
The normal velocity components V1, n and V2, n as well as pressure acting on
the inner and outer circumferential areas pass through the shaft center, and
thus they do not contribute to torque about the origin. Then only the tan-
gential velocity components contribute to torque, and the application of 
the angular momentum equation to the control 

volume gives
(6–57)

which is known as Euler’s turbine formula. When the angles a1 and a2
between the direction of absolute flow velocities and the radial direction are
known, it becomes

(6–58)

In the idealized case of the tangential fluid velocity being equal to the blade
angular velocity both at the inlet and the exit, we have V1, t ! vr1 and V2, t
! vr2, and the torque becomes

(6–59)

where v ! 2pn. is the angular velocity of the blades. When the torque is
known, the shaft power can be determined from W

.
shaft ! vTshaft ! 2pn.Tshaft.

EXAMPLE 6–8 Bending Moment Acting at the Base 
of a Water Pipe

Underground water is pumped to a sufficient height through a 10-cm-
diameter pipe that consists of a 2-m-long vertical and 1-m-long horizontal
section, as shown in Fig. 6–37. Water discharges to atmospheric air at an
average velocity of 3 m/s, and the mass of the horizontal pipe section when
filled with water is 12 kg per meter length. The pipe is anchored on the
ground by a concrete base. Determine the bending moment acting at the
base of the pipe (point A) and the required length of the horizontal section
that would make the moment at point A zero.

SOLUTION Water is pumped through a piping section. The moment acting
at the base and the required length of the horizontal section to make this
moment zero is to be determined.

Tshaft, ideal ! m
#
v(r 2

2 " r 2
1)

Tshaft ! m
#
(r2V2 sin a2 " r1V1 sin a1)

Tshaft ! m
#
(r2V2, t " r1V1, t)

a M ! a
out

rm
#
V " a

in
rm
#
V
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FIGURE 6–37
Schematic for Example 6–8 and the

free-body diagram.
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Assumptions 1 The flow is steady. 2 The water is discharged to the atmo-
sphere, and thus the gage pressure at the outlet is zero. 3 The pipe diameter
is small compared to the moment arm, and thus we use average values of
radius and velocity at the outlet.
Properties We take the density of water to be 1000 kg/m3.
Analysis We take the entire L-shaped pipe as the control volume, and desig-
nate the inlet by 1 and the outlet by 2. We also take the x- and z-coordinates
as shown. The control volume and the reference frame are fixed.

The conservation of mass equation for this one-inlet, one-outlet, steady-
flow system is m

.
1 ! m

.
2 ! m

.
, and V1 ! V2 ! V since Ac ! constant. The

mass flow rate and the weight of the horizontal section of the pipe are

To determine the moment acting on the pipe at point A, we need to take the
moment of all forces and momentum flows about that point. This is a
steady-flow problem, and all forces and momentum flows are in the same
plane. Therefore, the angular momentum equation in this case can be
expressed as

where r is the average moment arm, V is the average speed, all moments in
the counterclockwise direction are positive, and all moments in the clock-
wise direction are negative.

The free-body diagram of the L-shaped pipe is given in Fig. 6–37. Noting
that the moments of all forces and momentum flows passing through point A
are zero, the only force that yields a moment about point A is the weight W
of the horizontal pipe section, and the only momentum flow that yields a
moment is the outlet stream (both are negative since both moments are in
the clockwise direction). Then the angular momentum equation about point
A becomes

Solving for MA and substituting give

The negative sign indicates that the assumed direction for MA is wrong and
should be reversed. Therefore, a moment of 82.5 N · m acts at the stem of
the pipe in the clockwise direction. That is, the concrete base must apply a
82.5 N · m moment on the pipe stem in the clockwise direction to counter-
act the excess moment caused by the exit stream.

The weight of the horizontal pipe is w ! W/L ! 118 N per m length.
Therefore, the weight for a length of L m is Lw with a moment arm of r1
! L/2. Setting MA ! 0 and substituting, the length L of the horizontal pipe
that will cause the moment at the pipe stem to vanish is determined to be

0 ! r1W " r2m
#
V2   →    0 ! (L/2)Lw " r2m

#
V2

 ! !82.5 N " m 

 ! (0.5 m)(118 N) " (2 m)(23.56 kg/s)(3 m/s)a 1 N
1 kg $ m/s2b

 MA ! r1W " r2m
#
V2 

MA " r1W ! "r2m
#
V2

aM ! a
out

rm
#
V " a

in
rm
#
V

W ! mg ! (12 kg/m)(1 m)(9.81 m/s2)a 1 N
1 kg $ m/s2b ! 118 N

m
#

! rAcV ! (1000 kg/m3)[p(0.10 m)2/4](3 m/s) ! 23.56 kg/s
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or

Discussion Note that the pipe weight and the momentum of the exit stream
cause opposing moments at point A. This example shows the importance of
accounting for the moments of momentums of flow streams when performing
a dynamic analysis and evaluating the stresses in pipe materials at critical
cross sections.

EXAMPLE 6–9 Power Generation from a Sprinkler System

A large lawn sprinkler with four identical arms is to be converted into a tur-
bine to generate electric power by attaching a generator to its rotating head,
as shown in Fig. 6–38. Water enters the sprinkler from the base along the
axis of rotation at a rate of 20 L/s and leaves the nozzles in the tangential
direction. The sprinkler rotates at a rate of 300 rpm in a horizontal plane.
The diameter of each jet is 1 cm, and the normal distance between the axis
of rotation and the center of each nozzle is 0.6 m. Estimate the electric
power produced.

SOLUTION A four-armed sprinkler is used to generate electric power. For a
specified flow rate and rotational speed, the power produced is to be deter-
mined.
Assumptions 1 The flow is cyclically steady (i.e., steady from a frame of ref-
erence rotating with the sprinkler head). 2 The water is discharged to the
atmosphere, and thus the gage pressure at the nozzle exit is zero. 3 Genera-
tor losses and air drag of rotating components are neglected. 4 The nozzle
diameter is small compared to the moment arm, and thus we use average
values of radius and velocity at the outlet.
Properties We take the density of water to be 1000 kg/m3 ! 1 kg/L.
Analysis We take the disk that encloses the sprinkler arms as the control
volume, which is a stationary control volume.

The conservation of mass equation for this steady-flow system is m
.
1 ! m

.
2

! m
.

total. Noting that the four nozzles are identical, we have m
.

nozzle ! m
.

total/4
or V

.
nozzle ! V

.
total/4 since the density of water is constant. The average jet

exit velocity relative to the nozzle is

Vjet !
V
#

nozzle

Ajet
!

5 L/s
[p(0.01 m)2/4]

 a 1 m3

1000 L
b ! 63.66 m/s

L !B2r2m
#
V2

w
!B2 % 141.4 N $ m

118 N/m
! 2.40 m
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The angular and tangential velocities of the nozzles are

That is, the water in the nozzle is also moving at a velocity of 18.85 m/s in
the opposite direction when it is discharged. Then the average velocity of the
water jet relative to the control volume (or relative to a fixed location on
earth) becomes

Noting that this is a cyclically steady-flow problem, and all forces and
momentum flows are in the same plane, the angular momentum equation

can be approximated as where r is the moment 

arm, all moments in the counterclockwise direction are positive, and all
moments in the clockwise direction are negative.

The free-body diagram of the disk that contains the sprinkler arms is given
in Fig. 6–38. Note that the moments of all forces and momentum flows
passing through the axis of rotation are zero. The momentum flows via the
water jets leaving the nozzles yield a moment in the clockwise direction and
the effect of the generator on the control volume is a moment also in the
clockwise direction (thus both are negative). Then the angular momentum
equation about the axis of rotation becomes

Substituting, the torque transmitted through the shaft is determined to be

since m
.
total ! rV

.
total ! (1 kg/L)(20 L/s) ! 20 kg/s.

Then the power generated becomes

Therefore, this sprinkler-type turbine has the potential to produce 16.9 kW
of power.
Discussion To put the result obtained in perspective, we consider two limit-
ing cases. In the first limiting case, the sprinkler is stuck and thus the angu-
lar velocity is zero. The torque developed will be maximum in this case since
Vnozzle ! 0 and thus Vr ! Vjet ! 63.66 m/s, giving Tshaft, max ! 764 N · m. But
the power generated will be zero since the shaft does not rotate.

In the second limiting case, the shaft is disconnected from the generator
(and thus both the torque and power generation are zero) and the shaft accel-
erates until it reaches an equilibrium velocity. Setting Tshaft ! 0 in the angu-
lar momentum equation gives V r ! 0 and thus V jet ! V nozzle ! 63.66 m/s.
The corresponding angular speed of the sprinkler is

n
#

!
v

2p
!

Vnozzle

2pr
!

63.66 m/s
2p(0.6 m)

a 60 s
1 min

b ! 1013 rpm

W
#

! 2pn
#
Tshaft ! vTshaft ! (31.42 rad/s)(537.7 N $ m)a 1 kW

1000 N $ m/s
b ! 16.9 kW

Tshaft ! rm
#

totalVr ! (0.6 m)(20 kg/s)(44.81 m/s)a 1 N
1 kg $ m/s2b ! 537.7 N $ m

"Tshaft ! "4rm
#

nozzleVr  or  Tshaft ! rm
#

totalVr

a M ! a
out

rm
#
V " a

in
rm
#
V,

Vr ! Vjet " Vnozzle ! 63.66 " 18.85 ! 44.81 m/s

 Vnozzle ! rv ! (0.6 m)(31.42 rad/s) ! 18.85 m/s

 v ! 2pn
#

! 2p(300 rev/min) a1 min
60 s
b ! 31.42 rad/s
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The variation of power produced with
angular speed.
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SUMMARY

This chapter deals mainly with the conservation of momen-
tum for finite control volumes. The forces acting on the con-
trol volume consist of body forces that act throughout the
entire body of the control volume (such as gravity, electric,
and magnetic forces) and surface forces that act on the con-
trol surface (such as the pressure forces and reaction forces at
points of contact). The sum of all forces acting on the control
volume at a particular instant in time is represented by ! F

→

and is expressed as

total force body force surface forces

Newton’s second law can be stated as the sum of all exter-
nal forces acting on a system is equal to the time rate of
change of linear momentum of the system. Setting b ! V

→
and

thus B ! mV
→

in the Reynolds transport theorem and utilizing
Newton’s second law gives the linear momentum equation for
a control volume as

It reduces to the following special cases:

Steady flow:

Unsteady flow (algebraic form):

Steady flow (algebraic form):

No external forces:

where b is the momentum-flux correction factor. A control
volume whose mass m remains constant can be treated as a
solid body, with a net force or thrust of F

→
body ! mbodya

→

acting on it.! a
in
bm
#
V
→

" a
out
bm
#
V
→

0 !
d(mV

→
)CV

dt
# a

out
bm
#
V
→

" a
in
bm
#
V
→

a F
→

! a
out
bm
#
V
→

" a
in
bm
#
V
→

a F
→

!
d
dt

 "
CV

 rV
→

 dV # a
out
bm
#
V
→

" a
in
bm
#
V
→

a F
→

! "
CS

 rV
→

(V
→

r $ n
→
) dA

a F
→

!
d
dt

 "
CV

rV
→

 dV # "
CS

 rV
→

(V
→

r $ n
→
) dA

a F
→

! a F
→

gravity # a F
→

pressure # a F
→

viscous # a F
→

other

Newton’s second law can also be stated as the rate of
change of angular momentum of a system is equal to the net
torque acting on the system. Setting b ! r→ % V

→
and thus B

! H
→

in the general Reynolds transport theorem gives the
angular momentum equation as

It reduces to the following special cases:

Steady flow:

Unsteady flow (algebraic form):

Steady and uniform flow:

Scalar form for one direction:

No external moments:

A control volume whose moment of inertia I remains constant
can be treated as a solid body, with a net torque of

acting on it. This relation can be used to determine the angu-
lar acceleration of spacecraft when a rocket is fired.

The linear and angular momentum equations are of funda-
mental importance in the analysis of turbomachinery and are
used extensively in Chap. 14.

M
→

body ! Ibodya
→

! a
in

r
→

% m
#
V
→

" a
out

r
→

% m
#
V
→

0 !
dH

→
CV

dt
# a

out
r
→

% m
#
V
→

" a
in

r
→

% m
#
V
→

a M ! a
out

rm
#
V " a

in
rm
#
V

aM
→

! a
out

r
→

% m
#
V
→

" a
in

r
→

% m
#
V
→

aM
→

!
d
dt

 "
CV

 (r
→

% V
→

)r dV # a
out

r
→

% m
#
V
→

" a
in

r
→

% m
#
V
→

aM
→

! "
CS

 (r
→

% V
→

)r(V
→

r $ n
→
) dA

a M
→

!
d
dt

 "
CV

 (r
→

% V
→

)r dV # "
CS

(r
→

% V
→

)r(V
→

r $ n
→
) dA

 

At this rpm, the velocity of the jet will be zero relative to an observer on
earth (or relative to the fixed disk-shaped control volume selected).

The variation of power produced with angular speed is plotted in Fig.
6–39. Note that the power produced increases with increasing rpm, reaches
a maximum (at about 500 rpm in this case), and then decreases. The actual
power produced will be less than this due to generator inefficiency (Chap. 5).
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