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We develop a constructive approach to generate artificial neural networks representing the exact
ground states of a large class of many-body lattice Hamiltonians. It is based on the deep Boltzmann
machine architecture, in which two layers of hidden neurons mediate quantum correlations among
physical degrees of freedom in the visible layer. The approach reproduces the exact imaginary-
time Hamiltonian evolution, and is completely deterministic. In turn, compact and exact network
representations for the ground states are obtained without stochastic optimization of the network
parameters. The number of neurons grows linearly with the system size and total imaginary time,
respectively. Physical quantities can be measured by sampling configurations of both physical and
neuron degrees of freedom. We provide specific examples for the transverse-field Ising and Heisenberg
models by implementing efficient sampling. As a compact, classical representation for many-body
quantum systems, our approach is an alternative to the standard path integral, and it is potentially
useful also to systematically improve on numerical approaches based on the restricted Boltzmann
machine architecture.

INTRODUCTION

A tremendous amount of successful developments in
quantum physics builds upon the mapping between
many-body quantum systems and effective classical the-
ories. The probably most well known mapping is due
to Feynman, who introduced an exact representation of
many-body quantum systems in terms of statistical sum-
mations over classical particles trajectories [1]. Effective
classical representations of quantum many-body systems
are however not unique, and other approaches rely on
different inspiring principles, such as perturbative expan-
sions [2], or decomposition of interactions with auxiliary
degrees of freedom [3, 4]. The classical representations of
quantum states allow both for novel conceptual develop-
ments and efficient numerical simulations. On one hand,
perturbative approaches based on the graphical resum-
mation of classes of diagrams are at the heart of many-
body analytical approaches in various fields of research,
ranging from particle to condensed-matter physics [5].
On the other hand, several non-perturbative numeri-
cal methods for many-body quantum systems are also
based on these mappings. Quantum Monte Carlo (QMC)
methods are among the most successful numerical tech-
niques, relying on continuos-space polymer representa-
tions [6–9], world-line lattice path integrals [10, 11], con-
tinuous time algorithm [12], summation of perturbative
diagrams [13, 14]. Effective classical representations are
also the building block of variational methods based on
correlated many-body wave-functions [15]. Several suc-
cessful variational techniques make extensive use of para-

metric representations of quantum states, where the ef-
fective parameters are determined by means of the vari-
ational principle [16–19]. In matrix-product and tensor-
network-states the ground-state is expressed as a classical
network [20, 21]. In general, finding alternative, efficient
classical representations of quantum states can help es-
tablishing novel numerical and analytical techniques to
study challenging open issues.

Recently, an efficient variational representation of
many-body systems in terms of artificial neural networks,
which consists of classical degrees of freedom, has been
introduced [22]. Numerical results have shown that ar-
tificial neural networks can represent many-body states
with high accuracy [22–31]. The majority of the vari-
ational approaches adopted so-far are based on shallow
neural networks, called Restricted Boltzmann Machines
(RBM), in which the physical degrees of freedom inter-
act with an ensemble of hidden degrees of freedom (neu-
rons). While shallow RBM states have promising fea-
tures in terms of entanglement capacity [25, 32–34], only
deep networks are guaranteed to provide a complete and
efficient description of the most general quantum states
[35, 36].

In this Paper we introduce a constructive approach to
explicitly generate deep network structures correspond-
ing to exact quantum many-body ground states. We
demonstrate this construction for interacting lattice spin
models, including the transverse-field Ising and Heisen-
berg models. Our constructions are fully deterministic,
in stark contrast to the shallow RBM case, in which the
numerical optimization of the network parameters is in-
evitable. The number of neurons required in the con-
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Figure 1. Structure of deep Boltzmann machine. Dots,
squares, and triangles represent physical degrees of freedom
(σzi ), hidden units (hj), deep units (dk), respectively. Solid
curves represent interlayer couplings (Wij and W ′jk).

struction scales only polynomially with the system size,
thus the present approach constitutes a new family of effi-
cient quantum-to-classical mappings exhibiting a promi-
nent representational flexibility. Given as a simple set of
iterative rules, these constructions can be used both as
a self-standing tool, or to systematically improve results
obtained with variational shallow networks. The latter
improves the efficiency of the method because the numer-
ically optimized shallow RBM states are already good ap-
proximations for ground states. Finally, we discuss sam-
pling strategies from the generated deep networks and
show numerical results for one-dimensional spin models.

CONSTRUCTION OF DEEP NEURAL STATES

The ground state of a generic Hamiltonian, H, can
be found through imaginary-time evolution, |Ψ(τ)〉 =
e−τH|Ψ0〉, for a sufficiently large τ � ∆E−1. Here ∆E
is the energy gap between the ground and the first ex-
cited state, and |Ψ0〉 is an arbitrary initial state non-
orthogonal to the exact ground state. For a finite system,
the energy gap is typically finite, and the total prop-
agation time needed to reach the ground state within
an arbitrary given accuracy is expected to grow at most
polynomially with the system size (for systems becoming
gapless in the thermodynamic limit).

Here, we introduce a representation of the wave-
function coefficients in terms of a deep Boltzmann ma-
chine (DBM) [37]. For the sake of concreteness, let us
consider the case of N spins, described by the quan-
tum numbers |σz〉 = |σz1 . . . σzN 〉. Then, we represent
generic many-body amplitudes 〈σz1 . . . σzN |Ψ〉 ≡ Ψ(σz) in

the two-layer DBM form:

ΨW(σz) =
∑
{h,d}

exp

∑
i

aiσ
z
i +

∑
ij

σziWijhj+

+
∑
j

bjhj +
∑
jk

hjdkW
′
jk +

∑
k

b′kdk

 (1)

where we have introduced M hidden units h, M ′ deep
units d, and a set of couplings and bias terms W ≡
(a, b, b′,W,W ′). A sketch of the DBM architecture is
shown in Fig. 1.

In the following, we specialize to the case of spin 1/2,
thus all the units are taken to be σz, h, d = ±1. This
representation is the natural deep-network generalization
of the shallow RBM, introduced as variational ansatz in
Ref. [22]. As for the RBM form, also in this case direct
connections between variables in the same layer are not
allowed. A crucial difference is however that the layer of
deep variables makes, in general, the evaluation of the
wave-function amplitudes not possible analytically. At
variance with RBM, the DBM form is known to be uni-
versal, as proven by Gao and Duan recently [35]. In
order to find explicit expressions for the parameters W
that represent |Ψ(τ)〉 for arbitrary imaginary time, we
start considering a second-order Trotter-Suzuki decom-
position [10, 38]:

|Ψ(τ)〉 = G1(δτ/2)G2(δτ ) . . .G1(δτ )G2(δτ )G1(δτ/2)|Ψ0〉,
(2)

where we have decomposed the Hamiltonian into two
non-commuting parts, H = H1 +H2, and introduced the
short-time propagators Gν(δτ ) = e−Hνδτ . The problem of
finding an exact representation for |Ψ(τ)〉 then reduces
to finding an exact representation for each of the two
type of propagators. As shown in the following concrete
examples for paradigmatic spin models, thanks to the
high representability of DBM, the imaginary time evo-
lution can be tracked exactly by dynamically modifying
the DBM network structure. In practice, this is achieved
either by changing parameters W at each step of the
imaginary time evolution, or by introducing additional
parameters in W, adding new neurons and creating new
connections in the network.

Transverse-Field Ising model

We start considering the transverse-field Ising (TFI)
model on an arbitrary interaction graph. In this case,
we decompose the Hamiltonian into two parts: H1 =
−∑l Γlσ

x
l , and H2 =

∑
l<m Vlmσ

z
l σ

z
m, where σ denote

Pauli matrices, Γl (> 0) are site-dependent transverse
fields, and Vlm are arbitrary coupling constants.
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Figure 2. Construction of exact DBM representa-
tions of transverse-field Ising model. In this example,
a step of imaginary-time evolution is shown, for the case of
the 1-dimensional transverse-field Ising model. Dots repre-
sent physical degrees of freedom (σzi ), squares represent hid-
den units (hj), triangles represent deep units (dk). In each
panel, upper networks are the initial state with arbitrary net-
work form, and the bottom networks are the final states, after
application of the propagator. Intermediate steps illustrate
how the network is modified, where the relevant modified
couplings at each step are highlighted in black. The high-
lighted solid and dashed curves indicate new and vanishing
couplings, respectively. (a) Shows the diagonal (interaction)
propagator being applied to the highlighted blue spins. This
introduces a hidden unit (green) connected only to the two
physical spins. In (b) the off-diagonal (transverse-field) prop-
agator is applied, acting on the blue physical spin. Here,
we then add one deep unit (red triangle), and a hidden unit
(green) mediating visible-deep interactions.

In order to implement the mapping to a DBM, we
first consider the action of the diagonal propagator
e−δτVlmσ

z
l σ
z
m , acting on a bond Vlm. In this case, the goal

of finding an exact DBM representation can be rephrased
as finding solutions to

〈σz|e−δτVlmσzl σzm |ΨW〉 = CΨW̄(σz), (3)

i.e. finding a set of new parameters W̄ that exactly repro-
duces the imaginary time evolution on the left hand side.
Here C is an arbitrary finite normalization constant. The
diagonal propagator introduces an interaction between

two visible, physical spins, which is not directly available
in the DBM architecture. This interaction can be medi-
ated by a new hidden unit in the first layer, h[lm] which
is only connected to the visible spins on that bond, i.e.
W̄l[lm] and W̄m[lm] are finite, but W̄i[lm] = 0,∀i 6= l,m
and W̄ ′j[lm] = 0,∀j [see Fig. 2(a)].

More concretely, the new wave function has then the
form:

ΨW̄(σz) =
∑
h[lm]

eσ
z
lWl[lm]h[lm]+σ

z
mWm[lm]h[lm]ΨW(σz)

= 2 cosh
(
σzlWl[lm] + σzmWm[lm]

)
ΨW(σz). (4)

Equation (79) is then satisfied if

e−δτVlmσ
z
l σ
z
m = 2C cosh

(
σzlWl[lm] + σzmWm[lm]

)
(5)

for all the possible values of σzl and σzm. By means of a
useful identity [Eq. (16) in Methods], the new parameters
Wl[lm] and Wm[lm] are given by

Wl[lm] =
1

2
arcosh

(
e2|Vlm|δτ

)
(6)

Wm[lm] = −sgn(Vlm)×Wl[lm]. (7)

In this way the classical two-body interaction can, in gen-
eral, be represented exactly by the shallow RBM.

Next, to exactly represent the off-diagonal propagator
eδτΓlσ

x
l |ΨW〉, we must solve:

cosh(Γlδτ )ΨW(σz) + sinh(Γlδτ )ΨW(σzl → −σzl ) =

= CΨW̄(σz) (8)

for the new weights W̄, and for an appropriate finite nor-
malization constant C. In this case, one possible solution
is obtained by adding one deep d[l] and one hidden h[l]

neurons. For d[l], we create new couplings W ′j[l] to the ex-
isting hidden neurons hj which are connected to σzl . We
simultaneously allow for changes in the existing parame-
ters. By the procedure given in Methods, after applying
the off-diagonal propagator for the site l, a solution of
Eq.(8) is found by the matching condition of the hidden
unit interactions on the left and the right hand sides of
Eq.(8). Overall, the solution results in a three-step pro-
cess [Fig. 2(b)]: First, the hidden units attached to σzl
are connected to the newly introduced deep unit d[l] as

W ′j[l] = −Wlj (9)

(see Eq.(30)). Second, all the hidden units previously
connected to the spin σzl lose their connection, i.e.,
W̄lj = 0,∀j. Third, the spin σzl and the deep unit d[l]

are connected to the new hidden unit, h[l], through the
interactionWl[l] and W ′[l][l], respectively as

Wl[l] =
1

2
arcosh

(
1

tanh(Γlδτ )

)
, (10)

W ′[l][l] = −Wl[l]. (11)
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Using the given expressions for the parameters W̄ we
can then exactly implement a single step of imaginary-
time evolution. The full imaginary-time evolution is
achieved by applying the above procedure for H1 and
H2 alternately and repeatedly. Example applications of
these rules, for both the diagonal and the off-diagonal
propagators are shown in Fig. 2.

Heisenberg model

We now consider the anti-ferromagnetic Heisenberg
(AFH) model, on bipartite lattices. In one dimen-
sion, we decompose the Hamiltonian into odd and even
bonds: H1 =

∑odd
〈l,m〉Hbond

lm and H2 =
∑even
〈l,m〉Hbond

lm ,

with Hbond
lm = J (σxl σ

x
m + σyl σ

y
m + σzl σ

z
m), where σ denote

Pauli matrices. Because the bond Hamiltonian Hbond
lm is

a building block also in higher dimensional models, con-
struction of an exact DBM representation of the ground
states can be achieved by finding solutions for the bond-

propagator 〈σz|e−δτHbond
lm |ΨW〉 = C〈σz|ΨW̄〉, where the

parameters W̄ are such that the previous equation is sat-
isfied for all the possible 〈σz|, and for an arbitrary finite
normalization constant C. More explicitly, we need to
satisfy

δσzl ,σzme
−JδτΨW(σz) + (1− δσzl ,σzm)eJδτ cosh(2Jδτ )×

(ΨW(σz)− tanh(2Jδτ )ΨW(σzl ↔ σzm)) = CΨW̄(σz).
(12)

The basic strategy of finding a solution for Eq.(12) is
similar to that for Eq.(8) in the transverse Ising model.
Several possibilities arise when looking for solutions of
the bond-propagator equation, Eq. (12). The existence
of non-equivalent solutions prominently shows the non-
uniqueness of DBM structure to represent the very same
state and, at the same time, provides us flexibility in de-
signing DBM architectures. Here, we show three concrete
constructions. See Methods and Supplementary Informa-
tion (II-B) for a detailed derivation of the DBM construc-
tion for the Heisenberg model, including anisotropic and
bond-disordered coupling cases.

1 deep, 3 hidden

The first construction is dubbed “1 deep, 3 hidden”
(1d-3h). It amounts to adding an extra deep neuron,
d[lm], and three more hidden neurons to satisfy Eq. (12).
A crucial difference with respect to the TFI model is that
the introduced deep spin d[lm] has a constraint depend-
ing on the state of the spins on the bond: σzl and σzm.
Specifically, when σzl = σzm the deep spin is constrained
to be d[lm] = σzl = σzm, whereas when σzl 6= σzm, its value
is unconstrained. From a pictorial point of view, the ac-
tion of the bond propagator is a four-step process [see

Fig. 3(a)]. Starting from a given initial network (upper-
most structures in Fig. 3), d[lm] is added and connected,
through W ′j[lm] given in Eq. (38), to the existing hidden
units hj connected to σzl and σzm. Second, spin σzl is dis-
connected to all hidden units and reconnected to those
hidden units the spin σzm is attached to [see Eq. (37)].
Third, two new hidden units are introduced. One of the
hidden units, h[lm1], mediates the interaction between
σzl and d[lm] [Eq. (41)], and the other hidden unit h[lm2]

mediates a direct spin-spin interaction between σzl and
σzm [Eq. (42)]. Fourth, a further hidden unit connected
to σzl , σzm and d[lm] is inserted, in such a way that the
constraint previously described is satisfied. For all but
the last step, the DBM weights are real-valued. In the
last step instead the constraint is enforced by introduc-
ing imaginary-valued interactions (dotted lines in Fig. 3),
referred to the “iπ/6” trick, resulting in a sign-problem
free global term cos(π/6(σzl +σzm−d[lm])) after the sum-
mation over ±1 for the lastly added hidden unit h[lm3]:∑
h[lm3]=±1 exp[iπ/6(σzl + σzm − d[lm])h[lm3]]. The con-

straint mentioned above is assured by this cosine term.

2 deep, 6 hidden

The second construction is dubbed “2 deep, 6 hidden”
(2d-6h), and is more similar to the lattice path-integral
formulation. In this representation, we introduce two
auxiliary deep spins per bond, d[l] and d[m] with con-
straint d[l] + d[m] = σzl + σzm, and six hidden neurons.
The action of the bond propagator is schematically illus-
trated in Fig. 3(b): first, two deep units d[l] and d[m]

are introduced, connecting, respectively, to the hidden
units spins σzl and σzm are attached to [see Eqs. (44),
(45)]. Second, all the connections between spins σzl , σzm
and hidden units hj are cut off [Eqs. (46), (47)]. Third,
four hidden units h[lm1], . . . , h[lm4] are introduced, to me-
diate interactions between the two deep units and the
physical spins l,m [Eqs. (50), (51)]. Finally, two hidden
units h[lm5] and h[lm6] are introduced, connecting both to
d[l], d[m] and σzl , σ

z
m with imaginary-valued weights. The

last step realizes the constraint d[l] + d[m] = σzl + σzm,
through the “iπ/4, iπ/8” trick discussed in Methods and
Supplementary Information (II-B.2).

In this representation, if the hidden neurons are traced
out, the imaginary-time evolution becomes equivalent to
that of the path-integral Monte Carlo method. More
specifically, the number of deep neurons introduced at
each time slice is exactly the same as the number of
visible spins, and the deep neurons at each time slice
can be regarded as additional classical spin degrees of
freedom in the path-integral. Moreover, the constraint
d[l] + d[m] = σzl + σzm ensures that the total magne-
tization is conserved at each time slice. Finally, the
W and W ′ interactions reproduce the matrix element
of exp(−δτHbond

lm ) between neighboring time slices. See
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h[lm3]

h[lm5] h[lm6] h[lm1] h[lm2]

Figure 3. Construction of exact DBM representations of Heisenberg models. In this example, a time step of
imaginary-time evolution is shown, for the case of the 1-dimensional antiferromagnetic Heisenberg model. Dots represent
physical degrees of freedom (σzi ), squares represent hidden units (hj), triangles represent deep units (dk). The three panels
(a,b,c) represent different possible explicit constructions. In each panel, upper networks are the initial state with arbitrary
network form, and the bottom networks are the final states, after application of the propagator. Intermediate steps illustrate
how the network is modified, where the relevant modified weights at each step are highlighted in black. In those diagrams,
dashed lines indicate that the corresponding weights are set to zero, and dotted lines indicate complex-valued weights. The
three panels correspond to the (a) 1 deep, 3 hidden (1d-3h), (b) 2 deep, 6 hidden (2d-6h), and (c) 2 deep, 4 hidden (2d-4h)
constructions (see text for a more detailed explanation of the individual steps characteristic of each construction).

Supplementary Information (II-B.2) for more detail on
this point.

2 deep, 4 hidden

A further possible solution to Eq. (12) is dubbed “2
deep, 4 hidden” (2d-4h) construction. In this case, we
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introduce two auxiliary deep variables d[l] and d[lm]. We
also introduce four hidden units h[l], h[m], h[lm1], and

h[lm2]. Before the imaginary time evolution, e−δτH
bond
lm ,

the physical variables σzn (n = l or m) are already cou-
pled to each hidden variable hj with a coupling Wnj .

After the time evolution e−δτH
bond
lm , as shown schemati-

cally in Fig. 3(c), the coupling parameters are updated in
the following way based on the old Wnj : First, the first
deep unit d[l] becomes coupled to the already existing
hidden variables hj through the coupling W ′j[l] given in

Eq. (173). The second deep unit d[lm] becomes similarly
coupled to hj through a term Zlmj given in Eq. (173).
Second, Wnj is updated to W̄nj = Wnj + ∆Wnj [see Eq.
(172)]. Third, newly introduced h[n] (n = l or m) gets
coupled to d[l] through W ′[n][l], and also to σzn through

Wn[n] [Eqs. (179), (181)].
Within this construction, and as clarified in Methods,

we also need to satisfy the constraint d[l]d[lm] = σzl σ
z
m.

Such a constraint is represented in DBM form as

∑
h[lm1],h[lm2]

exp[
iπ

4
(h[lm1]+h[lm2])(σ

z
l +σzm+d[l]+d[lm])],

(13)

which ensures d[l]d[lm] = σzl σ
z
m after explicit summation

of h[lm1] and h[lm2].
Finally, we remark that the three constructions pre-

sented here have different intrinsic network topologies. In
particular, 2d-6h gives rise to a local topology (because of
the equivalence with the path-integral contruction), 1d-
3h has a local structure in the first layer and non-local
in the second one, and 2d-4h is purely non-local in both
layers (see Supplementary Information II.B).

SAMPLING STRATEGIES

With network structures explicitly determined, we now
focus on the problem of extracting meaningful physical
quantities from them. To this end, it is convenient to
decompose the DBM weight into two parts, such that

ΨW(σz) =
∑
{h,d}

P1(σz, h)P2(h, d), (14)

where P1(σz, h) = eσ
z·a+σz·W ·h+h·b, and P2(h, d) =

eh·W
′·d+d·b′ . The expectation value of an arbitrary (few-

body) operator O can then be computed through the
expression

〈O〉 =

∑
{σz,h,h′d,d′}Π(σz, h, h′, d, d′)Oloc(σz, h, h′)∑

{σz,h,h′d,d′}Π(σz, h, h′, d, d′)
,(15)

where we have introduced the pseudo-probability density
Π(σz, h, h′, d, d′) ≡ P1(σz, h)P2(h, d)P ?1 (σz, h′)P ?2 (h′, d′),

and the “local” estimator Oloc(σz, h, h′) =
1
2

∑
σ′z 〈σz| O |σ′z〉

(
P1(σ′z,h)
P1(σz,h) + P1(σ′z,h′)?

P1(σz,h′)?

)
.

For the sampling over the Π distribution, a block
Gibbs sampling analogous to what performed in stan-
dard DBM architectures can be performed [37, 39]. Al-
ternatively, it is possible to devise a set of Metropo-
lis local updates sampling the exactly known marginals
Π̃(σz, h, h′) =

∑
{d,d′}Π(σz, h, h′, d, d′) or Π̃′(σz, d, d′) =∑

{h,h′}Π(σz, h, h′, d, d′). We can also employ efficient
cluster updates. Sampling is discussed more in detail in
the Supplementary Information (III).

NUMERICAL RESULTS

We have implemented numerical algorithms to sam-
ple and obtain physical properties from the DBM pre-
viously derived. In Fig. 4 (a) we show results for the
one-dimensional TFI model. Specifically, we show the
expectation value of the energy following the imaginary-
time evolution starting from a fully polarized (in the x
direction) initial state. The initial state corresponds to
an empty network, where all the DBM parameters are
set to zero. The DBM results closely match the exact
imaginary-time evolution, thus verifying the correctness
of our construction.

Numerical results for the one-dimensional Heisenberg
model are shown in Figure 4 (b-c). Specifically, 4(b)
shows the numerical check for the DBM (construction 2d-
6h) time evolution for one-dimensional Heisenberg model
for N = 16. As expected, the DBM results also in this
case follow the exact time evolution. Figure 4(c) shows
the dependence of the energy from the initial state, for
N = 80 case. Specifically, by taking a pre-optimized
variational RBM as an initial state as an initial state, we
can significantly decrease the time τ needed to reach the
ground state.

In the case of the TFI model, sampling from the DBM
is realized through the Gibbs scheme previously sketched,
in conjunction with a parallel tempering scheme, to im-
prove ergodicity in the sampling. In the AFH model
with 2d-6h representation, we employ loop update [40]
used in the path-integral QMC method, because the
imaginary-time evolution in the 2d-6h representation has
a direct correspondence to the path-integral formula-
tion, allowing for an efficient handling of the constraint
d[l] + d[m] = σzl + σzm.

DISCUSSION

We have shown how exact ground states of interact-
ing spin Hamiltonians can be explicitly constructed us-
ing artificial neural networks comprising only two layers
of hidden variables. In contrast to approaches based on
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Figure 4. Imaginary-time evolution with a DBM for 1D spin models. (a) Expectation value of energy of the transverse-
field Ising Hamiltonian in the exact imaginary-time evolution (continuous line) is compared to the stochastic result obtained
with a DBM (Jδτ = 0.01). We consider the critical point (Γl = 1), periodic boundary conditions, and N = 20 sites. (b)
Expectation value of the isotropic antiferromagnetic Heisenberg Hamiltonian (AFHM) in the exact imaginary-time evolution
(continuous line) is compared to the stochastic result obtained with a DBM (Jδτ = 0.01) following 2d-6h construction. We
consider periodic boundary conditions, N = 16 sites. (c) Relative error on the ground-state energy for the 1D AFHM as a
function of the imaginary time. Here we consider periodic boundary conditions, N = 80 sites, and Jδτ = 0.01. The subscript
α in DBMα in panels (a,b,c) specifies a different initial state |Ψ0〉: α = 1 means that the initial state is an RBM state with
hidden-unit density M/N = 1, whereas when α = 0 the initial state is the empty-network state (M = 0).

one-layer RBMs, the constructions we have derived here
do not require further variational optimization of the net-
work parameters. In the case of the Heisenberg model,
all of the explicit algorithms presented here give rise to
sign-problem-free representations, if the lattice is bipar-
tite. The DBM representation has an intrinsic conceptual
value, as an alternative to the path-integral representa-
tion. Notably, the additional deep hidden layer in the
DBM plays a similar role as an additional dimension in
statistical mechanics. Whereas a single layer (RBM) is
enough to describe exactly the state of a classical system
[see Eq. (23)], a second layer is necessary to describe
exactly quantum mechanical states.

DBM-based schemes can be further used to system-
atically improve upon existing RBM variational results.
More generally, the initial state for the present DBM
scheme can be generic variational states or even com-
binations of RBMs and more conventional wave func-
tions [24, 33]. We have shown that, by starting the DBM
construction from a pre-optimized variational state, a
fast convergence to the exact ground state is observed. In
conjunction with very accurate initial RBM states, this
kind of scheme opens the possibility of characterizing the
ground state even in the case of non-bipartite lattices
with frustration effects, exploiting the transient regime
in which the sign problem can be still efficiently handled
numerically, as for example discussed in Ref. [41].

METHODS

Useful identities

It is useful to introduce several identities, which can be
used when more complicated interactions between the visible

spins σz, hidden variables h and deep variables d beyond the
standard form Eq. (1) are needed. The first identity reads

es1s2V = C
∑
s3=±1

es1s3Ṽ1+s2s3Ṽ2 = 2C cosh(s1Ṽ1 +s2Ṽ2).

(16)

with

C =
1

2
e−|V | (17)

Ṽ1 =
1

2
arcosh(e2|V |) (18)

Ṽ2 = sgn(V )× Ṽ1 (19)

for Ising variables s1 and s2, and a real interaction V . This is
a gadget for decomposing two-body interactions, and can be
proven by examining all the cases of s1 and s2.

By taking s1 and s2 as visible (physical) variables σz and
s3 as a hidden variable h, the direct classical two-body in-
teraction between physical variables [the leftmost part in Eq.
(16)] is cut and instead mediated by the hidden neuron h.
Furthermore, a direct interaction between σz and d can also
be decomposed: In the following derivations for the DBM
wave constructions, for convenience, we sometimes introduce
the direct interaction between σz and d, which is not allowed
in the DBM structure. However, by taking s1 as a visible spin
σz, s2 as a deep variable d, and s3 as a hidden variable h in
Eq. (16), one can eliminate the direct interaction between σz

and d and decompose it into the interaction mediated only by
h with trade-off of the summation over the hidden variable h.
With this trick, one can recover the standard DBM form in
Eq. (1).

Another identity (decomposition of four-body interaction)
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is

es1s2s3s4V =
1

4

∑
s5,s6,s7

exp
[
i
π

4
(s5 + s6)(s1 + s2 + s3 + s7)

]
× exp(s4s7V )

=
∑
s7

cos2
[π

4
(s1 + s2 + s3 + s7)

]
exp(s4s7V )

(20)

for Ising variables si with i = 1, · · · , 4. Although we have
introduced complex couplings in the first line, each term in the
summation in the second line of Eq. (73) is positive definite if
V is real. The second line remains nonzero only if s1s2 = s3s7,
which proves the identity. This identity with s1 and s2 as
physical variables, s4, s5, and s6 as hidden variables, and s3

and s7 as deep variables, reads

eσ1σ2d1h1V =
1

4

∑
h2,h3,d2

exp
[
i
π

4
(h2 + h3)(σ1 + σ2 + d1 + d2)

]
× exp(h1d2V ), (21)

Note that the right hand side fits the DBM structure.

General three-body and two-body interactions can also be
represented by the two-body form just by putting some of
s1, · · · s4 as constants in Eq.(20). These could be used instead
of Eq. (16), although we employ Eq. (16) in the formalism
below for the decoupling of the two-body interaction.

Finally, we discuss the gadgets for decomposing general
N -body classical interactions using complex bias term bj in
addition to the couplingsW andW ′, whereas the gadgets Eqs.
(16) and (21) are represented only by W and W ′ interactions.
The gadget reads

eσ1σ2...σNV = C cos2

(
b+

π

4

N∑
i=1

σi

)
(22)

=
C

4

∑
h1,h2

eib(h1+h2)ei
π
4

(h1+h2)(σ1+σ2+...+σN )

(23)

with

b = arctan
(
e−V

)
− π

4
mod(N, 4), (24)

C =
1

cos (arctan (e−V ))× sin (arctan (e−V )) .
(25)

This fact suggests that any classical partition function defined
for Ising spins can be written exactly in terms of an RBM.
Although the RBM is shown to be powerful in representing
also the quantum states, there is no analytical way to map
quantum states to the RBM and one must rely on numeri-
cal optimizations to get the RBM parameters. In the present
study, we show analytical mappings from quantum states to
the DBM, which has additional hidden layer. In the statistical
mechanics, it is known that quantum systems with D dimen-
sion can be mapped on (D+1)-dimensional classical systems.
Therefore, having additional hidden layer in neural network
language is equivalent to acquiring additional dimension in
statistical mechanics.

Transverse-Field Ising model

The solution of Eq.(8) is found in the following way. The
left hand side of Eq.(8) can be rewritten by using the notation
Eq.(14) as∑

{h,d}

P1(σz, h)P2(h, d)
[
1 + tanh(Γlδτ )e−2σzl

∑
j hjWlj

]
= CΨW̄(σz). (26)

We look for a solution by adding one deep neuron d[l] and
creating new couplings W ′j[l] to the existing hidden neurons
hj which are connected to σzl . We also allow for changes
in the existing interaction parameters. In particular we set
the new couplings to be W̄lj = Wlj + ∆Wlj , (with ∆Wlj to
be determined). Moreover, we introduce one hidden neuron
h[l] coupled to σzl and d[l] through the interactions Wl[l] and
W ′[l][l], respectively. If we trace out h[l], the hidden neuron
h[l] mediates the interaction between σzl and d[l] (denoted as
W ′′l[l]).

With this choice, we have (in the representation where h[l]

is traced out):

ΨW̄(σz) =
∑
{h,d}

∑
d[l]

P1(σz, h)P2(h, d)

e
σzl
∑
j ∆Wljhj+d[l]

∑
j hjW

′
j[l]+σ

z
l d[l]W

′′
l[l] . (27)

The equations to be verified are obtained considering the two
possible values of σzl = ±1:

e
∑
j hj

(
∆Wlj+W

′
j[l]

)
+W ′′l[l] + e

∑
j hj

(
∆Wlj−W ′j[l]

)
−W ′′l[l]

= C ×
(

1 + tanh(Γlδτ )e−2
∑
j hjWlj

)
(28)

e
∑
j hj

(
−∆Wlj+W

′
j[l]

)
−W ′′l[l] + e

∑
j hj

(
−∆Wlj−W ′j[l]

)
+W ′′l[l]

= C ×
(

1 + tanh(Γlδτ )e2
∑
j hjWlj

)
. (29)

This equation has a solution from the requirement that the
hidden unit interactions on the left and right hand sides
match, thus we require

∆Wlj +W ′j[l] = −2Wlj (30)

∆Wlj −W ′j[l] = 0, (31)

and

W ′′l[l] =
log tanh(Γlδτ )

2
. (32)

Notice that when Γl > 0, W ′′l[l] is also real. By using Eq. (16)

with the following replacement s1 → σzl , s2 → d[l], s3 → h[l],

V → W
′′
l[l], Ṽ1 → Wl[l] and Ṽ2 → W ′[l][l], the last condition

determines the real couplings Wl[l] and W ′[l][l] as Eqs.(10) and

(11).

Heisenberg model

Here, we show the derivation for the general form of bond
Hamiltonian allowing anisotropy and bond-disorder: Hbond

lm =
Jxylm (σxl σ

x
m + σyl σ

y
m) + Jzlmσ

z
l σ

z
m. In the case of the bipartite

lattice and the antiferromagnetic exchange Jzlm, J
xy
lm > 0, we

further apply a local gauge transformation by a π rotation
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around the z axis in the spin space as σx → −σx and σy →
−σy on one of the sublattices, which gives a − sign for σxl σ

x
m

and σyl σ
y
m interactions. This transformation is equivalent to

taking
Jxylm → −J

xy
lm. (33)

The gauge transformation enables to design a DBM neural
network with real couplings {W,W ′} except for those to put
“constraint” on the values of deep neuron spins (see more de-
tail about the constraint in the following sections). It ensures
that the DBM algorithm has no negative sign problems.

In the case of the antiferromagnetic Heisenberg model after
the gauge transformation on the bipartite lattice, we must
solve, for each bond,

δσz
l
,σzm

e−δτJ
z
lmΨW(σz) + (1− δσz

l
,σzm

)eδτJ
z
lm

(ΨW(σz) cosh(2Jxylmδτ ) + ΨW(σzl ↔ σzm) sinh(2Jxylmδτ ))

= C〈σz|ΨW̄〉. (34)

It is also useful to explicitly write the expression for the ex-
change term in the second line above:

ΨW(σz) cosh(2Jxylmδτ ) + ΨW(σzl ↔ σzm) sinh(2Jxylmδτ )

=
∑
{h,d}

P1(σz, h)P2(h, d)
[
cosh(2Jxylmδτ )+

sinh(2Jxylmδτ )e(σzm−σ
z
l )
∑
j hj(Wlj−Wmj)

]
. (35)

In the following derivations, for the antiferromagnetic Hamil-
tonian (Jzlm, J

xy
lm > 0) after the gauge transformation, we look

for a solution with zero bias terms (ai, bj , b
′
k = 0, ∀i, j, k). We

can also derive a sign-problem free solution for the imaginary
time evolution in the absence of the explicit gauge transfor-
mation by introducing a complex bias term ai. Indeed, in
the “2 deep, 4 hidden” representation, we will explicitly show
that taking a specific set of complex bias term ai on physi-
cal spins is equivalent to the gauge transformation, making a
solution free from the sign problem.

In a way similar to the TFI model, solutions of Eq. (105)
can be found by specifying the structure of the deep Boltz-
mann machine and the three examples are the following.

1d-3h construction

We assume the structure of the updated wave function (cor-
responding to Eq. (27) for the TFI model) to be

ΨW̄(σz) =
∑
{h,d}

∑
d[lm]=±1

d[lm]=σ
z
l if σzl =σzm

P1(σz, h)P2(h, d)

e
σzl
∑
j ∆Wljhj+d[lm]

∑
j hjW

′
j[lm]+d[lm]σ

z
lW
′′
l[lm]+V[lm]σ

z
l σ
z
m .
(36)

Similarly to the case of the TFI model, a solution of Eq. (105)
is given by

∆Wlj = −Wlj +Wmj (37)

W ′j[lm] = Wlj −Wmj . (38)

and

W ′′l[lm] = − (log tanh(2Jxylmδτ )) /2 (39)

V[lm] = − (log cosh(2Jxylmδτ )) /2− Jzlmδτ (40)

Notice that the first condition is equivalent to cutting all con-
nections from spin l to the hidden units and attaching the
spin l to all the hidden units connected to spin m, with an
interaction Wmj .

Although the terms proportional to W
′′
l[lm] and Vlm do not

satisfy the standard DBM form, they can be transformed to
the DBM form by introducing new hidden neurons h[lm1] and
h[lm2] [see the gadget Eq. (16)]:

e
σzl d[lm]W

′′
l[lm] =C[lm1]

∑
h[lm1]

e
σzl h[lm1]Wl[lm1]+h[lm1]d[lm]W

′
[lm1][lm] ,

with

Wl[lm1] = W ′[lm1][lm] =
1

2
arcosh

(
1

tanh(2Jxylmδτ )

)
. (41)

Similarly, the coupling V[lm] is decomposed as

eσ
z
l σ
z
mV[lm] = C[lm2]

∑
h[lm2]

eσ
z
l h[lm2]Wl[lm2]+σ

z
mh[lm2]Wm[lm2] ,

with

Wl[lm2] = −Wm[lm2] =
1

2
arcosh

(
cosh(2Jxylmδτ )e2Jzlmδτ

)
.

(42)

Finally, as discussed in the main text, the constraint d[lm] =
σzl when σzl = σzm can be satisfied by adding the third neuron
h[lm3], introducing pure complex iπ/6 couplings.

2d-6h construction

In this case, the form of the new wave function reads

ΨW̄(σz) =
∑
{h,d}

∑
d[l],d[m]

d[l]+d[m]=σ
z
l +σzm

P1(σz, h)P2(h, d)

e
∑
j

∑
n=l,m hj(∆Wnjσ

z
n+W ′j[n]d[n])+

∑
n=l,m σzn(W ′′n[l]d[l]+W

′′
n[m]d[m]).

(43)

A solution of Eq. (105) is given by

W ′j[l] = Wlj , (44)

W ′j[m] = Wmj , (45)

∆Wlj = −Wlj , (46)

∆Wmj = −Wmj , (47)

and

W ′′l[l] = W ′′m[m] = −J
z
lmδτ
2
− 1

4
log sinh(2Jxylmδτ ), (48)

W ′′l[m] = W ′′m[l] = −J
z
lmδτ
2
− 1

4
log cosh(2Jxylmδτ ). (49)

The direct interactions between (σzl , d[l]), (σzm, d[m]),
(σzl , d[m]), and (σzm, d[l]), are mediated by h[lm1], h[lm2], h[lm3],
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and h[lm4], respectively, as follows

e
σzl d[l]W

′′
l[l] = C[lm1]

∑
h[lm1]

e
σzl h[lm1]Wl[lm1]+h[lm1]d[l]W

′
[lm1][l] ,

e
σzmd[m]W

′′
m[m] = C[lm2]

∑
h[lm2]

e
σzmh[lm2]Wm[lm2]+h[lm2]d[m]W

′
[lm2][m] ,

e
σzl d[m]W

′′
l[m] = C[lm3]

∑
h[lm3]

e
σzl h[lm3]Wl[lm3]+h[lm3]d[m]W

′
[lm3][m] ,

e
σzmd[l]W

′′
m[l] = C[lm4]

∑
h[lm4]

e
σzmh[lm4]Wm[lm4]+h[lm4]d[l]W

′
[lm4][l] .

By applying the gadget Eq. (16), the new W and W ′ interac-

tions are given by, for small δτ (such that e
−Jzlmδτ√

sinh(2J
xy
lm
δτ )

> 1),

Wl[lm1] = W ′[lm1][l] = Wm[lm2] = W ′[lm2][m]

=
1

2
arcosh

(
e−J

z
lmδτ√

sinh(2Jxylmδτ )

)
(50)

and

Wl[lm3] = −W ′[lm3][m] = Wm[lm4] = −W ′[lm4][l]

=
1

2
arcosh

(√
cosh(2Jxylmδτ )× eJ

z
lmδτ

)
. (51)

Finally, the constraint d[l] + d[m] = σzl + σzm can be put by
introducing additionally two hidden neurons h[lm5] and h[lm6],
and by introducing complex couplings∑

h[lm5],h[lm6]

ei
π
4 ((σzl +σzm)h[lm5]−h[lm5](d[l]+d[m]))

× ei
π
8 ((σzl +σzm)h[lm6]−h[lm6](d[l]+d[m])) (52)

This term gives interactions among d[l], d[m], σ
z
l and σzm:

4 cos
(
π
4

(σzl + σzm − d[l] − d[m])
)

cos
(
π
8

(σzl + σzm − d[l] − d[m])
)
,

which realize the constraint.

2d-4h construction

For this construction, we assume the following structure for
the wave-function after the propagator:

ΨW̄(σz) =
∑
{h,d}

∑
d[l]

P1(σz, h)P2(h, d)e
∑
j,n=l,m σznhj∆Wnj

× e
∑
j hjd[l]W

′
j[l]+

∑
n=l,m σznd[l]W

′′
n[l]+

∑
j σ

z
l σ
z
mhjd[l]Zlmj .

In this case, we also look for a solution for the bond operator
without the gauge transformation. This shows that the intro-
duction of a complex bias term ai can play the same role as
the gauge transformation. Then, we need to solve:

δσz
l
,σzm

e−δτJ
z
lmΨW(σz) + (1− δσz

l
,σzm

)eδτJ
z
lm

(ΨW(σz) cosh(2Jxylmδτ )−ΨW(σzl ↔ σzm) sinh(2Jxylmδτ ))

= C〈σz|ΨW̄〉. (53)

Note that the sign for ΨW(σzl ↔ σzm) sinh(2Jxylmδτ ) term is
different from that in Eq. (105).

A solution of Eq. (53) is obtained as

∆Wlj = −∆Wmj = −1

2
(Wlj −Wmj), (54)

where Wnj (n = l,m) is updated to W̄nj with the increment
∆Wnj as W̄nj = Wnj+∆Wnj . The new couplings W ′j[l], Zlmj
and W ′′n[l] are also given by

W ′j[l] = −Zlmj = −1

2
(Wlj −Wmj) (55)

and

W ′′l[l] =
1

4

[
log
[
−e−2al−m tanh(2Jxylmδτ )

]
+ 2arcosh

[
e−2Jzlmδτ√

−2e−2al−m sinh(4Jxylmδτ )

]]
(56)

W ′′m[l] =
1

4

[
− log

[
−e−2al−m tanh(2Jxylmδτ )

]
+ 2arcosh

[
e−2Jzlmδτ√

−2e−2al−m sinh(4Jxylmδτ )

]]
(57)

with al−m = al − am. On a bipartite lattice, to avoid the
negative sign (or complex phase) problem we need to keep
W ′′l[l] and W ′′m[l] real. This can be achieved by choosing al =
0 for any l if Jlm < 0 (ferromagnetic case). For Jlm > 0
(antiferromagnetic case), al = nπi with an arbitrary integer
n if the site l belongs to the sub-lattice A and al = (n+1/2)πi
if l belongs to the sub-lattice B. This local gauge for Jlm > 0
is equivalent to the transformation Jxylm → −J

xy
lm and al = 0

for any site l. We further notice that W ′′m[l] can be taken
positive if we take a sufficiently small δτ in Eq (177), with
the leading order term − log(2Jxylmδτ )/2. On the other hand,
in Eq. (176), the leading order term is negative (= −Jlmδτ ).

To recover the original form of the DBM, we first use Eq.
(16) with the replacement s1 → σzn, s2 → d[l], s3 → h[n], C →
Dn, V → W ′′n[l] Ṽ1 → Wn[n] and Ṽ2 → W ′[n][l] for n = l,m.

Then a solution for Dn, Wn[n], and W ′[n][l] are represented by

using W
′′
n[l] as

Dn =
1

2
exp[−W

′′
n[l]] (58)

Wn[n] = W ′[n][l] =
1

2
arcosh(exp[2W

′′
n[l]]), (59)

for positive W
′′
n[l] and

Dn =
1

2
exp[W

′′
n[l]] (60)

Wn[n] = −W ′[n][l] =
1

2
arcosh(exp[−2W

′′
n[l]]), (61)

for negative W
′′
n[l] to give real Wn[n] and W ′[n][l].

To completely recover the original DBM form, we next use
Eq. (21) by replacing σ1 with σzl , σ2 with σzm, d1 with d[l], d2

with d[lm], h1 with hj , h2 with h[lm1], h3 with h[lm2], and V
with Zlmj .

With these solutions, by ignoring the trivial constant fac-
tors including Dl and Dm, the evolution is described by in-
troducing two deep and four hidden additional variables d[l],
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d[lm], h[l], h[m], h[lm1], and h[lm2] as

ΨW̄(σz) =
∑
{h̄,d̄}

P1(σz, h)P2(h, d) exp

[ ∑
j,n=l,m

σznhj∆Wnj

+
∑
j

hjd[l]W
′
j[l] +

∑
n=l,m

h[n](σ
z
nWn[n] + d[l]W

′
[n][l])

+d[lm]

∑
j

hjZlmj+
iπ

4
(h[lm1]+h[lm2])(σ

z
l +σzm+d[l]+d[lm])

]
,

(62)

where {h̄, d̄} is a set consisting of the existing and new neu-
rons.
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Supplementary Information
I. DEEP BOLTZMANN MACHINES

Deep Boltzmann machine representation of quantum states. In the main text we have considered a repre-
sentation of the many-body wave-function in terms of a two-layers deep Boltzmann Machine (DBM). In the following
we specialize to the case of N spin 1/2 particles, described by the quantum numbers |σz〉 = |σz1 . . . σzN 〉 with σzi = ±1.
Then, we represent the amplitudes 〈σz1 . . . σzN |Ψ〉 ≡ Ψ(σz) in the DBM form:

ΨW(σz) =
∑
{h}

e
∑
i aiσ

z
i e
∑
ij σ

z
i hjWij+

∑
j bjhj

∑
{d}

e
∑
jk hjdkW

′
jk+

∑
k b
′
kdk . (63)

Here, we have introduced M hidden units hj , M
′ deep units dk, and a set of couplings and bias terms W ≡

(a, b, b′,W,W ′). Hereafter, we call the neurons in the 1st hidden layer just hidden neurons and distinguish them
from the neurons in the 2nd hidden layer, which are called deep neurons.

All those parameters, in general, must be taken complex-valued to represent a generic many-body state. The
hidden and deep units are taken here to be of spin 1/2, i.e. hj = ±1, dk = ±1, and the summations are over all the
possible values of those variables. From a pictorial point of view, the DBM architecture features direct connections
(interactions) between nearest-neighboring layers. In particular, the visible layer of physical degrees of freedom
(σz1 . . . σ

z
N ) is connected only to the first layer of hidden variables (h1 . . . hM ), whereas the first layer is connected both

to the visible spins and to the deep spins (d1 . . . dM ′).
For the following derivations, it is useful to write the DBM amplitudes as:

ΨW(σz) =
∑
{h,d}

P1(σz, h)P2(h, d), (64)

where we have introduced the two quantities:

P1(σz, h) = e
∑
i aiσ

z
i e
∑
ij σ

z
i hjWij+

∑
j bjhj (65)

P2(h, d) = e
∑
jk hjdkW

′
jk+

∑
k b
′
kdk . (66)

Notice that, in general, those weights are complex-valued, and cannot be interpreted as genuine Boltzmann weights.
From these expressions, it is also straightforward to see that the Restricted Boltzmann Machine (RBM) expression
for the wave-function is recovered when M ′ = 0, i.e. taking

ΨRBM
W (σz) =

∑
{h}

P1(σz, h) (67)

= e
∑
i aiσ

z
i ΠM

j 2 cosh

(
N∑
i

σzi hjWij + bj

)
, (68)

where we have explicitly performed the summation of the hidden variables. At variance with the RBM case, in the
more general case when M ′ > 0, it is not possible to analytically obtain the DBM amplitudes.

Useful gadgets in constructing DBM neural network. In the Methods we have discussed several useful identities
to decompose spin interactions. In particular, those identities are very useful if we need more complicated interactions
between the visible spins σz, hidden variables h and deep variables d beyond the standard form Eq. (63). For the
sake of completeness of this Supplementary Information, we reproduce here the identities for decomposing two-body,
three-body, and four-body interactions.

The first identity reads

es1s2V = C
∑
s3=±1

es1s3Ṽ1+s2s3Ṽ2 = 2C cosh(s1Ṽ1 + s2Ṽ2). (69)

with

C =
1

2
e−|V | (70)

Ṽ1 =
1

2
arcosh(e2|V |) (71)

Ṽ2 = sgn(V )× Ṽ1 (72)
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for Ising variables s1 and s2, and a real interaction V . This is the gadget for decomposing two-body interactions
discussed in Methods. In the following, we will use this identity to decompose either interactions between visible
(physical spins) (in that case s1 and s2 are both σz variables), or to decompose direct interactions between a σz spin
and a deep unit d.

Another identity (decomposition of four-body interaction) is

es1s2s3s4V =
1

4

∑
s5,s6,s7

exp
[
i
π

4
(s5 + s6)(s1 + s2 + s3 + s7)

]
exp(s4s7V )

=
∑
s7

cos2
[π

4
(s1 + s2 + s3 + s7)

]
exp(s4s7V ) (73)

for Ising variables si with i = 1, · · · , 4. Although we have introduced complex couplings in the first line, each term in
the summation in the second line of Eq. (73) is positive definite if V is real. The second line remains nonzero only
for s7 = 1 if s1s2s3 = 1 and only for s7 = −1 if s1s2s3 = −1, which proves the identity. This identity with s1 and s2

as physical variables, s4, s5, and s6 as hidden variables, and s3 and s7 as deep variables, which reads

eσ1σ2d1h1V =
1

4

∑
h2,h3,d2

exp
[
i
π

4
(h2 + h3)(σ1 + σ2 + d1 + d2)

]
exp(h1d2V ), (74)

will be used in Sec. II B 3. Note that the right hand side fits the DBM structure.
Although identities for decomposing three-body interactions are not used in the following derivation, it is nonetheless

useful to show them:

es1s2s3V =
1

4

∑
s4,s5,s6

exp
[
i
π

4
(s4 + s5)(s1 + s2 + s3 + s6)

]
exp(s6V )

=
∑
s6

cos2
[π

4
(s1 + s2 + s3 + s6)

]
exp(s6V ). (75)

This gadget for three-body interactions is obtained by fixing s4 = 1 in Eq. (73) (and changing variables). Alternative
form is obtained by replacing s3 with 1 in Eq. (73), which gives,

es1s2s3V =
1

4

∑
s4,s5,s6

exp
[
i
π

4
(s4 + s5)(s1 + s2 + s6 + 1)

]
exp(s3s6V )

=
∑
s6

cos2
[π

4
(s1 + s2 + s6 + 1)

]
exp(s3s6V ). (76)

As we see, the gadgets for three-body interactions [Eqs. (75) and (76)] have been derived from the gadget for four-body
interactions [Eq. (73)] trivially.

Gadgets for two-body interactions which are different from Eq. (69) can also be obtained from Eq. (73) by fixing
two variables out of s1, s2, s3, s4 to be 1. These could be used instead of (69), although we employ (69) in the
formalism below for the decoupling of the two-body interaction.

II. REPRESENTING GROUND-STATES

As discussed in the main text, our goal is to construct explicit DBM representations of ground-states of local
Hamiltonians. This goal is achieved by finding a representation of the imaginary-time evolved state:

|Ψ(τ)〉 = e−τH|Ψ0〉, (77)

where |Ψ0〉 is empty RBM (〈σz|Ψ0〉 = const.) or pre-optimized RBM state, converging to the exact ground-state for
large enough τ . To achieve this goal we first consider a second-order Trotter-Suzuki decomposition:

|Ψ(τ)〉 = G1(δτ/2)G2(δτ ) . . .G1(δτ )G2(δτ )G1(δτ/2)|Ψ0〉, (78)

where δτ is a small time step, the Hamiltonian is decomposed into two non-commuting parts, H = H1 + H2, and
Gν(δτ ) = e−Hνδτ are short-time propagators. For given Hamiltonian, we then need to find specific rules to apply the
short-time propagators to a generic DBM, and obtain a new (time-evolved) DBM, possibly with a larger total number
of hidden and deep neurons. In the following, we show concrete examples for the transverse-field Ising and Heisenberg
models.
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A. Transverse-Field Ising model

Let us start with the case of the transverse-field Ising model. We consider a Trotter-Suzuki decomposition of the
imaginary-time propagator, into two parts: H1 = −∑i Γiσ

x
i , and H2 =

∑
l<m Vlmσ

z
l σ

z
m. In the following derivation,

we assume that Γi is positive (Γi > 0). In this case, we look for a solution with zero bias terms: ai = bj = b′k = 0,
∀i, j, k. The case of negative Γi can also be treated, and is discussed more in detail at the end of this section.

Interaction propagator. The interaction propagator e−δτVlmσ
z
l σ
z
m is diagonal in the σz basis, and applying it to a

DBM will lead to a modification in the DBM parameters. In particular, the goal is to satisfy the equation:

〈σz|e−δτVlmσzl σzm |ΨW〉 = C〈σz|ΨW̄〉, (79)

i.e. to explicitly find a set of parameters W̄ that satisfies the previous equation for all the possible 〈σz|, and for an
arbitrary constant C.

We can achieve this goal adding a hidden unit in the first layer, h[lm] such that it is only connected to the visible
spins: W ′[lm]k = 0,∀k. The new wave function has then the form:

ΨW̄(σz) =
∑
{h,d}

∑
h[lm]

P1(σz, h)P2(h, d)eσ
z
lWl[lm]h[lm]+σ

z
mWm[lm]h[lm] (80)

= 2 cosh
(
σzlWl[lm] + σzmWm[lm]

)
ΨW(σz). (81)

Equation (79) is then satisfied if

e−δτVlmσ
z
l σ
z
m = 2C cosh

(
σzlWl[lm] + σzmWm[lm]

)
(82)

for all the possible values of σzl and σzm. By using the gadget Eq. (69), the new parameters Wl[lm] and Wm[lm] are
given by

Wl[lm] =
1

2
arcosh

(
e2|Vlm|δτ

)
(83)

Wm[lm] = −sgn(Vlm)×Wl[lm]. (84)

Transverse-field propagator. The propagator involving the transverse-field eδτΓlσ
x
l is off-diagonal in σz basis. For

this off-diagonal part, we must solve a slightly more involved equation:

〈σz|eδτΓlσ
x
l |ΨW〉 = ΨW(σz)× cosh(Γlδτ ) + ΨW(σz1 , · · · − σzl , . . . , σzN )× sinh(Γlδτ ) (85)

= C〈σz|ΨW̄〉, (86)

for the new parameters W̄, and for an arbitrary finite normalization constant C. In turn, this equation is equivalent
to: ∑

{h,d}
P1(σz, h)P2(h, d)

[
1 + tanh(Γlδτ )e−2σzl

∑
j hjWlj

]
= CΨW̄(σz). (87)

We look for a solution by adding one deep neuron d[l] and creating new couplings W ′j[l] to the existing hidden neurons
hj which are connected to σzl . We also allow for changes in the existing interaction parameters. In particular we set
the new couplings to be W̄lj = Wlj + ∆Wlj , (with ∆Wlj to be determined).

Moreover, we introduce one hidden neuron h[l] coupled to σzl and d[l] through the interactions Wl[l] and W ′[l][l],
respectively. If we trace out h[l], the hidden neuron h[l] mediates the interaction between σzl and d[l] (denoted as
W ′′l[l]).

With this choice, we have (in the representation where h[l] is traced out):

ΨW̄(σz) =
∑
{h,d}

∑
d[l]

P1(σz, h)P2(h, d)eσ
z
l

∑
j ∆Wljhj+d[l]

∑
j hjW

′
j[l]+σ

z
l d[l]W

′′
l[l] . (88)

The equations to be verified are obtained considering the two possible values of σzl = ±1:

e
∑
j hj(∆Wlj+W

′
j[l])+W ′′l[l] + e

∑
j hj(∆Wlj−W ′j[l])−W ′′l[l] = C ×

(
1 + tanh(Γlδτ )e−2

∑
j hjWlj

)
(89)

e
∑
j hj(−∆Wlj+W

′
j[l])−W ′′l[l] + e

∑
j hj(−∆Wlj−W ′j[l])+W ′′l[l] = C ×

(
1 + tanh(Γlδτ )e2

∑
j hjWlj

)
. (90)
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This equation has a solution if the hidden unit interactions on the l.h.s. and on the r.h.s match, i.e. when:

∆Wlj +W ′j[l] = −2Wlj (91)

∆Wlj −W ′j[l] = 0, (92)

which in turn are verified when

W ′j[l] = −Wlj (93)

∆Wlj = −Wlj , (94)

and if

W ′′l[l] =
log tanh(Γlδτ )

2
. (95)

When Γl > 0, W ′′l[l] is real. By using Eq. (69) with the following replacement s1 → σzl , s2 → d[l], s3 → h[l],

V →W
′′
l[l], Ṽ1 →Wl[l] and Ṽ2 →W ′[l][l], the last condition determines the real couplings Wl[l] and W ′[l][l], which read

Wl[l] =
1

2
arcosh

(
1

tanh(Γlδτ )

)
(96)

W ′[l][l] = −Wl[l]. (97)

Notice that because of condition (94), after applying the off-diagonal propagator all the interactions Wlj between
spin l and hidden units hj are set to zero. However, because of condition (96), the spin l is reconnected to the new
hidden unit h[l] with the Wl[l] interaction.

Negative transverse field. When Γi < 0, it is still possible to recover a DBM representation with purely real
interaction weights W and W ′. In order to do so, we apply the gauge transformation σxi → −σxi and σyi → −σyi (π
spin rotation around the z axis), which maps onto the Hamiltonian with positive Γi. This gauge transformation can
be achieved by taking a finite bias terms ai in Eq. (63) as ai = iπ/2 and fix them during the imaginary time evolution.
With this complex bias term ai = iπ/2, |↑〉 (|↓〉) state at the ith site acquires a phase as follows |↑〉 → ei

π
2 |↑〉 = i|↑〉

(|↓〉 → e−i
π
2 |↓〉 = −i|↓〉), which is equivalent to a π spin rotation around the z axis. In the case when Γi is originally

positive, we can set all the bias terms {a, b, b′} to be zero.

B. Heisenberg Model

We now consider the case of the Heisenberg model, whose Hamiltonian reads

H =
∑
〈lm〉
Hlm (98)

Hlm = Hzlm +Hxylm (99)

Hzlm = Jzlmσ
z
l σ

z
m (100)

Hxylm = Jxylm(σxl σ
x
m + σyl σ

y
m) = 2Jxylm(σ+

l σ
−
m + σ−l σ

+
m) (101)

with Jzlm = Jxylm = J . We write the Hamiltonian in a general form because the following DBM algorithm can be
straightforwardly extended to the more general case of anisotropic/disordered bonds. As a starting point for our
construction, we decompose the Hamiltonian into pieces by a Trotter-Suzuki decomposition of the imaginary-time
propagator: e−δτH ∼ ∏〈lm〉 e−δτHlm + O(δτ

2). Then in this Section, we represent e−δτHlm by using the DBM in

three different forms, which are all exact. By taking δτ small enough and operating e−δτHlm many times, those
constructions ensure that the ground state is obtained with any controlled accuracy.

For e−δτHlm , and the antiferromagnetic exchange Jzlm, J
xy
lm > 0, if the lattice is bipartite, we further apply a local

gauge transformation by π rotation around z axis in the spin space as

σx → −σx and σy → −σy (102)

on one of the sublattices, which gives a − sign for the σxl σ
x
m and σyl σ

y
m interactions. It is equivalent to the following

transformation in the couplings:

Jxylm → −J
xy
lm. (103)
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The gauge transformation enables to design a DBM neural network with real couplings {W,W ′} except for those
necessary to enforce local constraints on the values of deep neuron spins (see more detail about the constraint in the
following sections). Overall, we show in the following that the 3 different DBM constructions have no negative sign
problem.

On the bipartite lattice, the Suzuki-Trotter decomposition is frequently expressed by decomposing the Hamiltonian
H into several groups. For instance, on the one dimensional chain, if it is natural to decompose it into odd and even
bonds:

H1 =
∑

〈l,m〉∈odd bond

Hlm, H2 =
∑

〈l,m〉∈even bond

Hlm, (104)

further decompositions e−δτH1 =
∏
〈l,m〉∈ odd bond e

−δτHlm and e−δτH2 =
∏
〈l,m〉∈ even bond e

−δτHlm contain commut-
ing elements and are therefore exact. For the square lattice, a similar procedure requires the decomposition of the
Hamiltonian into 4 parts, in a checkerboard fashion. In all cases, the fundamental ingredient to represent the ground-
state as a DBM is to find an exact expression for the bond propagator, e−δτHlm , when applied to an existing DBM
state.

In the case of antiferromagnetic Heisenberg model after the gauge transformation on the bipartite lattice, we must
solve, for each bond,

〈σz|eδτJxylm(σxl σ
x
m+σyl σ

y
m)−δτJzlmσzl σzm |ΨW〉

= δσzl ,σzme
−δτJzlmΨW(σz) + (1− δσzl ,σzm)eδτJ

z
lm (ΨW(σz)× cosh(2Jxylmδτ ) + ΨW(σzl ↔ σzm)× sinh(2Jxylmδτ ))

= C〈σz|ΨW̄〉. (105)

It is also useful to explicitly write the expression for the exchange term in the second line above:

ΨW(σz)× cosh(2Jxylmδτ ) + ΨW(σzl ↔ σzm)× sinh(2Jxylmδτ )

=
∑
{h,d}

P1(σz, h)P2(h, d)
[
cosh(2Jxylmδτ ) + sinh(2Jxylmδτ )e(σzm−σzl )

∑
j hj(Wlj−Wmj)

]
. (106)

In the following derivations, for the antiferromagnetic Hamilonian (Jzlm, J
xy
lm > 0) after the gauge transformation, we

look for a solution with zero bias terms (ai, bj , b
′
k = 0, ∀i, j, k). We can also derive a sign-problem free solution for

the imaginary time evolution in the absence of the explicit gauge transformation by introducing complex bias term
ai. Indeed, in the “2 deep, 4 hidden” representation in Sec. II B 3, we will explicitly show that taking a specific set
of complex bias term ai on physical spins is equivalent to the gauge transformation, making a solution free from the
sign problem.

1. 1 deep, 3 hidden (1d-3h) representation

Strategy. The first representation we propose is obtained adding one deep neuron d[lm], which gives new couplings
W ′j[lm] to the hidden units hj connected to σzl and σzm. We also allow for changes in the existing DBM parameters.

In particular we set the new couplings to be W̄lj = Wlj + ∆Wlj , (with ∆Wlj to be determined). We introduce a
coupling W ′′l[lm] between σzl and d[lm], and a coupling V[lm] between σzl and σzm, which are both not allowed in the

DBM architecture. By using the gadget Eq. (69), these interactions can be mediated by hidden neurons h[lm1] and
h[lm2], respectively, and the DBM form is recovered. Furthermore, we look for a solution with a constraint: d[lm] = σzl
when σzl = σzm (when σzl 6= σzm, the d[lm] value is not constrained). Imposing the constraint on the value of the
deep unit is a crucial difference from the DBM solution for the TFI model. We will show that this constraint can
be achieved by adding additional hidden neuron h[lm3] and introducing complex couplings (“iπ/6” trick). We discuss
this trick in more detail later.

In total, we introduce one deep and three hidden neurons. After tracing out the three hidden neurons h[lm1], h[lm2],
and h[lm3], the new wave function reads

ΨW̄(σz) =
∑
{h,d}

∑
d[lm]=±1

d[lm]=σ
z
l if σzl =σzm

P1(σz, h)P2(h, d)eσ
z
l

∑
j ∆Wljhj+d[lm]

∑
j hjW

′
j[lm]+d[lm]σ

z
lW
′′
l[lm]+V[lm]σ

z
l σ
z
m . (107)
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Derivation for the update of parameters. The equations to be verified are then obtained considering all the
possible values of σzl = ±1 and σzm = ±1, in addition to the constraints on d[lm] previously introduced. We then have
two equations for σzl = σzm = ±1:

e
∑
j(∆Wlj+W

′
j[lm])hj+W

′′
l[lm]+V[lm] = C × exp(−Jzlmδτ ) (108)

e
∑
j(−∆Wlj−W ′j[lm])hj+W

′′
l[lm]+V[lm] = C × exp(−Jzlmδτ ), (109)

and the other two equations for σzl = −σzm = ±1:

e
∑
j(∆Wlj+W

′
j[lm])hj+W

′′
l[lm]−V[lm] + e

∑
j(∆Wlj−W ′j[lm])hj−W ′′l[lm]−V[lm]

= C × exp(Jzlmδτ )
(

cosh(2Jxylmδτ ) + sinh(2Jxylmδτ )e−2
∑
j hj(Wlj−Wmj)

)
, (110)

e
∑
j(−∆Wlj+W

′
j[lm])hj−W ′′l[lm]−V[lm] + e

∑
j(−∆Wlj−W ′j[lm])hj+W

′′
l[lm]−V[lm]

= C × exp(Jzlmδτ )
(

cosh(2Jxylmδτ ) + sinh(2Jxylmδτ )e2
∑
j hj(Wlj−Wmj)

)
. (111)

These equations have a solution if the hidden unit interactions on the l.h.s. and on the r.h.s match, i.e. when:

∆Wlj +W ′j[lm] = 0 (112)

∆Wlj −W ′j[lm] = −2(Wlj −Wmj) (113)

which implies

∆Wlj = −Wlj +Wmj (114)

W ′j[lm] = Wlj −Wmj . (115)

Notice that the first condition gives W̄lj = Wlj + ∆Wlj = Wmj , which is equivalent to cutting all connections from
spin l to the hidden units and attaching the spin l to all the hidden units connected to spin m, with an interaction
Wmj .

In order to match the coefficients we must also have:

W ′′l[lm] + V[lm] = logC − Jzlmδτ (116)

W ′′l[lm] − V[lm] = logC + log cosh(2Jxylmδτ ) + Jzlmδτ (117)

−W ′′l[lm] − V[lm] = logC + log sinh(2Jxylmδτ ) + Jzlmδτ , (118)

which has the solution:

W ′′l[lm] = − (log tanh(2Jxylmδτ )) /2 (119)

V[lm] = − (log cosh(2Jxylmδτ )) /2− Jzlmδτ (120)

Recovery of standard DBM. The coupling W ′′l[lm] between the deep unit d[lm] and the visible spin σzl is mediated

by the hidden unit h[lm1] coupled to σzl by Wl[lm1] and d[lm] by W ′[lm1][lm]:

exp(σzl d[lm]W
′′
l[lm]) = C[lm1]

∑
h[lm1]

exp(σzl h[lm1]Wl[lm1] + h[lm1]d[lm]W
′
[lm1][lm]). (121)

By using Eq. (69) with the following replacement s1 → σzl , s2 → d[lm], s3 → h[lm1], V → W ′′l[lm], Ṽ1 → Wl[lm1] and

Ṽ2 →W ′[lm1][lm], Wl[lm1] and W ′[lm1][lm] are given by

Wl[lm1] = W ′[lm1][lm] =
1

2
arcosh

(
1

tanh(2Jxylmδτ )

)
. (122)
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Similarly, the coupling V[lm] between visible spins σzl and σzm is mediated by the hidden unit h[lm2] coupled to σzl
by Wl[lm2] and σzm by Wm[lm2]:

exp(σzl σ
z
mV[lm]) = C[lm2]

∑
h[lm2]

exp(σzl h[lm2]Wl[lm2] + σzmh[lm2]Wm[lm2]). (123)

By using Eq. (69) with the following replacement s1 → σzl , s2 → σzm, s3 → h[lm2], V → Vlm, Ṽ1 → Wl[lm2] and

Ṽ2 →Wm[lm2], Wl[lm2] and Wm[lm2] are given by

Wl[lm2] = −Wm[lm2] =
1

2
arcosh

(
cosh(2Jxylmδτ )e2Jzlmδτ

)
. (124)

How to enforce the constraint d[lm] = σz
l when σz

l = σz
m (“iπ/6” trick). The constraint d[lm] = σzl when

σzl = σzm can be exactly satisfied by introducing pure complex connections. We can replace the sum with the constraint
in Eq. (107) as follows (we ignore trivial constant factor):∑

d[lm]=±1

d[lm]=σ
z
l if σzl =σzm

−→
∑
d[lm]

∑
h[lm3]

ei
π
6 ((σzl +σzm)h[lm3]−h[lm3]d[lm]) =

∑
d[lm]

2 cos
(π

6

(
σzl + σzm − d[lm]

))
(125)

One can easily see that the cosine term in the rightmost part gives nonzero value only when d[lm] = σzl if σzl = σzm.
On the other hand, if σzl 6= σzm, both d[lm] ± 1 contributions survive.

Proof of no negative sign. Here, we show that the marginal probability density Π̃′(σz, d, d′) =∑
h,h′ Π(σz, h, h′, d, d′) obtained by tracing out the hidden unit is non-negative definite. Therefore, we can per-

form the Metropolis sampling using Π̃′ density without suffering from the negative signs (see more detail on the
sampling scheme in Sec. III B). To prove this, it is sufficient to show∑

{h}
P1(σz, h)P2(h, d) ≥ 0. (126)

for all possible σz and d configurations.
In the 1d-3h representation, iπ/6 complex couplings are originally introduced to put the constraint locally. However,

as time evolves, these complex couplings become non-local (see Fig. 5). Because the pure complex couplings give cosine
terms after tracing out hidden variables, they have a potential to give negative signs. Here, we prove that this is not
the case.

We assume that Eq. (126) is satisfied for all possible σz and d after several steps of the imaginary time evolution.
Then, we apply the bond propagator e−Hlmδτ to obtain the new wave function. In the case when σzl = −σzm = 1, the
solution in the 1d-3h representation can be rewritten as∑

h[lm1],h[lm2],h[lm3]

P̄1(σz, h̄)P̄2(h̄, d, d[lm] = 1) = P1(σz, h)P2(h, d)× (positive constant) (127)

∑
h[lm1],h[lm2],h[lm3]

P̄1(σz, h̄)P̄2(h̄, d, d[lm] = −1) = P1(σzl ↔ σzm, h)P2(h, d)× (positive constant) (128)

where P̄1 × P̄2 on the left hand side is the new weight after the imaginary time evolution, and {h̄} consists of the
existing hidden neurons {h} and the newly introduced hidden neurons h[lm1], h[lm2], and h[lm3]. By taking the
summation on the existing hidden variables on both sides, we get∑

{h̄}
P̄1(σz, h̄)P̄2(h̄, d, d[lm] = 1) =

∑
{h}

P1(σz, h)P2(h, d)× (positive constant) ≥ 0 (129)

∑
{h̄}

P̄1(σz, h̄)P̄2(h̄, d, d[lm] = −1) =
∑
{h}

P1(σzl ↔ σzm, h)P2(h, d)× (positive constant) ≥ 0 (130)

Here, we used Eq. (126) to obtain the rightmost inequality. It proves that the new weight with the hidden variables
being traced out is also non-negative. In the same way, we can show the non-negativeness of the new weight for
σl = −σm = −1.
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Figure 5. Imaginary-time evolution of complex couplings in 1d-3h construction for one-dimensional Heisenberg
model. The figure shows how the complex couplings with weight ±iπ/6 evolve from an empty RBM (〈σz|Ψ0〉 = const.). Dots,
squares, triangles indicate physical spins σzi , hidden neurons hj , and deep neurons dk, respectively. For visibility, only hidden
neurons having complex couplings and the associated complex couplings are shown. Therefore, at each imaginary-time evolution,
one hidden neuron (called h[lm3] in the text) appears for each bond. One hidden neuron (green) and the associated couplings
(black) are highlighted. As discussed in Step 2 in Fig. 3, at each evolution on σzl and σzm, the W couplings to σzl are cut and
σzl is reconnected to the hidden neuron coupled to σzm. By this “cut and reconnect” procedure, the positions of nonzero W
couplings from a specific hidden neuron move, however, the W couplings stay local. On the other hand, the number of nonzero
W ′ couplings increases by imaginary-time evolution, resulting in non-local structure of W ′ couplings. For the same reason, the
real W couplings stay local, whereas the real W ′ couplings become nonlocal.

Next we consider the case σzl = σzm = 1. In this case,∑
h[lm1],h[lm2],h[lm3]

P̄1(σz, h̄)P̄2(h̄, d, d[lm] = 1) = P1(σz, h)P2(h, d)× (positive constant), (131)

∑
h[lm1],h[lm2],h[lm3]

P̄1(σz, h̄)P̄2(h̄, d, d[lm] = −1) = 0. (132)

By taking the summation on the existing hidden variables on both sides, we obtain∑
{h̄}

P̄1(σz, h̄)P̄2(h̄, d, d[lm] = 1) =
∑
h

P1(σz, h)P2(h, d)× (positive constant) ≥ 0 (133)

∑
{h̄}

P̄1(σz, h̄)P̄2(h̄, d, d[lm] = −1) = 0. (134)

Therefore, the non-negativeness of the weight is ensured. The proof for σzl = σzm = −1 case can be done in an
analogous way.
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We have proven that the new weight after applying the bond propagator e−Hlmδτ is non negative for all the possible
σz and d̄ configurations: ∑

{h̄}
P̄1(σz, h̄)P̄2(h̄, d̄) ≥ 0 (135)

with {d̄} consisting of {d} and d[lm]. It ensures the non-negativeness of the weight at any time during the imaginary
time evolution.

Summary of 1d-3h representation. The action the bond propagator is summarized as follows. First, the new
deep neuron d[lm] is attached to the existing hidden neurons connected to σzl and σzm. Second, σzl is disconnected
to all hidden units and reconnected to the hidden units having finite couplings to σzm (W̄lj = Wmj). Third, four
couplings are inserted, involving new hidden neurons h[lm1] and h[lm2]: σ

z
l ↔ h[lm1], h[lm1] ↔ d[l], σ

z
l ↔ h[lm2] and

σzm ↔ h[lm2], Finally, the new hidden neuron h[lm3] puts the constraint on the d[l] sum by the imaginary couplings to
σzl , σzm, and d[l].

By successively applying the imaginary-time evolutions, the W ′ couplings become nonlocal or long ranged. On the
other hand, the W couplings stay local (see Fig. 5).

2. 2 deep, 6 hidden (2d-6h) representation

Strategy. We look for a solution where we add two deep neurons d[l] and d[m], giving new couplings W ′j[l], W
′
j[m] to

the existing hidden spins hj connected to σzl and σzm. We also allow for changes in the existing W parameters: We
set the new couplings to be W̄lj = Wlj + ∆Wlj and W̄mj = Wmj + ∆Wmj (with ∆Wlj , ∆Wmj to be determined).
Furthermore, we add four hidden neurons h[lm1], h[lm2], h[lm3], and h[lm4] to mediate the interactions between (σzl , d[l]),
(σzm, d[m]), (σzl , d[m]), and (σzm, d[l]), respectively. We solve the equation with the constraint σzl + σzm = d[l] + d[m].
This constraint can be achieved, for example, by adding two further hidden neurons (h[lm5] and h[lm6], respectively)
and introducing complex connections (“iπ/4, iπ/8” trick). This trick will be discussed in detail later.

In total, we add two deep neurons (d[l] and d[m]) and six hidden neurons (h[lm1], . . . , h[lm6]). In the following, to
make equations simple, we employ a representation in which the new hidden neurons are analytically traced out.
The interactions between (σzl , d[l]), (σzm, d[m]), (σzl , d[m]), and (σzm, d[l]), which are mediated by 1st to 4th hidden
neurons, will be denoted as W ′′l[l], W

′′
m[m], W

′′
l[m], and W ′′m[l], respectively. The 5th and 6th hidden neurons filter out

σzl + σzm 6= d[l] + d[m] contributions. With this setting, the new wave function is represented as

ΨW̄(σz) =
∑
{h,d}

∑
d[l],d[m]

d[l]+d[m]=σ
z
l +σzm

P1(σz, h)P2(h, d) e
∑
j hj(∆Wljσ

z
l +W ′j[l]d[l])+

∑
j hj(∆Wmjσ

z
m+W ′j[m]d[m])

× eσ
z
l (W ′′l[l]d[l]+W

′′
l[m]d[m])+σ

z
m(W ′′m[l]d[l]+W

′′
m[m]d[m]). (136)

Derivation for the update of parameters. When the lth and mth physical spins are anti-parallel (σzl = −σzm =
±1), d[l] = −d[m] = ±1 contributions survive in the sum over d[l] and d[m] variables in Eq. (136), and thus the
equations to be satisfied are

e
∑
j hj(∆Wl−m,j+W

′
j[l]−W ′j[m])+W ′′l−m,[l]−W ′′l−m,[m] + e

∑
j hj(∆Wl−m,j−W ′j[l]+W ′j[m])−W ′′l−m,[l]+W ′′l−m,[m]

= CeJ
z
lmδτ

(
cosh(2Jxylmδτ ) + sinh(2Jxylmδτ )e−2

∑
j hjWl−m,j

)
(137)

for σzl = −σzm = 1 and

e
∑
j hj(−∆Wl−m,j+W

′
j[l]−W ′j[m])−W ′′l−m,[l]+W ′′l−m,[m] + e

∑
j hj(−∆Wl−m,j−W ′j[l]+W ′j[m])+W ′′l−m,[l]−W ′′l−m,[m]

= CeJ
z
lmδτ

(
cosh(2Jxylmδτ ) + sinh(2Jxylmδτ )e2

∑
j hjWl−m,j

)
(138)

for σzl = −σzm = −1, respectively. Here, Wl−m,[α] = Wl[α] −Wm[α], ∆Wl−m,[α] = ∆Wl[α] − ∆Wm[α], W
′′
l−m,[α] =

W ′′l[α] −W ′′m[α] with α = l,m.
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When the lth and mth physical spins are parallel (σzl = σzm = ±1), only d[l] =d[m] =σzl =σzm contribution survives
in the sum over d[l] and d[m] variables in Eq. (136), and thus the equations to be satisfied are

e
∑
j hj(∆Wl+m,j+W

′
j[l]+W

′
j[m])+W ′′l+m,[l]+W

′′
l+m,[m] = Ce−J

z
lmδτ (139)

for σzl = σzm = 1

e
∑
j hj(−∆Wl+m,j−W ′j[l]−W ′j[m])+W ′′l+m,[l]+W

′′
l+m,[m] = Ce−J

z
lmδτ (140)

for σzl = σzm = −1, respectively. Here, Wl+m,[α] = Wl[α] + Wm[α], ∆Wl+m,[α] = ∆Wl[α] + ∆Wm[α], W
′′
l+m,[α] =

W ′′l[α] +W ′′m[α] with α = l,m.

The equations (137), (138), (139), and (140) are satisfied if

∆Wl−m,j −W ′j[l] +W ′j[m] = −2Wl−m,j , (141)

∆Wl−m,j +W ′j[l] −W ′j[m] = 0, (142)

∆Wl+m,j +W ′j[l] +W ′j[m] = 0, (143)

and

W ′′l−m,[l] −W ′′l−m,[m] = logC + Jzlmδτ + log cosh(2Jxylmδτ ), (144)

−W ′′l−m,[l] +W ′′l−m,[m] = logC + Jzlmδτ + log sinh(2Jxylmδτ ), (145)

W ′′l+m,[l] +W ′′l+m,[m] = logC − Jzlmδτ . (146)

These conditions give

W ′j[l] = Wlj , (147)

W ′j[m] = Wmj , (148)

∆Wlj = −Wlj , (149)

∆Wmj = −Wmj , (150)

and

W ′′l[l] = W ′′m[m] = −J
z
lmδτ
2
− 1

4
log sinh(2Jxylmδτ ), (151)

W ′′l[m] = W ′′m[l] = −J
z
lmδτ
2
− 1

4
log cosh(2Jxylmδτ ). (152)

Recovery of standard DBM. The direct interactions between (σzl , d[l]), (σzm, d[m]), (σzl , d[m]), and (σzm, d[l]), are
mediated by h[lm1], h[lm2], h[lm3], and h[lm4], respectively, as follows

exp(σzl d[l]W
′′
l[l]) = C[lm1]

∑
h[lm1]

exp(σzl h[lm1]Wl[lm1] + h[lm1]d[l]W
′
[lm1][l]), (153)

exp(σzmd[m]W
′′
m[m]) = C[lm2]

∑
h[lm2]

exp(σzmh[lm2]Wm[lm2] + h[lm2]d[m]W
′
[lm2][m]), (154)

exp(σzl d[m]W
′′
l[m]) = C[lm3]

∑
h[lm3]

exp(σzl h[lm3]Wl[lm3] + h[lm3]d[m]W
′
[lm3][m]), (155)

exp(σzmd[l]W
′′
m[l]) = C[lm4]

∑
h[lm4]

exp(σzmh[lm4]Wm[lm4] + h[lm4]d[l]W
′
[lm4][l]). (156)

By applying the gadget Eq. (69), the new W , W ′ interactions are given by, for small δτ (such that e−J
z
lmδτ√

sinh(2Jxylmδτ )
> 1):

Wl[lm1] = W ′[lm1][l] = Wm[lm2] = W ′[lm2][m] = 1
2arcosh

(
e−J

z
lmδτ√

sinh(2Jxylmδτ )

)
, (157)

Wl[lm3] = −W ′[lm3][m] = Wm[lm4] = −W ′[lm4][l] = 1
2arcosh

(√
cosh(2Jxylmδτ )× eJzlmδτ

)
. (158)
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How to enforce the constraint σz
l + σz

m = d[l] + d[m] (“iπ/4, iπ/8” trick). Here, we discuss how to design
the network to satisfy the constraint σzl + σzm = d[l] + d[m]. We rewrite the sum with the constraint in Eq. (136) as
follows (we ignore trivial constant factor):

∑
d[l],d[m]

d[l]+d[m]=σ
z
l +σzm

−→
∑

d[l],d[m]

∑
h[lm5],h[lm6]

ei
π
4 ((σzl +σzm)h[lm5]−h[lm5](d[l]+d[m])) × eiπ8 ((σzl +σzm)h[lm6]−h[lm6](d[l]+d[m]))

=
∑

d[l],d[m]

2 cos
(π

4
(σzl + σzm − d[l] − d[m])

)
× 2 cos

(π
8

(σzl + σzm − d[l] − d[m])
)

(159)

One can easily see that the second line of the equation gives nonzero contribution only when d[l] + d[m] = σzl + σzm.

Summary of the 2d-6h representation. The network changes induced by the bond propagator at each imaginary
time step are summarized as follows. Eqs. (149) and (150) imply that W̄lj = Wlj + ∆Wlj = 0 and W̄mj =
Wmj + ∆Wmj = 0, i.e., all the existing connections between physical spins and hidden neurons vanish. Then, the lth
and mth physical spins will be connected to the new hidden neurons h[lm1], . . . , h[lm6], The new deep neurons d[l] and
d[m] are also connected to h[lm1], . . . , h[lm6]. In total, we have 16 new connections in the deep Boltzmann network.

By continuing the imaginary time evolution, the neural network grows as in Fig. 6. The number of neurons
increases linearly with the number Nslice of Suzuki-Trotter time slice. For example, in the case of the one-dimensional
Heisenberg model, the total number of deep and hidden neurons are Nsite(2Nslice + 1) and 3Nsite(2Nslice + 1),
respectively. The number of nonzero connections in the network is 8Nsite(2Nslice + 1). The origin of 2Nslice + 1 is
coming from the fact that we apply G propagators 2Nslice + 1 times when we apply the second-order Suzuki-Trotter
decomposition. The “iπ/4, iπ/8” trick plays a role to preserve the total magnetization for deep spins at each
imaginary-time step, i.e.,

∑
k dk(t+1) =

∑
k dk(t), where d(t+1) [d(t)] are the deep neurons introduced at (t+1)-th

[t-th] step.

Relationship between the 2d-6h representation and the path-integral quantum Monte Carlo method.
In the final part of this section, we discuss the similarity between the 2d-6h representation and the imaginary-time
path-integral quantum Monte Carlo method [42]. We will show that, in the 2d-6h representation, the deep neurons
can be regard as the additional degrees of freedom along the imaginary time in the path-integral formulation.

In the quantum Monte Carlo simulations using Suzuki-Trotter decomposition [10, 38], the partition function Z is
evaluated as

Z = 〈σz(0)|e−βH|σz(0)〉
'

∑
σz(0),...,σz(2Nslice−1)

〈σz(0)|e−H2δτ |σz(2Nslice−1)〉〈σz(2Nslice−1)|e−H1δτ |σz(2Nslice−2)〉 . . .

. . . 〈σz(4)|e−H2δτ |σz(3)〉〈σ(3)|e−H1δτ |σz(2)〉〈σz(2)|e−H2δτ |σz(1)〉〈σz(1)|e−H1δτ |σz(0)〉

(160)

In the evaluation of the matrix element of 〈σz(t+ 1)|e−Hνδτ |σz(t)〉 (ν = 1 or 2), in the case of one-dimensional
Heisenberg model, it is sufficient to consider one specific bond, 〈σzl (t+1)σzm(t+1)|e−Hlmδτ |σzl (t)σzm(t)〉. The matrix
elements are given by

〈σzl (t+1)σzm(t+1)|e−Hlmδτ |σzl (t)σzm(t)〉 = eJ
z
lmδτ


e−2Jzlmδτ 0 0 0

0 cosh(2Jxylmδτ ) sinh(2Jxylmδτ ) 0
0 sinh(2Jxylmδτ ) cosh(2Jxylmδτ ) 0
0 0 0 e−2Jzlmδτ

 (161)

in the basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}.
On the other hand, the imaginary time evolution in Eq. (2) in the main text [or equivalently, Eq. (78)] can be
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Figure 6. Schematic picture for imaginary time evolution of DBM neural network in the 2d-6h construction.
Dots, squares, and triangles indicate physical spins σzi , hidden neurons hj , and deep neurons dk, respectively. A set of six hidden
neurons are depicted as rectangles. (a) Building block of the imaginary-time evolution. The left part is a simplified picture of
the complete figure in the right part. This simplified picture is used in the panels (b) and (c) for the sake of visibility. (b) The
imaginary time evolution of the network starting from an empty RBM (〈σz|Ψ0〉 = const.). The hidden neurons introduced at
t-th step (h(t)’s) lose their connections to physical spins at (t+1)-th step, and instead they get connections to (t+1)-th deep
neurons (d(t+1)’s). (c) When we rearrange the neurons, one can see a clear correspondence between the 2d-6h representation
and the path-integral formulation (see the text for detail).
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rewritten as

〈σz|Ψ(τ)〉 =
∑

σz(1),...,σz(2Nslice+1)

〈σz|e−H1
δτ
2 |σz(2Nslice+1)〉〈σz(2Nslice+1)|e−H2δτ |σz(2Nslice)〉 . . .

. . . 〈σz(4)|e−H1δτ |σz(3)〉〈σz(3)|e−H2δτ |σz(2)〉〈σz(2)|e−H1
δτ
2 |σz(1)〉〈σz(1)|Ψ0〉 (162)

by inserting complete basis sets at each time slice. The matrix element used here is exactly the same as that of
QMC in Eq. (161). Here, the D dimensional quantum spin system is mapped on the D + 1 dimensional classical
system as in the case of the path integral quantum Monte Carlo method. Because the neuron spins are defined as
the classical Ising-type spins, we can represent the summation over σz(1), . . . , σz(2Nslice+1) by the summation over
Nsite(2Nslice +1) neuron spins. Assuming that these Nsite(2Nslice +1) neuron spins are in the deep layer, the imaginary
time evolution in Eq. (162) reads

〈σz|Ψ(τ)〉 =
∑

d(1),...,d(2Nslice+1)

〈σz|e−H1
δτ
2 |d(2Nslice+1)〉〈d(2Nslice+1)|e−H2δτ |d(2Nslice)〉 . . .

. . . 〈d(4)|e−H1δτ |d(3)〉〈d(3)|e−H2δτ |d(2)〉〈d(2)|e−H1
δτ
2 |d(1)〉〈d(1)|Ψ0〉. (163)

The matrix element 〈dl(t+1)dm(t+1)|e−Hlmδτ |dl(t)dm(t)〉 can be reproduced, for example, by the following interaction

eW
′′
1 (dl(t+1)dl(t)+dm(t+1)dm(t))eW

′′
2 (dl(t+1)dm(t)+dm(t+1)dl(t))

× cos
(π

4
(dl(t+1) + dm(t+1)− dl(t)− dm(t))

)
cos
(π

8
(dl(t+1) + dm(t+1)− dl(t)− dm(t))

)
(164)

with

W ′′1 = −J
z
lmδτ
2
− 1

4
log sinh(2Jxylmδτ ), (165)

W ′′2 = −J
z
lmδτ
2
− 1

4
log cosh(2Jxylmδτ ), (166)

This interaction can be mediated by adding hidden neurons and mediating the interactions between d(t+ 1) and d(t).
Then, Eq. (160) can be mapped onto the DBM representation.

Indeed, the 2d-6h representation presented in this section correspond to this specific DBM construction: In the
2d-6h representation, two deep neurons are introduced for each bond at each imaginary time evolution. Because each
imaginary time evolution acts on either even or odd bonds, the number of deep neurons introduced at one step is
exactly same as the number of physical spins. In this case, the deep neurons can be considered as the spin degrees of
freedom in the imaginary time layers d(1), . . . , d(2Nslice+1). The interactions in Eqs. (165) and (166) are equivalent to
those in Eqs. (151) and (152). The “iπ/4, iπ/8” trick appears to put constraint to conserve the total magnetization at
each layer. Therefore, the 2d-6h representation is equivalent to the path-integral formulation. Indeed, if we rearrange
the neurons in this DBM construction (Fig. 6), one can see a clear correspondence between the DBM network and
the path-integral formulation. The extended systems including physical spins and deep neurons can be regard as the
D + 1 dimensional classical spin systems mapped from D dimensional quantum systems.

3. 2 deep, 4 hidden (2d-4h) representation

Strategy. We first extend DBM in the following way:

ΨW̄(σz) =
∑
{h,d}

∑
d[l]

P1(σz, h)P2(h, d)e
∑
j,n=l,m σznhj∆Wnj+

∑
j hjd[l]W

′
j[l]+

∑
n=l,m σznd[l]W

′′
n[l]+

∑
j σ

z
l σ
z
mhjd[l]Zlmj .

(167)

Here, we have introduced terms which break the standard DBM form, in particular the terms proportional to W
′′
n[l] and

Zlmj with n = l,m. Those are essential for this construction, and their reduction to the pure DBM will be shown later.
Also notice that the sum over j runs through all the hidden neuron sites coupled to σzl and σzm, thus it incorporates
nonlocal couplings between hidden variables (h), physical (σz) and deep (d) variables. The term proportional to ai in
P1(σz, h) is a local site-dependent magnetic-field term in the DBM acting on the physical variables σz, which can also
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flexibly represent any local gauge transformation, if ai is taken complex. Here we fix ai to be site-dependent constants,
which stay unchanged through the imaginary time evolution. We later use the fact that the gauge transformation
σx → −σx and σy → −σy on one of the sublattices (or Jxy → −Jxy) on a bipartite lattice as in Eq. (103) is equivalent
to ai = iπ/2 if i is on this sublattice and ai = 0 on the other sublattice as a special choice of ai.

In the imaginary time evolution of Hlm, we update W̄nj (n = l,m) with the increment ∆Wnj , in such a way that
W̄nj = Wnj + ∆Wnj . In addition to the deep variable d[l], we further introduce one additional deep variable d[lm] to

recover the standard DBM by transforming the term proportional to W
′′

and Z, with supplementary four hidden
variables.

Derivation for the update of parameters. For σzl σ
z
m = −1, the imaginary time evolution of the bond Hlm is

given as

〈σz|e−δτ (Jzlmσ
z
l σ
z
m+2Jxylm(σ+

l σ
−
m+σ−l σ

+
m))|ΨW〉 = ΨW(σz)eJ

z
lmδτ cosh(2Jxylmδτ )

− ΨW(σz1 , · · · − σzl , · · · − σzm . . . )eJ
z
lmδτ sinh(2Jxylmδτ ) (168)

= C ′〈σz|ΨW̄〉, (169)

which is equivalent to ∑
{h,d}

ΨW
[
1− tanh(2Jxylmδτ )e−2

∑
n=l,m(σzn

∑
j hjWnj+anσ

z
n)
]

= CΨW̄ (170)

and C = (e−J
z
lmδτ / cosh(2Jxylmδτ ))C ′. Notice that, here, we keep the bias term an in Eq. (63) instead of applying the

gauge transformation in Eq. (103).
For σzl σ

z
m = 1, we obtain ∑

{h,d}
ΨWe

−2Jzlmδτ / cosh(2Jxylmδτ ) = CΨW̄ . (171)

To make these imaginary time evolutions exact, Wnj (n = l,m) is updated to W̄nj with the increment ∆Wnj as
W̄nj = Wnj + ∆Wnj with

∆Wlj = −∆Wmj = −1

2
(Wlj −Wmj). (172)

The new couplings W ′j[l], Zlmj and W ′′n[l] are also given by

W ′j[l] = −Zlmj = −1

2
(Wlj −Wmj) (173)

and from

2(W ′′l[l] −W ′′m[l]) = log[−e−2al−m tanh(2Jxylmδτ )] (174)

and

2 cosh(W
′′
l[l] +W

′′
m[l]) =

e−2Jzlmδτ−W
′′
l−m

cosh(2Jxylmδτ )
, (175)

we obtain

W ′′l[l] =
1

4

[
log
[
−e−2al−m tanh(2Jxylmδτ )

]
+ 2arcosh

[
e−2Jzlmδτ√

−2e−2al−m sinh(4Jxylmδτ )

]]
(176)

W ′′m[l] =
1

4

[
− log

[
−e−2al−m tanh(2Jxylmδτ )

]
+ 2arcosh

[
e−2Jzlmδτ√

−2e−2al−m sinh(4Jxylmδτ )

]]
(177)

with al−m = al − am. On a bipartite lattice, to avoid the negative sign (or complex phase) problem we need to keep
W ′′l[l] and W ′′m[l] real.

This can be achieved by choosing al = 0 for any l if Jlm < 0 (ferromagnetic case). For Jlm > 0 (antiferromagnetic
case), al = nπi with an arbitrary integer n if the site l belongs to the sublattice A and al = (n+ 1/2)πi if l belongs
to the sublattice B. This local gauge for Jlm > 0 is equivalent to take Jxylm → −J

xy
lm and al = 0 for any site l as is
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formulated in Eq.(103). We further note that W ′′m[l] can be taken positive if we take sufficiently small δτ in Eq. (177),

with the leading order term − log(2Jxylmδτ )/2. On the other hand, in Eq. (176), the leading order term is negative
(= −Jlmδτ ).

Recovery of the standard DBM form. To recover the original form of the DBM, we first use Eq. (69) with the
replacement s1 → σzn, s2 → d[l], s3 → h[n], C → Dn, V → W ′′n[l] Ṽ1 → Wn[n] and Ṽ2 → W ′[n][l] for n = l,m. We have

added here two hidden variables h[l] and h[m]. Then a solution for Dn, Wn[n], and W ′[n][l] are represented by using

W
′′
n[l] as

Dn =
1

2
exp[−W ′′

n[l]] (178)

Wn[n] = W ′[n][l] =
1

2
arcosh(exp[2W

′′
n[l]]), (179)

if W
′′
n[l] is positive (as in the case of W

′′
m[l] for small δτ ), which gives real Wn[n] and W ′[n][l]. On the other hand, if

W
′′
n[l] is negative (as in the case of W

′′
l[l] for small δτ ), we should take

Dn =
1

2
exp[W

′′
n[l]] (180)

Wn[n] = −W ′[n][l] =
1

2
arcosh(exp[−2W

′′
n[l]]), (181)

to give real Wn[n] and W[n][l].
To completely recover the original DBM form, we next use Eq. (74) by replacing σ1 with σzl , σ2 with σzm, d1 with

d[l], d2 with d[lm], h1 with hj , h2 with h[lm1], h3 with h[lm2], and V with Zlmj .
With these solutions, by ignoring the trivial constant factors including Dl and Dm, the evolution is described by

introducing two deep and four hidden additional variables d[l], d[lm], h[l], h[m], h[lm1], and h[lm2] as

ΨW̄(σz) =
∑
{h̄,d̄}

P1(σz, h)P2(h, d) exp
[ ∑
j,n=l,m

σznhj∆Wnj +
∑
j

hjd[l]W
′
j[l]

+
∑
n=l,m

h[n](σ
z
nWn[n] + d[l]W

′
[n][l]) + d[lm]

∑
j

hjZlmj

+
iπ

4
(h[lm1] + h[lm2])(σ

z
l + σzm + d[l] + d[lm])

]
, (182)

where {h̄, d̄} is a set consisting of the existing and new neurons. Equation (182) recovers the standard form of deep
Boltzmann machine, where the physical spins σz as well as the deep variables d are not interacting each other and
couples only to the hidden variables h.

Summary. After summing over {h̄}, we reach

ΨW̄(σ) =
∑
{d̄}

exp[
∑
n=l,m

anσ
z
n]
∏
j

[
2 cosh[

∑
i

σziWij +
∑
k

W
′
jkdk + d[l]W

′
j[l] + d[lm]Zlmj ]

]
×
∏
n=l,m

(
2 cosh[σznWn[n] + d[l]W

′
[n][l]]

)[
2 cos[

π

4
(σzl + σzm + d[lm] + d[lm])]

]2
(183)

where the parameters W,W ′ and Z are given in Eqs. (172), (173), (176), (177), and (179) (or (181)).
We have introduced 2 deep and 4 hidden variables. Among them, h[lm1] and h[lm2] are simply to relate d[l] and

d[lm] to σzl and σzm. With this trick, one can constrain d[l] = d[lm] for σzl = σzm and d[l] = −d[lm] for σzl = −σzm. After
repeatedly operating Eq. (182), for all the combinations of l,m, the DBM structure becomes nonlocal as we see in
Fig. 7. After the sufficiently long imaginary-time evolution, with the analytical sum on {h} and the Monte sampling
over {d}, one can obtain the ground state wave function.
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h[m]
<latexit sha1_base64="i8aGLRRgKHa/QbCpXExhzZjIRFM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQb0VvXis4NrCdinZNNuGJtmQZIWy9Ed48aDi1f/jzX9j2u5Bqw8GHu/NMDMvUZwZ6/tfXmVldW19o7pZ29re2d2r7x88mCzXhIYk45nuJthQziQNLbOcdpWmWCScdpLxzczvPFJtWCbv7UTRWOChZCkj2DqpM+oXkYin/XrDb/pzoL8kKEkDSrT79c/eICO5oNISjo2JAl/ZuMDaMsLptNbLDVWYjPGQRo5KLKiJi/m5U3TilAFKM+1KWjRXf04UWBgzEYnrFNiOzLI3E//zotyml3HBpMotlWSxKM05shma/Y4GTFNi+cQRTDRztyIywhoT6xKquRCC5Zf/kvCsedX0784bresyjSocwTGcQgAX0IJbaEMIBMbwBC/w6inv2Xvz3hetFa+cOYRf8D6+AeO8j3c=</latexit><latexit sha1_base64="i8aGLRRgKHa/QbCpXExhzZjIRFM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQb0VvXis4NrCdinZNNuGJtmQZIWy9Ed48aDi1f/jzX9j2u5Bqw8GHu/NMDMvUZwZ6/tfXmVldW19o7pZ29re2d2r7x88mCzXhIYk45nuJthQziQNLbOcdpWmWCScdpLxzczvPFJtWCbv7UTRWOChZCkj2DqpM+oXkYin/XrDb/pzoL8kKEkDSrT79c/eICO5oNISjo2JAl/ZuMDaMsLptNbLDVWYjPGQRo5KLKiJi/m5U3TilAFKM+1KWjRXf04UWBgzEYnrFNiOzLI3E//zotyml3HBpMotlWSxKM05shma/Y4GTFNi+cQRTDRztyIywhoT6xKquRCC5Zf/kvCsedX0784bresyjSocwTGcQgAX0IJbaEMIBMbwBC/w6inv2Xvz3hetFa+cOYRf8D6+AeO8j3c=</latexit><latexit sha1_base64="i8aGLRRgKHa/QbCpXExhzZjIRFM=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQb0VvXis4NrCdinZNNuGJtmQZIWy9Ed48aDi1f/jzX9j2u5Bqw8GHu/NMDMvUZwZ6/tfXmVldW19o7pZ29re2d2r7x88mCzXhIYk45nuJthQziQNLbOcdpWmWCScdpLxzczvPFJtWCbv7UTRWOChZCkj2DqpM+oXkYin/XrDb/pzoL8kKEkDSrT79c/eICO5oNISjo2JAl/ZuMDaMsLptNbLDVWYjPGQRo5KLKiJi/m5U3TilAFKM+1KWjRXf04UWBgzEYnrFNiOzLI3E//zotyml3HBpMotlWSxKM05shma/Y4GTFNi+cQRTDRztyIywhoT6xKquRCC5Zf/kvCsedX0784bresyjSocwTGcQgAX0IJbaEMIBMbwBC/w6inv2Xvz3hetFa+cOYRf8D6+AeO8j3c=</latexit>

h[l]
<latexit sha1_base64="AdYhSOzVr+yW8FFkwlyKLSKMXI8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtIQ9lsN+3SzSbsToQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZVIYdN0vp7Kyura+Ud2sbW3v7O7V9w8eTJprxn2WylR3I2q4FIr7KFDybqY5TSLJO9H4ZuZ3Hrk2IlX3OMl4mNChErFgFK3UGfWLQIbTfr3hNt05yF/ilaQBJdr9+mdvkLI84QqZpMYEnpthWFCNgkk+rfVywzPKxnTIA0sVTbgJi/m5U3JilQGJU21LIZmrPycKmhgzSSLbmVAcmWVvJv7nBTnGl2EhVJYjV2yxKM4lwZTMficDoTlDObGEMi3srYSNqKYMbUI1G4K3/PJf4p81r5ru3XmjdV2mUYUjOIZT8OACWnALbfCBwRie4AVencx5dt6c90VrxSlnDuEXnI9v4jePdg==</latexit><latexit sha1_base64="AdYhSOzVr+yW8FFkwlyKLSKMXI8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtIQ9lsN+3SzSbsToQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZVIYdN0vp7Kyura+Ud2sbW3v7O7V9w8eTJprxn2WylR3I2q4FIr7KFDybqY5TSLJO9H4ZuZ3Hrk2IlX3OMl4mNChErFgFK3UGfWLQIbTfr3hNt05yF/ilaQBJdr9+mdvkLI84QqZpMYEnpthWFCNgkk+rfVywzPKxnTIA0sVTbgJi/m5U3JilQGJU21LIZmrPycKmhgzSSLbmVAcmWVvJv7nBTnGl2EhVJYjV2yxKM4lwZTMficDoTlDObGEMi3srYSNqKYMbUI1G4K3/PJf4p81r5ru3XmjdV2mUYUjOIZT8OACWnALbfCBwRie4AVencx5dt6c90VrxSlnDuEXnI9v4jePdg==</latexit><latexit sha1_base64="AdYhSOzVr+yW8FFkwlyKLSKMXI8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtIQ9lsN+3SzSbsToQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZVIYdN0vp7Kyura+Ud2sbW3v7O7V9w8eTJprxn2WylR3I2q4FIr7KFDybqY5TSLJO9H4ZuZ3Hrk2IlX3OMl4mNChErFgFK3UGfWLQIbTfr3hNt05yF/ilaQBJdr9+mdvkLI84QqZpMYEnpthWFCNgkk+rfVywzPKxnTIA0sVTbgJi/m5U3JilQGJU21LIZmrPycKmhgzSSLbmVAcmWVvJv7nBTnGl2EhVJYjV2yxKM4lwZTMficDoTlDObGEMi3srYSNqKYMbUI1G4K3/PJf4p81r5ru3XmjdV2mUYUjOIZT8OACWnALbfCBwRie4AVencx5dt6c90VrxSlnDuEXnI9v4jePdg==</latexit>

hj
<latexit sha1_base64="M1xduZcJLQU06QaD7t/YdbAO5hM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJ+3azSbsboQS+hu8eFDx6h/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGiv5w17+OOlVa27dnYEsE68gNSjQ7FW/uv2EZTFKwwTVuuO5qQlyqgxnAieVbqYxpWxEB9ixVNIYdZDPjp2QE6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfCo2BG/x5WXin9Wv6u7dea1xXaRRhiM4hlPw4AIacAtN8IEBh2d4hTdHOi/Ou/Mxby05xcwh/IHz+QN6wo6o</latexit><latexit sha1_base64="M1xduZcJLQU06QaD7t/YdbAO5hM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJ+3azSbsboQS+hu8eFDx6h/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGiv5w17+OOlVa27dnYEsE68gNSjQ7FW/uv2EZTFKwwTVuuO5qQlyqgxnAieVbqYxpWxEB9ixVNIYdZDPjp2QE6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfCo2BG/x5WXin9Wv6u7dea1xXaRRhiM4hlPw4AIacAtN8IEBh2d4hTdHOi/Ou/Mxby05xcwh/IHz+QN6wo6o</latexit><latexit sha1_base64="M1xduZcJLQU06QaD7t/YdbAO5hM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJ+3azSbsboQS+hu8eFDx6h/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T940EmmGPosEYlqh1Sj4BJ9w43AdqqQxqHAVji6mfqtJ1SaJ/LejFMMYjqQPOKMGiv5w17+OOlVa27dnYEsE68gNSjQ7FW/uv2EZTFKwwTVuuO5qQlyqgxnAieVbqYxpWxEB9ixVNIYdZDPjp2QE6v0SZQoW9KQmfp7Iqex1uM4tJ0xNUO96E3F/7xOZqLLIOcyzQxKNl8UZYKYhEw/J32ukBkxtoQyxe2thA2poszYfCo2BG/x5WXin9Wv6u7dea1xXaRRhiM4hlPw4AIacAtN8IEBh2d4hTdHOi/Ou/Mxby05xcwh/IHz+QN6wo6o</latexit>

d[lm]
<latexit sha1_base64="1rHWp+jZUNKnTdkHtoE0FANu1w4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtIQ9lsNu3S3U3c3Qgl9E948aDi1d/jzX/jts1BWx8MPN6bYWZelHGmjet+O5WV1bX1jepmbWt7Z3evvn/woNNcEeqTlKeqG2FNOZPUN8xw2s0UxSLitBONbqZ+54kqzVJ5b8YZDQUeSJYwgo2VunG/CLgIJ/16w226M6Bl4pWkASXa/fpXL05JLqg0hGOtA8/NTFhgZRjhdFLr5ZpmmIzwgAaWSiyoDovZvRN0YpUYJamyJQ2aqb8nCiy0HovIdgpshnrRm4r/eUFuksuwYDLLDZVkvijJOTIpmj6PYqYoMXxsCSaK2VsRGWKFibER1WwI3uLLy8Q/a1413bvzRuu6TKMKR3AMp+DBBbTgFtrgAwEOz/AKb86j8+K8Ox/z1opTzhzCHzifP6i3j+k=</latexit><latexit sha1_base64="1rHWp+jZUNKnTdkHtoE0FANu1w4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtIQ9lsNu3S3U3c3Qgl9E948aDi1d/jzX/jts1BWx8MPN6bYWZelHGmjet+O5WV1bX1jepmbWt7Z3evvn/woNNcEeqTlKeqG2FNOZPUN8xw2s0UxSLitBONbqZ+54kqzVJ5b8YZDQUeSJYwgo2VunG/CLgIJ/16w226M6Bl4pWkASXa/fpXL05JLqg0hGOtA8/NTFhgZRjhdFLr5ZpmmIzwgAaWSiyoDovZvRN0YpUYJamyJQ2aqb8nCiy0HovIdgpshnrRm4r/eUFuksuwYDLLDZVkvijJOTIpmj6PYqYoMXxsCSaK2VsRGWKFibER1WwI3uLLy8Q/a1413bvzRuu6TKMKR3AMp+DBBbTgFtrgAwEOz/AKb86j8+K8Ox/z1opTzhzCHzifP6i3j+k=</latexit><latexit sha1_base64="1rHWp+jZUNKnTdkHtoE0FANu1w4=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtIQ9lsNu3S3U3c3Qgl9E948aDi1d/jzX/jts1BWx8MPN6bYWZelHGmjet+O5WV1bX1jepmbWt7Z3evvn/woNNcEeqTlKeqG2FNOZPUN8xw2s0UxSLitBONbqZ+54kqzVJ5b8YZDQUeSJYwgo2VunG/CLgIJ/16w226M6Bl4pWkASXa/fpXL05JLqg0hGOtA8/NTFhgZRjhdFLr5ZpmmIzwgAaWSiyoDovZvRN0YpUYJamyJQ2aqb8nCiy0HovIdgpshnrRm4r/eUFuksuwYDLLDZVkvijJOTIpmj6PYqYoMXxsCSaK2VsRGWKFibER1WwI3uLLy8Q/a1413bvzRuu6TKMKR3AMp+DBBbTgFtrgAwEOz/AKb86j8+K8Ox/z1opTzhzCHzifP6i3j+k=</latexit>

d[l]
<latexit sha1_base64="uBb4RTSONRM48nVS4HZU7/FqT0U=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJu3SzSbsboQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZoJr47pfTmVldW19o7pZ29re2d2r7x886DRXDH2WilR1Q6pRcIm+4UZgN1NIk1BgJxzfzPzOIyrNU3lvJhkGCR1KHnNGjZU60aDoiWA6qDfcpjsH+Uu8kjSgRHtQ/+xHKcsTlIYJqnXPczMTFFQZzgROa/1cY0bZmA6xZ6mkCeqgmJ87JSdWiUicKlvSkLn6c6KgidaTJLSdCTUjvezNxP+8Xm7iy6DgMssNSrZYFOeCmJTMficRV8iMmFhCmeL2VsJGVFFmbEI1G4K3/PJf4p81r5ru3XmjdV2mUYUjOIZT8OACWnALbfCBwRie4AVencx5dt6c90VrxSlnDuEXnI9v3BOPcg==</latexit><latexit sha1_base64="uBb4RTSONRM48nVS4HZU7/FqT0U=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJu3SzSbsboQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZoJr47pfTmVldW19o7pZ29re2d2r7x886DRXDH2WilR1Q6pRcIm+4UZgN1NIk1BgJxzfzPzOIyrNU3lvJhkGCR1KHnNGjZU60aDoiWA6qDfcpjsH+Uu8kjSgRHtQ/+xHKcsTlIYJqnXPczMTFFQZzgROa/1cY0bZmA6xZ6mkCeqgmJ87JSdWiUicKlvSkLn6c6KgidaTJLSdCTUjvezNxP+8Xm7iy6DgMssNSrZYFOeCmJTMficRV8iMmFhCmeL2VsJGVFFmbEI1G4K3/PJf4p81r5ru3XmjdV2mUYUjOIZT8OACWnALbfCBwRie4AVencx5dt6c90VrxSlnDuEXnI9v3BOPcg==</latexit><latexit sha1_base64="uBb4RTSONRM48nVS4HZU7/FqT0U=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtoQ9lsJu3SzSbsboQS+iO8eFDx6v/x5r9x2+ag1QcDj/dmmJkXZoJr47pfTmVldW19o7pZ29re2d2r7x886DRXDH2WilR1Q6pRcIm+4UZgN1NIk1BgJxzfzPzOIyrNU3lvJhkGCR1KHnNGjZU60aDoiWA6qDfcpjsH+Uu8kjSgRHtQ/+xHKcsTlIYJqnXPczMTFFQZzgROa/1cY0bZmA6xZ6mkCeqgmJ87JSdWiUicKlvSkLn6c6KgidaTJLSdCTUjvezNxP+8Xm7iy6DgMssNSrZYFOeCmJTMficRV8iMmFhCmeL2VsJGVFFmbEI1G4K3/PJf4p81r5ru3XmjdV2mUYUjOIZT8OACWnALbfCBwRie4AVencx5dt6c90VrxSlnDuEXnI9v3BOPcg==</latexit>

W 0
n[l]

<latexit sha1_base64="r6fK7LxD7PTeKhCQjUCCJ23QKwo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoN6KXjxWMLaShrLZbtqlu5uwuxFK6K/w4kHFq3/Hm//GbZuDtj4YeLw3w8y8KOVMG9f9dkorq2vrG+XNytb2zu5edf/gQSeZItQnCU9UJ8Kaciapb5jhtJMqikXEaTsa3Uz99hNVmiXy3oxTGgo8kCxmBBsrPbZPe7kMeDjpVWtu3Z0BLROvIDUo0OpVv7r9hGSCSkM41jrw3NSEOVaGEU4nlW6maYrJCA9oYKnEguownx08QSdW6aM4UbakQTP190SOhdZjEdlOgc1QL3pT8T8vyEx8GeZMppmhkswXxRlHJkHT71GfKUoMH1uCiWL2VkSGWGFibEYVG4K3+PIy8c/rV3X3rlFrXhdplOEIjuEMPLiAJtxCC3wgIOAZXuHNUc6L8+58zFtLTjFzCH/gfP4A952QDg==</latexit><latexit sha1_base64="r6fK7LxD7PTeKhCQjUCCJ23QKwo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoN6KXjxWMLaShrLZbtqlu5uwuxFK6K/w4kHFq3/Hm//GbZuDtj4YeLw3w8y8KOVMG9f9dkorq2vrG+XNytb2zu5edf/gQSeZItQnCU9UJ8Kaciapb5jhtJMqikXEaTsa3Uz99hNVmiXy3oxTGgo8kCxmBBsrPbZPe7kMeDjpVWtu3Z0BLROvIDUo0OpVv7r9hGSCSkM41jrw3NSEOVaGEU4nlW6maYrJCA9oYKnEguownx08QSdW6aM4UbakQTP190SOhdZjEdlOgc1QL3pT8T8vyEx8GeZMppmhkswXxRlHJkHT71GfKUoMH1uCiWL2VkSGWGFibEYVG4K3+PIy8c/rV3X3rlFrXhdplOEIjuEMPLiAJtxCC3wgIOAZXuHNUc6L8+58zFtLTjFzCH/gfP4A952QDg==</latexit><latexit sha1_base64="r6fK7LxD7PTeKhCQjUCCJ23QKwo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbRU0mkoN6KXjxWMLaShrLZbtqlu5uwuxFK6K/w4kHFq3/Hm//GbZuDtj4YeLw3w8y8KOVMG9f9dkorq2vrG+XNytb2zu5edf/gQSeZItQnCU9UJ8Kaciapb5jhtJMqikXEaTsa3Uz99hNVmiXy3oxTGgo8kCxmBBsrPbZPe7kMeDjpVWtu3Z0BLROvIDUo0OpVv7r9hGSCSkM41jrw3NSEOVaGEU4nlW6maYrJCA9oYKnEguownx08QSdW6aM4UbakQTP190SOhdZjEdlOgc1QL3pT8T8vyEx8GeZMppmhkswXxRlHJkHT71GfKUoMH1uCiWL2VkSGWGFibEYVG4K3+PIy8c/rV3X3rlFrXhdplOEIjuEMPLiAJtxCC3wgIOAZXuHNUc6L8+58zFtLTjFzCH/gfP4A952QDg==</latexit>

Wnj
<latexit sha1_base64="e33bW4cuonVBGqySHspqkZyd5fA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rmLbQhrLZbtptN7thdyOU0P/gxYOKV3+QN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g4nd3O//USVZlI8mmlCgxgPBYsYwcZKrXY/E+NZv1pz624OtEq8gtSgQLNf/eoNJEljKgzhWOuu5yYmyLAyjHA6q/RSTRNMJnhIu5YKHFMdZPm1M3RmlQGKpLIlDMrV3xMZjrWexqHtjLEZ6WVvLv7ndVMTXQcZE0lqqCCLRVHKkZFo/joaMEWJ4VNLMFHM3orICCtMjA2oYkPwll9eJf5F/abuPlzWGrdFGmU4gVM4Bw+uoAH30AQfCIzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AC4cjw8=</latexit><latexit sha1_base64="e33bW4cuonVBGqySHspqkZyd5fA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rmLbQhrLZbtptN7thdyOU0P/gxYOKV3+QN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g4nd3O//USVZlI8mmlCgxgPBYsYwcZKrXY/E+NZv1pz624OtEq8gtSgQLNf/eoNJEljKgzhWOuu5yYmyLAyjHA6q/RSTRNMJnhIu5YKHFMdZPm1M3RmlQGKpLIlDMrV3xMZjrWexqHtjLEZ6WVvLv7ndVMTXQcZE0lqqCCLRVHKkZFo/joaMEWJ4VNLMFHM3orICCtMjA2oYkPwll9eJf5F/abuPlzWGrdFGmU4gVM4Bw+uoAH30AQfCIzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AC4cjw8=</latexit><latexit sha1_base64="e33bW4cuonVBGqySHspqkZyd5fA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rmLbQhrLZbtptN7thdyOU0P/gxYOKV3+QN/+N2zQHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g4nd3O//USVZlI8mmlCgxgPBYsYwcZKrXY/E+NZv1pz624OtEq8gtSgQLNf/eoNJEljKgzhWOuu5yYmyLAyjHA6q/RSTRNMJnhIu5YKHFMdZPm1M3RmlQGKpLIlDMrV3xMZjrWexqHtjLEZ6WVvLv7ndVMTXQcZE0lqqCCLRVHKkZFo/joaMEWJ4VNLMFHM3orICCtMjA2oYkPwll9eJf5F/abuPlzWGrdFGmU4gVM4Bw+uoAH30AQfCIzhGV7hzZHOi/PufCxaS04xcwx/4Hz+AC4cjw8=</latexit> W[n][n]

<latexit sha1_base64="XcCGxL8rCr9PjhqeqlrKx2U/kuk=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FLx4rGFtMQ9lsN+3SzSbsToQS+i+8eFDx6s/x5r9x2+agrY9deLw3w8y8MJXCoOt+O6WV1bX1jfJmZWt7Z3evun/wYJJMM+6xRCa6E1LDpVDcQ4GSd1LNaRxK3g5HN1O//cS1EYm6x3HKg5gOlIgEo2ilx3Yv91Vg36RXrbl1dwayTBoFqUGBVq/61e0nLIu5QiapMX7DTTHIqUbBJJ9UupnhKWUjOuC+pYrG3AT5bOMJObFKn0SJtl8hmam/O3IaGzOOQ1sZUxyaRW8q/uf5GUaXQS5UmiFXbD4oyiTBhEzPJ32hOUM5toQyLeyuhA2ppgxtSBUbQmPx5GXindWv6u7dea15XaRRhiM4hlNowAU04RZa4AEDBc/wCm+OcV6cd+djXlpyip5D+APn8wf/2pCr</latexit><latexit sha1_base64="XcCGxL8rCr9PjhqeqlrKx2U/kuk=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FLx4rGFtMQ9lsN+3SzSbsToQS+i+8eFDx6s/x5r9x2+agrY9deLw3w8y8MJXCoOt+O6WV1bX1jfJmZWt7Z3evun/wYJJMM+6xRCa6E1LDpVDcQ4GSd1LNaRxK3g5HN1O//cS1EYm6x3HKg5gOlIgEo2ilx3Yv91Vg36RXrbl1dwayTBoFqUGBVq/61e0nLIu5QiapMX7DTTHIqUbBJJ9UupnhKWUjOuC+pYrG3AT5bOMJObFKn0SJtl8hmam/O3IaGzOOQ1sZUxyaRW8q/uf5GUaXQS5UmiFXbD4oyiTBhEzPJ32hOUM5toQyLeyuhA2ppgxtSBUbQmPx5GXindWv6u7dea15XaRRhiM4hlNowAU04RZa4AEDBc/wCm+OcV6cd+djXlpyip5D+APn8wf/2pCr</latexit><latexit sha1_base64="XcCGxL8rCr9PjhqeqlrKx2U/kuk=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lFUG9FLx4rGFtMQ9lsN+3SzSbsToQS+i+8eFDx6s/x5r9x2+agrY9deLw3w8y8MJXCoOt+O6WV1bX1jfJmZWt7Z3evun/wYJJMM+6xRCa6E1LDpVDcQ4GSd1LNaRxK3g5HN1O//cS1EYm6x3HKg5gOlIgEo2ilx3Yv91Vg36RXrbl1dwayTBoFqUGBVq/61e0nLIu5QiapMX7DTTHIqUbBJJ9UupnhKWUjOuC+pYrG3AT5bOMJObFKn0SJtl8hmam/O3IaGzOOQ1sZUxyaRW8q/uf5GUaXQS5UmiFXbD4oyiTBhEzPJ32hOUM5toQyLeyuhA2ppgxtSBUbQmPx5GXindWv6u7dea15XaRRhiM4hlNowAU04RZa4AEDBc/wCm+OcV6cd+djXlpyip5D+APn8wf/2pCr</latexit>

n = l,m
<latexit sha1_base64="v5IPslS4zItwOSe5iz5ovz/6Cds=">AAAB63icbVBNSwMxEJ34WetX1aOXYBE8SNkVQT0IRS8eK7i20C4lm2bb0CS7JFmhLP0NXjyoePUPefPfmLZ70NYHA4/3ZpiZF6WCG+t532hpeWV1bb20Ud7c2t7ZreztP5ok05QFNBGJbkXEMMEVCyy3grVSzYiMBGtGw9uJ33xi2vBEPdhRykJJ+orHnBLrpEBdi1PZrVS9mjcFXiR+QapQoNGtfHV6Cc0kU5YKYkzb91Ib5kRbTgUblzuZYSmhQ9JnbUcVkcyE+fTYMT52Sg/HiXalLJ6qvydyIo0Zych1SmIHZt6biP957czGl2HOVZpZpuhsUZwJbBM8+Rz3uGbUipEjhGrubsV0QDSh1uVTdiH48y8vkuCsdlXz7s+r9ZsijRIcwhGcgA8XUIc7aEAAFDg8wyu8IYVe0Dv6mLUuoWLmAP4Aff4Awx6OLw==</latexit><latexit sha1_base64="v5IPslS4zItwOSe5iz5ovz/6Cds=">AAAB63icbVBNSwMxEJ34WetX1aOXYBE8SNkVQT0IRS8eK7i20C4lm2bb0CS7JFmhLP0NXjyoePUPefPfmLZ70NYHA4/3ZpiZF6WCG+t532hpeWV1bb20Ud7c2t7ZreztP5ok05QFNBGJbkXEMMEVCyy3grVSzYiMBGtGw9uJ33xi2vBEPdhRykJJ+orHnBLrpEBdi1PZrVS9mjcFXiR+QapQoNGtfHV6Cc0kU5YKYkzb91Ib5kRbTgUblzuZYSmhQ9JnbUcVkcyE+fTYMT52Sg/HiXalLJ6qvydyIo0Zych1SmIHZt6biP957czGl2HOVZpZpuhsUZwJbBM8+Rz3uGbUipEjhGrubsV0QDSh1uVTdiH48y8vkuCsdlXz7s+r9ZsijRIcwhGcgA8XUIc7aEAAFDg8wyu8IYVe0Dv6mLUuoWLmAP4Aff4Awx6OLw==</latexit><latexit sha1_base64="v5IPslS4zItwOSe5iz5ovz/6Cds=">AAAB63icbVBNSwMxEJ34WetX1aOXYBE8SNkVQT0IRS8eK7i20C4lm2bb0CS7JFmhLP0NXjyoePUPefPfmLZ70NYHA4/3ZpiZF6WCG+t532hpeWV1bb20Ud7c2t7ZreztP5ok05QFNBGJbkXEMMEVCyy3grVSzYiMBGtGw9uJ33xi2vBEPdhRykJJ+orHnBLrpEBdi1PZrVS9mjcFXiR+QapQoNGtfHV6Cc0kU5YKYkzb91Ib5kRbTgUblzuZYSmhQ9JnbUcVkcyE+fTYMT52Sg/HiXalLJ6qvydyIo0Zych1SmIHZt6biP957czGl2HOVZpZpuhsUZwJbBM8+Rz3uGbUipEjhGrubsV0QDSh1uVTdiH48y8vkuCsdlXz7s+r9ZsijRIcwhGcgA8XUIc7aEAAFDg8wyu8IYVe0Dv6mLUuoWLmAP4Aff4Awx6OLw==</latexit>

h[lm1]
<latexit sha1_base64="Y2Eyc23PUUwwB8MAsbGfImcA6c4=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtJQ9lsN+3S3U3Y3Qgl5Fd48aDi1b/jzX/jts1BWx8MPN6bYWZelHKmjet+O5WV1bX1jepmbWt7Z3evvn/woJNMEeqThCeqG2FNOZPUN8xw2k0VxSLitBONb6Z+54kqzRJ5byYpDQUeShYzgo2VHkf9PODCC4t+veE23RnQMvFK0oAS7X79qzdISCaoNIRjrQPPTU2YY2UY4bSo9TJNU0zGeEgDSyUWVIf57OACnVhlgOJE2ZIGzdTfEzkWWk9EZDsFNiO96E3F/7wgM/FlmDOZZoZKMl8UZxyZBE2/RwOmKDF8YgkmitlbERlhhYmxGdVsCN7iy8vEP2teNd2780brukyjCkdwDKfgwQW04Bba4AMBAc/wCm+Ocl6cd+dj3lpxyplD+APn8wcgypAo</latexit><latexit sha1_base64="Y2Eyc23PUUwwB8MAsbGfImcA6c4=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtJQ9lsN+3S3U3Y3Qgl5Fd48aDi1b/jzX/jts1BWx8MPN6bYWZelHKmjet+O5WV1bX1jepmbWt7Z3evvn/woJNMEeqThCeqG2FNOZPUN8xw2k0VxSLitBONb6Z+54kqzRJ5byYpDQUeShYzgo2VHkf9PODCC4t+veE23RnQMvFK0oAS7X79qzdISCaoNIRjrQPPTU2YY2UY4bSo9TJNU0zGeEgDSyUWVIf57OACnVhlgOJE2ZIGzdTfEzkWWk9EZDsFNiO96E3F/7wgM/FlmDOZZoZKMl8UZxyZBE2/RwOmKDF8YgkmitlbERlhhYmxGdVsCN7iy8vEP2teNd2780brukyjCkdwDKfgwQW04Bba4AMBAc/wCm+Ocl6cd+dj3lpxyplD+APn8wcgypAo</latexit><latexit sha1_base64="Y2Eyc23PUUwwB8MAsbGfImcA6c4=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGFtJQ9lsN+3S3U3Y3Qgl5Fd48aDi1b/jzX/jts1BWx8MPN6bYWZelHKmjet+O5WV1bX1jepmbWt7Z3evvn/woJNMEeqThCeqG2FNOZPUN8xw2k0VxSLitBONb6Z+54kqzRJ5byYpDQUeShYzgo2VHkf9PODCC4t+veE23RnQMvFK0oAS7X79qzdISCaoNIRjrQPPTU2YY2UY4bSo9TJNU0zGeEgDSyUWVIf57OACnVhlgOJE2ZIGzdTfEzkWWk9EZDsFNiO96E3F/7wgM/FlmDOZZoZKMl8UZxyZBE2/RwOmKDF8YgkmitlbERlhhYmxGdVsCN7iy8vEP2teNd2780brukyjCkdwDKfgwQW04Bba4AMBAc/wCm+Ocl6cd+dj3lpxyplD+APn8wcgypAo</latexit>

h[lm2]
<latexit sha1_base64="Z/8HA/DzQG5btrRbTOMA519BUfw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUL0VvXisYGwlDWWz3bRLdzdhdyOU0F/hxYOKV/+ON/+N2zYHbX0w8Hhvhpl5UcqZNq777ZTW1jc2t8rblZ3dvf2D6uHRg04yRahPEp6oboQ15UxS3zDDaTdVFIuI0040vpn5nSeqNEvkvZmkNBR4KFnMCDZWehz184CLRjjtV2tu3Z0DrRKvIDUo0O5Xv3qDhGSCSkM41jrw3NSEOVaGEU6nlV6maYrJGA9pYKnEguownx88RWdWGaA4UbakQXP190SOhdYTEdlOgc1IL3sz8T8vyEx8GeZMppmhkiwWxRlHJkGz79GAKUoMn1iCiWL2VkRGWGFibEYVG4K3/PIq8Rv1q7p7d1FrXRdplOEETuEcPGhCC26hDT4QEPAMr/DmKOfFeXc+Fq0lp5g5hj9wPn8AIk+QKQ==</latexit><latexit sha1_base64="Z/8HA/DzQG5btrRbTOMA519BUfw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUL0VvXisYGwlDWWz3bRLdzdhdyOU0F/hxYOKV/+ON/+N2zYHbX0w8Hhvhpl5UcqZNq777ZTW1jc2t8rblZ3dvf2D6uHRg04yRahPEp6oboQ15UxS3zDDaTdVFIuI0040vpn5nSeqNEvkvZmkNBR4KFnMCDZWehz184CLRjjtV2tu3Z0DrRKvIDUo0O5Xv3qDhGSCSkM41jrw3NSEOVaGEU6nlV6maYrJGA9pYKnEguownx88RWdWGaA4UbakQXP190SOhdYTEdlOgc1IL3sz8T8vyEx8GeZMppmhkiwWxRlHJkGz79GAKUoMn1iCiWL2VkRGWGFibEYVG4K3/PIq8Rv1q7p7d1FrXRdplOEETuEcPGhCC26hDT4QEPAMr/DmKOfFeXc+Fq0lp5g5hj9wPn8AIk+QKQ==</latexit><latexit sha1_base64="Z/8HA/DzQG5btrRbTOMA519BUfw=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0mKUL0VvXisYGwlDWWz3bRLdzdhdyOU0F/hxYOKV/+ON/+N2zYHbX0w8Hhvhpl5UcqZNq777ZTW1jc2t8rblZ3dvf2D6uHRg04yRahPEp6oboQ15UxS3zDDaTdVFIuI0040vpn5nSeqNEvkvZmkNBR4KFnMCDZWehz184CLRjjtV2tu3Z0DrRKvIDUo0O5Xv3qDhGSCSkM41jrw3NSEOVaGEU6nlV6maYrJGA9pYKnEguownx88RWdWGaA4UbakQXP190SOhdYTEdlOgc1IL3sz8T8vyEx8GeZMppmhkiwWxRlHJkGz79GAKUoMn1iCiWL2VkRGWGFibEYVG4K3/PIq8Rv1q7p7d1FrXRdplOEETuEcPGhCC26hDT4QEPAMr/DmKOfFeXc+Fq0lp5g5hj9wPn8AIk+QKQ==</latexit>

i
⇡

4<latexit sha1_base64="SdsWQRBx8He+epIepzipVYW9C/Y=">AAAB9HicbVBNS8NAEJ3Ur1q/oh69LBbBU0mkoN6KXjxWMLbQxLLZbtqlm03Y3Sgl5H948aDi1R/jzX/jts1BWx8MPN6bYWZemHKmtON8W5WV1bX1jepmbWt7Z3fP3j+4V0kmCfVIwhPZDbGinAnqaaY57aaS4jjktBOOr6d+55FKxRJxpycpDWI8FCxiBGsjPTA/kpjkfsqKvFn07brTcGZAy8QtSR1KtPv2lz9ISBZToQnHSvVcJ9VBjqVmhNOi5meKppiM8ZD2DBU4pirIZ1cX6MQoAxQl0pTQaKb+nshxrNQkDk1njPVILXpT8T+vl+noIsiZSDNNBZkvijKOdIKmEaABk5RoPjEEE8nMrYiMsMlBm6BqJgR38eVl4p01LhvObbPeuirTqMIRHMMpuHAOLbiBNnhAQMIzvMKb9WS9WO/Wx7y1YpUzh/AH1ucPTMKSkw==</latexit><latexit sha1_base64="SdsWQRBx8He+epIepzipVYW9C/Y=">AAAB9HicbVBNS8NAEJ3Ur1q/oh69LBbBU0mkoN6KXjxWMLbQxLLZbtqlm03Y3Sgl5H948aDi1R/jzX/jts1BWx8MPN6bYWZemHKmtON8W5WV1bX1jepmbWt7Z3fP3j+4V0kmCfVIwhPZDbGinAnqaaY57aaS4jjktBOOr6d+55FKxRJxpycpDWI8FCxiBGsjPTA/kpjkfsqKvFn07brTcGZAy8QtSR1KtPv2lz9ISBZToQnHSvVcJ9VBjqVmhNOi5meKppiM8ZD2DBU4pirIZ1cX6MQoAxQl0pTQaKb+nshxrNQkDk1njPVILXpT8T+vl+noIsiZSDNNBZkvijKOdIKmEaABk5RoPjEEE8nMrYiMsMlBm6BqJgR38eVl4p01LhvObbPeuirTqMIRHMMpuHAOLbiBNnhAQMIzvMKb9WS9WO/Wx7y1YpUzh/AH1ucPTMKSkw==</latexit><latexit sha1_base64="SdsWQRBx8He+epIepzipVYW9C/Y=">AAAB9HicbVBNS8NAEJ3Ur1q/oh69LBbBU0mkoN6KXjxWMLbQxLLZbtqlm03Y3Sgl5H948aDi1R/jzX/jts1BWx8MPN6bYWZemHKmtON8W5WV1bX1jepmbWt7Z3fP3j+4V0kmCfVIwhPZDbGinAnqaaY57aaS4jjktBOOr6d+55FKxRJxpycpDWI8FCxiBGsjPTA/kpjkfsqKvFn07brTcGZAy8QtSR1KtPv2lz9ISBZToQnHSvVcJ9VBjqVmhNOi5meKppiM8ZD2DBU4pirIZ1cX6MQoAxQl0pTQaKb+nshxrNQkDk1njPVILXpT8T+vl+noIsiZSDNNBZkvijKOdIKmEaABk5RoPjEEE8nMrYiMsMlBm6BqJgR38eVl4p01LhvObbPeuirTqMIRHMMpuHAOLbiBNnhAQMIzvMKb9WS9WO/Wx7y1YpUzh/AH1ucPTMKSkw==</latexit>
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Figure 7. Schematic picture for 2d-4h DBM network. Dots, squares, triangles represent physical (σzi ), hidden (hj),
deep (dk) variables. In 2d-4h construction, both W and W ′ couplings become nonlocal.

III. SAMPLING

Once we have determined specific rules to obtain the parameters of the DBM, the remaining question to be addressed
is how to compute expectation values of physical quantities. Consider a quantum operator O, then its expectation
value over the DBM is given by the expression

〈O〉 =

∑
{σz,h,h′d,d′}Π(σz, h, h′, d, d′)Oloc(σz, h, h′)∑

{σz,h,h′d,d′}Π(σz, h, h′, d, d′)
, (184)

where we have introduced the pseudo-probability density Π(σz, h, h′, d, d′) ≡ P1(σz, h)P2(h, d)P ?1 (σz, h′)P ?2 (h′, d′), and

the “local” estimator Oloc(σz, h, h′) = 1
2

∑
{σ′z} 〈σz| O |σ′z〉

(
P1(σ′z,h)
P1(σz,h) + P1(σ′z,h′)?

P1(σz,h′)?

)
. For a large number of spins and

hidden/deep units, it is not possible to compute those sums numerically, because of the exponential number of terms
involved. However, there are specific cases in which efficient sampling strategies can be devised, allowing to stochasti-
cally compute the quantum expectation values. In general, when the DBM weights are all real Π(σz, h, h′, d, d′) ≥ 0,
and it can be interpreted as an (unnormalized) probability density. Thus, Markov-chain sampling techniques can be
applied, similarly to the case of applications in standard machine learning. In the case of complex-valued weights,
the straightforward probabilistic interpretation breaks down, and a sign (phase) problem arises. However, there are
specific cases in which one can still recover a properly defined probability density, and efficiently sample from it. In
the following we describe two main sampling methods based on Markov chain techniques. First, Gibbs sampling, then
Metropolis-Hastings sampling. In both cases we discuss when the sign problem can be circumvented.

A. Gibbs sampling

We start discussing a strategy which is the natural generalization of what traditionally used in most applications of
DBM in machine learning. The approach is based on Gibbs sampling, a strategy which amounts to generate samples
using the exact conditional probabilities for block of variables. In practice, we introduce three kind of moves, which
allow to generate a Markov chain of visible, hidden, and deep variables distributed according to Π(σz, h, h′, d, d′).
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1. Sampling visible spins

The first kind of move consists in freezing all the hidden and deep variables, and sampling the visible spins σz.
Specifically, we generate new visible spin configurations according to the conditional probability:

Π(σz|h, h′, d, d′) =
P1(σz, h)P2(h, d)P ?1 (σz, h′)P ?2 (h′, d′)∑
{σ̃z} P1(σ̃z, h)P2(h, d)P ?1 (σ̃z, h′)P ?2 (h′, d′)

=
P1(σz, h)P ?1 (σz, h′)∑
{σ̃z} P1(σ̃z, h)P ?1 (σ̃z, h′)

=
ΠN
i exp

{
σzi

[∑
j

(
hjWij + h′jW

?
ij

)
+ 2ar

i

]}
ΠN
i 2 cosh

(∑
j

(
hjWij + h′jW

?
ij

)
+ 2ar

i

) .

Here, ar
i is a real part of ai. A particularly appealing aspect of this transition probability is that each visible spin can

be treated independently from the others, thus we can update in parallel all visible spins at once. The probability of
a given spin to be up for example is:

P (σzi = 1|h, h′, d, d′) = Logistic(2λ
[σz ]
i ), (185)

with λ
[σz ]
i =

∑
j

(
hjWij + h′jW

?
ij

)
+2ar

i, and Logistic(x) = 1
1+exp(−x) . Thus, during this phase we generate N random

numbers ηi uniformly distributed in [0, 1), and set the spin σzi = 1 if ηi < Logistic(2λ
[σz ]
i ). For this approach to be

feasible, we must have that the λ
[σz ]
i are real. Necessary conditions for this condition to be satisfied are discussed at

the end of this section.

2. Sampling hidden spins

The second type of move consists in freezing visible and deep spins, and sampling hidden variables h and h′. For
example, to sample h the transition probability reads:

Π(h|σz, h′, d, d′) =
P1(σz, h)P2(h, d)∑
{h̃} P1(σz, h̃)P2(h̃, d)

=
ΠM
j exp

[
hj

(∑
i σ

z
iWij + bj +

∑
k dkW

′
jk

)]
ΠM
j 2 cosh

(∑
i σ

z
iWij + bj +

∑
k dkW

′
jk

) .

The probability of having hj = 1 is then:

P (hj = 1|σz, h′, d, d′) = Logistic(2λ
[h]
j ), (186)

with λ
[h]
j =

∑
i σ

z
iWij + bj +

∑
k dkW

′
jk. Again, one can therefore efficiently update all the M hidden spins at once,

without rejection. Analogously, for h′ we have λ
[h′]
j =

∑
i σ

z
iW

?
ij + b?j +

∑
k d
′
kW
′?
jk.

3. Sampling deep spins

The final set of moves consists in freezing visible and hidden spins, and sample from deep variables d and d′. For
example, to sample d the transition probability is:

Π(d|σz, h, h′, d′) =
P2(h, d)∑
{d̃} P2(h, d̃)

=
ΠM ′
k exp

[
dk

(∑
j hjW

′
jk + ck

)]
ΠM ′
k 2 cosh

(∑
j hjW

′
jk + ck

) .
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The probability of having dk = 1 is then:

P (dk = 1|σz, h, h′, d′) = Logistic(2λ
[d]
k ), (187)

with λ
[d]
k =

∑
j hjW

′
jk + ck. Analogously, we have λ

[d′]
k =

∑
j h
′
jW
′?
jk + c?k.

4. Overall scheme: alternate block sampling

The overall sampling scheme is therefore realized putting together all those individual Gibbs samplings. In par-
ticular, we can devise a two-step block sampling, which takes into account the conditional dependence of all the
probabilities previously derived.

The overall sampling scheme then works as follow:

1. Sample h and h′, fixing all the other variables. This is realized using the probabilities (186) for all the hidden
spins.

2. Sample σz,d,d′ fixing the values of h and h′.This is realized using the probabilities (87) and (187) for all the
visible and deep spins, respectively.

3. Cycle between 1 and 2.

5. Phase problem in the Gibbs scheme

In order to get a consistent sampling scheme, we must have that all the quantities λ
[σz ]
i ,λ

[h]
j ,λ

[h′]
j ,λ

[d]
k , λ

[d′]
k are real

valued. In the absence of this condition, we have a phase problem, and we cannot directly use a stochastic approach to
sample from the DBM. Looking more closely at what conditions are needed, we start noticing that the visible bias can

take arbitrary (complex) values, since only the real parts, ar
i, enter λ

[σz ]
i . In general, there might be specific choices of

the DBM parameters which still guarantee absence of phase problem. One possibility is realized, for example, when
fixing the total magnetizations in the three layers, i.e. the constraints

∑
i σ

z
i = σztot,

∑
j hj = htot,

∑
k dk = dtot. We

further assume that Im(Wij) = W I, a constant, as well as Im(W ′jk) = W
′I. Then, it is easy to see that the phase

problem is avoided when bIj = −σztotW
I − dtotW

′I and cIk = −htotW
′I. Notice that those are just a specific set of

conditions, and less stringent ones can be found using other sampling schemes.

When each sample has the imaginary part or negative signs, another possibility of avoiding the phase problem is
to take the partial trace summation explicitly so that such partial sum gives always a real nonnegative value. We will
discuss this point in more detail in the next section.

B. Metropolis sampling

1. Marginal probability density

Because there are no intralayer interactions in the DBM architecture, one can analytically trace out either one of
h, h′ and d, d′. Then we get marginal probability density: Π̃(σz, h, h′) =

∑
{d,d′}Π(σz, h, h′, d, d′) or Π̃′(σz, d, d′) =∑

{h,h′}Π(σz, h, h′, d, d′). Defining P̃ (σz, h) and P̃ ′(σz, d) as

P̃ (σz, h) =
∑
{d}

P1(σz, h)P2(h, d) = e
∑
i aiσ

z
i+
∑
ij σ

z
i hjWij+

∑
j bjhj ×

∏
k

2 cosh
(
ck +

∑
k

hjW
′
jk

)
(188)

and

P̃ ′(σz, d) =
∑
{h}

P1(σz, h)P2(h, d) =
∏
j

2 cosh
(
bj +

∑
i

σziWij +
∑
k

dkW
′
jk

)
× e

∑
i aiσ

z
i+
∑
k ckdk , (189)
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respectively, the marginal probability densities are given by

Π̃(σz, h, h′) =
∑
{d,d′}

Π(σz, h, h′, d, d′) = P̃ (σz, h)P̃ ?(σz, h′), (190)

Π̃′(σz, d, d′) =
∑
{h,h′}

Π(σz, h, h′, d, d′) = P̃ ′(σz, d)P̃ ′?(σz, d′). (191)

With these marginal probability densities, we perform the Metropolis sampling to measure physical quantities. The
expectation value of a quantum operator O is given by

〈O〉 =

∑
{σz,h,h′} Π̃(σz, h, h′)Õloc(σz, h, h′)∑

{σz,h,h′} Π̃(σz, h, h′)
=

∑
{σz,d,d′} Π̃′(σz, d, d′)Õ′loc(σz, d, d′)∑

{σz,d,d′} Π̃′(σz, d, d′)
(192)

with

Õloc(σz, h, h′) =
1

2

∑
{σ′z}

〈σz| O |σ′z〉
(
P̃ (σ′z, h)

P̃ (σz, h)
+
P̃ (σ′z, h′)?

P̃ (σz, h′)?

)
, (193)

Õ′loc(σz, d, d′) =
1

2

∑
{σ′z}

〈σz| O |σ′z〉
(
P̃ ′(σ′z, d)

P̃ ′(σz, d)
+
P̃ ′(σ′z, d′)?

P̃ ′(σz, d′)?

)
. (194)

2. Phase problem in the Metropolis scheme

An advantage of choosing the marginal probability density is that by taking the summation over h and d, the sign
problem can sometimes be avoided even if the DBM has complex parameters. An example is to take the summation
over the hidden variables h analytically in the three DBM constructions for the Heisenberg models presented in Sec.
II B. In all the three cases, only those W and W ′ couplings used to enforce the constraints are complex-valued, and the
summation over h eliminates the negative weight. For example, in the case of the 2d-4h representation in Sec. II B 3,
though each sample may have a finite imaginary part as in each term of Eq. (182), the total weight becomes real and
nonnegative, after the explicit summation over the h degrees of freedom is performed as in Eq. (183).

When the lattice is not bipartite, we can still write down the DBM solutions to exactly follow the imaginary time
evolutions. However, in this case, we will have imaginary W and W ′ parameters even for the units not involved in
enforcing the constraints. In this case, the sampling may suffer from sign problem. However, as we discuss in the main
text, in contrast to the conventional quantum Monte Carlo simulations, we can make the number of imaginary time
step to reach the ground state short by starting the analytical DBM time evolution [Eq. (78)] from a good stating
point |Ψ0〉. For example, numerically optimized RBM wave functions can be used for |Ψ0〉, or more generally, |Ψ0〉
can be wave functions used in the conventional wave function techniques. In this case, before we suffer from a severe
sign problems, we might be able to reach the ground state with good statistical accuracy.

3. Overall scheme

We sample over σz, h, h′ [or σz, d, d′] with the marginal probability density Π̃(σz, h, h′) [ Π̃′(σz, d, d′) ]. The
physical quantities are measured following Eq. (192). In the case of Heisenberg model, after tracing out the h spins,
we have constraints over the values of σz, d, d′. In that case, a cluster update rather than a local update will be more
efficient. In particular, in the 2d-6h representation, since the imaginary-time evolution of the DBM is equivalent to
the path-integral formalism, we can apply an efficient cluster update used in the conventional quantum Monte Carlo
method, such as so called loop update [40].
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