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In exact density functional theory (DFT) the total ground-state energy is a series of linear segments between
integer electron points, a condition known as “piecewise linearity”. Deviation from this condition is indicative
of poor predictive capabilities for electronic structure, in particular of ionization energies, fundamental gaps,
and charge transfer. In this article, we take a new look at the deviation from linearity (i.e., curvature) in
the solid-state limit by considering two different ways of approaching it: a large finite system of increasing
size and a crystal represented by an increasingly large reference cell with periodic boundary conditions. We
show that the curvature approaches vanishing values in both limits, even for functionals which yield poor
predictions of electronic structure, and therefore can not be used as a diagnostic or constructive tool in solids.
We find that the approach towards zero curvature is different in each of the two limits, owing to the presence
of a compensating background charge in the periodic case. Based on these findings, we present a new criterion
for functional construction and evaluation, derived from the size-dependence of the curvature, along with a
practical method for evaluating this criterion. For large finite systems we further show that the curvature
is dominated by the self-interaction of the highest occupied eigenstate. These findings are illustrated by

computational studies of various solids, semiconductor nanocrystals, and long alkane chains.

I. INTRODUCTION

Kohn-Sham (KS) density functional theory (DFT )2
is a widely used first-principles approach to the many-
electron problem. It is based on mapping the system
of N interacting electrons into a unique non-interacting
system with the same ground state electron density2*
In the non-interacting system the density is determined
by n(r) = 3, fi [t (r)]” where ¢; (r) (i =1,2,...) are
normalized single particle eigenstates and f; are the cor-
responding occupation numbers. The eigenstates are de-
termined from the KS equations

Hip; = ey, (1)

where ¢; are the (monotonically increasing) KS eigenval-
ues (see footnote?) and

H= —%VQ + vy (1') +vxco (I‘) + Vext (I‘) (2)

is the KS Hamiltonian (atomic units are used through-
out). In Eq. (2)), vy (r) is the Hartree potential, vxc (r)
the exchange-correlation (XC) potential and v, (r) is
the external potential operating on the electrons in the
interacting system. While DFT in general, and the KS
equation in particular, are exact in principle, the XC po-
tential functional is always approximated in practice and
thus defines the level of theory applied.
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The exact XC energy functional, Ex¢ [n], from which
the XC potential is derived via the relation vxc (r) =
dExc [n] /on (r), is known to satisfy a number of con-
straints (e.g., Ref. B). One constraint, on which we
focus here, is the piecewise-linearity propertyd Perdew
et al. have argued that the ensemble ground-state en-
ergy E(N) as a function of electron number, N where
Ng — 1 < N < Np, must be a series of linear segments
between the integer electron points Ny. Within the KS
formalism this requirement translates directly into a con-
dition on the XC energy functional, Ex¢ [n].

An important manifestation of piecewise-linearity is
the relation between the highest occupied eigenvalue,
en, and the ionization potential, I(Nyg) = E (Ng) —
E (Ny —1). These considerations have been originally
developed for finite systems; infinite systems are dis-
cussed in detail below. For the exact functional,
piecewise-linearity dictates that I = —dE/dN. In ad-
dition, Janak’s theorem® states that for any (exact or
approximate) XC functional, the highest occupied eigen-
value obeys

_ dEks
EH = de 9 (3)

where Fig is the KS estimate for the energy of the in-
teracting system. For any change in electron number NNV,
the same change occurs in fg, the occupation number
of the highest occupied eigenstate of the non-interacting
system. Thus we find the result I = —ep for a KS the-
ory which uses the exact XC functional (i.e. for which
Exs = E). This exact condition, known as the ioniza-
tion potential theorem M can be conveniently restated
in terms of the energy curvature, C, defined as the sec-
ond derivative of the total energy functional with respect
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to the fractional electron number,
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where Janak’s theorem has been used in the third equal-
ity. Fulfillment of piecewise-linearity implies that C' = 0,
i.e. that the curvature is zero.

Despite the importance of piecewise-linearity, it has
long been known that standard application of commonly
used functional classes, such as the local density approx-
imation (LDA), the generalized gradient approximation
(GGA), or conventional hybrid functionals with a fixed
fraction of Fock exchange (e.g. Ref. [12)), grossly dis-
obeys this condition. In practice, a substantial, non-
zero curvature is observed. The Egg (fg) curve is typ-
ically strongly convex (see, e.g. [I3H22) and, correspond-
ingly, —ey can underestimate I by as much as a factor
of two 23424

The lack of piecewise-linearity in approximate func-
tionals further affects the prediction of the fundamental
gap, Iy, defined as the difference between the minimum
energy needed for electron removal and the maximum
energy gained by electron addition. Even with the exact
functional, the KS eigenvalue gap, e, — ey (where ¢, is
the energy of the lowest unoccupied eigenstate), need not
equal E925*26. Instead,

C

(4)

Ey=¢r —em +Axc, (5)
where Axc is the derivative discontinuity@222728 _ 5
spatially-constant “jump” in the XC potential as the in-
teger number of particles is crossed. This discontinuity
is itself a consequence of piecewise linearity: The dis-
continuous change of slope in the energy as a function
of electron number must also be reflected in the energy
computed from the KS system. Some of it is contained
in the kinetic energy of the non-interacting electrons, but
the rest must come from a discontinuity in the XC poten-
tial“ Note that within the generalized KS (GKS) scheme
(see footnote??) part of the discontinuity in the energy
may also arise from a non-multiplicative (e.g., Fock) op-
erator 3032 Therefore the derivative discontinuity in the
XC potential may be mitigated and in some cases even
eliminated 3232
For any approximate (G)KS scheme, E, can be ex-
pressed as>®

1
Eg:€L—€H—‘r§(ChOle—FCelec)-i-Axc, (6)

where C"!® and C°'*¢ are the curvatures associated with
electron removal and addition, respectively. The curva-
tures act as “doppelgénger” for the missing derivative dis-
continuity. Whereas in the exact functional all curvatures
are zero and the difference between F, and the eigenvalue
gap is given solely by Ax¢, for standard approximate
(semi-)local (LDA and GGA) or hybrid functionals, em-
ployed in the absence of ensemble corrections, Axc¢ is

zero and the addition of the average curvature compen-
sates quantitatively for the missing derivative disconti-
nuity term =% In the most general case, both a remaining
curvature and a remaining derivative discontinuity will
contribute to the difference between E, and €7, — eq.

For small finite systems, the criterion of piecewise
linearity (i.e., zero curvature) has been employed to
markedly improve the connection between eigenvalues
and ionization potentials or fundamental gaps, and often
also additional properties, in at least four distinct ways:
(i) In the imposition of various corrections on existing
underlying exchange-correlation functionals;*¢(ii) In
first-principles ensemble generalization of existing func-
tional forms;*243 (iii) In the construction and evaluation
of novel exchange-correlation functionals;**4> And (iv) in
non-empirical tuning of parameters within hybrid func-
tionals 2947 especially range-separated ones 34304849

Unfortunately, this remarkable success of the
piecewise-linearity criterion does not easily transfer
to large systems possessing delocalized orbitals. For
example, for a LDA treatment of hydrogen-passivated
silicon nanocrystals (NCs), the fundamental gap com-
puted from total energy differences approaches the
KS eigenvalue gap with increasing NC size2%2l Ag
mentioned above, for LDA Axc = 0. Taken together
with Eq. @, this implies that as system size grows
the average curvature becomes vanishingly small and
piecewise linearity is approached®® Despite this, the
ionization potential obtained this way does not agree
with experiment 22

This limitation is intimately related to the vanishing
ensemble correction to the band gap of periodic solids®3
and even to the failure of time-dependent DFT for ex-
tended systems®*%, This is a disappointing state of af-
fairs, because the zero curvature condition that has been
used so successfully for small finite systems, both diag-
nostically and constructively, appears to be of little value
for extended systems, even though the problem it is sup-
posed to diagnose is still there.

In this article, we take a fresh look at this problem,
by considering the evolution of curvature with system
size. We approach the bulk limit in two different ways:
(i) Calculations for an increasingly large but finite sys-
tem (namely nanocrystals and molecular chains). (ii)
Calculations for a crystal represented by an increasingly
large reference cell with periodic boundary conditions.
We show that in both cases the curvature approaches
zero. However, it doesn’t do so in same fashion, due to
the presence of a compensating background charge in the
periodic system. Based on these findings, we present a
new criterion for functional construction and an assess-
ment derived from the size-dependence of the curvature,
along with a practical method for evaluation this crite-
rion. We further show that the curvature for large finite
systems is dominated by the self-interaction of the high-
est occupied eigenstate. These findings are illustrated by
computational studies of semiconductor NCs and long
alkane chains.



1. ENERGY CURVATURE IN LARGE FINITE SYSTEMS
A. General considerations

We first examine finite systems, in which, as noted
above, curvature effects have been already studied exten-
sively. As a first step in our general theoretical consider-
ations, we express the curvature of a finite system as the
rate of change in the energy of the highest-occupied KS-
eigenstate as an electronic charge ¢ is removed or added
(see footnote™?) to the system:

_dt’:‘H_ ;
(o

The first equality is a restatement of Eq. , com-
bined with the fact that the removed (added) charge is
taken from (inserted into) the highest occupied eigen-
state g, (see footnote®) while the second is due to the
Hellmann-Feynman theorem®™8. As the derivative in
Eq. is applied only to the terms of the Hamiltonian
H that are functionals of the density, n (r), we can write
the curvature as®?

C= /HH /[ ! |+fXC(rr) de(H)d?’ ‘d’r,

(3)
where fxco (r,v') = 62Exc[n]/dn(r)dn(r’) is the
exchange-correlation kernel and n; (r) = |¢; (r)|” is the
density of the i*"* KS eigenstate. Using the fact that the
electron density is given by n (r) =Y. fin; (r), it follows
that

dn (r)
dfu
where the first term on the right hand side is the
density of the highest occupied KS eigenstate and

the second term, Nyeiar (r) = >, fi (dn; (r) /dfm), de-
scribes the eigenstate density relaxation upon charge

=ng (I') + Nrelax (I‘) ) (9)

removal/addition. The curvature can therefore be ex-
pressed as:
n
C = / H ) d3 7"/ d3
|r - r’|

nrelaw ( ) (10)
|r — /|

n
// A Er'd®r + Cxe.
The first term in Eq. is twice the electrostatic in-
teraction energy of ny (r) with itself; the second term is
twice the electrostatic interaction energy between ng (r)
and the relaxation density, nreiaz (r); the last term,

Cxc = //nH (I‘) [nH (I‘l) + Nrelax (I‘l)] fXC (I‘, I‘/) dgr/dsrv

(11)
is the contribution of the exchange-correlation kernel to
the curvature. As discussed in the introduction, for

the exact exchange-correlation functional the curvature
is identically zero and therefore the two electrostatic
(Hartree) terms must be canceled out by the exchange-
correlation kernel term.

In the LDA, the approximate exchange-correlation ker-
nel is of the form:8 fEDA (v v/) = § (r — v') fL2A (n (v)).
The expression for the exchange-correlation contribution
to the curvature then simplifies to

CLDA /nH( ) Ing (r) + Nretaz (T)] )Ing (n(r)) d3T,
(12)

which does not generally cancel the Hartree terms in
Eq. . This is consistent with the above-mentioned
deviations from piecewise-linearity found in LDA calcu-
lations of small molecules.

B. Energy curvature in large finite three-dimensional systems

To gain insight into the behavior of curvature as a func-
tion of system size, we first consider an electron gas con-
sisting of N, electrons distributed uniformly in a finite

volume €2 with periodic boundary conditions. For such
a system, n; (r) = é and there is no eigenstate relax-

ation i.e. Npelar(r) = 0. Therefore the general curva-
ture expression of Eq. includes only the electrostatic
self-interaction and XC terms and, using LDA, can be
simplified to

A~ 1 I i O]
C_QZ//Q|I'—r’|drdr+ o

D | fiP*(n)
= —+ R
Q178 0

(13)

where we have used the fact that for a given uniform den-
sity, n = N./Q, the LDA XC kernel is constant. Note
that the bar over C' and D is used to denote quantities
relating to a uniform electron density. The first term in
Eq. is twice the electrostatic self-interaction energy
of a unlt charge, which is characterlzed by a volume-
independent shape factor D = iz [[, = r,‘d?’ r'd3r.

Analytical integration yields D = (4”)1/3EHa0 ~52.5
eVagy for a sphere, where Ep and ap are the atomic
Hartree and Bohr units for energy and length, respec-
tively. For a cube and a parallelepiped of the shape
of a diamond primitive cell, numerical integration yields
D ~51.2 eVag and 49.0 eV ayg, respectively, with the for-
mer value in agreement with electrostatic energy calcu-
lations reported in Ref. [61l

Clearly, the curvature of this uniform-electron-gas
based example decays to zero as the system size increases.
Specifically, in the limit of an infinitely large uniform
electron gas limit, where LDA is an exact result, the ex-
act DFT condition of zero curvature is indeed obeyed.
However, for a uniform electron gas confined to a finite



volume, the LDA is not exact and therefore non-zero cur-
vature is to be expected.

In Eq. , the curvature for large systems is domi-
nated by the DQ~1/3 term, which arises from the electro-
static self-interaction of the highest occupied eigenstate.
It stands to reason that such a term, with a general pref-
actor D, can be expected not just for this idealized sys-
tem, but also for realistic large but finite systems for
which LDA is a reasonable approximation.

To test this hypothesis, we focused on the elemental
group IV solids - diamond, silicon, and germanium - for
which LDA is well-proven to be a good approximation
for ground-state properties/62%63 For each solid, we con-
structed a set of increasingly large nanocrystals in two
stages. First, we replicated the primitive unit cell of the
bulk crystal an equal number of times in each of the
lattice vector directions, using the experimental lattice
constant, thereby creating a finite but periodic supercell.
Second, we removed unbound atoms and passivated any
remaining dangling bonds with hydrogen atoms. In this
way, hydrogen-passivated NCs containing up to 325 Si,
C, or Ge atoms, as well as a passivation layer containing
up to 300 H atoms, were formed. For each of the NCs
constructed this way, we calculated the LDA energy cur-
vature for both charge removal and charge addition. All
calculations were performed using NWCHEM®* with the
cc-PVDZ basis set for the smaller NCs and the STO-3G
basis set for the larger NCs. The curvature was esti-
mated by a finite difference approximation to Eq. ,
C = Aey /A fr, where we calculated ep for the neutral
system and for systems where an incremental small frac-
tional charge was removed from, or added to, the entire
system.

The resulting curvature for each of the systems studied
is shown in Fig. |1} as a function of O s. Clearly, in the
limit of large system volume, 2, all three compounds ex-
hibit the limiting form expected, i.e., a curvature given
by C = DQ /3, for both electron removal and addi-
tion. Furthermore, by fitting our results for NCs with
edges larger than 14a¢ to the expected dependence, we
obtained D = 43.5¢Vag for all three materials. This
“universal value” is reasonable in light of the fact that
the highest occupied eigenstate for all three materials
has a similar spatial distribution, making the Hartree
self-interaction contribution similar. Moreover, it devi-
ates from the ideal uniform-electron-gas parallelepiped
by only ~20%, a difference that can be attributed to the
non-uniform structure of the highest occupied eigenstate
obtained within LDA (see Eq. above). For smaller
nanocrystals, the term scaling as Q™! is non-negligible
and therefore the curvature departs from the ideal Q~1/3
behavior, as observed in Fig. [I Therefore, we conclude
that the curvature expression given by the right-hand
side of Eq. , derived for the uniform electron gas,
is indeed applicable also for realistic systems possessing
delocalized electronic states and that the self-repulsion
term dominates the curvature as the system grows.

Interestingly, further support for the limiting DQ~1/3

C [eV]
N
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>
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Figure 1.  Curvature, C, obtained within the local density
approximation for electron removal (solid symbols) or addi-
tion (hollow symbols) for diamond (blue circles), silicon (black
squares), and germanium (red triangles) nanocrystals, as a
function of Q_%, where €2 is the nanocrystal volume. The
dotted line represents a least-squares fit to the asymptotic
dependence. The solid line represents the asymptotic depen-
dence expected from Eq. for a uniform electron gas of
the same size and shape as the nanocrystals.

dependence of the curvature is obtained from the re-
sults of past LDA-based studies of the quantum size ef-
fect in spherical silicon®” and germanium®® nanocrystals.
In these studies, the difference between the fundamental
gap, computed from total energy differences of the an-
ionic, neutral, and cationic system, was compared to the
KS eigenvalue gap. The difference was observed=!:=12
to scale as ~ Q~1/3. This observation is easily explained
within our theory as a direct consequence of the non-zero
curvature Eq. (6] shows that for (semi-)local function-
als (without an explicit derivative discontinuity), the dif-
ference between the fundamental and the KS eigenvalue
gap is in fact equal to the average curvature for electron
addition and removal and must exhibit the same trends
as a consequence. This conclusion is further supported
by the value of D = 39.5eVag and D = 41.1eVag, de-
duced for the spherical silicon and germanium NCs, re-
spectively, from the data of Ref. [500 and Ref. 65l These
values are indeed very close to the value of D = 43.5eVaq
which we obtained above from explicit curvature calcu-
lations for the diamond-structured NCs. Note that the
change in shape does not cause a significant difference in
the value of D, consistent with our uniform electron gas
calculations.



C. Energy curvature in large finite one-dimensional systems

The above-demonstrated dominance of the electro-
static term in the size-dependence of the curvature sug-
gests that it must be strongly influenced by dimension-
ality. To test this, we again consider twice the Hartree
energy as given in Eq. (10]), evaluated for a unit-charge
uniform electron gas, confined to a cylinder of length L
and radius d such that L > d, as an approximation for
the curvature of a long but finite one-dimensional system.
This energy can be computed analytically% to obtain:

2 _3a L
CNLln(2e 1) L>d. (14)

This indicates that, as in the three-dimensional case, the
curvature vanishes as the system grows arbitrarily long -
an observation also consistent with the results of Mori-
Sanchez et al. for hydrogen chains'®. However, the cur-
vature does not decay as L™!, as perhaps could be naively

2e73/4L
d

expected, but rather as L~! In ( ) The relaxation

and exchange-correlation terms are expected to scale as
L~'. However they do not significantly affect the curva-
ture when L > 50aq, as for very large L the logarithmic
term dominates the L~ term.

To test whether this prediction carries over to realistic
one-dimensional systems, we considered alkane chains of
increasing length, L, whose width d is fixed by defini-
tion (see inset of Fig. [2). These alkane chains provide
a useful model of a quasi-one-dimensional system that
is well-described by LDA 57 We investigated chains con-
taining up to 240 C atoms and again used NWCHEMbS4
with the cc-PVDZ and the STO-3G basis sets. The com-
puted curvature for electron removal is shown in Fig. 2]
as a function of ag/L, and compared with the predic-
tion of Eq. . Clearly, for large L the curvature is
once again very well approximated by the electrostatic
self-interaction of a uniformly smeared unit charge.

I1l. ENERGY CURVATURE IN PERIODIC SYSTEMS
A. General Considerations

In solid-state physics, it is common practice to employ
periodic boundary conditions for the description of crys-
talline solids.®® To understand the bulk limit of curvature
calculations in such a scenario, we consider a reference
cell of total volume Qgrc, containing N repeating unit
cells (with unit cell volume Qp¢), using Born - von Kar-
man periodic boundary conditions/S® In other words, the
reference cell is treated as a finite but topologically peri-
odic system23 In such a system, the infinite bulk limit is
approached with increasing size of the reference cell.(see
footnote®)

To compute the curvature, we remove (or add) an elec-
tronic charge Qgrc from (or to) the reference cell, denoted

0.02

O A
0.01
ag/L

Figure 2.  Curvature, C, obtained within the local density
approximation for electron removal from alkane chains, as a
function of ag/L, where L is the chain length. The line repre-
sents the asymptotic dependence expected from Eq. for
a unit-charge uniform electron gas of the same length as the
chain and a radius of d = 2a¢. Triangles and diamonds rep-
resent data obtained using the cc-PVDZ and STO-3G basis
sets, respectively. Inset: the hexane molecule as an example
of an alkane chain, with d and L shown explicitly.

below by a “hole” (or “elec”) superscript, where appropri-
ate. We focus mostly on electron removal for simplicity.
Owing to the periodic boundary conditions, electron re-
moval from the reference cell implies removal of the same
charge from each of its periodic images. As there are an
infinite number of repeated reference cells, the removed
electronic charge is effectively infinite, leading to diver-
gences in the Coulomb potential. Therefore, a uniform
compensating positive charge, of density Qrc/Qrc, is
introduced to the reference cell. This keeps the infinite
periodic crystal neutral and avoids the divergent behav-
jor TOITT

As before, the curvature Cro, defined with respect to
the reference cell, is computed as the rate of change of the
highest occupied KS-eigenvalue with respect to removed
charge, Crec = deg/dQrc. By construction (and assum-
ing no symmetry breaking), the hole formed by charge re-
moval exhibits a periodic structure commensurate with
the repeating unit-cell and therefore Qrc = NQuc,
where Qu¢ is the charge removed from each of the N
unit cells that comprise the reference cell. In the limit
of large N, ey is expected to become independent of the
size of the reference cell, i.e., of N. Therefore

d 1 d C
Cro= ot = — 2 = 200 (15)
dQrc N dQuc N
where Cyc = dey/dQuc is the “unit-cell curvature”,

which in the limit of large N is independent of the refer-



ence cell size (see footnote™).

Clearly, the curvature Cr¢ for the infinite crystal does
depend on the reference cell size. As the reference cell
grows (N — oo, Qrc — o), we find Cre — 0 for
any underlying functional. This result should be con-
trasted with the exact DFT condition of piecewise lin-
earity, where the curvature given by Eq. should be
strictly zero for any reference cell size and not just in the
infinite cell limit. In other words, as for the NCs, in the
infinite system limit piecewise-linearity is obtained irre-
spective of the underlying XC functional and therefore
does not provide useful information for functional con-
struction or evaluation. However, in the exact theory we
also expect Cyc = 0. Therefore, a non-vanishing unit-
cell curvature, Cy ¢, represents a measure of the spurious
XC functional behavior even in periodic infinite solids
and may prove useful in future analysis.

B. LDA calculations of topologically periodic reference cells

To examine the considerations and conclusions of the
previous section, we performed LDA calculations for in-
creasingly large periodic reference cells of selected semi-
conductors and insulators, using the LDA-optimized lat-
tice vectors of a neutral unit cell (see footnote™).

As mentioned above, the reference cell is considered to
be finite but topologically periodic. Therefore, all cal-
culations are carried out using only the single k-point
(at T'). This makes curvature calculations straightfor-
ward both conceptually and practically, as charge is re-
moved from the highest occupied KS eigenstate as in the
finite-system calculations above. The energy derivatives
needed for the evaluation of the curvature (Eq. (I5)) were
calculated using finite differences of the highest occupied
energy eigenvalue, €y, for the neutral and incrementally
charged reference cell.

The results of such calculations for increasingly large
reference cells of diamond and silicon are summarized in
Fig. |3} (see footnote™) As shown in the top panel of Fig.
the reference cell curvature indeed decreases monotoni-
cally and vanishes in the large N limit, in agreement with
the above theoretical considerations. At the same time,
the bottom panel of Fig. [3| shows that the unit cell cur-
vature is not zero and for large N approaches a constant,
material-dependent value, such that Eq. is obeyed.

C. Finite versus periodic cell: A seeming paradox and its
resolution

In the limit of an arbitrarily large system, one would
expect surface effects to be negligible and so, naively, that
the limiting behavior of large periodic and non-periodic
systems to be the same. However, we already showed
both analytically and numerically that in fact the limit-
ing behavior is not the same. For the finite system, the
curvature asymptotically scales as Q~/3, where Q is the
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Figure 3. Computed charge removal curvature for silicon

(black squares) and diamond (blue circles) crystals: (Top)
Reference cell curvature, C2l¢, as a function of N~'. (Bot-
tom) unit cell curvature, C:%°, as a function of N, where
N is the number of primitive unit-cells in the reference cell.
Solid Lines are a guide for the eye. Dotted lines represent the
asymptotic dependence on N (Top), or the converged values
of Cyc (Bottom), obtained through Brillouin-zone sampling

described in Sec. [IID]

volume of the finite, non-periodic system, whereas for
the topologically periodic system the curvature asymp-
totically scales as QI_%IC, where QQrc is the reference cell
volume.

This apparent paradox can be reconciled by recall-
ing that in a periodic system, electron addition/removal
must be accompanied by the addition of a compensat-



ing, uniformly distributed background charge of opposite
sign, so as to avoid divergence of the Coulomb poten-
tial and energy™ For a non-periodic system, however,
no compensating charge is necessary. This background
charge strongly affects curvature considerations ™' To un-
derstand why, consider that if surface effects are ne-
glected then Eq. , developed above for non-periodic
systems, can be applied to the reference cell of a peri-
odic system. However, while n,.;4, integrates to zero
in the reference cell, ny integrates to 1. Therefore, ngy
must be replaced by a background-neutralized density,
pu (r) = ng (r) — ﬁ, before it can be inserted in Eq.
(10). Therefore, Eq. (L0]) yields the following expression
for the curvature in the periodic case, CPeTiodic.

Cperwdzc // pH ( )dd /dd
Qrc |r - r'\
g2/ rear a3 dPr 4+ Cxe.

pu (T) Nretaz (r')
//QRC (16)

v

With all densities being unit-cell periodic, we can de-
fine n; (G) = ﬁ fﬂuc n; (r) e’GTd®r as the Fourier-
component of n; (r) corresponding to the reciprocal unit-
cell lattice vector, G. For charge-neutral systems, the
G = 0 component must be zero. By noting that
g (G # 0) = py (G # 0), because the two densities dif-
fer only by a constant, we obtain:

Cperiodic = 41QRc Z ng (G) nH (G)*

2
G#0 G
e (G) Aretas (G)*
+47TQRCZ i ( )G2l (©) + Cxc.
G#0
(17)

The KS-eigenstate densities, n; (r), are normalized
over the reference cell and therefore ng (r) and n,ejqq (r),
as well as their Fourier components, must scale as Q]_%lc
Because G depends only on the unit cell and is indepen-
dent of Qrc, Eq. shows that CPeTo%i¢ gcales as Qgé.
Thus, we obtain a curvature that scales with inverse sys-
tem volume, consistent with Eq. above.

One can also compare the terms in Eq. and
Eq. , obtaining the following expression for the dif-

ference in their curvature:
Cfinite o Cperiodic

(18)

= ff,,, G me e ) g g,

[r—r’|

Dimensional analysis reveals that the above curvature

3
difference scales as 2 RC/ .

As discussed in Sectlon l Q, RC scahng was also ob-
tained for the non-periodic case from the self-interaction
energy of the highest-occupied eigenstate. Furthermore,
because the background charge must systematically can-
cel the divergence in the electronic electrostatic energy,

the prefactor of the Q;zlc/ 3 dependence in the above equa-
tion must be equal and opposite to that deduced from Eq.

(10). Therefore, overall the Q}}g 3 scaling must vanish in
Creriodic and only the QE}J scaling remains.

To summarize, the scaling behavior of a non-periodic
and a periodic system really is different, but this is not
owing to topology per se, but rather stems from the ef-
fects of the uniform background charge, used in periodic
calculations only. Before concluding this issue, however,
two more comments are in order. First, for finite sys-
tems described with (semi-)local functionals, the scaling
is self-interaction dominated and therefore positive (see,
e.g., Refs. MT3[T7/IRI36). Upon elimination of this effect
by the compensating background, curvature can be ei-
ther positive or negative (which we show below to be
the case). This is somewhat reminiscent of the behav-
ior of the exact-exchange functional (see, e.g., Ref. [13)),
where self-interaction is eliminated and the curvature is
typically mildly negative. Second, for periodic systems
we assumed throughout that the removed/added charge
is delocalized throughout the reference cell. If this is
not the case, e.g., if a molecule or a localized defect is
computed within a large supercell, scaling arguments no
longer apply and the results will resemble those of fi-
nite systems. This explains, among other things, why a
Hubbard-like U term for localized states in an otherwise
periodic system is indeed useful, as long as the correction
is limited to the vicinity of the localized site (see, e.g.,
Refs. B7UT5).

D. Brillouin zone sampling

In Section we have considered the infinite solid
limit by constructing increasingly large topologically-
periodic reference cells. While pedagogically useful, this
procedure is too cumbersome and computationally ex-
pensive to be used for routine unit-cell curvature calcu-
lations. In practice, the infinite-solid limit is much easier
to reach by using k-point sampling of the Brillouin zone
corresponding to a single periodic unit cell. This sam-
pling relies on Bloch’s theorem, which allows the eigen-
functions of a periodic Hamiltonian to have the same pe-
riodicity up to a phase factor'%® One can then show that
a single unit cell with uniform sampling of N k-points is
completely equivalent, mathematically and physically, to
a reference cell comprised of NV unit cells within the single
k-point (k = 0) treatment.™ Specifically, for a semicon-
ductor or insulator in the ground state the n electrons in
the unit cell occupy the lowest eigenstates, with energies
€;k (where 7 is the band index and k is the k-point in-
dex). This is equivalent to a system with n x N electrons,
i.e. a reference cell comprised of N unit cells. The infi-
nite solid limit, then, simply corresponds to an arbitrarily
dense k-point sampling.

Obviously, practical calculations must involve a finite
number of k-points. This is of little consequence to
ground-state calculations of semiconductors and insula-
tors, as results tend to converge quickly with the number
of k-points®® However, it raises a serious issue for elec-



tron removal/addition calculations.

Naively, one would think that the above-discussed de-
termination of curvature from deg/dq should be gen-
eralized to the case of k-point sampling by considering
dep/dq, where e is the Fermi level. This is because
for a ground-state, zero-temperature solid, er denotes
the energy of the highest occupied state by definition.
However, in practice one always removes/adds a finite
amount of charge, ¢, rather than a truly infinitesimal
charge. Therefore, charge is generally removed from all
eigenstates with energy ¢; ;. greater than ep, where the
latter is determined by the charge conservation condition

N -q= [ gea (19)

where ¢ (¢) is the density of states (DOS). Once charge
is removed not only from the highest-energy state, but
rather from many states, the piecewise linearity condi-
tion no longer applies. Therefore the entire theoretical
edifice on which all previous considerations were based
breaks down. This difficulty persists even if the second
derivative of the total energy, rather than the first deriva-
tive of the Fermi energy, is considered. One could, per-
haps, hope that extrapolation of der/dg to ¢ — 0, where
charge really is removed only from the highest occupied
eigenstate, would still lead to the correct result. Unfor-
tunately, this is not the case. For example, within the
effective mass approximation it is well-known that that
ep—en ~ ¢*/3, where e is the top of the valence band %
Clearly, then, der/dq actually diverges for ¢ — 0.

The above considerations are illustrated numerically in
Fig.[4] where the dependence of £ on ¢ (a) and its deriva-
tive (b) were computed for a primitive unit cell of silicon
with a 16 x 16 x 16 k-point sampling scheme. Clearly,
and as expected from Eq. 7 the Fermi energy follows
closely the integrated density of states of the uncharged
system (shown as a solid line). Furthermore, for small ¢
it indeed follows a ¢2/3 law and its derivative diverges.

Fortunately, an equally simple, yet accurate, procedure
is to consider instead the valence band maximum (or the
conduction band minimum for charge addition), which
we denote here as e_. For ¢ — 0 it too must tend to the
correct limit as charge is removed only from the highest
occupied state. For finite g it is, of course, incorrect, but
as it does not incorporate DOS effects its derivative is
not expected to diverge. This is illustrated numerically
in Fig. [ as well, for the same silicon example, where both
the weaker dependence of e_ on ¢ (¢ - note scale) and the
convergence of its derivative for small ¢ (d) is apparent.

In the calculations of Fig. [4] the removal of charge ¢
from a unit cell, sampled by N k-points, is in fact equiv-
alent to the removal of the same charge from a refer-
ence cell whose volume is NV times larger. Using Eq.
, this means that the limiting value of Ae_/Agq is
directly comparable to the non-vanishing unit-cell cur-
vature, Cyc, rather than to the vanishing reference cell
curvature, Crc. This is directly verified in Fig. [f] which
compares, for silicon, unit-cell curvature values, Cy¢,

obtained from increasingly large single k-point reference
cells (as in Fig.[3)) with those obtained from increasingly
dense k-point sampling of a unit cell. Clearly, the results
are indeed equivalent.

Finally, with the above scheme, we efficiently calculate
unit-cell curvatures for charge removal and addition in a
variety of semiconductors and insulators, obtained in the
limit of sufficiently dense k-point sampling. The results
are summarized in Table [l

From the results it is clear that for all systems con-
sidered the unit cell curvature in LDA is a non zero,
material-dependent property. Furthermore, once conver-
gence has been reached it is independent of the density
of the k-point sampling. This is to be contrasted with
the reference cell curvature discussed earlier, which was
not only dependent on the reference cell size, but went to
zero in the infinite limit for all functionals. As noted in
the preceding section, Cy¢ can have both positive and
negative values (illustrated by the results in , owing to
the presence of the neutralizing background.

Cuc (eV
Crystal Structure Charge removal (Cha)rge addition
AlAs|Zinc-blende 0.26 -0.65
AIN |Zinc-blende 0.94 -0.92
AlP |Zinc-blende 0.33 -0.66
AlSb | Zinc-blende 0.16 -0.57
C Diamond 0.58 -0.62
GaP | Zinc-blende 0.36 -0.65
MgO |Rock-salt 1.6 -0.73
Si Diamond 0.17 -0.54
SiC | Zinc-blende 0.59 -0.64

Table I. Energy curvature for the unit cell, Cyc, for charge
removal and addition, calculated for various solids.

IV. CONCLUSIONS

In this article, we have examined the solid-state limit
of energy curvature, i.e., of deviations from piecewise-
linearity, focusing on (semi-)local functionals. We con-
sidered two different limits: finite systems, with volume
Q — oo, as well as topologically periodic systems with
a reference cell (to which the periodic boundary condi-
tions are applied) of volume Qrc — co. We found that
in all cases piecewise-linearity - albeit possibly with the
wrong slope - is obtained in the solid-state limit, even
from functionals that grossly disobey it for a finite sys-
tem. However, using both analytical considerations and
practical calculations of representative systems, we found
that this limit is reached in very different ways. There-
fore, while using the demand of zero curvature for func-
tional construction and evaluation is not, as such, useful
in the solid-state limit, its size-dependence does contain
useful information.

For large finite systems, we found that curvature scales
as Q~1/3 for three-dimensional systems (e.g., nanocrys-



tals) and as %ln (26_3/45), where L is the length and
a is the width, for quasi-one-dimensional systems (e.g.,
molecular chains). This scaling behavior was found to
be dominated by electrostatics and traced to the self-
interaction term of the highest occupied state.

For large reference cell periodic systems, we found
that the curvature C're scales as Cre = CucQue/Qre,
where Cyc and Q¢ are the unit-cell curvature and vol-
ume respectively. Cy¢ (for an approximate functional) is
a non-vanishing material-dependent quantity that is in-
dependent of the reference cell, and therefore may serve
as a new useful measure of functional error in periodic
solids, similar to that of the deviation from piecewise lin-
earity used in finite systems. Furthermore, we have been
able to calculate this curvature in two ways: either di-
rectly from the definition by using increasingly large pe-
riodic cells or, more usefully, by considering changes in
the band edge position with increasingly dense k-point
sampling. Last but not least, we rationalized the dif-
ference between the periodic and non-periodic case as
resulting from the automatic elimination of the spurious
self-interaction via the addition of a compensating back-
ground charge in periodic system.

We believe that these results should prove useful for
further development, evaluation, and application of novel
exchange-correlation functionals suitable for the solid-
state.
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Figure 4. Charge removal in a unit cell of silicon, with

16 x 16 x 16 k-point sampling. Panel a: change in Fermi
level position, Aep, as a function of the removed charge, Aq.
Solid line: change in er expected from the uncharged density
of states curve. Panel b: Numerical derivative of the data
in panel a, Aep/Agq, as a function of Ag. Panel c¢: change
in position of valence band maximum, Ae_, as a function of
Agq. Panel d: Numerical derivative of the data in panel c,
Ae_/Ag, as a function of Aq.
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