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The Moduli Spaces of Vector Bundles
over an Algebraic Curve

S. Ramanan

§ 1. Statement of Results

Let X be a complete, nonsingular algebraic curve /C of genus g = 2,
and L a line bundle over X of degree d. We denote by U (n, d) (resp. U, (n,d))
the moduli-space of S-equivalence classes of semi-stable vector bundles
of rank n and degree d (resp. with determinant isomorphic to L) over X.
(The existence of these varieties has been proved in [10] and for a
general introduction, see [4].) If n and d are coprime, the variety U, (n, d)
is complete and nonsingular and Seshadri has proved that Pic(U,(n, d))
is free cyclic (see Proposition 3.4 for a proof similar to his). Let u be the
ample generator of this group. Our first result is the computation of the
canonical class of U, (n, d) in terms of u.

Theorem 1. The canonical class of Uy (n,d)is u™2.

The proof consists in the construction of a map from a projective
space P into U,(n,d) and the study of the pull-back of the tangent
bundle. The determinant of the pull-back is computed using the base
change and the explicit construction of the family of bundles defining
the map of P into U, (n, d). Similar ideas have been used by Tjurin [11, 12],
where, in particular, Lemma 2.1 has been proved.

An interesting result which comes out as an application is the
following.

Theorem 2. If n and d are not coprime, there does not exist a Poincaré
family on any Zariski open subset of U, (n, d).

Basically the proof is similar to that in [4] where this is proved in
the case genus 2, n=2,d =0, but the geometric interpretation in [§ 7, 4]
is replaced here by a direct computation. It may also be mentioned here
that it has since been shown that in the degree 0 case, even topological
obstructions exist for the existence of Poincaré family. See Newstead [8].

A refinement of the procedure mentioned with regard to Theorem 1
would actually yield a map of a projective bundle P(M) over the Jacobian
into U, (2, 1). A study now of the 2™ chern class of the universal bundle on
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U.(2,1)=X gives information on the third cohomology group of
U, (2, 1). This enables one to obtain a somewhat more satisfactory proof
of the following theorem of Mumford and Newstead [2].

Theorem 3. The Kunneth component of the 2™ chern class of the
Poincaré bundle on Uy (2,1)=X in H}(U.(2,1),Z)@ H'(X,Z) gives a
unimodular element.

Although our proof of the theorem is more direct, we have un-
fortunately to use the fact due to Newstead [7] that b, (U, (2, 1)) = 2g,
for which only a purely topological proof is known. See however [5].

In fact, a more systematic study of the map P(M)— U, (2, 1) should
throw more light on the multiplicative structure of the cohomology ring
of U(2,1). To illustrate this we have carried out this computation only
in the case g =3. We determine the cohomology ring in this case fully,
identify the chern classes and by straightforward, if laborious substitu-
tion, evaluate y(U,(2, 1), @), where @ is the tangent bundle. In fact, it
has been recently shown (Narasimhan and Ramanan [S5]) that
H°(U.(2,1),®)=0, and on the other hand as a simple corollary of
Theorem 1, we have H'(U/(2,1),0)=0 for i=2. Thus this yields a
comparison of the moduli of X and that of U;(2,1). For a complete
statement of these, see Theorem 4in § 5.

Finally, I would like to thank C.S. Seshadri for letting me know his proof of the
computation of the Picard group and M. S. Narasimhan and D. Mumford for many dis-
cussions and illuminating remarks. Also, my thanks are due to P. E. Newstead for keeping
me informed of his work on related topics, and to the referee for a careful reading of the
manuscript and for several improvements in the exposition, especially in connection with
Proposition 3.4 and Lemma 3.5.

Notation. X will denote a nonsingular, complete algebraic curve. If
E is a vector bundle +0 on X, u(E) will denote the rational number
degE/rkE.

§ 2. Computation of First Chern Class of U, (n, d)

Lemma 2.1. Let n and d be integers which are coprime,and let 1:0<l<n
be the unique integer such that ld=1(n). Then there exists e:0<e<n
with ld—en=1. If V, W are stable vector bundles on X of ranks | and
(n— 1), and degrees e and (d — e) respectively, then any nontrivial extension

0-V—-E-W-0

gives rise to a stable vector bundle E.

Proof. Let F be any proper subbundle of E. Then we have to show
that deg F/rkF <d/n. The map F — W can be factored through a surjec-
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tion F— W’ and a generic inclusion W' — W [6,§4]. In other words,
we have a commutative diagram

0 0
Il

0>V -F->W -0
oLl

0-V -E-W -0

where the rows are exact. By stability of ¥ and W, we have i) u(W') < u(W)
and i) u(V’) £ u(V). Moreover, equality occurs in i) only if W =0 or
W'=W,and inii)onlyif W'=0and V=V'=F,or W =W and V'=0.
In the first case, the inequality to be proved is e/l <d/n, which is clear.
In the second case, F maps isomorphically on W which contradicts
the assumption that the extension is non-trivial.

Now, assuming that equality does not occur in both i) and ii), we have
u(F)=(deg(V") + deg W')/rkF < 1/rkF{erkV'/l+(d — e) rkW'/(n — I)}

1 ! ’
= T prkF O DORF—rkW)+ld—e)rkw’}

= e/l +rkW'l(n— ) (rkF).

Using the fact that rk W’ <n— [ and also rkW’ £ rkF we obtain

rkW'{n—1+1}

rkW'/ln—1)rkF = nlin—DrkF

<1/ln+1/n-rkF.
Hence we have
wFy<e/l+1/In+1/n-rkF
ne+1 1

=7, +n-rkF =dm+1/n-rkF

ie. ndegF —d-rkF < 1. This shows that ndegF —d - rkF <0 and since
n and d are coprime that ndegF —d - rkF <0. q.ed.

It is well-known that extensions 0— V' — E — W —0 are classified by
H'(X,Hom(W, V)). Moreover, vector bundles given by non-zero
elements of the same one-dimensional subspace of H'(X, Hom(W, V))
are isomorphic [3, Lemma 3.3] and hence one might expect to construct
afamily of vector bundles on X parametrised by P = PH'(X, Hom(W, V)).
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Lemma 2.2. Let © be the hyperplane bundle on P. Then there exists
a canonical isomorphism

H'(P x X, Hom(p} W, pV ®pk1))~ End H(X, Hom(W, V)).

Proof. In fact, since the bundle Hom(p} W, p¥V ®pk1) is clearly
isomorphic to pgt® p¥ Hom(W, V), on applying the Kunneth formula,
and noting that H'(P, 1) =0, we get

L.H.S. in the Lemma ~ H°(P,1)® H*(X, Hom (W, V)).

But since H°(P, 7) is canonically dual to H!(X, Hom(W, V)), the lemma
is proved.

Lemma 2.3. There exists a family of vector bundles (E,),.p on X
parametrised by P so that for each p € P, the E,, is isomorphic to the bundle
obtained as the extension of W by V given by p.

Proof. Consider the bundle E on P x X, obtained as follows. Using
the isomorphism of Lemma 2.2, we see that there is a distinguished
element y in H'(P x X, Hom(p} W, p%V ® pi 1)) corresponding to the
identity endomorphism of H'(X, Hom (W, V)). This then gives rise to an
extension

0->pXV®ppt—>E->pXW-0.

We have only to show that E|, , x is of the desired type. Clearly E,=E|, . x
is an extension of W by V. The element in H'(X, Hom(W, V)) correspond-
ing to this extension is the image of y given by the restriction

HY(P x X,Homp*V ® p§t)— H' (X, Hom(W, V'))
or, what is the same,
H'(P x X, p}®p} Hom(W, V))» H' (X, Hom(W, V)).

Identifying the first of these vector spaces with HY(P,71)@ H'(X, Hom(W,V))
and noting that the image of the identity in H*(X, Hom(W, V)) gives an
element of the one-dimensional space p, we obtain that E, corresponds
to the extension p of W by V.

We shall also need later the following generalisation of Lemma 2.3.

Lemma 2.4. Let (E,), s, (F).r be two families of vector bundles on X
parametrised by S, T respectively. Assume that dim H*(X, Hom(F,, E)))
is independent of seS,teT. Let n: P(V)—>S x T be the projective bundle
associated to the vector bundle V whose fibre at (s, t) is H*(X, Hom(F,, E,)).
Let, moreover, H'(S x T, (psx 1), Hom(F, E)\® V*)=0 for i=1,2. Then
there exists a family W of vector bundles on X parametrised by P(V)
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given as an extension
0->7*pixx EQ ppwyt > W - 1*pF o x F >0

which restricts to each fibre of P(V) as the corresponding extension defined
in Lemma 2.3.

Proof. Similar to [3, Proposition 3.1].

Let d and n> 0 be two integers which are coprime. Let 0 </<nand e
be so chosen that Id —en=1. Let V, W be stable vector bundles on X
of ranks | and (n—[) and degrees e and (d — e) respectively. Then by
Lemma 2.3, there is a family of vector bundles on X parametrised by
P=PH'(X,Hom(W, V)). Moreover this is a family E of stable vector
bundles of degd and rank n and with determinant = det W-detV by
Lemma 2.1. By the universal property of the variety U(n, d), this gives
rise to a morphism ¢ : P— U, (n,d), where L= detV-detW. We would
like to study this map ¢.

It is known (when n and d are coprime) that there exists a “universal”
vector bundle U on U, (n,d) x X so that (¢ x 14)* U and E coincide on
px X foreach pe P.

Lemma 2.5. Let E,F be two vector bundles on T x X such that
El,xx~Fl.xx for each te T. If H°(X,EndE|t x X) is 1 dimensional for
each t € T, then there exists a line bundle L on T so that Ex FQ®p¥ L.

Proof. Since H°(X,Hom(F, E)|,, x) is 1-dimensional for such te T,
the direct image (py), Hom(F, E) is an invertible sheaf on T and let L
be the associated line bundle. It is obvious that Hom(F, E)® p% L* has a
trivial line bundle as direct image under p;. In particular, this gives rise
to an element of H°(T x X, Hom(F ® p* L, E)) which is non-zero on
each t x X, te T. By assumption any non-zero map FQpfL|,xx—E|,xx
is an isomorphism. Hence F®p¥ L~ E.

Applying Lemma 2.5 to our situation, we obtain amap ¢ : P— U, (n, d)
such that (¢ x 1,)*U = E® p}t™ for some m e Z. If § is the tangent bundle
of U.(n, d), then we are interested in studying the bundle ¢*6 on P. In
order to do this, we shall interpret 6 in terms of U.

Lemma 2.6. The vector bundle associated to the first direct image
R,(p) of ad’U on U(n, d) is isomorphic to the tangent bundle 6, where
ad’U denotes the bundle of endomorphisms of trace 0 on U.

Proof. Note that p,(ad’U)=0 since H°(X,ad'E)=0 if E is stable
[6, Corollary to Proposition 4.3]. This shows that R, (p) (ad’ U) is locally
free with fibres of the form H'(X,ad E). From the general theory of
deformations, we then have a bundle homomorphism 6 — R, (p) (ad’ U).

6 Math. Ann. 200
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Since the given family of vector bundles is injective and complete, this
homomorphism is also an isomorphism.

Lemma 2.7. If E=(E).r is a family of stable vector bundles on X,
of rank n and determinant ~ L, and ¢ : T— Uy (n, d) the induced morphism,
then @*0 is isomorphic to the first direct image of ad'E on T.

Proof. By Lemma 2.6, we have ¢*0~ ¢*(R'(p)(ad’ U)). But by the
base change theorem [1, Corollary 1, §7.3], there is a canonical iso-
morphism, ¢*(R!(p))(ad’' U)~ R*(py) (¢ x 1y)*(ad’'U). On the other
hand, by Lemma 2.5, we see that (¢ x 1)* (ad' U)~ad'E.

2.8. Proof of Theorem {. We apply the Lemma 2.7 for the family
P=PH'(X,Hom (W, V)). Let us first compute the class [ad E] in
K(P x X). Clearly,

[ad'E] = (pk[V1 pp[r] + Pk [WD) (0x [V*] Pp[*1 + Pk [W*]) - 1.
Since R;(pp) (ad’ E) =0 for i+ 1, we have
[R,(pp) (ad EY] = — py[ad’ E] = — p,{px [V @ V*] + px[W @ W*]
+px[VOW*1pp[] + px [W® V*] pp[r*]1 -1}
=—{x(VRV*)+x(WQW*)
— 1+ (VR W*) 1+ x(WQ V*)1*}.

Hence det(R, (pp) ad’ E) = H* where s= — y(V® W*)+ x(W® V*)and H
is the positive generator of PicP.

We have
deg(VRW*)=en—)—d—e)l=—1
and
(VOW¥)=—1+In—-0)(1-g).
Also
(WRV*)=1+Iln—-NH(1—-g).
Hence

det(R,(p)ad E)=H?,
@*(det (0)) = H?.

If we show that ¢* : Pic(U(n, d))— PicP is an isomorphism, Theo-
rem 1 in the introduction would have been proved. Note, however that
since PicU, (n, d) is isomorphic to Z (see Proposition 3.4), this proves at
least that det § = u* where u is the positive generator of Pic Uy (n,d) and
A=1 or 2. To complete the proof of Theorem 1, we have only to show
that @* is surjective on Pic. Let now L be a vector bundle on X of rank
r and degree f.

Then
(¢ x 1)) [URpxL]=L[E]- pp[7™] - px[L].

ie.
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Also ' ’ . '
o' (P U pyx LT = (pp) (@ x 1x) (U PxL)

=1"(pp)(LE]) px[L]
= "(pp) Pk [V Pp[7] - Px[L] + px [W1Px[L]}
=1{tx(X,VRL)+ y(X, WRL)}.

In particular ' '
o' detp(U®pyL)=u’,

s=m+ D) x(VRL)+m-y(WRL).

Let us now take L to be of degree f = — {d +n(1—g)} and of rank n.
Then

where

@' detp(UR px L)=v
where

s=(m+1){en—I1(d+n(1—g)+In(1—g)}
+m{(d—eyn—(n—1)(@d+n(l—g)+m—D)md-g)}
=m(dn—n(d+n(1 —g))) +n*(1 —g)+en—I(d+n(l —g)) +In(1—g)

=(en—1d)= — 1 showing @* is surjective on Pic. ged.

Remark 2.9. Let U be a universal bundle on U,(n,d) x X. Then the
line bundle det U restricted to U, (n, d) x x, x € X does not depend on x
and can be computed as follows. Let (¢ x 1y)* U=E®1" Clearly
E|P x {x} =It+ (n— ). 1. Hence, denoting the above bundle on U, (n, d)
by C, we get

¢*C =det(p'(lt+(n—1 1))
— ,L.mn+l .

Since ¢* is an isomorphism on Pic, we have C = u™**! On the other hand,

since U may be tensored with a line bundle on Uy (n, d) without affecting

its “universality”, we may normalise U by requiring C(U)=4u'. In this

case, we have p*U ~ E.

Definition 2.10. Let n and d be coprime. The unique bundle U on
U.(n, d) x X, with the property that Ul y is in the equivalence class t
and det Uy, .4« IS €quivalent to the line bundle u',0 <I<n where
Id= 1(n) is called the universal family of bundles on X parametrized by
Uy(n, d).

Remark 2.11. Let E and F be two vector bundlesso thatdet EQ det F =L
and rank E + rank F = n. Consider the family of vector bundles on X
parametrised by PH' (X, Hom(F, E)) given by extensions asin Lemma 2.3.

6*



76 S. Ramanan:

Let 0 be the open subset corresponding to stable bundles. Then we have
a map ¢ :0- U.(n, d).
The same computations as in 2.7 then show that

@*(detT(U,(n,d))=H*) where s=y(FQE*)—y(EQF*)=2deg(FRE*)

and H is the restriction of the hyperplane bundle to 0. Since
det T(Uy(n, d)) = h?, this shows that ¢*(h)= H", where r = deg(F ® E*).

§ 3. Non-Existence of Poincaré Families when n and d are not Coprime
The aim of this section is to prove Theorem 2 of the introduction.

Lemma 3.1. Let E (resp. F) be a vector bundle of rank n and degree d
(resp. rank (n+ 1) and degree d'). Then there exists a line bundle M so that
E admits an injective map into FQ M.

Proof. Choose M so that the sections of the bundle Hom(E, F® M)
generate the fibre at every point x € X. The set H, of homomorphisms
E— F® M that are not of maximal rank at x is simply the inverse image
by the surjective map

H°(X,Hom(E, F® M))—>Hom(E,, F,®M,)

of the set of homomorphisms E, — F,® M which are not of maximal rank.
The latter being of codimension 22, we have: the set H= () H, of

xeX
homomorphisms which are not injective at some x € X is of codimension
= 1 and the Lemma is proved.

Remark 3.2. 1) Lemma 3.1 is in fact a theorem of Atiyah when E
is the trivial bundle of rank M.

2) If we assume E and F are stable, then M can be chosen to depend
only on n,d and d’ and not on E and F.

3) In addition, we may also assume that

i) H(X,Hom(E, F ® M))=0.

A . 0 "FOM

i) H'(X,Hom(F®M,F®M/iE))=0and H (X,Hom(F@M,T))

generates the fibre at every point x € X, where i : E— F ® M is an injection.
In fact, by taking M to be sufficiently positive,

i) can obviously be satisfied. On the other hand,
FOMAEAM"''®@detFRQdetE™?.
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Hence
Hom(FQM,FRM/iE)~ F*QM"® det FQ det E™!

and again by choosing M sufficiently positive, ii) can also be fulfilled.

Let us now assume that E € U, (n, d) and F a stable point of Uy .(n+1,d")
where n+ 1 and d' are coprime. Choose M to satisfy Lemma 3.1 and also
3) Remarks 3.2. Consider the family of vector bundles on Y x X, where
Y=PH'(X,Hom(M""'® L® L', E)) given by Lemma 2.3. Denoting
by H the hyperplane bundle on Y, this family W is given by an extension

0-pEQptH-WoHpr(M" QL ®L ™ 1Y)-0.

Let O be the open subset of Y corresponding to stable bundles. Then we
have just shown that 0 is non-empty. Noting that Pic Y — PicQis surjective,
we will denote the image of H by this restriction map on Pic0 also by H.
(We will presently see that this restriction map is an isomorphism.)

On the other hand, we consider on U,.(n+ 1,d’) two projective
bundles P,, P, constructed as follows:

Let U be the universal bundle on U;. x X and p,, p, be projections
of U;. x X onto U;. and X. Clearly

V, = (p1),(Hom(pfMQ U, ptM" ' Q LQ L™ 1))
V,=(p;), (Hom(p3E, pt MR U))

and

are both vector bundles by our choice of M. Let moreover 0, (resp. 0,)
be the open subset of P, =P(V,) (resp. P, = P(V,)) corresponding to
surjections M@ F->M"" '@ L® L™ (resp. injections E-M®F). We
now wish to define two maps ¢ =0-0, and v :0-0,. If we denote by
m,, T, the projections of 0,0, on Uj.,then we first define n; c @ =m, o
as follows. The bundle W® p¥M ~! is a family of stable vector bundles
parametrised by 0 of rank (n + 1) and determinant ~ L. This induces by
the universal property of U, .(n+ 1,d’) a morphism 1:0-U.(n+1,d").
It is not true that (A x 1,)*U~ W®piM™! in general. However by
Lemma 2.5, there exists a line bundle N on 0 so that (A x 1,)*U
~W®ptM ' ®piN. Then we have

MV, = (po)y (Hom(W, pfM" '@ L®L "))@N !
A*V, = (py)y (Hom (p} E, W)@ N .

and

It is obvious that the right sides have canonical subbundles isomorphic
respectively to N~ ! and N® H. Hence we have

Lemma 3.3. Let A be the map of Ointo Up.(n+1,d") so that (A x 1,)*U
=W@®pEtM ' ®pt N. There exist maps ¢ : 0— P, and y : 0— P, such that
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i) ¢*(r,)~N.
ii) p*(1,)* H '@N~! and
i) Te@p=m,op=A
Proof. The Lemma follows from the preceding remarks and the
universal properties of P; and P,.

Proposition 3.4. i) Pic Y — PicQ is an isomorphism.
ii) PicUp.(n+ 1,d)=Z.

Proof. Since Pic Y — Pic0 is surjective, we have rank Pic0<1. We
have only to show rank Pic0 = 1. On the other hand, Pic U, has rank > 1
since U, is complete and, since U, . is simply connected, it is enough to
show that rank Pic U;. < 1. Both i) and ii) will hence be proved if we can
show that rank Pic0O > rank Pic U;,. Note that the map y : 0— P, maps 0
isomorphically onto 0,, as any injection E—»F®M with Fe U,.(n+ 1,d)
gives rise to a stable extension of M"* '@ L@ L™' by E. If we then show
that the complement of 0, in P, is irreducible, it would follow that

rank PicP, < rank Pic0, +1.
On the other hand,
rank PicP, = rank PicU,. +1.

Thus, in order to complete the proof of Proposition 3.4, it is sufficient to
prove.

Lemma 3.5. D, = P, — 0, is irreducible.

Proof. The morphism n, : D, — Uy, has fibres D,  say. It is sufficient
to show that D, ; is irreducible and of constant dimension. Denote by
D, ,, the variety of homomorphisms E— F® M, which are not injective
atx € X. By the same argument, it is enough to show that D, _ isirreducible
and of constant dimension. Since by assumption

H°(X, Hom(E, F® M))—» Hom(E,, F,® M,)

is surjective, our assertion is a consequence of the fact that the set of
homomorphisms E, — F, ® M, which are not injective is irreducible.

We now consider the map ¢ : 0— P, . Crucial to us is the computation
of the image of Pic P, in PicO.

Lemma 3.6. The image Pic P, — PicO=7Z is the group generated by
nandd.

Proof. Since Pic P, is generated by 7, and n* h, we will first compute
@*n*h=2*h. By Theorem 1, det(T(U,))~ h? and it is enough to com-
pute A*(T(Uy,.)). Let now deg M = m. By Remark 2.10, we have A*(H) = H',
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where r= —deg(EQM " VQL '@ L)= —d—n{—(n+ 1)(m)+d—d’}
=m+1)(nm—-d)+nd.

On the other hand, we have now to compute ¢*t, = N, by Lemma 3.3.
Let, e be integers so that Id’ — e(n + 1)= 1. Then by the normalisation 2.9,
det Uly,, «y & h'. Moreover, if N=H", we have

det(W®p}M“®p3N)|0xm=Hn(n'+ U+n

Hence 2*(u)=H'=H"™*V*" . orn'(n+ 1) +n=rl.
But
rl—n=Iln+1)(nm—d)+n(d —1)
=l(n+1)(mn—d)+ne(n+1).

Hence n' = — I(mn — d) — en. Thus the image inZ by ¢* : Pic P, - Pic0=Z
is generated by A*u=r=mn+1)(mn—d) +nd, and ¢*(1,)
= — |(mn— d) — en. It is easy to see that they generate the same subgroup
of Z asd and n.

3.7. Proof of Theorem 2. If there exists a Poincaré family on any
Zariski open subset V of Uy (n, d), then we may construct a vector bundle
on V whose fibre at Ec V is H'(X, Hom(M""'® L® L', E)). Let O
be the open subset of stable extensions in the associated projective bundle.
It is clear that 0C 0" and the map¢ : 0— P, extends to an isomorphism
of 0’ onto an open subset of 0, .

Now it is easy to see that the condition that the above projective
bundle comes from a vector bundle leads to the condition Pic0’— PicO
is surjective. We have the diagram

Pic0’' - PicO

N\ /

Pic0,

0’ being an open subset of 0,, Pic0, — Pic( is also surjective. But the map
Pic0, — Pic0 can only be surjective if n and d are coprime by Lemma 3.6.

§ 4. Remarks on the Third Betti Number of U, (2.1)

It has been proved (among other things) by Newstead [7] that the
third integral cohomology group of U, (2, 1) is free of rank = 2g. In this
section we show that in fact there is a canonical isomorphism of
H3(U,(2,1),Z) with H'(X,Z) leading to a result of Mumford and
Newstead [2]. Unfortunately however we need the fact mentioned above
in this approach.
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Consider the Poincaré bundle D on J x X. Let W be the bundle of
extensions on P x X where P is the projective bundle on J associated to
the first direct image of p¥L '® D?. We have the following exact
sequence
0-n*DRpit->Won*(p¥L®D 1)—0
wheren: P x X —»J x X is the projection and 7 is the tautological bundle.
By Lemma 2.1, all the bundles in this family are stable and hence we have
a morphism ¢: P— U;(2,1). We wish now to investigate the induced
map ¢*: H3(U,,Z)—- H*(P,Z).

Lemma 4.1. ¢* maps H*(U,,Z) isomorphically onto T - n* H'(J, Z).

Proof. Since H*(U,,Z) is a free group on 2g generators, and so also
is 7-m* H'(J, Z), we have only to show that ¢* is surjective. Let U be the
universal bundle on U, x X. Clearly we have (¢ x 1y)*U=W®p}v,
where v is a line bundle on P. Moreover, it is easy to see that (¢ x 1,)*U
and W restrict to isomorphic bundles on each fibre in the fibration
n: P—J. This follows from the normalisation of U and the obvious fact
that det W (,, = 7. Hence v is trivial on each fibre of P and consequently
we have

(@x1x)*U=WQ®n*u, where puisaline bundle on J.

We shall now compute the 2" chern class ¢, of (¢ x 1,)*U = W@n* .

Clearly
GWRn* p)=cy(W)+m*cy (1) - (W) + ¥y (n)? .

Note that ¢, (W) =(1)+ p¥c,(L).
If ¢3,,(U) denotes the (3,1) component of c,(U) in the Kunneth
decomposition of H3(U,, x X), we have
3 1 (W@n*u)=c3 (W).
By definition of W we have
(W) =(n*c, (D) + 1) (pX ¢y (L) — n* ¢, (D))
= —n*¢, (D) +n* ¢, (D) (pfc1 (L) — 1)+ pte (L) .
Since the Poincaré bundle is trivial on J x (x) for some x e X, and on
1 x X, it is clear that ¢, (D)= c, (D).

Hence
c3 (W)= —n*cy(D) 7.
Thus finally, we have (¢ x 15)*(c3,,(U))= —1-n*c (D). Since c¢; (V)
€ H3(U,,Z)®@ H* (X, Z), this defines a map H,(X,Z)— H*(U,,Z) and let
G be the image. On the other hand, it is well-known that the map
H,(X,Z)-»H'(J,Z) given by c,(D)=c, (D) is an isomorphism. Thus
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we have the diagram

(4.2) H,(X,Z)—— H*(U,,Z)

C1,1 @*

H'(J,Z) H3(P,Z)

S

H'(P,Z).

The above computations show that this diagram is commutative. In
particular, we have ¢*(G) > tn* H!(J,Z). This shows that rk ¢*(G) = 2g.
Hence rk G = 2g. Moreover, ¢* G is injective. Since G is a subgroup of
max rank in H3(U,, Z), it is clear thatker o* G = Qimplies that ker p* =0.
Thuswe have proved that ¢* isinjectiveand ¢*(H* (U, Z)) D t - n* H* (J, Z).
Since the latter is a direct summand in H3(P,Z), this implies that ¢*
is an isomorphism onto 7 - n*(J, Z). q.ed.

Moreover, from the diagram 4.2, we conclude that c; , (U), interpreted
as a map of H,(X,Z)— H*(U,,Z) is the same as the map ¢, , : H;(X,Z)
— H'(J, Z), onidentifying H'(J, Z) with the subgroup ¢*(t - n*(H'(J,Z))).
Since ¢, , is an isomorphism, Theorem 3 is proved.

§ 5. Cohomology Algebra of U, (2. 1) when Genus = 3

In this article, we study the map ¢ of § 4 in greater detail in the case
g =3 and indicate how this leads to the determination of the rational
cohomology algebra of U, (2, 1) in this case. More precisely we have

Theorem 4. Let X be a complete non-singular curve of genus 3.
Denote by V the vector space H*(X, Q) and by 0 the intersection pairing
considered as an element of 1*(V). Let A be the free graded commutative
algebra generated by a) a one-dimensional vector space Qh, of degree 2
b) V, where every element is supposed of degree 3 c) a one dimensional vector
space Qv, of degree 4.

Let I be the ideal in A generated by

i) 3h* — 10hv — 46,

i) (h2=2v)V,

iii) (b2 —=3v)v,

iv) {hx,xe A2V with x6* =0},

v) {ye A3V with y6 =0}.
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Then
1) H*(U.(2, 1), Q) is isomorphic to A/I.
2) The chern classes of U, (2,1) are given by

€1 =2h, c;=8v, c3=2h%, ¢, =Th* (3h* - 8V)/3, cs=c,=0.
2") Equivalently,
(ch), =2hy, (ch), =2(h*— 4v), (ch); = Th*/3 — 8hv,
(ch)y = (h* —4v)? /6, (ch)s = h®/60, (ch)g=0.

3) K[ UL(2, 1)] = 224, where [UL(2, 1)] denotes the fundamental cycle.
4) x(UL(2,1), ®)= — 3, where O is the tangent bundle.

Lemma 5.1. Let A/I be as in Theorem 4. If b,=dim(A/I),, the i
graded component of A/I, then we have b,=b},_; for i<12 and b;=0
for i>12. Also by=1, by =0, by=1, b, =6, b =2, by =6, b, 16.
Moreover, in A/I, we have the relations a) h3v = 9/28 h%, b) hv? = 3/28 h?,
¢) v3 = 1/28 hS.

Lemma 5.2. Assertion 2) and 2') in Theorem 4 are equivalent.
Lemma 5.3. Assertions 1) and 2) of Theorem 4 imply 3) and 4).

Proofs of these lemmas are straightforward verifications. To prove
Lemma 5.3, we first note that since U, (2, 1) is unirational (even rational)
[4,§2], H(U.(2,1),0)=0 for i> 1, and hence x(U.(2,1),0)=1. On the
other hand the top Todd class 4 can be computed by 2) as a multiple of
h®, using Lemma 5.1. Finally, since T U2, )] =2(Uy(2,1) =1,
3) would follow from 1) and 2). As for 4), this is a routine calculation using
again, Hirzebruch’s Riemann-Roch formula.

Lemma 5.4. The cohomology ring P over J defined in §4 has the
JSollowing structure. It is generated by H*(J') and an element © € H? which
satisfies the (only) relation

K=o (g—k)! ’
where 0 is a nondegenerate element of H?(J).

Proof. If D is the Poincaré bundle on J x X, then let us denote by
0 the element — p, (c, (D)?/2). We have

ch R (p;:) p¥ L™ ® D?) = —ch(pyi), [P L™ ' ®v?]

and is easily seen using Grothendieck-Riemann-Roch theorem to be
40 +g. From this our assertion is trivially deduced.
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Lemma 5.5. Under the map o* : H*(U.(2, 1), Q)— H*(P, Q),
a) The chern character of U.(2, 1) is mapped on the element
3g—-3+ Y 2(g-1)t¥/Q2i+ Y {80- 22!+ 207 2i+ 1)} .

i1 iz0

b) The generator of H?(U.) maps on t +46.

¢) H3(U,) maps isomorphically on t- H*(P).

d) The second chern class of the Poincaré bundle on Up(2, 1) x (x),
x € X is mapped on 26(t + 26).

Proof. a) is a simple application of Lemma 2.7 and Grothendieck-
Riemann-Roch theorem.

b) Is then a consequence of a) and Theorem 1.
¢) Has been proved in § 4.

To prove d), one observes that (ch @), can be directly computed to be
(g — 1) (c? — 4c,) where ¢, , ¢, are chern classes of the Poincaré bundle on
U.(2,1) x x. Hence @*(c?—4c,)=1*> by a). Since ¢*(c;)=1+40, it
follows that ¢*(c,)=20(t + 20).

Lemma 5.6. The elements ¢@*h, o* H*(U.(2,1)), ¢*c, satisfy the
relations i), ..., v) of Theorem 4'.

Proof. This is simple substitution ﬁsing Lemma 54.

5.7. Proof of Theorem 4. Now, let B be the subalgebra of H*(P(M), Q)
generated by the image of ¢*(H'(U,(2, 1)), i <4. One can check directly
that dimB;2b;(U.(2,1)) for i<10 using [7]. This shows that
@* : H(U,(2,1))> B; is an isomorphism for i < 10. In particular, ¢* is
injective in this range. Since the relations i), ..., v) of Theorem 4 are in
the gradation < 10, this implies that the elements h, H*(UL(2, 1)) and c,
satisfy the same relations. Moreover, these elements generate the
cohomology groups H'(U,(2, 1))fori < 10 and hence the wholecohomology
ring H*(Uy(2, 1)). Lastly, this gives a surjective map A/I -» H*(U(2,1),Q).
Since by Lemma 5.1 dim(A4/I); = dim H'(U.(2, 1), Q), this is an isomor-
phism.

The computation of the chern classes is now straightforward using
Lemma 5.5.
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