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1 What Large Deviation Theory is About

Roughly speaking, Large Deviations is a theory of rare events. It is prob-
ably the most active field in probability theory at present, one which has
many surprising ramifications. One of its applications is to the analysis of
the tails of probability distributions and, in recent years, this aspect of the
theory has been widely used in queuing theory. The aim of this tutorial is
to introduce the reader to the ideas underlying the theory, to explain why
it is called “Large Deviations”, and to outline the main theorems and some
important applications, in particular the application to queuing theory. Here
is a summary of what you will learn from this tutorial:

• What Large Deviation Theory is About

• Coin Tossing: Exploring Large Deviations Using Your PC

• Cramér’s Theorem: Introducing Rate-Functions

• Why “Large” in Large Deviations?

• Chernoff’s Formula: Calculating the Rate-Function

• The Connection with Shannon Entropy

• Varadhan’s Theorem and the Scaled CGF

• The Contraction Principle: Moving Large Deviations About

1Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland; e-

mail:lewis@stp.dias.ie and russell@stp.dias.ie
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• Large Deviations in Queuing Networks: Effective Bandwidths

• Bypassing Modelling: Estimating the Scaled CGF
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2 The Basic Ideas Underlying Large Devia-

tions

If you have a little skill in programming, you can very quickly get a good
feel for the basic ideas of Large Deviation theory by carrying out on your
PC the experiments we are going to describe. Even if you can’t program –
and you can’t rope anyone into programming for you – you will find it useful
to read this section: consider what we are going to describe as a thought-
experiment, and we will supply the results.

Coin Tossing: Exploring Large Deviations Using Your

PC

Imagine a coin-tossing experiment, where we toss a coin n times and record
each result. There are 2 possible outcomes for each toss, giving 2n possible
outcomes in all. What can we say about the total number of heads? Firstly
there are n + 1 possible values for the total, ranging from 0 heads to n
heads; secondly, of the 2n possible outcomes, nCr result in r heads (nCr is
the binomial coefficient n!/r!(n − r)!). If the coin is fair, every outcome is
equally likely, and so the probability of getting r heads is nCr/2n. Thus the
average number of heads per toss has n + 1 possible values, 0, 1/n, 2/n, . . .1
and the value r/n has weight nCr/2n. To calculate the probability of the
average number of heads per toss lying in a particular range, we add up the
weight of each of those possible values which fall inside that range. If we let
Mn be the average number of heads in n tosses, then

P( x < Mn < y ) =
∑

{ r : x< r
n

<y}

(

n

r

)

1

2n
.

Exercise 1 Write a function/procedure to take an integer n and two floating-
point numbers x and y and return the value of the expression above. Use this
function/procedure to write a program to produce histograms of the distribu-
tion of Mn for selected values of n.

We have done this for n=16, n=32, n=64 and n=128 and the results are
shown in Figure 1. We can see clearly the Law of Large Numbers at work: as
n increases, the distribution becomes more and more sharply peaked about
the mean, 1/2, and the tails become smaller and smaller.

Exercise 2 Pick some point x greater than 1/2 and write a program to cal-
culate, for a range of values of n, the logarithm of the probability of Mn

exceeding x.
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Figure 1: Histograms of the distributions of the average number of heads per
toss for increasing numbers of tosses.

We have chosen x=0.6 and produced a plot of ln P( Mn > x ) against n for
n up to 100, shown in Figure 2. It is clear that, although things are a little
jumpy initially, the plot becomes linear for large n. Repeat the experiment
for a different value of x and you will see that the same thing happens: no
matter what value of x greater than 1/2 you take, the plot will always be
linear for n large. We can see this from Figure 3 which shows ln P( Mn > x )
against n for several values of x. How quickly it becomes linear, and what the
asymptotic slope is, depends on the value of x, but the graph of ln P( Mn > x )
against n is always linear for large n. Let’s call this asymptotic slope −I(x).

Exercise 3 Repeat the experiment for a range of values of x from 1/2 to 1,
measure the asymptotic slope in each case, and plot the values of I(x) you
get against x. Do the same thing for ln P( Mn < x ) for a range of values of
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Figure 2: ln P( Mn > 0.6 ) against n.

x from 0 to 1/2.

Depending on how accurately you measured the slope, you should get results
similar to those shown in Figure 4.
You have made a discovery:

THE TAIL OF THE DISTRIBUTION OF THE AVERAGE NUM-
BER OF HEADS IN n TOSSES DECAYS EXPONENTIALLY
AS n INCREASES

The plot you have made tells you the local rate at which a tail decays as a
function of the point from which the tail starts: you have built up a picture
of the rate-function I(x).

Exercise 4 Plot the graph of the function x ln x + (1 − x) ln(1 − x) + ln 2
against x and compare it with your previous plot.
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Figure 3: ln P( Mn > x ) against n for several values of x.

We have added a plot of this function to the plot in Figure 4 to get Figure 5.
We see that the two plots fit: we have guessed a formula for I(x), the rate-
function for coin-tossing.

One of the goals of Large Deviation theory is to provide a systematic way
of calculating the rate-function; we will show you later one way of achieving
this.
To summarise: we have found that, for coin tossing, the tails of the distri-
bution of Mn, the average number of heads in n tosses, decay exponentially
fast:

P( Mn > x ) ≍ e−nI(x) for x > 1/2,

P( Mn < x ) ≍ e−nI(x) for x < 1/2,

as n becomes large; in fact, as you can see from Figure 2, the approximation
is quite good for surprisingly small values of n. The combinatorial approach
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Figure 4: Measured decay-rates of tails against starting point of tail.

we have investigated numerically can be made, using Stirling’s Formula, to
yield a proof of this result; this is sketched in Appendix A.

The Weak Law of Large Numbers Regained

Notice that a consequence of this result is the Weak Law of Large Numbers
for coin-tossing. It states that, as n increases, the distribution of Mn becomes
more and more sharply peaked about the mean; in symbols:

lim
n→∞

P( | Mn − 1/2 |< ǫ ) = 1

for each positive number ǫ. This is the same thing as saying that, as n
increases, the tails become smaller and smaller; in symbols:

lim
n→∞

P( | Mn − 1/2 |> ǫ ) = 0
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Figure 5: Measured decay-rates with the rate-function superimposed.

for each positive number ǫ. How do we set about proving this? First, let us
write out P( | Mn − 1/2 |> ǫ ) in detail and see if we can approximate it or
get a bound on it:

P( | Mn − 1/2 |> ǫ ) = P(Mn < 1/2 − ǫ ) + P( Mn > 1/2 + ǫ ) .

Now we have found that, for coin tossing, the tails of the distribution of Mn

decay exponentially fast:

P( Mn > x ) ≍ e−nI(x) for x > 1/2,

P( Mn < x ) ≍ e−nI(x) for x < 1/2,

as n becomes large, with I(x) > 0; it follows that both terms on the right-
hand side of the equation decay to zero so that

lim
n→∞

P( | Mn − 1/2 |> ǫ ) = 0
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for each positive number ǫ. This shows that the Weak Law of Large Numbers
is a consequence of the Large Deviation Principle.
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3 Cramér’s Theorem: Introducing Rate-Functions

Harald Cramér was a Swedish mathematician who served as a consultant
actuary for an insurance company; this led him to discover the first result
in Large Deviation theory. The Central Limit Theorem gives information
about the behaviour of a probability distribution near its mean while the
risk theory of insurance is concerned with rare events out on the tail of a
probability distribution. Cramér was looking for a refinement of the Central
Limit Theorem; what he proved was this:
Cramér’s Theorem Let X1, X2, X3, . . . be a sequence of bounded, indepen-
dent and identically distributed random variables each with mean m, and let

Mn =
1

n
(X1 + . . . + Xn)

denote the empirical mean; then the tails of the probability distribution of Mn

decay exponentially with increasing n at a rate given by a convex rate-function
I(x):

P( Mn > x ) ≍ e−nI(x) for x > m,

P( Mn < x ) ≍ e−nI(x) for x < m.

Historically, Cramér used complex variable methods to prove his theorem
and gave I(x) as a power-series; later in this section we will explain why this
is a natural approach to the problem. However, there is another approach
which has the advantage that it can be generalised in several directions and
which has proved to be of great value in the development of the theory.
We illustrate this approach in Appendix B by sketching a proof of Cramér’s
Theorem which uses it; but first let us see how the theorem can be used in
risk-theory.

An Application to Risk-Theory

Large Deviation theory has been applied to sophisticated models in risk the-
ory; to get a flavour of how this is done, consider the following simple model.
Assume that an insurance company settles a fixed number of claims in a
fixed period of time, say one a day; assume also that it receives a steady
income from premium payments, say an amount p each day. The sizes of the
claims are random and there is therefore the risk that, at the end of some
planning period of length T , the total amount paid in settlement of claims
will exceed the total income from premium payments over the period. This
risk is inevitable, but the company will want to ensure that it is small (in the

10



interest of its shareholders, or because it is required by its reinsurers or some
regulatory agency). So we are interested in the small probabilities concerning
the sum of a large number of random variables: this problem lies squarely in
the scope of Large Deviations.

If the sizes Xt of claims are independent and identically distributed, then
we can apply Cramér’s Theorem to approximate the probability of ruin, the
probability that the amount

∑T
t=1 Xt paid out during the planning period T

exceeds the premium income pT received in that period:

P

(

T
∑

t=1

Xt > pT

)

≍ e−TI(p).

So, if we require that the risk of ruin be small, say e−r for some large positive
number r, then we can use the rate-function I to choose an appropriate value
of p:

P

(

1

T

T
∑

t=1

Xt > p

)

≈ e−r

e−TI(p) ≈ e−r

I(p) ≈ r/T

Since I(x) is convex, it is monotonically increasing for x greater than the
mean of Xt and so the equation

I(p) = r/T

has a unique solution for p.
Of course, to solve this equation, we must know what I(x) is and that

means knowing the statistics of the sizes of the claims. For example, if the
size of each claim is normally distributed with mean m and variance σ2, then
the rate-function is

I(x) =
1

2

(

x − m

σ

)2

.

It is easy to find the solution to the equation for p in this case: it is p =
m + σ

√

2r/T ; thus the premium should be set so that the daily income
is the mean claim size plus an additional amount to cover the risk. The
ratio (p − m)/m is called the safety loading; in this case, it is given by
(σ/m)

√

2r/T . Notice that σ/m is a measure of the size of the fluctuations

in claim-size, while
√

T/2r is fixed by the regulator.
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Why “Large” in Large Deviations?

Recall what the Central Limit Theorem tells us: if X1, X2, X3, . . . is a se-
quence of independent and identically distributed random variables with
mean µ and variance σ2 < ∞, then the average of the first n of them,
Mn = 1

n
(X1 + . . . + Xn) is approximately normal with mean µ and variance

σ2/n. That is, its probability density function is

f(x) =
1

√

2πσ2/n
e−

n
2

(x−µ)2

σ2 ,

and the approximation is only valid for x within about σ/
√

n of µ. If we
ignore the prefactor in f and compare the exponential term with the approx-
imation that Cramér’s Theorem gives us, we see that the terms (x−µ)2/2σ2

occupy a position analogous to that of the rate function. Let us look again
at the coin tossing experiments: for x close to 1/2, we can expand our rate-
function in a Taylor series:

x ln x + (1 − x) ln(1 − x) + ln 2 =
(x − 1

2
)2

2 × 1
4

+ . . .

The mean of each toss of a coin is 1/2, and the variance of each toss is 1/4;
thus the rate-function for coin tossing gives us the Central Limit Theorem. In
general, whenever the rate-function can be approximated near its maximum
by a quadratic form, we can expect the Central Limit Theorem to hold.

So much for the similarities between the CLT and Large Deviations; the
name “Large Deviations” arises from the contrast between them. The CLT
governs random fluctuations only near the mean – deviations from the mean
of the order of σ/

√
n. Fluctuations which are of the order of σ are, relative to

typical fluctuations, much bigger: they are large deviations from the mean.
They happen only rarely, and so Large Deviation theory is often described
as the theory of rare events – events which take place away from the mean,
out in the tails of the distribution; thus Large Deviation theory can also be
described as a theory which studies the tails of distributions.

Chernoff’s Formula: Calculating the Rate-Function

One way of calculating the rate-function for coin-tossing is to apply Stirling’s
Formula in conjunction with the combinatorial arguments we used earlier;
this is sketched in Appendix A. There is, however, an easier and more
general method for calculating the rate-function for the independent case; it
is known as Chernoff’s Formula. To understand the idea behind it, we look
at a way of getting an upper bound on a tail probability which is often used
in probability theory.

12
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Figure 6: I(a,∞)x ≤ eθx/eθa for each a and each θ > 0.

Chernoff’s Bound

First let us look at a simple bound on P( Mn > a ) known as Chernoff’s
bound. We rewrite P( Mn > a ) as an expectation using indicator functions.
The indicator function of a set A ⊂ R is the function IA· defined by

IAx :=

{

1 if x ∈ A,
0 otherwise.

Figure 6 shows graphically that, for each number a and each positive number
θ, I(a,∞)x ≤ eθx/eθa. Now note that E I(na,∞)nMn = P( nMn > na ) and so

P( Mn > a ) = P( nMn > na )

= E I(na,∞)nMn

≤ E eθnMn/eθna

13



= e−θnaE eθ(X1+...+Xn)

= e−θna
(

E eθXi
)n

;

we take this last step 1 the Xi’s are independent and identically distributed.
By defining λ(θ) = ln E eθX1 we can write P( Mn > a ) ≤ e−n{θa−λ(θ)}; since
this holds for each θ positive, we can optimise over θ to get

P( Mn > a ) ≤ min
θ>0

e−n{θa−λ(θ)} = e−nmaxθ>0{θa−λ(θ)}.

If a is greater than the mean m, we can obtain a lower bound which gives

P( Mn > a ) ≍ e−nmaxθ{θa−λ(θ)};

This is just a statement of the Large Deviation principle for Mn, and is the
basis for
Chernoff’s Formula: the rate-function can be calculated from λ, the cumu-
lant generating function:

I(x) = max
θ

{xθ − λ(θ)},

where λ is defined by
λ(θ) := lnE eθXj .

Coin-Tossing Revisited

We explored the large-deviations of the coin-tossing experiment with a fair
coin in some detail and painstakingly built up a picture of the rate-function
from the asymptotic slopes of our log-probability plots. We could do the
same again for a biased coin, but Cramér’s Theorem tells us immediately
that we will again have a Large Deviation principle. Since the outcomes of
the tosses are still bounded (either 0 or 1) and independent and identically
distributed, Cramér’s Theorem applies and we can calculate the rate-function
using Chernoff’s Formula: let p be the probability of getting heads, so that
the cumulant generating function λ is

λ(θ) = ln E eθX1 = ln(peθ + 1 − p).

By Chernoff’s Formula, the rate-function is given by

I(x) = max
θ

{xθ − λ(θ)} .

14
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Figure 7: The rate-function for coin tossing with a biased coin (p=0.2).

Exercise 5 Use differential calculus to show that the value of θ which max-
imises the expression on the right-hand side is θx = lnx/p− ln(1−x)/(1−p)
and hence that the rate-function is

I(x) = x ln
x

p
+ (1 − x) ln

1 − x

1 − p
.

Figure 7 shows a plot of I(x) against x for p = 0.25.

Why Does Chernoff’s Formula Work?

The cumulants of a distribution are closely related to the moments. The
first cumulant is simply the mean, the first moment; the second cumulant
is the variance, the second moment less the square of the first moment.

15



The relationship between the higher cumulants and the moments is more
complicated, but in general the kth cumulant can be written in terms of the
first k moments. The relationship between the moments and the cumulants
is more clearly seen from their respective generating functions. The function
φ(θ) = E eθX1 is the moment generating function for the X’s: the kth moment
of the X’s is the kth derivative of φ evaluated at θ = 0:

dk

dθk
φ(θ) = E Xk

1 eθX1

dkφ

dθk

∣

∣

∣

∣

θ=0

= E Xk
1 = kth moment

The cumulant generating function (CGF) is defined to be the logarithm of
the moment generating function, λ(t) := ln φ(t), and the cumulants are then
just the derivatives of λ:

d

dθ
λ(θ)

∣

∣

∣

∣

θ=0

= m,

d2

dθ2
λ(θ)

∣

∣

∣

∣

θ=0

= σ2, ...

So, why does Chernoff’s Formula work? In order to calculate the Central
Limit Theorem approximation for the distribution for Mn, we must calculate
the mean and variance of the X’s: essentially we use the first two cumulants
to get the first two terms in a Taylor expansion of the rate-function to give
us a quadratic approximation. It is easy to see that, if we want to get the full
functional form of the rate-function, we must use all the terms in a Taylor
series — in other words, we must use all the cumulants. The CGF packages
all the cumulants together, and Chernoff’s Formula shows us how to extract
the rate-function from it.

Proving Cramér’s Theorem

Cramér’s proof of his theorem was based essentially on an argument using
moment generating functions and gave the rate-function as a power series.
After seeing the connection with the Central Limit Theorem and Chernoff’s
Formula, we can see how this is a natural approach to take; indeed, one of
the standard proofs of the Central Limit Theorem is based on the moment
generating function. This method of proof has the drawback that it is not
easy to see how to adapt it to more general situations. There is a more elegant
argument which establishes the theorem and which can easily be modified to
apply to random variables which are vector-valued and to random variables

16



which are not necessarily independent. This argument shows at the same
time that the rate-function is convex; we sketch this proof in appendix B.
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4 The Connection with Shannon Entropy

We are often asked “How does Shannon entropy fit into Large Deviation
theory?” To answer this question fully would sidetrack us into an exposition
of the ideas involved in Information Theory. However, we will use Cramér’s
Theorem to give a proof of the Asymptotic Equipartition Property, one of
the basic results of Information Theory; in the course of this, we will see how
Shannon entropy emerges from a Large Deviation rate-function.

Let A = {a1, . . . ar} be a finite alphabet. We describe a language written
using this alphabet by assigning probabilities to each of the letters; these
represent the relative frequency of occurrence of the letters in texts written
in the language. We write pk for the relative frequency of the letter ak. As
a first approximation, we ignore correlations between letters and take the
probability of a text to be the product of the probabilities of each of the
component letters. This corresponds to the assumption that the sequence
of letters in any text is an independent and identically distributed sequence
of random letters. Let Ωn be the set of all texts containing exactly n let-
ters; then the probability of the text ω = (ω1, ω2, . . . ωn) (where each of the
ωi’s represents a letter) is just pn1

1 pn2
2 . . . pnr

r , where nk is the number of oc-
currences of the letter ak in the text ω. We write α[ω] = pn1

1 pn2
2 . . . pnr

r to
explicitly denote the dependence of this probability on the text.

Claude Shannon made a remarkable discovery: if some letters are more
probable (occur more frequently), then there is a subset Γn of Ωn consisting
of “typical texts” with the following properties:

• texts not in Γn occur very rarely, so that α[Γn] =
∑

ω∈Γn
α[ω] is close

to 1;

• for n large, Γn is much smaller than Ωn:

#Γn

#Ωn
≍ e−nδ for some δ > 0;

• all texts in Γn have roughly the same probability.

This result is known as the Asymptotic Equipartition Property (AEP). Shan-
non introduced a quantity which measures the non-uniformity of a probabil-
ity measure; it is known as the Shannon entropy. The Shannon entropy is
defined by

h(α) := −p1 ln p1 − p2 ln p2 . . . − pr ln pr.

We see that 0 ≤ h(α) ≤ ln r; the maximum value ln r occurs when all the
pk are equal. Because of the applications of information theory to computer

18



science and computer engineering, a binary alphabet is often considered,
so that r = 2, a1 = 0 and a2 = 1, and Shannon entropy is often defined
using base 2 logarithms instead of natural logs; in that case, the maximum
entropy is 1. The number of elements in Ωn is #Ωn = rn = en ln r; this grows
exponentially in n. The number of elements in Γn also grows exponentially
in n, and the Shannon entropy gives the growth-rate: #Γn ≍ enh(α); thus
#Γn/#Ωn ≍ e−n(h(α)−ln r). This is where the second of the three parts of the
AEP comes from: the constant δ which appears there is the difference in the
growth rates δ = ln r − h(α). If α is far from uniform, then h(α) ≪ ln r and
Γn is substantially smaller than Ωn even for low values of n.

To prove the AEP, we must first set up some notation. Let Xi be the
random variable defined on Ωn which picks out the ith letter in the text: if
ω = (ω1, ω2, . . . ωn), then Xi(ω) = ωi. For each a in A, let δa[·] be the Dirac
measure defined on the subsets of A by

δa[B] =

{

1, if a ∈ B,
0, otherwise.

Now put

Ln(ω, B) =
1

n

(

δX1(ω)[B] + . . . + δXn(ω)[B]
)

;

Ln is called the empirical distribution because Ln(ω, {ak}) = nk/n, where
nk is the number of occurrences of the letter ak in the text ω. The random
variables X1, . . .Xn are independent and identically distributed with respect
to the probability measure α; it is not difficult to see that the same is true
of the variables δX1 , . . . δXn. If follows that we can apply Cramér’s Theorem
to {Ln} to get the result known as Sanov’s Theorem:
Sanov’s Theorem: There exists a convex function I on the space M(A)
of probability measures on A such that

α[Ln ≈ µ] ≍ e−nI(µ).

Once we know that the rate-function I exists and is convex, we can use
Chernoff’s Formula to compute it. Since I is a function of a (probability)
vector, the cumulant generating function is also a function of a vector t =
(t1, . . . tr):

λ(t) = ln E et1δX1
[a1]+...+trδX1

[ar]

= ln
(

p1e
t1 + . . . + pre

tr
)

To compute I, we must calculate the Legendre transform of λ:

I(µ) = max
t

{ t1µ[{a1}] + . . . + trµ[{ar}] − λ(t) }.
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Exercise 6 Use differential calculus to show that t must satisfy

∂λ

∂tk
=

pke
tk

p1et1 + . . . + pretr
= µ[{ak}],

and so

tk = ln
µ[{ak}]

pk
+ λ(t).

Substitute this into the expression to be minimised to show that

I(µ) = m1 ln
m1

p1
+ . . . + mr ln

mr

pr
,

where mk = µ[{ak}].

The expression m1 lnm1/p1 + . . . + mr ln mr/pr is written more simply as
D(µ‖α) and is known as the informational divergence.

Let us look again at the statement of Cramér’s Theorem: we see that
the distribution of Mn is concentrated near the mean m, the place where the
rate-function vanishes.

Exercise 7 Show that it follows from Cramér’s Theorem that, as n in-
creases,

lim
n→∞

P( m − δ < Mn < m + δ ) = 1,

for any δ > 0.

In Sanov’s Theorem, the rate-function is D(µ‖α); this vanishes if and only
if µ = α. So we have that

lim
n→∞

α[Ln ≈ α] = 1,

and it follows that, if we choose Γn to be those texts in which the relative
frequencies of the letters are close to those specified by α, then α[Γn] will
converge to 1 as n increases. Thus Γn consists of the most probable texts and
texts which are not in Γn occur only very rarely. To estimate the size of Γn,
we apply Sanov’s Theorem a second time. Let β be the uniform probability
measure which assigns probability 1/r to each of the r letters in A; then
β[Γn] = #Γn/#Ωn. Now, Γn is the set of texts ω for which Ln(ω) is close
to α, and so we can apply Sanov’s Theorem to the distribution of Ln with
respect to β:

β[Γn] = β[Ln ≈ α] ≍ e−nD(α‖β).
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But

D(α‖β) = p1(ln p1 − ln 1/r) + . . . + pr(ln pr − ln 1/r)

= ln r − h(α)

= δ,

and so #Γn/#Ωn ≍ e−nδ.
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5 Some General Principles

Varadhan’s Theorem

Varadhan’s Theorem is one of the most famous results in Large Deviation
theory; it is a landmark in the development of the subject. It concerns the
asymptotic behaviour of sequences of integrals. Consider the integral

Gn =

∫ ∞

0

eng(x) dP( Mn ≈ x ) ;

if Mn is such that P( Mn ≈ x ) ≍ e−nI(x), we might guess that

Gn ≍
∫ ∞

0

eng(x)e−nI(x) dx

=

∫ ∞

0

en{g(x)−I(x)} dx

≍ en maxx{g(x)−I(x)}

so that

lim
n

1

n
ln

∫ ∞

0

eng(x) dP( Mn ≈ x ) = max
x

{g(x) − I(x)}.

Varadhan wrote down a list of four hypotheses which he used in his proof that
this asymptotic formula holds whenever g is a bounded continuous function.
We list them in appendix C (they are too technical to state here); they give
precise meaning to our suggestive notation

P( Mn ≈ x ) ≍ e−nI(x).

When they hold, we say that the sequence {P( Mn ≈ x )} (or, more loosely,
the sequence {Mn}) satisfies a Large Deviation principle with rate-function
I.

Generalisations of Cramér’s Theorem

So far, we have talked only of the case in which the random variables are
independent and identically distributed (I.I.D.). Can we still prove that
P( Mn ≈ x ) ≍ e−nI(x) when these conditions are relaxed? If so, can we
calculate I(x)? There are two main approaches to these problems: the first,
which stems from the work of Ruelle and Lanford on the foundations of
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statistical thermodynamics, yields a direct proof of the existence of a rate-
function satisfying the requirements listed in appendix C and uses Varadhan’s
Theorem to calculate it; the second is known as the Gärtner-Ellis Theorem
— we will examine it after we have described the first approach.

The Ruelle-Lanford Approach

We illustrate the Ruelle-Lanford approach by outlining the proof of Cramér’s
Theorem for I.I.D. random variables which is given in appendix B. We then
indicate how the argument goes when we relax the condition of independence.

It is well known that if a sequence {an} of numbers is such that

an ≥ am whenever n > m (1)

then its limit exists and is equal to its least upper bound:

lim
n→∞

an = sup
n>0

an (2)

Let sn(x) := ln P( Mn > x ); if we could prove that the sequence {sn/n}
satisfies Equation 1, then the existence of the limit would follow. We can’t
quite manage that. However we can use the I.I.D. properties of the random
variables {Xn} to prove that

sm+n(x) ≥ sm(x) + sn(x) (3)

It then follows from a theorem in analysis that

lim
n→∞

sn

n
= sup

n>0

sn

n
.

This proves the existence of the rate-function

I(x) = − lim
n→∞

1

n
ln P( Mn > x ) .

If we give names to these conditions, we can write slogans which are easy
to remember. If Equation 1 holds, we say that {an} is monotone increasing;
if Equation 2 holds, we say that {an} is approximately monotone increas-
ing; if Equation 3 holds, we say that {sn} is super-additive. This is illus-
trated in Figure 8 using the coin-tossing data; the super-additive sequence
{ln P( Mn > 0.6 )} is shown on top, and the approximately monotone increas-
ing sequence {ln P( Mn > 0.6 ) /n} is shown on the bottom converging to its
maximum value.

23



-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

10 20 30 40 50 60 70 80 90 100

ln
 P

( 
M

n/
n 

>
 0

.6
 )

n

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

10 20 30 40 50 60 70 80 90 100

ln
 P

( 
M

n/
n 

>
 0

.6
 )

 /n

n

Figure 8: The distribution of the mean for coin-tossing: ln P(Mn > 0.6 )
(top) is super-additive and so ln P( Mn > 0.6 ) /n (bottom) is approximately
monotone; as n increases, ln P( Mn > 0.6 ) /n converges to its maximum
value.

24



The proof of Cramér’s Theorem goes like this:

{Xn} I.I.D. ⇒ {sn(x)} super-additive

⇒ {sn(x)/n} approximately monotone increasing

⇒ I(x) exists.

The independence condition can be replaced by a condition of weak depen-
dence (the definition is technical, so we refrain from giving it here — enough
to say that it is satisfied by Markov chains, for example) and the identical
distribution condition by stationarity; under these conditions, the existence
of the rate-function can still be proved. The chain of implications now looks
like this:

{Xn} stationary and weakly dependent

⇒ {sn(x)} approximately super-additive

⇒ {sn(x)/n} approximately monotone increasing

⇒ I(x) exists.

A modification of this argument proves that I is a convex function; this is
the key to calculating it.

The Scaled CGF: Calculating the Rate-Function

Once we have established the existence of the rate-function, we can apply
Varadhan’s Theorem. Choosing the function g to be linear,

g(x) = θx for some number θ,

we have

λ(θ) := lim
n→∞

1

n
ln E enθMn

= lim
n→∞

1

n
ln

∫ ∞

0

enθx dP(Mn ≈ x )

= max
x

{θx − I(x)}.

The last expression is known as the Legendre transform of I. We call λ the
scaled cumulant generating function (the use of this name should cause no
confusion; when {Xn} is an I.I.D. sequence, λ reduces to the cumulant gen-
erating function — see exercise 8). This application of Varadhan’s Theorem
proves that when the rate-function I exists, so does the scaled cumulant
generating function λ and that λ is the Legendre transform I∗ of I. The
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Legendre transform is like the Fourier transform in that, for an appropri-
ate class of functions, the transformed function contains exactly the same
information as the original function and so the transform is invertible. The
Legendre transform is invertible on the class of convex functions and is in-
verted by repeating it; if I is convex, then its double transform I∗∗ is just I
itself. Thus, if I is convex, we have

I(x) = λ∗(x) = max
θ

{θx − λ(θ)}.

This remark is useful because it frequently happens that the scaled CGF can
be computed directly from its defining expression and because the super-
additivity argument used to prove the existence of the rate-function proves
also that it is convex.

Exercise 8 Show that, if the Xn’s are independent, then the scaled CGF
reduces to the CGF of X1. (Hint: Start by using the fact that the X’s are
I.I.D. to show that

E enθMn =
(

E eθX1
)n

.)

Thus, in this case, Varadhan’s Theorem yields Chernoff’s Formula.

The Gärtner-Ellis Theorem

The second approach, which is exemplified by the Gärtner-Ellis Theorem,
assumes the existence of the scaled CGF λ(θ). The upper bound then follows
using an extension of the argument which we used to get Chernoff’s bound.
To get the lower bound, we assume in addition that λ(θ) is differentiable.
This approach is very popular — the conditions are easily stated and often
not difficult to check, provided we have an explicit expression for the scaled
CGF; sometimes, however, they are unnecessarily restrictive.

The Contraction Principle: Moving Large Deviations

Around

In many applications of probability theory, we model a process with a se-
quence {Xn} of random variables but, ultimately, we are only interested in
some subset of the properties of the process. We may only be interested
in a given function f of the value of Xn, and so it is natural to ask about
the Large Deviation behaviour of the sequence {f(Xn)}, given that of the
original {Xn}. The answer is given by the
Contraction principle: If {Xn} satisfies a Large Deviation principle with
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rate-function I and f is a continuous function, then {f(Xn)} satisfies a Large
Deviation principle with rate-function J , where J is given by

J(y) = min { I(x) : f(x) = y } .

It is called the “contraction” principle because typically f is a contraction in
that it throws detail away by giving the same value f(x) to many different
values of x.

Why does the contracted rate-function J have this form? Consider P( f(Xn) ≈ y ):
there may be many values of x for which f(x) = y, say x1, x2, . . . , xm, and so

P( f(Xn) ≈ y ) = P( Xn ≈ x1 or Xn ≈ x2 . . . or Xn ≈ xm )

= P( Xn ≈ x1 ) + P( Xn ≈ x2 ) + . . . + P( Xn ≈ xm )

≍ e−nI(x1) + e−nI(x2) + . . . + e−nI(xm).

As n grows large, the term which dominates all the others is the one for
which I(xk) is smallest, and so

P( f(Xn) ≈ y ) ≍ e−nmin{ I(x) : f(x)=y } = e−nJ(y).

To see the Contraction Principle in action, let us return to the AEP: we
saw that the empirical distribution Ln[B] = (δX1 [B]+. . .+δXn [B])/n satisfies
a Large Deviation principle in that

P( Ln ≈ µ ) ≍ e−nI(µ)

Suppose we take the letters a1, . . . ar to be real numbers and that, instead of
investigating the distribution of the empirical distribution Ln, we decide to
investigate the distribution of the empirical mean Mn = a1n1/n+. . .+arnr/n.
Do we have to go and work out the Large Deviation Principle for Mn from
scratch? No, because Mn is a continuous function of Ln; it is a very simple
function

Mn = f(Ln) = a1Ln[{a1}] + . . . + arLn[{ar}].
The contraction principle applies, allowing us to calculate the rate-function
J for {Mn} in terms of the rate-function I for {Ln}. We have that

J(x) = min
µ

D(µ‖α) subject to a1m1 + . . . + armr = x,

where mk = µ[{ak}]. This is a simple constrained optimisation problem: we
can solve it using Lagrange multipliers.
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Exercise 9 Show that the value of µ which achieves the minimum is given
by

µ[{ak}] =
eβakpk

eβa1p1 + . . . + eβarpr
,

where β is the Lagrange multiplier whose value can be determined from the
constraint. (Hint: Note that there are two constraints on m – the requirement
that a1m1 + . . . + armr be x and the fact that µ is a probability vector – and
so you will need two Lagrange multipliers!)
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6 Large Deviations in Queuing Systems

A queuing network consists of a network through which customers flow, re-
quiring some kind of processing by servers at the nodes. Typically the servers
have limited capacity and the customers must queue while waiting for ser-
vice. The basic problems in queuing theory is to analyse the behaviour of a
single element of a network: the single-server queue.

For simplicity, we will consider a single-server queue in discrete time and,
ignoring any considerations of multiple classes of customers or priority, we
take the discipline to be FIFO (First In, First Out). Let us set up some
notation: let Xi be the amount of work brought by customers arriving at
time i, let Yi be the amount of work the server can do at time i, and let Qi

be the queue-length (i.e. the amount of work waiting to be done) at time i.
The dynamics of the system are very simple: the length of the queue at time
0, say, is the sum of the length of the queue at time -1 and the work which
arrives at time -1 less the work which can be done at time -1. The service
cannot be stored and so, if the service available is greater than the sum of
the work in the queue and the work which arrives, then the new queue-length
is not negative but zero. This can all be expressed neatly in the formula

Q0 = max {0, X−1 − Y−1 + Q−1} ,

known as Lindley’s equation. We can iterate it, substituting for Q−1; to
simplify notation, we set Zi = X−i − Y−i for all i:

Q0 = max {0, Z1 + Q−1}
= max {0, Z1 + max {0, Z2 + Q−2}}
= max {0, Z1, Z1 + Z2 + Q−2} .

Applying it again gives us

Q0 = max {0, Z1, Z1 + Z2 + max {0, Z3 + Q−3}}
= max {0, Z1, Z1 + Z2, Z1 + Z2 + Z3 + Q−3} .

It is clear that, by defining Wt = Z1 + . . . + Zt, we can write

Q0 = max {W0, W1, . . .Wt−1, Wt + Q−t} ;

Wt is called the workload process. If we started off at some finite time −T in
the past with an empty queue, then

Q0 = max {W0, W1, . . .WT−1, WT} .
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However, we may be interested in the equilibrium behaviour of the queue
— what the queue-length is when the system has been running for a very
long time, when the initial queue-length has no influence. For an equilibrium
distribution to exist, the work-process and the service process must satisfy
some requirements, the most obvious of which is stationarity: the probability
distributions of {Xi} and {Yi} must be independent of the time. In that case,
the equilibrium queue-length Q is given by

Q = max
t≥0

Wt,

provided the stability condition

E Xi < E Yi

is satisfied. For many purposes, we are interested in the behaviour of the
tail of the probability distribution: how big is P( Q > q ) when q is large?
The best way to answer this question is to look at a picture of a typical
queue-length distribution. Consider P( Q > q ), which we can think of as the
fraction of time for which the queue-length Q is greater than q. If the queue
is stable, then this probability typically decays very rapidly with increasing
q, and so in Figure 9 we plot it against q on a logarithmic scale. While there
is some detail to the plot for small values of q, the most striking feature is
that, for q greater than about 40, it is linear in q. This means that P( Q > q )
decays exponentially with q for large values of q:

P(Q > q ) ≍ e−δq

where −δ is the asymptotic slope of Figure 9. Can this behaviour be ex-
plained using Large Deviations? The answer is “Yes”: if the arrivals process
and the service process are stationary and satisfy the stability condition and
the workload process satisfies a Large Deviation principle

P(Wt/t ≈ x ) ≍ e−tI(x),

with rate-function I, then

P(Q > q ) ≍ e−δq

and the decay-constant δ can be calculated from the rate-function for the
workload process:

δ = min
x

I(x)

x
.
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Figure 9: The logarithm of a typical queue-length distribution
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We can get a feeling for why this is true from the following crude argument
(a proof is given in Appendix E); first notice that

P( Q > q ) = P

(

max
t≥0

Wt > q

)

= P(∪t≥0{Wt > q} )

≤
∑

t≥0

P( Wt > q ) .

Since P( Wt/t > x ) ≍ e−tI(x), we have

P( Wt > q ) = P( Wt/t > q/t ) ≍ e−tI(q/t) = e−q I(q/t)
q/t

so that
P( Q > q ) ≍ e−q I(q)

q + e
−q I(q/2)

q/2 + . . . + e
−q I(q/t)

q/t + . . .

and, just as in the discussion of the Contraction Principle, the term which
dominates when q is large is the one for which I(q/t)/(q/t) is smallest, that
is the one for which I(x)/x is a minimum:

P( Q > q ) ≍ e−q minx
I(x)

x = e−qδ.

Note that we can also characterise δ in terms of the scaled CGF:

θ ≤ min
x

I(x)/x if and only if θ ≤ I(x)/x for all x

if and only if θx − I(x) ≤ 0 for all x

if and only if max
x

{θx − I(x)} ≤ 0;

thus θ ≤ δ if and only if λ(θ) ≤ 0 and so

δ = max { θ : λ(θ) ≤ 0 } .

Using the Scaled CGF for Resource Allocation

Buffer Dimensioning

If the queue has only a finite waiting space, then δ gives us an estimate
of what that buffer-size must be in order to achieve a given probability of
overflow. Look again at Figure 9: it is clear that, if we require the probability
of overflow to be smaller than e−9 (a little over 10−4), we need a buffer larger
than 120. We can use δ to give an estimate P̂ (b) of the probability of a buffer
of size b overflowing:

P̂ (b) = e−δb.
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Effective Bandwidths

Note that in the case in which the service capacity is a constant, s per unit
time, the workload process is Wt = X−1 + . . .+X−t − st and the scaled CGF
is

λ(θ) = lim
t→∞

1

t
lnE eθWt

= lim
t→∞

1

t
lnE eθ(X−1+...+X−t−st)

= lim
t→∞

1

t
lnE eθ(X−1+...+X−t) − sθ

= λA(θ) − sθ

where λA is the scaled CGF of the arrivals process. Thus, given the arrivals
scaled CGF, we can calculate δ as a function of s:

δ(s) = max { θ : λA(θ) ≤ sθ } .

It may happen, as in ATM networks, that the buffer-size is fixed but the
capacity of the server can be varied; in that case, a natural question to ask
is “Given the arrivals process At, what is the minimum service capacity sp

required to guarantee that the probability of buffer-overflow is less than some
given level p?”. We can use the approximation P( Q > b ) ≈ e−δ(s)b to give
an estimate of sp:

sp = min
{

s : e−δ(s)b ≤ p
}

.

Exercise 10 Show that sp = λA(θp)/θp where θp = (− ln p)/b.

sp is, in general, larger than the mean bandwidth of the arrivals; and is known
as the effective bandwidth of the arrivals. The function λA(θ)/θ is known as
the effective bandwidth function and the approximation P( Q > b ) ≈ e−δ(s)b

is known as the effective bandwidth approximation .

Effective Bandwidths in Risk Theory

Recall the simple model of risk theory we discussed in Section 3: an insurance
company settles a fixed number of claims in a fixed period of time, say one a
day, and receives a steady income from premium payments, say an amount
p each day. Since the sizes of the claims are random, there is the risk that,
at the end of the planning period T , the total amount paid in settlement
of claims will exceed the total assets of the company. When we discussed
this model before, we assumed that the only asset the company has to cover
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the claims is the income from premium payments; it is, however, likely that
a company would have some other assets, say of fixed value u. We might
now want to evaluate the risk of the amount

∑T
t=1 Xt paid out over the

planning period T exceeding the total assets pT + u of the company. This
risk-theory model is similar to a single-server queue: the claims are like
customers, the premium income is like service capacity and the initial assets
u are like a buffer, guarding temporarily against large claims which exceed
the premium income; thus ruin (exhaustion of all assets) in the risk-theory
model corresponds to buffer-overflow in the queuing system.

We assume, as before, that the sizes Xt of claims are independent and
identically distributed so that we can apply Cramér’s Theorem to approxi-
mate the probability of ruin.

P

(

1

T

T
∑

t=1

Xt > x

)

≍ e−TI(x),

where x = p + u/T . We require that the risk of ruin be e−r for some large
positive number r and we use the rate-function I to choose an appropriate
value of x:

P

(

1

T

T
∑

t=1

Xt > x

)

≈ e−r

e−TI(x) ≈ e−r

I(x) ≈ r/T

Since I(x) is convex, it is monotonically increasing for x greater than the
mean of Xt and so the equation

I(x) = r/T

has a unique solution for x; we call the unique solution x∗. We are free to
choose any values of p and u such that p + u/T = x∗ but there is one choice
which can be interpreted in terms of queuing theory. Recall that the rate-
function I of the claims process can be expressed as the Legendre transform
of λ, the CGF of the claim-size,

I(x) = max
θ

{θx − λ(θ)},

and so the requirement that I(p + u/T ) = r/T can be rewritten as

max
θ

{θp + θu/T − λ(θ)} = r/T.
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If we denote by θ∗ the value of θ which maximises this expression, then we
get that

θ∗p + θ∗u/T − λ(θ∗) = r/T

hence, by taking p = λ(θ∗)/θ∗ and u = r/θ∗ we get a solution in which the
premium rate p is the effective bandwidth of the claims process at a value θ∗

of θ which gives a probability e−θ∗u = e−r of ruin in a buffer of size u.

Bypassing Modelling: Estimating the Scaled CGF

All we need for the scaled CGF of the arrivals to exist is for the arrivals to be
stationary and mixing. If these two conditions are satisfied, we can use the
scaled CGF to make predictions about the behaviour of the queue. One way
to get the scaled CGF for the arrivals is to make a suitable statistical model,
fit the parameters of the model to the data and then calculate the scaled CGF
from the model. There are a number of problems with this approach. Firstly,
real traffic streams cannot be accurately represented by simple models; any
realistic model would have to be quite complex, with many parameters to be
fitted to the data. Secondly, the calculation of the scaled CGF for any but the
simplest model is not easy. Thirdly, even if you could find a realistic model,
fit it to your data and calculate the scaled CGF, this would be a wasteful
exercise: the scaled CGF is a Large Deviation object, and it does not depend
on the details of the model, only on its “bulk properties”. Hence all the
effort you put into fitting your sophisticated model to the data is, to a large
extent, lost. Our approach is to ask “Why not measure directly what you
are looking for?” There are many good precedents for this approach. When
engineers design a steam turbine they need to know the thermodynamic
properties of steam. To find this out, they do not make a sophisticated
statistical mechanical model of water and calculate the entropy from that;
instead, they measure the entropy directly in a calorimetric experiment, or
(more likely) they use steam tables – based on somebody else’s measurements
of the entropy. Now, we make the observation that thermodynamic entropy
is nothing but a rate-function. So if you want the thermodynamics (that
is, the Large Deviations) of your queuing system, why not measure directly
the entropy (that is, the rate-function) of the workload process? How do we
measure the rate-function – or, equivalently, the scaled CGF – of the workload
process? Consider the case in which the service capacity is a constant, s per
unit time; the workload process is then Wt = X−1 + . . . + X−t − st and the
scaled CGF is

λ(θ) = λA(θ) − s
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where λA is the scaled CGF of the arrivals process. If the arrivals Xi are
weakly dependent, we can approximate the scaled CGF by a finite-time cu-
mulant generating function:

λA(θ) ≈ λ
(T )
A (θ) =

1

T
lnE eθAT ,

for T sufficiently large. We can now estimate the value of the expectation by
breaking our data into blocks of length T and averaging over them:

λ̂A(θ) :=
1

T
ln

1

K

k=K
∑

k=1

eθX̃k ,

where the X̃’s are the block sums

X̃1 := X1 + . . . + XT , X̃2 := XT+1 + . . . + X2T , etc.

This yields estimates of both the effective bandwidth λ̂(θ)/θ and, given
the value of s, the asymptotic decay-rate δ̂ of the queue-length distribution
through

δ̂ := max
{

θ : λ̂(θ) ≤ 0
}

.

Other Estimators

Is this the only way to estimate λ? Not at all; there are many ways to
estimate it and, indeed, different methods may be appropriate for different
arrivals processes. Consider what exactly we are doing when we use the
estimator

λ̂(θ) =
1

T
ln

1

K

k=K
∑

k=1

eθX̃k .

If the X̃k’s are independent, then the scaled CGF of the Xi’s is just the
cumulant generating function of the X̃k’s, and the above estimator is exactly
what we need to measure the latter. Thus, when we say that we needed T
to be large enough for the finite time cumulant generating function λ(T ) to
be a good approximation to the asymptotic one λ, we really mean that we
need T to be large enough for the block-sums X̃k to be independent. Not
only can we easily calculate the scaled CGF for independent sequences, but
we can also do so for Markov sequences. Thus, if we use an estimator based
on a Markov structure, we only need T to be large enough that the X̃k’s
are approximately Markov; such an estimator is tailor-made for the case of
Markovian arrivals.
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There is a whole class of estimators, similar to the simple I.I.D. estimator
λ̂ shown above, but which, instead of using one fixed size T for each block,
use variable block-sizes. To see how they work, we need to consider the Large
Deviations of random time-changes.

The Large Deviations of Random Time-Changes

Suppose we have a Large Deviation principle (LDP) for some process {St},
in that

P( St ≈ s ) ≍ e−tI(s);

if we take an increasing sequence {tn} of times such that tn → ∞, then
obviously we also have a LDP for the sequence {Stn}:

P( Stn ≈ s ) ≍ e−tnI(s);

If tn/n → τ , then we can also write P( Stn ≈ s ) ≍ e−nτI(s). What happens
if, instead of a deterministic sequence {tn}, we take a sequence of random
times {Tn}? If {Tn} satisfies the Weak Law of Large Numbers, so that
limn P( |Tn/n − τ | > ǫ ) = 0 for any positive number ǫ, then we might expect
that

P( STn ≈ s ) ≍ e−nτI(s).

as before. What if {Tn} satisfies a LDP? Obviously the Large Deviations of
{Tn} get mixed in with those of {St}. We could ask a more specific question:
if we have a joint LDP for STn and Tn, so that

P( STn ≈ s, Tn/n ≈ τ ) ≍ e−nJ(s,τ),

then how are I(s) and J(s, τ) related?
To answer that, we need to look at the joint Large Deviation principle

for St and Nt, where Nt is the counting process associated with Tn:

Nt = sup {n : Tn ≤ t} ;

Nt is the number of random times which have occurred up to time t. A better
question is the following: if St and Nt satisfy a LDP jointly

P( St ≈ s, Nt/t ≈ ν ) ≍ e−tI(s,ν),

then is it true that

P( STn ≈ s, Tn/n ≈ τ ) ≍ e−nJ(s,τ)

and, if so, what is the relationship between I(s, ν) and J(s, τ)?
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The answer is simple: yes (under appropriate hypotheses on the processes
St and Nt and the rate-function I), and the relationship between the rate-
functions is

J(s, τ) =
I(s, 1/τ)

τ
.

Consider the following scaled cumulant generating function

µ(θ) := lim
n→∞

1

n
lnE eθTnSTn ;

an application of Varadhan’s Theorem allows us to calculate µ in terms of J :

E eθTnSTn =

∫

eθnτs dP(STn ≈ s, Tn/n ≈ τ )

≍
∫

eθnτse−nJ(s,τ) ds dτ

≍ en maxs,τ{θτs−J(s,τ)}.

Thus µ(θ) = maxs,τ{θτs − J(s, τ)} and, rewriting J in terms of I, we have
that

µ(θ) = max
s,τ

τ{θs − I(s, 1/τ)}.

Consider also the scaled CGF of St

λ(θ) = lim
t→∞

1

t
ln E eθtSt

Exercise 11 Use Varadhan’s Theorem as we did above to show that

λ(θ) = max
s,ν

{θs − I(s, ν)}.

(Hint: Apply Varadhan’s Theorem to E eθtSt+αNt and then set α = 0.)

Is there any connection between λ and µ? Yes, they are related as follows:

max
s,ν

{θs − I(s, ν)} ≤ 0 if and only if {θs − I(s, ν)} ≤ 0 for all s and all ν > 0

if and only if {θs − I(s, 1/τ)} ≤ 0 for all s and all τ > 0

if and only if τ{θs − I(s, 1/τ)} ≤ 0 for all s and all τ > 0

if and only if max
s,τ

τ{θs − I(s, 1/τ)} ≤ 0

and so λ(θ) ≤ 0 if and only if µ(θ) ≤ 0 and hence

{ θ : λ(θ) ≤ 0 } = { θ : µ(θ) ≤ 0 } .

38



This means that, if the process St is the average workload Wt/t of a queue
up to time t, then we can characterise the asymptotic decay rate δ of the
queue-length distribution as either

δ = max { θ : λ(θ) ≤ 0 } or δ = max { θ : µ(θ) ≤ 0 }

Let us look more closely at µ: it is defined as

lim
n→∞

1

n
ln E eθWTn = lim

n→∞

1

n
ln E eθ(X−1+...+X−Tn−sTn);

where s is the service rate of the queue and Tn is any increasing sequence of
random times. This tells us that, when estimating δ, we are not restricted
to using a sequence of fixed block-sizes to aggregate the observations of the
arrivals but are free to use any sequence {Tn} of large block-sizes. We can
therefore choose blocks which reflect the structure of the arrivals process to
give us estimators which have lower bias and/or variance.

A The Large Deviations of Coin-Tossing: A

Bare-Hands Calculation

Another way to see Large Deviations at work is to use Stirling’s Formula
in conjunction with the combinatorial expressions for the tail-probabilities.
Thus consider P( Mn < a ):

P( Mn < a ) =

⌈a⌉−1
∑

k=0

(

n

k

)

1

2n
.

If a < 1/2, then each term in the sum is bounded by nC⌈na⌉ and so

P( Mn < a ) ≤ ⌈na⌉
(

n

⌈na⌉

)

1

2n
=: An.

Now consider ln An: we can rewrite ln nC⌈na⌉ as

−⌈na⌉
n

(

1

⌈na⌉ ln ⌈na⌉! − ln ⌈na⌉
)

−⌊n(1 − a)⌋
n

(

1

⌊n(1 − a)⌋ ln ⌊n(1 − a)⌋! − ln ⌊n(1 − a)⌋
)

+

(

1

n
ln n! − ln n

)

− ⌈na⌉
n

ln
⌈na⌉

n
− ⌊n(1 − a)⌋

n
ln

⌊n(1 − a)⌋
n

and use Stirling’s Formula

lim
n→∞

(

1

n
ln n! − ln n

)

= −1
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to get

lim
n→∞

1

n
ln An = −a ln a − (1 − a) ln(1 − a) − ln 2.

Let us look again at P( Mn < a ): not only can we bound it above by
something which decays exponentially, but we can also bound it below by
something which decays exponentially at the same rate. So long as a > 0,

P( Mn < a ) ≥
(

n

⌈na⌉ − 1

)

1

2n
.

Exercise 12 Show that

lim
n→∞

1

n
ln

(

n

⌈na⌉ − 1

)

1

2n
= −a ln a − (1 − a) ln(1 − a) − ln 2.

So we have, for 0 < a < 1/2,

lim
n→∞

1

n
lnP( Mn < a ) = −a ln a − (1 − a) ln(1 − a) − ln 2

= −I(a)

= − inf
x<a

I(x),

our first Large Deviation principle, established using only a little combina-
torics.

B A Proof of Cramér’s Theorem

Cramér’s proof of his theorem was based essentially on an argument using
moment generating functions and power-series expansions. After seeing the
connection with the Central Limit Theorem and Chernoff’s Formula, we can
see how this is a natural approach to take; indeed, one of the standard proofs
of the Central Limit Theorem is based on the moment generating function.
However there is a more elegant argument which establishes the theorem and
shows at the same time that the rate-function is convex; we present it here.

Suppose {Xn } is a sequence of independent and identically distributed

random variables; define M
(m)
n by

M (m)
n :=

1

n
(Xm+1 + . . . + Xm+n) .

Now
M

(0)
m+n =

m

m + n
M (0)

m +
n

m + n
M (m)

n (4)
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and so, if M
(0)
m > x and M

(m)
n > x, then M

(0)
m+n > x. Hence

{

M (0)
m > x

}

∩
{

M (m)
n > x

}

⊂
{

M
(0)
m+n > x

}

,

so that
P
( {

M (0)
m > x

}

∩
{

M (m)
n > x

} )

≤ P
(

M
(0)
m+n > x

)

;

but, since the Xn’s are independent,

P
( {

M (0)
m > x

}

∩
{

M (m)
n > x

} )

= P
(

M (0)
m > x

)

P
(

M (m)
n > x

)

and, since the Xn’s are identically distributed,

P
(

M (m)
n > x

)

= P
(

M (0)
n > x

)

.

If we define sn(x) := ln P
(

M
(0)
n > x

)

, then this implies that

sm(x) + sn(x) ≤ sm+n(x)

and we say that the sequence { sn }n is super-additive.
It can be shown that, if a sequence { an }n is super-additive, then limn an/n

exists and is equal to supn an/n. (We say that {an/n} is almost monotone
increasing). Thus limn sn(x) exists; let us define I(x) = − limn sn(x). We
have proved that there exists a function I such that

lim
n→∞

1

n
ln P( Mn > x ) = −I(x),

where Mn = M
(0)
n . Returning to Equation 4, we see that, if M

(0)
n > x and

M
(n)
n > y, then M

(0)
2n > (x + y)/2; hence

{

M (0)
n > x

}

∩
{

M (n)
n > y

}

⊂
{

M
(0)
2n >

x + y

2

}

,

so that

P
( {

M (0)
n > x

}

∩
{

M (n)
n > y

} )

≤ P

(

M
(0)
2n >

x + y

2

)

.

Using the fact that the Xn’s are independent and identically distributed, we
have

sn(x) + sn(y) ≤ s2n

(

x + y

2

)
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so that
1

2

{

1

n
sn(x) +

1

n
sn(y)

}

≤ 1

2n
s2n

(

x + y

2

)

.

Since I(x) = − limn sn(x) exists for all x, we have

1

2
{I(x) + I(y)} ≥ I

(

x + y

2

)

;

this implies that I is convex.

C A Precise Statement of the Large Devia-

tion Principle

We use the suggestive notation

P( Mn ≈ x ) ≍ e−nI(x)

to indicate that the sequence P( Mn > x ) of probability distributions satisfies
a Large Deviation principle with rate-function I; that is

(LD1) the function I is lower-semicontinuous

(LD2) for each real number a, the level set {x ∈ R : I(x) ≤ a } is compact

(LD3) for each closed subset F of R,

lim sup
n→∞

1

n
ln P( Mn ∈ F ) ≤ − inf

x∈F
I(x)

(LD4) for each open subset G of R,

lim inf
n→∞

1

n
lnP( Mn ∈ G ) ≥ − inf

x∈G
I(x)

D The Gärtner-Ellis Theorem

We state the Gärtner-Ellis Theorem for a sequence {Mn} of real-valued ran-
dom variables; the theorem can be extended to vector-valued random vari-
ables without too much difficulty. Define

λn(θ) :=
1

n
ln E enθMn

for θ ∈ R and assume :
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1. λn(θ) is finite for all θ;

2. λ(θ) := limn→∞ λn(θ) exists and is finite for all θ;

then the upper bound (LD3) holds with rate-function

I(x) = sup
θ∈R

{xθ − λ(θ)}.

If, in addition, λ(θ) is differentiable for all θ ∈ R, then the lower bound
(LD4) holds.

E Deriving the Asymptotics of the Queue-

Length from the Large Deviations of the

Workload

The proof of the lower bound is easy, so we give it first. The queue-length
Q is related to the workload Wn by Q = supn Wn and so the event {Q > b}
can be expressed as

{Q > b} =
⋃

n≥0

{Wn > b} .

Thus, for each n ≥ 0,
{Q > b} ⊃ {Wn > b}

and so
P(Q > b ) ≥ P( Wn > b )

for all n ≥ 0. Fix c > 0; since b/c ≤ ⌈b/c⌉, we have that c ≥ b
⌈b/c⌉

so that

{

W⌈b/c⌉ > b
}

=

{

1

⌈b/c⌉W⌈b/c⌉ >
b

⌈b/c⌉

}

⊃
{

1

⌈b/c⌉W⌈b/c⌉ > c

}

and hence

P( Q > b ) ≥ P
(

W⌈b/c⌉ > b
)

≥ P

(

1

⌈b/c⌉W⌈b/c⌉ > c

)

.

Since b/c ≥ ⌊b/c⌋, we have 1
b
≤ 1

c
· 1
⌊b/c⌋

so that

1

b
lnP( Q > b ) ≥ 1

c
· 1

⌊b/c⌋ ln P

(

1

⌈b/c⌉W⌈b/c⌉ > c

)

.
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(Remember that, for any event A, P( A ) ≤ 1 so that ln P( A ) ≤ 0!) It follows
that, for each c > 0, we have

lim inf
b→∞

1

b
ln P( Q > b ) ≥ 1

c
lim inf

b→∞

1

⌊b/c⌋ lnP

(

1

⌈b/c⌉W⌈b/c⌉ > c

)

=
1

c
lim inf
n→∞

1

n
ln P

(

1

n
Wn > c

)

≥ −1

c
I(c),

where in the last step we used (LD4). But this holds for all c > 0, so that
we have the lower bound

lim inf
b→∞

1

b
ln P( Q > b ) ≥ sup

c>0
(−1

c
I(c))

= − inf
c>0

1

c
I(c).

The get the upper bound from a general result which follows from putting
together the Chernoff bound and the Principle of the Largest Term. Let
{Wn }n≥0 be a sequence of random variables such that, for each real number

θ, E eθWn is finite for all n and λ(θ) := limn λn(θ) exists and is finite, where

λn(θ) :=
1

n
ln E eθWn.

Define δ := sup { θ > 0 : λ(θ) < 0 }; then

lim sup
b→∞

1

b
lnP

(

sup
n≥0

Wn > b

)

≤ −δ.

Proof: If the set { θ > 0 : λ(θ) < 0 } is empty, then δ = −∞ and there is
nothing to prove. Otherwise, choose θ̄ such that 0 < θ̄ < δ and λ(θ̄) < 0.
Then, using the Chernoff Bound, we have for each integer n

P( Wn > b ) ≤ e−θ̄bE eθ̄Wn ;

since E eθ̄Wn < ∞, we have

lim sup
b→∞

1

b
ln P( Wn > b ) ≤ θ̄.

Thus, for each integer N , we have

P

(

sup
n≤N

Wn > b

)

≤
∑

n≤N

P( Wn > b ) ≤ N sup
n≤N

P( Wn > b )
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so that

lim sup
b→∞

1

b
ln P

(

sup
n≤N

Wn > b

)

≤ sup
n≤N

lim sup
b→∞

1

b
ln P( Wn > b ) ≤ θ̄.

On the other hand, we have

P

(

sup
n>N

Wn > b

)

≤
∑

n>N

P( Wn > b ) ≤ e−θ̄b
∑

n>N

E eθ̄Wn = e−θ̄b
∑

n>N

enλn(θ̄).

Since limn λn(θ̄) = λ(θ̄) < 0, there exists a positive number ǫ such that
ǫ < −λ(θ̄) and an integer Nθ̄ such that λn(θ̄) < −ǫ for every n > Nθ̄. It
follows that

P

(

sup
n>Nθ̄

)

≤ e−θ̄b
∑

n>Nθ̄

e−nǫ < e−θ̄b · 1

1 − e−ǫ
.

Applying the Principle of the Largest Term once more, we have

lim sup
b→∞

1

b
ln P

(

sup
n≥0

Wn > b

)

=

max

{

lim sup
b→∞

1

b
ln P

(

sup
n≤Nθ̄

Wn > b

)

, lim sup
b→∞

1

b
ln P

(

sup
n>Nθ̄

Wn > b

)}

so that

lim sup
b→∞

1

b
ln P

(

sup
n≥0

Wn > b

)

≤ −θ̄;

but this is true for all θ̄ < δ and so the result follows:

lim sup
b→∞

1

b
lnP

(

sup
n≥0

Wn > b

)

≤ −δ.

2
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