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Following earlier work, we view two-dimensional nonlinear sigma model as single particle quantum mechanics in the free loop
space of the target space. In a natural semiclassical limit of this model, the wavefunction localizes on the submanifold of vanishing
loops. One would expect that the semiclassical expansion should be related to the tubular expansion of the theory around the
submanifold and effective dynamics on the submanifold is obtainable using Born-Oppenheimer approximation. We develop a
framework to carry out such an analysis at the leading order. In particular, we show that the linearized tachyon effective equation
is correctly reproduced up to divergent terms all proportional to the Ricci scalar. The steps are as follows: first we define a finite
dimensional analogue of the loop space quantummechanics (LSQM)where we discuss its tubular expansion and how that is related
to a semiclassical expansion of the Hamiltonian. Then we study an explicit construction of the relevant tubular neighborhood in
loop space using exponential maps. Such a tubular geometry is obtained from a Riemannian structure on the tangent bundle of
target space which views the zero-section as a submanifold admitting a tubular neighborhood. Using this result and exploiting an
analogy with the toy model, we arrive at the final result for LSQM.

1. Introduction and Summary

Strings in curved background is a well-studied problem [1, 2].
Usually the semiclassical expansion is formulated using the
background field method of quantum field theory (QFT) in
Lagrangian framework [3–6]. An attractive feature of this
formulation is the use of Riemann normal coordinate (RNC)
[7] expansion. This enables one to keep the Riemannian
structure of the target manifoldMmanifest.

Although it is not usually used for QFT computations,
Hamiltonian framework, on the other hand, is conceptually
appealing. It is natural to view the two-dimensional non-
linear sigma model (NLSM) under consideration as a sin-
gle particle relativistic quantum mechanics in the infinite
dimensional free loop space LM corresponding to M [8–
13]. In [14, 15] we discussed a framework of describing this
quantum mechanics, hereafter called loop space quantum
mechanics (LSQM), for the bosonic sigma model in terms of
general coordinates inLM keeping the infinite dimensional
Riemannian structure manifest. This may be viewed as a
formal ℏ-deformation of the classical theory as divergences
are present in the form of infinite dimensional traces. The

problem of regularizing these divergences was emphasized
earlier in [8, 9, 16]. As a first step towards this direction, in this
paper we discuss a semiclassical limit of LSQM and motivate
the use of Fermi normal coordinate (FNC) [17, 18] expansion
describing the tubular neighborhood ofM when it is viewed
as the submanifold of vanishing loops embedded in LM

(the view of studyingM through its embedding inLM was
considered earlier by Witten in [9]).

We now roughly describe the general idea. One expects
that in ℏ = 𝛼󸀠 → 0 limit theworldsheet theory should reduce
to a theory of particles inM. One also notices that LSQMhas
a potential which minimizes to zero on the submanifold of
zero loops. Therefore, a natural semiclassical limit is given
by the situation where the wavefunction localizes on this
submanifold. The general idea is to use Born-Oppenheimer
type approximation to adiabatically decouple the longitudinal
(slow) and transverse (fast) degrees of freedom (This is similar
in spirit to the discussion of degenerate Morse theory in [8].
As explained below, we will study this problem inmore detail
following certain other literature.) and finally to compute the
effective theory onM 󳨅→LM order by order in ℏ.
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A complete understanding of the above procedure
requires several technical questions to be answered. Some of
them are as follows.

(1) How to perform tubular expansion of tensors around
a submanifold embedded in a higher dimensional
ambient space?

(2) Given a suitable quantum mechanical problem in the
ambient space, how to set up the relevant semiclas-
sical expansion of the Hamiltonian which relates to
the above tubular expansion? How to get an effective
theory on the submanifold?

(3) Given the understanding of the above questions in
a finite dimensional case, how to apply them to our
present context of loop space?

We will discuss all the above three topics successively and
our final goalwill be to derive the linearized effective equation
for the tachyon fluctuation at leading order in 𝛼󸀠-expansion.
We will show that our analysis correctly reproduces the
known result up to divergent terms all proportional to the
Ricci scalar of M. Below we briefly discuss these topics to
indicate how this result will be arrived at.This will also clarify
relation to other works in the literature.

The first question is discussed in Section 2 (and in
Appendix A). Here we explain our basic set up for a finite
dimensional submanifold embedding, introduce FNC, and
review the results of [19]. In [19], by generalizing the tech-
niques of [20], we find all order FNC-expansion of vielbein
components in the neighborhood of a submanifold (say𝑀)
embedded in a pseudo-Riemannian ambient space (say𝐿) (𝑀
and 𝐿 are our finite dimensional analogues of M and LM,
resp.). The expansion coefficients are given by certain tensors
of 𝐿, all evaluated at𝑀 󳨅→ 𝐿. For vielbein these tensors are
given by combinations of various powers of the curvature,
their covariant derivatives and spin connection. For the rest
of our analysis the FNC-expansion of the metric tensor up to
quadratic order, as given in (3), will be crucially used.

To address the second question we consider a finite
dimensional analogue of LSQM in Section 3. The analysis
in this section is along the line of what is usually known as
constrained quantum system in the literature. A partial list
of references is [21–28]. Here one considers a nonrelativistic
classical system in an ambient space with a potential that
tries to confine the motion into a submanifold. The idea
is to realize this constraint at the quantum mechanical
level through localization of wavefunction. This is done by
rescaling the model with certain tunable parameter (e.g.,
representing the strength of the restoring force) in such a
way that makes the transverse directions fast in the Born-
Oppenheimer sense when the parameter is small. In our
case the tunable parameter is the scale ℏ and therefore the
procedure gives a semiclassical expansion of the theory. In
Section 3 we give precise definition of the potential of our
model and the procedure leading to semiclassical expansion
of the Hamiltonian. This shows how the contribution at a
given order in ℏ is related to tubular expansion of various
geometric quantities at different orders. Finally, we define and
compute an analogue of linearized tachyon effective equation
at leading order in ℏ-expansion within this toy model.

The usefulness of this study lies in the fact that it is free of
divergences. Moreover, as hinted in the next paragraph, there
exists an analogy which can be exploited to translate the end
results of the toymodel to the case of LSQM.Once this is done
it exhibits the pattern of divergences that are expected in the
actual LSQM computations. This is how we arrive at the final
result for the tachyon effective equation as mentioned earlier.

Wenow turn to the question of how to translate the results
of finite dimensional model to the case of LSQMwhich is the
content of the third question. Given that the theory is being
expanded around a submanifold, such results are in general
expressed in terms of various tubular expansion coefficients
which are tensors of the ambient space evaluated on the
submanifold. Since the Riemannian structure of LM is
induced from that ofM, onewould expect that all the relevant
tubular expansion coefficients should be related to certain
intrinsic geometric data of M. Finding such relations for
the metric-expansion coefficients up to quadratic order will
be the precise quantitative question addressed in Section 4.
There are several technical steps to be followed in order to
arrive at the final result which we explain in a self-contained
manner in Section 4 (In more technical terms, the final
goal of Section 4 is to develop a precise understanding of
the metric-expansion given in (3) in the context of loop
space. This is done by suitably constructing (1) the tubular
neighborhood of M 󳨅→ LM (content of Section 4.1) and
(2) the FNC inLM (content of Section 4.2). A construction
of the relevant tubular neighborhood appeared before in
[29]. Although the general ideas are similar, our detailed
construction is different and chosen to suit our purpose
of constructing FNC. In particular, [29] uses a method of
embedding M in a higher dimensional Euclidean space,
whereas we use exponential maps. This enables us to relate
the tubular geometry in LM to a Riemannian structure
in 𝑇M.). Once these relations are known, one can use the
precise analogy between the toymodel and LSQM to translate
results of Section 3. This will be discussed in Section 5. We
conclude in Section 6 with some future directions. A brief
note on loop space and LSQM that will be relevant for our
discussion has been given in Appendix C. Appendices B and
D contain some technical details.

2. Tubular Expansion of Metric up to
Quadratic Order

Here we describe the basic set up for submanifold embedding
that will be used throughout the paper. We consider a 𝐷-
dimensional subspace𝑀 embedded in a higher dimensional
(pseudo) Riemannian space 𝐿 of dimension 𝑑. We adopt
the following notations. Greek indices (𝛼, 𝛽, . . .) run over 𝐷
dimensions, capital Latin indices (𝐴, 𝐵, . . .) run over (𝑑 −
𝐷) dimensions, and small Latin indices (𝑎, 𝑏, . . .) over all 𝑑
dimensions. The coordinates of 𝐿 will be denoted by 𝑧𝑎 =

(𝑥
𝛼
, 𝑦

𝐴
) where 𝑥𝛼 is a general coordinate system in 𝑀.

Indices kept inside parenthesis will refer to noncoordinate
basis, 𝜂

(𝑎𝑏)
being the diagonal matrix with the indictors as

diagonal elements.
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In [17] Florides and Synge (FS) proved existence of certain
submanifold based coordinate system, called FNC inmodern
literature [18], which satisfies special coordinate conditions.
In the special case where𝑀 is a point, FNC reduces to RNC.
The FS coordinate conditions can be described as follows.
Equation for the submanifold is given by

𝑦
𝐴
= 0. (1)

The metric components of 𝐿, denoted by 𝑔
𝑎𝑏
(𝑧), satisfy the

following equations:

𝑔
𝑎𝐵
(𝑧) 𝑦

𝐵
= 𝑔

𝑎𝐵
(𝑥) 𝑦

𝐵
,

𝑔
𝛼𝐵
(𝑥) = 0,

𝑔
𝐴𝐵
(𝑥) = 𝜂

𝐴𝐵
,

(2)

where 𝑔
𝑎𝑏
(𝑥) = 𝑔

𝑎𝑏
(𝑥, 𝑦 = 0). As a general rule, we use the

lower case symbols to denote the geometric quantities of 𝐿
and the same symbols with bars to denote the same quantities
restricted to the submanifold. With this convention in mind
we will refrain from explicitly writing down the arguments of
such quantities most of the time.

The results for the expansion of the metric components
away from the submanifold that will be relevant for us later
are given by

𝑔
𝛼𝛽
= 𝐺

𝛼𝛽
+ 𝑠

𝛼𝛽𝐶
𝑦
𝐶

+ (𝜔
𝛼

𝛾

𝐶
𝜔
𝛽𝛾𝐷

+ 𝜔
𝛼

𝐵

𝐶
𝜔
𝛽𝐵𝐷

+ 𝑟
𝛼𝐶𝐷𝛽

) 𝑦
𝐶
𝑦
𝐷

+ 𝑂 (𝑦
3
) ,

𝑔
𝛼𝐵
= 𝜔

𝛼𝐵𝐶
𝑦
𝐶
+
2

3
𝑟
𝛼𝐶𝐷𝐵

𝑦
𝐶
𝑦
𝐷
+ 𝑂 (𝑦

3
) ,

𝑔
𝐴𝐵
= 𝜂

𝐴𝐵
+
1

3
𝑟
𝐴𝐶𝐷𝐵

𝑦
𝐶
𝑦
𝐷
+ 𝑂 (𝑦

3
) ,

(3)

where 𝜔
𝑎

(𝑏)

(𝑐)
are components of the connection one-form of

𝐿 (noncoordinate indices are converted to coordinate indices
with the use of vielbein as usual), 𝑟

𝑎𝑐𝑑𝑏
is the covariant

Riemann curvature tensor (we follow the same convention
for the curvature as in [30]), and

𝑠
𝛼𝛽𝐶

= 𝜔
𝛼𝛽𝐶

+ 𝜔
𝛽𝛼𝐶

, (4)

is the second fundamental form of the submanifold embed-
ding [31].

We obtain (3) from a closed form expression for the
expansion of vielbein which is derived in [19]. Although
the details of this result will not be directly used in this
work, there will be some relevance in the discussion of
Section 4. We therefore summarize the main results of [19]
in Appendix A.

3. Finite Dimensional Analogue of Loop Space
Quantum Mechanics

In this section we will consider a finite dimensional analogue
of LSQM in the framework discussed in [14, 15]. In Section 3.1

we will define the model and its semiclassical expansion.
The analogue of linearized effective equation for tachyon
fluctuation at leading order will be derived in Section 3.2.
Our discussion below will be done without any reference to
LSQM. We will come back to the analogy later in Section 5.

3.1. Definition of Model and Semiclassical Expansion of
Hamiltonian. All our notations used in Section 2 will be
valid in this section. We consider a nonrelativistic quantum
mechanical system whose configuration space is given by 𝐿.
Hence it is assumed (only in this section) to have Euclidean
signature. The Hamiltonian of the system is given by the
standard expression

⟨𝜒
󸀠 󵄨󵄨󵄨󵄨𝐻

pre󵄨󵄨󵄨󵄨 𝜓
󸀠
⟩ = ∫𝑑𝑤𝜒

󸀠∗

(𝑧)H
pre
𝜓
󸀠

(𝑧) ,

H
pre
= −

ℏ
2

2
D

2
+ 𝑉,

(5)

where 𝑑𝑤 = 𝑑𝑧√𝑔 is the invariant measure, D2 is the
Laplacian of 𝐿, and 𝑉 is a potential. We will consider 𝑉
to be confining to the submanifold 𝑀 󳨅→ 𝐿 (a more
precise definition will follow). We must define what we
mean by performing a semiclassical expansion such that in
the semiclassical limit the wavefunction collapses on the
submanifold. This is a procedure given by the following steps
(Various other, but similar, procedures have been discussed
in the literature indicated earlier. Our procedure is adopted
to suit LSQM.)

(1) Submanifold Based Description. Given 𝐻
pre as in (5),

we first move to a submanifold based description where
the natural measure is given by 𝑑𝑦𝑑𝑥√𝐺 instead of 𝑑𝑤√𝑔
(Recalling our notations introduced in Section 2, 𝑑𝑥√𝐺 is
the invariant measure on the submanifold with respect to
the induced metric.). As discussed in Appendix B, this is
done by performing certain rescaling of the wavefunction
so that the same matrix element in (5) is given in terms
of the transformed Hamiltonian, which we call 𝐻sub, and
transformed wavefunctions (unprimed) as

⟨𝜒
󵄨󵄨󵄨󵄨󵄨
𝐻

sub󵄨󵄨󵄨󵄨󵄨 𝜓⟩ = ∫𝑑𝑦𝑑𝑥
√𝐺𝜒

∗

(𝑧)H
sub
𝜓 (𝑧) , (6)

where the expression forHsub can be found in (B.2).

(2) Tubular Expansion. Next we tubular expandHsub to write

⟨𝜒
󵄨󵄨󵄨󵄨󵄨
𝐻

sub󵄨󵄨󵄨󵄨󵄨 𝜓⟩ =
∞

∑

𝑛 = 0

∫𝑑𝑦𝑑𝑥√𝐺𝜒
∗

(𝑧)H
sub
𝑛
𝜓 (𝑧) , (7)

where we adopt the following notation:𝑋
𝑛
is the contribution

at 𝑂(𝑦𝑛) in the tubular expansion of 𝑋. Explicit result for
Hsub

𝑛
is given in (B.4), (B.5), and (B.6).

(3) Definition of 𝑉. The potential 𝑉 is confining to the
submanifold 𝑀 whose embedding satisfies the following
property:

𝜔
𝛼𝛽𝐶

= 0. (8)
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As a result the second fundamental form in (4) vanishes
and therefore 𝑀 is totally geodesic [31]. Furthermore, the
transverse profile of 𝑉 is given by the following expression in
FNC (We will display the summation over indices explicitly,
as we have done in (9), whenever Einstein summation
convention will not be valid.):

𝑉 (𝑥, 𝑦) =
1

2
∑

𝐴,𝐵

𝜖
𝐴
𝜖
𝐵
𝑔
𝐴𝐵
𝑦
𝐴
𝑦
𝐵
, (9)

where 𝜖
𝐴
is positive definite (Notice that due to the presence

of the 𝜖-factors in the potential, general covariance of the
ambient manifold is broken down to that of the submanifold
even at the classical level. Without such factors 𝑉 will be a
scalar under the full diffeomorphism of 𝐿, but will not have a
nontrivial tubular expansion due to the coordinate condition
in (2). As will be explained in Section 5, general covariance
gets broken in LSQM only due to the semiclassical limit.).

(4) Definition of Semiclassical Expansion. Define a rescaled
Hamiltonian,

𝐻 =
1

ℏ
𝐻

sub
. (10)

Semiclassical expansion of 𝐻 is given by rescaling the
transverse coordinates as

𝑦
𝐴
󳨀→ √

ℏ

𝜖
𝐴

𝑦
𝐴 (11)

in the tubular expansion of𝐻. This gives

⟨𝜒 |𝐻| 𝜓⟩ =

∞

∑

𝑛 = 0

ℏ
𝑛/2
∫𝑑𝑦𝑑𝑥√𝐺𝜒

∗

(𝑧)
𝜖
H

(𝑛)
𝜓 (𝑧) , (12)

where we have used the following notation:
𝜖
𝑋 = 𝑋|

𝑦
𝐴
→𝑦
𝐴
/√𝜖𝐴

. (13)

The expression for 𝜖H(𝑛) can be found in (B.7). For the
rest of our analysis we will restrict the expansion in (12) up to
𝑂(ℏ). Explicit computation using themetric-expansion in (3)
yields the following results:

𝜖
H

(0)
=
1

2
∑

𝐴,𝐵

√𝜖𝐴𝜖𝐵 (−𝜂
𝐴𝐵
𝜕
𝐴
𝜕
𝐵
+ 𝜂

𝐴𝐵
𝑦
𝐴
𝑦
𝐵
)

= ∑

𝐴,𝐵

√𝜖𝐴𝜖𝐵𝜂𝐴𝐵𝑎
†𝐴
𝑎
𝐵
+
1

2
∑

𝐴

𝜖
𝐴
,

𝜖
H

(1)
= 0,

𝜖
H

(2)
= −

1

2
(∇

𝛼
+ 𝑖𝜔

𝛼𝐴𝐵 𝜖
Λ

𝐴𝐵
) (∇

𝛼
+ 𝑖𝜔

𝛼

𝐶𝐷 𝜖
Λ

𝐶𝐷
)

−
1

4
𝑟
‖
−
1

12
𝑟
⊥
+
1

6
𝑟
𝐴𝐵𝐶𝐷 𝜖

Λ
𝐴𝐵

𝜖
Λ

𝐶𝐷

+
1

6
∑

𝐴,𝐵

√
𝜖
𝐴
𝜖
𝐵

𝜖
𝐶
𝜖
𝐷

𝑟
𝐴𝐶𝐷𝐵

𝑦
𝐴
𝑦
𝐶
𝑦
𝐷
𝑦
𝐵
,

(14)

where in the first equation we have defined annihilation and
creation operators,

𝑎
𝐴
=

1

√2
(𝜂

𝐴𝐵
𝜕
𝐵
+ 𝑦

𝐴
) , 𝑎

†𝐴
=

1

√2
(−𝜂

𝐴𝐵
𝜕
𝐵
+ 𝑦

𝐴
) ,

(15)

respectively, such that [𝑎𝐴, 𝑎†𝐵] = 𝜂𝐴𝐵. In the last equation∇
𝛼

denotes the covariant derivative with respect to the induced
metric 𝐺

𝛼𝛽
(𝑥) on𝑀. The other new notations introduced in

these equations are as follows:

𝑟
‖
= 𝑟

𝛼𝐵

𝛼𝐵
, 𝑟

⊥
= 𝑟

𝐴𝐵

𝐴𝐵
,

𝜖
Λ

𝐴𝐵
= −

𝑖

2
(√

𝜖
𝐵

𝜖
𝐴

𝜂
𝐴𝐶
𝑦
𝐶
𝜕
𝐵
− √

𝜖
𝐴

𝜖
𝐵

𝜂
𝐵𝐶
𝑦
𝐶
𝜕
𝐴
) .

(16)

As noted in the literature, Λ
𝐴𝐵

is the angular momentum
operator in the transverse space and 𝜔

𝛼𝐴𝐵
is analogous to

a nonabelian (𝑆𝑂(𝑑 − 𝐷)) Berry connection [32]. As a
mathematical exercise, our results in (14) are equivalent to
a case discussed in [25] except for the last term in the last
equation which comes from the tubular expansion of our
potential.

The reasons why the above procedure correctly captures
our general idea of Born-Oppenheimer type approximation
and localization of wavefunction are as follows. The ℏ

dependent rescaling in (11) makes the transverse coordinates
𝑦 fast in the Born-Oppenheimer sense. As a result, the
leading order harmonic oscillatorHamiltonian, that is, 𝜖H(0),
is independent of the slow coordinates (𝑥). Therefore, the
transverse and longitudinal dynamics decouple. Moreover,
𝜖H(0) is ℏ-independent. The wavefunctions fall to zero at
large values of the rescaled coordinates. At leading order
this corresponds to arbitrary finite values of the original
transverse coordinates indicating that the wavefunctions are
localized.

3.2. Analogue of Linearized Tachyon Effective Equation at
Leading Order. Here we consider the transverse degrees of
freedom to be frozen in the harmonic oscillator ground state
and derive the effective Hamiltonian, as will be defined in
(22) below, for the longitudinal degree of freedom at the
leading order.Thiswill give us the linearized tachyon effective
equation (see (24)) at this order. We will explain this analogy
later in Section 5.

The wavefunction under consideration is

𝜓
0
(𝑥, 𝑦) = 𝑇 (𝑥) 𝜒

0
(𝑦) , (17)

such that,

𝑎
𝐴
𝜒
0
(𝑦) = 0, ∫ 𝑑𝑦𝜒

2

0
(𝑦) = 1. (18)

The expectation value of𝐻 up to first order in ℏ is given by

⟨𝜓
0
|𝐻| 𝜓

0
⟩ = ∫𝑑𝑥√𝐺𝑇

∗

(𝑥) ⟨(
𝜖
H

(0)
+ ℏ

𝜖
H

(2)
)⟩

⊥

0
𝑇 (𝑥) ,

(19)
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where we have used

⟨O⟩
⊥

0
= ∫𝑑𝑦𝜒

0
(𝑦)O𝜒

0
(𝑦) . (20)

Using the results

⟨
𝜖
H

(0)
⟩
⊥

0
=
1

2
∑

𝐴

𝜖
𝐴
,

⟨
𝜖
Λ

𝐴𝐵
⟩
⊥

0
= 0,

⟨
𝜖
Λ

𝐴𝐵

𝜖
Λ

𝐶𝐷
⟩
⊥

0
=
(𝜖

𝐴
− 𝜖

𝐵
)
2

16𝜖
𝐴
𝜖
𝐵

(𝜂
𝐴𝐶
𝜂
𝐵𝐷
− 𝜂

𝐴𝐷
𝜂
𝐵𝐶
) ,

⟨𝑦
𝐴
𝑦
𝐶
𝑦
𝐷
𝑦
𝐵
⟩
⊥

0
=
1

4
(𝜂

𝐶𝐷
𝜂
𝐴𝐵
+ 𝜂

𝐶𝐵
𝜂
𝐴𝐷

+ 𝜂
𝐴𝐶
𝜂
𝐷𝐵
) ,

(21)

one finds for the effective HamiltonianHeff for 𝑇(𝑥),

⟨𝜓
0
|𝐻| 𝜓

0
⟩ = ℏ∫𝑑𝑥√𝐺 (𝑥)𝑇

∗

(𝑥)Heff𝑇 (𝑥) ,

Heff = −
1

2
∇
2
+
𝑚

2

2
+ 𝑉

𝑟

eff (𝑥) + 𝑉
𝜔

eff (𝑥) ,

(22)

where

𝑚
2
=
1

ℏ
∑

𝐴

𝜖
𝐴
,

𝑉
𝑟

eff (𝑥) = −
1

4
𝑟
‖
−
1

12
𝑟
⊥

+ ∑

𝐴,𝐵

[
(𝜖

𝐴
− 𝜖

𝐵
)
2

48𝜖
𝐴
𝜖
𝐵

−
(𝜖

𝐴
− 𝜖

𝐵
)

24𝜖
𝐵

] 𝑟
𝐴𝐵

𝐴𝐵
,

𝑉
𝜔

eff (𝑥) = ∑
𝐵,𝐷

(𝜖
𝐵
− 𝜖

𝐷
)
2

16𝜖
𝐵
𝜖
𝐷

𝜔
𝛼𝐵𝐷

𝜔
𝛼𝐵𝐷

.

(23)

As the reason will be explained in Section 5, we identify
the following equation as the analogue of linearized tachyon
effective equation:

Heff𝑇 (𝑥) = 0. (24)

4. Tubular Neighborhood of Target Manifold
in Loop Space

The leading order analysis of the finite dimensional model as
done in Section 3 will be interpreted in the context of LSQM
in Section 5. As motivated in Section 1, the submanifold
of interest in this case is the space of all constant loops
which is isomorphic toM itself (see Appendix C). The main
ingredient that has gone into the analysis of Section 3 is
the tubular expansion of the ambient space metric up to
quadratic order as given in (3) with the additional condition
(8).The goal of this sectionwill be to understand the analogue
of this expansion in LM. More precisely, we will show that
(3) and (8) will still be valid, with the notations correctly
interpreted, for the embedding M 󳨅→ LM with suitably

constructed FNC and with additional equations, given in
(48), that relate the relevant expansion coefficients to intrinsic
geometric data ofM.

The steps that we will follow are as follows. First we
present an explicit construction of the tubular neighborhood
in Section 4.1. A proof of existence was given through an
explicit construction earlier by Stacey in [29]. Although the
basic ideas are similar, the details of our construction are
different and have been chosen to suit our purpose (in
Section 4.2) better.The result of Section 4.1 will show how the
relevant Riemannian structure inLM is related to a certain
Riemannian structure on the tangent bundle 𝑇M ofM. The
latter views the zero-section 𝑇M

0
(which is isomorphic to

M) as a submanifold embedded in 𝑇M such that the normal
bundle 𝑁(𝑇M

0
) is isomorphic to 𝑇M itself. In Section 4.2

we first compute the tubular expansion of the metric in 𝑇M
up to quadratic order using a procedure that is implicit in
the construction of Section 4.1.The expansion coefficients are
all related to intrinsic geometric data of M (For any given
Riemannian structure on 𝑇M, one would expect that the
geometric data of𝑇M should be expressible in terms of those
of M. See, e.g., [33].). Such relations have been found up to
an undetermined real parameter which is not fixed at the
present level of approximation by the analogue of (A.2) which
determined the tubular expansion of vielbein in the finite
dimensional context. Finally, we derive the metric expansion
in LM (up to quadratic order) using the aforementioned
relation between LM and 𝑇M. Therefore, the ambiguity of
the real parameter mentioned above is carried over to LM.
However, as explained in Section 5, this ambiguity does not
affect our conclusion about the tachyon effective equation.

4.1. Explicit Construction of the TubularNeighborhood. Below
we will first heuristically describe our construction and then
specify it in more mathematical terms, in particular make
connection with [29]. We will refer to geodesics and open
neighborhoods in both LM and M in various places along
the way. It should be clear from the context which space we
are referring to.

The basic picture [17], true for any tubular neighborhood,
that we will have inmind is given in Figure 1. Given any point
𝑄 in the neighborhood, there exists a unique geodesic passing
through𝑄 that arrives at a unique point𝑃 on the submanifold
orthogonally.

This condition is not satisfied if two geodesics emerging
orthogonally from the submanifold meet at a point outside.
Following the standard way, we will restrict ourselves to a
region sufficiently close to the submanifold such that this does
not happen. Recall that every point in the neighborhood in
LM corresponds to a nonzero loop inM such that the nearer
the point resides to the submanifold of vanishing loops, the
smaller the loop it represents. It turns out that the above
restriction corresponds to considering sufficiently small loops
in M such that any given loop can be entirely encompassed
within a single convex normal neighborhood [34] inM. This
implies that a small loop should fit entirely into 𝐵

𝑝
—the ball

of largest RNC-radius with center at 𝑝 ∈ 𝑀, for some 𝑝 in the
neighborhood.
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𝑃

𝑄

ℳ

ℒℳ

Figure 1: Tubular neighborhood ofM inLM.

Let us now consider the set of points lying on the
geodesic 𝑄𝑃 in LM. This corresponds to a class of loops
which progressively shrink to zero size as we approach 𝑃
(see cartoon in Figure 2). Therefore, from the perspective
of the interior of M this defines 𝑃 to be some kind of an
average value for all the loops in this class. Notice that such
a definition of averaging is independent of the choice of
coordinate system, simply because it only refers to geodesics.

Given a loop-embedding 𝑍 in M, its average position,
as defined above, can be found in the following way. In case
M is flat, it is simply given by ∫

𝑆
1
𝑍. This is basically because

Minkowski space is also a vector space where one can define
a radial vector. In a curved space one should make use of
geodesics which look like radial vectors in RNC, the latter
being related to general coordinates through the exponential
map.Therefore, whenM is curved, we first describe the loop
in RNC centered at a suitable point, with coordinate say 𝑥.
The choice of this base point is not fixed, as the loop will in
general fit into 𝐵

𝑥
for a range of values of 𝑥. However, there

is a unique value 𝑥 within the allowed range for which the
following condition is satisfied:

∫
𝑆
1

�̂� = 0, (25)

where �̂� is the loop in RNC centered at 𝑥. Given the initial
loop in M, we identify 𝑥 as the average position. This way
every small loop is uniquely assigned an average position in
M. Moreover, every point in a suitable neighborhood ofM is
uniquely assigned to a class of small loops through the above
procedure which is viewed from the directions normal toM
inLM.

To facilitate the discussion in next subsection we now
describe the above construction in more technical terms. We
begin by introducing the following notation: 𝑈

𝑆
is open in

𝑆 where 𝑆 stands for M, M × M, 𝑇M, and LM. We will
see how these various open neighborhoods are interrelated.
Given an open normal neighborhood𝑈M ⊂M, let𝐶(𝑈M) be
the collection of all small loops such that the average positions

𝑃

𝑄

ℳ

ℒℳ

Figure 2: Average position of loops.

of all such loops are contained in𝑈M. We also assume that all
the loops in 𝐶(𝑈M) are contained in a single open normal
neighborhood �̃�M ⊃ 𝑈M. Each element 𝑙 ∈ 𝐶(𝑈M) can be
associated with an element (𝑥, 𝑍(𝜎)) ∈ 𝑈M×M where 𝑍(𝜎) is
the embedding of the loop 𝑙 given in general coordinates (see
Appendix C), 𝑥 is the average position of the loop, and𝑈M×M

is a suitable open neighborhood containing all the loops in
𝐶(𝑈M). The preimage of the loop under the exponential map
found in𝑇

𝑥
M is given by �̂�(𝜎)which satisfies (25). Repeating

this procedure for all the loops in 𝐶(𝑈M) one arrives at the
following set [29]:

𝑈LM = {�̂� : 𝑆
1
󳨀→ 𝑈

𝑇M, 𝜋�̂� is constant, ∫
𝑆
1

�̂� = 0} , (26)

where 𝜋 : 𝑈
𝑇M → 𝑈M is the projection map. Constancy

of 𝜋�̂� implies that the whole loop resides in the same fibre,
unlike its configuration inM ×M.

Since exponential map is a diffeomorphism, the above
argument shows that the desired tubular neighborhood is
diffeomorphic to the set in (26).The relevant diffeomorphism
is a bundle map which is the collection of all the inverse
exponential maps at all 𝑥 ∈ 𝑈M,

exp−1 : 𝑈M×M 󳨀→ 𝑈
𝑇M. (27)

If Δ is the diagonal submanifold of M × M, then exp−1
maps 𝑈M×M ∩ Δ to 𝑈

𝑇M ∩ 𝑇M
0
, both being isomorphic

to 𝑈M. This kind of a construction is called a local addition
(see [35] for a precise definition) of which the exponential
map is a standard example. In [29] construction of the local
addition has been facilitated by embedding M in a higher
dimensional Euclidean space. However, exponential map is
more suitable for our purpose, as we will see in the next
subsectionwhere the aforementioned diffeomorphismwill be
explicitly constructed.

4.2. Construction of FNC. Here we would like to understand
the loop space analogue of the metric expansion given in



ISRN High Energy Physics 7

(3). As mentioned before, generically the tubular expansion
coefficients are certain geometric quantities of the ambient
manifold evaluated on the submanifold. Although these are
not related to the intrinsic geometric properties of the sub-
manifold in general, for loop space, that is, the case.Therefore,
expressing the tubular expansion coefficients of LM in
terms of the geometric data of M is the precise quantitative
question that needs to be answered. The discussion in the
previous subsection implicitly defines a procedure to answer
this question which we pursue here.

There are two steps to be followed. Given a Riemannian
structure on M, the space M ×M acquires a natural direct
product structure.The bundle map (diffeomorphism) in (27)
enables one to view 𝑇M as a Riemannian manifold where
𝑇M

0
sits as a submanifold whose normal bundle 𝑁(𝑇M

0
)

is isomorphic to 𝑇M. The first step is to construct the
relevant submanifold based coordinate system, which we call
FNC

𝑈𝑇M
, on 𝑈

𝑇M by a suitable coordinate transformation
from the direct product coordinate system on 𝑈M×M. This
will be discussed in Section 4.2.1. Then the final step is to
construct FNC inLM by looping FNC

𝑈𝑇M
, a procedure that

has been explained in Section 4.2.2.

4.2.1. Riemannian Structure on 𝑇M. In Section 2 we consid-
ered a submanifold (𝑀,𝐺) embedded in an ambient space
(𝐿, 𝑔) such that𝐺 is the inducedmetric obtained from𝑔. Here
we consider a special case where (𝑇M

0
≅M, 𝐺) is embedded

in (𝑇M, 𝑔). The speciality of this case is that the tubular
expansion coefficients are related to quantities obtained from
the basic data (M, 𝐺) (Because of the involvement of spin
connection, we will see that the basic data is actually given by
the vielbein of M.). Below we will construct FNC

𝑈𝑇M
up to

quadratic order by starting with (M ×M, 𝑔) and performing
suitable coordinate transformations. There will be a certain
degree of indeterminacy in our final result which, as will be
explained toward the end of this subsection, is not resolved at
the present level of approximation by the analogue of (A.2).

We begin by discussing (M×M, 𝑔). The coordinates of a
point in 𝑈M×M are given by

𝑧
𝑎
= (𝑥

𝛼1

1
, 𝑥

𝛼2

2
) , 𝛼

1
, 𝛼

2
= 1, . . . , 𝐷 (= dimM) . (28)

The components of the vielbein are given by

𝑒
[𝛼1]

𝑏
(𝑧) = (

𝐸
(𝛼1)

𝛽1
(𝑥

1
)

0
) , 𝑒

[𝛼2]

𝑏
(𝑧) = (

0

𝐸
(𝛼2)

𝛽2
(𝑥

2
)
) .

(29)

Indices in square brackets refer to the noncoordinate basis in
M×M.𝐸(𝛼)

𝛽
are the vielbein components ofM (with indices

in round brackets referring to the noncoordinate basis) with
metric components given by 𝐺

𝛼𝛽

𝐺
𝛼𝛽
= 𝐸

(𝛾)

𝛼
𝐸
(𝛾)𝛽

. (30)

In general the two copies of M can have different metrics
which are diffeomorphic to each other. We have chosen 𝑥

1

and 𝑥
2
suitably so that these two metrics are the same as

given in (30). We will denote the desired coordinate system

FNC
𝑈𝑇M

by �̂� = (𝑥𝛼, 𝑦�̂�) with 𝛼, �̂� = 1, . . . , 𝐷 (Notice that the
indices 𝛼

1
, 𝛼

2
, 𝛼, and �̂� all run over 𝐷 = dimM dimensions.

From the perspective ofM they do not make any difference.
However, from the perspective of M × M they do.), which
will be obtained below by following a series of coordinate
transformations from 𝑧.

The first step is to argue, as has been done in Appendix D,
that there exists a coordinate system

𝑧
󸀠𝑎
= (𝑥

󸀠𝛼
, 𝑦

󸀠�̂�
) , (31)

where 𝑥󸀠 is a general coordinate system on Δ
𝑈M×M

= 𝑈M×M∩

Δ such that the transformed components of the vielbein
(with an additional overall constant scaling of the metric,
see Appendix D) are given by the following expansion up to
quadratic order in 𝑦󸀠

𝑒
󸀠[𝛼]

𝛽
(𝑧

󸀠
) = 𝐸

(𝛼)

𝛽
(𝑥

󸀠
) + 𝑞�̌�

(𝛼)

𝛾𝛿𝛽
(𝑥

󸀠
) 𝑦

󸀠𝛾
𝑦
󸀠𝛿
,

𝑒
󸀠[𝛼]

𝛽
(𝑧

󸀠
) = 0,

𝑒
󸀠[�̂�]

𝛽
(𝑧

󸀠
) = 0,

𝑒
󸀠[�̂�]

𝛽
(𝑧

󸀠
) = 𝐸

(�̂�)

𝛽
(𝑥

󸀠
) +

1

6
�̌�
(�̂�)

𝛾𝛿𝛽
(𝑥

󸀠
) 𝑦

󸀠𝛾
𝑦
󸀠𝛿
,

(32)

where the orthonormal frames with superscripts [𝛼] and [�̂�]
are parallel and transverse to the submanifold, respectively,
and are obtained from the ones in (29) through a rotation
of the local Lorentz frame as given in (D.5). The symbol
�̌�
(𝛼)

𝛾𝛿𝛽
(𝑥

󸀠
) denotes the Riemann curvature tensor compo-

nent𝑅(𝛼)

𝛾𝛿𝛽
(we use upper case symbols without a ̌ to denote

tensors ofM in general coordinates) ofM evaluated at 𝑥󸀠 in
RNC

𝑥
󸀠 where RNC

𝑥
󸀠 refers to the RNC-system centered at 𝑥󸀠

such that the vielbein components are given by 𝐸(𝛼)

𝛽
(𝑥

󸀠
) at

the centre. 𝑞 is an undetermined real number. We will argue
toward the end of this subsection that the analogue of (A.2)
is satisfied up to quadratic order for arbitrary values of 𝑞.

Then the final step is to perform the following coordinate
transformation: 𝑧󸀠𝑎 → �̂�

𝑎
= (𝑥

𝛼
, 𝑦

�̂�
) such that

𝑥
𝛼
= 𝑥

󸀠𝛼
, 𝑦

�̂�
= 𝐸

(�̂�)

𝛽
(𝑥) 𝑦

󸀠𝛽
. (33)

The transformed vielbein components are given by

𝑒
[𝛼]

𝛽
(�̂�) = 𝐸

(𝛼)

𝛽
(𝑥) + 𝑞�̌�

(𝛼)

𝛾𝛿𝛽
(𝑥) 𝑦

𝛾
𝑦
𝛿
,

𝑒
[𝛼]

𝛽
(�̂�) = 0,

𝑒
[�̂�]

𝛽
(�̂�) = 𝐸

(�̂�)

𝛿
(𝑥) 𝜕

𝛽
𝐸
(𝛾)

𝛿

(𝑥) 𝑦
𝛾
,

𝑒
[�̂�]

𝛽
(�̂�) = 𝛿

�̂�

𝛽
+
1

6
�̌�
(�̂�)

(𝛾𝛿𝛽)
(𝑥) 𝑦

𝛾
𝑦
𝛿
,

(34)
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which give the following results for the metric components,

𝑔
𝛼𝛽
= 𝐺

𝛼𝛽
+ 𝑠

𝛼𝛽𝛾
𝑦
𝛾

+ (�̂�
𝛼

𝜂

𝛾
�̂�
𝛽𝜂𝛿

+ �̂�
𝛼

𝜂

𝛾
�̂�
𝛽𝜂𝛿

+ 𝑟
𝛼𝛾𝛿𝛽

)𝑦
𝛾
𝑦
𝛿

+ 𝑂 (𝑦
3
) ,

𝑔
𝛼𝛽
= �̂�

𝛼𝛽𝛾
𝑦
𝛾
+
2

3
𝑟
𝛼𝛾𝛿𝛽

𝑦
𝛾
𝑦
𝛿
+ 𝑂 (𝑦

3
) ,

𝑔
�̂�𝛽
= 𝜂

�̂�𝛽
+
1

3
𝑟
�̂�𝛾𝛿𝛽

𝑦
𝛾
𝑦
𝛿
+ 𝑂 (𝑦

3
) ,

(35)

with

�̂�
𝛼𝛽𝛾

= 0, (󳨐⇒ 𝑠
𝛼𝛽𝛾

= 0) ,

�̂�
𝛼𝛽𝛾

= 𝐸
(𝛽)𝛿

(𝑥) 𝜕
𝛼
𝐸
(𝛾)

𝛿

(𝑥) ,

𝑟
𝛼𝛾𝛿𝛽

= 2𝑞�̌�
𝛼(𝛾𝛿)𝛽

(𝑥) ,

𝑟
𝛼𝛾𝛿𝛽

= 0,

𝑟
�̂�𝛾𝛿𝛽

= �̌�
(�̂�𝛾𝛿𝛽)

(𝑥) .

(36)

A few remarks about (34), (35), and (36) are in order. All
the hatted variables appearing in these equations are tensors
of M × M in �̂� = (𝑥, 𝑦) coordinate system. Equivalently,
they can also be viewed as tensors of 𝑇M. In particular, (34)
and (35) are viewed to describe the tubular expansion of
vielbein andmetric components, respectively, up to quadratic
order in FNC. Notice that (35) are written in the general
form of tubular expansion as in (3) following the same rules
for notation adopted there. Therefore a bar indicates that a
tensor of 𝑇M is being evaluated on 𝑈

𝑇M ∩ 𝑇M
0
. Equations

(36) exhibit how such quantities are related to intrinsic
geometric quantities of M. Finally, the results in (35) satisfy
the analogue of the coordinate conditions in (2) because
of the antisymmetry properties of the spin connection and
curvature tensor identified in (36) (Notice that the spin
connection identified in the second equation of (36) is indeed
antisymmetric in the last two indices as required.).

The tubular expansion in (34) is supposed to satisfy the
analogue of the differential equation (A.2) in 𝑇M. This is
given, in our notation adopted here, by

d̂(d̂+ 𝑏

𝜖) 𝑒
[𝑎]

𝑏
(�̂�) = 𝜌

[𝑎]

[𝑐]
(�̂�; 𝑦) 𝑒

[𝑐]

𝑏
(�̂�) , (37)

where d̂ = 𝑦�̂�(𝜕/𝜕𝑦�̂�), 𝑎 = 𝛼, �̂�, 𝜖𝑏 being 1 for 𝑏 = 𝛽 and −1,
otherwise and

𝜌
[𝑎]

[𝑏]
(�̂�; 𝑦

󸀠
) = 𝑟

[𝑎]

𝛾𝛿[𝑏]
(�̂�) 𝑦

󸀠𝛾
𝑦
󸀠𝛿
. (38)

It is straightforward to to check that (37) is satisfied by (34)
up to quadratic order for arbitrary values of 𝑞 provided that
the curvature components of 𝑇M are identified according to
the last three equations in (36).

4.2.2. Looping FNC
𝑇M. The desired FNC inLM is obtained

by looping the coordinate system �̂�
𝑎
= (𝑥

𝛼
, 𝑦

�̂�
) constructed in

the previous subsection. To explain the method we first recall
the following facts.

(1) The normal bundle 𝑁(𝑇M
0
≅ M) is isomorphic to

𝑇M. 𝑦�̂� are the coordinates on the fibres𝑁
𝑥
(𝑇M

0
).

(2) The desired tubular neighborhood inLM is given by
the space of nonzero loops in (26). Here every loop
resides entirely in a single fibre 𝑇

𝑥
(M) such that the

average of the loop is the corresponding base point 𝑥.

Therefore, the general coordinate 𝑥𝛼 on the submanifold
M 󳨅→ LM is the same as that on 𝑇M

0
󳨅→ 𝑇M. And the

normal coordinate in the neighborhood of M 󳨅→ LM is
given by the Fourier transforms (see Appendix C) of the loop
in 𝑇

𝑥
(M) as described above. In terms of equations, the FNC

inLM is given by

𝑧
𝑎
= (𝑥

𝛼
, 𝑦

𝐴
) , (39)

where

𝑦
𝐴
= ∮ �̂�

�̂�

(𝜎) 𝑒
−𝑖a𝜎

, a ̸= 0, (40)

such that �̂��̂�
(𝜎) satisfies (25).

Tensors inLM are obtained from those in𝑇M following
a similar procedure [14, 15] which we discuss in detail now.
Let {𝑒

𝑎
} = {𝑒

𝛼
= 𝜕/𝜕𝑥

𝛼
, 𝑒

�̂�
= 𝜕/𝜕𝑦

�̂�
} and {𝑑�̂�

𝑎
} =

{𝑑𝑥
𝛼
, 𝑑𝑦

�̂�
} be the coordinate basis (in special coordinate

system constructed in previous subsection) for the tangent
and cotangent spaces 𝑇

�̂�
(𝑇M) and 𝑇∗

�̂�
(𝑇M), respectively, at

�̂� in 𝑈
𝑇M. A rank (𝑚, 𝑛) tensor is given by

�̂� = �̂�
𝑎1 ⋅⋅⋅𝑎𝑚

�̂�1 ⋅⋅⋅̂𝑏𝑛
(𝑥, 𝑦) 𝑒

𝑎1
⋅ ⋅ ⋅ 𝑒

𝑎𝑚
𝑑�̂�

�̂�1 ⋅ ⋅ ⋅ 𝑑�̂�
�̂�𝑛 . (41)

The tubular expansion of the components takes the following
form:

�̂�
𝑎1 ⋅⋅⋅𝑎𝑚

�̂�1 ⋅⋅⋅̂𝑏𝑛
(𝑥, 𝑦) = ∑

𝑝≥ 0

�̂�
𝑝

𝑎1 ⋅⋅⋅𝑎𝑚

�̂�1 ⋅⋅⋅̂𝑏𝑛𝛿1 ⋅⋅⋅𝛿𝑝

(𝑥) 𝑦
𝛿1 ⋅ ⋅ ⋅ 𝑦

𝛿𝑝 ,

(42)

where �̂�
𝑝

𝑎1 ⋅⋅⋅𝑎𝑚

�̂�1 ⋅⋅⋅̂𝑏𝑛𝛿1⋅⋅⋅𝛿𝑝

(𝑥) are expressed in terms of geomet-
ric quantities of M evaluated at 𝑥. The coordinate of a point
in 𝑈LM is given by (39). The coordinate basis for the tangent
and cotangent spaces 𝑇

𝑧
(LM) and 𝑇∗

𝑧
(LM) are given by

{𝑒
𝑎
} = {𝑒

𝛼
= 𝜕/𝜕𝑥

𝛼
, 𝑒

𝐴
} and {𝑑𝑧𝑎} = {𝑑𝑥𝛼, 𝑑𝑦𝐴}, respectively,

where

𝑒
𝐴
= ∮𝑒

𝑖a𝜎 𝛿

𝛿�̂��̂� (𝜎)
, 𝑑𝑦

𝐴
= ∮𝑒

−𝑖a𝜎
𝛿�̂�

�̂�

(𝜎) , (43)

𝛿�̂�
�̂�
(𝜎) being a functional differential. The tensor corre-

sponding to that in (41) is given by (Definition (44),
(45) is equivalent to the following alternative expression,
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𝑡 = ∮ 𝑡
𝑎1 ⋅⋅⋅𝑎𝑚

�̂�1 ⋅⋅⋅̂𝑏𝑛
(𝑥, 𝑌(𝜎))(𝛿/𝛿�̂�

𝑎1(𝜎)) ⋅ ⋅ ⋅ (𝛿/𝛿�̂�
𝑎𝑚(𝜎))𝑑�̂�

�̂�1(𝜎)

⋅ ⋅ ⋅ 𝑑�̂�
�̂�𝑛(𝜎), where �̂�𝑎(𝜎) = (𝑥𝛼, �̂��̂�

(𝜎)).)

𝑡 = 𝑡
𝑎1 ⋅⋅⋅𝑎𝑚

𝑏1 ⋅⋅⋅𝑏𝑛
(𝑥, 𝑦) 𝑒

𝑎1
⋅ ⋅ ⋅ 𝑒

𝑎𝑚
𝑑𝑧

𝑏1 ⋅ ⋅ ⋅ 𝑑𝑧
𝑏𝑛 , (44)

where
𝑡
𝑎1 ⋅⋅⋅𝑎𝑚

𝑏1 ⋅⋅⋅𝑏𝑛
(𝑥, 𝑦)

= ∮ �̂�
𝑎1 ⋅⋅⋅𝑎𝑚

�̂�1 ⋅⋅⋅̂𝑏𝑛
(𝑥, �̂� (𝜎)) 𝑒

−𝑖(a1+⋅⋅⋅+a𝑚)𝜎+𝑖(b1+⋅⋅⋅+b𝑛)𝜎.

(45)

Similar expression holds for the tubular expansion

𝑡
𝑎1 ⋅⋅⋅𝑎𝑚

𝑏1 ⋅⋅⋅𝑏𝑛
(𝑥, 𝑦) = ∑

𝑝≥ 0

𝑡
𝑝

𝑎1 ⋅⋅⋅𝑎𝑚

𝑏1 ⋅⋅⋅𝑏𝑛𝐷1 ⋅⋅⋅𝐷𝑝

(𝑥) 𝑦
𝐷1 ⋅ ⋅ ⋅ 𝑦

𝐷𝑝 ,

(46)

where

𝑡
𝑝

𝑎1 ⋅⋅⋅𝑎𝑚

𝑏1 ⋅⋅⋅𝑏𝑛𝐷1⋅⋅⋅𝐷𝑝

(𝑥)

= ∮ �̂�
𝑝

𝑎1 ⋅⋅⋅𝑎𝑚

�̂�1 ⋅⋅⋅̂𝑏𝑛𝛿1⋅⋅⋅𝛿𝑝

(𝑥)

× 𝑒
−𝑖(a1+⋅⋅⋅+a𝑚)𝜎+𝑖(b1+⋅⋅⋅+b𝑛+d1+⋅⋅⋅+d𝑝)𝜎

= �̂�
𝑝

𝑎1 ⋅⋅⋅𝑎𝑚

�̂�1 ⋅⋅⋅̂𝑏𝑛𝛿1 ⋅⋅⋅𝛿𝑝

(𝑥)

× 𝛿
−a1−⋅⋅⋅−a𝑚 ,+b1+⋅⋅⋅+b𝑛+d1+⋅⋅⋅+d𝑝 ,0.

(47)

Notice that the notations adopted in this subsection for
the FNC and tensors of LM are the same as those for
the FNC and tensors of 𝐿 considered in Section 2. This
makes the expressions for the tubular expansion of various
tensors of LM look exactly the same as the corresponding
general expressions in the finite dimensional case with the
only additional input that the expansion coefficients are
related to certain geometric data of M. Such relations are
inherited from their counterparts in 𝑇M through the above
framework which relates tensors ofLM to those of 𝑇M. In
particular, one finds that the expansions of the loop-space-
metric-components are given by the same equations as in (3)
with the following identifications:

𝜂
𝐴𝐵
= 𝜂

(�̂�𝛽)
𝛿a+b,0,

𝜔
𝛼𝛽𝐷

= 0, (󳨐⇒ 𝑠
𝛼𝛽𝐷

= 0) ,

𝜔
𝛼𝐵𝐷

= 𝐸
(𝛽)𝛾

(𝑥) 𝜕
𝛼
𝐸
(𝛿)

𝛾

(𝑥) 𝛿b+d,0,

𝑟
𝛼𝐷𝐸𝛽

= 2𝑞�̌�
𝛼(𝛿𝜂)𝛽

(𝑥) 𝛿d+e,0,

𝑟
𝛼𝐵𝐷𝐸

= 0,

𝑟
𝐴𝐵𝐷𝐸

= �̌�
(�̂�𝛽𝛿𝜂)

(𝑥) 𝛿a+b+d+e,0.

(48)

In particular, the above shows that M 󳨅→ LM is a totally
geodesic submanifold. See also comments below (C.6). With
this we end our discussion of the explicit construction of the
tubular neighborhood ofM 󳨅→LM and the relevant FNC.

5. Analogy with Finite Dimensional Model

In Section 3 we discussed a finite-dimensional analogue of
LSQM.The primary goal of this analysis was to work out the
relevant details (that one would eventually like to understand
for LSQM) in a finite-dimensional set up which is free of
divergences. Here we will spell out how precisely to interpret
the analysis of Section 3 in the context of string theory. Our
final goal will be to understand the features of the expected
tachyon effective equation, the analogue of which is described
by (22), (23), and (24).

(i) The ambient space 𝐿 of the toy model is the con-
figuration space and therefore is considered to be of
Euclidean signature in Section 3. M, on the other
hand, is the extended configuration space (which
includes time) of NLSM. In the context of LSQM, the
analysis of Section 3 should be viewed as a worldline
type theory. This has the following consequences.

(a) The theory is supplemented with the standard
ghost sector of bosonic string theory. WhenM
is taken to be pseudo-Riemannian, the potential
𝑉 (to be discussed further below) of the model
will be maximized, instead of being minimized,
on the submanifold along the time-like direc-
tions. This gives rise to the standard problem of
negative norm states which is cured by the pres-
ence of ghost sector. With this understanding
wewill simply ignore this problemnowonwards
and assumeM to have Euclidean signature.

(b) Hamiltonian is a constraint. The effective form
of this constraint on the submanifold obtained
by integrating out the transverse (internal)
degrees of freedom is supposed to give the
linearized equation ofmotion for the string field
components on M. This explains why (24) has
been interpreted to be analogue of the linearized
tachyon effective equation.

(ii) In the context of finite dimension in Section 2 we fol-
lowed certain notation and convention for coordinate
indices, FNC, tensors, and their tubular expansion
(see first few paragraphs of Section 2). We followed
the same rules in the context ofLM in Section 4.2.2.
The prescription for translating any finite dimen-
sional expression involving tubular expansion is sim-
ply to interpret the transverse indices (i.e., capital
Latin indices) according to rules of loop space as
described below (C.2) and evaluate the barred quan-
tities involved in terms of the intrinsic data of M
following (48).

(iii) We now explain the potential of the toy model.
Equation (8) is simply the second equation in (48).
This implies that the submanifold is totally geodesic
(In the context of LM, as pointed out below (C.6),
this is also related to the fact that the submanifold
is the fixed-point set of the reparametrization Killing
vector V(𝑧) in (C.3). Such a feature, however, is not
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shared by the toymodel.).The relevance of (9)may be
understood as follows. The potential 𝑉LM of LSQM,
given in (C.7), can be written in terms of FNC as
follows:

𝑉
LM

=
1

2
∑

a,b
(−) ab𝑔

𝐴𝐵
𝑦
𝐴
𝑦
𝐵

=
1

2
∑

a,b
(−ab𝜂

𝐴𝐵
𝑦
𝐴
𝑦
𝐵
−
1

3
ab𝑟

𝐴𝐶𝐷𝐵
𝑦
𝐴
𝑦
𝐵
𝑦
𝐶
𝑦
𝐷
+ ⋅ ⋅ ⋅ ) ,

(49)

where in the second line we have used the metric-
expansion up to quadratic order from (3).Weperform
the similar expansion in (9) and then compare with
the loop space potential in (49) up to quartic order. At
the quadratic order one finds, using the first equation
in (48),

𝜖
𝐴
= |a| . (50)

With this identification, however, the terms at the
quartic order fail to be equal as the relevant term in
𝑉

LM is sensitive to the sign of the integer-prefactor
ab. This changes the coefficient of the last term of
𝑉

𝑟

eff(𝑥) in (23) (Note that rescaling of LSQM is defined
by the same equations (10), (11) with the identification
(50).). We will see that this does not affect our final
conclusion about the tachyon effective equation.
Finally, unlike the toy model, the loop space poten-
tial 𝑉LM is invariant under the full GCT (see
Appendix C) of LM. This happens because of the
special property of loop space that it admits a vector
field, that is, linear in coordinate. Therefore, the
general covariance of LSQM is broken down to that
of the submanifold only in the semiclassical vacuum,
in particular, because of the rescaling (11).

(iv) The leading order rescaled Hamiltonian given by the
first equation in (14) is analogous to the nonzeromode
contribution to the Hamiltonian in flat space. The
resemblance can be made more explicit through the
following redefinition:

𝑎
𝐴
󳨀→ 𝛼

𝐴
, 𝑎

†𝐴
󳨀→ 𝛼

𝐴
,

𝑎
𝐴
󳨀→ �̃�

𝐴
, 𝑎

†𝐴
󳨀→ �̃�

𝐴
,

a > 0, (51)

where 𝛼 and �̃� are the usual flat-space-oscillators
[36]. The index 𝐴 → (𝛼, − a) (see discussion below
(C.2)) corresponds to a negative mode while 𝐴 to a
positive mode. The leading order Hamiltonian takes
the following familiar form in this new notation:

𝜖
H

(0)
= ∑

a,b > 0

√ab𝜂
𝐴𝐵
(𝛼

𝐴
𝛼
𝐵
+ �̃�

𝐴
�̃�
𝐵
) + ∑

a > 0

a. (52)

The last term is the zero-point energy which is diver-
gent. Noticing that at the leading order the transverse

dynamics exactly matches with that of the nonzero
modes in flat space, this term can be treated in the
usual manner.The point to be emphasized here is that
in flat space such a term (after collecting the ghost
contribution) finally gets related to the tachyon mass.
The same is true here as we see from the first equation
in (23). Notice also that this mass has the right scaling
with respect to ℏ = 𝛼

󸀠. In fact, demanding that
the leading order transverse Hamiltonian in (14) be
precisely the same as the nonzeromodes contribution
to the Hamiltonian in flat space fixes the rescaling
of the model as described by (10) and (11). Such a
condition is required to get the right flat space limit
(where the tubular expansion becomes trivial) of our
analysis.

(v) Notice that while reinterpreting the oscillators of the
toy model in terms of string modes through (51),
the creation and annihilation operators do not mix
up. This implies that the results for the vacuum
expectation values in (21) are also valid in the context
of LSQM. This enables us to view (22), (23), and (24)
as describing the linearized tachyon effective equation
at leading order in LSQM. One expects that such an
equation should be given by

(−
1

2
∇
2
+
𝑚

2

2
)𝑇 (𝑥) = 0, (53)

up to leading order equation of motion (i.e., Ricci
flatness) for the background

𝑅
𝛼𝛽
(𝑥) = 0. (54)

This equation has not been derived in this work as the
toy model does not have an analogue of conformal
invariance. However, one can imagine deriving this
condition at the leading order of tubular expansion of
the DeWitt-Virasoro algebra computed in [14, 15]. We
postpone this analysis for a future work and assume
this is true for the time being.
We will now argue that

𝑉
𝑟

eff (𝑥) ∝ 𝑅 (𝑥) ,

𝑉
𝜔

eff (𝑥) = 0,
(55)

where the proportionality constant in the first equa-
tion is divergent and this is the only divergence in the
effective equation of motion at leading order. This is
established simply by using the relevant equations in
(48). Notice that the undetermined factor 𝑞 does not
influence our final conclusion which is insensitive to
the proportionality constant (it is divergent anyway).
To establish the second equation one notices from the
third equation in (48) that𝜔

𝛼𝐵𝐷
is nonzero only when

b + d = 0, in which case 𝜖
𝐵
= 𝜖

𝐷
(according to the

identification in (50)), and therefore 𝑉𝜔

eff(𝑥) in (23)
vanishes.
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With this we end our discussion of how the computations
in the finite-dimensionalmodel discussed in Section 3 should
be interpreted in the context of LSQM.

6. Conclusion

This work investigates how to make sense of a semiclas-
sical limit of LSQM as discussed in [14, 15]. In this limit
the wavefunction gets localized on the submanifold M of
vanishing loops in LM where M is the target space of
the corresponding NLSM. The study involves first defining
the procedure in a finite dimensional toy model (content of
Sections 2 and 3) and then figuring out how the actual loop
space model can be understood through an analogy with the
toy model (content of Sections 4 and 5).The study shows that
the linearized effective equation for the tachyon fluctuation
at leading order in 𝛼󸀠-expansion is reproduced correctly with
all the divergent terms being proportional to the Ricci scalar
ofM.

The present approach makes the usual picture of par-
ticle quantum mechanics quite explicit and therefore it is
conceptually appealing. Given this, it is perhaps a good
idea to work out the details of how the standard ques-
tions, such as Ricci-flatness as leading order condition
for conformal invariance, low-energy effective equations of
motion, and, most importantly, higher order 𝛼󸀠 corrections,
should be understood in the current approach. We hope
that the analysis of the present work will be helpful for
further study along this direction and its supersymmetriza-
tion.

We will conclude with a few remarks regarding the math-
ematical framework of Sections 4.1 and 4.2 where a certain
Riemannian structure on 𝑇M was discussed. A speciality of
this Riemannian structure is that it views 𝑇M

0
󳨅→ 𝑇M as

a submanifold admitting a tubular neighborhood. Recall that
an all-order understanding of tubular expansion of vielbein
in a generic case is available through [19] (reviewed in
Appendix A). This implies that finding the desired Rieman-
nian structure on 𝑇M is equivalent to finding all the tubular
expansion coefficients in terms of intrinsic geometric data of
M. In this work this has been done in a limited sense which
proved sufficient for the present level of analysis of LSQM. It is
possible that a more complete understanding of this question
will be required for computing 𝛼󸀠 corrections. We hope to
come back to these questions in future.

Finally, we note that the mathematical framework dis-
cussed in Section 4.1 should also be relevant for a multi-
particle classical system in curved space. The center of mass
(CM) of the system belongs to the first copy ofM inM ×M
while the positions relative to CM lie in the second copy.
After performing the bundle map in (27) the CM resides in
𝑇M

0
while the relative coordinates all lie on the same fibre

whose base point is identified with the position of CM. In the
limit when the potential is strong enough to hold all particles
in the form of a rigid body, the dynamics confines on the
submanifold 𝑇M

0
󳨅→ 𝑇M. When we are away from this

limit, the internal fluctuations are described in the tubular
neighborhood of this embedding.

Appendices

A. All Order Tubular Expansion of Vielbein

In order to derive closed form expressions for the tubular
expansion coefficients for vielbein, one starts with the follow-
ing set of conditions which are equivalent to (2):

𝑒
(𝑎)

𝐵
𝑦
𝐵
= 𝑒

(𝑎)

𝐵
𝑦
𝐵
, 𝑦

𝐴
𝜔
𝐴

(𝑏)

(𝑐)
= 0, (A.1)

where 𝑒(𝑎)
𝑏
is the vielbein of 𝐿. Then by making use of the

Cartan’s structure equations (as was done in [20]) one derives
the following second-order differential equation [19]:

d(d + 𝑏

𝜖) 𝑒
(𝑎)

𝑏
(𝑥, 𝑦) = 𝜌

(𝑎)

(𝑐)
(𝑥, 𝑦; 𝑦) 𝑒

(𝑐)

𝑏
(𝑥, 𝑦) ,

(A.2)

where for any function 𝑓(𝑥, 𝑦) we have defined

d𝑓 (𝑥, 𝑦) = 𝑦𝐴𝜕
𝐴
𝑓 (𝑥, 𝑦) . (A.3)

Furthermore,

𝜌
(𝑎)

(𝑏)
(𝑥, 𝑦; 𝑦) ≡ 𝑟

(𝑎)

𝐶𝐷(𝑏)
(𝑥, 𝑦) 𝑦

𝐶
𝑦
𝐷
,

𝑏

𝜖 = {
1 when 𝑏 = 𝐵,
−1 otherwise.

(A.4)

The solution to (A.2) can be given in the form of the
following tubular expansion [19]:

𝑒
(𝑎)

𝐵
=

∞

∑

𝑛 = 0

∞

∑

𝑠1 ,...,𝑠𝑛 = 0

F
(𝑛)

⊥
(𝑠

1
, 𝑠

2
, . . . , 𝑠

𝑛
)

×[(𝑦 ⋅D)
𝑠1
𝜌(𝑥, 0; 𝑦)⋅ ⋅ ⋅ (𝑦 ⋅D)

𝑠𝑛
𝜌 (𝑥, 0; 𝑦)]

(𝑎)

(𝑏)
𝑒
(𝑏)

0 𝐵
,

𝑒
(𝑎)

𝛽
=

∞

∑

𝑛 = 0

∞

∑

𝑠1 ,...,𝑠𝑛 = 0

F
(𝑛)

‖
(𝑠

1
, 𝑠

2
, . . . , 𝑠

𝑛
)

× [(𝑦 ⋅D)
𝑠1
𝜌(𝑥, 0; 𝑦) ⋅ ⋅ ⋅ (𝑦 ⋅D)

𝑠𝑛𝜌(𝑥, 0; 𝑦)]
(𝑎)

(𝑏)
𝑒
(𝑏)

0 𝛽
,

(A.5)

where

F
(𝑛)

⊥
(𝑠

1
, 𝑠

2
, . . . , 𝑠

𝑛
)

=
𝐶
𝑠1+𝑠2+⋅⋅⋅+𝑠𝑛+2𝑛−1

𝑠1
𝐶
𝑠2+𝑠3+⋅⋅⋅+𝑠𝑛+2𝑛−3

𝑠2
⋅ ⋅ ⋅ 𝐶

𝑠𝑛+1

𝑠𝑛

(𝑠
1
+ 𝑠

2
+ ⋅ ⋅ ⋅ + 𝑠

𝑛
+ 2𝑛 + 1)!

,

F
(𝑛)

‖
(𝑠

1
, 𝑠

2
, . . . , 𝑠

𝑛
) =

𝐶
𝑠1+𝑠2+⋅⋅⋅+𝑠𝑛+2𝑛−2

𝑠1
𝐶
𝑠2+𝑠3+⋅⋅⋅+𝑠𝑛+2𝑛−4

𝑠2
⋅ ⋅ ⋅ 1

(𝑠
1
+ 𝑠

2
+ ⋅ ⋅ ⋅ + 𝑠

𝑛
+ 2𝑛)!

.

(A.6)

𝐶
𝑛

𝑟
are the binomial coefficients and

[(𝑦 ⋅D)
𝑠

𝜌 (𝑥, 0; 𝑦)]
(𝑎)

(𝑏)

= D
𝐴1
⋅ ⋅ ⋅D

𝐴𝑠
𝑟
(𝑎)

𝐶𝐷(𝑏)
(𝑥, 0) 𝑦

𝐴1 ⋅ ⋅ ⋅ 𝑦
𝐴𝑠𝑦

𝐶
𝑦
𝐷
,

(A.7)
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whereD
𝑎
is the covariant derivative in 𝐿 with respect to the

metric 𝑔
𝑎𝑏
. Notice that all such derivatives are evaluated at

the submanifold. Finally (recall, according to our rule for
notation, 𝜔

𝛼

(𝑏)

𝐶
= 𝜔

𝛼

(𝑏)

𝐶
(𝑥, 𝑦 = 0)),

𝑒
(𝑎)

0 𝐵
= 𝛿

(𝑎)

𝐵
,

𝑒
(𝑎)

0 𝛽
= {

𝐸
(𝛼)

𝛽
+ 𝜔

𝛽

(𝛼)

𝐶
𝑦
𝐶
, for 𝑎 = 𝛼,

𝜔
𝛽

(𝐴)

𝐶
𝑦
𝐶
, otherwise,

(A.8)

𝐸
(𝛼)

𝛽
(𝑥) being the vielbein of the induced metric on𝑀,

𝑔
𝛼𝛽
= 𝐺

𝛼𝛽
(𝑥) = 𝐸

(𝛾)

𝛼
(𝑥) 𝐸

(𝛾)𝛽
(𝑥) . (A.9)

Using the results in (A.5) we find the metric expansion given
in (3).

B. Tubular Expansion of Hamiltonian

Here we will present the detailed computations required to
carry out various steps of performing semiclassical expansion
as defined in Section 3.1. The rescaling of wavefunction that
takes us to the submanifold based description is given by

𝜓 (𝑧) = (
𝑔

𝐺
)

1/4

𝜓
󸀠

(𝑧) . (B.1)

This leads to the following expression forHsub as defined in
(6)

H
sub

= −
ℏ
2

2
(D

2
+T +U) + 𝑉, (B.2)

where

T = −
1

2
𝑔
𝑎𝑏
𝑙
𝑎
𝜕
𝑏
, U =

1

16
𝑔
𝑎𝑏
𝑙
𝑎
𝑙
𝑏
+
1

4
(−𝑔

𝑎𝑏
𝑞
𝑎𝑏
+ 𝛾

𝑐
𝑙
𝑐
) ,

𝑙
𝑎
= 𝜕

𝑎
ln(

𝑔

𝐺
) , 𝑞

𝑎𝑏
= 𝜕

𝑎
𝜕
𝑏
ln(

𝑔

𝐺
) .

(B.3)

The contribution at 𝑂(𝑦𝑛) in the tubular expansion of Hsub

is given by

H
sub
𝑛

= −ℏ
2
(𝐾

‖

𝑛
+ 𝐾

𝑛
+ 𝐾

⊥

𝑛
) + 𝑉

𝑛
, (B.4)

where

𝐾
‖

𝑛
=
1

2
(D

‖

𝑛
− 𝑑

‖

𝑛
+ 𝑡

‖

𝑛
+U

𝑛
) ,

𝐾
𝑛
=
1

2
(2D

𝑛
− 𝑑

𝑛
+ 𝑡

𝑛
) ,

𝐾
⊥

𝑛
=
1

2
D

⊥

𝑛
,

(B.5)

and (given a geometric quantity𝑋, the notation𝑋
𝑛
has been

explained in (7)),

D
‖

𝑛
= 𝑔

𝛼𝛽

𝑛
𝜕
𝛼
𝜕
𝛽
, D

𝑛
= 𝑔

𝛼𝐵

𝑛
𝜕
𝛼
𝜕
𝐵
, D

⊥

𝑛
= 𝑔

𝐴𝐵

𝑛
𝜕
𝐴
𝜕
𝐵
,

𝑑
‖

𝑛
= 𝛾

𝛼

𝑛
𝜕
𝛼
, 𝑑

𝑛
= 𝛾

𝐴

𝑛
𝜕
𝐴
,

𝑡
‖

𝑛
= −

1

2

𝑛

∑

𝑚=0

(𝑔
𝛼𝛽

𝑛−𝑚
𝑙
𝑚𝛼
+ 𝑔

𝐴𝛽

𝑛−𝑚
𝑙
𝑚𝐴
) 𝜕

𝛽
,

𝑡
𝑛
= −

1

2

𝑛

∑

𝑚=0

(𝑔
𝛼𝐵

𝑛−𝑚
𝑙
𝑚𝛼
+ 𝑔

𝐴𝐵

𝑛−𝑚
𝑙
𝑚𝐴
) 𝜕

𝐵
.

(B.6)

Finally, the contribution at 𝑂(ℏ𝑛/2) in the semiclassical
expansion of H works out to be (given 𝑋, the notation 𝜖

𝑋

has been defined in (13))

𝜖
H

(𝑛)
= −

𝜖
𝐾

‖

𝑛−2
−
𝜖
𝐾

𝑛−1
−
𝜖
𝐾

⊥

𝑛
+
𝜖
𝑉
𝑛+2
. (B.7)

This shows how the contribution at a given order in ℏ is
related to terms in tubular expansion of various geometric
quantities at different orders.

C. A Note on Loop Space and LSQM

The loop spaceLM associated with a Riemannian manifold
M is the space of all smooth maps from a parametrized loop
toM

LM = 𝐶
∞
(𝑆

1
,M) . (C.1)

Here we will briefly note down some general features ofLM
and LSQM that are relevant for our discussion in this paper.
The above definition implies that given any element 𝑙 ∈LM,
there exists a smooth function 𝑝(𝑙) : 𝑆1 → M. We wish
to define a general coordinate system in LM in an open
neighborhood of small loops as defined in Section 4.1. To this
end we recall the definition of all the open sets as given below
(25). Therefore, given any 𝑙 ∈ 𝐶(𝑈M), the entire image 𝑝(𝑙)

resides inside �̃�M. Let 𝑥 : �̃�M → R𝐷 be a local coordinate
system in �̃�M ⊂ M. Then 𝑍(𝑙)

= 𝑥 ∘ 𝑝
(𝑙)
: 𝑆

1
→ R𝐷, and

therefore is an element of LR𝐷 which is the model space
of LM. We consider 𝑍 : 𝐶(𝑈M) → LR𝐷, such that
𝑍 ∘ 𝑙 = 𝑍

(𝑙)
∈ LR𝐷, to be the coordinate functions in the

relevant neighborhood inLM.
Following [14, 15], we will work with a Fourier space

representation of these coordinate functions. In this repre-
sentation the general coordinates of a point 𝑙 as considered
above inLM are given by

𝑧
𝑎
= ∮𝑍

𝛼

(𝜎) 𝑒
−𝑖a𝜎

, a ∈ Z, (C.2)

where 𝜎 parametrizes the loop, ∮ ≡ ∫(𝑑𝜎/2𝜋), and the loop
embedding 𝑍𝛼

(𝜎) (𝛼 being a target space index) is obtained
by following the above definition. We adopt the following
convention for an infinite-dimensional coordinate index. It



ISRN High Energy Physics 13

is given by a lower case Latin alphabet, which in turn is
associated with a pair containing the corresponding Greek
alphabet (i.e., a target space index) and an integer, denoted
by the same small Latin alphabet in text format. For example,
𝑎 → (𝛼, a), 𝑏 → (𝛽, b). We will also adopt a similar
association between such a pair and the corresponding upper
case Latin alphabet when the integer is nonzero, that is,𝐴 →

(𝛼, a), 𝐵 → (𝛽, b), and so forth, only when a, b ̸= 0. We use
this type of notation in all our discussion involving an explicit
coordinate system inLM.

Reparametrization of the loop corresponds to an isom-
etry of the loop space which exists irrespective of the
isometries ofM. The generator of this isometry is given by

V
𝑎

(𝑧) = ∮𝜕
𝜎
𝑍
𝛼

(𝜎) 𝑒
−𝑖a𝜎 (C.3)

which satisfies the Killing vector equation inLM [10, 11]

D
𝑎
V
𝑏
+D

𝑏
V
𝑎
= 0, (C.4)

whereD
𝑎
is the covariant derivative onLM.Themetric and

affine connection onLM are given by

𝑔
𝑎𝑏
(𝑧) = ∮𝐺

𝛼𝛽
(𝑍 (𝜎)) 𝑒

𝑖(a+b)𝜎
,

𝛾
𝑎

𝑏𝑑
(𝑧) = ∮Γ

𝛼

𝛽𝛿
(𝑍 (𝜎)) 𝑒

𝑖(−a+b+d)𝜎
,

(C.5)

respectively, where 𝐺
𝛼𝛽

and Γ
𝛼

𝛽𝛿
are the metric and affine

connection on M, respectively. Notice from (C.3) that the
submanifold of vanishing loops, which is given by

𝑧
𝐴
= ∮𝑍

𝛼

(𝜎) 𝑒
−𝑖a𝜎

= 0, ∀a ̸= 0, (C.6)

is where the Killing vector field vanishes. This situation is
similar to the consideration of Kobayashi’s theorem in [37]
(in finite dimensions), which claims that the space of fixed
points of an isometry is a totally geodesic submanifold of even
codimension.Wewill see in Section 4 that the submanifold of
interest is indeed totally geodesic. Although, this has infinite
number of transverse directions, from the discussion of the
infinite dimensional coordinate index done below (C.2), it is
clear that for every transverse index 𝐴 → (𝛼, a), there is a
pair 𝐴 → (𝛼, −a).

We now briefly recall the structure of LSQM following
[14, 15]. The classical NLSM Lagrangian on a flat worldsheet
takes the following form in terms of the general coordinates
inLM:

𝐿 = 𝐾 − 𝑉
LM

,

𝐾 =
1

2
𝑔
𝑎𝑏
(𝑧) �̇�

𝑎
�̇�
𝑏
,

𝑉
LM

=
1

2
𝑔
𝑎𝑏
(𝑧) V

𝑎

(𝑧) V
𝑏

(𝑧) ,

(C.7)

where a dot indicates derivative with respect to the world-
sheet time. Notice that the potential is proportional to the

norm-square of the Killing vector field discussed above.
LSQM [14, 15] is a formal ℏ-deformation of this classical
system obtained by following DeWitt’s argument in [38].
Therefore, it has the same mathematical structure as that
of the toy model discussed in Section 3 with the configura-
tion space replaced by the infinite dimensional loop space
(Though a crucial difference is that LSQM should be viewed
as a worldline-type description of a relativistic system. See
Section 5 for more details on this.). In particular, the matrix
element of the Hamiltonian between two scalar states is given
by the same equation as in (5), with various quantities now
interpreted in the context ofLM instead of 𝐿. For example,
D2 denotes the Laplacian inLM.

D. Existence of (𝑥󸀠,𝑦󸀠)-System

In the discussion of Section 4.2.1 we assumed that starting
from the direct product coordinate system 𝑧 = (𝑥

1
, 𝑥

2
) (see

(28), (29)) on M × M one can arrive at another, namely,
𝑧
󸀠
= (𝑥

󸀠
, 𝑦

󸀠
), such that the transformed vielbein components

are given, up to a constant conformal transformation, by (32)
up to quadratic order in 𝑦󸀠. Here we will explicitly construct
𝑧
󸀠 in a region whose overlap with the diagonal submanifold
is sufficiently small.

We begin by discussing geodesics of M × M. These are
direct products of geodesics in the two copies ofM. The ones
which pass through 𝑧

0
= (𝑥

0
, 𝑥

0
) ∈ Δ

𝑈M×M
(= 𝑈M×M ∩Δ) can

be labelled by a unit vector ((1/√2)𝜂, (1/√2)𝜁) ∈ 𝑇
𝑥0
(M) ×

𝑇
𝑥0
(M), where 𝜂𝛼1 (𝜁𝛼2) is the unit tangent to the geodesic

in the first copy (second copy) at 𝑥
1
= 𝑥

0
(𝑥

2
= 𝑥

0
).

The vectors ((1/√2)𝜂, (1/√2)𝜂), and ((1/√2)𝜂, −(1/√2)𝜂) are
parallel and transverse to Δ

𝑈M×M
at (𝑥

0
, 𝑥

0
), respectively. A

geodesic whose unit tangent vector at (𝑥
0
, 𝑥

0
) is of the form

((1/√2)𝜂, (1/√2)𝜂) remains on the diagonal submanifold for
ever. This implies that Δ is a totally geodesic submanifold
of M × M. We would like to construct 𝑧󸀠 such that 𝑦󸀠 is a
geodesic coordinate along the transverse direction given by a
unit vector of the form ((1/√2)𝜂, −(1/√2)𝜂).

We first consider the following coordinate transforma-
tion:

𝑧
𝑎
󳨀→ �̃�

𝑎
= (𝑦

𝛼1

1
, 𝑦

𝛼2

2
) , (D.1)

such that

𝑥
𝛼1

1
= exp𝛼1

𝑥0
(𝑦

1
) , 𝑥

𝛼2

2
= exp𝛼2

𝑥0
(𝑦

2
) , (D.2)

where the exponential map exp
𝑥0
: 𝑇

𝑥0
M → M is given by

exp𝛼
𝑥0
(𝜉) = 𝑥

𝛼

0
+ 𝜉

𝛼
−
1

2
Γ
𝛼

𝛽1𝛽2
(𝑥

0
) 𝜉

𝛽1𝜉
𝛽2 + ⋅ ⋅ ⋅ , (D.3)

Γ
𝛼

𝛽1𝛽2
being the Christoffel symbols of M. We readily rec-

ognize that 𝑦
1
and 𝑦

2
are individually RNC

𝑥0
in the two

copies of M and the system �̃� is an RNC
(𝑥0 ,𝑥0)

in M × M.
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The transformed vielbein components are expanded up to
quadratic order as [20]

𝑒
[𝛼1]

𝛽1
(�̃�) = 𝐸

(𝛼1)

𝛽1
(𝑥

0
) +

1

6
�̌�
(𝛼1)

𝛾1𝛿1𝛽1
(𝑥

0
) 𝑦

𝛾1

1
𝑦
𝛿1

1
,

𝑒
[𝛼1]

𝛽2
(�̃�) = 0,

𝑒
[𝛼2]

𝛽1
(�̃�) = 0,

𝑒
[𝛼2]

𝛽2
(�̃�) = 𝐸

(𝛼2)

𝛽2
(𝑥

0
) +

1

6
�̌�
(𝛼2)

𝛾2𝛿2𝛽2
(𝑥

0
) 𝑦

𝛾2

2
𝑦
𝛿2

2
.

(D.4)

Next we define the orthonormal frames which are parallel
and transverse to the diagonal by giving the following rotation
in the local Lorentz frame:

𝑒
[𝛼]

𝑏
=

1

√2
(𝑒

[𝛼1=𝛼]

𝑏
+ 𝑒

[𝛼2=𝛼]

𝑏
) ,

𝑒
[�̂�]

𝑏
=

1

√2
(𝑒

[𝛼1=�̂�]

𝑏
− 𝑒

[𝛼2=�̂�]

𝑏
) ,

(D.5)

where 𝛼, �̂� = 1, . . . , 𝐷. The parallel and transverse coordi-
nates, 𝑢𝛼 and 𝑦󸀠󸀠�̂�, respectively, are defined by yet another
coordinate transformation,

𝑢
𝛼
=
1

2
(𝑦

𝛼1=𝛼

1
+ 𝑦

𝛼2=𝛼

2
) , 𝑦

󸀠󸀠�̂�
=
1

2
(𝑦

𝛼1=�̂�

1
− 𝑦

𝛼2=�̂�

2
) .

(D.6)

Therefore, 𝑢𝛼 is an RNC
(𝑥0 ,𝑥0)

of M × M which remains
parallel to the submanifold Δ. We combine 𝑢𝛼 with 𝑥

0
to

construct a general coordinate 𝑥󸀠󸀠𝛼 on Δ,

𝑥
󸀠󸀠𝛼
= exp𝛼

𝑥0
(𝑢) . (D.7)

Therefore, we seem to have arrived at a coordinate system
𝑧
󸀠󸀠𝑎

= (𝑥
󸀠󸀠𝛼
, 𝑦

󸀠󸀠�̂�
) where 𝑥󸀠󸀠𝛼 is a general coordinate system

on Δ and 𝑦
󸀠󸀠�̂� is orthogonal to it. However, it has been

constructed using exponential map with a fixed base point.
Therefore, it is guaranteed to be the right one, that is, the
one relevant to FNC, only near the base point (𝑥

0
, 𝑥

0
).

Now onwards we restrict to a region around this point
whose overlap with Δ is sufficiently small. More precisely, we
consider 𝑢 to be at higher order in smallness with respect to
𝑦
󸀠󸀠, implying that we neglect terms of order 𝑢𝑦󸀠󸀠 and 𝑢2 with

respect to those of order 𝑦󸀠󸀠2. With this approximation the
transformed vielbein components in 𝑧󸀠󸀠-system are given by

1

√2
𝑒
󸀠󸀠[𝛼]

𝛽
(𝑧

󸀠󸀠
) = 𝐸

(𝛼)

𝛽
(𝑥

󸀠󸀠
) +

1

6
�̌�
(𝛼)

𝛾𝛿𝛽
(𝑥

󸀠󸀠
) 𝑦

󸀠󸀠𝛾
𝑦
󸀠󸀠𝛿
,

1

√2
𝑒
󸀠󸀠[𝛼]

𝛽
(𝑧

󸀠󸀠
) = 0,

1

√2
𝑒
󸀠󸀠[�̂�]

𝛽
(𝑧

󸀠󸀠
) = 0,

1

√2
𝑒
󸀠󸀠[�̂�]

𝛽
(𝑧

󸀠󸀠
) = 𝐸

(𝛼)

𝛽
(𝑥

󸀠󸀠
) +

1

6
�̌�
(𝛼)

𝛾𝛿𝛽
(𝑥

󸀠󸀠
) 𝑦

󸀠󸀠𝛾
𝑦
󸀠󸀠𝛿
.

(D.8)

The 1/√2 factors arise because of the standard constant
rescaling of the measure when we go to a diagonal. Now
onwards, wewill absorb this by applying a constant conformal
transformation of the metric.

There is a further coordinate transformation which keeps
the form of the expansions in (D.8) invariant within the same
region of validity, yet making it more general.This is given by
𝑧
󸀠󸀠
→ 𝑧

󸀠
= (𝑥

󸀠𝛼
, 𝑦

󸀠�̂�
) such that

𝑥
󸀠󸀠𝛼
= 𝑥

󸀠𝛼
+ (𝑞 −

1

6
) �̌�

𝛼

𝛾𝛿𝛽
(𝑥

󸀠
) 𝑦

󸀠𝛾
𝑦
󸀠𝛿
𝑥
󸀠𝛽
, 𝑦

󸀠󸀠�̂�
= 𝑦

󸀠�̂�
,

(D.9)

where 𝑞 is a real constant. The transformed vielbein compo-
nents are given by (32).
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