

Updates to the 8th Edition AJCC Staging System for Breast Cancer

MDAnderson
Cancer Center

Elizabeth A. Mittendorf, MD, PhD
Professor
Department of
Breast Surgical Oncology

Disclosures

 I served on the expert panel that revised the AJCC staging system for breast cancer

Acknowledgments

MD Anderson

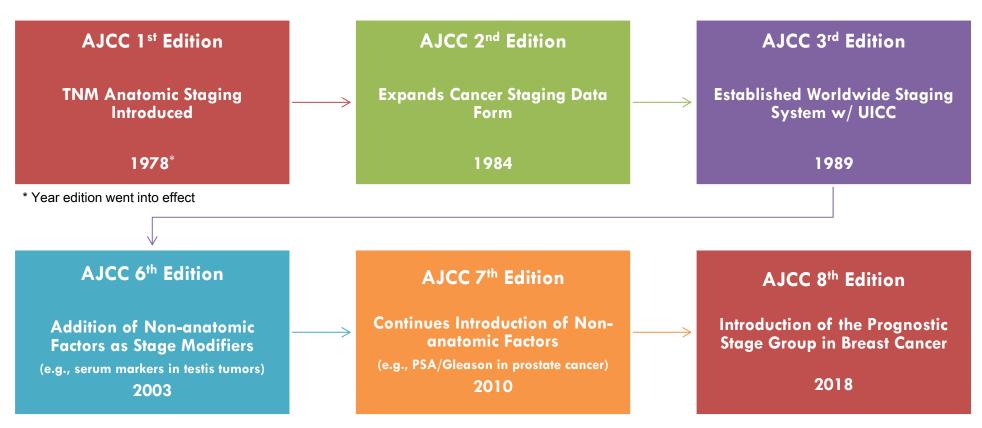
- Mariana Chavez-MacGregor, MD
- Kelly Hunt, MD
- Sharon Giordano, MD, MPH
- Gabriel Hortobagyi, MD
- Min Yi, MD

Dana Farber/Brigham

- Tari King, MD
- Anna Weiss, MD

California Cancer Registry

- Daphne Lichtensztajn, MS
- Christina Clarke, PhD, MPH


AJCC expert panel

- James Connolly, MD
- Carl D'Orsi, MD
- Stephen Edge, MD
- Armando Giuliano, MD
- Gabriel Hortobagyi, MD
- Hope Rugo, MD
- Lawrence Solin, MD
- Donald Weaver, MD
- David Winchester, MD

Goals of Staging

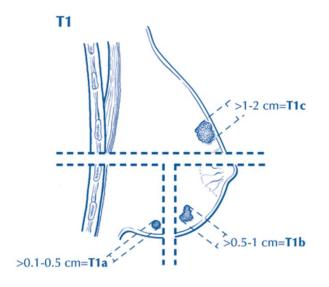
- Determine extent of disease
- Help determine a treatment plan
 - Management guidelines developed based on prognosis
- Inform prognosis
- Facilitate communication between providers (common language)
- Permit standardized collection of essential data

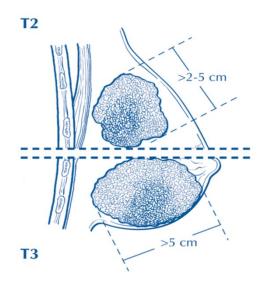
Evolution of AJCC Staging Manual: From Anatomic Staging Towards Personalized Risk Assessment

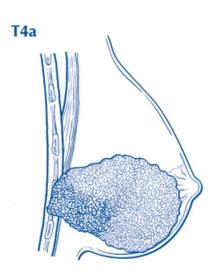
"The concept of molecular classification of cancer at a clinically relevant level is now accepted as an imminent reality..."

- Dr. Mahul Amin (AJCC 8th Edition Editor-in-Chief)

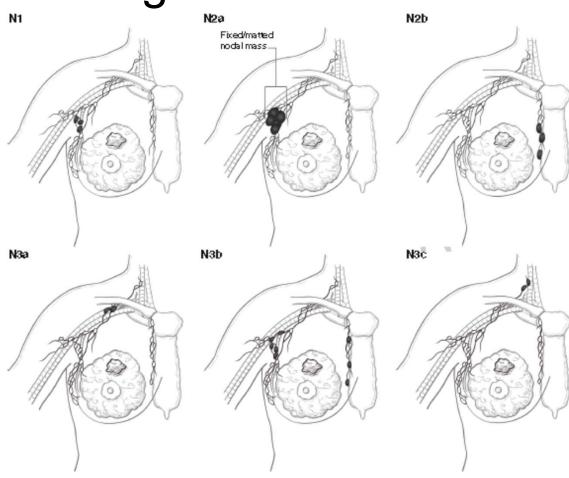
7th Edition AJCC Staging System

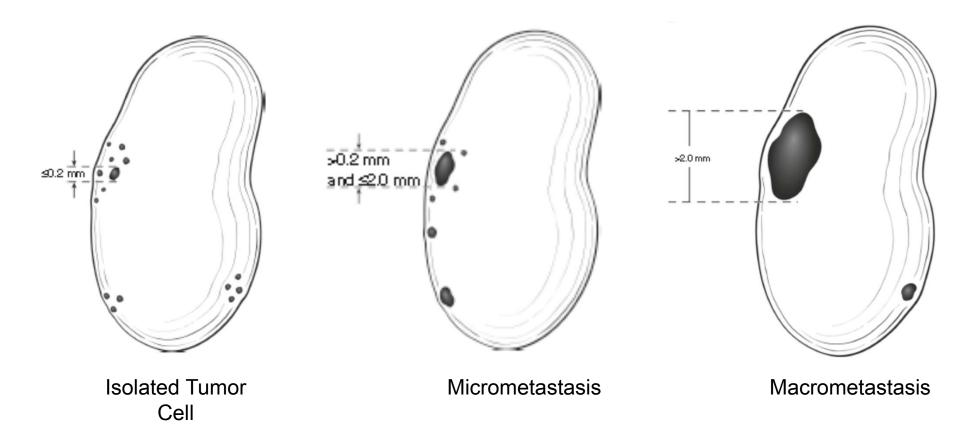

TNM stage:


– T: primary tumor

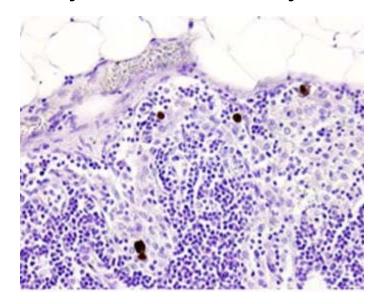

N: regional (ipsilateral) lymph nodes

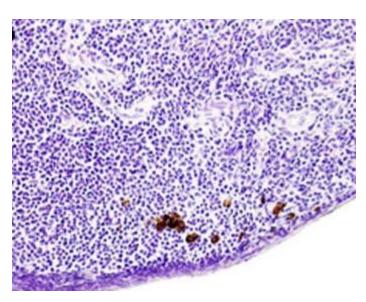
– M: distant metastasis


• T stage:



Clinical N stage:

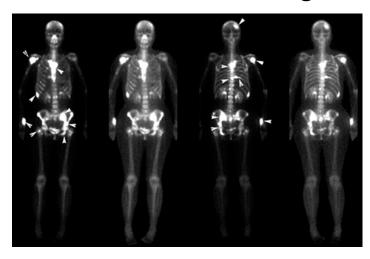


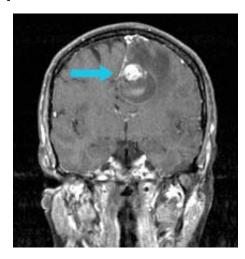

Pathologic N stage:

• ITC

- Small clusters of cells not > 0.2mm
- A cluster of < 200 cells in a single histologic cross-section
- May be detected by H&E or IHC

Mittendorf EA et al. Ann Surg Oncol 2008;15:3369-3377

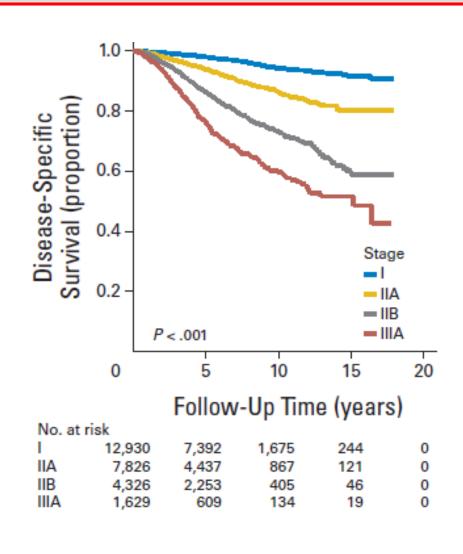

Pathologic N stage*:


pNx	Regional LN cannot be assessed
pN0	No regional LN metastasis
pN0(i+)	Malignant cells in LN no >0.2mm (detected by H&E or IHC)
pN1mi	Micrometastases (>0.2mm and/or more than 200 cells, but none >2.0mm)
pN1	Metastases in 1-3 axillary LN, at least one > 2.0mm
pN2	Metastases in 4-9 axillary LN, or in clinically detected IM LNs in absence of axillary LN metastases
pN3	Metastases in ≥ 10 axillary LN; or in ipsilateral infraclavicular or supraclavicular LN; or ipsilateral IM nodes in presence of + axillary LN(s)

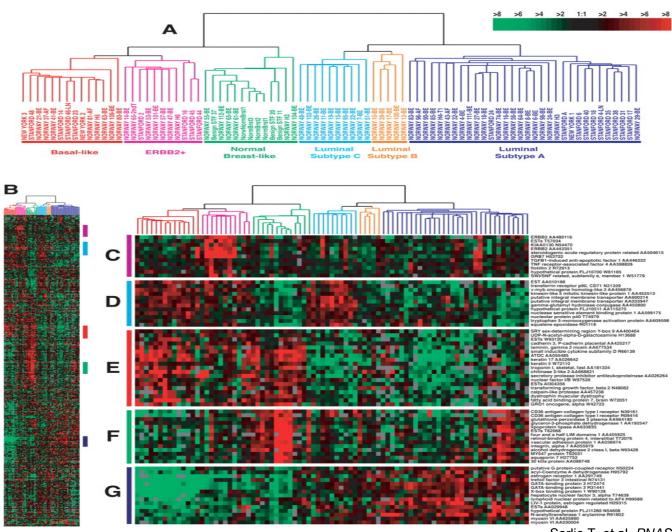
^{*}abbreviated table; AJCC staging manual provides more detailed classification i.e. differentiating pN1a from pN1b

M stage:

- M0 no clinical or radiographic evidence of distant metastases
- M1 Distant detectable metastases as determined by classic clinical and radiographic means and/or histologically proven > 0.2mm



7th Edition AJCC Staging System


- Clinical stage: Based on findings of history, physical examination, and any imaging studies that are done
- Pathologic stage: Definitive stage determined after surgery by pathologic evaluation of the primary tumor and regional lymph nodes

7th Edition AJCC Staging System

Stage	T	N	M
IA	T1	N0	MO
IB	T0 T1	N1mi N1mi	M0 M0
IIA	T0 T1 T2	N1 N1 N0	M0 M0 M0
IIB	T2 T3	N1 N0	M0 M0
IIIA	T0 T1 T2 T3	N2 N2 N2 N1/2	M0 M0 M0 M0
IIIB	T4	N0-2	MO
IIIC	Any T	N3	MO
IV	Any T	Any N	M1

Hierarchical Clustering Reveals Clinically Relevant Gene Expression Profiles in Breast Cancer

Clinical considerations

49 yo female undergoes BCT and SLN dissection

- pT2N0M0 invasive ductal carcinoma, ER+, PR+, HER2
- pT2N0M0 invasive ductal carcinoma, ER+, PR+, HER2
- pT2N0M0 invasive ductal carcinoma, ER-, PR-, HER2
- pT2N0M0 invasive ductal carcinoma, ER-, PR-, HER2

Same TNM, different prognosis

5-yr BCSS According to Subtype

	HR+/HER2-	HR+/HER2+	HER2+/HR-	TNBC
Stage T2N0	96%	94%	92%	88%

	HR+/HER2-	HR+/HER2+	HER2+/HR-	TNBC
Stage IV	47%	39%	24%	17%

AJCC Staging System - Limitations

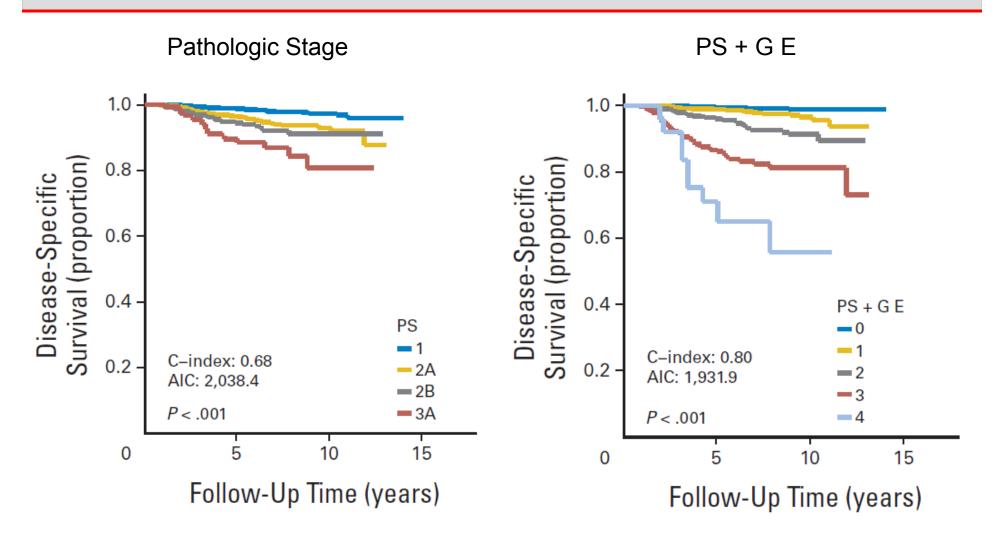
- Patient survival shows wide variation within each stage
- Does not take into account biologic factors that have prognostic and predictive value
 - Grade, ER, PR, HER2
- Treatment recommendations and response to therapy are dictated by these factors

AJCC Staging System - Challenge

- Make the staging system "current" i.e. more relevant
- Incorporate biologic tumor markers to facilitate more precise determination of prognosis

Developing a Novel Staging System

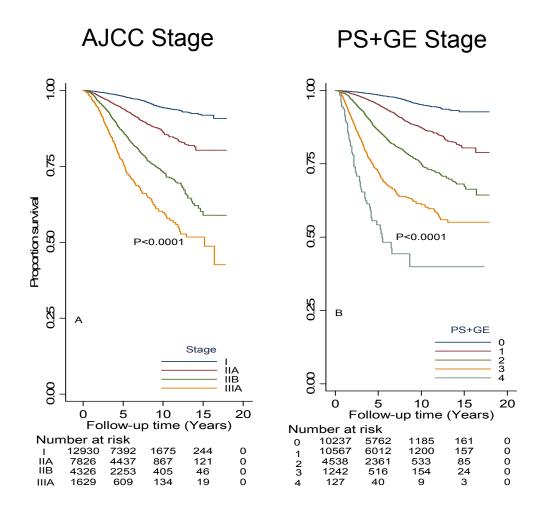
- 3,728 patients with invasive BC treated at MD Anderson 1997-2006
 - Stage I-III
 - Surgery as first treatment strategy
 - Known ER, PR and grade


Six different staging systems assessed:

- (1) Pathologic Stage (PS)
- (2) PS and grade
- (3) PS, grade, and LVI
- (4) PS, grade, and ER
- (5) PS, grade, and combination of ER and PR

Methods

- DSS calculated from the time of surgery → death due to breast cancer
- Univariate association of each potential prognostic factor with DSS
- Variables determined to have a significant impact on DSS with:
 - HR 1.1 3 were assigned 1 point
 - HR 3.1 6 were assigned 2 points
- Overall staging score calculated by summing the scores for the individual independent DSS predictors


Incorporation of Biologic Factors into Novel Staging System

Novel Staging System Incorporating Tumor Biology

- Restaging considering ER and grade along with path stage → ↑ discrimination with respect to DSS
- Strengths
 - Externally validated with SEER dataset (n=26,711); C-index 0.8
 - ER and grade are variables routinely assessed at standard pathologic examination

Novel Staging System Incorporating Tumor Biology

Novel Staging System Incorporating Tumor Biology

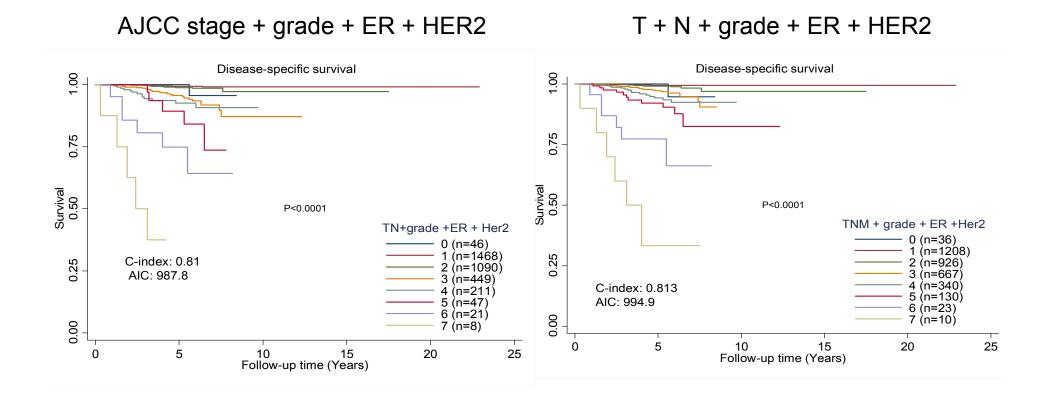
- Limitations
 - Model built using retrospectively collected data
 - Treatment not assigned
 - Validation performed using population-based dataset
 - Possibility of coding erros
 - Report > 95% accuracy
 - Predated routine use of trastuzumab

Bioscore

- Update of previous staging system incorporating tumor biology
- MD Anderson cohort
 - 2007-2013
 - N=3,327
 - Included 306 HER2+ patients treated with trastuzumab

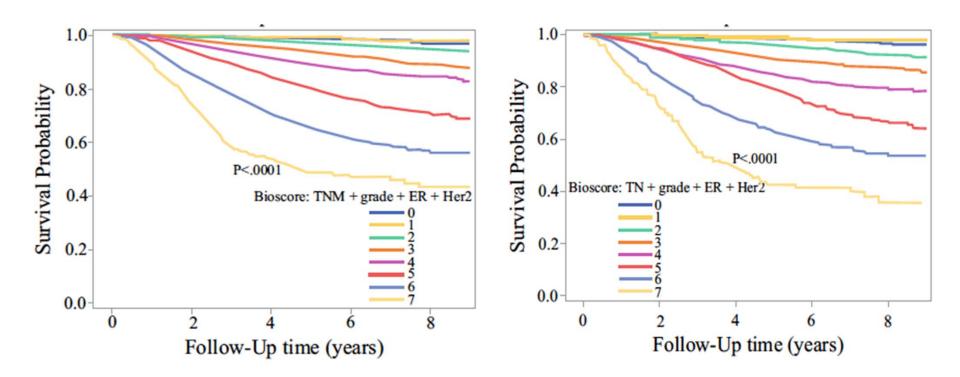
Bioscore – Model Building

- 2 staging systems assessed
 - Using path stage as backbone
 - PS
 - PS and grade
 - PS, grade, and ER
 - PS, grade, ER and HER2
 - Using T and N stage by summing the scores for T and N stage in the model
 - TN
 - TN and grade
 - TN, grade, and ER
 - TN, grade, ER and HER2


Bioscore – Model Building

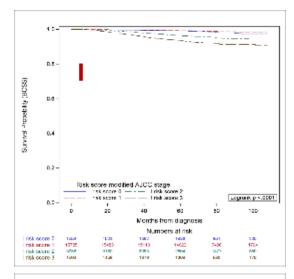
- Score of 0-4 assigned to each factor by considering magnitude of hazard ratio
 - Binary variables, groups with significant impact on DSS assigned 1 point
 - Ordinal variables
 - HR 1.1-3 assigned 1 point
 - HR 3.1-6 assigned 2 points
 - HR 6.1-10 assigned 3 points
 - HR>10 assigned 4 points

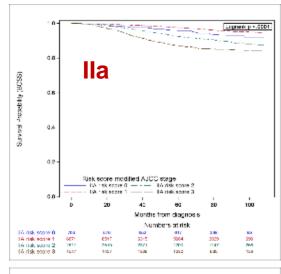
Bioscore – Model Building

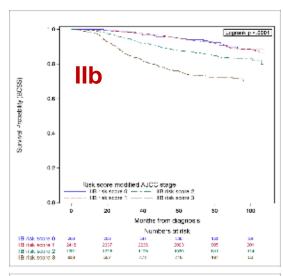

- Model performance quantified using Harrell's concordance index (C-index)
 - Can range from perfect concordance (1.0) to perfect discordance (0.0)
- Akaike's information criteria (AIC) also calculated
 - Takes into account how well model fits data
 - Takes into account complexity of the model
 - ↓ risk of overfitting
- Winner = highest C-index and lowest AIC value

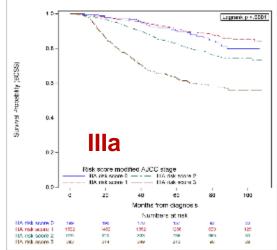
The Winners.....

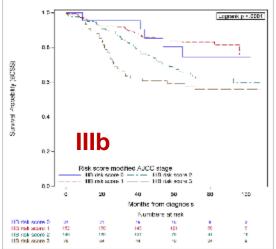
Bioscore Validation

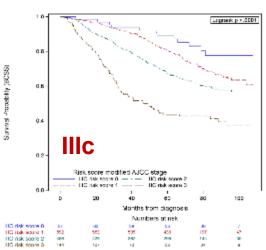

- 67,944 BC patients stage I-III diagnosed 2005-2010 in the CCR
- Known grade, ER status, and HER2 status.
- Surgery as first treatment modality

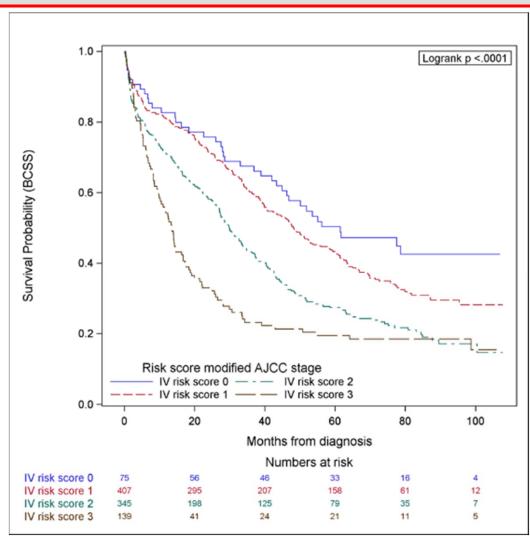


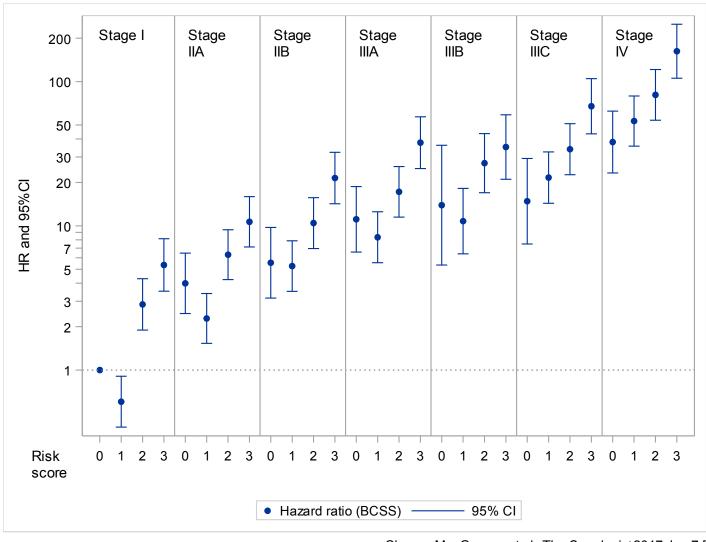

More Models: Risk Score


- 43,938 patients with primary BC stage I-IV diagnosed 2005-2008 in the CCR
- Cox model identified grade, ER and HER2 as the most important prognostic factors in addition to stage
- Risk score point based system
 - One point for:
 - Grade 3
 - ER-negative
 - Her2-negative to complement the staging system
- 5-year BCSS and 5-y OS calculated


Risk Score – BCSS Stage I-III



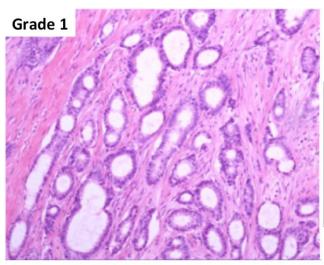




Risk Score – BCSS Stage IV

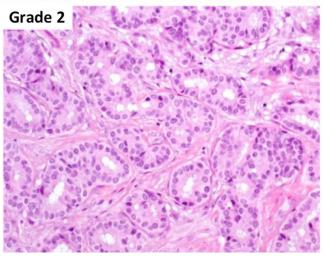
Risk Score Hazard Ratios

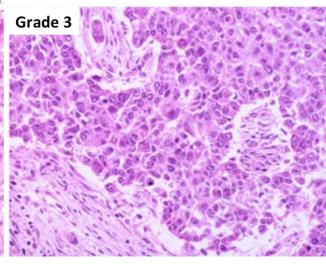
Risk Score


- Most favorable outcomes were seen in HR+ tumors followed closely by HER2+ tumors with the worst outcomes observed in TNBC
- Risk score system separated patients into 4 risk groups within each stage category (all P<0.05)
- Our simple risk score system incorporates biological factors into the staging system providing accurate prognostic information

- Recognizing limitations of 7th ed staging system, the AJCC expert panel revised the staging system and incorporated a <u>prognostic</u> <u>stage</u> to take into account biologic factors
 - Grade
 - Hormone receptor status
 - HER2

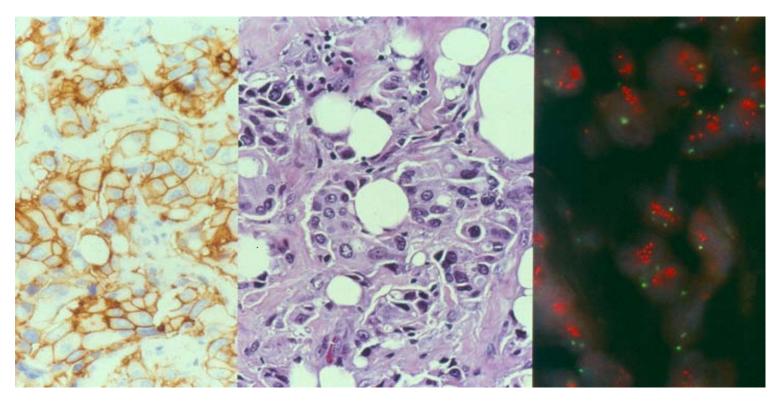
Grade


- Defined by histologic grading system of Scarff, Bloom, and Richardson, as updated and standardized by the Nottingham group
- Determined by evaluating
 - Glandular (Acinar)/Tubular differentiation
 - Nuclear pleomorphism
 - Mitotic rate
- Reported as overall grade
 - 1: well differentiated
 - 2: moderately differentiated
 - 3: poorly differentiated


Grade

Nottingham Breast Cancer Grade

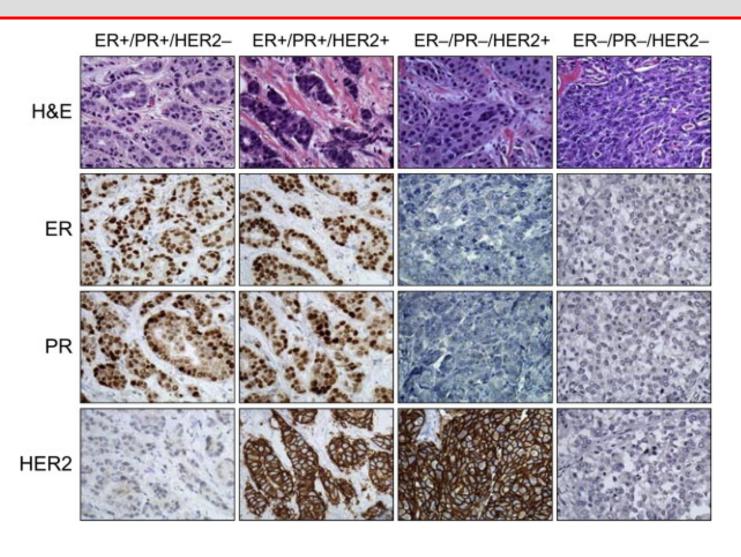
Total Feature Score	Tumor Grade	Appearance of Cells					
3-5	Grade 1 Tumor	Well-differentiated (appear normal, growing slowly, not aggressive)					
6-7	Grade 2 Tumor	Moderately-differentiated (semi-normal, growing moderately fast)					
8-9	Grade 3 Tumor	Poorly-differentiated (abnormal, growing quickly, aggressive)					


Estrogen receptor

- Determined in FFPE sections by IHC
- Evaluating for nuclear staining
- Quantification may use the proportion of positive cells ± the intensity of immunoreactivity
- Reporting results:
 - Positive if immunoreactive tumor cells present (≥ 1%)*
 - Negative if <1% immunorecative tumor cells present

^{*} The percentage of immunoreactive cells may be determined by visual estimation or quantitation. Quantitation can be provided by reporting the percentage of positive cells or by a scoring system, such as the Allred score or H score

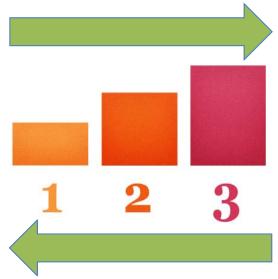
HER2


 Can test for HER2 protein expression (IHC assay) or HER2 gene expression (ISH assay)

HER2

HER2 positive	 IHC 3+ based on circumferential membrane staining that is complete, intense ISH positive based on: single-probe average HER2 copy number ≥6.0 signals/cell dual-probe HER2/CEP17 ratio ≥2.0 with an ave HER2 copy number ≥4.0 signals/cell dual-probe HER2/CEP17 ratio <2.0 with an ave HER2 copy number <6.0 signals/cell
HER2 equivocal	 IHC 2+ based on circumferential membrane staining that is incomplete and/or weak/moderate and within >10% of invasive tumor cells; or complete and circumferential membrane staining that is intense and within ≤10% of invasive tumors cells ISH equivocal based on: single-probe average HER2 copy number ≥4.0 and <6.0 signals/cell dual-probe HER2/CEP17 ratio <2.0 with an ave HER2 copy number ≥4.0 and <6.0 signals/cell
HER2 negative	 IHC 1+ as defined by incomplete membrane staining that is faint/barely perceptible and within >10% of the invasive tumors cells IHC 0 as defined by no staining observed or membrane staining that is incomplete and is faint/barely perceptible and within ≤ 10% of the invasive tumor cells ISH negative based on: single-probe average HER2 copy number <4.0 signals/cell dual-probe HER2/CEP17 ratio <2.0 with an ave HER2 copy number <4.0 signals/cell
HER2 indeterminate	Report as indeterminate if technical issues prevent tests from being reported as positive, negative or equivocal Inadequate specimen handlingArtifacts that interfere with interpretationAnalysis testing failure

ER/PR/HER2

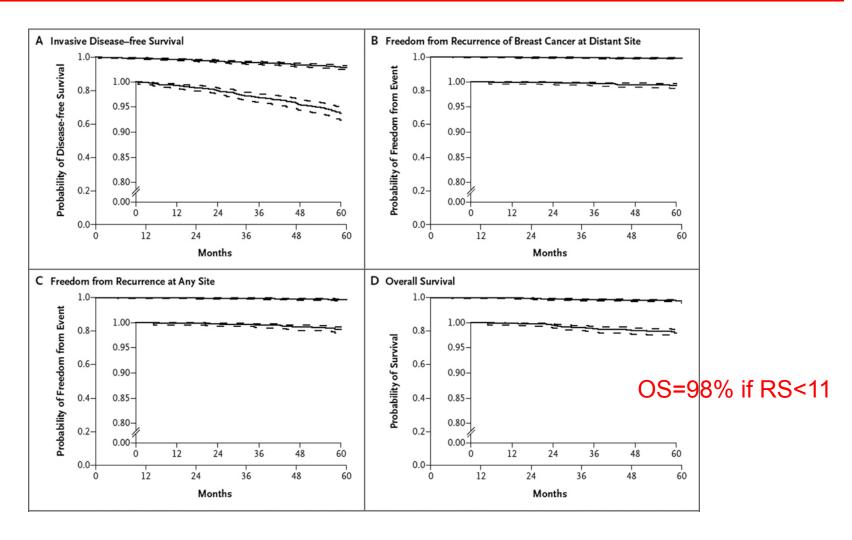

- Anatomic stage group
 - -T,N,M
- Prognostic stage group
 - Incorporates grade, ER, PR, HER2 status in addition to T,N,M
 - Inclusion of multigene panels as stage modifiers when available

- Prognostic stage group
 - Developed using data from the National Cancer Data Base
 - Considers patients treated with surgery as initial intervention follow by adjuvant therapy
 - 238,265 patients 2010-2011 in whom complete TNM, grade, ER and HER2 data were available
- Analysis confirmed prognosis varied within TNM groupings based on tumor biology
- 152 prognostic groups

Traditional TNM Factors			+ Expanded Non-Anatomic Factors = 8 th Edition Tumor Grade, HER2, ER, PR status Prognostic Stage Gr				
			γ				
When T is	When N is	When M is	And G is	And HER2 Status is	And ER Status is	And PR Status is	The Prognostic Stage Group is
T1	N0	MO	1	Positive	Any	Any	IA
T1	N0	MO	1	Negative	Positive	Negative	IB
T2	N0	МО	1,2	Negative	Positive	Positive	IB
T1	N0	MO	1-3	Negative	Negative	Negative	IIA
T2	N0	МО	3	Negative	Positive	Positive	IIA
Т3	N0	МО	1	Negative	Positive	Negative	IIIA

"Compared to the [8th Edition] anatomic stage groups, the application of the prognostic stage groups assigns 41% of cases to a different group with either a better or worse prognosis."

AJCC 7th vs. 8th Edition

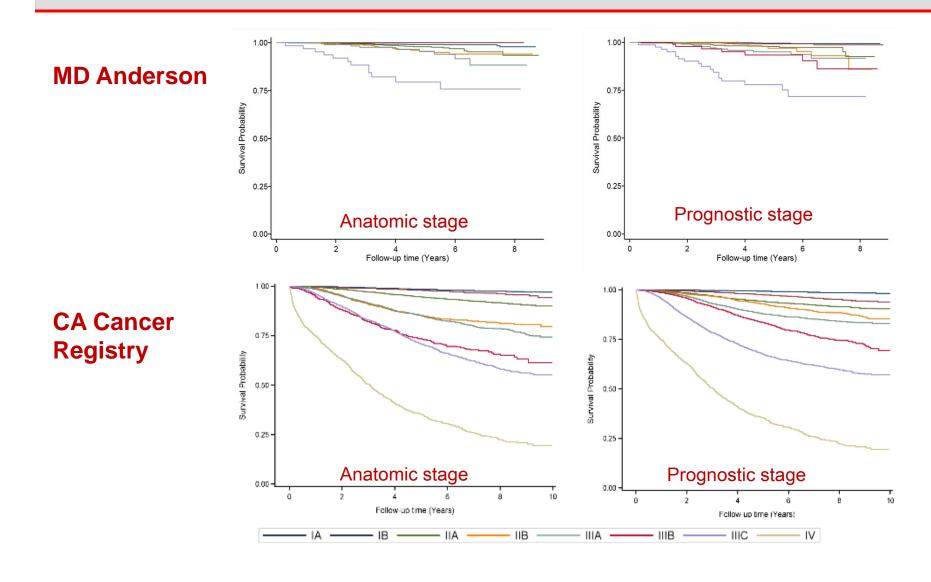

40% of Early Stage Breast Cancer Patients Restaged

AJCC 8th Edition – Incorporation of Genomic Assays

 Expert panel determined it was appropriate to incorporate multigene molecular profiling based on the data reported from Arm A of the TAILORx study

When T is	When N is	When M is	And G is	And HER2 Status is	And ER Status is	And PR Status is	The Prognostic Stage Group is
MultiGene Panel** - Oncotype DX Recurrence Score Results Less Than 11							n 11
T1-T2	N0	MO	1-3	Negative	Positive	Any	IA

TAILORX


Validation of the AJCC 8th Edition

- MD Anderson: 3,327 stage I-III BC patients treated 2007-2013
 - Compared to AJCC anatomic stage, the prognostic stage upstaged 29.5% of patients and downstaged 28.1%
 - The prognostic staging system provided more accurate stratification with respect to DSS than the anatomic stage
 - Unable to assign prognostic stage in 451 (13.6%)

Validation of the AJCC 8th Edition

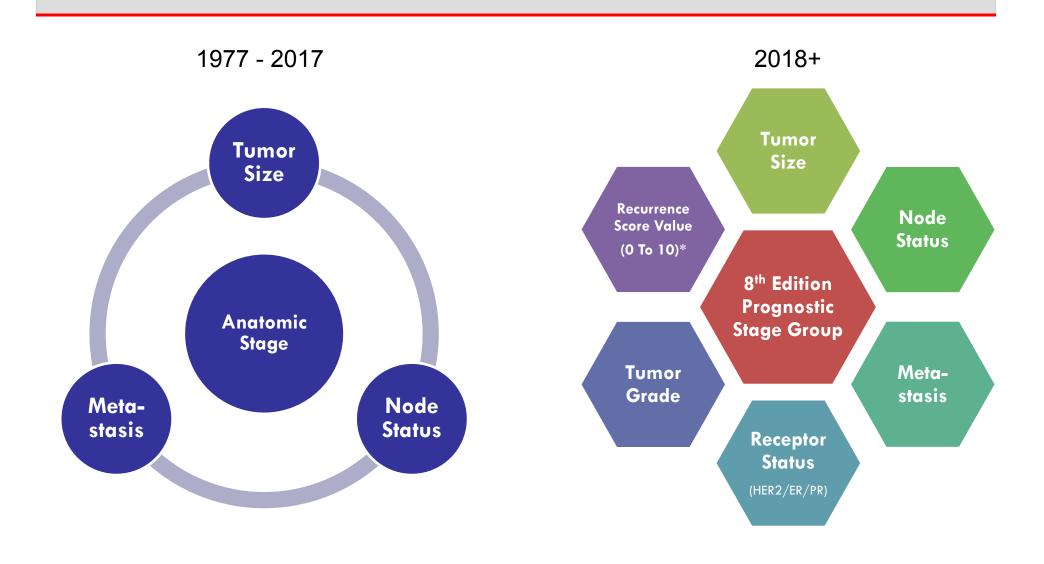
- CA Cancer Registry: 54,724 stage I-IV BC patients diagnosed 2005-2009
 - Compared to AJCC anatomic stage, the prognostic stage upstaged 31.0% of patients and downstaged 20.6%
 - The prognostic staging system provided more accurate stratification with respect to DSS than the anatomic stage
 - Unable to assign prognostic stage in 3,746
 (6.8%)

Validation of the AJCC 8th Edition

AJCC 8th Edition – Summary of Significant Changes

- Added prognostic stage
- LCIS classified as a benign entity and removed from TNM staging
- Tumor grade defined by Nottingham histologic grade is required element for staging

AJCC 8th Edition - Issues


- Complex >150 prognostic stages
- Unable to assign prognostic stage in 7-14% of cases
 - Uncategorized combinations of T,N,grade,ER,PR and HER2
 - pN1mic with T2 or T3 tumors
- Limited level I data for the many available genomic assays
- Prognostic stage CANNOT be used for patients receiving neoadjuvant chemotherapy
- How will the prognostic stage be used by busy clinicians?
- How will guidelines (i.e. NCTN) guidelines handle?
- What are the implications when communicating local regional management?

AJCC 8th Edition - Opportunities

- Expert panel has repeated analyses of NCDB database
 - Accounts for all combinations of T,N,grade,ER,PR and HER2
 - Further refines prognostic stage → clinical prognostic stage and pathologic prognostic stage
 - Further discusses multiple genomic assays (i.e. MINDACT data discussed)
 - Pending approval, will be available online

AJCC 8th Edition - Opportunities

- Education
- Dissemination
- IT platforms to facilitate use
- May refine clinical trial eligibility criteria

Acknowledgments

MD Anderson

- Mariana Chavez-MacGregor, MD
- Kelly Hunt, MD
- Sharon Giordano, MD, MPH
- Gabriel Hortobagyi, MD
- Min Yi, MD

Dana Farber/Brigham

- Tari King, MD
- Anna Weiss, MD

California Cancer Registry

- Daphne Lichtensztajn, MS
- Christina Clarke, PhD, MPH

AJCC expert panel

- James Connolly, MD
- Carl D'Orsi, MD
- Stephen Edge, MD
- Armando Giuliano, MD
- Gabriel Hortobagyi, MD
- Hope Rugo, MD
- Lawrence Solin, MD
- Donald Weaver, MD
- David Winchester, MD