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Abstract. We determine the distribution function for the area
of a random triangle in a unit square. The result is not new, [8],
[12]. The method presented here is worked out to shed more light
on the problem.

1. Introduction

We shall denote the square by K and the random triangle by T and
shall consider the random variable X = area(T )/area(K). It is well
known that an affine transformation will preserve the ratio X. This
follows from the fact that the area scaling is constant for an affine
transformation. The scale equals the determinant of the homogeneous
part of the transformation. This means that our results hold when K
is a parallelogram.

Various aspects of our problem have been considered in the field
of geometric probability, see e.g. [11]. J. J. Sylvester considered the
problem of a random triangle T in an arbitrary convex set K and
posed the following problem: Determine the shape of K for which the
expected value κ = E(X) is maximal and minimal. A first attempt to
solve the problem was published by M. W. Crofton in 1885. Wilhelm
Blaschke [3] proved in 1917 that 35

48π2 ≤ κ ≤ 1
12

, where the minimum is
attained only when K is an ellipse and the maximum only when K is
a triangle. The upper and lower bounds of κ only differ by about 13%.
It has been shown, [2] that κ = 11

144
for K a square.

A. Reńyi and R. Sulanke, [9] and [10], consider the area ratio when
the triangle T is replaced by the convex hull of n random points. They
obtain asymptotic estimates of κ for large n and for various convex K.
R. E. Miles [7] generalizes these asymptotic estimates for K a circle to
higher dimensions. C. Buchta and M. Reitzner, [4], has given values of
κ (generalized to three dimensions) for n ≥ 4 points in a tetrahedron.
H. A. Alikoski [2] has given expressions for κ when T is a triangle and
K a regular r-polygon.

Here, we shall deduce the distribution function for X. We have done
this before in a simpler way than in this paper, [8]. We hope that the
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method presented here shall be applicable if the square K is replaced
by a pentagon or hexagon.

2. Notation and formulation.

As K, we will take the unit square (0 ≤ x ≤ 1, 0 ≤ y ≤ 1). We
use a constant probability density in K for generating three random
points in K. The coordinates of the points will be denoted (xk, yk)
for 1 ≤ k ≤ 3. Each xk and yk is evenly distributed in (0, 1) and
they are independent. Let T be the convex hull of the three points.
We shall determine the probability distribution of the random variable
X = area(T ).

Our method will be to shrink the square around its midpoint until
one of its sides hits a triangle point. The shrunk square is denoted B.
The random variable X that we study will be written as the product
of two random variables

V = area(B) and W = area(T )/area(B).

We have six independent variables xk and yk, (1 ≤ k ≤ 3) . One
of them stops the shrinking and determines V . The remaining five
variables determine W . It follows from the independence of the xk and
yk that V and W are independent.

We shall determine the distributions of V and W and combine them
to get the distribution of X = V W .

3. The distribution of V .

V is the area of the shrunken square B. The size of B is determined
by the largest of the six variables |xk − 1

2
| and |yk − 1

2
|, (1 ≤ k ≤

3). Each of these variables has the distribution function K(t) = 2 t,
(0 ≤ t ≤ 1

2
). The largest of the six has the distribution function

K(tmax)
6 = (2 tmax)

6. The area of B is v = (2 tmax)
2. We get

(1) G(v) = Prob(V < v) = (2 tmax)
6 = v3, 0 ≤ v ≤ 1.

4. The distribution of W.

W is the area of a random triangle having one vertex on the boundary
of a square (=B) and the other two vertices in the interior of the square.
Since the area ratio W is independent of the size of B, we will take
B as the original unit square K. Without loss of generality, we will
number the three triangle vertices so that vertex one is the one sitting
on the boundary and we let this boundary be the x-axis, so that vertex
one is (x, 0). The position of the second vertex is (x2, y2). Let l0 be the
line through vertices one and two. It contains one side of the triangle.
Our calculations will be divided into three cases depending on where
l0 intersects B.
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Figure 1. Case 1. The line l0 trough vertices one and
two intersects the left side of the square.

4.1. Case 1. Case 1, depicted in Figure 1, occurs when l0 itersects
the square side along the y-axis in the point (0, y), 0 ≤ y ≤ 1. The
equation for l0 is

l0 : η = −y

x
ξ + y.

Let s =
√

(x − x2)
2 + y2

2 be the distance between vertices one and

two. For fixed x and y, the maximal value of s is r1 =
√

x2 + y2.
The area of the triangle T will be less than w if the distance between

l0 and the third vertex is less than 2 w/s. To avoid the factor 2 in
numerous places below, we shall use the double area u = 2w in the
calculations. The lines l1 and l2 have the distance u/s to l0.

l1 : η = −y

x
ξ + y − u r1

s x
.

l2 : η = −y

x
ξ + y +

u r1

s x
.

This means that the conditional probability P (W ≤ u/2 | x, y, s)
equals the area between the lines l1 and l2 in the unit square in Figure
1. We shall use the formula 1 − T1 − S1 (see Figure 1) for this area
and we shall average T1 and S1 over x, y, and s to get the contribution
to P (W ≤ u/2) from Case 1. In fact, when we consider all possible
directions of l0 in all our cases, it follows from a symmetry argument
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Figure 2. Area to integrate s and y over in Case 1 when
u = 1/6 and x = 1/2.

that the areas to the left of l1 will be the same as those to the right
of l2. This implies that it suffices to calculate the areas to the left and
then double the result. Thus, we shall average 2 T1 over x, y, and s
and neglect S1.

From the equation of l1, we get

(2) 2 T1 =
x

y

(

y − u r1

s x

)2

if s >
u r1

x y
, otherwise 0 .

We shall determine the densities of x, y, and s. Obviously, x is evenly
distributed over (0, 1). The area to the left of l0 is xy/2, so for fixed x,
the density is the differential x

2
dy. For fixed x and y consider the small

triangle with vertices in (x, 0), (0, y), and (0, y + dy). The fraction of
the small triangle below s is ( s

r1

)2 and the density is the differential
2s
r1

2 ds. Notice that the integral of the combined density ρ1 = x s/r1
2

over the whole range of (x, y, s) is not 1 but 1
4
, which is the probability

for Case 1.
Figure 2 shows the range in (s, y)-space to integrate over for fixed

u and x. The increasing curve is the upper bound r1 for s and the
decreasing curve is its lower bound s0 = u r1

x y
. The intersection of the

lower and upper s-bounds is the lower bound y0 = u/x for y. We have
y0 < 1 when x > u.
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Figure 3. Case 2. The line l0 through vertices one and
two intersects the top side of the square, while l1 inter-
sects the left side in Case 2a and the top side in Case 2b.
The figure is drawn with z < x.

The contribution from Case 1 is the weighted average of 2 T1:

(3) h1(u) =

∫ 1

u

xdx

∫ 1

u/x

r1
−2dy

∫ r1

u r1/x y

x

y

(

y − u r1

s x

)2

sds.

Maple is helpful in solving integrals of this kind and delivers the
result

(4) h1(u) = −1

3
u3 +

5

4
u2 − u +

1

12
− 1

2
u2 log(u) (1 − log(u)).

4.2. Cases 2. Case 2 occurs when l0 itersects the top side of the square.
It has two subcases a, and b, depicted in Figures 3a and 3b. Case 2a
occurs when l1 intersects the left side of the square and Case 2b when
l1 intersects the top side.

We let z stand for the x-coordinate of the intersection between the
top side and l0.

In Cases 2, the maximal value of s is r2 =
√

1 + (x − z)2. The area

to the left of l0 is x+z
2

, so the z-density is 1
2

and like in Case 1, the

s-density is 2 s/r2
2. The combined density is ρ2 = s/r2

2.
We have the two subcases z < x and z > x. By symmetry, we can

do the calculations for z < x and then double the result.
The equations for l0 and l1 are

l0 : η0 = − 1

x − z
(ξ − x),

l1 : η1 = − 1

x − z
(ξ − x) − u r2

s (x − z)
.
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Figure 4. Areas to integrate s and z over in Case 2
when u = 1/6 and x = 1/2.

We have Case 2a when 0 < η1 < 1, which occurs when

u r2

x
= s1 < s < s2 =

u r2

z
.

Case 2b occurs when η1 > 1 i.e. when s > s2.
The expression for 2T2a and 2T2b are obtained from the equation of

l1:

2 T2a =
(x − u r2/s)

2

x − z
,

2 T2b = x + z − 2 u r2/s .
(5)

Figure 4 shows the range in (s, z)-space to integrate over for fixed u
and x. The lower and upper bounds for s are s1 = u r2

x
and r2. The

curve s2 = u r2

z
is upper bound for Case 2a and lower bound for Case

2b. r2 and s2 intersect at z = u.
The contributions from Cases 2a and 2b are the doubled weighted

averages of 2 T2a and 2 T2b:
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h2a(u) =2

∫ 1

u

dx

(
∫ u

0

r2
−2dz

∫ r2

u r2/x

2 T2a s ds

+

∫ x

u

r2
−2dz

∫ u r2/z

u r2/x

2 T2a s ds

)

,

h2b(u) =2

∫ 1

u

dx

∫ x

u

r2
−2dz

∫ r2

u r2/z

2 T2b sds.

(6)

Evaluation of the integrals gives

h2a(u) =
1

6
(2u + u2 − 3u3) +

1

6
(9 + 2u) u2 log(u)

− 1

6
(1 − 5u − 2u2)(1 − u) log(1 − u)

+ u2 (log (u) log (1 − u) + dilog(u)),

h2b(u) =
1

4
(1 − 5u − 2u2)(1 − u) − 3

2
u2 log(u).

(7)

Here, dilog is Maple’s dilog function. See Appendix A.

4.3. Case 3. This case, depicted in Figures 5 a-d, occurs when l0 iter-
sects the right side of the square in the point (1, y), 0 ≤ y ≤ 1. When
dealing with Case 3, we shall use the variable x1 = 1− x. The density
ρ3 is obtained by replacing x by x1 in ρ1. The equations for l0 and l1
are

l0 : η =
y

x1
(ξ − 1) + y.,

l1 : η =
y

x1
(ξ − 1) + y +

u r3

s x1
.

Here, s ranges from 0 to r3 =
√

x2
1 + y2. Depending on the values of

x1, y, and u/s, the area to the left of l1 takes four different shapes as
demonstrated in Figure 5. The four areas are:

2 T3a =
1

x1 y

(

x1 + y − x1y − r3 u

s

)2

,

2 T3b = 2 − 2x1 +
x1

y
− 2 r3 u

s y
,

2 T3c = 2 − 2y +
y

x1

− 2 r3 u

s x1

,

2 T3d = 2 − 1

x1 y

(

x1 y +
r3 u

s

)2

.

(8)

T3a occurs for the largest values of u/s, i.e. for the smallest s. T3a = 0
when s < s3 = r3 u

x1+y−x1 y
. When s increases, l1 moves to the right and if
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Figure 5. The four subcases of Case 3

y > x1 it passes the origin so that T3b replaces T3a. This happens when
s passes s4 = r3 u

y(1−x1)
. If, on the other hand, y < x1, l1 passes the point

(1, 1) and T3c replaces T3a when s passes s5 = r3 u
x1(1−y)

. T3d occurs when

s > max(s4, s5). The upper bound for s is r3, so the various subcases
occur only where s4 and s5 are smaller than r3.

Figure 7 displaying the boundaries in (y, s)-space for u = 1
8

and

x1 = 1
2

gives an idea of the situation. The corresponding boundaries

for u = 3
8

and x1 = 1
2

are given in Figure 8.
The intersections of the curves in the figures are at:

y3 =
u − x1

1 − x1
between r3 and s3

y4 =
u

1 − x1
between r3 and s4

y5 = 1 − u

x1
between r3 and s5.
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Figure 6. Areas in (u,x)-space, where the various sub-
cases occur .

We always have y3 ≤ y4, and we have y3 > 0 when u > x1, and y4 < 1
when x1 < 1 − u, and y4 < y5 when u < x1 (1 − x1). This means that
we have different subcases depending on the values of u and x1. We
have drawn the boundaries x1 = u, x1 = 1 − u, and u = x1 (1 − x1)
in Figure 6 and indicated where the configurations in Figures 7 and 8
occur.

We shall show that, even though the areas to integrate s and y over
are very different in Figures 7 and 8, the resulting integrals are the
same, meaning that we don’t have to carry out the integrations in
Figure 7. Later, we shall show that we don’t have to calculate the
integrals in Figure 8 either because the integrals in Figure 9 give the
same result.

When going from Figure 7 to 8, i.e. when increasing u past x1(1−x1),
s3, s4, and s5 rise and y5 becomes smaller then y4. The intersection of
s4 and s5 passes r3 so that the area in Figure 7 marked T3d disappers
and the area marked 0 in Figure 8 is created. Denote the area where
T3d is valid in Figure 7 by A and consider the integral of T3b. This
integral goes in Figure 8 from s4 to r3 in the s-direction and from y4 to
1 in the y-direction. In Figure 7, it goes over the same area minus A.
A corresponding argument holds for T3c. The missing integral of T3a

over the area marked 0 in Figure 8 is
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Figure 7. Areas in (y,s)-space, where the different T3i

occur when u = 1
8

and x1 = 1
2

.

(9)

∫ x1

y5

dy

∫ s5

r3

T3a ρ3ds +

∫ y4

x1

dy

∫ s4

r3

T3a ρ3ds =

=

∫ y5

x1

dy

∫ r3

s5

T3a ρ3ds +

∫ x1

y4

dy

∫ r3

s4

T3a ρ3ds.

The latter two integrals are integration of T3a over A. This means
that the difference between Figure 8 and 7 is integration over A of
∆ = T3a +T3d−T3b−T3c . Insertion of the T3i from equation (8) shows
that ∆ = 0, implying that integration in Figure 7 gives the same result
as in Figure 8.

Now, consider the area in Figure 6 marked Fig10 and also Figure 10
as well as Figure 8. These Figures show that T3b exists when y4 < 1,
i.e. when x1 < 1 − u. The contribution from T3b to the distribution
function is
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Figure 8. Areas in (y,s)-space, where the different T4i

occur when u = 3
8

and x1 = 1
2
.

h3b(u) =

∫ 1−u

0

dx1

∫ 1

y4

dy

∫ r3

s4

2T3b ρ3ds

=
1

18
(1 − u)(−4 + 41 u + 5 u2) +

(

−1

6
+ u +

3

2
u2

)

log (u).

(10)

The Figures 8, and 11 show that T3c exists when y5 > 0, i.e. when
x1 > u. The contribution from T3c to the distribution function is

(11) h3c(u) =

∫ 1

u

dx1

∫ y5

0

dy

∫ r3

s5

T3c ρ3ds =
1

2
(1 − u + u log (u))2 .

The contribution from T3a is more complicated since it exists for all
x1. T3a is present in Figures 8, 9, 10, and 11. We shall show that the
contribution is the same for u < 1

2
and u > 1

2
. For u < 1

2
, we have

u < 1 − u and shall integrate over the areas in Figures 10, 8, and 11.
Omitting the integrand 2T3a ρ3 and the differentials and just writing
the integration boundaries, we have for u < 1

2
:
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Figure 9. Areas in (y,s)-space, where T3a is valid when
u = 5

8
and x1 = 1

2
. Note that 1 − u < x1 < u.

(12) I1 =

∫ u

0

(
∫ y4

y3

∫ r3

s3

+

∫ 1

y4

∫ s4

s3

)

+

∫ 1−u

u

(
∫ y5

0

∫ s5

s3

+

∫ y4

y5

∫ r3

s3

+

∫ 1

y4

∫ s4

s3

)

+

∫ 1

1−u

(
∫ y5

0

∫ s5

s3

+

∫ 1

y5

∫ r3

s3

)

For u > 1
2
, we have 1 − u < u and shall integrate over the areas in

Figures 10, 9, and 11 and get:

(13) I2 =

∫ 1−u

0

(
∫ y4

y3

∫ r3

s3

+

∫ 1

y4

∫ s4

s3

)

+

∫ u

1−u

∫ 1

y3

∫ r3

s3

+

∫ 1

u

(
∫ y5

0

∫ s5

s3

+

∫ 1

y5

∫ r3

s3

)

We shall show that the integrals I1 and I2 are the same.

First, notice that in both I1 and I2, the x-integration of
∫ 1

y4

∫ s4

s3
goes

from 0 to 1 − u and that of
∫ y5

0

∫ s5

s3

goes from u to 1.
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Figure 10. Areas in (y,s)-space, where T3a and T3b are
valid when u = 3

5
and x1 = 1

7
. Note that 0 < x1 < 1− u.

The three remaining integrals in I1 and I2 are all of type
∫ r3

s3

in the
s-direction. In the x1- and y- directions, they are

I∗

1 =

∫ u

0

∫ y4

y3

+

∫ 1−u

u

∫ y4

y5

+

∫ 1

1−u

∫ 1

y5

,

and

I∗

2 =

∫ 1−u

0

∫ y4

y3

+

∫ u

1−u

∫ 1

y3

+

∫ 1

u

∫ 1

y5

.

I∗

2 can be split up into:

I∗

2 =

∫ u

0

∫ y4

y3

+

∫ 1−u

u

∫ y4

y3

−
∫ 1−u

u

∫ 1

y3

+

∫ 1−u

u

∫ 1

y5

+

∫ 1

1−u

∫ 1

y5

.

Comparing terms, it is easily seen that I∗

1 and I∗

2 are the same. This
implies that the contribution h3 to the distribution of u from Case 3,
has the same formula for u < 1

2
and u > 1

2
.

We shall use the expression for u > 1
2

to calculate h3 = h3a+h3b+h3c,
where h3b and h3c are given in (10) and (11) and h3a is the contribution
from T3a which we take from I2 in (13). With the notation

k = k(u, x1, y, s) = 2T3a ρ3,

we have.
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Figure 11. Areas in (y,s)-space, where T3a and T3c are
valid when u = 3

5
and x1 = 6

7
. Note that u < x1 < 1.

h3a(u) =

∫ 1−u

0

dx1

(
∫ y4

y3

dy

∫ r3

s3

kds +

∫ 1

y4

dy

∫ s4

s3

kds

)

+

∫ u

1−u

dx1

∫ 1

y3

dy

∫ r3

s3

kds

+

∫ 1

u

dx1

(
∫ y5

0

dy

∫ s5

s3

kds +

∫ 1

y5

dy

∫ r3

s3

kds

)

=
1

36
(1 − u)(5 − 97 u − 22 u2)

+
1

3
(1 − u)(−1 + 5 u + 2 u2) log (1 − u)

+

(

1

6
− 2 u +

2

3
u3

)

log (u) − u2 log (u)2

+ 2 u2 (log (u) log (1 − u) + dilog(u)),

(14)

4.4. Combination of cases. By combining the calculated hnx, we get
the distribution function for twice the area of a random triangle in a
unit square, when one of the triangle vertices sits on the boundary of
the square:
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H(u) = 1 − h1 − h2a − h2b − h3a − h3b − h3c

=
u

3
(14 − 11 u − 4 u2 log (u))

+
2

3
(1 − u)(1 − 5 u − 2 u2) log (1 − u)

− 4 u2 (log (u) log (1 − u) + dilog(u)), 0 ≤ u ≤ 1.

(15)

5. Combination of the V- and W-distributions.

Let F (x) be the distribution function for the triangle area X. We
have X ≤ x when V W = UV/2 ≤ x. Putting x = y/2, this happens
when UV ≤ y and we get

F (y/2) =

∫ 1

0

G(y/u) dH(u) =

= [G(y/u)H(u)]10 −
∫ 1

y

H(u)
d

du
G(y/u) du =

= G(y) −
∫ 1

y

H(u)
d

du
G(y/u) du, 0 ≤ y ≤ 1.

(16)

The partial intergration in (16) is used to avoid integrating to the
lower bound u = 0. To write the result, we need the ν function

(17) ν(x) = −
∫ x

0

log |1 − t|
t

dt.

This function is the real part of the dilogarithm function Li2(x) dis-
cussed by Euler in 1768 and named by Hill, [5]. ν(x) is well defined on
the whole real axis. Some properties of ν(x) are given in Appendix A.

We will not carry out the integration (16) in detail, but will just give
the result

(18) F (x) =
4x

3
(10 − 17x) − 16x3

3
(17 − 3 log(2x)) log(2x)

+
2

3
(1− 16x− 68x2)(1− 2x) log(1− 2x) + 16x2(3 + 2x)

(

ν(2x) − π2

6

)

0 ≤ x ≤ 1/2.

Figure 12 shows the density function is f(x) = dF/dx:
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density function for triangle area

0

2

4

6

8

10

12

0.1 0.2 0.3 0.4 0.5

x

Figure 12. Density function for the area of an random
triangle in a square.

(19) f(x) = 12

[

1 − 2x − 4x2(5 − log (2x)) log (2x)

−(1 + 10x)(1 − 2x) log (1 − 2x) + 8x(1 + x)

(

ν(2x) − π2

6

)]

,

0 ≤ x ≤ 1/2.

The first moments and the standard deviation of the triangle area
are

α1 =

∫ 1

2

0

x dF (x) =
11

144
≈ .076389,(20)

α2 =

∫ 1

2

0

x2 dF (x) =
1

96
,(21)

σ =
√

α2 − α1
2 =

√
95

144
≈ .067686.(22)

6. Concluding comment.

We have not shown any integral calculations in detail. In principle,
they are elementary, which doesn’t mean that they don’t require a sub-
stantial effort. As indicated, the calculations have been done in Maple.
The calculations would not have been possible without some tool for
handling the large number of terms that come out of the integrations.
This doesn’t mean that Maple performs the integrations automatically.
Often, we had to split up the integrands in parts and treat each part
in a special way. We had to do some partial integrations manually.
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We will supply any interested reader with a Maple file describing the
calculations.

Appendix A

The dilogarithm function Li2(x) is defined in [6] for complex x as

Li2(x) = −
∫ x

0

log(1 − t)

t
dt.(23)

When x is real and greater than unity, the logarithm is complex. A
branch cut from 1 to ∞ can give it a definite value. In this paper, we
are only interested in real x and the real part of Li2

(24) ν(x) = Re(Li2(x)) = −
∫ x

0

log |1 − t|
t

dt.

We have the series expansion

ν(x) = Re(Li2(x)) =

∞
∑

k=1

xk

k2
, |x| ≤ 1.(25)

Although the series is only convergent for |x| ≤ 1, the integrals in
(23) and (24) are not restricted to these limits and the ν function is
defined and is real on the whole real axis. We use this function for
0 ≤ x ≤ 1.

2

2

x

864

−1

0

0

1

−2

Figure 13. The function ν(x).

The definition of the dilogarithm function has varied a little from
author to author. Maple has the function polylog(2, x) which is de-
fined by the series expansion (25) for |x| ≤ 1 otherwise by analytic
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continuation. Maple also has a function dilog(x) = Li2(1 − x) defined
on the whole real axis. Maple’s dilog function is the same as the dilog
function given in [1], page 1004.

ν(x) is increasing from ν(0) = 0 via ν(1) = π2/6 to ν(2) = π2/4.
The integrals involving ν(x) needed for calculating the moments of

various distributions take rational values like

∫ 1

0

x dν(x) = 1,

∫ 1

0

x2 dν(x) =
3

4
,

∫ 1

0

x3 dν(x) =
11

18
.
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