
Complex analysis in a nutshell.

Definition. A function f of one complex variable is said to be differentiable at z0 ∈ C if
the limit

lim
z→z0

f(z) − f(z0)

z − z0

exists and does not depend on the manner in which the variable z ∈ C approaches z0.

Cauchy-Riemann equations. A function f(z) = f(x, y) = u(x, y) + iv(x, y) (with u and
v the real and the imaginary parts of f respectively) is differentiable at z0 = x0 + iy0 if and
only if it satisfies the Cauchy-Riemann equations

∂u

∂x
=

∂v

∂v
,

∂u

∂y
= −

∂v

∂x
at (x0, y0).

Definition. A function f is analytic at z0 if it is differentiable in a neighborhood of z0.

Harmonic functions. Let D be a region in IR2 identified with C. A function u : D → IR
is the real (or imaginary) part of an analytic function if and only if it is harmonic, i.e., if it
satisfies

∂2u

∂x2
+

∂2u

∂y2
= 0.

Cauchy formulas. Let a function f be analytic in an open simply connected region D, let
Γ be a simple closed curve contained entirely in D and traversed once counterclockwise, and
let z0 lie inside Γ. Then

∮

Γ
f(z) dz = 0,

∮

Γ

f(z) dz

z − z0
= 2πif(z0),

∮

Γ

f(z) dz

(z − z0)n+1
=

2πi

n!
f (n)(z0), n ∈ IN.

Definition. A function analytic in C is called entire.

Zeros and poles. If a function f analytic in a neighborhood of a point z0, vanishes at z0,
and is not identically zero, then f(z) = (z − z0)

kg(z) where k ∈ IN, g is another function
analytic in a neighborhood of z0, and g(z0) 6= 0. In other words, zeroes of analytic functions
are always isolated and of finite order.

Rouche’s theorem. Suppose f and g are analytic in a disk |z − z0| ≤ r and |g(z)| < |f(z)|
on the circle |z − z0| = r. Then the functions f + g and f have the same number of zeros
(counting multiplicities) in {z : |z − z0| < r}.

Maximum principle. If a function f is analytic in a disk |z − z0| ≤ r, the

|f(z)| ≤ max
|ξ−z0|=r

|f(ξ)| whenever |z − z0| < r,
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with equality if and only if f is a constant. The maximum principle also holds for harmonic
functions.

Liouville’s theorem. If a function f is entire and bounded, then it is constant.

Singularities. If a function f is differentiable in a punctured neighborhood of z0 but not
at the point z0 itself, then z0 is an isolated singularity of f . There are three kinds of isolated
singularities:

• Removable singularities: f(z) is bounded as z → z0. Then f may be extended to a
function analytic in a neighborhood of z0. Example: f(z) = sin z

z
, z0 = 0.

• Poles: There is a number k ∈ IN such that the function (z − z0)
kf(z) has a removable

singularity at z0. The smallest integer k with that property is called the order of the
pole. If k is the order of the pole, then necessarily

lim
z→z0

(z − z0)
kf(z) 6= 0.

• Essential singularities: are those not of the two preceding kinds. If z0 is an essential
singularity of f , then, for any complex number w ∈ C, a sequence (zj) converging to z0

can be found so that limj→∞ f(zj) = w.

Taylor and Laurent series. If a function f is analytic in a disk |z − z0| ≤ r, then it
expands into its Taylor series

f(z) = f(z0) + f ′(z0)(z − z0) +
f ′′(z0)

2
(z − z0)

2 + · · · + f (n)(z0)(z − z0)
n + · · ·

The series is uniformly convergent in the disk |z − z0| ≤ r.

If a function f is analytic in an annular region r ≤ |z − z0| ≤ R, then it expands into its
Laurent series

f(z) =
∞
∑

n=−∞

cn(z − z0)
n, where cn =

1

2πi

∮

Γ

f(z) dz

(z − z0)n+1
, n ∈ ZZ,

where Γ is any curve lying in the annulus r ≤ |z − z0| ≤ R homeomorphic to a circle and
traversed once in the counterclockwise direction.

Remark. A function f has a pole of order k at z0 if and only if

c−k 6= 0, cj = 0 for all j < −k

in its Laurent expansion centered at z0. An essential singularity gives rise to a Laurent series
with an infinite negative part.

Definition. The residue of f at z0, denoted by Resf(z0), is the coefficient c−1 in its Laurent
expansion centered at z0 or, equivalently,

Resf(z0) =
1

2πi

∮

Γ
f(z) dz,
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where Γ is a closed curve enclosing z0 and traversed once in the counterclockwise direction.

The residue theorem. If a function f is analytic in a simply connected domain D except
for a finite number of isolated singularities and if a curve Γ is within D, then

∮

Γ
f(z) dz = 2πi

N
∑

n=1

Resf(zn)

where the zn’s are the singularities of f contained within C. (The curve is, as usual, traversed
once counterclockwise.)

Finding residues. Here are several formulas which simplify finding residues.

• If f has a simple pole at z0, then

Resf(z0) = lim
z→z0

(z − z0)f(z).

• If f has a pole of order m at z0, then

Resf(z0) = lim
z→z0

1

(m − 1)!

dm−1

dzm−1
[(z − z0)

mf(z)].

• If f(z) = g(z)/h(z) where h has a simple zero at z0 and g is analytic at z0, then

Resf(z0) = lim
z→z0

g(z)

h′(z)
.

Using the residue theorem. Integrals of the form
∫ 2π

0
f(sin θ, cos θ) dθ

reduce to integrals along the unit circle using the substitution

z = eiθ, dθ =
dz

iz
, cos θ =

1

2

(

z +
1

z

)

, sin θ =
1

2i

(

z −
1

z

)

.

Integrals along the entire real line
∫ ∞

−∞
f(x) dx

may be often converted to (limits of) contour integrals. The standard trick is to use one of the
half circles C+

R :={Reiφ : φ ∈ [0, π]} or C−
R :={Reiφ : φ ∈ [0,−π]} and the segment [−R, R]

and then let R → ∞. This requires that the integral of f along C±
R tend to zero. Some

integrals, e.g., those containing hyperbolic functions, require instead a rectangular contour
with a segment parallel to [−R, R] chosen so as to produce a multiple of the original integral
while integrating along the new segment [−R+ic, R+ic]. Then one needs to make sure that
contributions from the sides [−R,−R + ic], [R, R + ic] tend to zero. Fancier contours may
be required in some cases.
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Examples.

1. Evaluate
∫ 2π

0
eeiθ

dθ.

2. Prove that the polynomial

p(z) = z47 − z23 + 2z11 − z5 + 4z2 + 1

has at least one root in the disk |z| < 1.

3. Suppose that f is analytic inside and on the unit circle |z| = 1 and satisfies |f(z)| < 1
for |z| = 1. Show that the equation f(z) = z3 has exactly three solutions inside the
unit circle.

4. How many zeroes does the function f(z) = 3z100 − ez have inside the unit circle? Are
they distinct?

5. Evaluate
∫ ∞

−∞

sin2 x dx

x2
.

6. Evaluate
∫ ∞

−∞

dx

(1 + x + x2)2
.

7. Evaluate
∫ ∞

−∞

x sin x dx

x2 + 4x + 20
.

8. Evaluate
∫ ∞

−∞

cos(πx) dx

4x2 − 1
.

9. Prove that
∫ ∞

0

x dx

ex − e−x
=

π2

8
.

10. Show that a positive harmonic function on IR2 is necessarily constant.
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