seems to indicate it there is in
general no preferred choice of a branch of the logarithm.

Lemma 4.2. If g, h : G −→ C are branches of the logarithm on the domain
G, then there is an integer ` ∈ Z such that h = g + 2πi`.

Proof. We have exp(g − h) ≡ 1, and thus g(z) − h(z) = 2πi`(z) with an
integer `(z) ∈ Z.. Since g and h are continuous, ` : G −→ Z ⊂ C is as
well. But Z ⊂ C is discrete (i.e. consists of isolated points only), so by
the intermediate value theorem the continuous function t 7→ `(γ(t)) ∈ Z is
constant along any path γ : I −→ G. Since G is connected it follows that
` : G −→ Z is constant.

A necessary condition for the existence of a branch of the logarithm on
G is obviously that G ⊂ C∗, the exponential function having no zeros. Un-
fortunately that condition is not sufficient. But let us look first at a positive
example:

Example 4.3. 1. Let
G := C \ R≤0

be the plane with the left real half line, i.e. the non-positive reals,
removed. The principal branch of the logarithm

Log : G −→ C

is the function
Log(z) := ln |z|+ iArg(z),

where the argument function Arg : G −→ R is defined as follows

Arg(z) :=


− arccos( x

|z|) , if z = x+ iy, y < 0

arctan( y
x
) , if z = x+ iy, x > 0

arccos( x
|z|) , if z = x+ iy, y < 0
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with the inverse trigonometric functions arccos :] − 1, 1[−→]0, π[ and
arctan : R −→]− π

2
, π

2
[.

2. There is no branch of the logarithm g : C∗ −→ C on the punctured
plane C∗: Otherwise g|G would be a branch of the logarithm on G and
thus g|G = Log + 2πi`. We may even assume ` = 0 - replace g with
g − 2πi`. But

g(−r) = lim
z→−r,Im(z)>0

Log(z) = ln(r) + πi

as well as

g(−r) = lim
z→−r,Im(z)<0

Log(z) = ln(r)− πi.

Intuitively, there is a branch of the logarithm g : G −→ C if and only
if there is no loop in G around the origin. (A loop in G is a path
γ : I = [0, 1] −→ G with γ(1) = γ(0).)

3. On the plane with the half line R≥0e
iϑ removed, i.e. on

G := C \ R≥0e
iϑ

the function

g(z) = Log(−e−iϑz) + i(π + ϑ).

is a branch of the logarithm.

In order to determine a branch g : G −→ C of the logarithm on a domain
G - if there is one - it is sufficient to fix the value g(z0) for some point
z0 ∈ G. Or, in special cases one can give an interval ]ϑ, ϑ + 2πi[ such that
Img(z) ∈ ]ϑ, ϑ + 2πi[ for all z ∈ G. But let us mention here that there is a
branch of the logarithm on

G := C∗ \ {et+it; t ∈ R},

the punctured complex plane with a spiral removed, and its imaginary part
attains all real values! Try to give an explicit definition!
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5 Complex Differentiability

The notion of differentiability of a function f : G −→ C in a point z ∈ G is
literally the same as in real analysis of one variable. The difference is that
differentiability of a complex valued function is quite a strong condition and,
in contrast to the real situation, has striking consequences.

Definition 5.1. The function f : G −→ C is called differentiable (or C-
differentiable) in z ∈ G, if

lim
h→0

f(z + h)− f(z)

h

exists. In that case we denote the limit f ′(z) and call it the (complex)
derivative of f at z. The function f is called holomorphic at z, iff it is
differentiable at every point of an open disc Dr(z) ⊂ G around z. It is called
holomorphic or differentiable, iff it is differentiable at every point in G. We
denote

O(G) := {f : G −→ C; f holomorphic}

the set of all holomorphic functions on G.

Example 5.2. 1. A constant function f ≡ c is differentiable with deriva-
tive f ′ ≡ 0.

2. The function f(z) = z is differentiable with derivative f ′ ≡ 1.

3. The complex conjugation f(z) = z is nowhere differentiable. (Note
that functions of that type also exist in real analysis, but they are not
that easy to define!). Indeed for h = reiϕ we have

z + h− z
h

=
h

h
= e−2iϕ,

i.e. along different rays through z there are different limits! So there is
no limit in the whole!

4. The derivative preserves sums and satisfies the Leibniz rule: Assume
that f, g : G −→ C are differentiable at z ∈ G. Then so are the sum
f + g and the product fg, and we have:

(f + g)′(z) = f ′(z) + g′(z), (fg)′(z) = f ′(z)g(z) + f(z)g′(z).
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In particular we obtain by induction on n ∈ N>0 that the power func-
tion f(z) := zn is differentiable with derivative f ′(z) = nzn−1. Complex
polynomials are differentiable on C.

5. An R-linear map f(z) = cz + dz is differentiable at 0 ∈ C iff it is
differentiable everywhere iff d = 0 iff f is even C-linear.

6. The set O(G) is closed with respect to both sums and products of
functions.

7. If f, g : G −→ C are differentiable at z ∈ G and g(z) 6= 0, so is
f
g

: G \ N(g) −→ C (where N(g) ⊂ G denotes the set of zeros of g),
and (

f

g

)′
(z) =

f ′(z)g(z)− f(z)g′(z)

g(z)2
.

8. The chain rule holds: Let f : G −→ G′ ⊂ C and g : G′ −→ C be
functions. If f is differentiable at z ∈ G and g at w = f(z), then the
composition g ◦ f : G −→ C is differentiable at z ∈ G and

(g ◦ f)′(z) = g′(w)f ′(z) = g′(f(z))f ′(z).

Let us view at the above situation from the point of view of real analysis in
the two variables x, y, taking C as the real plane. The functions differentiable
in the sense of real analysis we shall call here R-differentiable. We recall:

Definition 5.3. A function f : G −→ C is R-differentiable at a point z0 ∈ G,
if there is an R-linear map L : C −→ C, such that

lim
h→0

f(z0 + h)− f(z0)− L(h)

|h|
= 0,

or equivalently, h being a complex number (and not only a vector in Rn),

lim
h→0

f(z0 + h)− f(z0)− L(h)

h
= 0.

The linear map L is uniquely determined by the above condition: It is
called the differential of f at z0 and also denoted

Df(z0) := L.
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Writing h = s + it the differential L : C −→ C of an R-differentiable map
f : G −→ C at some point z0 ∈ G takes the form

L(s+ it) = as+ bt,

where the coefficients a, b ∈ C are the partial derivatives

a =
∂f

∂x
(z0), b =

∂f

∂y
(z0).

On the other hand we may write

L(h) = ch+ dh

with c = 1
2
(a− ib), d = 1

2
(a+ ib). We are thus led to the following definition

of ”complex” partial derivatives:

Definition 5.4. For a function f : G −→ C, which is R-differentiable at
z0 ∈ G with differential L(h) = ch+ dh we define

∂f

∂z
(z0) := c,

∂f

∂z
(z0) := d.

Indeed
∂f

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
and

∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

The relation between real and complex differentiability is as follows:

Proposition 5.5. A function f : G −→ C is C-differentiable at z0 ∈ G, iff
it is R-differentiable at z0 and

∂f

∂z
(z0) = 0.
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Proof. If f is C-differentiable at z0, then L(h) := f ′(z0)h is the R-linear
map L : C −→ C satisfying the above condition. On the other hand, given a
function, which is R-differentiable at z0 ∈ G with differential L(h) = ch+dh,
we have

f(z0 + h)− f(z0)

h
=
L(h)

h
+ ε(h),

where limh→0 ε(h) = 0. So a function, which is R-differentiable at z0 ∈ G, is
there C-differentiable iff its differential L : C −→ C at z0 is C-differentiable
at 0 ∈ C, or equivalently: L(h) = ch for some c ∈ C, see 5.2.5.

In terms of ordinary partial derivatives we obtain:

Corollary 5.6. For a function f : G −→ C and a point z0 ∈ G the following
statements are equivalent:

1. f is C-differentiable at z0.

2. f is R-differentiable at z0 and there

∂f

∂x
= −i∂f

∂y

holds. With other words: The differential quotient of f at z0 taken
along the line z0 + R coincides with that taken along z0 + iR.

3. f = u + iv is R-differentiable at z0 and there the Cauchy-Riemann
equations

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

hold.

Remark 5.7. A function f : G −→ C is C-differentiable at z0 ∈ G iff

∂f

∂z
(z0) = 0.

But be careful: We do not have

∂f

∂z
(z0) = lim

h→0

f(z0 + h)− f(z0)

h
,

since the right hand side in general does not exist, but if it exists, then the
equality holds and furthermore ∂f

∂z
(z0) = 0.
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The calculus for the first order differential operators ∂
∂z
, ∂
∂z

is analogous
to that of partial derivatives: They satisfy

∂z

∂z
= 1,

∂z

∂z
= 0,

∂z

∂z
= 0,

∂z

∂z
= 1,

are linear, satisfy the Leibniz rule and even the chain rule as for usual partial
derivatives.

Example 5.8. 1. A real polynomial function

f(z) =
m∑
µ=0

n∑
ν=0

aµνz
µzν ,

either is

(a) a complex polynomial and thus holomorphic everywhere

(b) or nowhere holomorphic.

First of all we have

aµν =
1

µ!ν!

∂µ+νf

∂zµ∂zν
(0).

Thus the coefficients aµν are uniquely determined by f .

Now the z-derivative

∂f

∂z
=

m∑
µ=0

n∑
ν=1

νaµνz
µzν−1,

being a real polynomial as well, is either ≡ 0 - that means that all its
coefficients vanish resp. that f was a complex polynomial - or does not
vanish identically on any open subset, with other words, f is nowhere
holomorphic.

2. The exponential function exp : C −→ C is holomorphic and exp′ = exp.
Indeed

∂ exp

∂x
(z) = exe(y),

∂ exp

∂y
(z) = exie(y).

3. A branch of the logarithm is holomorphic - to see that it is sufficient
to look at branches on C \ R≥0e

iϑ resp. at the principal branch of the
logarithm Log. Now the chain rule applied to z = exp(g(z)) gives

1 = exp′(g(z))g′(z) = exp(g(z))g′(z) = zg′(z)

i.e. g′(z) = 1
z
.
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6 Path integrals

The values of a holomorphic function f ∈ O(G) on the interior D of a closed
disc D ⊂ G can be computed from its restriction f |∂D. This is the essential
difference between differentiable functions on open parts of the real line and
holomorphic functions on domains of the complex plane. If something similar
would hold in the real situation (with closed intervals replacing closed discs),
every differentiable function would be an affine linear function f(x) = ax+b!

In order to compute f(z) for z ∈ D from f |∂D, we need path integrals:
This section is devoted to a careful discussion of that subject. Indeed we do
not only treat it from the point of view of complex analysis, but explain the
general background from real analysis in two variables as well.

First let us fix some notation:

Definition 6.1. For a domain G ⊂ C we denote

Ck(G)

the set of all complex valued functions, admitting continuous partial deriva-
tives up to order k. In particular

C(G) := C0(G)

is the set of all complex valued continuous functions on G.

The objects to be integrated along ”paths” are not functions, but ”dif-
ferential forms”. We start with a preparatory remark:

Remark 6.2. We denote

L(C) := {L : C −→ C;L R-linear}

the complex vector space of all R-linear maps from C to itself (with the scalar
multiplication (λL)(h) := λL(h)). Recall that it admits two natural bases

L(C) = C · Re⊕ C · Im,

where Re, Im : C −→ C satisfy Re(x+ iy) = x, Im(x+ iy) = y, and

L(C) = C · idC ⊕ C · idC,

where idC is complex conjugation.
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Definition 6.3. A Ck-differential form on a domain G is a function

ω : G −→ L(C), z 7→ ωz,

such that the functionG −→ C, z 7→ ωz(h), is a Ck-function for all h ∈ C. We
denote Dk(G) the set of all Ck-differential forms on G, with the convention
D(G) := D0(G).

Remark 6.4. 1. Let us try a physical interpretation of differential forms:
Differential forms can be regarded as rules associating to any small
displacement vector h ∈ C at a point z ∈ G the variation ωz(h) ∈ C of
some (complex) ”magnitude”; and h being small we may assume that
ωz(h) is R-linear in h ∈ C.

2. Differential forms can be added, and multiplied with functions f ∈
Ck(G) as follows

(fω)z := f(z)ωz.

Definition 6.5. The total differential of a function F ∈ C1(G) is defined as
the continuous differential form

dF : G −→ L(C)

associating to a point z ∈ G the differential of F at z, i.e.

dFz := DF (z).

On the other hand, given a differential form ω ∈ D(G), any function F ∈
C1(G) with dF = ω is called a primitive function for ω.

In the following example we see that differential forms are determined by
two complex valued coefficient functions:

Example 6.6. 1. The total differential of an R-linear map F = L : C −→
C is the map L itself:

dF ≡ L.

In particular
dx ≡ Re, dy ≡ Im,

while
dz ≡ idC, dz ≡ idC.
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As a consequence every differential form ω ∈ Dk(G) has a unique rep-
resentation

ω = fdx+ gdy

with functions f, g ∈ Ck(G) as well as

ω = h1dz + h2dz

with

h1 =
1

2
(f − ig), h2 =

1

2
(f + ig).

To see that use the relations

dz = dx+ idy, dz = dx− idy

and

dx =
1

2
(dz + dz), dy =

1

2i
(dz − dz).

2. The total differential of a function F ∈ C1(G) then takes the form

dF =
∂F

∂x
dx+

∂F

∂y
dy =

∂F

∂z
dz +

∂F

∂z
dz.

Remark 6.7. If dF = dF̃ on a domain G, then F̃ = F + c with some
c ∈ C, i.e. two primitive functions differ only by a constant. To prove that
we consider d(F̃ − F ) = 0. So it is sufficient to show that dF = 0 implies
F ≡ c ∈ C. It is clear that F ≡ F (z0) on any disc Dr(z0) ⊂ G, since F is
constant on the line segments [z0, x+ iy0] and [x+ iy0, z]. Now consider some
value c ∈ F (G), Take

U := {z ∈ G; f(z) = c}, V := {z ∈ G; f(z) 6= c}.

Then G is the disjoint union G = U ∪ V , the set V is open, since F is
continuous, but U is as well by the above argument. Since G is connected
and U 6= ∅, we conclude G = U .

Definition 6.8. A differential form ω ∈ D(G) is called

1. integrable or exact, if it admits a primitive function F ∈ C1(G), i.e.
ω = dF ,
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2. locally integrable, if for every point z0 ∈ G there is an open disc D =
Dr(z0), such that ω|D admits a primitive function F ∈ C1(D).

Example 6.9. Let G ⊂ C∗ be a domain. Then the differential form

ω :=
dz

z
∈ D(G)

is locally integrable, but not necessarily integrable: Indeed, it is integrable
iff there is a branch of the logarithm log : G −→ C. We have already seen
that ω = d log. On the other hand, if ω = dF , then

d(ze−F ) = zde−F + e−Fdz = −ze−FdF + e−Fdz = 0

and thus ze−F (z) ≡ c with some c ∈ C∗. If then ed = c, we see that log(z) :=
F (z)−d is a branch of the logarithm on G. The above integrability criterion
applies to discs D ⊂ C∗: If D = Dr(z0), then D ⊂ C∗ \ R≥0(−z0), the latter
domain admitting a branch of the logarithm. Thus ω is locally integrable on
any domain G ⊂ C∗.

Differential forms can be integrated along paths:

Definition 6.10. Let G ⊂ C be a domain.

1. A path in G is a continuous map γ : I = [a, b] −→ G from a closed
interval I = [a, b] to G. The point γ(a) ∈ G is called the start point,
γ(b) ∈ G the end point of γ. We call γ a closed path or a loop if
γ(a) = γ(b).

2. A smooth path in G ⊂ C is a C1-map γ : I = [a, b] −→ G, i.e. both
component functions α, β of γ = α+iβ have continuous first derivatives.
We denote γ̇ : I −→ C the derivative of γ, i.e. γ̇ = α̇ + iβ̇, and call
γ̇(t) the tangent vector on γ at t ∈ I.

3. The length L(γ) of a smooth path is defined as

L(γ) :=

∫ b

a

|γ̇(t)|dt,

its trace is the set
|γ| := γ(I).
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4. A piecewise smooth path γ in G is a sequence of smooth paths γ1, ..., γr,
such that the end point of γi, i = 1, ..., r − 1, coincides with the start
point of γi+1. Its length is

L(γ) :=
r∑
i=1

L(γi),

its trace

|γ| :=
r⋃
i=1

|γi|.

Some standard paths: By [z1, z2] we mean the smooth path

[0, 1] −→ C, t 7→ z1 + t(z2 − z1).

Furthermore, given a coordinate rectangle R = [a, b] + i[c, d] we denote ∂R
the piecewise smooth loop consisting of the smooth pieces [a + ic, b + ic],
[b+ ic, b+ id], [b+ id, a+ id], [a+ id, a+ ic].

We denote ∂Dr(z0) the smooth loop

[0, 2π] −→ C, t 7→ z0 + reit,

i.e. the (counterclockwise) circle with center z0 and radius r > 0.
As a general rule if a path surrounds a domain, one calls it positively

oriented if one has that domain always on ones left hand side when following
the path.

Given a path γ : I −→ G its inverse path is

γ−1 : −I −→ G, t 7→ γ(−t),

the inverse of a piecewise smooth path γ = (γ1, ..., γr) is γ−1 := (γ−1
r , ..., γ−1

1 ).

Definition 6.11. 1. Let γ : [a, b] −→ G be a smooth path. For a differ-
ential form ω we define∫

γ

ω :=

∫ b

a

ωγ(t)(γ̇(t))dt.
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2. If γ is a piecewise smooth path, say γ = (γ1, ..., γr), we set∫
γ

ω :=
r∑

k=1

∫
γk

ω.

Remark 6.12. 1. If γ = α + iβ and ω = fdx+ gdy, we have∫
γ

ω =

∫ b

a

(f(γ(t))α̇(t) + g(γ(t))β̇(t))dt.

2. For ω = h1dz + h2dz we have∫
γ

ω =

∫ b

a

(
h1(γ(t))γ̇(t) + h2(γ(t))γ̇(t)

)
dt.

3. If τ : [c, d] −→ [a, b], s 7→ t = τ(s), is a C1-map with τ(c) = a, τ(d) = b,
and γ̃ := γ ◦ τ , then ∫

γ̃

ω =

∫
γ

ω

as a consequence of the chain rule. Furthermore

L(γ̃) = L(γ)

if dτ
ds
≥ 0. So, the value of the integral of a differential form along a path

does not change under a reparameterization! But if you are hesitating
while going from γ(a) to γ(b) and even go backwards a little bit before
continuing to γ(b) then the length of your way is bigger: L(γ̃) > L(γ).

4. We have ∫
γ−1

ω = −
∫
γ

ω

for any piecewise smooth path γ.

5. The fundamental theorem of calculus together with the chain rule

d

dt
(F ◦ γ)(t) = dFγ(t) (γ̇(t))

for two variables gives∫
γ

dF = F (γ(b))− F (γ(a)),
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so the path integral of a differential form admitting a primitive function
depends only on the start and end point of the path. In particular∫

λ

dF = 0

for any (piecewise smooth) loop λ.

Example 6.13. 1. Let D = Dr(z0) and D := {z ∈ C; |z − z0| ≤ r}. We
want to prove that∫

∂D

dz

z − a
=

{
2πi, , if a ∈ D
0, , if a 6∈ D .

If a ∈ D, we decompose

C \ {a} = G1 ∪G2

into two parts, where ω = dz
z−a admits a primitive function Fi : Gi −→

C. Take
G1 := C \ (a+ R≤0), G2 := C \ (a+ R≥0).

On G1 the function F1(z) := Log(z − a) is a primitive function of
dz/(z − a), on G2 we can take F2(z) := Log(a− z). Now let γ1 : I −→
G1 be the arc of ∂D on the right hand side of the line a + iR, and
γ2 : J −→ G2 the complementary arc (assuming ∂D to start and end
at the lower point of ∂D ∩ (a + iR)). Denote a + b the start point of
γ1, and a+ c the end point of γ1. Then∫

∂D

dz

z − a
=

∫
γ1

dz

z − a
+

∫
γ2

dz

z − a

= (F1(a+ c)− F1(a+ b)) + (F2(a+ b)− F2(a+ c))

= (Log(c)− Log(b)) + (Log(−b)− Log(−c))

= (Log(−b)− Log(b)) + (Log(c)− Log(−c)) = πi+ πi = 2πi.

Finally, if a 6∈ D the differential form dz
z−a has a primitive function on

C \ (a+ R≤0(z0 − a)) ⊃ D, hence the integral vanishes.
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2. As a consequence of the above discussion the differential form

dz

z − a
∈ D(C \ {a})

is locally integrable, but does not admit a primitive function: There
are loops with non zero integral.

Proposition 6.14. For a differential form ω ∈ D(G) the following state-
ments are equivalent

1. ω is locally integrable.

2. For every coordinate rectangle R = [a, b]+i[c, d] ⊂ G we have
∫
∂R
ω = 0.

3. ω|D is integrable on any disc D = Dr(z0) ⊂ G.

Proof. ”1) =⇒ 2)”: Let R ⊂ G be a coordinate rectangle. For every n ∈ N
we may subdivide R into n2 rectangles Rij, 1 ≤ i, j ≤ n, similar to R, but of
1/n the size of R. Then ∫

∂R

ω =
∑
i,j

∫
∂Rij

ω

for all ω ∈ D(G), since any edge of an Rij inside R shows up twice, but with
opposite orientation. For n sufficiently large any Rij is contained in a disc
Dij ⊂ G, where ω admits a primitive function, and thus

∫
∂Rij

ω = 0.

”2) =⇒ 3)”: We construct a primitive function on D = Dr(z0) ⊂ G as
follows: We have∫

[z0,x+iy0]

ω +

∫
[x+iy0,x+iy]

ω =

∫
[z0,x0+iy]

ω +

∫
[x0+iy,x+iy]

ω =: F (z).

With other words, if ω = fdx+ gdy, then

F (x+iy) =

∫ x

x0

f(s+iy0)ds+

∫ y

y0

g(x+it)dt =

∫ y

y0

g(x0+it)dt+

∫ x

x0

f(s+iy)ds.

To check ∂F
∂y

= g consider the first expression for F : The first term does not
depend on y and for the second apply the fundamental theorem of calculus.
For ∂F

∂x
= f the analogous argument applies to the second expression.

”2) =⇒ 3)”: Obvious.
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The rectangle criterion for local integrability is not very convenient to
be checked, but it is of interest since it may be used to show the following
extension property:

Proposition 6.15. If a differential form ω ∈ D(G) is locally integrable on
G \ {z0}, then it is locally integrable on G as well.

Proof. We show that
∫
∂R
ω = 0 for every coordinate rectangle R ⊂ G. For

R 63 z0 that is clear. With the notation of the proof of Prop. 6.14 we have
z0 ∈ Rij for at most 4 such rectangles, and the ω-integrals over the boundaries
of these rectangles tend to zero for n 7→ ∞: We have∣∣∣∣∣

∫
∂Rij

ω

∣∣∣∣∣ ≤M · L(∂Rij) =
M

n
L(∂R)

with M = max{|f(z)|, |g(z)|; z ∈ R}, if ω = fdx+gdy. Hence
∫
∂R
ω = 0.

The following result is interesting from a theoretical point of view; the
reader mainly interested in a straight forward introduction to complex anal-
ysis may skip it. Indeed we shall prove it once more soon under slightly
stronger assumptions.

Theorem 6.16. For f ∈ O(G) the differential form ω = f(z)dz is locally
integrable.

Proof. 1) Let R ⊂ Dε(z0) ⊂ G be a coordinate rectangle contained in a small
disc Dε(z0). We are hunting for an estimate of∣∣∣∣∫

∂R

f(z)dz

∣∣∣∣ .
Write

f(z) = f(z0) + f ′(z0)(z − z0) + h(z)(z − z0)

with a continuous function h : G −→ C. For z 6= z0 we may simply solve for
h(z), and define h(z0) := 0. Let

M(ε) := max{|h(z)|; |z − z0| ≤ ε}.

We have

(f(z0) + f ′(z0)(z − z0))dz = d

(
f(z0)z + f ′(z0)

1

2
(z − z0)2

)
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and thus ∫
∂R

f(z)dz =

∫
∂R

h(z)(z − z0)dz,

whence ∣∣∣∣∫
∂R

f(z)dz

∣∣∣∣ ≤ L(∂R)M(ε)ε ≤ 8εM(ε)ε = 8ε2M(ε).

2) Consider a coordinate rectangle R ⊂ G. Assume A := |
∫
∂R
f(z)dz| 6= 0.

We shall find a decreasing sequence of rectangles Rn shrinking to a point
z0 ∈ R: Each Rn is similar to R and has 2−n the size of R, and we have∣∣∣∣∫

Rn

f(z)dz

∣∣∣∣ ≥ 4−nA.

Take R0 := R. If Rn is found with the given estimate, we consider the
subdivision of R into four coordinate rectangles having the barycenter of Rn

as one of its vertices. The integral of ω over ∂Rn is the sum over the ω-
integrals along the boundaries of the subdividing rectangles, hence at least
the absolute value of one of these integrals has to be ≥ (1/4) · 4−nA =
4−(n+1)A. Take as Rn+1 the corresponding rectangle. We have then

∞⋂
n=0

Rn = {z0}

for some point z0 ∈ C. Then Rn ⊂ Dε(z0) for ε = 2−nD, where D > 0
denotes the length of the diagonal of R. Thus, comparing the upper bound
of the first part with the lower bound just found, we obtain

8 · 2−2nD2 ·M(2−nD) ≥ 4−nA,

resp.

M(2−nD) ≥ A

8D2
,

but the left hand side converges to 0, a contradiction.

Local integrability of differential forms ω ∈ D1(G) can also be expressed
in terms of derivatives:
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Definition 6.17. The differential form ω = fdx + gdy ∈ D1(G) is said to
be closed or to satisfy the (local) integrability condition if

∂f

∂y
=
∂g

∂x
.

Example 6.18. We leave it to the reader to check that ω = h1dz + h2dz is
closed iff

∂h1

∂z
=
∂h2

∂z

holds. So the differential form fdz ∈ D1(G) is closed if and only if f is
holomorphic.

Proposition 6.19. A differential form ω ∈ D1(G) is locally integrable if and
only if it is closed.

Proof. Let F be a primitive function on the disc D ⊂ G. Since F ∈ C2(D),
we have

∂

∂y

(
∂F

∂x

)
=

∂

∂x

(
∂F

∂y

)
.

On the other hand, if D = Dr(z0) and ω = fdx+ gdy we define

F (x+ iy) :=

∫ x

x0

f(s+ iy0)ds+

∫ y

y0

g(x+ it)dt.

Then
∂F

∂y
(z) = g(x+ iy)

according to the fundamental theorem of calculus, the first term not depend-
ing on y. On the other hand

∂F

∂x
(z) = f(x+ iy0) +

∫ y

y0

∂g

∂x
(x+ it)dt

= f(x+iy0)+

∫ y

y0

∂f

∂y
(x+it)dt = f(x+iy0)+(f(x+iy)−f(x+iy0)) = f(x+iy).

Corollary 6.20. For a function f ∈ C1(G) the following statements are
equivalent:
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1. The differential form f(z)dz is closed.

2. The differential form f(z)dz is locally integrable.

3. f ∈ O(G).

We remark that the equivalence of the second and the third statement
holds for any f ∈ C(G). The implication ”3) =⇒ 2)” then is nothing but
Th. 6.16, while ”2) =⇒ 3)” is known as Morera’s theorem: It follows from
the fact that the derivative of a holomorphic function again is holomorphic,
see Th.7.4.

On an open disc every closed differential form has a primitive function. In
the remaining part of this section we are looking for more domains enjoying
that property. We define:

Definition 6.21. A domain G ⊂ C is called simply connected if every locally
integrable differential form ω ∈ D(G) admits a primitive function F ∈ C1(G).

Example 6.22. 1. Open discs are simply connected.

2. The union G =
⋃∞
n=1Gn of an increasing sequence G1 ⊂ G2 ⊂ ... of

simply connected domains Gn, n ∈ N, is simply connected.

3. If G1, G2 ⊂ C are simply connected and the intersection G1 ∩ G2 is
connected, then G := G1 ∪ G2 is simply connected as well: A locally
integrable form ω ∈ D(G) has on Gi a primitive function Fi ∈ C1(Gi)
for i = 1, 2. So d(F1−F2) = 0 on the domain G1∩G2, hence F1−F2 ≡
c ∈ C, and we may define a primitive function F ∈ C1(G) by F |G1 := F1

and F |G2 := F2 + c.

4. A starshaped domain G is simply connected: A domain G ⊂ C is called
starshaped, if there is a point z0 ∈ G, such that for all z ∈ G the line
segment from z0 to z is contained in G as well: For a locally integrable
form ω the integral

F (z) :=

∫
[z0,z]

ω

defines a primitive function.

We mention without proof the following characterization of simply con-
nected domains.
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Theorem 6.23. For a domain G ⊂ C the following statements are equiva-
lent:

1. G is simply connected.

2. The domain G ”has no holes”: The complement C\G can not be written

C \G = A ∪̇ K

as the disjoint union of a compact set K 6= ∅ and a closed set A ⊂ C.

3. Every continuous loop γ : I −→ G can within G be contracted to a
point, i.e. there is a continuous map

H : I × I −→ G

with H(t, 0) = γ(t), H(t, 1) ≡ z0 ∈ G and H(0, s) = H(1, s) for all
s ∈ I.

Remark 6.24. We remark, that the third characterization of simply con-
nected domains is usually taken as definition. In that form it also applies to
arbitrary topological spaces. - The above definition Def. 6.21 is less intuitive,
but sometimes it is easier to handle, e.g. the proof of Rem. 6.22.3 becomes
quite easy then.

We conclude this section by looking at some nonsimply connected do-
mains, namely annuli

A%,r(a) := {z ∈ C; % < |z − a| < r}

with inner radiur % and outer radius r, where 0 ≤ % < r ≤ ∞.

Proposition 6.25. Let % < s < r. A locally integrable differential form
ω ∈ D(A%,r(a)) is integrable if and only if∫

∂Ds(a)

ω = 0.

Proof. ”=⇒”: Obvious.
”⇐=”: We may assume a = 0. The dissected annulus

A∗ := A%,r(0) \ (−r,−%)
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is simply connected: To see that one can note that the restricted exponential

exp : (ln %, ln r) + i(−π, π) −→ A∗

is a homeomorphism (a bijective map, continuous in both directions) from
a rectangle to our dissected annulus, and simple connectedness is preserved
under such maps - use the third characterization of simply connected domains
in Th.6.23. Alternatively we may decompose A∗ into starshaped segements:
For n ∈ N let

An := (%, r) exp

(
πi(− 1

n
,

1

n
)

)
.

If cos(π
n
)r > %, then An is starshaped with respect to z0 := % cos−1(π

n
) and

A∗ =
n−1⋃

ν=−n+1

exp

(
πiν

n

)
An

is the union of such segments, such that the intersection of one of them with
the union of the previous ones is connected.

So on both A∗ and −A∗ there is a primitive function F resp. F̃ of ω.
Since

A∗ ∩ (−A∗) = A+ ∪ A−
with the connected sets A+ = {z ∈ A%,r(0); Im(z) > 0}, A− := −A+, we have
(F − F̃ )|A± ≡ c±. Thus integrating separately over the right and the left half
arc of ∂Ds(0) we obtain:

0 =

∫
∂Ds(0)

ω = F

(
i

s

)
− F

(
− i
s

)
+ F̃

(
− i
s

)
− F̃

(
i

s

)
= c+ − c−.

So F may be extended to a function O(A%,r(0)) by defining it on −A∗ as
F̃ + c with c := c+ = c−.

7 The Cauchy formula

As an immediate consequence of the previous section let us note:

Theorem 7.1 (Cauchy’s integral theorem). Let G ⊂ C be a simply
connected domain. Then for f ∈ O(G) we have∫

λ

f(z)dz = 0

for every piecewise smooth loop λ in G.
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Proof. The differential form ω = fdz is locally integrable, since f ∈ O(G),
and G being simply connected it has a primitive function F (which is itself
holomorphic) and thus the integral of ω = dF over any piecewise smooth
loop vanishes.

If we cannot guarantee that an integral of the above form vanishes, it
often will be useful to have an estimate instead:

Proposition 7.2. Let f ∈ C(G) and γ be a piecewise smooth path in G.
Then we have ∣∣∣∣∫

γ

f(z)dz

∣∣∣∣ ≤ ||f ||γ · L(γ).

Here
||f ||γ := max{|f(z)|; z ∈ |γ|}

denotes the maximum of |f | along the trace of γ.

Proof. We may assume that γ is smooth, say γ : [a, b] −→ G. For a complex
valued, continuous function g : [a, b] −→ C we have∣∣∣∣∫ b

a

g(t)dt

∣∣∣∣ ≤ ∫ b

a

|g(t)|dt,

since ∣∣∣∣∣
s∑
i=1

g(ti)(ti − ti−1)

∣∣∣∣∣ ≤
s∑
i=1

|g(ti)| · (ti − ti−1),

where t0 = a < t1 < ... < ts = b, and, with shrinking interval lengths ti−ti−1,
the sum on the right hand side converges to the corresponding integral, and
the same is true for the left hand side.

Now ∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ =

∣∣∣∣∫ b

a

f(z)γ̇(t)dt

∣∣∣∣ ≤ ∫ b

a

|f(z)γ̇(t)|dt

≤ ||f ||γ
∫ b

a

|γ̇(t)|dt = ||f ||γ · L(γ).

The next theorem is behind a lot of nice results about holomorphic func-
tions:
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Theorem 7.3 (Cauchy’s integral formula). Let G be a domain and f ∈
O(G), furthermore D an open disc with D ⊂ G. Then we have for any point
a ∈ D (a need not be the center!):

f(a) =
1

2πi

∫
∂D

f(z)dz

z − a
.

So the values of a holomorphic function on D are already determined by its
values on the boundary circle ∂D.

Proof. Since f is C-differentiable at a ∈ G, we have

ω :=
f(z)− f(a)

z − a
dz ∈ D(G).

Since f(z)−f(a)
z−a ∈ O(G \ {a}), the differential form ω is locally integrable

in G \ {a}, hence locally integrable in G according to Prop. 6.15. Since
D = Dr(z0) satisfies D ⊂ G, we have even D%(z0) ⊂ G for some % > r and
thus ω = dF on D%(z0) resp.

∫
∂D
ω = 0. Consequently

1

2πi

∫
∂D

f(z)dz

z − a
=

1

2πi

∫
∂D

f(a)dz

z − a
= f(a)

according to Example 1.

With the traditional choice of letters the Cauchy formula reads

f(z) =
1

2πi

∫
∂D

f(ζ)dζ

ζ − z
,

where z ∈ D is arbitrary. The letter z suggesting a variable we obtain:

Theorem 7.4 (Generalized Cauchy’s integral formula). A holomorphic
function has complex derivatives of every order, indeed for z ∈ D ⊂ G we
have

f (n)(z) =
n!

2πi

∫
∂D

f(ζ)dζ

(ζ − z)(n+1)
.

Proof. We use induction on n ∈ N. For n = 0 nothing has to be shown. Now
assume f has partial derivatives up to order n and the generalized Cauchy
formula holds for n. We shall use
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Remark 7.5. Let γ be a smooth path and

K : D × |γ| −→ C, (z, ζ) 7→ K(z, ζ),

be a continuous function, R-differentiable with respect to z and its partial
derivatives

∂K

∂z
,
∂K

∂z
: D × |γ| −→ C

being continuous as well. Then the function

D −→ C, z 7→
∫
γ

K(z, ζ)dζ

is R-differentiable and

∂

∂z

(∫
γ

K(z, ζ)dζ

)
=

∫
γ

∂K

∂z
(z, ζ)dζ.

as well as
∂

∂z

(∫
γ

K(z, ζ)dζ

)
=

∫
γ

∂K

∂z
(z, ζ)dζ.

Taking γ = ∂D and

K(z, ζ) :=
f(ζ)

(ζ − z)n+1

with
∂K

∂z
(z, ζ) = n

f(ζ)

(ζ − z)(n+2)

we obtain with Rem. 7.5 the case n+ 1.

We can do even better:

Theorem 7.6. Let f ∈ O(G) and Dr(z0) ⊂ G be an open disc. Then the
Taylor series of f represents f on Dr(z0), i.e.:

f(z) =
∞∑
n=0

an(z − z0)n, where an = f (n)(z0)/n!,

for all z ∈ Dr(z0), the right hand side converging uniformly on every closed
disc D%(z0), % < r.
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A function (of one or several real or complex) variables is called (real
or complex) analytic if near any point of its domain of definition it can be
written as a power series. So Th. 7.6 tells us that holomorphic functions are
complex analytic functions.

Proof. We may assume that Dr(z0) ⊂ G. We write

1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

=
1

ζ − z0

1

1− z−z0
ζ−z0

=
1

ζ − z0

∞∑
n=0

(
z − z0

ζ − z0

)n
.

Note that, for |z − z0| ≤ %, ζ ∈ ∂Dr(z0), we have∣∣∣∣z − z0

ζ − z0

∣∣∣∣ ≤ %

r
< 1,

so the geometric series converges uniformly on D% × ∂Dr(z0). So we may
interchange summation and integration and obtain

f(z) =
∞∑
n=0

1

2πi

∫
∂Dr(z0)

f(ζ)dζ

(ζ − z0)n+1
· (z − z0)n.

Corollary 7.7 (Weak Identity Theorem for holomorphic functions).
Let f, g ∈ O(G) be holomorphic functions on the domain G. If f |D = g|D for
some open disc D ⊂ G, then already f = g. Or, equivalently, the restriction
map

O(G) −→ O(D), f 7→ f |D
is injective for every open disc D ⊂ G.

Proof. We may assume g ≡ 0. So let f |D ≡ 0. Then the nonempty set

U := {z ∈ G;∃ r > 0 : f |Dr(z) ≡ 0}

is obviously open, but

V := {z ∈ G;∃ n ∈ N : f (n)(z) 6= 0}

is as well, and G = U ∪V , since a point, where all derivatives vanish, belongs
to U . Since G is connected and U non-empty, we conclude U = G.
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Remark 7.8. Assume (an)n∈N is a sequence of complex numbers such that
the sequence (|an|%n)n∈N is bounded by M > 0. Then the power series

∞∑
n=0

an(z − z0)n

converges uniformly on every closed disc Ds(z0) with s < %, since there we
have

|an(z − z0)n| ≤ Rn := M

(
s

%

)n
with

∑
nRn < ∞ (geometric series). In particular it defines a continuous

function f : D%(z0) −→ C. As a consequence we see that a complex analytic
function is holomorphic: The function

f(z)− f(z0)

z − z0

=
∞∑
n=1

an(z − z0)n−1

is continuous at z0. But even better: The above power series defines a
function f ∈ O(D%(z0)), as we shall see in the next section.

Corollary 7.9. Assume D%(z0) ⊂ G. For the coefficients an of the Taylor
series of f ∈ O(G) at z0 ∈ G we have

an =
1

2πi

∫
∂D%(z0)

f(ζ)dζ

(ζ − z0)n+1
,

in particular

|an| ≤
M(f ; %, z0)

%n

where M(f ; %, z0) := max{|f(ζ)|; |ζ − z0| = %}.

Proof. Th. 7.4 with z = z0 and Prop. 7.2 with L(∂D%(z0)) = 2π%.
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8 Basic properties of holomorphic functions

In this section we present the most important consequences of Cauchy’s in-
tegral formula resp. the fact that holomorphic functions are analytic.

Definition 8.1. By an entire function one means a holomorphic function
f ∈ O(C).

Theorem 8.2 (Liouville). A bounded entire function f ∈ O(C) is constant.

Proof. We have

f(z) =
∞∑
n=0

anz
n

for all z ∈ C, the coefficients an satisfying the estimate

|an| ≤
M(f ; r, 0)

rn
≤ M

rn
,

where M > 0 is an upper bound for f , i.e. |f(z)| ≤ M for all z ∈ C. Since
the right hand side holds for any r > 0, we conclude an = 0 for n > 0.

Theorem 8.3 (Fundamental Theorem of Algebra). Every complex polyno-
mial

f(z) =
n∑
ν=0

aνz
ν

of degree n can be factorized as a product of n linear factors:

f(z) = an

n∏
ν=1

(z − bν).

Note that the zeros bν need not be pairwise distinct!

Proof. We do induction on n, the case n = 1 being trivial. Clearly we may
assume an = 1. If f has no zero, the function g(z) := 1/f(z) is a bounded
entire function: Since g as a continuous function is bounded on every disc
Dr(0), it suffices to show that |f(z)| ≥ R > 0 in case |z| > r for a suitable
r > 0. Indeed,

|f(z)| =

∣∣∣∣∣zn(1 +
n∑
ν=1

an−ν
zν

)

∣∣∣∣∣ = |zn|

∣∣∣∣∣1 +
n∑
ν=1

an−ν
zν

∣∣∣∣∣
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≥ |zn|(1−

∣∣∣∣∣
n∑
ν=1

an−ν
zν

∣∣∣∣∣) ≥ |z|n(1−
n∑
ν=1

|an−ν |
|zν |

)

= |z|n(1−
n∑
ν=1

|an−ν |
|z|ν

) ≥ |z|n(1−
n∑
ν=1

|an−ν |
|z|

) ≥ |z|
n

2
,

if |z| ≥ r := max(1, 2
∑n

ν=1 |an−ν |).
Now Th. 8.2 says that the bounded entire function g and thus as well f

is constant, a contradiction.
So, there is a zero z0 ∈ C. Then let us write

f(z) = f((z−z0)+z0) =
n∑
ν=1

cν(z−z0)ν = (z−z0)·
n∑
ν=1

cν(z−z0)ν−1 = (z−z0)h(z)

and apply the induction hypothesis to the polynomial h(z).

Corollary 8.4. Every real polynomial

f(z) =
n∑
ν=0

aνz
ν

of degree n can be factorized as a product of monic linear or quadratic poly-
nomials:

f(z) = an

r∏
ν=1

fν(z),

with the quadratic polynomials having no real zeros.

Proof. We do induction on n = deg f . For n = 1 everything is clear. For n >
1 take z0 ∈ C with f(z0) = 0. If z0 ∈ R, wee may write f(z) = (z − z0)g(z)
with a polynomial g with real coefficients; otherwise z0 is an other zero of
f and f(z) = q(z)g(z) with q(z) = (z − z0)(z − z0) = z2 − 2Re(z0)z + |z0|2
and a polynomial g(z) with real coefficients. Finally apply the induction
hypothesis to g(z).

For algebraically minded readers we remark:

Theorem 8.5. 1. Let K ⊃ C be a field the arithmetic operations of which
extend the addition and multiplication of complex numbers. If then K,
as a complex vector space, has finite dimension, then K = C.
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2. Let K % R be a field the arithmetic operations of which extend the
addition and multiplication of real numbers. If then K, as a real vector
space, has finite dimension, then K = R + Ri with an element i ∈ K,
such that i2 = −1.

Proof. 1.) Take an element c ∈ K. Since dimK <∞, the powers cν , ν ∈ N,
are not linearly independent. So there is a nontrivial relation

n∑
ν=0

aνc
ν = 0

with complex coefficients aν ∈ C. Of course we may assume an = 1. But,
according to the fundamental theorem of algebra:

f(z) :=
n∑
ν=0

aνz
ν =

n∏
ν=1

(z − bν).

The above identity holds for all z ∈ C and thus may be understood as an
identity for the coefficients of the polynomials on the right and left hand side
(when writing the RHS as a linear combination of powers of the variable z),
hence holds even for all z ∈ K. Taking z = c we obtain

0 = f(c) =
n∏
ν=1

(c− bν).

Since K as a field does not contain zero divisors we obtain that c = bν ∈ C
for some ν.
2.) Take c ∈ K \ R. As in the first part we see that f(c) = 0 for some real
polynomial f(z). Now by Cor.8.4 we see, that we may assume that f is a
quadratic polynomial without real zeros. We leave it to the reader to check
that there is an element i ∈ R + Rc with i2 = −1. Using the first part we
conclude that K = R + Ri.

Th. 8.3 may also be formulated by saying that

f(C) = C

holds for polynomial functions of degree > 0. For transcendent functions
(=entire nonpolynomial functions) that is not true any longer, since

exp(C) = C∗.

But we can prove
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Theorem 8.6 (Weak Casorati-Weierstraß). For any entire function f ∈
O(C) \ C we have

f(C) = C,
i.e. given any point w0 ∈ C there are points of the form f(z), z ∈ C, arbi-
trarily close to w0. With other words

f(C) ∩D 6= ∅

for every open disc D ⊂ C.

Proof. Assume Dr(z0) ∩ f(C) = ∅. Then

g(z) :=
1

f(z)− w0

is a bounded entire function: |g(z)| ≤ 1/r. Hence g as well as f are constant
functions.

But much more is true, the exponential function is more or less typical.
We state without proof:

Theorem 8.7 (Weak theorem of Picard). For a non-constant entire function
f ∈ O(C) we have

f(C) = C
or

f(C) = C \ {a}
with some a ∈ C.

Let us now come to the local behaviour of holomorphic functions. It is
completely determined by the following invariant:

Definition 8.8. The multiplicity of a holomorphic function f ∈ O(G) \C at
z0 ∈ G is the number n ∈ N>0, such that

f(z) = a0 + (z − z0)nh(z), h(z0) 6= 0

with a holomorphic function h ∈ O(G), or equivalently

f(z) = a0 +
∞∑
ν=n

aν(z − z0)ν , an 6= 0,

near z0 ∈ G.
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Note that f ∈ O(G)\C implies, according to Th.7.7, that f |D 6∈ C for all
discs D ⊂ C. Hence the multiplicity is well defined for every point z0 ∈ G.

Lemma 8.9. The zeros of a holomorphic function f ∈ O(G), f 6≡ 0, are
isolated, i.e. given any zero z0 ∈ G of f , there is an open disc D = Dr(z0) ⊂
G, such that f has no zeros on the punctured disc D∗ := D \ {z0}.

Proof. We use the notation of Def.8.8. We have a0 = 0, and the function
h ∈ O(G) is continuous, hence h(z) 6= 0 on some disc Dr(z0) and thus
f(z) = (z − z0)nh(z) 6= 0 for z ∈ Dr(z0)∗.

Theorem 8.10 (Identity theorem). Let A ⊂ G be a subset with a point
z0 of accumulation within G and f, g ∈ O(G). If f |A = g|A, then f = g.

Proof. The zeros of the function f − g ∈ O(G) are not isolated, since by
continuity, f(z0) − g(z0) = 0. As a consequence of the previous lemma we
have f − g ≡ 0.

In order to understand the local mapping properties of a holomorphic
function we rewrite the presentation given in Def.8.8:

Theorem 8.11. Let f : G −→ C be a holomorphic function of multiplic-
ity n at z0 ∈ G. Then there is an open disc D = Dr(z0) together with a
holomorphic function g ∈ O(D) with g(z0) = 0, g′(z0) 6= 0, such that

f(z) = a0 + g(z)n.

Proof. Write f(z) − a0 = (z − z0)nh(z). Choose g(z) := (z − z0) n
√
h(z).

Here n
√
z := exp(log(z)/n) with some branch of the logarithm log : V −→ C

defined on a neighbourhood V of h(z0) 6= 0. Finally choose Dr(z0) ⊂ G with
h(Dr(z0)) ⊂ V .

Definition 8.12. A bijective map f : G −→ G′ between domains G,G′ is
called biholomorphic if both f and f−1 are holomorphic.

Here is a geometric reformulation of Th.8.11:

Theorem 8.13. Let f : G −→ C be a holomorphic function, z0 ∈ G a point,
where f is of multiplicity n. Then there is an open neighbourhood U ⊂ G of
z0 ∈ G, such that there is a factorization

f |U = pn ◦ g : U
g−→ D%(0)

pn−→ Dr(w0),

where w0 := f(z0), g is biholomorphic, r = %n and pn(ζ) = w0 + ζn.
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In particular, a bijective holomorphic map is biholomorphic.

Proof. We use the notation of Th.8.11. We have g′(z0) 6= 0. Since the
Jacobian of g at z0 has determinant |g′(z0)|2 6= 0, the inverse function theorem
tells us, that there is an open neighbourhood U0 of z0, such that g(U0) is open
and g|U0 : U0 −→ g(U0) is bijective with an R-differentiable inverse g(U0) −→
U0. Indeed, it is even holomorphic, as is easily checked, hence biholomorphic.
Now take % > 0 with D%(0) ⊂ g(U0) and U := (g|U0)

−1(D%(0)).

Corollary 8.14 (Open mapping theorem). A non-constant holomorphic
function f : G −→ C on a domain G is an open map, i.e. the image f(U)
of an open set U ⊂ G is again open.

Proof. Since we may replace f with f |U , it suffices to show the f(G) is open.
And that is an immediate consequence of Th.8.13: Take w0 = f(z0) ∈ f(G).
As a nonconstant holomorphic function f has finite multiplicity at z0 and
thus, with the notation of Th.8.13, Dr(w0) ⊂ f(G).

Corollary 8.15 (Maximum principle). Let G be a domain and f ∈ O(G).
If there is a point z0 ∈ G with |f(z0)| ≥ |f(z)| for all z ∈ G, then f ≡ f(z0).
With other words: A non-constant holomorphic function on a domain does
not attain its maximum.

Proof. Since f(G) ⊂ C is open, for any point w0 = f(z0) ∈ f(G) there is
an open disc Dr(w0) ⊂ f(G), in particular w = (1 + ε)w0 ∈ f(G) for any
sufficiently small ε > 0, and thus |f(z0)| < |f(z)|, if w = f(z).

Another fundamental property of the class of all holomorphic functions
is that it is stable under locally uniform limits:

Definition 8.16. A sequence of functions fn ∈ C(G) is said to converge
locally uniformly to f ∈ C(G), if every point z0 ∈ G is the center of an open
disc D = Dr(z0) ⊂ G, such that the restricted functions fn|D converge uni-
formly to f |D. Or equivalently, if for any compact set K ⊂ G the restrictions
fn|K converge uniformly to f |K .

Example 8.17. Assume (an)n∈N is a sequence of complex numbers such that
the sequence (|an|%n)n∈N is bounded. Then the power series

∞∑
n=0

an(z − z0)n
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converges locally uniformly on the open disc D%(z0). Hence, by the next
result, it defines a holomorphic function f ∈ O(D%(z0)).

Proposition 8.18. Assume the sequence of functions (fn)n∈N ⊂ O(G) con-
verges locally uniformly to the function f : G −→ C. Then

1. f ∈ O(G) and

2. for all k ∈ N the sepuence (f
(k)
n )n∈N of k-th derivatives converges locally

uniformly to f (k).

Note that a locally uniform limit of real analytic functions need not be a
real analytic function. Indeed, every continuous function on R is the locally
uniform limit of polynomials! Second: The sequence of real analytic functions
fn(x) = 1

n
sin(nx) converges even uniformly to 0, but their derivatives do not

converge locally uniformly to 0.
On the other hand, in Prop.8.18 we can not replace locally uniform con-

vergence by pointwise convergence: The pointwise limit of holomorphic func-
tions need not even be continuous, but examples for that phenomenon are
not that easy at hand, cf. Ex.8.21.

Proof. We show that f |D ∈ O(D) for every open disc with D ⊂ G. Indeed
fn converges uniformly on D to f |D ∈ C(D). Hence

f(z) = lim
n→∞

fn(z) = lim
n→∞

1

2πi

∫
∂D

fn(ζ)dζ

ζ − z
=

1

2πi

∫
∂D

f(ζ)dζ

ζ − z
,

since (fn) converges uniformly to f on γ := ∂D, cf. the below lemma 8.20.
Finally use Rem. 7.5.

In order to see that the f
(k)
n converge uniformly on D = Dr(z0) to f (k)

we use the generalized Cauchy formula

h(k)(z) =
k!

2πi

∫
∂Dr+ε(z0)

h(ζ)dζ

(ζ − z)k+1

for h = fn − f and obtain the estimate

||f (k)
n − f (k)||D ≤

k!||fn − f ||∂Dr+ε(z0)

εk+1
· (r + ε).
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Remark 8.19. In the above proof we have only used, that the sequence
(fn)n∈N converges uniformly on the boundary circle ∂D: Indeed, if a sequence
of functions fn ∈ O(G) converges uniformly on ∂D to a function f ∈ C(∂D),
then they converge as well on D uniformly to a continuous function f̂ ∈
C(D) ∩ O(D) extending f . This is due to the fact that

||fn − fm||D = ||fn − fm||∂D

as a consequence of the maximum principle.

Lemma 8.20. Let γ be a piecewise smooth path. If the continuous functions
fn : |γ| −→ C converge uniformly to the function f : |γ| −→ C, then

lim
n→∞

∫
γ

fn(z)dz =

∫
γ

f(z)dz.

Proof. We have∣∣∣∣∫
γ

fn(z)dz −
∫
γ

f(z)dz

∣∣∣∣ =

∣∣∣∣∫
γ

(fn(z)− f(z))dz

∣∣∣∣ ≤ ||fn − f ||γ · L(γ).

We conclude this section with an example of a pointwise convergent se-
quence of holomorphic functions with a non-continuous limit function:

Example 8.21. We start with an increasing sequence of compact sets Kn

exhausting the complex plane C, while their interiors only yield the plane
without the real line, i.e.

⋃∞
n=1 K̊n = C \ R. Let

Kn := K+
n ∪K−n

with
K+
n := Dn(0) ∩ (R + iR≥1/n).

and
K−n := Dn(0) ∩ (R + iR≤0).

Now the function f : C −→ C with

f(z) =

{
0 , if Im(z) > 0
1 , if Im(z) ≤ 0
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is holomorphic in a suitable neighbourhood Un ⊃ Kn for every n ∈ N≥1,
and Runge’s theorem Th.10.1 provides a polynomial pn : C −→ C with
||f − pn||Kn < 1

n
. Then the sequence (pn)n≥1 converges pointwise to the non-

continuous function f . We remark that the behaviour of the sequence (pn)n≥1

near points on the real line becomes more and more ”chaotic”, necessarily
we have

||pn||K →∞
for any compact set K having an interior point on the real line.

9 Laurent series and residues

One of the most impressive applications of complex analysis is the help it
provides in computing certain real integrals. Indeed, they are reduced to
complex loop integrals ∫

λ

f(z)dz

for loops λ in the domain G of holomorphy of the function f .
First of all, the integral does not change, if we replace λ with a loop λ̃

homotopic to λ in G.

Definition 9.1. Two continuous loops λ, λ̃ : [a, b] −→ G are called homo-
topic in G, if there is a continuous map

H : [a, b]× I −→ G

with H(t, 0) = λ(t), H(t, 1) = λ̃(t) and H(a, s) = H(b, s) for all s ∈ I :=
[0, 1].

Remark 9.2. For a locally integrable differential form ω ∈ D(G) we may
define ∫

γ

ω

for any path γ : [a, b] −→ G as follows: Let tν := a+ ν b−a
n
, ν = 0, ..., n.

Then, for n� 0 the images γ([tν−1, tν ]) are contained in open sets, where
ω admits a primitive function Fν , ν = 1, ..., n. Then we set∫

γ

ω :=
n∑
ν=1

Fν(γ(tν))− Fν(γ(tν−1)).
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We leave it to the reader to check that the given definition does not depend
on n ∈ N.

Proposition 9.3. Let λ, λ̃ be loops in G. If they are homotopic in G, then∫
λ̃

ω =

∫
λ

ω

for any locally integrable differential form ω ∈ D(G).

Proof. Denote H : R := [a, b] × I −→ G a homotopy between the loops λ
and λ̃. Let R =

⋃
1≤i,j≤nRij be the decomposition of R into n2 congruent

rectangles of size 1
n

the size of R. For sufficiently big n ∈ N we have∫
λ

ω −
∫
λ̃

ω =

∫
H(∂R)

ω =
∑
i,j

∫
H(∂Rij)

ω = 0,

since the ”vertical edges” H(b × [0, 1]) and H(a × [1, 0]) of the ”rectangle”
H(∂R) are inverse one to the other and for n� 0 any ”rectangle” H(∂Rij)
is contained in an open set, where ω admits a primitive function.

Definition 9.4. A cycle λ in a domain G is a finite sequence of piecewise
smooth loops λ1, ..., λs in G. It is called nullhomologous in G if and only if∫

λ

ω :=
s∑
j=1

∫
λj

ω = 0

holds for all locally integrable differential forms ω ∈ D(G).

Remark 9.5. Loops are considered to be cycles of length s = 1.

Example 9.6. 1. A loop λ, such that |λ| ⊂ G0 ⊂ G with a simply con-
nected domain G0 is nullhomologous in G.

2. A cycle λ = (λ̃, λ−1) with (inG) homotopic loops λ̃, λ is nullhomologous
in G.

3. Let G = C\{± i
2
}, D := D1(0) and λ+ resp. λ− the loops consisting of

the upper resp. lower half circle (in counterclockwise orientation) and
[−1, 1] resp. [1,−1]. Then∫

∂D

ω =

∫
λ+

ω +

∫
λ−

ω
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holds for any differential form ω ∈ D(G) (not only locally integrable
ones). Thus

(∂D, λ−1
+ , λ−1

− )

is nullhomologous in G.

The framework in which we consider loop integrals is the following:

1. A domain G ⊂ C is given as well as

2. a function f ∈ O(G \ S), where S = Sf ⊂ G is a finite set, and

3. a piecewise smooth loop λ in G \ S nullhomologous in G.

We shall see that the integral over a loop nullhomologous in G is deter-
mined by local contributions arising from the points in S = Sf . First of all
we have to take into account how many times the loop λ winds around a
point a ∈ S.

Definition 9.7. Let λ be a cycle in C, a ∈ C \ |λ|. Then

indλ(a) :=
1

2πi

∫
λ

dz

z − a
∈ Z

is called the index of a with respect to the cycle λ or the winding number of
λ with respect to a.

The index indλ(a) is an integer: If γ : I −→ C is a smooth path with
a 6∈ |γ|, the function

I −→ C, t 7→ 1

2πi

1

γ(t)− a
has a primitive function F : I −→ C satisfying e2πiF (t) = γ(t) − a. Now if
λ = (γ1, ..., γr) with γj : Ij = [aj, bj] −→ C, we may choose Fj : Ij −→ C
such that Fj+1(aj+1) = Fj(bj) for j = 1, ..., r − 1. Then we have

indλ(a) = Fr(br)− F1(a1), e2πiFr(br) = e2πiF1(a1),

whence the result follows. The generalization from loops to cycles is imme-
diate.

We shall need a global version of Cauchy’s integral formula:

51



Theorem 9.8. Let λ be a nullhomologous cycle in G. Then for a holo-
morphic function f ∈ O(G) and a ∈ G \ |λ| the following Cauchy formula
holds

1

2πi

∫
λ

f(ζ)dζ

ζ − a
= indλ(a) · f(a).

Proof. The differential form

ω :=
f(ζ)− f(a)

ζ − a
dζ ∈ D(G)

is locally integrable, hence
∫
λ
ω = 0 and thus∫

λ

f(ζ)dζ

ζ − a
= f(a)

∫
λ

dζ

ζ − a
= 2πi · indλ(a)f(a).

The local contributions from points a ∈ S are called residues:

Definition 9.9. Let a ∈ C. The residue of a holomorphic function f ∈
O(Dr(a)∗) at a is defined as

Resa(f) :=
1

2πi

∫
∂D%(a)

f(z)dz,

where 0 < % < r. Note that the right hand side does not depend on % > 0
because of Ex.9.6.2: The loops ∂D%(a) and ∂D%′(a) with 0 < %, %′ < r are
homotopic in Dr(a)∗.

Remark 9.10. If f ∈ O(Dr(a)∗) admits a continuous extension to Dr(a),
then we have

Resa(f) = 0

as a consequence of Prop. 6.15 applied to the differential form ω = f(z)dz.

Theorem 9.11 (Residue Theorem). Let λ be a nullhomologous loop in
G, S ⊂ G \ |λ| a finite set and f ∈ O(G \ S). Then∫

λ

f(z)dz = 2πi
∑
a∈S

indλ(a) · Resa(f).
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Proof. The key point in the proof of Th.9.11 is a ”generalized partial fraction
decomposition”: We write

f(z) = g(z) + h(z) +
∑
a∈S

ca
z − a

,

where

1. g ∈ O(G) and

2. h ∈ O(C \ S) is the derivative of a function H ∈ O(C \ S),

3. ca = Resa(f) for a ∈ S.

If G = C and f(z) = p(z)
q(z)

is a rational function and S denotes the set of zeros

of the polynomial q(z), then g(z) is the polynomial part of the partial fraction
decomposition of f and h(z) the sum of all singular terms of multiplicity > 1.

Given the decomposition we obtain the residue formula as follows: For
sufficiently small ε > 0 integration over Dε(a) yields ca = Resa(f), while
integration over λ gives the desired formula: We have

∫
λ
g(z)dz = 0, since λ

is nullhomologous in G and
∫
λ
h(z)dz = 0 because of hdz = dH.

First we derive the above decomposition in the case where G = Dr(a)
and S = {a}, thereby obtaining a new interpretation of the residue Resa(f).

Indeed the situation we consider is slightly more general. Denote

A%,r(a) := {z ∈ C; % < |z − a| < r}, 0 ≤ % < r ≤ ∞.

the annulus with center a, inner radius % and outer radius r.

Theorem 9.12. Given a function f ∈ O(A%,r(a)) there are unique functions
f+ ∈ O(Dr(0)) and f− ∈ O(D%−1(0)) (where ”0−1 = ∞” and D∞(0) = C)
with f−(0) = 0, such that

f(z) = f+(z − a) + f−

(
1

z − a

)
.

In particular there are complex numbers an, n ∈ Z, such that

f(z) =
∞∑

n=−∞

an(z − a)n :=
∞∑
n=0

an(z − a)n +
∞∑
`=1

a−`(z − a)−`.
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A series of the above type is called a Laurent series, the first part is called
the power series part of the Laurent series, the second one its principal part.
Indeed

an =
1

2πi

∫
∂Ds(a)

f(z)dz

(z − a)n+1
, % < s < r.

Corollary 9.13. Let G ⊂ C be a domain, a ∈ G. If the function f ∈
O(G \ {a}) has the Laurent expansion f(z) =

∑∞
n=−∞ an(z − a)n in Dr(a)∗,

then its residue at a satisfies

Resa(f) = a−1.

Let us first finish the proof of Th.9.11. In the case of G = Dr(a), S = {a},
the decomposition of Th. 9.11 is given by considering Dr(a)∗ = A0,r(a) and
taking

g(z) = f+(z − a), h(z) =
−∞∑
n=−2

an(z − a)n, ca = a−1.

Note that g ∈ O(Dr(a)) and h ∈ O(C \ {a}). In the general case of Th.9.11
let ca := Resa(f) for a ∈ S and denote ha(z) the principal part of the Laurent
series of f in some annulus A0,r(a) minus ca/(z − a). Then we set

h(z) :=
∑
a∈S

ha(z), g(z) := f(z)− h(z)−
∑
a∈S

ca
z − a

.

Obviously all the ha are derivatives and thus h as well. This finishes the
proof of Th. 9.11.

Proof of Th.9.12. Fix z ∈ A%,r(a), choose ε > 0 with % + ε < |z| < r − ε.
According to Ex.9.6.2 the cycle λ = (∂Dr−ε(a), ∂D%+ε(a)−1) is nullhomolgous
and indλ(z) = 1, hence

f(z) =
1

2πi

∫
λ

f(ζ)dζ

ζ − z
.

Define

f+(z) :=
1

2πi

∫
∂Dr−ε(a)

f(ζ)dζ

ζ − z
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and

f−(z) := − 1

2πi

∫
∂D%+ε(a)

f(ζ)dζ

ζ − z
.

The power series expansion for f+(z) is obtained as in the proof of Th. 7.6,
while for f− we write

− f(ζ)

ζ − z
=

1

z − a
· f(ζ)

1− ζ−a
z−a

=
∞∑
n=0

f(ζ)(ζ − a)n

(z − a)n+1

and integrate with respect to ζ over ∂D%+ε(a). Note that the integrals do
not depend on the choice of ε.

The discussion in the lectures

1. how to compute explicitly a residue Resa(f), and

2. how to relate certain real integrals to loop integrals in the complex
plane,

will be quite close to that one in the text book, pp. 314 - 354; so we don’t
give any comments here.

Instead we discuss briefly isolated singularities of holomorphic functions:

Definition 9.14. Let G ⊂ C be a domain. A point a ∈ C \ G is called an
isolated boundary point of G if Dr(a)∗ ⊂ G for sufficiently small r > 0.

Note that for an isolated boundary point a of G the union Ga := G∪{a}
is a domain as well. There are three essentially different possible behaviours
of functions f ∈ O(G) near an isolated boundary point:

Definition 9.15. Let f ∈ O(G) be a holomorphic function on the domain
G. An isolated boundary point a ∈ C of G is called

1. a removable singularity of f if there is a function f̂ ∈ O(Ga) extending
f .

2. a pole of f if a is not a removable singularity, but there is some n ∈
N>0, auch that the function g(z) = (z − a)nf(z) has at a a removable
singularity.

3. an essential singularity of f otherwise.
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Theorem 9.16. Let f ∈ O(G) be a holomorphic function on the domain G
and a ∈ C an isolated boundary point of G with Dr(a)∗ ⊂ G, write f(z) =∑∞

n=−∞ an(z − a)n. Then the point a is

1. a removable singularity iff f |D%(a)∗ is bounded for some % > 0 iff an = 0
for n < 0,

2. a pole iff limz→a f(z) =∞ iff an = 0 for finitely many, but at least one
n < 0 ,

3. an essential singularity iff f(D%(a)∗) is dense in C for all % < r iff
an 6= 0 for infinitely many n < 0.

Proof. Obviously a is a removable singularity of f if the principal part of its
Laurent series vanishes, and in that case f is bounded near a. On the other
hand, if f is bounded, then (z−a)f(z)dz ∈ D(D%(a)) is integrable on D%(a)∗

resp. D%(a) and thus (z − a)f(z) = F ′(z) with a function F ∈ O(D%(a)).
We must have F ′(a) = 0 — otherwise f would not be bounded near a — and
thus f(z) is holomorphic near a as well.

Second, the principal part f− is a nonzero polynomial in (z − a)−1 iff
(z− a)nf(z) extends to Ga for some n ∈ N. In that case choosing n minimal
yields a−n 6= 0, i.e. f(z) = g(z)/(z − a)n, g(a) 6= 0. Hence limz→a f(z) =
∞. On the other hand, if that is true, we have f(Dε(a)∗) ⊂ C \ D1(0) for
some ε > 0, hence 1/f is a holomorphic function bounded near a, and thus
holomorphic near a. So f itself has at most a pole at a.

Third, assume f− is not a polynomial in (z−a)−1 and f(D%(a)∗)∩Dε(b) =
∅. Then g := 1

b−f is bounded on D%(a)∗, hence holomorphic near a. But then

f = b− 1
g

has at most a pole at a.

The third point of Th.9.16 indicates a quite irregular behaviour of a holo-
morphic function near an essential singularity. We mention without proof
the famous Picard Theorem:

Theorem 9.17. Let a ∈ ∂G be an isolated boundary point of G and an
essential singularity of the function f ∈ O(G). Then for all b ∈ C with
possibly one exception we have

|f−1(b) ∩Dε(a)∗| =∞

for all ε > 0.
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The notion of a rational function, being a quotient of polynomials, has a
natural generalization:

Definition 9.18. Let G be a domain. A meromorphic function on G is a
function f : G −→ Ĉ := C ∪ {∞} such that

1. the set P := f−1(∞) ⊂ G has no points of accumulation in G,

2. f |G\P ∈ O(G \ P ), and

3. the points a ∈ f−1(∞) are poles of f .

We denote
M(G) := {f : G −→ Ĉ meromorphic}

the set of all meromorphic functions on G.

Remark 9.19. Meromorphic functions can be added, multiplied, and, if 6≡ 0,
inverted: Given f, g we define f + g and fg first as holomorphic functions on
G \ (f−1(∞) ∪ g−1(∞)), the points in f−1(∞) ∪ g−1(∞) being either poles
or removable singularities. Accordingly we extend it to G. If f 6≡ 0, its zeros
form a set without accumulation points in G, they become the poles of 1

f
,

while its poles become the zeros of 1
f
. So the set M(G) is a field!

The local behaviour of a meromorphic function f ∈ M(G) \ {0} near a
point a ∈ G is determined by its order:

Definition 9.20. Let f ∈ M(G) \ {0} be a meromorphic function. The
order

orda(f) := ` ∈ Z

of f at a ∈ G is defined as the integer ` such that

f(z) =
∞∑
n=`

an(z − a)n

with a` 6= 0, or equivalently

f(z) = (z − a)`g(z)

with a function g holomorphic near a and g(a) 6= 0.
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So the poles of a meromorphic function are treated as zeros of negative
order. Furthermore for function holomorphic at a ∈ G its multiplicity there
is nothing but orda(f − f(a)).

For a function f ∈ M(G) \ {0}, the meromorphic function f ′

f
is called

the logarithmic derivative of f . It has only simple poles, namely at the zeros
and poles of f .

Proposition 9.21. 1. For f ∈M(G) \ {0} one has

Resa(f
′/f) = orda(f).

2. If G is simply connected, then every function g ∈ M(G) with only
simple poles and integral residues is the logarithmic derivative of some
function f ∈M(G).

Proof. 1) We write

f(z) = (z − a)`h(z), h(a) 6= 0

and apply
(gh)′

gh
=
g′

g
+
h′

h
.

We obtain
f ′

f
=

`

z − a
+
h′

h
,

whence the result, the second term being holomorphic at a.
2) Fix a point z0 ∈ G0 := G\P , where P is the set of poles of the meromorphic
function g. Then for a path γz : [a, b] −→ G0 from z0 to z the integral∫

γz

g(ζ)dζ

depends, as a consequence of the residue theorem, up to an integer multiple
of 2πi only on z0 and z. Thus we may define a function f ∈ O(G0) by

f(z) := exp

(∫
γz

g(ζ)dζ

)
.
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Definition 9.22. A continuous loop λ : [a, b] −→ C is called simple or a
simply closed path or a Jordan curve if λ|[a,b) is injective.

Though intuitive, the following remark is nontrivial:

Remark 9.23. 1. The Jordan curve theorem tells us, that the comple-
ment of the trace of a simple loop λ is the union of two disjoint con-
nected open sets:

C \ |λ| = int(λ) ∪ ext(λ),

called the interior resp.the exterior of λ, where int(λ) is bounded and
ext(λ) is not.

2. We have

indλ|ext(λ) ≡ 0

and either

indλ|int(λ) ≡ 1 or indλ|int(λ) ≡ −1.

In the first case we say that λ is positively oriented.

3. A simple loop λ : [a, b] −→ G is nullhomologous in G iff int(λ) ⊂ G.
The condition is necessary: For a point a ∈ int(λ) \ G the function
f(z) = 1

z−a is holomorphic on G and satisfies
∫
λ
f(z)dz 6= 0. On the

other hand sufficiency follows from Th.10.1 applied to K := |λ|∪int(λ):
Any function f ∈ O(G) is on K the uniform limit of a sequence of
polynomials pn : C −→ C. But

∫
λ
f(z)dz = limn→∞

∫
λ
pn(z)dz =

limn→∞ 0 = 0.

The above remark is mainly of theoretical interest; in actual computations
the statements are easily verified. So we do not comment on the demanding
proof. —

The power function fn ∈M(C) with fn(z) = zn has at 0 a zero of order n
and transforms the simple closed loop λ = ∂Dr(0) into the loop λn := fn ◦ λ
winding around the origin n times:

indfn◦λ(0) = n.

In the next theorem that formula is generalized to meromorphic functions
defined on a neighbourhood of |λ| ∪ int(λ), with no zeros or poles on |λ|.
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Theorem 9.24 (Argument Principle). Let f ∈M(G) and λ be a simple
positively oriented loop in G with int(λ) ⊂ G, such that no poles and no zeros
of f lie on |λ|. Then

indf◦λ(0) =
1

2πi

∫
λ

f ′(z)dz

f(z)
=

∑
a∈int(λ)

orda(f),

i.e. the winding number of the image loop f ◦ λ around the origin equals the
number of the zeros and poles of f inside the loop λ counted with multiplici-
ties.

Proof. Apply Th.9.11 and Prop.9.9.

Theorem 9.25 (Rouché’s Theorem). Let f, h ∈ O(G) and λ be a nullho-
mologous simple loop in G such that no zeros of f lie on |λ|. If |h(z)| < |f(z)|
for z ∈ |λ|, then f and g := f + h have the same number of zeros (counted
with multiplicities) in int(λ).

Proof. The paths f ◦ λ and g ◦ λ are homotopic in C∗ with the homotopy

(t, s) 7→ f(λ(t)) + sh(λ(t)).

Hence

1

2πi

∫
λ

f ′(z)dz

f(z)
= indf◦λ(0) = indg◦λ(0) =

1

2πi

∫
λ

g′(z)dz

g(z)
.

10 Construction of holomorphic and mero-

morphic functions

In this section we discuss briefly two famous theorems dealing with the dis-
tribution of zeros resp. singularities of holomorphic resp. meromorphic func-
tions on a domain G. First we need:

Theorem 10.1 (Theorem of Runge). Let K ⊂ C be a compact set with
connected complement C \K. Then every holomorphic function f : U −→ C
defined on an open neighbourhood U ⊃ K (it need not be connected!) can
on K be uniformly approximated by polynomials: Given ε > 0, there is a
polynomial function p(z) =

∑n
ν=0 aνz

ν with ||f − p||K < ε.
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Remark 10.2. 1. Th.10.1 is trivial if K = Dr(a) is a closed disc. Then
we may take p(z) =

∑n
ν=0 cν(z − a)ν , where f(z) =

∑∞
ν=0 cν(z − a)ν is

the Taylor expansion of f around a and n� 0.

2. A compact set K is called polynomially convex if C \K is connected.
To any compact set K we can associate its polynomially convex hull
K̂: It is defined as

K̂ := C \ E,
where E is the unbounded connected component of C \K. So K̂ is the
union of K and the holes in K, i.e. the bounded connected components
of C \K.

3. By Mergelyan’s theorem we know that Runge’s theorem holds even
for functions f ∈ C(K) ∩ O(K̊), i.e. functions continuous on K and
holomorphic in the interior K̊ of K.

Sketch of proof. First we need that there is a cycle λ in U \ K, such that
indλ(z) = 1 for all z ∈ K. As a consequence

f(z) =
1

2πi

∫
λ

f(ζ)dζ

ζ − z

holds for z ∈ K and thus f |K may be uniformly approximated by functions

r∑
ν=1

cν
aν − z

,

where a1, ..., ar ∈ |λ|. Namely: The above integral is a finite sum of integrals

fγ(z) :=
1

2πi

∫
γ

f(ζ)dζ

ζ − z

over smooth paths γ : [a, b] −→ U \K, and their Riemann sums are functions
on K of the above type and approximate the function fγ uniformly on K.
So

f =
∑
γ

fγ

is as well the uniform limit of linear combinations of degree one Laurent
monomials.
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Now for b ∈ C \K denote
Lb(K)

the set of all functions on K being the uniform limit of polynomials in 1
z−b .

We show that
1

a− z
∈ Lb(K)

holds for all a ∈ C \K, or, equivalently,

La(K) ⊂ Lb(K).

In particular we obtain
f |K ∈ Lb(K).

Now choose a closed disc D := Dr(0) ⊃ K and b 6∈ D. Denote q(z) a
polynomial in 1

z−b with ||f − q||K < ε/2 and take p(z) as the n-th Taylor
polynomial of q around 0. Then ||q − p||D < ε/2 for n � 0 and thus
||f − p||K < ε.

It remains to show that all degree one Laurent monomials 1
a−z with a ∈

C \K belong to Lb(K). We consider the set

Vb :=

{
a ∈ C \K;

1

a− z
∈ Lb(K)

}
.

Since b ∈ Vb, we have Vb 6= ∅. Furthermore

a ∈ Vb =⇒ Dr(a) ⊂ Vb

with r = dist(a,K). As a consequence a path in C \ K starting at b never
leaves Vb, i.e. Vb = C \K.

Indeed let c ∈ Dr(a). Then, for |z − a| > |c− a| we have

1

c− z
= −

∞∑
ν=0

(c− a)ν

(z − a)ν+1
∈ La(K) ⊂ Lb(K),

since the right hand side converges uniformly on C \ D%(0) for any % >
|c− a|.

Theorem 10.3 (Theorem of Mittag-Leffler). Let G ⊂ C be a domain.
Given a sequence (an)n∈N ⊂ G without accumulation point in G and polyno-
mials

pn(z) =
rn∑
k=1

cnk
(z − an)k
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in 1
z−an without constant term, there is a meromorphic function having the

points an as its poles with pn(z) as the principal part of its Laurent series
around the point an ∈ G.

Proof. The general idea is to write

f(z) =
∞∑
n=0

(pn(z) + gn(z)),

where the functions gn ∈ O(G) are chosen in such a way, that the above
sequence converges uniformly on every compact set K: That makes sense,
since there is some nK ∈ N, such that all pn with n ≥ nK are holomorphic
around K. The above sum is the canonical form of f(z) in most of all
cases; nevertheless in the proof we construct a, for technical reasons, slightly
different series.

We sketch the proof for a simply connected domain G. Given a compact
set K ⊂ G we have as well K̂ ⊂ G for its polynomially convex hull K̂, cf.
Rem.10.2. To see that we have to show F ⊂ G for all bounded connected
components F of C \K, cf. Th.6.23. Given such F , we write

C \G = A ∪̇ L

as the disjoint union of the compact set

L := (C \G) ∩ F

and the closed set
A = (C \G) \ L.

Since G is simply connected, it follows L = ∅ and thus F ⊂ G. Using that
remark one easily constructs an exhaustion of G by polynomially convex
compacts sets Kν ⊂ G, where we assume that even Kν ⊂ K̊ν+1. Let

qν(z) :=
∑

an∈Kν+1\Kν

pn(z).

The function qν being holomorphic in a neighbourhood of Kν , Runge’s the-
orem Th.10.1 provides a polynomial hν : C −→ C satisfying

||qν − hν ||Kν < 2−ν .
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Finally set

f(z) =
∞∑
ν=0

(qν(z)− hν(z)).

Example 10.4. 1. Take G = C, an = −n (where n ∈ N) and pn := 1
z+n

.

Then we can choose g0 = 0 and gn(z) = − 1
n

for n ≥ 1, the resulting
function is

f(z) =
1

z
+
∞∑
n=1

(
1

z + n
− 1

n

)
.

2. Take the above example, but replace the indexing set N with Z. We
obtain the function

π cot(πz) =
1

z
+
∑
n∈Z∗

(
1

z + n
− 1

n

)
,

where Z∗ := Z \ {0}.

3. Consider a lattice

Λ = Zω1 + Zω2,

where the complex numbers ω1, ω2 ∈ C are linearly independent over
R. We use Λ itself as indexing set, i.e. aω = ω, take

pω(z) =
1

(z − ω)2

and gω(z) = 1
ω2 . The resulting function

℘(z) =
1

z2
+
∑
ω∈Λ∗

1

(z − ω)2
− 1

ω2
,

where Λ∗ := Λ \ {0}, is called Weierstraß’ ℘-function. It is Λ-periodic,
i.e. satisfies

℘(z + ω) = ℘(z)

for all lattice points ω ∈ Λ.
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Theorem 10.5 (Weierstraß factorization theorem). Let G ⊂ C be a
domain. Given a sequence (an)n∈N ⊂ G without accumulation point in G
and positive integers `n ∈ N>0, there is a holomorphic function, whose zeros
are exactly the points an ∈ G with corresponding zero order ordan(f) = `n.

Proof. For a simply connected domain G we can argue as follows: First
we apply Th.10.3 with pn(z) := `n

z
and obtain a function g ∈ M(G) with

only simple poles and integer residues. Then Prop.9.21.2 provides a function
f ∈ O(G) with g as its logarithmic derivative.

Example 10.6. We are looking for a function, which has simple zeros exactly
at the points in Z≤0. We remember the proof of Prop.9.21.2 and apply the
same strategy with z0 = 0: The summand

pn(z) + gn(z) =
1

z + n
− 1

n

of Ex.10.4.1 is the logarithmic derivative of(
1 +

z

n

)
e−z/n.

Thus the function

f(z) = z
∞∏
n=1

(
1 +

z

n

)
e−z/n

is a solution of our problem. It satisfies the functional equation

zf(z + 1) = e−Cf(z)

with ”Euler’s constant”

C := lim
m→∞

(
m∑
n=1

1

n
− ln(m+ 1)

)
.

Hence the Gamma function

Γ(z) :=
e−Cz

f(z)

satisfies
Γ(z + 1) = zΓ(z)

as well as Γ(0) = 1.
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Corollary 10.7. Every meromorphic function f ∈M(G) can be written f =
g/h as the quotient of holomorphic functions g, h ∈ O(G). With other words:
The field M(G) of meromorphic functions on G is the field of fractions of
the integral domain O(G), i.e.

M(G) = Q(O(G)).

Proof. Let (an)n∈N be the set of poles of f , `n := −ordan(f). Denote h ∈
O(G) a holomorphic function, which has a zero of order `n at an for every
n ∈ N (and, w.l.o.g., no further zeros). Take g := fh.

11 The Dirichlet Problem

Let us start with the following question: Given a function u : G −→ R, when
can we find another function v : G −→ R, such that f = u+ iv : G −→ C is
holomorphic?

Theorem 11.1. Let G ⊂ C be a simply connected domain. Then a real
valued function u ∈ C2(G) is the real part of some holomorphic function
f = u+ iv ∈ O(G) if and only if u is harmonic, i.e.

∆u :=
∂2u

∂x2
+
∂2u

∂y2
= 0.

Before we give the easy proof, we introduce for systematic reasons the
following conjugation operation on differential forms:

Remark 11.2. For a differential form ω ∈ D(G) we define its conjugate
form ω∗ ∈ D(G) by

(ω∗)z(h) := ωz(−ih).

Indeed for
ω = fdx+ gdy = h1dz + h2dz

we find
ω∗ = −gdx+ fdy = i(−h2dz + h1dz).

Proof of Th.11.1. The equation ∆u = 0 means that the differential form

(du)∗ = −∂u
∂y
dx+

∂u

∂x
dy ∈ D1(G)
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is closed. Since G is simply connected that is equivalent to the existence of
a primitive function v ∈ C2(G), i.e. such that

(du)∗ = dv,

the latter equality being nothing but the Cauchy-Riemann equations for f =
u+ iv.

Remark 11.3. We note that

∆u = 4 · ∂
∂z

(
∂u

∂z
) = 4 · ∂

∂z
(
∂u

∂z
).

In particular a real polynomial is harmonic if and only if it does not con-
tain mixed terms zµzν (with both µ, ν > 0). With other words, harmonic
real polynomials are those which can be written f(z) + g(z) with complex
polynomials f, g : C −→ C. Furthermore,

du+ i(du)∗ = 2
∂u

∂z
dz

for a real valued function u : G −→ R.

Here is an example showing what may happen on non simply connected
domains:

Example 11.4. We consider the annulus A%,r(a).

1. The harmonic function ln |z − a| is not the real part of some function
f ∈ O(A%,r(a)). But up to that failure everything is fine:

2. In the annulus A%,r(a) any real valued harmonic function u can be
written

u(z) = c ln |z − a|+ Re(f(z))

with a holomorphic function f ∈ O(A%,r(a)) and a unique c ∈ R. For
the proof we may assume a = 0. Take

c :=
1

2π

∫
∂Ds(0)

(du)∗ ∈ R.

Now we apply Prop.6.25 to the differential form

ω = du+ i(du)∗ − cdz

z
=

(
2
∂u

∂z
− c

z

)
dz
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- it is closed since (du)∗ is - and find a function f ∈ O(A%,r(0)) with

df = ω.

Taking real parts finally yields

dRe(f) = du− cRe

(
dz

z

)
,

and thus, w.l.o.g.,
Re(f(z)) = u− c ln |z|.

Harmonic functions play an important rôle in physics: They can be re-
garded as the potential of a stationary electric field or the temperature in a
steady state-heat flow. In such a situation the following problem occurs in a
natural way:

Dirichlet Problem: Let G ⊂ C be a domain and u0 : ∂G −→ R a continu-
ous function. Find a continuous function u : G −→ R, harmonic in G, such
that

u|∂G = u0 .

In this section we solve the Dirichlet problem on an open disc and then
give some comments on the general case.

We start with an idea originating from the above relationship between
harmonic and holomorphic functions and the Cauchy formula: For a holo-
morphic function f defined on a domain containing the closed disc D the
Cauchy formula

f(z) =
1

2πi

∫
∂D

f(ζ)dζ

ζ − z
describes the values f(z), z ∈ D, in terms of the boundary values f |∂D. Now,
if we could rewrite the right hand side of the Cauchy formula in terms of
u = Re(f) only, we would obtain a good candidate for a solution u : D −→ R
of the Dirichlet problem by applying the revised Cauchy formula to the given
function u0 : ∂D −→ R and then taking u = Re(f). Of course, then it
remains to be shown that for z → w ∈ ∂D one has u(z)→ u0(w).
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We study the above situation for D = Dr(0). In some slightly bigger disc
Dr+ε(0) we have

f(z) =
∞∑
n=0

anz
n.

Now we express the coefficients an, n > 0, in terms of u = Re(f) only, using
the Fourier expansion of the function ϑ 7→ u(reiϑ) which is obtained from
the above power series as follows: In the equation

u(z) = Re(a0) +
1

2

(
∞∑
n=1

anz
n + anz

n

)

we substitute z = reiϑ and obtain the Fourier series

u(reiϑ) = Re(a0) +
1

2

(
∞∑
n=1

anr
neinϑ +

∞∑
n=1

anr
ne−inϑ

)
.

Its coefficients satisfy

Re(a0) =
1

2π

∫ 2π

0

u(reiϑ)dϑ

and

anr
n =

1

π

∫ 2π

0

u(reiϑ)e−inϑdϑ

for n > 0. Substituting this in the Taylor series expansion of f and inter-
changing summation and integration we obtain the desired integral formula:

Theorem 11.5 (Schwarz’ integral formula). Let f = u+ iv ∈ O(G) and
G ⊃ Dr(0). Then for z ∈ D := Dr(0) we have

f(z) = iv(0) +
1

2πi

∫
∂D

u(ζ)
ζ + z

ζ − z
dζ

ζ

= iv(0) +
1

2π

∫ 2π

0

u(reiϑ)
reiϑ + z

reiϑ − z
dϑ.
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Proof. For fixed z ∈ Dr(0) the series

u(reiϑ) + 2
∞∑
n=1

u(reiϑ)
( z

reiϑ

)n
converges uniformly on the interval [0, 2π], thus integration and summation
may be interchanged and we obtain

f(z) =
∞∑
n=0

anz
n = iv(0) + Re(a0) +

∞∑
n=1

anz
n

= iv(0) +
1

2π

∫ 2π

0

u(reiϑ)dϑ+
∞∑
n=1

1

π

∫ 2π

0

u(reiϑ)e−inϑdϑ ·
(z
r

)n
= iv(0) +

1

2π

∫ 2π

0

u(reiϑ)

(
1 + 2

∞∑
n=1

( z

reiϑ

)n)
dϑ

= iv(0) +
1

2π

∫ 2π

0

u(reiϑ)

(
2

1− z
reiϑ

− 1

)
dϑ

= iv(0) +
1

2π

∫ 2π

0

u(reiϑ)
reiϑ + z

reiϑ − z
dϑ.

Finally, taking real parts of both sides we obtain:

Theorem 11.6 (Poisson integral formula). Let u : G −→ R be a har-
monic function, G ⊃ D with D := Dr(0). Then

u(z) =
1

2π

∫ 2π

0

u(reiϑ)
r2 − |z|2

|reiϑ − z|2
dϑ

=
1

2πi

∫
∂D

u(ζ)
r2 − |z|2

|ζ − z|2
dζ

ζ
.

holds for all z ∈ Dr(0).

And here is the solution of the Dirichlet problem on a disc:
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Theorem 11.7. Let D := Dr(0) and u0 : ∂D −→ R be a bounded function,
continuous with, may be, finitely many exceptions. Then there is a unique
bounded harmonic function u : D −→ R, such that

lim
D3z→w

u(z) = u0(w)

for all points w ∈ ∂D, where u0 is continuous. Indeed

u(z) =
1

2π

∫ 2π

0

u0(reiϑ)
r2 − |z|2

|reiϑ − z|2
dϑ

holds for z ∈ D.

Remark 11.8. If u0 is continuous, it is bounded, ∂D being compact. Fur-
thermore the function û : D −→ R with û|D = u, û|∂D = u0 is continuous
and thus bounded as well. So the adjective ”bounded” can be omitted in
that case.

But we need it in case we admit discontinuities: Take u0(reiϑ) = ϑ for
0 ≤ ϑ < 2π. Then, given a bounded solution u : D −→ R another unbounded
solution is u(z) + g(z) with

g(z) :=
|z|2 − 1

|z − 1|2
= Re

(
z + 1

z − 1

)
.

Proof. Uniqueness: Let rn = r−r/n. For fixed z ∈ D the uniformly bounded
functions

[0, 2π] ∈ ϑ 7→ u(rne
iϑ)

r2
n − |z|2

|rneiϑ − z|2

converge almost everywhere to

[0, 2π] ∈ ϑ 7→ u0(reiϑ)
r2 − |z|2

|reiϑ − z|2
.

So, by the Lebesgue dominated convergence theorem we know

u(z) =
1

2π

∫ 2π

0

u(rne
iϑ)

r2
n − |z|2

|rneiϑ − z|2
dϑ→ 1

2π

∫ 2π

0

u0(reiϑ)
r2 − |z|2

|reiϑ − z|2
dϑ.

Existence: The function given by the Poisson formula is harmonic as the real
part of the holomorphic function f given by the Schwarz formula. We have
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to show that D 3 zn → w ∈ ∂D implies u(zn) → u0(w), if u0 is continuous
at w. We consider the sequence of functions

ϕn : ∂D −→ R, ζ 7→ 1

2π

r2 − |zn|2

|ζ − zn|2
.

They form a ”Dirac sequence” with respect to w ∈ ∂D, i.e.

1. ϕn ≥ 0,

2.
∫ 2π

0
ϕn(reiϑ)dϑ = 1 ∀n ∈ N,

3. ϕn → 0 uniformly on ∂D \Dδ(w) for every δ > 0.

The first condition is satisfied because of |zn| < r, and the second one follows
from Poissons formula with u ≡ 1. Finally

ϕn(ζ) ≤ 1

2π

r2 − |zn|2

(δ − |w − zn|)2

for ζ ∈ ∂D \Dδ(w), with the right hand side tending to 0 for n → ∞. We
have used the following estimate for the denominator:

|ζ − zn| = |(ζ − w)− (zn − w)| ≥ |ζ − w| − |zn − w| ≥ δ − |zn − w|.

So we have

u(zn) =

∫
∂D

u0(ζ)ϕn(ζ)
dζ

iζ
.

Now take some ε > 0. Since u0 is continuous at w, there is a δ > 0 such that

|u0(ζ)− u0(w)| < ε

2

for ζ ∈ Dδ(w) ∩ ∂D. Choose n0 ∈ N such that

|ϕn(ζ)| ≤ ε

4||u0||
, ∀ζ ∈ ∂D \Dδ(w)

and n ≥ n0. The second condition for the ϕn implies

u(zn)− u0(w) =

∫ 2π

0

(u0(reiϑ)− u0(w))ϕn(reiϑ)dϑ
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=

(∫
γ1

+

∫
γ2

)
(u0(ζ)− u0(w))ϕn(ζ)

dζ

iζ

with γ1 = ∂D ∩Dδ and γ2 the arc complementary to γ1. Now∣∣∣∣∫
γi

(u0(ζ)− u0(w))ϕn(ζ)
dζ

iζ

∣∣∣∣ ≤ ε

2

for both i = 1 and i = 2. For i = 2 we use

|u0(ζ)− u0(w)| ≤ 2||u0||

and the second condition for the functions ϕn, while for i = 1 the above
estimate |u0(ζ)− u0(w)| < ε

2
and

∫
γ1
ϕn(ζ)dζ

iζ
≤ 1 applies.

After having discussed the Dirichlet problem for harmonic functions on
a disc one might wonder what can be said about the corresponding problem
for holomorphic functions:

Theorem 11.9. Let D := Dr(0). For a continuous function f0 : ∂D −→ C
the following statements are equivalent

1. There is a continuous function f : D −→ C holomorphic in D extend-
ing f0, i.e. f |∂D = f0.

2. We have
∫
∂D
f0(z)zndz = 0 for all n ∈ N.

Proof. ”1) =⇒ 2)”: We have∫
∂D

f0(z)zndz = lim
%→r

∫
∂D%(0)

f(z)zndz = lim
%→r

0 = 0.

”1) =⇒ 2)”: Let f0 = u0 + iv0. We apply Th.11.7 to u0 and v0 and set
f = u+ iv with the solutions u, v of the Dirichlet problem. We have to show
f |D ∈ O(D), or equivalently that

f(z) =
1

2πi

∫
∂D

f0(ζ)dζ

ζ − z

holds for

f(z) =
1

2πi

∫
∂D

f0(ζ)
r2 − |z|2

|ζ − z|2
dζ

ζ
.
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For ζ ∈ ∂D we find

r2 − |z|2

|ζ − z|2ζ
− 1

ζ − z
=

z

r2 − zζ
=

z

r2

∞∑
n=0

(
zζ

r2

)n
,

the last series converging uniformly on ∂D because of |z| < r. Thus the
difference between the above integrals is

z

r2

∫
∂D

f(ζ)

(
∞∑
n=0

(
zζ

r2

)n)
dζ =

z

r2

∞∑
n=0

zn

r2n

∫
∂D

f(ζ)ζndζ = 0.

We conclude this section by giving some comments on the general case.
First of all we note

Remark 11.10. 1. A harmonic function, being locally the real part of a
complex analytic function, is a real analytic function.

2. Harmonic functions on a domain G, being real analytic functions, sat-
isfy the weak identity theorem Th. 7.7. In particular, such a function
is either constant, or nonconstant on every open disc D ⊂ G.

3. A nonconstant harmonic function u : G −→ R is an open function:
Such a function is locally the composition u = Re◦f of two open maps,
a nonconstant holomorphic function f and the projection Re : C −→ R
on the real line.

4. Let G be a bounded domain. A continuous function u : G −→ R,
harmonic on G, attains its maximum and minimum on ∂G (u|G being
an open map or constant).

5. For u : G −→ R as in the previous point we have: u|∂G ≡ 0 =⇒ u ≡ 0.

In order to formulate a very general sufficient criterion for the solvability
of the Dirichlet problem we extend the notion of a connected set to closed
sets:

Definition 11.11. A closed subset A ⊂ C is called connected if it can not
be written as the disjoint union A = A1∪̇A2 of two nonenpty closed subsets
Ai ⊂ A.
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Remark 11.12. 1. Any interval [a, b] ⊂ R is connected.

2. The trace |γ| of a path γ is connected.

3. A path connected closed set is connected, but in contrast to the case
of open sets, a connected closed set need not be path connected: The
set

A := [−i, i] ∪
{
x+ i sin

(
1

x

)
;x ∈ R>0

}
is connected, but not path connected.

Theorem 11.13. Let G ⊂ C be a bounded domain, such that for every
boundary point a ∈ ∂G there is a compact connected set K ⊂ C\G containing
a as well as points different from a. Then the Dirichlet problem is solvable
on G, i.e. for every continuous function u0 : ∂G −→ R there is a (unique)
continuous function u : G −→ R, harmonic in G, such that

u|∂G = u0 .

Before we give a sketch of the proof let us note:

1. The uniqueness of the solution of the Dirichlet problem follows from
Rem 11.10.5.

2. For a bounded simply connected domain G the complement C \ G is
connected, hence, if G ⊂ D := Dr(0), we could choose K := D \G for
every boundary point a ∈ G.

3. The above sufficient condition on G is not satisfied, if G has isolated
boundary points. And indeed, in that case there are always boundary
values for which the Dirichlet problem is not solvable: If a is an isolated
boundary point of G, we may write ∂G = {a}∪̇A with the closed set
A := ∂G \ {a}, and there is no u : G −→ R, harmonic in G, with
u(a) = 1, u|A ≡ 0. That is a consequence of the below proposition and
the maximum principle applied to G0 := G ∪ {a} (with ∂G0 = A).

Proposition 11.14. Let D := Dr(a). A continuous function u : D −→ R,
harmonic on D∗ := D \ {a}, is harmonic on D.
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Proof. According to Rem.11.4 we can write

u(z) = c ln |z − a|+ Re(f(z))

with a function f ∈ O(D∗) and c ∈ R. We have to show that a is a removable
singularity of f , whence even c = 0, and we are done. Assume that this is not
the case. Then the holomorphic function g(z) = ef(z) on D∗ has an essential
singularity at a, since g(Dε(0)∗) is dense in C for every ε > 0. If f itself has
an essential singularity at a, that is clear, since exp(C) = C∗ is dense; if f has
a pole at a, then f(Dε(0)∗) ⊃ Ar,∞(0) for some r > 0 - the function 1/f is
holomorphic at a and in particular open. Thus g(Dε(0)∗) ⊃ exp(Ar,∞(0)) =
C∗.

On the other hand

|g(z)| = |ef(z)| = eu(z) · |z − a|−c.

Hence, for n > c we see that h(z) = (z−a)ng(z) satisfies limz→a h(z) = 0, i.e.
a is a removable singularity of h and at most a pole of g. Contradiction.

Sketch of the proof of Th.11.13. First of all one introduces a new class of
continuous functions containing the harmonic functions as ”upper extremal
functions”. We start with the observation that harmonic functions satisfy
the mean value property: As a consequence of the Poisson integral formula,
given a harmonic function u : G −→ R and a closed disc Dr(a) ⊂ G the
functional value at its center equals the mean value over its boundary circle:

u(a) =
1

2π

∫ 2π

0

u(a+ reiϑ)dϑ.

On the other hand one can show, that any continuous function satisfying the
mean value property is already harmonic.

Now a continuous function u : G −→ R is called subharmonic if for any
closed disc Dr(a) ⊂ G we have

u(a) ≤ 1

2π

∫ 2π

0

u(a+ reiϑ)dϑ.

We denote S(G) the set of all subharmonic functions on G. Here are some
of their most important properties:
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1. We have
S(G) ∩ C2(G) = {u ∈ C2(G); ∆u ≥ 0}.

Indeed, if ∆u is taken as a distribution, then

S(G) = {u ∈ C(G); ∆u ≥ 0}.

Here for a distribution v : C∞0 (G,R) −→ R we use the convention

v ≥ 0 :⇐⇒ v(C∞0 (G,R≥0)) ⊂ R≥0.

In particular subharmonicity is a local property.

2. g, h ∈ S(G) =⇒ g + h,max(g, h), λg ∈ S(G),where λ ∈ R≥0.

3. Subharmonic functions satisfy the maximum principle: If g ∈ S(G)
attains its maximum at a point z0 ∈ G, then g ≡ g(z0).

Now given a continuous function u0 : ∂G −→ R one considers the follow-
ing family of subharmonic functions

S≤u0 :=
{
g ∈ S(G);∀a ∈ ∂G : limz→ag(z) ≤ u0(a)

}
.

Now the candidate for a solution is the function u : G −→ R defined by

u(z) := sup{h(z);h ∈ S≤u0} ≤ ||u0||∂G,

the inequality being a consequence of the maximum principle. In order to
see that u is a harmonic function one needs the following observation: Given
any open disc D = Dr(z0) with D ⊂ G the “Poisson modification”

PD(h) : G −→ R

of a subharmonic function h : G −→ R is defined as the unique continuous
function satisfying

PD(h)|G\D = h, ∆(PD(h)|D) = 0,

i.e. outside D the function PD(h) coincides with h, while on D it is the
unique solution of the Dirichlet problem with the boundary values h|∂D. It
is again a subharmonic function: PD(h) ∈ S(G), lying above h, i.e.

PD(h) ≥ h.
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Since the family S≤u0 is stable under Poisson modifications, we see that u
is harmonic, using the characterization of harmonic functions by the mean
value property.

On the other hand, in order to prove

lim
z→a

u(z) = u0(a)

for all boundary points a ∈ ∂G, we need that there are sufficiently many
functions in the family S≤u0 . That is the case if the domain G admits at any
boundary point a ∈ ∂G arbitrarily steep barrier functions, i.e. given a disc
D = Dε(a) there should exist a function β ∈ S(G) satisfying

1. β ≤ 0,

2. limz→a β(z) = 0,

3. z ∈ G \D =⇒ β(z) ≤ −1.

In the remark 12.17 of the next section we shall explain how such barrier
functions are constructed using the condition of Th.11.13.

12 Conformal maps

In the previous section we have seen that Dirichlet’s problem is solvable under
quite general assumptions, but we have no recipe how to find the solution
explicitly except on the unit disc. And even there the evaluation of the
Poisson integral is not always that easy either. Sometimes for domains of
another shape a good guess can lead at once to the unique bounded solution.
Because of the below remark 12.1, a biholomorphic transformation of the
domain of interest could, may be, be helpful in such a situation.

Remark 12.1. Let ϕ : G −→ G′ be a biholomorphic map. Then a function
u : G′ −→ R is harmonic iff u ◦ ϕ is. This is a consequence of the fact that
harmonic functions are locally the real part of holomorphic functions and
that compositions of holomorphic functions are again holomorphic.

Example 12.2. 1. Let H := {z ∈ C; Im(z) > 0} be the upper half plane,
and u0 : ∂H = R −→ R the function

u0(x) :=

{
0 , if x < 0
1 , if x > 0

,
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where it does not matter how we define u0(0), since the values of u0 at
points of discontinuity do not matter in the Dirichlet problem. Then

u(z) := 1− 1

π
Arg(z)

is a bounded solution, while

u(z) := 1− 1

π
Arg(z) + y

is an unbounded solution.

2. Now consider the unit circle D = D1(0) and ũ0 : ∂D −→ R with

ũ0(z) :=

{
1 , if Im(z) < 0
0 , if Im(z) > 0

.

Let us look at the following biholomorphic transformation

f : D −→ H, z 7→ −iz − 1

z + 1
.

It extends to a homeomorphism D\{−1} −→ H, thereby transforming
the Dirichlet problem of the previous point to the given one. Conse-
quently, the function ũ := u ◦ f is a solution of our Dirichlet problem
on the unit disc.

Now, in order to find the good transformation for a given Dirichlet prob-
lem on G ⊂ C, one should understand how biholomorphic maps (defined in
an open neighbourhood of G, say) act on curves as possible pieces of ∂G.
First of all they preserve the angle between two intersecting curves.

Definition 12.3. The (oriented) angle ϑ = ∠(z, w) ∈ [0, 2π) between two
nonzero complex numbers is defined by

w

|w|
= eiϑ · z

|z|
.

The angle between two regular paths γ, δ (i.e. smooth paths with nonvanish-
ing tangent vector everywhere) at a common point γ(s) = δ(t) is the angle
∠(γ̇(s), δ̇(t)) between their tangent vectors γ̇(s), δ̇(t).
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Lemma 12.4. A nonsingular R-linear map A : C −→ C is angle preserving,
i.e.

∠(A(ζ), A(η)) = ∠(ζ, η)

holds for all ζ, η ∈ C∗, if and only if

A(z) = az

with some a ∈ C∗.

Proof. The multiplication with some nonzero complex number preserves ob-
viously angles. On the other, if A is angle preserving, the map B :=
a−1A, a := A(1), is angle preserving as well and satisfies B(1) = 1. Then
necessarily B(i) = µi with some µ ∈ R>0. Now

∠(1, 1 + µi) = ∠(B(1), B(1 + i)) = ∠(1, 1 + i) =
π

4
.

implies µ = 1. So B = idC and A(z) = az.

Definition 12.5. A C1-map f : G −→ C is called conformal (or angle
preserving) at z ∈ G, if its differential

Df(z) : C −→ C

is invertible, and given any regular paths γ, δ with z = γ(s) = δ(t), the angle
between f ◦ γ and f ◦ δ at f(z) equals the angle between γ and δ at z.

Lemma 12.6. A C1-map f : G −→ C is conformal at z ∈ G iff f is C-
differentiable there with nonzero derivative: f ′(z) 6= 0.

Proof. The tangent vector of f ◦ γ at t is f ′(γ(t)) · γ̇(t).

As next we discuss in detail an example where a biholomorphic transfor-
mation leads to the solution of the Dirichlet problem:

Example 12.7. Th.11.13 tells us that the Dirichlet problem is solvable on
the domain

G := D \ [0, 1),

the unit disc with a prick removed. Note that its boundary ∂G = ∂D∪ [0, 1]
is not a Jordan curve. We shall show how we can obtain a solution by finding
a biholomorphic map

f : G −→ D
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between G and the entire unit disc D. Its inverse extends to a continuous
map f−1 : D −→ G = D inducing a surjection of the boundaries

f−1 : ∂D −→ ∂G,

such that every point of the open prick (0, 1) has two inverse images. Now
given a continuous function

u0 : ∂G −→ R,

the Poisson formula provides a function

ũ : D −→ R

with ũ|∂D = u0 ◦ f−1. Finally define

u : G −→ R by u|G = ũ ◦ f, u|∂G = u0.

The map f : G −→ D is found as the composition of several maps, which
stepwise simplify the domain G. First of all we unfold the prick: A branch
of the square root

√
: G −→ D+, −1

4
7→ i

2

maps G biholomorphically to the upper half disc D+, the intersection of the
unit disc with the upper half plane. As next we want to get rid of one of the
two corners of D+: We shift D+ one length unit to the right hand side, apply
inversion and shift half a length unit to the left hand side, i.e. consider the
map

g : D+ −→ R>0 + iR<0, z 7→
1

z + 1
− 1

2
;

it transforms D+ to the fourth quadrant. In order to see that, we investi-
gate where ∂D+ is mapped: The path (−1, 1] is mapped through (0, 2] and
(∞, 1/2] to (∞, 0], and since biholomorphic maps preserve oriented angles,
g(D+) lies on the left hand side when travelling from ∞ to the origin. As
next there is a 90◦-turn to the left and then one follows the upper part ∂+D
of the unit circle, so g(∂D+) includes a 90◦-turn to the left as well followed
by g(∂+D), which is an unbounded line segment, since −1 ∈ ∂+D is a pole,
so g(∂+D) = i[0,−∞). It follows that g(D+) is the part of the plane to the
left hand side of g(∂D+), i.e. the fourth quadrant.
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In the third step we map the fourth quadrant to the lower half plane
using the square function

R>0 + iR<0 −→ R + iR<0, z 7→ z2.

Finally we arrive with

h : R + iR<0 −→ D, z 7→ z + i

z − i
at the unit disc - note that |h(z)| < 1 iff |z + i| < |z − i|, i.e. iff the distance
fron z to −i is less than the distance of z to i, and this condition characterizes
obviously the lower half plane.

All the biholomorphic maps from a domain G to itself form the automor-
phism group of G.

Definition 12.8. Let G be a domain. An automorphism of G is a biholo-
morphic map f : G −→ G. The set

Aut(G) := {f : G −→ G, f biholomorphic}

of all such automorphisms is called the automorphism group of G.

Indeed the automorphisms of a domain G form a group in the sense of
abstract algebra: Two of them can be composed in order to give a new
automorphism (the result depending on the order of the factors), and every
automorphism admits an inverse automorphism.

Proposition 12.9. The automorphism group of the complex plane is the
group of affine linear maps:

Aut(C) = {f : C −→ C; f(z) = az + b,where a ∈ C∗, b ∈ C}.

Proof. The affine linear maps f(z) = az + b are obviously automorphisms of
C. Now let f : C −→ C be any automorphism. For a polynomial f : C −→ C
we have |f−1(w)| = deg f for all but finitely many w ∈ C - indeed for
w 6∈ f(N(f ′)). With other words: f is affine linear. For a transcendent
function f : C −→ C we consider g ∈ O(C∗), g(z) = f(z−1). It has an
essential singularity at the origin. In particular for the unit disc D := D1(0)
we obtain with Th.9.16.3 that

C \ f(D) = f(C \D) ⊃ g(D∗)

is dense, a contradiction, since f(D) ⊂ C is open.
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In order to have more automorphisms at our disposal we enlarge the
complex plane C, adding a point at infinity, which finally turns out to be as
good as any other point!

Definition 12.10. The extended plane

Ĉ := C ∪ {∞}

is the complex plane with a point at infinity, denoted ∞, added. A subset
U ⊂ Ĉ is called open, if either U ⊂ C is open or otherwise K := Ĉ \ U is
compact (closed and bounded).

Remark 12.11. There are two ways to investigate the properties of Ĉ. The
first one appeals to intuition, i.e. three dimensional geometry, the second
one is very effective in avoiding cumbersome and lengthy calculations: It
uses linear algebra for the complex vector space C2 in order to understand
the ”symmetries” of the extended plane, where the point ∞ ceases to play a
distinguished rôle.

1. The Riemann sphere is nothing but the two dimensional unit sphere

S2 :=
{

(w, t) ∈ C× R; |w|2 + t2 = 1
}
.

The map

S2 \ {(0, 1)} −→ C, (w, t) 7→ w

1− t
is called stereographic projection. Indeed, it associates to (w, t) ∈
S2 \ {(0, 1)} the point z ∈ C, such that (z, 0) is the intersection point
of the line through the north pole (0, 1) ∈ S2 and (w, t) with the plane
C× 0. Its inverse is

z 7→ 1

|z|2 + 1
· (2z, |z|2 − 1).

So we can view Ĉ as the Riemann sphere with ∞ ∈ Ĉ corresponding
to the north pole (0, 1) ∈ S2.

2. The complex projective line P1(C): The points in Ĉ are in one-to-
one correspondence to the one dimensional (complex) vector subspaces
of C2: Except C× 0 they are all of the form C(z, 1) with some z ∈ C.
Hence

z 7→ Lz := C(z, 1), ∞ 7→ L∞ := C× 0
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defines a bijection
Ĉ −→ P1(C)

between the extended plane Ĉ and the ”complex projective line”

P1(C) := {L ⊂ C2;L a one dimensional complex vector subspace}.

Now let us define holomorphic maps of the extended plane to itself:

Definition 12.12. Denote ι : Ĉ −→ Ĉ, z 7→ 1
z
, 0 7→ ∞,∞ 7→ 0, the extended

inversion.

1. A map f : G −→ Ĉ defined on a domain G ⊂ C is called holomorphic
if either f ∈M(G) or f ≡ ∞.

2. A map f : Ĉ −→ Ĉ is called holomorphic if both f |C and (f ◦ ι)|C are
holomorphic.

Proposition 12.13. The holomorphic maps f : Ĉ −→ Ĉ, f 6≡ ∞, correspond
to rational functions.

Proof. Obviously rational functions define holomorphic maps from the ex-
tended plane to itself. On the other hand, if f : Ĉ −→ Ĉ, f 6≡ ∞, 0,
is holomorphic, the meromorphic function f |C ∈ M(C) has only finitely
many zeros and poles, due to the fact that 0 is an isolated singularity of
f ◦ ι. Denote them a1, ..., ar and n1, ..., nr ∈ Z their multiplicities, Then
f(z) =

∏r
ν=1(z−aν)nν ·g(z) with an entire function g ∈ O(C) without zeros.

Furthermore g ◦ ι ∈ M(C), s.th. g defines a holomorphic map Ĉ −→ Ĉ.
If g(∞) 6= ∞, the function g|C is bounded, hence constant according to
Liouville, if g(∞) =∞ consider 1

g
instead.

And here are some automorphisms of the extended plane:

Definition 12.14. Let A =

(
a b
c d

)
be an invertible matrix: detA =

ad− bc 6= 0. Then the holomorphic map

µA : Ĉ −→ Ĉ

with

µA(z) =
az + b

cz + d

is called a Möbius transformation.
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Remark 12.15. 1. We have µB = µA iff B = λA for some λ ∈ C∗.

2. We have µAB = µA ◦ µB. In particular, with B = A−1, one obtains:
Möbius transformations are automorphisms of the extended plane Ĉ.

3. In terms of the projective line the Möbius transformation µA has a
simple description:

µA : P1(C) −→ P1(C), L 7→ A(L).

Indeed, if

A =

(
a b
c d

)
we have

A(C(z, 1)) = C(az + b, cz + d) = C
(
az + b

cz + d
, 1

)
.

4. Given two triples z1, z2, z3 and w1, w2, w3 of pairwise distinct points in
Ĉ there is a unique Möbius transformation µ : Ĉ −→ Ĉ with µ(zi) = wi
for i = 1, 2, 3. In order to see that, we consider P1(C) instead of Ĉ.

Existence: Given pairwise different one dimensional subspaces Li =
Cui and L̃i = Cvi we have to find a matrix A with A(Li) = L̃i for
i = 1, 2, 3. Since u1, u2 resp. v1, v2 are bases of C2 and we may replace
u1, u2 resp. v1, v2 with nonzero scalar multiples, we may assume u3 =
u1 + u2 as well es v3 = v1 + v2. Now choose A with Aui = vi, i = 1, 2.

Uniqueness: If both A,B satisfy A(Li) = L̃i = B(Li), the matrix
C = B−1A has u1, u2 as eigenvectors. The corresponding eigenvalues
agree – otherwise any eigenvector of C is either a multiple of u1 or u2

– and thus C = λE.

Indeed every automorphism of Ĉ is a Möbius transformation:

Theorem 12.16. The automorphisms of the extended plane are the Möbius
transformations:

Aut(Ĉ) = {µA;A ∈ C2,2, detA 6= 0}.
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Proof. Let f : Ĉ −→ Ĉ be an automorphism. If f(∞) = ∞, the restriction
f |C is an automorphism of the complex plane: We have f(z) = az + b and
thus f = µA with

A :=

(
a b
0 1

)
.

If f(∞) = c ∈ C and

B :=

(
0 1
1 −c

)
,

such that

µB(z) =
1

z − c
,

we may apply the above argument to µB ◦ f and obtain f = µB−1A.

Sometimes problems in C become easier to handle within Ĉ ⊃ C, since
there we may always assume that some point of interest is the point ∞, the
action of the Möbius transformations being transitive. Here is one such case:

Remark 12.17. The construction of barrier functions: Let us use the
geometry of Ĉ in order to construct barrier functions at boundary points
a ∈ ∂G satisfying the condition of Th.11.13. We may assume a = ∞, since
we may replace G with µ(G) with the Möbius transformation µ(z) = 1

z−a .
Hence, given r > 0, we have to look for a function β ∈ S(G) satisfying

1. β ≤ 0,

2. limz→∞ β(z) = 0,

3. z ∈ G, |z| ≤ r =⇒ β(z) ≤ −1.

Now letK ⊂ Ĉ\G be a connected compact set containing∞ and more points.
Its complement is the disjoint union of simply connected domains, called the
connected components of Ĉ\K, and G, being connected, is contained in one of
them. So there is in particular a branch of the logarithm log ∈ O(G). Being
injective, it defines a biholomorphic map log : G −→ log(G). Replacing G
with log(G), our problem takes the following form: Given s ∈ R, we should
hunt for a function β ∈ S(G) satisfying

1. β ≤ 0,
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2. limRe(z)→∞ β(z) = 0,

3. z ∈ G,Re(z) ≤ s =⇒ β(z) ≤ −1.

Since exp |G is injective, the line s+iR through s ∈ R parallel to the imaginary
axis intersects G in at most countably many intervals

(s+ iR) ∩G =
∞⋃
ν∈I

(s+ iaν , s+ ibν),

whose lengths add up to at most 2π, i.e.∑
ν∈I

(bν − aν) ≤ 2π,

assuming aν < bν . For z ∈ G,Re(z) ≤ s, we set

β(z) ≡ −1,

while for z ∈ G,Re(z) > s, we define

β(z) :=
∑
ν∈I

βν(z),

where

βν(z) :=
1

π
∠(s+ iaν − z, s+ ibν − z) = Im(Log

(
s+ ibν − z
s+ iaν − z

)
).

Then we have
−1 < β(z) < 0

and thus
lim
z→w

βν(z) = −1, ∀ w ∈ (s+ iaν , s+ ibν),

implies that
lim
z→w

β(z) = −1, ∀ w ∈ G, Re(w) = s,

as well. On the other hand, some elementary geometry gives

β(x+ iy) ≥ −2 arctan

(
π

x− s

)
, ∀z = x+ iy ∈ G, x > s,

so condition 2) is also satisfied.
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The geometry of Möbius transformations is based on the fact that they
preserve the following class of subsets of the extended plane Ĉ:

Definition 12.18. A generalized circle in Ĉ is either

1. a usual circle ∂Dr(z0) in C ⊂ Ĉ, or

2. a set L ∪ {∞} with a line L ⊂ C.

Remark 12.19. We comment on generalized circles both from the point of
view of Ĉ as the complex projective line and as the Riemann sphere.

1. Generalized circles consist of the points in P1(C) corresponding to the
one dimensional subspaces L ⊂ C2, which are contained in the zero
cone

NC(σ) := {u ∈ C2;σ(u, u) = 0}

of a nondegenerate indefinite hermitian form σ : C2×C2 −→ C. Indeed,
such a form looks as follows

σ(u, v) = uTHv

with a matrix H ∈ C2,2 satisfying

H = H
T
, detH < 0.

That means

H =

(
a c
c b

)
, a, b ∈ R, c ∈ C, ab− |c|2 < 0.

Thus the equation σ(u, u) = 0 takes for u = (z, 1) the form

azz + cz + cz + b = 0.

For a = 0 we have c 6= 0, and z 7→ cz + cz with c 6= 0 is the general
expression for a surjective linear map C −→ R. Hence the equation
cz+cz = −b with b ∈ R describes a line in C, and every line is obtained
in that way.

If a 6= 0, we may even assume a = 1 and rewrite our equation

r2 := |c|2 − b = zz + cz + cz + cc = |z − (−c)|2,
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describing a circle of radius r > 0 with center −c. Obviously any circle
can be obtained in that way.

The above explicit discussion shows in particular that the hermitian
form σ = σ(a,b,c) is determined by its zero cone NC(σ) ⊂ C2 up to a
nonzero real constant.

2. Generalized circles correspond via the stereographic projection to or-
dinary circles in the Riemann sphere. Such a circle is the intersection
of S2 with a plane having a distance < 1 to the origin. It consists of
the points (w, t) ∈ S2 satisfying an equation:

cw + cw + γt = d, where c ∈ C, γ, d ∈ R, d2 < 4|c|2 + γ2.

The left hand side of the equation is the general expression for an
R-linear map C × R −→ R, while the inequality for the coefficients
guarantees, that the plane has distance < 1 to the origin. Now we sub-
stitute the expression of Rem. 12.11 for the inverse of the stereographic
projection and obtain:

(d+ γ)|z|2 − 2cz − 2cz + (d− γ) = 0,

where |2c|2 > (d+ γ)(d− γ).

As a consequence we obtain:

Proposition 12.20. Möbius transformations map generalized circles to gen-
eralized circles, and given two such circles there is a Möbius transformation
mapping the first one to the second one.

Proof. If a generalized circle arises from the hermitian form σ, its image with
respect to µA belongs to the form σ̃(u, v) = σ(A−1u,A−1v).

On the other hand given two forms σ, σ̃ choose a σ-ON-basis u1, u2 and a
σ̃-ON-basis ũ1, ũ2 (the first vectors having square length 1, the second ones
−1). Then A ∈ C2 with Aui = ũi satisfies σ̃(u, v) = σ(A−1u,A−1v) and thus
A(NC(σ)) = NC(σ̃).

Remark 12.21. Reflections at generalized circles: Given a generalized
circle with corresponding hermitian form σ we can define a reflection (not a

Möbius transformation!) at that circle: Replacing Ĉ with P1(C) it is defined
as follows

P1(C) 3 L 7→ L⊥.
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Here L⊥ ⊂ C2 denotes the σ-orthogonal complement of L. In particular
L⊥ = L for L ∈ NC(σ). Indeed for the corresponding reflection % : Ĉ −→ Ĉ
on Ĉ, we have

%(z) = µA(z)

with a suitable Möbius transformation µA. (We remark, that C2 −→ C2, u 7→
Au, is not a reflection of C2 on some real hyperplane, instead it has two
eigenvalues 1 and two eigenvalues -1.)

In order to see that, let us first consider the generalized circle R ∪ {∞}.
We may take

H =

(
0 −i
i 0

)
.

Then
(C(z1, z2))⊥ = C(z1, z2)

and thus
%(z) = z.

In the general case take a Möbius transformation µB mapping R ∪ {∞} to
the given generalized circle. Then

%(z) = µ
BB
−1(z).

We leave it to the reader to show the following: If Z ⊂ Ĉ is a generalized
circle, then the reflection %Z : Ĉ −→ Ĉ

1. is the ordinary reflection at the line Z \ {∞}, if ∞ ∈ Z.

2. is the map

z 7→ r2 z − z0

|z − z0|2
+ z0, z0 7→ ∞, ∞ 7→ z0,

if Z = Dr(z0).

As a byproduct of the above discussion we obtain that the zero conesNC(σ) ⊂
C2 are the sets

S1 · P = {λu;λ ∈ S1, u ∈ P},

where S1 denotes the unit circle and P ⊂ C2 is a totally real plane, i.e. a
two dimensional real subspace, which is not a complex subspace, indeed the

eigenspace of BB
−1

for the eigenvalue 1.
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Dynamics of Möbius transformations: A Möbius transformation µA 6=
idĈ has either one or two fixed points, corresponding to diagonalizable resp.

nondiagonalizable A ∈ C2,2. In the first case µA : Ĉ −→ Ĉ is similar to a
map

µ(z) = az

with a ∈ C \ {0, 1}, while in the second case it is similar to a translation

µ(z) = z + a

with a ∈ C∗. In particular Ĉ is the union of the fixed points of µA and a
family of mutually disjoint µA-invariant curves: These curves are

1. generalized circles if A is diagonalizable and both eigenvalues have the
same absolute value. For µ(z) = az our family is

∂Dr(0), r > 0.

2. generalized circles with one point, the fixed point of µA, removed, if A
is nondiagonalizable. For µ(z) = z + a that family is just the family

Ra+ tb, t ∈ R

of lines parallel to Ra. Here b ∈ C \ Ra denotes any complex number
not on Ra.

3. open segments of a generalized circle with the two fixed points of µA
as boundary points, if A is diagonalizable and the eigenvalues of A are
linearly dependent over R. For µ(z) = az with a ∈ R we obtain the
family

R>0e
iϑ, 0 ≤ ϑ < 2π.

4. ”spirals” from one fixed point to the other one, if A is diagonalizable
and the eigenvalues of A are linearly independent over R and have
different absolute value. In the case µ(z) = az with a = seiϕ they look
as follows (depending on the choise ϑ)

Sr :=
{
z = rst exp(itϕ); t ∈ R

}
, r ∈ R>0.

Here are the automorphisms of the unit circle:

91



Theorem 12.22. For D := D1(0) we have

Aut(D) = {µA|D;ATHA = H},

where

H =

(
1 0
0 −1

)
.

More classically: The restrictions of the Möbius transformations

µ(z) = eiϑ
z + z0

1 + z0z
, |z0| < 1,

are the automorphisms of the unit disc.

We remark that the equation ATHA = H is equivalent to the fact that the
column vectors of A = (u1, u2) constitute a σ-ON-basis for σ(u, v) := uTHv,
such that σ(u1, u1) = 1, σ(u2, u2) = −1, are their respective ”square lengths”.

Proof. A Möbius transformation µA maps D into itself iff A : C2 −→ C2

satisfies σ(Au,Av) = λσ(u, v) with some λ ∈ R>0 for σ(u, v) := uTHv.
Since A is only determined up to a scalar multiple, we may assume that
λ = 1, i.e. A is a σ-isometry, equivalently ATHA = H. On the other hand
if we don’t want A to be a σ-isometry, we know nevertheless that the second
column vector should have negative square length, so its second component
does not vanish, and we may even assume that it equals 1. Denoting its first
component a, its square length is |a|2 − 1 < 0, i.e. |a| < 1. The first column
vector should be σ-orthogonal to the second one and have up to sign the
same square length. So we arrive at

A =

(
eiϑ a
eiϑa 1

)
;

finally take z0 := e−iϑa.
It remains to show that every automorphism f : D −→ D is the restric-

tion of a Möbius transformation. With

B :=

(
1 −f(0)

−f(0) 1

)
we obtain an automorphism

g := µB ◦ f
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fixing the origin: g(0) = 0. Schwarz’ lemma, i.e. lemma 12.23, may be
applied to both g and g−1 and gives that g(z) = eiϑz is a rotation, hence

f = µA with A = B−1

(
eiϑ 0
0 1

)
.

Lemma 12.23 (Schwarz’ lemma). Let D = D1(0) be the open unit disc,
and g ∈ O(D) a function with g(0) = 0, |g(z)| ≤ 1 for all z ∈ D. Then

1. either g is a rotation: g(z) = eiϑz

2. or |g(z)| < |z| for all z ∈ D \ {0}.

Proof. We consider the function

h(z) :=

{
g(z)/z , if z 6= 0
g′(0) , if z = 0

.

It is holomorphic on D and for r < 1 the maximum principle gives

||h||Dr(0) = ||h||∂Dr(0) ≤ 1/r,

since |g(z)| ≤ 1 for all z ∈ D. Taking the limit r → 1 we find |h(z)| ≤ 1
for all z ∈ D. Now the maximum principle gives that either h(z) ≡ eiϑ - so
g(z) = eiϑ is a rotation - or |h(z)| < 1 for all z ∈ D resp. |g(z)| < |z| for
z ∈ D∗

Finally we want to discuss the following question: Given two domains
G,G′, does there exist a biholomorphic map ϕ : G −→ G′?

Here is a necessary criterion:

Proposition 12.24. Assume f : G −→ G′ is a diffeomorphism, i.e. bijective
and C1-differentiable in both directions. Then G is simply connected iff G′

is.

Proof. The statement follows immediately from Th.6.23, but we want to give
here a proof based on our definition of simple connectedness: We show that
f induces a bijection f ∗ : D(G′) −→ D(G) preserving both total differentials
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and locally integrable forms: First of all we define for any C1-map f : G −→
G′ a pull back map on the level of functions:

C1(G′) −→ C1(G), g 7→ g ◦ f

and on the level of differential forms:

f ∗ : D(G′) −→ D(G), ω = gdx+ hdy 7→ f ∗(ω) := (g ◦ f)du+ (h ◦ f)dv,

where f = u+ iv. Then the chain rule implies

d(F ◦ f) = f ∗(dF ).

In particular, for a diffeomorphism f we may apply that to both f and f−1:
So differential forms with primitive function on G′ correspond under f ∗ to
differential forms with primitive function on G. This holds as well for locally
integrable differential forms: Indeed, a differential form on a domain G is
locally integrable iff every point z ∈ G admits an open neighbourhood U ,
such that ω|U has a primitive function – this finally justifies the adjective
”locally integrable”. The implication ”=⇒” is clear. For ”⇐=” we have to
show, according to Prop.6.14, that

∫
∂R
ω = 0 for any coordinate rectangle

R ⊂ G, if ω admits locally a primitive function: Take a sufficiently fine
subdivision of R into n2 congruent rectangles Rij, of size 1

n
the size of R. If

n is sufficiently big, every Rij is contained in a neighbourhood Uij, where ω
has a primitive function. Consequently∫

∂R

ω =
∑
i,j

∫
∂Rij

ω =
∑
i,j

0 = 0.

On the other hand:

Remark 12.25. There is no biholomorphic map f : C −→ D := D1(0)
between the complex plane C and the open unit disc D. Namely, f ∈ O(C)
would be a bounded holomorphic function, but such functions are constant,
according to Liouville. We leave it to the reader to determine a diffeomor-
phism f : C −→ D

But this is the only disappointment:
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Theorem 12.26 (Riemann mapping theorem). Let G $ C be a simply
connected domain. Then there is a biholomorphic map f : G −→ D = D1(0)
from G onto the open unit disc D.

Proof. Our proof is based on the following:

Lemma 12.27. Given a holomorphic function f ∈ O(G) on a simply con-
nected domain G ⊂ C without zeros there is a square root

√
f ∈ O(G).

Proof. The differential form df
f

is closed, and hence, G being simply con-

nected, has a primitive function F ∈ O(G). Then the function g(z) :=
f(z)e−F (z) satisfies g′ = f ′e−F − fF ′e−F = 0, thus g ≡ c ∈ C∗. Since F is
only determined up to an additive constant, we may assume that c = 1. So
f = eF and √

f := exp

(
F

2

)
is a square root of f .

Construction of a biholomorphic map h : G −→ h(G) with 0 ∈ h(G) ⊂
D: Take a point a 6∈ G and apply in a first step the translation

G −→ G1 := G− a, z 7→ z − a.

Then take a square root

f : G1 −→ G2 := f(G1)

of idG1 , i.e. f(z)2 = z for all z ∈ G1. Since z 7→ f(z)2 = z is injective, for an
open disc Dr(b) ⊂ G2 we have Dr(−b) ∩G2 = ∅. Then

g : G2 −→ G3 := g(G2), z 7→ r

z + b

maps G2 biholomorphically onto G3 ⊂ D. Finally pick z0 ∈ G3 and compose
with

µ : G3 −→ G4 := µ(G3), z 7→ z − z0

1− z0z
.

Now given a domain G $ D we try to enlarge G by applying dilatations:
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Definition 12.28. Let G ⊂ C be a domain, 0 ∈ G ⊂ D. A dilatation of G
is a biholomorphic map κ : G −→ κ(G) ⊂ D, such that

κ(0) = 0, |κ(z)| > |z|, ∀z ∈ G∗ := G \ {0}.

We shall prove:

Proposition 12.29. For a simply connected domain G ⊂ C with 0 ∈ G ⊂
D := D1(0) the following statements are equivalent:

1. G = D.

2. There is no dilatation κ : G −→ κ(G) ⊂ D.

Proof. ”=⇒”: According to Schwarz’ lemma, i.e. Lemma 12.23, a holo-
morphic map f : D −→ D with f(0) = 0 is either a rotation or satisfies
|f(z)| < |z| for z ∈ D∗.
”⇐=”: We subdivide our argument into four steps:

1. For G $ D we construct a dilatation κ : G −→ D as a partial right
inverse of a contraction g : D −→ D, i.e. a holomorphic map satisfying
g(0) = 0 and |g(z)| < |z| for z ∈ D∗. More precisely, we want

g ◦ κ = idG and κ(0) = 0.

As a consequence
|z| = |g(κ(z))| < |κ(z)|

for z ∈ G∗, i.e. κ : G −→ D is a dilatation.

2. According to Schwarz’ lemma any holomorphic map g : D −→ D, g(0) =
0, which is not a rotation, is a contraction.

3. For a ∈ D we consider the following automorphism of the unit disc:

µa(z) :=
z − a
az − 1

.

It satisfies µa(a) = 0, µa(0) = a, indeed it is involutive: µa ◦ µa = idD.
With j(z) := z2 the map

ga := µa2 ◦ j ◦ µa : D −→ D

satisfies ga(0) = 0, but it is not a rotation, since ga is not injective.
Hence it is a contraction.
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4. Now, if a2 ∈ D \G, there is a function h ∈ O(G) with

h2 = µa2 , h(0) = a.

Then κ := µa ◦ h is what we are looking for (with g = ga).

Finally let us give the proof of Riemanns mapping theorem: We may
assume 0 ∈ G ⊂ D and consider the following family of functions:

F := {f ∈ O(G); f(0) = 0, f : G −→ f(G) ⊂ D is biholomorphic}.

Fix a point a ∈ G∗ := G \ {0} and set

% := sup{|f(a)|; f ∈ F}.

Obviously % ≤ 1. Take a series of functions (fn)n∈N ⊂ F with limn→∞ |fn(a)| =
%. According to Th.12.30 we may assume that it converges uniformly to
some function f ∈ O(G). Then f(0) = 0 and f(a) 6= 0 implies that
f : G −→ f(G) is biholomorphic. Now assume f(G) 6= D. Then there
is a dilatation κ : f(G) −→ D, and since then κ ◦ f ∈ F as well, we find

% ≥ |κ(f(a))| > |f(a)| = %,

a contradiction.

We have used the following two facts about locally uniform convergence
of holomorphic functions:

Theorem 12.30 (Theorem of Montel). Let G ⊂ C be a domain. For a
family (i.e. a subset) F ⊂ O(G) the following statements are equivalent

1. Every sequence (fn)n∈N ⊂ F admits a subsequence (gν)ν∈N, i.e. gν =
fnν , converging locally uniformly to some function g ∈ O(G).

2. The family F ⊂ O(G) is ”uniformly bounded”, i.e. for every compact
set K ⊂ G there is a constant MK ∈ R>0, such that

||f ||K ≤MK , ∀f ∈ F .

Here ||f ||K := sup{|f(z)|; z ∈ K}.
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For the next result recall that a holomorphic function f ∈ O(G) is injec-
tive if and only if f : G −→ f(G) is biholomorphic.

Theorem 12.31. Let G ⊂ C be a domain and (fn)n∈N ⊂ O(G) be a sequence
converging locally uniformly to some function f ∈ O(G). If all functions fn
are injective, so is f or f ≡ c ∈ C.

We conclude this section with a discussion of the relationship between
the Dirichlet problem and Riemanns mapping theorem. First of all:

Theorem 12.32. Let D = D1(0) be the unit disk, and g : D −→ G be a
biholomorphic map from the unit disk to a bounded domain G ⊂ C. Then
the following statements are equivalent

1. The map g : D −→ G extends to a continuous map ĝ : D −→ G.

2. ∂G = |γ|, i.e. the boundary of G is the trace of a continuous loop
γ : I −→ C.

Furthermore the extension ĝ is a homeomorphism if we can choose γ as a
Jordan curve, i.e. with I = [a, b] and γ|[a,b) injective.

Example 12.33. The domain G := D \ [0, 1) satisfies the criterion, but

G = D \

([
1

2
, 1

)
∪
∞⋃
n=1

[
1

2
, 1

)
exp

(
2πi

n

))
does not.

Remark 12.34. 1. From Riemanns mapping theorem, Th.12.26, and Th.12.32
it follows that the Dirichlet problem is solvable for domains G whose
boundary is the trace of a path: Assume u0 : ∂G −→ R is continuous.
Now there is a solution h : D −→ R of the Dirichlet problem with
h|∂D = u0 ◦ ĝ. Define then u : G −→ R by u|G = h◦g−1 and u|∂G = u0.

2. Assume the Dirichlet problem is solvable for the simply connected do-
main G. Then there is a natural candidate for a biholomorphic map
f : G −→ D. We fix a point a ∈ G and denote u : G −→ R the solution
of the Dirichlet problem with

u(z) = ln |z − a|, z ∈ ∂G.
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(Note that the logarithm itself, though harmonic, is not the solution
of the Dirichlet problem, since it has a singularity at a ∈ G). Since
G is simply connected there is a harmonic function v : G −→ R, such
that h := u + iv is holomorphic. Now set f(z) := (z − a)e−h(z). If v
can be (continuously) extended to G, then we see that |f(z)| = 1 for
z ∈ ∂G. On the other hand: Since there is exactly one zero on G,
Rouchés theorem implies, that every value w ∈ D is attained exactly
once.
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