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1 

Introduction


The first accounts of magnetism date back to the ancient Greeks who also gave magnetism its
name. It derives from Magnesia, a Greek town and province in Asia Minor, the etymological
origin of the word “magnet” meaning “the stone from Magnesia.” This stone consisted of
magnetite and it was known that a piece of iron would become magnetized when 
rubbed with it. 

More serious efforts to use the power hidden in magnetic materials were made only 
much later. For instance, in the 18th century smaller pieces of magnetic materials were 
combined into a larger magnet body that was found to have quite a substantial lifting power. 
Progress in magnetism was made after Oersted discovered in 1820 that a magnetic field 
could be generated with an electric current. Sturgeon successfully used this knowledge 
to produce the first electromagnet in 1825. Although many famous scientists tackled the 
phenomenon of magnetism from the theoretical side (Gauss, Maxwell, and Faraday) it is 
mainly 20th century physicists who must take the credit for giving a proper description of 
magnetic materials and for laying the foundations of modem technology. Curie and Weiss 
succeeded in clarifying the phenomenon of spontaneous magnetization and its temperature 
dependence. The existence of magnetic domains was postulated by Weiss to explain how 
a material could be magnetized and nevertheless have a net magnetization of zero. The 
properties of the walls of such magnetic domains were studied in detail by Bloch, Landau, 
and Néel. 

Magnetic materials can be regarded now as being indispensable in modern technology. 
They are components of many electromechanical and electronic devices. For instance, an 
average home contains more than fifty of such devices of which ten are in a standard 
family car. Magnetic materials are also used as components in a wide range of industrial 
and medical equipment. Permanent magnet materials are essential in devices for storing 
energy in a static magnetic field. Major applications involve the conversion of mechanical to 
electrical energy and vice versa, or the exertion of a force on soft ferromagnetic objects. The 
applications of magnetic materials in information technology are continuously growing. 

In this treatment, a survey will be given of the most common modern magnetic mate­
rials and their applications. The latter comprise not only permanent magnets and invar 
alloys but also include vertical and longitudinal magnetic recording media, magneto-optical 
recording media, and head materials. Many of the potential readers of this treatise may 
have developed considerable skill in handling the often-complex equipment of modern 
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2 CHAPTER 1. INTRODUCTION 

information technology without having any knowledge of the materials used for data stor­
age in these systems and the physical principles behind the writing and the reading of the 
data. Special attention is therefore devoted to these subjects. 

Although the topic Magnetic Materials is of a highly interdisciplinary nature and com­
bines features of crystal chemistry, metallurgy, and solid state physics, the main emphasis 
will be placed here on those fundamental aspects of magnetism of the solid state that form 
the basis for the various applications mentioned and from which the most salient of their 
properties can be understood. 

It will be clear that all these matters cannot be properly treated without a discussion 
of some basic features of magnetism. In the first part a brief survey will therefore be given 
of the origin of magnetic moments, the most common types of magnetic ordering, and 
molecular field theory. Attention will also be paid to crystal field theory since it is a prereq­
uisite for a good understanding of the origin of magnetocrystalline anisotropy in modern 
permanent magnet materials. The various magnetic materials, their special properties, and 
the concomitant applications will then be treated in the second part. 
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The Origin of Atomic Moments


2.1. SPIN AND ORBITAL STATES OF ELECTRONS 

In the following, it is assumed that the reader has some elementary knowledge of quantum 
mechanics. In this section, the vector model of magnetic atoms will be briefly reviewed 
which may serve as reference for the more detailed description of the magnetic behavior of 
localized moment systems described further on. Our main interest in the vector model of 
magnetic atoms entails the spin states and orbital states of free atoms, their coupling, and 
the ultimate total moment of the atoms. 

The elementary quantum-mechanical treatment of atoms by means of the Schrödinger 
equation has led to information on the energy levels that can be occupied by the electrons. 
The states are characterized by four quantum numbers: 

1.	 The total or principal quantum number n with values 1,2,3,... determines the size 
of the orbit and defines its energy. This latter energy pertains to one electron traveling 
about the nucleus as in a hydrogen atom. In case more than one electron is present, the 
energy of the orbit becomes slightly modified through interactions with other electrons, 
as will be discussed later. Electrons in orbits with n = 1, 2, 3, … are referred to as 
occupying K, L, M,. . .  shells, respectively. 

2. 

The number l can take one of the integral 
values 0, 1, 2, 3, ..., n – 1 depending on the shape of the orbit. The electrons with 
l = 1, 2, 3, 4, … are referred to as s, p, d, f, g,…electrons, respectively. For 
example, the M shell (n = 3) can accommodate s, p, and d electrons. 

l 
l, 

The orbital angular momentum quantum number describes the angular momentum 
of the orbital motion. For a given value of the angular momentum of an electron 
due to its orbital motion equals 

3.	 The magnetic quantum number describes the component of the orbital angular 
momentum l along a particular direction. In most cases, this so-called quantization 
direction is chosen along that of an applied field. Also, the quantum numbers 
can take exclusively integral values. For a given value of l, one has the following 
possibilities: For instance, for a d electron the 
permissible values of the angular momentum along a field direction are 
and Therefore, on the basis of the vector model of the atom, the plane of the 
electronic orbit can adopt only certain possible orientations. In other words, the atom 
is spatially quantized. This is illustrated by means of Fig. 2.1.1. 
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4 CHAPTER 2. THE ORIGIN OF ATOMIC MOMENTS 

4. The spin quantum number describes the component of the electron spin s along 
a particular direction, usually the direction of the applied field. The electron spin s 
is the intrinsic angular momentum corresponding with the rotation (or spinning) of 
each electron about an internal axis. The allowed values of are and the 
corresponding components of the spin angular momentum are 

According to Pauli’s principle (used on p. 10) it is not possible for two electrons to occupy 
the same state, that is, the states of two electrons are characterized by different sets of the 
quantum numbers and The maximum number of electrons occupying a given 
shell is therefore 

The moving electron can basically be considered as a current flowing in a wire that coin­
cides with the electron orbit. The corresponding magnetic effects can then be derived by 
considering the equivalent magnetic shell. An electron with an orbital angular momentum 

has an associated magnetic moment 

where is called the Bohr magneton. The absolute value of the magnetic moment is 
given by 

and its projection along the direction of the applied field is 

The situation is different for the spin angular momentum. In this case, the associated 
magnetic moment is 
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where is the spectroscopic splitting factor (or the g-factor for the 
free electron). The component in the field direction is 

The energy of a magnetic moment in a magnetic field     is given by the Hamiltonian 

where is the flux density or the magnetic induction and is the 
vacuum permeability. The lowest energy the ground-state energy, is reached for and 

parallel. Using Eq. (2.1.6) and one finds for one single electron 

For an electron with spin quantum number the energy equals 
This corresponds to an antiparallel alignment of the magnetic spin moment with respect to 
the field. 

In the absence of a magnetic field, the two states characterized by
degenerate, that is, they have the same energy. Application of a magnetic field lifts this 
degeneracy, as illustrated in Fig. 2.1.2. It is good to realize that the magnetic field need not 
necessarily be an external field. It can also be a field produced by the orbital motion of the 
electron (Ampère’s law, see also the beginning of Chapter 8). The field is then proportional 

are 

proportional to
to the orbital angular momentum l  and, using Eqs. (2.1.5) and (2.1.7), the energies are

In this case, the degeneracy is said to be lifted by the spin–orbit 
interaction. 

2.2. THE VECTOR MODEL OF ATOMS 

When describing the atomic origin of magnetism, one has to consider orbital and 
spin motions of the electrons and the interaction between them. The total orbital angular 
momentum of a given atom is defined as 

where the summation extends over all electrons. Here, one has to bear in mind that the

summation over a complete shell is zero, the only contributions coming from incomplete
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shells. The same arguments apply to the total spin angular momentum, defined as 

The resultants and 
interaction to form the resultant total angular momentum 

thus formed are rather loosely coupled through the spin–orbit 

This type of coupling is referred to as Russell–Saunders coupling and it has been proved to 
be applicable to most magnetic atoms, J can assume values ranging from J = (L – S), (L – 
S + 1), to (L + S – 1), (L + S). Such a group of levels is called a multiplet. The level lowest 
in energy is called the ground-state multiplet level. The splitting into the different kinds 
of multiplet levels occurs because the angular momenta and interact with each other 

· is the spin–orbit coupling 
constant). Owing to this interaction, the vectors
via the spin–orbit interaction with interaction energy

causes them to precess around the constant vector
and exert a torque on each other which 

This leads to a situation as shown in 
Fig. 2.2.1, where the dipole moments and corresponding to 
the orbital and spin momentum, also precess around It is important to realize that the 
total momentum is not collinear with but is tilted toward the spin owing 

makes an 
angle with  The precession frequency is usually quite high 
so that only the component of

and also precesses around
to its larger gyromagnetic ratio. It may be seen in Fig. 2.2.1 that the vector 

along is observed, while the other component averages 
out to zero. The magnetic properties are therefore determined by the quantity 
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It can be shown that 

This factor is called the Landé spectroscopic g-factor 
For a given atom, one usually knows the number of electrons residing in an incomplete 

electron shell, the latter being specified by its quantum numbers. We then may use Hund’s 
rules to predict the values of L, S, and  J for the free atom in its ground state. Hund’s 
rules are: 

(1)	 The value of S takes its maximum as far as allowed by the exclusion principle. 
(2)	 The value of L also takes its maximum as far as allowed by rule (1). 
(3)	 If the shell is less than half full, the ground-state multiplet level has J = L – S, but 

if the shell is more than half full the ground-state multiplet level has J = L + S. 

The most convenient way to apply Hund’s rules is as follows. First, one constructs the level 
scheme associated with the quantum number l. This leads to 2l + 1 levels, as shown for 
f electrons (l = 3) in Fig. 2.2.2. Next, these levels are filled with the electrons, keeping 
the spins of the electrons parallel as far as possible (rule 1) and then filling the consecutive 
lowest levels first (rule 2). If one considers an atom having more than 2l + 1 electrons in 
shell l, the application of rule 1 implies that first all 2l + 1 levels are filled with electrons 
with parallel spins before the remainder of electrons with opposite spins are accommodated 
in the lowest, already partly occupied, levels. Two examples of 4f-electron systems are 
shown in Fig. 2.2.2. The value of L is obtained from inspection of the values of the 
occupied levels whereas S is equal to The J values 
are then obtained from rule 3. 

Most of the lanthanide elements have an incompletely filled 4f shell. It can be easily 
verified that the application of Hund’s rules leads to the ground states as listed in Table 2.2.1. 
The variation of L and S across the lanthanide series is illustrated also in Fig. 2.2.3. 

The same method can be used to find the ground-state multiplet level of the 3d ions in 
the iron-group salts. In this case, it is the incomplete 3d shell, which is gradually filled up. 



8 CHAPTER 2. THE ORIGIN OF ATOMIC MOMENTS 

As seen in Tables 2.2.1 and 2.2.2, the maximum S value is reached in each case when the 
shells are half filled (five 3d electrons or seven 4f electrons). 

In most cases, the energy separation between the ground-state multiplet level and 
the other levels of the same multiplet are large compared to kT. For describing the mag­
netic properties of the ions at 0 K, it is therefore sufficient to consider only the ground 
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level characterized by the angular momentum quantum number J listed in Tables 2.2.1 
and 2.2.2. 

tum
For completeness it is mentioned here that the components of the total angular momen-
 along a particular direction are described by the magnetic quantum number In 

most cases, the quantization direction is chosen along the direction of the field. For practical 

number associated with the total angular momentum 
reason, we will drop the subscript J and write simply m to indicate the magnetic quantum 
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Paramagnetism of Free Ions


3.1. THE BRILLOUIN FUNCTION 

Once we have applied the vector model and Hund’s rules to find the quantum numbers J, L, 
and S of the ground-state multiplet of a given type of atom, we can describe the magnetic 
properties of a system of such atoms solely on the basis of these quantum numbers and the 
number of atoms N contained in the system considered. 

If the quantization axis is chosen in the z-direction the z-component m of J for each 
atom may adopt 2J + 1 values ranging from m = – J to m = + J. If we apply a magnetic 
field H (in the positive z-direction), these 2J + 1 levels are no longer degenerate, the 
corresponding energies being given by 

where is the atomic moment and its component along the direction of 
the applied field (which we have chosen as quantization direction). The constant is 
equal to 

The lifting of the (2J + 1)-fold degeneracy of the ground-state manifold by the magnetic 
field is illustrated in Fig. 3.1.1 for the case Important features of this level scheme 
are that the levels are at equal distances from each other and that the overall splitting is 
proportional to the field strength. 

Most of the magnetic properties of different types of materials depend on how this 
level scheme is occupied under various experimental circumstances. At zero temperature, 
the situation is comparatively simple because for any of the  N participating atoms only the 
lowest level will be occupied. In this case, one obtains for the magnetization of the system 

However, at finite temperatures, higher lying levels will become occupied. The extent to 
which this happens depends on the temperature but also on the energy separation between 
the ground-state level and the excited levels, that is, on the field strength. 

The relative population of the levels at a given temperature T and a given field strength 
H can be determined by assuming a Boltzmann distribution for which the probability of 
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12 CHAPTER 3. PARAMAGNETISM OF FREE IONS 

M 

finding an atom in a state with energy is given by 

The magnetization of the system can then be found from the statistical average 
of the magnetic moment This statistical average is obtained by weighing 
the magnetic moment of each state by the probability that this state is occupied and 
summing over all states:


The calculation of the magnetization by means of this formula is a cumbersome procedure 
and eventually leads to Eq. (3.1.10). For the readers who are interested in how this result 
has been reached and in the approximations made, a simple derivation is given below. Since 
there is no magnetism but merely algebra involved in this derivation, the average reader will 
not lose much when jumping directly to Eq. (3.1.10), keeping in mind that the magnetization 
given by Eq. (3.1.10) is a result of the thermal averaging in Eq. (3.1.4), involving 2J +1 
equidistant energy levels. 

By substituting into Eq. (3.1.4), and using the relations  in 
and one may write 

Since there cannot be any confusion with here, we have dropped the subscript J of 
and simply write g from now on. 

From the standard expression for the sum of a geometric series, one finds 
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Substitution of this result into Eq. (3.1.5) leads to 

Since sinh one obtains 

After carrying out the differentiation, one finds


with 

with 

the so-called Brillouin function, given by 

It is good to bear in mind that in this expression  H is the field responsible for the level 
splitting of the 2J + 1 ground-state manifold. In most cases, H is the externally applied 
magnetic field. We shall see, however, in one of the following chapters that in some materials 
also internal fields are present which may cause the level splitting of the (2J + 1)-mainfold. 

Expression (3.1.9) makes it possible to calculate the magnetization for a system of 
N atoms with quantum number J at various combinations of applied field and temperature. 

Experimental results for the magnetization of several paramagnetic complex salts 
containing and ions measured in various field strengths at low temper­
atures are shown in Fig. 3.1.2. The curves through the data points have been calculated 
by means of Eq. (3.1.9). There is good agreement between the calculations and the 
experimental data. 

3.2. THE CURIE LAW 

Expression (3.1.9) becomes much simpler in cases where the temperature is higher and 
the field strength lower than for most of the data shown in Fig. 3.1.2. In order to see this, we 
will assume that we wish to study the magnetization at room temperature of a complex salt 
of in an external field which corresponds to an external flux density 

more details about units will be discussed 
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in Chapter 8). For one has J = 9/2 and g = 8/11 (see Table 2.2.1). Furthermore, 
we make use of the following values 

and 

At room temperature (298 K), one derives for y in Eq. (3.1.11):


Since we now have shown that under the above conditions, it is justified to use only 
the first term of the series expansion of for small values of y 

From this follows, keeping only the first term, 
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The magnetic susceptibility is defined as Using Eq. (3.2.2), we derive for the 
magnetic susceptibility 

with the Curie constant C given by


Relationship (3.2.3) is known as the Curie’s law because it was first discovered experi­
mentally by Curie in 1895. Curie’s law states that if the reciprocal values of the magnetic 
susceptibility, measured at various temperatures, are plotted versus the corresponding tem­
peratures, one finds a straight line passing through the origin. From the slope of this line 
one finds a value for the Curie constant C and hence a value for the effective moment 

The Curie behavior may be illustrated by means of results of measurements made on the 
intermetallic compound shown in Fig. 3.2.1. 

It is seen that the reciprocal susceptibility is linear over almost the whole temperature 
range. From the slope of this line one derives per Tm atom, which is close 
to the value expected on the basis of Eq. (3.2.5) with J and g determined by Hund’s rules 
(values listed in Table 2.2.1). Similar experiments made on most of the other types of rare-
earth tri-aluminides also lead to effective moments that agree closely with the values derived 
with Eq. (3.2.5). This may be seen from Fig. 2.2.3 where the upper full line represents the 
variation of across the rare-earth series and where the effective moments 
experimentally observed for the tri-aluminides are given as full circles. In all these cases, 
one has a situation basically the same as that shown in the inset of Fig. 3.2.1 for 
where the ground-state multiplet level lies much lower than the first excited multiplet level. 
In these cases, one needs to take into account only the 2J + 1 levels of the ground-state 
multiplet, as we did when calculating the statistical average by means of Eq. (3.1.4). Note 
that in the temperature range considered in Fig. 3.2.1, the first excited level J = 4 will 
practically not be populated. 

The situation is different, however, for and It is shown in the inset of 
Fig. 3.2.1 that for several excited multiplet levels occur which are not far from the 
ground state. Each of these levels will be split by the applied magnetic field into 2J + 1 
sublevels. At very low temperatures, only the 2J + 1 levels of the ground-state multiplet 
are populated. With increasing temperature, however, the sublevels of the excited states 
also become populated. Since these levels have not been considered in the derivation of 
Eq. (3.2.3) via Eq. (3.1.4), one may expect that Eq. (3.2.3) does not provide the right 
answer here. With increasing temperature, there would have been an increasing contribu­
tion of the sublevels of the excited states to the statistical average if we had included these 
levels in the summation in Eq. (3.1.4). Since, for the excited multiplet levels have 
higher magnetic moments than the ground state, one expects that M and will increase with 
increasing temperature for sufficiently high temperatures. This means that will decrease 
with increasing temperature, which is a strong violation of the Curie law (Eq. 3.2.3). Exper­
imental results for demonstrating this exceptional behavior are shown in Fig. 3.2.1. 
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The magnetic splitting of the ground-state multiplet level (J = L – S = 5 –5/2 = 5/2) 
and the first excited multiplet level (J = L – S + 1 = 5 – 5/2 + 1 = 7/2) is illustrated in 
Fig. 3.2.2. Note that the equidistant character is lost not only due to the energy gap between 
the J = 5/2 and J = 7/2 levels but also due to a difference in energy separation between 
the levels of the J = 5/2 manifold (g = 2/7 and the levels of the J = 7/2 manifold 
(g = 52/63). 

Generally speaking, it may be stated that the Curie law as expressed in 
Eq. (3.2.3), is a consequence of the fact that the thermal average calculated in Eq. (3.1.4) 
involves only the 2J + 1 equally spaced levels (see Fig. 3.1.1) originating from the effect of 
the applied field on one multiplet level. Deviations from Curie behavior may be expected 
whenever more than these 2J + 1 levels are involved (as for and or when these 
levels are no longer equally spaced. The latter situation occurs when electrostatic fields in 
the solid, the crystal fields, come into play. It will be shown later how crystal fields can also 
lift the degeneracy of the 2J + 1 ground-state manifold. The combined action of crystal 
fields and magnetic fields generally leads to a splitting of this manifold in which the 2J + 1 
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sublevels are no longer equally spaced, or to a splitting where the level with m = – J is not 
the lowest level in moderate magnetic fields. 

More detailed treatments of the topics dealt with in this chapter can be found in the 
textbooks of Morrish (1965) and Martin (1967). 
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4 

The Magnetically Ordered State


4.1.	 THE HEISENBERG EXCHANGE INTERACTION AND 
THE WEISS FIELD 

It follows from the results described in the previous sections, that all  N atomic moments 
of a system will become aligned parallel if the conditions of temperature and applied field 
are such that for all of the participating magnetic atoms only the lowest level (m = –J in 
Fig. 3.1.1) is occupied. The magnetization of the system is then said to be saturated, no 
higher value being possible than 

This value corresponds to the horizontal part of the three magnetization curves shown 
in Fig. 3.1.2. It may furthermore be seen from Fig. 3.1.2 that the parallel alignment of 
the moments is reached only in very high applied fields and at fairly low temperatures. 
This behavior of the three types of salts represented in Fig. 3.1.2 strongly contrasts the 
behavior observed in several normal magnetic metals such as Fe, Co, Ni, and Gd, in which 
a high magnetization is already observed even without the application of a magnetic field. 
These materials are called ferromagnetic materials and are characterized by a spontaneous 
magnetization. This spontaneous magnetization vanishes at temperatures higher than the 
so-called Curie temperature Below the material is said to be ferromagnetically 
ordered. 

On the basis of our understanding of the magnetization in terms of the level splitting 
and level population discussed in the previous section (Eq. 3.1.4; Fig. 3.1.1), the occurrence 
of spontaneous magnetization would be compatible with the presence of a huge internal 
magnetic field, This internal field should then be able to produce a level splitting of suf­
ficient magnitude so that practically only the lowest level m = –J is populated. Heisenberg 
has shown in 1928 that such an internal field may arise as the result of a quantum-mechanical 
exchange interaction between the atomic spins. The Heisenberg exchange Hamiltonian is 
usually written in the form 

where the summation extends over all spin pairs in the crystal lattice. The exchange constant 
depends, amongst other things, on the distance between the two atoms i and j  considered. 
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20 CHAPTER 4. THE MAGNETICALLY ORDERED STATE 

In most cases, it is sufficient to consider only the exchange interaction between spins on 
nearest-neighbor atoms. If there are Z magnetic nearest-neighbor atoms surrounding a given 
magnetic atom, one has 

with the average spin of the nearest-neighbor atoms. Relation (4.1.3) can be rewritten 
by using which follows from the relations and 
(Fig. 2.1.2): 

Since the atomic moment is related to the angular momentum by (Eq. 2.2.4), 
we may also write 

where 

can be regarded as an effective field, the so-called molecular field, produced by the average 
moment of the Z nearest-neighbor atoms. 

Since it follows furthermore that is proportional to the magnetization 

The constant is called the molecular-field constant or the Weiss-field constant. In fact, 
Pierre Weiss postulated the presence of a molecular field in his phenomenological theory 
of ferromagnetism already in 1907, long before its quantum-mechanical origin was known. 

The exchange interaction between two neighboring spin moments introduced in 
Eq. (4.1.2) has the same origin as the exchange interaction between two electrons on 
the same atom, where it can lead to parallel and antiparallel spin states. The exchange 
interaction between two neighboring spin moments arises as a consequence of the overlap 
between the magnetic orbitals of two adjacent atoms. This so-called direct exchange inter­
action is strong in particular for 3d metals, because of the comparatively large extent of the 
3d-electron charge cloud. Already in 1930, Slater found that a correlation exists between 
the nature of the exchange interaction (sign of exchange constant in Eq. 4.1.2) and the ratio 

where represents the interatomic distance and the radius of the incompletely 
filled d shell. Large values of this ratio corresponded to a positive exchange constant, while 
for small values it was negative. 

Quantum-mechanical calculations based on the Heitler–London approach were made 
by Sommerfeld and Bethe (1933). These calculations largely confirmed the result of Slater 
and have led to the Bethe–Slater curve shown in Fig. 4.1.1. According to this curve, the 
exchange interaction between the moments of two similar 3d atoms changes when these 
are brought closer together. It is comparatively small for large interatomic distances, passes 
through a maximum, and eventually becomes negative for rather small interatomic dis­
tances. As indicated in the figure, this curve has been most successful in separating the 
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ferromagnetic 3d elements like Ni, Co, and Fe (parallel moment arrangements) from the 
antiferromagnetic elements Mn and Cr (antiparallel moment arrangements). 

The validity of the Bethe–Slater curve has seriously been criticized by several authors. 
As discussed by Herring (1966), this curve lacks a sound theoretical basis. In the form of 
a semi-empirical curve, it is still widely used to explain changes in the magnetic moment 
coupling when the interatomic distance between the corresponding atoms is increased or 
decreased. Even though this curve may be helpful in some cases to explain and predict 
trends, it should be borne in mind that it might not be generally applicable. 

We will investigate this point further by looking at some data collected in Table 4.1.1. 
In this table, magnetic-ordering temperatures are listed for ferromagnetic compounds 
and antiferromagnetic compounds As will be explained in the following sections, 
negative exchange interactions leading to antiparallel moment coupling exist in the latter 
compounds. The shortest interatomic Fe–Fe distances occurring in the corresponding crystal 
structures have also been included in Table 4.1.1. The shortest Fe–Fe distances, for which 
antiferromagnetic couplings are predicted to occur according to Fig. 4.1.1, are seen to adopt 
a wide gamut of values on either side of the Fe–Fe distance in Fe metal. 
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This does not lend credence to the notion that short Fe–Fe distances favor 
antiferromagnetic interactions. Equally illustrative in this respect is the magnetic moment 
arrangement in the compound FeGe shown in Fig. 4.1.2. The shortest Fe–Fe distance 
(2.50 Å) occurring in the horizontal planes gives rise to ferromagnetic rather than antiferro­
magnetic interaction. Antiferromagnetic interaction occurs between Fe moments separated 
by much larger distances (4.05 Å) along the vertical direction. This is a behavior opposite 
to that expected on the basis of the Bethe–Slater curve, showing that its validity is rather 
limited. 

4.2. FERROMAGNETISM 

The total field experienced by the magnetic moments comprises the applied field  H 
and the molecular field or Weiss field 

We will first investigate the effect of the presence of the Weiss field       on the magnetic 
behavior of a ferromagnetic material above In this case, the magnetic moments are no 
longer ferromagnetically ordered and the system is paramagnetic. Therefore, we may use 
again the high-temperature approximation by means of which we have derived Eq. (3.2.2) 

We have to bear in mind, however, that the splitting of the (2J + 1)-manifold used to 
calculate the statistical average is larger owing to the presence of the Weiss field. For 
a ferromagnet above we therefore have to use instead of  H when going through 
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all the steps from Eq. (3.1.4) to Eq. (3.2.2). This means that Eq. (3.2.2) should actually be 
written in the form 

Introducing the magnetic susceptibility we may rewrite Eq. (4.2.3) into 

where is called the asymptotic or paramagnetic Curie temperature. 
Relation (4.2.4) is known as the Curie–Weiss law. It describes the temperature depen­

dence of the magnetic susceptibility for temperatures above The reciprocal susceptibility 
when plotted versus T is again a straight line. However, this time it does not pass through 
the origin (as for the Curie law) but intersects the temperature axis at Plots of 

versus T for an ideal paramagnet and a ferromagnetic material above 
are compared with each other in Fig. 4.2.1. 

One notices that at the susceptibility diverges which implies that one may have 
a nonzero magnetization in a zero applied field. This exactly corresponds to the definition 
of the Curie temperature, being the upper limit for having a spontaneous magnetization. 
We can, therefore, write for a ferromagnet 

This relation offers the possibility to determine the magnitude of the Weiss constant 
from the experimental value of or obtained by plotting the spontaneous magnetization 
versus T or by plotting the reciprocal susceptibility versus T, respectively (see Fig. 4.2.1c). 

We now come to the important question of how to describe the magnetization of a ferro­
magnetic material below its Curie temperature. Ofcourse, when the temperature approaches 
zero kelvin only the lowest level of the (2J + 1)-manifold will be populated and we have 

In order to find the magnetization between T = 0 and we have to return to 
Eq. (3.1.9) which we will write now in the form 

with 

where is the total field responsible for the level splitting of the 2J + 1 ground-state 
manifold. 

The total magnetic field experienced by the atomic moments in a ferromagnet is 
and, since we are interested in the spontaneous magnetization (at H = 0), we 

have to use (Eq. 4.1.7), or rather This means 
that y in Eq. (4.2.8) is now given by 
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Combining this expression with Eq. (4.2.7) leads to


Upon substitution of (Eq. 4.2.5) and into Eq. (4.2.10), one 
finds 

This is quite an interesting result because it shows that for a given J the variation of 
the reduced magnetization M(T)/M(0) with the reduced temperature depends 
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exclusively on the form of the Brillouin function It is independent of parameters that 
vary from one material to the other such as the atomic moment the number of partic­
ipating magnetic atoms N and the actual value of In fact, the variation of the reduced 
magnetization with the reduced temperature can be regarded as a law of corresponding 
states that should be obeyed by all ferromagnetic materials. This was a major achievement 
of the Weiss theory of ferromagnetism, albeit Weiss, instead of using the Brillouin func­
tion, obtained this important result by using the classical Langevin function for calculating 
M(T): 

with 

Here represents the classical atomic moment that, in the classical description, is allowed 
to adopt any direction with respect to the field H (no directional quantization). The classical 
Langevin function is obtained by calculating the statistical average of the moment 

in the direction of the field. A derivation of the Langevin function will not be given here. 
For more details, the reader is referred to the textbooks of Morrish (1965), Chikazumi and 
Charap (1966), Martin (1967), White (1970), and Barbara et al. (1988). 

for the ferromagnetic Brillouin functions (Eq. 4.2.11) with
Several curves of the reduced magnetization versus the reduced temperature, calculated

1, and are shown 
in Fig. 4.2.2, where they can be compared with experimental results of two materials with 
strongly different Curie temperatures: iron and nickel 
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4.3. ANTIFERROMAGNETISM 

A simple antiferromagnet can be visualized as consisting of two magnetic sublattices 
(A and B). In the magnetically ordered state, the atomic moments are parallel or ferromag­
netically coupled within each of the two sublattices. Any two atomic magnetic moments 
belonging to different sublattices have an antiparallel orientation. Since the moments of 
both sublattices have the same magnitude and since they are oriented in opposite directions, 
one finds that the total magnetization of an antiferromagnet is essentially zero (at least at 
zero kelvin). As an example, the unit cell of a simple antiferromagnet is shown in Fig. 4.3.1. 

In order to describe the magnetic properties of antiferromagnets, we may use the same 
concepts as in the previous section. However, it will be clear that the molecular field caused 
by the moments of the same sublattice will be different from that caused by the moments of 
the other (antiparallel) sublattice. The total field experienced by the moments of sublattices 
A and B can then be written as 

where H is the external field and where the sublattice moments and have the same 
absolute value: 

The intrasublattice-molecular-field constant is different in magnitude 
and sign from the intersublattice-molecular-field constant 
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The temperature dependence of each of the two sublattice moments can be obtained 
by means of Eq. (3.1.9): 

with 

A similar expression holds for 
In analogy with Eq. (4.2.3), it is relatively easy to derive expressions for the sublattice 

moments in the high-temperature limit: 

where 

and
for H =

vanishes: 

The two coupled equations for  will lead to spontaneous sublattice moments 
 0) if the determinant of the coefficients of and 

The temperature at which the spontaneous sublattice moment develops is called the Néel 
temperature Solving of Eq. (4.3.9) leads to the expression where 

is the correct solution. We know that and The solution 
is not acceptable since, if this leads to a negative value of the magnetic-ordering 
temperature which is unphysical.


For temperatures above
 we may write 

Since we find 

where the paramagnetic Curie temperature is now given by
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It follows from Eq. (4.3.12) that the susceptibility of an antiferromagnetic material follows 
Curie–Weiss behavior, as in the ferromagnetic case. However, for antiferromagnets is 
not equal to the magnetic-ordering temperature 

If we compare Eq. (4.3.10) with Eq. (4.3.13), we conclude that is smaller than 
bearing in mind that is negative. In many types of antiferromagnetic materials, one 
has the situation that the absolute value of the intersublattice-molecular-field constant is 
larger than that of the intrasublattice-molecular-field constant. In these cases, one finds 
with Eq. (4.3.13) that is negative. The plot displayed in Fig. 4.2.1d corresponds to 
this situation. 

In a crystalline environment, frequently, one crystallographic direction is found in 
which the atomic magnetic moments have a lower energy than in other directions (see 
further Chapters 5 and 11). Such a direction is called the easy magnetization direction. 
When describing the temperature dependence of the magnetization or susceptibility at tem­
peratures below we have to distinguish two separate cases, depending on whether the 
measuring field is applied parallel or perpendicular to the easy magnetization direction of 
the two sublattice moments. As can be seen from Fig. 4.3.2, the magnetic response in these 
two directions is strikingly different. 

We will first consider the case where the field is applied parallel to the easy magneti­
zation direction in an antiferromagnetic single crystal, with H parallel to the A-sublattice 
magnetization and antiparallel to the B-sublattice magnetization. The magnetization of both 
sublattices can be obtained by means of 



29 SECTION 4.3. ANTIFERROMAGNETISM 

where


Since the field is applied parallel to the A sublattice and antiparallel to the B sublattice, 
the A-sublattice magnetization will be slightly larger then the B-sublattice magnetization. 
The induced magnetization can then be obtained from 
For small applied fields, one may find and by expanding the corresponding 
Brillouin functions as a Taylor series in  H and retaining only the first-order terms. After 
some tedious algebra, one eventually finds 

where is the derivative of the Brillouin function with respect to its argument. For 
more details, the reader is referred to the textbooks of Morrish (1965) and of Chikazumi 
and Charap (1966). 

It can be inferred from Eq. (4.3.19) that at zero kelvin and that increases 

sublattices, the magnetically ordered state below
with increasing temperature. The physical reason behind this is a very simple one. For both

is due to the molecular field which 
leads to a strong splitting of the 2J + 1 ground-state manifold (like in Fig. 3.1.1), so that in 
each of the two sublattices the statistical average value of is nonzero when H = 0. The 
absolute values of are the same for both sublattices, only the quantization directions of 

are different because the molecular fields causing the splitting have opposite directions. 
If we now apply a magnetic field parallel to the easy direction, the total field will be slightly 
increased for one of the two sublattices, for the other sublattice it will be slightly decreased. 
This means that the total splitting of the former sublattice is slightly larger than in the latter 
sublattice. When calculating the thermal average of both sublattices (Eq. 3.1.9), one 
finds that there is no difference at zero kelvin since for both sublattices only the lowest level 
is occupied and one has 

and consequently 

However, as soon as the temperature is raised there will be thermal population of the 
2J + 1 levels. Because the total splitting for the two sublattices is different, one obtains 
different level occupations for both sublattices. The corresponding difference in the thermal 
averages becomes stronger, the lower the population of the two lowest levels. In other 
words, although in both sublattices the statistical average decreases with increasing 
temperature, the difference between for the two sublattices increases and causes the 
susceptibility to increase with temperature (see Fig. 4.3.2). 
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We will now consider the susceptibility of an antiferromagnetic single crystal with 
the magnetic field applied perpendicular to the easy direction. The applied field will then 
produce a torque that will bend the two sublattice moments away from the easy direction, as 
is schematically shown in the inset of Fig. 4.3.2. This process is opposed by the molecular 
field that tries to keep the two sublattice moments antiparallel. The total torque on each 
sublattice moment must be zero when an equilibrium position is reached after application 
of the magnetic field. For the A-sublattice moment, this is expressed as follows: 

with 

with 
A similar expression applies to the torque experienced by the B-sublattice moment but 

in a direction opposite to Eq. (4.3.22) can be written as 

The components of the two sublattice moments in the direction of the field lead to a net 
magnetization equal to 

After combining Eqs. (4.3.24) and (4.3.25), one obtains


Since is negative, we may write 

This result shows that the susceptibility of an antiferromagnet measured perpendicular to the 
easy direction is temperature independent and that its magnitude can be used to determine 
the absolute value of the intersublattice-molecular-field constant. 

If the applied field makes an arbitrary angle with the easy direction, the susceptibility

in the direction of the field,

and perpendicular components:


can be calculated by decomposing the field into its parallel 

The magnetization in the direction of the field is then given by
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and hence the susceptibility by


In a polycrystalline sample, one has crystallites with all orientations relative to the field. 
Since the number of orientations lying within of the inclination is proportional to 
we have for the susceptibility of a piece of polycrystalline material or for a powder sample 

with 

and 

This leads to 

The above results for the magnetic susceptibilities are generally found to be in qualitative 
agreement with the properties observed for polycrystalline samples of several simple anti­
ferromagnetic compounds. A sharp maximum in the susceptibility at the Néel temperature, 
or, equivalently, a sharp minimum in the reciprocal susceptibility, are generally consid­
ered as experimental evidence for the occurrence of antiferromagnetic ordering in a given 
material. 

Let us consider the effect of an external field H on a magnetic material for which the 
magnetization is equal to zero before a magnetic field is applied. The work necessary to 
generate an infinitesimal magnetization is given by 

The total work required to magnetize a unit volume of the material is


For antiferromagnetic materials and comparatively low magnetic fields, we may substitute 
into this equation. After carrying out the integration, one finds for the free energy 

change of the system 

It can be seen in Fig. 4.3.2 that below the Néel temperature This means 
that the application of a magnetic field to a single crystal of an antiferromagnetic material 
will always lead to a situation in which the two sublattice moments orient themselves 
perpendicular to the direction of the applied field or nearly so, as shown in the right part of 
Fig. 4.3.2. With increasing field strength, the bending of the two sublattice moments into 
the field direction becomes stronger until both sublattice moments are aligned parallel to 
the field direction and further increase of the total magnetization is no longer possible. The 
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field dependence of the magnetization behaves as shown by curve (a) in Fig. 4.3.3. The 
slope of the first part of this curve is given by and can be used to obtain 
an experimental value of the intersublattice-coupling constant according to Eq. 4.3.27. 

In the discussion given above, we have assumed that the mutually antiparallel sublattice 
moments are free to orient themselves along any direction in the crystal. In other words, 
they can align themselves perpendicular to any direction in which the field is applied. 

In most cases, however, the mutually antiparallel sublattice moments adopt a specific 
crystallographic direction in zero applied field. For this so-called easy direction, the mag­
netocrystalline anisotropy energy K (which will be discussed in more detail in Chapter 11) 
adopts its lowest value, K = 0. The field dependence of the magnetization will then show 
a behavior represented by curve (a) in Fig. 4.3.3 only if H is applied perpendicular to this 
easy direction. 

Quite a different behavior will be observed when H is applied along the common easy 
direction of the two sublattice moments (indicated by  D in Fig. 4.3.3). In this direction, 
the magnetocrystalline energy has its lowest value (K = 0), and the free energy is given 
by By contrast, if the sublattice moments would adopt a direction 
perpendicular to the field direction and hence perpendicular to the easy direction (i.e., the
so-called hard direction), the free energy would be given by For 
comparatively low applied fields, one has and both sublattice moments will 
retain the easy moment direction. However, may become eventually the lowest energy 
state because Both sublattice moments will therefore adopt a direction (almost) 
parallel to the applied field. The critical field   at which this happens is given by the 
equation 
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which gives 

This change in moment direction from the easy direction to a direction perpendicular to 
it is accompanied by an abrupt increase in the total magnetization, as illustrated by curve 
(b) in Fig. 4.3.3. This phenomenon is called spin flop. Of course, owing to the action of 
the field applied, the sublattice-moment directions are not strictly perpendicular to the easy 
direction. The sublattice moments have bent already into the field direction to some extent 
and will continue to do so above for further increasing fields. 

It is interesting to note that the magnetization corresponding to curve (b) for applied 
fields higher than is slightly larger than that corresponding to curve (a). The reason 
for this is the following. The torque experienced by the sublattice moments due to the 
applied field that forces the sublattice moments into the field direction is counteracted in 
both cases by the intersublattice coupling that tries to keep the two sublattice moments 
mutually antiparallel (see previous section). In the case of curve (a), the torque produced by 
the applied field additionally has to overcome a restoring torque caused by the anisotropy 
energy that tries to keep the sublattice moments in the easy direction. This latter restoring 
torque acts in a favorable way in the case of curve (b) because the field is applied in the easy 
direction now. Therefore, for a given field strength above a larger degree of bending of 
the sublattice moments into the field direction is achieved in the case of curve (b) than in 
the case of curve (a). 

A special situation is encountered in materials for which the magnetocrystalline 
anisotropy is very large. This is illustrated by means of Fig. 4.3.4 where the field depen­
dence of the total magnetization is plotted with the field applied in the hard direction 
(curve a) and in the easy direction (curve b). In the case of curve (a), the strong anisotropy 
prevents any sizable bending of the sublattice moments into the field direction. A forced 
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parallel arrangement of the two sublattice moments, as in the high-field part of curve (a) 
in Fig. 4.3.3, is not possible here. Therefore, the total magnetization remains low up to the 
highest field applied. In the case of curve (b), the total magnetization remains low for low 
fields. However, at a certain critical value of the applied field, the total magnetization jumps 
directly to the forced parallel configuration. We will compare now the free energy of the 
antiparallel sublattice-moment arrangement in the applied field with the parallel sublattice­
moment arrangement in the applied field. Using Eqs. (4.3.1) and (4.3.2) for calculating 

for both situations and noting that K = 0 for all situations 
on curve (b), one easily derives the critical field as 

This formula expresses the fact that the sudden change from antiparallel to parallel 
sublattice-moment arrangement occurs when the applied field is able to overcome the anti­
ferromagnetic coupling between the two sublattice moments. This phenomenon is called 
metamagnetic transition. 

4.4. FERRIMAGNETISM 

In ferrimagnetic substances, in contrast with the antiferromagnets described in the 
previous section, the magnetic moments of the A and B sublattices are not equal. The mag­
netic atoms (A and B) in a crystalline ferrimagnet occupy two kinds of lattice sites that have 
different crystallographic environments. Each of the sublattices is occupied by one of the 
magnetic species, with ferromagnetic (parallel) alignment between the moments residing on 
the same sublattice. There is antiferromagnetic (antiparallel) alignment, however, between 
the moments of A and B. Since the number of A and B atoms per unit cell are generally 
different, and/or since the values of the A and B moments are different, there is nonzero 
spontaneous magnetization below At zero Kelvin, it reaches the value 

As in Eq. (4.1.2), we can represent the exchange interaction between the various spins 
and in the lattice by means of the Hamiltonian 

where is the exchange constant describing the magnetic coupling of two moments 
residing on the same magnetic sublattice A (or B) or on different sublattices A and B. 
Indicating the exchange constant between two nearest-neighbor spins on the same sublattice 
by (or and between two nearest-neighbor spins on different sublattices by 
we can represent the three types of cooperative magnetism leading to ordered magnetic 
moments as follows: 

Ferromagnetism

Antiferromagnetism
 and 
Ferrimagnetism and 
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In general, and are positive quantities but this is not strictly necessary. For instance,

there are ferrimagnetic Gd–Co compounds (see Fig. 4.4.1) in which

and
 the strengths of these interactions decreasing in the sequence 

It will be shown in Chapters 12 and 13 that several of the most prominent magnetic 
materials are ferrimagnets. For this reason, we will discuss the magnetic coupling in these 
materials in somewhat more detail. We consider a ferrimagnetic compound consisting of 
two types of magnetic atoms A and B, occupying the sites of two different sublattices. 
The total angular moments of these magnetic atoms will be indicated as and The 
corresponding g-factor are and respectively. The magnetic moments per atom are 
related to the angular momenta by (Eq. 2.2.4): 

The exchange coupling between the various magnetic atoms can be described by means 
of Eq. (4.4.2). If we only take into account the magnetic interaction between the spins 
on nearest-neighbor atoms, the exchange interaction experienced by the spins can be 
approximated by a molecular field acting on 

A similar expression can be written down for the exchange interaction experienced by 
the spins The quantities and in Eq. (4.4.4) represent the exchange-
coupling constants associated with the intrasublattice interaction and the intersublattice 
interaction, respectively. The number of similar neighbors and the number of dissimilar 
nearest neighbors are indicated as and respectively. From Eq. (4.4.4), we 
can derive an expression for the molecular field  by using 

or, after using Eq. (4.4.3) and 
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so  that 

where the intrasublattice- and intersublattice-molecular-field constants and are 
defined as 

In the paramagnetic regime, in the presence of a magnetic field  H, the two sublattice 
moments are given by 

where 

H =  0 
represents the number of A atoms per mole of atoms of the material. A similar expression 

holds for A solution of Eqs. (4.4.10) and (4.4.11) with and
can be found if 

The corresponding temperature, is now given by the relation 

where the various types of constants C and N are given by Eqs. (4.4.8), (4.4.9), and (4.4.12). 
For a given crystal structure, the number of nearest neighbors 
known. In most cases, the values of g and J pertaining to the magnetic atoms are also 
known. Equation (4.4.14) then gives essentially a relation between the magnetic-ordering 
temperature and the magnetic-coupling constants and 

and are 

In deriving expressions for the total magnetization and sublattice magnetizations in the 
magnetically ordered regime, we will assume that the moments of the A and B sublattices 
are aligned strictly antiparallel. This is the case if is the only nonzero molecular-field 
constant or if is large compared to and This assumption will be more 
carefully examined later. The sublattice moments are then given by 
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where and are the Brillouin functions corresponding to the quantum 
numbers and respectively, and where 

It is to be noted that the two expressions for and in Eq. (4.4.15) are coupled 
equations since 

The applied field  H is assumed to be zero in Eqs. (4.4.17) and (4.4.18), since we are 
interested in the spontaneous moment The temperature dependence of can 
be derived from the expression 

Some illustrative examples of magnetization versus temperature curves are given in 
Figs. 4.4.2 and 4.4.3, where we have assumed that The situation shown 
in Fig. 4.4.2a refers to a compound in which the A-intrasublattice interaction is antiferromag­
netic or only weakly ferromagnetic while the B-intrasublattice interaction is ferromagnetic 
and much stronger. As a result, the effective molecular field experienced by the A moments 
is smaller than that experienced by the B moments. This has as a consequence that 
decreases more rapidly with temperature than Figure 4.4.2b refers to a case where 
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the effective molecular field at the A sites is stronger than at the B sites. In this case, the 
spontaneous magnetization exhibits sign reversal. The temperature range in which this 
occurs is indicated by the dashed line. However, since the quantity measured in practice is 

the curve plotted as the full line is actually observed. The temperature 
at which the resultant magnetization is zero is commonly called the compensation 

point or compensation temperature. 
Various other possible curves are shown in Fig. 4.4.3. In practice, these different 

types of curves are observed when the composition of the compounds investigated is varied. 
For instance, there are various compounds in which rare earths (R) are combined with 
3d metals (T), represented by the formula There are several possibilities for choosing 
the T element (T = Ni, Co, Fe, Mn) and 15 possibilities for choosing the  R element (see 
Table 2.2.1). An example of how the compensation temperature can be shifted to lower 
temperatures by reducing the R-sublattice magnetization via substitution of non-magnetic 
Y is shown in Fig. 4.4.4. 

It follows from the discussion given above that the temperature dependence of the 
magnetization in ferrimagnetic compounds is determined by the magnitude and sign of 
the intrasublattice-coupling contants and the intersublattice-coupling constant 

appearing in Eqs. (4.4.8) and (4.4.9). If the sublattice moments and are 
known, these constants can be determined by fitting experimental curves of the temperature 
dependence of the total magnetization M(T). The determination of three constants by fitting 
a simple M(T) curve can, however, not always be accomplished in an unambiguous way. 
This is true, in particular when the M(T) curve has not much structure. This is generally the 
case when it does not exhibit the singular point at which the two sublattice 
moments become equal (Fig. 4.4.2b). 

A most elegant and simple method, the high-field free-powder (HFFP) method, for 
determining the intersublattice-coupling constant has been provided by Verhoef et al. (1988). 
In this method, the molecular-field constant that determines the moment coupling 
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between the rare-earth (R) sublattice and transition-metal (T) sublattice in ferrimagnetic 
intermetallic compounds is derived from magnetic measurements made on powder particles 
in high fields at low temperatures. The powder particles have to be sufficiently small in size 
so that they can be regarded as an assembly of small single crystals, able to rotate freely 
and orient their magnetization in the direction of the external field. 

In many types of R–T compounds, the anisotropy of the R sublattice exceeds that of 
the T sublattice by at least one order of magnitude at 4.2 K. By minimizing the free-energy, 
it can easily be shown that under such circumstances the low-temperature magnetization 
curve consists of three regions, as illustrated in Fig. 4.4.5. Below there is a strictly 
antiparallel alignment between the (heavy)-R moments and the T moments, so that M = 

For sufficiently high values of the applied field,  the R and T 
moments are parallel and In the intermediate field range, 

there exists a canted-moment configuration, the R- and T-sublattice moments 
bending toward each other with increasing H. In this region, the field dependence of the 
total moment is given by 

The slope of the M(H) curve in the intermediate regime can therefore straightforwardly 
be used to determine the experimental value of
can be obtained via Eq. (4.4.9). A prerequisite for this method is that the two sublattice 
moments

   from which the coupling constant 

and do not differ too much in absolute value. The reason for this is that 
the first critical field 

has to be sufficiently low so that the linear magnetization region given by Eq. (4.4.20) falls 
within the experimentally accessible field range. 
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In general, it is found that is almost temperature independent. This means that 
reliable values of can also be derived in comparatively low fields for compounds 
having a compensation point in their temperature dependence of the magnetization. When 
measuring the field dependence of M at the latter temperature, one has 
Eq. (4.4.20) applies already for low fields starting from the zero field. In fact, the presence 
at the compensation temperature of two antiparallel sublattice moments of equal size leads 
to a situation similar to that in an antiferromagnet below

and 

 One could then equally 
well apply Eq. (4.3.27), where the intersublattice-molecular-field constant now takes 
the form Magnetic dilution is another method to make the linear region given by 
Eq. (4.4.20) fall into the experimentally available field range. In such a case, the larger of 
the two sublattice magnetizations in Eq. (4.4.21) is reduced by substituting non-magnetic 
atoms for the magnetic atoms on this sublattice. 

Inelastic neutron scattering is another method to determine intersublattice-coupling 
constants. This method is experimentally less easily accessible and will not be discussed 
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here. Details of this method have been described by Nicklow et al. (1976) and Koon and 
Rhyne (1980). Results on compounds obtained by the HFFP method discussed above 
and results obtained by inelastic neutron scattering are compared with the results of elec­
tronic band structure calculations in Fig. 4.4.6. A compilation of intersublattic-coupling 
constants for various types of R–T compounds has been presented by Liu et al. (1994). 
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5 

Crystal Fields


5.1. INTRODUCTION 

Almost all magnetic phenomena described in the preceding two chapters depend on the 
lifting of the degeneracy of the (2J + 1)-degenerate ground-state manifold by magnetic 
fields (internal and external) and on the occupation of the levels of this manifold as a 
function of magnetic-field strength and temperature. 

Apart from magnetic fields, electrostatic fields are also able to lift the (2J + 1)-fold 
degeneracy. In order to see this, we will consider first the comparatively simple case of an 
atom with orbital angular momentum L =
of two positive ions located along the z- axis. In the free atom, the states

 1 situated in a uniaxial crystalline electric field
 0 have 

identical energies and are degenerate. However, in the crystal lattice, the atom has a lower 
energy when the electronic charge cloud is close to the positive ions as in Fig. 5.1.1a than 
when it is oriented midway between the positive charges, as in Fig. 5.1.1b and c. The wave 
functions which give rise to these electronic charge densities have the form 
and yf(r) and are called the and orbitals, respectively. In the axially symmetric 
electric field considered in Fig. 5.1.1, the and orbitals are still degenerate. The three 
degenerate energy levels referred to the free atom are shown as a broken line in the right part 
of Fig. 5.1.1. Had the symmetry of the electric field been lower than axial, the degeneracy 
of the and orbitals would also have been lifted. 

The crystalline electric field is able to orient the electronic charge cloud into an energet­
ically favorable direction (situation a in Fig. 5.1.1). This means that the associated orbital 
moment also may have a preferred direction in the crystal. We have seen in Chapter 2 that 
the spin moment is tied to the orbital moment by means of the spin–orbit interaction. This 
implies that there also exists some directional preference for the spin moment. 

In the next section, it will be shown how one can describe the effect of electrostatic 
fields by means of a quantum-mechanical treatment. 

The reader who is more materials oriented will be mainly interested in the magnetic 
anisotropy resulting from the crystal–field interaction. This holds in particular for readers 
interested in rare-earth-based permanent-magnet materials. For these readers it is not strictly 
necessary to work through Sections 5.2–5.5. Instead, we offer in Section 5.6 a simple 
physical picture by means of which the magnetic anisotropy induced by the crystal field in 
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uniaxial rare-earth-based materials can be understood and by means of which the formulae 
used in Section 12.4 become sufficiently transparent. 

5.2. QUANTUM-MECHANICAL TREATMENT 

In most compounds, the magnetic atoms or ions form part of a crystalline lattice in which 
they are surrounded by other ions, the symmetry of the nearest-neighbor coordination being 
determined by the crystal structure. In ionic crystals, the metal ions are usually surrounded 
by negatively charged diamagnetic ions. Also in metallic systems, the constituting atoms 
carry an effective electric charge. This is due to the fact that they have donated all or at 
least a substantial part of their valence electrons to the conduction band. The resultant 
positive ions are screened to some extent by the conduction electrons, making the effective 
charge smaller than the corresponding ionic charges. The electrostatic field experienced by 
the unpaired electrons of a given magnetic ion is called crystal field or ligand field. The 
neighboring ions, surrounding the atom with the unpaired electrons, are called the ligands. 
A typical situation, where the atom carrying the unpaired electrons is situated in a uniaxial 
crystal field, is shown in Fig. 5.2.1. 

If J is the total angular-momentum quantum number of the magnetic atom, the (2J + 1)-
fold degeneracy of its ground state will be lifted in the presence of a magnetic as well in 
the presence of a crystal field. This will result in changes in the magnetic properties of the 
corresponding compound if a crystal field is present. 

In order to derive the magnetic properties, it is necessary to solve the Hamiltonian of 
the crystal–field interaction explicitly. The crystal-field potential due to the surrounding 
ions at the location of the kth unpaired electron of the magnetic ion, is 

where jth ligand ion is 
can be either positive or negative).

The charge of theis the absolute value of the electron charge. 
and are the positions of the jth ligand ion 
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and the unpaired electron, respectively. The summation is carried out over all ligand 
ions in the crystal, taking the center of the magnetic ion considered as origin. 

In a more rigorous treatment, the electric charges associated with the on-site valence 
electrons of the magnetic ion also have to be included in the crystal-field potential and 
the charges associated with the ligand atoms have to be included in the form of charge 
densities. The crystal-field potential then takes the form of an integration in space over all 
on-site and off-site charge densities around We will return to this point later and use 
as given above for introducing the operator equivalent method, without loss in generality. 
More rigorous treatments of crystal-field theory have been presented by Hutchings (1964), 
White (1970), and Barbara et al. (1988). 

The crystal-field Hamiltonian of the magnetic ion is obtained from Eq. (5.2.1) by 
summing over all unpaired electrons 

The Hamiltonian may be expanded in spherical harmonics since the charges causing the 
crystal field are outside the shell of the unpaired electrons (4f electrons in the case of 
rare-earth atoms): 

Here, are the coefficients of this expansion. Their values depend on the crystal structure 
considered and determine the strength of the crystal–field interaction. For instance, if the 
point-charge model would be applicable, in which the ions of the crystal are described by 
point charges located at the various crystallographic positions, the coefficients can be 
calculated by means of 
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where the summation again extends over all ligand charges and the corresponding 
ligand positions in the crystal. Without going into details about numerical 
computations of in terms of point charges, we will keep the treatment general and 
consider them as numerical constants and focus our attention again on the Hamiltonian. 

A relatively elegant form for this Hamiltonian can be obtained by using Stevens’ Opera­
tor Equivalents method. First, the spherical harmonics are expressed in Cartesian 
coordinates, f (x, y, z), after which x, y, and z are replaced by and respectively. 
In this way, an operator is formed with the same transformation properties under rotation 
as the corresponding spherical harmonics. For instance 

where is the expectation value of the 4f radius, is a constant (and where 
may be replaced by Note that the introduction of the Operator Equivalents has 
the obvious advantage that the summation over is no longer necessary. Equation (5.2.3) 
may now be rewritten as


For a magnetic ion with a given J value, the operator equivalents are known. 
A complete list of them and their relation to the spherical harmonics can be found in 

the paper by Hutchings (1964). The quantities are so-called reduced matrix elements 
that do not depend on the azimuthal quantum number m (but depend on J). Values of these 
quantities are also listed in Hutchings’ paper. The latter constants are frequently indicated 
by and for and 6, respectively. 

Finally, it can be shown that for f electrons (l = 3), n cannot exceed 6 
Furthermore, n must be even owing to inversion symmetry of the crystal-field potential. 
This means that the above summation (for f electrons) is effectively only over n = 2, 4, 6, 
since n = 0 gives an additive constant to the potential, which has no physical significance. 

For crystal structures with uniaxial symmetry (tetragonal or hexagonal symmetry), it 
is sometimes sufficient to consider only the n = 2 terms and neglect the higher order terms. 
In this case, the crystal-field Hamiltonian takes the relatively simple form 

In Table 5.2.1, an example of how the perturbation matrix may be obtained for the case 
J = 5/2 is given. In uniaxial systems, it is obvious to choose the c- axis as quantization 
axis or z- axis. The result is a lifting of the (2J + 1) six fold degeneracy of the ground 
state. The perturbation leads to three doublet states that are linear combinations of the states 

and 
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In several uniaxial crystal structures, symmetry causes the term to be absent. It may 
be easily checked in Table 5.2.1 that the perturbation matrix is then already diagonal in m. 
The three doublets are and 

All results described above follow from symmetry considerations. In order to obtain 
the relative energy positions of the three doublet levels, one has to know the sign and 
magnitude of The energy level scheme for is shown in Fig. 5.2.2. If the ligand 
charges are known accurately, the values of can be calculated by means of 
the point-charge model. It is possible, however, to consider as a parameter that can be 
determined experimentally. For instance, an experimental value for can be obtained if 
the magnetic susceptibility is calculated by determining the thermal average 
of over the crystal-field-split states for each temperature on the basis of Eq. (3.1.4), 
with and the concomitant level splitting as adjustable parameters. The calculated 
curve is then fitted with the experimental curve. Another relatively simple method to 
obtain an experimental value for consists in measuring the temperature dependence of 
the specific heat. 
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Until now, we have used the 4f wave functions corresponding to the represen­
tation to calculate the perturbing influence of the crystal field by means of the Hamiltonian 
given in Eq. (5.2.7). This means that we have tacitly assumed that the crystal–field interaction 
is small compared to the spin–orbit interaction introduced via the Russell–Saunders coupling 
and Hund’s rules, and that J and m are good quantum numbers. Before applying this crystal-
field Hamiltonian to 3d wave functions, we will first briefly review the relative magnitude 
of the energies involved in the formation of the electronic states. In the survey given below, 
we have listed the order of magnitude of the crystal-field splitting relative to the energies 
involved with the Coulomb interaction between electrons (as measured by the energy dif­
ference between terms), and the LS coupling in various groups of materials, comprising 
materials based on rare earths (R) and actinides (A ). The numbers listed are given per 
centimeter. 

These energy values may be compared with the magnetic energy of a magnetic moment 
in a magnetic field B: 

Using typical values for and B (1T), one finds with 
a magnetic energy equal in absolute value to or 

This then leads to the following sequences in energies: 

For Fe-group materials: crystal field > LS coupling > applied magnetic field, 

For rare-earth-based materials: LS coupling > crystal field > applied magnetic field. 

The physical reason for this difference in behavior is the following: The 3d-electron-charge 
clouds reside more at the outside of the ions than the 4f-electron-charge clouds. Therefore, 
the former electrons experience a much stronger influence of the crystal field than the latter. 
The opposite is true for the spin-orbit interaction. This interaction is generally stronger, 
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the larger the atomic weight. Hence, it is larger for the rare earths than for the 3d transition 
elements. 

In view of the energy consideration given above, one has to adopt the following 
procedure for dealing with these interactions. The spin–orbit interaction is the strongest 
interaction for rare-earth-based materials. Therefore, the spin–orbit coupling has to be 
dealt with first. Subsequently, the crystal–field interaction can be treated as perturbation to 
the spin–orbit interaction. This is how we have proceeded thus far, indeed. First, we have 

angular momentum
dealt with the spin–orbit interaction in the form of the Russell–Saunders coupling. The total

 and its component are constants of the motion after application of 
the Russell–Saunders coupling, and J and are good quantum numbers. Consequently, 
we have calculated the perturbing influence of the crystal field with the representation 
as basis (see Table 5.2.1). 
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In the case of 3d electrons, we have to proceed differently. First, we have to deal with the 

turbation. Before application of the
crystal–field interaction. Subsequently, we can introduce the spin–orbit interaction as a per-

spin–orbit interaction, and and the corresponding 
z components and are constants of the motion and hence L, S,  and are good 
quantum numbers. Because the crystal–field interaction is of electrostatic origin, it affects 
only the orbital motion. Therefore, the crystal–field calculations can be made by leaving 
the electron spin out of consideration and using the wave functions as basis set. 

When calculating the matrix elements of the Hamiltonian given in Eq. (5.2.7), one has 
to bear in mind that only even values of n need to be retained. It can also be shown that 
terms with n  > 2l vanish (l = 2 for 3d electrons). 

As an example, let us consider the crystal-field potential due to a sixfold cubic (or 
octahedral) coordination. Owing to the presence of fourfold-symmetry axes, only terms 
with n = 4 and m = 0, ± 4 are retained, which leads to 

where the coefficients of the terms have been calculated with the help of Eq. (5.2.4), 
keeping as a constant depending on the ligand charges and distances. The calculations 
are summarized in Table 5.2.2 for a 3d ion with a D term as ground state. 

If one calculates the expectation value of for the various crystal-field-split eigen-
states, one finds that for all of them. In other words, the crystal–field interaction 
has led to a quenching of the orbital magnetic moment. This is also the reason why the 
experimental effective moments in Table 2.2.2 are very close to the corresponding effective 
moments calculated on the basis of the spin moments of the various 3d ions. 

5.3.	 EXPERIMENTAL DETERMINATION OF 
CRYSTAL-FIELD PARAMETERS 

In order to assess the influence of crystal fields on the magnetic properties, let us 
consider again the situation of a simple uniaxial crystal field corresponding to a level 
splitting as in Fig. 5.2.2. If we wish to study the magnetization as a function of the field 
strength, we cannot use Eq. (3.1.9) because this result has been reached by a statistical 
average of based on an equidistant level scheme (see Fig. 3.1.1). Such a level scheme 
is not obtained when we apply a magnetic field to the situation shown in Fig. 5.2.2. The 
magnetic field will lift the degeneracy of each of the three doublet levels. Since a given 
magnetic field lowers and raises the energy of each of the sets of doublet levels in a different 
way, one may find a level scheme for as shown in Fig. 5.3.1c. In order to calculate 
the magnetization, one then has to go back to Eq. (3.1.4). 

Further increase of the applied field than in Fig. 5.3.1c would eventually bring the 
level further down to become the ground state, so that close to zero Kelvin one would 

obtain a moment of Again measuring at temperatures close to zero Kelvin, 
we would have obtained for applied fields much smaller than corresponding to 
Fig. 5.3.1c. This means that the field dependence of the magnetization at temperatures close 
to zero Kelvin looks like the curve shown in Fig. 5.3.2. The field required to reach 
and hence the shape of the curve, depends on the energy separation between the crystal-field 
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split and levels. In other words, from a comparison of the measured  M(H) 
curve with curves calculated by means of Eq. (3.1.4) for various values of one may 
obtain an experimental value for the parameter Alternatively, one can keep H constant 
and vary the temperature. Subsequently, one can compare measured M(T) or curves 
with calculated curves (with again as adjustable parameter) and obtain in this way an 
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experimental value of This procedure can also be followed in cases where more than 
one crystal-field parameter is required. In fact, it is just this process of curve fitting that 
reveals how many parameters are needed in each case and what their values are. 

For completeness, we mention here that other experimental methods to determine sign 
and value of crystal-field parameters comprise inelastic neutron scattering and measurement 
of the temperature dependence of the specific heat. In the neutron-scattering experiment, 
the energy separation between the crystal-field-split levels of the ground-state multiplet is 
measured via the energy transfer during the scattering event between a neutron and the atom 
carrying the magnetic moment. In the specific-heat measurements, one obtains information 
on the change of the entropy with temperature. The entropy is given by S = k ln W, where 
W is the number of available states of the system. Clearly,  W can change substantially 
when more crystal-field levels become available by thermal population with increasing 
temperature. The way in which S changes with temperature, therefore, gives information 
on the multiplicity and energy separation of the crystal-field levels. 

5.4. THE POINT-CHARGE APPROXIMATION AND ITS LIMITATIONS 

Once the magnitudes (and signs) of the parameters have been determined exper­
imentally, one wishes, of course, to know the origin that causes the values of to have 
a particular sign and magnitude in a given material. For simplicity, we will consider again 
the case of a simple uniaxial crystal field for which we have determined experimentally that 

and that it has a level scheme as shown in Fig. 5.2.2. Using Eq. (5.2.8), we have 

Since is a constant for each rare-earth element with a given J value and since also the 
expectation values of the 4f radii are well-known quantities for all rare-earth elements, 
one may also say that the fitting procedure discussed above leads to an experimental value 
for the parameter 

In Section 5.2, we mentioned already that the coefficients associated with the 
series expansion in spherical harmonics of the crystal-field Hamiltonian (Eq. 5.2.3), can be 
written in the point-charge model in the form of Eq. (5.2.4). In the particular case of 
after transformation into Cartesian coordinates, one has 

where the summation is taken over all ligand charges located at a distance

from the central atom considered. Since, in a given crystal structure, the distances between

a given atom and its surrounding atoms are exactly known, it is possible to make a priori 

The main problem associated with this approximation is the assumption that the ligand
calculations of which then can be compared with the experimental value.


ions can be considered as point charges. In most cases, the ligand ions have quite an

extensive volume and the corresponding electrostatic field is not spherically symmetric.

Also, the magnitude of
 and in some cases even the sign of is not accurately known. 
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The only benefit one may derive from the point-charge approximation is that it can be used 
to predict trends when crystal-field effects are compared within a series of compounds with 
similar structure. 

A special complication exists in intermetallic compounds of rare-earth elements. This 
complication is due to the 5d and 6p valence electrons of the rare-earth elements. When 
placed in the crystal lattice of an intermetallic compound, the charge cloud associated with 
these valence electrons will no longer be spherically symmetric but may become strongly 
aspherical. This may be illustrated by means of Fig. 5.4.1, showing the orientations of 
d-electron-charge clouds with shapes appropriate for a uniaxial environment. 

Depending on the nature of the ligand atoms, the energy levels corresponding to the 
different shapes in Fig. 5.4.1 will no longer be equally populated and produce an over­
all aspherical 5d-charge cloud surrounding the 4f-charge cloud. Similar arguments were 
already presented for p electrons in Fig. 5.1.1. Since the 5d and 6p valence electrons are 
located on the same atom as the 4f electrons, this on-site valence-electron asphericity pro­
duces an electrostatic field that may be much larger than that due to the charges of the 
considerably more remote ligand atoms. It is clear that results obtained by means of the 
point-charge approximation are not expected to be correct in these cases. Band-structure cal­
culations made for several types of intermetallic compounds have confirmed the important 
role of the on-site valence-electron asphericities in determining the crystal field experienced 
by the 4f electrons (Coehoorn, 1992). 
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5.5. CRYSTAL-FIELD-INDUCED ANISOTROPY 

As will be discussed in more detail in Chapter 11, in most of the magnetically ordered 
materials, the magnetization is not completely free to rotate but is linked to distinct crys­
tallography directions. These directions are called the easy magnetization directions or, 
equivalently, the preferred magnetization directions. Different compounds may have a dif­
ferent easy magnetization direction. In most cases, but not always, the easy magnetization 
direction coincides with one of the main crystallographic directions. 

In this section, it will be shown that the presence of a crystal field can be one of the 
possible origins of the anisotropy of the energy as a function of the magnetization directions. 
In order to see this, we will consider again a uniaxial crystal structure and assume that the 
crystal–field interaction is sufficiently described by the term. Since we are discussing 
the situation in a magnetically ordered material, we also have to take into account a strong 
molecular field    as introduced in Section 4.1. 

The energy of the system is then described by a Hamiltonian containing the interaction 
of a given magnetic atom with the crystal field and with the molecular field 

The exchange interaction between the spin moments, as introduced in Eq. (4.1.2), is 
isotropic. This means that it leads to the same energy for all directions, provided that 
the participating moments are collinear (parallel in a ferromagnet and antiparallel in an 
antiferromagnet). So the exchange interaction itself does not impose any restriction on the 
direction of The two magnetic structures shown in Fig. 5.5.1 have the same energy 
when only the exchange term in the Hamiltonian is considered.


The examples shown in Fig. 5.5.1 are ferromagnetic structures
 and the same 
reasoning can be held for antiferromagnetic structures in which the moments are 
either parallel and antiparallel to or parallel and antiparallel to a direction perpendicular 
to c. Also in these cases, the two antiferromagnetic structures have the same energy.

After inclusion of the term in the Hamiltonian, the energy becomes anisotropic 
with respect to the moment directions. This will be illustrated by means of the two fer­
romagnetic structures shown in Fig. 5.5.1. We assume that is sufficiently large and 
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that the exchange splitting of the level is much larger than the overall crystal-field 
splitting, being the ground state. The situation in Fig. 5.5.1 a corresponds to 
or to since in crystal-field theory we have chosen the along the uniaxial 
direction. The situation in Fig. 5.5.1b corresponds to so that we may write 
Rewriting the Hamiltonian in Eq. (5.5.1) for both situations leads to 

where 

largeThe Hamiltonian in Eq. (5.5.2) is already in diagonal form. Since we have chosen
enough, the ground state is of course 

One may easily obtain the ground-state energy by calculating


In order to find the ground-state energy for one has to diagonalize the Hamiltonian 
in Eq. (5.5.3). This is a laborious procedure since the operator will admix all states 
differing by see Table 5.2.1). It can be shown that the 
ground-state wave function is of the type 

We will not further investigate this wave function except by stating that, owing to the 
predominance of it corresponds to an expectation value which is 
almost equal to In fact, almost the full moment is obtained along the x-direction (at 
zero Kelvin). This means that the magnetic energy contribution is almost equal for the two 
cases (last terms of Eqs. 5.5.2 and 5.5.3). 

On the other hand, one may notice that so that the crystal-field contri­
bution in Eq. (5.5.3) is strongly reduced when the moments point into the x-direction. The 
energies associated with the Hamiltonians in Eqs. (5.5.2) and (5.5.3) can now be written as 

x
It will be clear that is lower than for For the situation with the 
moments pointing along the -direction is energetically favorable. These results can be 
summarized by saying that for a given crystal field                the 4f-charge cloud 
adapts its orientation and shape in a way to minimize the electrostatic interaction with the 
crystal field. If the isotropic exchange fields experienced by the 4f moments are strong 
enough, one obtains the full moment (or at least a value very close 
to it), but the direction of this moment depends on the sign of 
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5.6. A SIMPLIFIED VIEW OF 4f-ELECTRON ANISOTROPY 

For the case of a simple uniaxial crystal field, we have derived in Section 5.2 that the 
leading term of the crystal-field interaction is given by the expectation value of 

In this section, we will show that the crystal–field interaction expressed in Eq. (5.6.1) can 
be looked upon in a different way, at the same time providing a simple physical picture for 
this type of crystal–field interaction. If the exchange interaction is much stronger than the 
crystal–field interaction, we showed in the previous section that ground state at zero Kelvin 
is One then has 

is the second-order term of symmetry in the spherical harmonic expansion of the 
electrostatic crystal-field potential. This quantity can be looked upon as the gradient of the 
electric field. 

Equation (5.6.1) then represents the interaction of the axial quadrupole moment associ­
ated with the 4f-charge cloud with the local electric-field gradient. It is good to bear in mind 
that a nonzero interaction with an electric quadrupole moment requires an electric-field 
gradient rather than an electric field. 

The shape of the 4f-charge cloud resembles a discus if It resembles a rugby 
ball when Examples of both types of charge clouds are shown in Fig. 5.6.1. 

It has already been mentioned that the molecular field in a magnetically ordered com­
pound is isotropic and has the same strength in any direction if the exchange 
coupling between the moments is the only interaction present. Alternatively, one may say 
that the magnetically ordered moments are free to rotate coherently into any direction. 
This directional freedom of the collinear system of moments is exploited by the interaction 
between the 4f-quadrupole moment and the electric-field gradient to minimize the energy 
expressed in Eq. (5.6.2). If the crystal field is comparatively weak, one may neglect any 
deformation of the 4f-charge cloud and the aspherical 4f-electron charge clouds shown in 
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Fig. 5.5.2 will simply orient themselves in the field gradient to yield the minimum-energy 
situation. 

It will be clear that for a crystal structure with a given magnitude and sign of the 
minimum-energy direction for the two types of shapes shown in Fig. 5.6.1 and 

will be different. This implies that the preferred moment direction for rare-earth 
elements with and will also be different. It may be derived from Eq. (5.6.2) 
that the energy associated with preferred moment orientation in a given crystal field 
is proportional to Values of this latter quantity for several lanthanides 
have been included in Table 5.6.1. A more detailed treatment of the crystal-field-induced 
anisotropy will be given in Chapter 12. 
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6 

Diamagnetism


Diamagnetism can be regarded as originating from shielding currents induced by an applied 
field in the filled electron shells of ions. These currents are equivalent to an induced moment 
present on each of the atoms. The diamagnetism is a consequence of Lenz’s law stating that 
if the magnetic flux enclosed by a current loop is changed by the application of a magnetic 
field, a current is induced in such a direction that the corresponding magnetic field opposes 
the applied field. 

For obtaining expressions by means of which the diamagnetism of a sample can be 
described quantitatively, we will follow Martin (1967) and consider the perturbation of the 

when moving in a magnetic field. For a conductor element
orbital motion of electrons in the sample due to the force which each electron experiences

carrying a current  I in the 
presence of a magnetic field, this so-called Lorentz force is given by 

and hence in free space


If we consider the motion of a single charge e we obtain with velocity  

The effect of this force on an electron moving in a classical orbit around a single nucleus 
is easy to work out. It provides a picture that is not greatly changed in a quantum-
mechanical treatment and is sufficient for our purpose. Let us assume that the field  H 
is applied in a direction perpendicular to the plane of a circular orbit. The force F will 
act either away from the center of the orbit or toward it, depending on whether the elec­
tron is moving clockwise or anticlockwise with respect to the field. In either case, the 
change in the radius of the orbit can be neglected in comparison with the associated 
increase or decrease in the orbital angular velocity We will define the sign 
of as positive for clockwise orbital motion with respect to the field and negative for 
anticlockwise motion. Noting that the applied fields considered here are so small that they 
produce only small changes in (and and denoting such small incremental changes 
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by we obtain, equating the magnetic force of Eq. (6.3) to mass times the change in 
acceleration, 

or


The change in orbital angular velocity corresponds with a change in magnetic moment. If p 
represents the orbital angular momentum of the electron before application of the magnetic 
field, we may consider the equivalent magnetic shell and write 

The change in the magnetic orbital moment due to the field is 

This equation shows that there is a negative change of the magnetic moment that is 
independent of the sign of and proportional to H. 

If we consider a system consisting of N atoms, each containing i electrons with radii 
we may write for the susceptibility 

In the derivation of this equation, we have assumed that the orbital plane of the electrons 
is perpendicular to the field direction. Instead of in Eq. (6.7), we should have used an 
effective radius q of the orbit such that representing the average 
of the square of the perpendicular distance of the electron from the field axis. The mean-

Using

square distance of the electrons from the nucleus is and since 
for a spherical symmetrical charge distribution one has one finds that 

 instead of in Eq. (6.7), leads to 

which is the classical Langevin formula for diamagnetism. 
In the quantum-mechanical treatment, one has to consider that the electrons are 

described by wave functions where at every point is the probability of finding the 
electron. Alternatively, one may consider the electron as a charge cloud of intensity at 
each point in space. It can be shown that the quantum-mechanical result is correctly given by 
Eq. (6.8), provided one uses for the expectation value for the squared electron position 
parameter 

where the integration extends over the whole space.
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We will close this chapter by mentioning that in metals there is a separate diamagnetic 
contribution due to the itinerant or band electrons to be discussed in Chapter 7. 

If represents the paramagnetic susceptibility due to these band electrons, it can 
be shown that it is accompanied by a diamagnetic contribution 

Reference 

Martin, D. H. (1967) Magnetism in solids, London: Iliffe Books Ltd. 



This page intentionally left blank 



7 

Itinerant-Electron Magnetism


7.1. INTRODUCTION 

A situation completely different from that of localized moments arises when the magnetic 
atoms form part of an alloy or an intermetallic compound. In these cases, the unpaired 
electrons responsible for the magnetic moment are no longer localized and accommodated 
in energy levels belonging exclusively to a given magnetic atom. Instead, the unpaired 
electrons are delocalized, the original atomic energy levels having broadened into narrow 
energy bands. The extent of this broadening depends on the interatomic separation between 

W
the atoms. According to a calculation made by Heine (1967), the following relation applies 
between the width of the energy bands  and the interatomic separation 

The most prominent examples of itinerant-electron systems are metallic systems based on 
3d transition elements, with the 3d electrons responsible for the magnetic properties. For 
a discussion of the magnetism of the 3d electron bands, we will make the simplifying 
assumption that these 3d bands are rectangular. This means that the density of electron 
states N(E) remains constant over the whole energy range spanned by the bandwidth W. 

A maximum of ten 3d electrons per atom (i.e., five electrons of either spin direction) 
can be accommodated in the 3d band. In the case of Cu metal, because each Cu atom 
provides ten 3d electrons, the 3d band will be completely filled. However, in the case of 
other 3d metals, less 3d electrons are available per atom so that the 3d band will be partially 
empty. Such a situation is shown in Fig. 7.1.1a. In Fig. 7.1.1a, we have indicated that there 
is no discrimination between electrons of spin-up and spin-down direction with respect to 
band filling. Both types of electrons will therefore be present in equal amounts, meaning 
that there is no magnetic moment associated with the 3d band in this case. However, this 
situation is not always a stable one, as will be discussed below. 

It is possible to define an effective exchange energy per pair of 3d electrons. This 
can be regarded as the energy gained when switching from antiparallel to parallel spins. In 
order to realize such gain in energy, electrons have to be transferred, say, from the spin-down 
subband into the spin-up subband. As can be seen in Fig. 7.1.1b, this implies an increase in 
kinetic energy, which counteracts this electron transfer. However, it will be shown below 
that such transfer is likely to occur if is large and the density of states at the Fermi 
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level is high. After the transfer, there will be more spin-up electrons than spin-down 
electrons, and the magnetic moment, which has arisen, will be equal to 

We will first derive a simple band model, which accounts for the existence of ferro­
magnetism. The interaction Hamiltonian, following the above definition of can be 
written as 

where and represent the number of electrons per atom for each spin state, and where 
the total number of 3d electrons per atom equals Because is a positive 
quantity, Eq. (7.1.2) will lead to the lowest energy if the product is as small as possible. 
For equally populated subbands, this product has its maximum value and hence the highest 
energy. Consequently, electron transfer is always favorable for the lowering of the exchange 
energy, and this electron transfer will come to an end only if one of the two spin subbands 
is empty or has become completely filled up. 

We define  N(E) as the density of states per spin subband, and p as the fraction of 
electrons that has moved from the spin-down band to the spin-up band. This means 

Let us assume that the interaction Hamiltonian (Eq. 7.1.2) leads to an increase in the number 
of spin-up electrons at the cost of the number of spin-down electrons. The corresponding 
gain in magnetic energy is then 

This energy gain is accompanied by an energy loss in the form of the amount of energy 
needed to fill the states of higher kinetic energy in the band. For a small displacement 

(see Fig. 7.1.1b), this kinetic-energy loss can be written as 

The total energy variation is then
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Since 

one may write 

If the state of lowest energy corresponds to p = 0 and the system 
is non-magnetic. However, if the 3d band is exchange split (p > 
0), which corresponds to ferromagnetism. The latter condition is the Stoner criterion for 
ferromagnetism, which is frequently stated in the more familiar form (Stoner, 1946) 

By means of this model, it can be understood that 3d magnetism leads to non-integral 
moment values if expressed in Bohr magnetons per 3d atom, 

The conditions favoring 3d moments in metallic systems are obviously: a large value 
for but also a large value for The density of states of the s- and p-electron 
bands is considerably smaller than that of the d band, which explains why band magnetism is 
restricted to elements that have a partially empty d band. However, not all of the d-transition 
elements give rise to d-band moments. For instance, in the 4d metal Pd, the Stoner criterion 
is not met, although it comes very close to it. 

7.2. SUSCEPTIBILITY ENHANCEMENT 

The same formalism as used above can also be employed for calculating the magnetic 
susceptibility at zero temperature in a field H when the magnetic state is not stable with 
respect to the state without magnetic moment. The field will favor electron states with spin 
direction parallel to the field direction. If the latter is in the spin-up direction, the field will 
lead to a repopulation of the band states by transfer of electrons from the spin-down to the 
spin-up band. If p is the fraction of electrons transferred, we can use again Eq. (7.1.3) to 
calculate the energies involved in the electron transfer. Because a magnetic field is present, 
we have to add a Zeeman term to the magnetic energy. This leads to 

The equilibrium condition is 

After differentiation of the expression for the energy, we find 

where is the magnetic susceptibility per atom, and where represents the “bare” 
unenhanced magnetic susceptibility which is given by 
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This quantity describes the magnetic susceptibility in metallic systems in which there is no 
interaction between the band electrons. This means that and thus that the Stoner 
enhancement factor reduces to unity. By contrast, the enhancement 
factor can reach fairly high values when there is a strong interaction between the electrons 
and/or when the density of electron states at is high, in fact, the Stoner enhancement 
factor can become extremely high for metallic systems close to magnetic instability, that 
is, when the Stoner criterion is fulfilled. We mentioned already that such a situation occurs 
for Pd metal. Experimentally, one finds that the susceptibility of Pd metal is roughly one 
order of magnitude larger than, for example, of  Zr metal. 

7.3. STRONG AND WEAK FERROMAGNETISM 

In order to explain the principles of 3d-electron magnetism, up to now we have used a 
simplified model with rectangular 3d bands (Fig. 7.1.1). In a more realistic treatment, one 
has to take account of the actual shape of the 3d band in the energy range of interest (Friedel, 
1969). This means that the density of states is no longer a constant over the whole energy 
range considered but may vary strongly as a function of the energy when moving from the 
bottom of the 3d band to the top. Generally, one finds that the density of states of the 3d 
band first increases when moving from the bottom of the 3d band in upward direction. After 
reaching a region where the density of states is high, one passes into a region where the 
density of states is fairly low. Moving further to the top of the band, one encounters again 
a region where the density of states is high. 

When, for a given degree of 3d-band filling, the Fermi energy happens to be located in 
a region where the density of states is relatively low, the Stoner criterion may not be met and 
a spontaneous moment may form only if higher and lower lying states are included where 
the density of states is higher than in the immediate vicinity of the Fermi energy. Such a 
situation is schematically represented in Fig. 7.3.1. 

Owing to the high kinetic-energy expenditure in the region where the density of states is 
low, no formation of a spontaneous moment will occur for small amounts ofelectron transfer, 
that is, for small 3d moments. The average energy expenditure is lower and spontaneous 
moments may form when electron states in the region with higher density of states are 
included. This implies that the formation of a spontaneous moment is only possible if the 
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moments have a certain size. It will be shown below that the presence of a region in the 3d 
band with a low density of states can lead to two different situations. 

Let us assume that the 3d band has a general shape of the type as indicated above, as 
is schematically shown in Fig. 7.3.1. In the case of simple ferromagnetism and relatively 

where 

strong moments, it is possible to compute directly from the expression: 

In analogy with the more simple case of rectangular bands, one can identify the first 
two terms in Eq. (7.3.1) as representing the loss in kinetic energy and the third term as 
representing the gain in exchange energy. 

In order to have a ferromagnetic phase that is more stable than the paramagnetic phase, 
one has to meet the following condition: 

When applied to Eq. (7.3.1), this means that a stable ferromagnetic state is found if


Generally, the maximum moment that can be obtained for a given number n of 3d electrons 
equals for more than half-filled bands (see Fig. 7.1.1.c) and for less than half-
filled bands (see Fig. 7.1.1d). However, when taking account of the kinetic-energy increase, 
the energy minimum of in Fig. 7.3.1 may be reached for values considerably 
smaller than the maximum values of just mentioned (in analogy to the situation shown 
in Fig. 7.1.1b). 

The situation shown for rectangular bands in Figs. 7.1.1b and d is shown for the more 
general band shapes in Figs. 7.3.2a and b, respectively. It is unphysical to have the Fermi 
energy at a higher level in the majority electron band than in the minority electron band. 
For this reason, the two subbands have been shifted relative to each other after electron 
transfer so as to have the same Fermi energy. This can also be interpreted by stating that the 
subband containing the larger number of electrons with parallel spins has been stabilized by 
the exchange energy with respect to the subband containing the lower number of electrons 
with parallel spins. 

The situation in Fig. 7.3.2a corresponds to the equality sign in Eq. (7.3.4): For a given 
magnitude of the optimum band shift and the concomitant optimum electron transfer 
between the two subbands has been reached, the low density of states in the minority spin 
band preventing further electron transfer because of the too high kinetic energy expendi­
ture. Note that both spin subbands remain partially depleted even though there are enough 
3d electrons available for complete filling of the majority spin subband. The situation 
shown in Fig. 7.3.2a is referred to as weak ferromagnetism. The situation represented in 
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Fig. 7.3.2b corresponds to the inequality sign in Eq. (7.3.4): The magnitude of and 
the corresponding band shift is larger than required for reaching the maximum moment 
for the degree of 3d-band filling considered in this figure. This situation is referred to as 
strong ferromagnetism. Note that the top of the majority-spin subband falls below the Fermi 
energy. 

Which of these two types of ferromagnetism is reached in a given compound depends 
on the actual shape of the density of states curve, the total number of 3d electrons and the 
value of The most interesting example is formed by the 3d metals themselves and 
their alloys. These systems usually have a bcc structure for which each of the two spin 
subbands is fairly well divided into two parts with a high density of states separated by a 
pronounced minimum in the density of states (as has been assumed in Fig. 7.3.2). It can 
be shown by means of Eq. (7.3.4) that for such a shape of N(E) the depletion of the 3d 
band with decreasing number of 3d electrons proceeds as follows. Starting from a full 3d 
band, first one of the two spin subbands will become partially depleted (minority band) 
and this depletion continues until the upper portion of this subband is empty. This then 
leads to a further decrease of the number of 3d electrons to partial depletion of the other 
spin subband (majority band). This implies a simultaneous change from weak to strong 
ferromagnetism. 

It is plausible that the increasing depletion of only the minority band in the regime of 
strong ferromagnetism leads to an increase of the magnetic moment with decreasing number 
of 3d electrons. This moment increase comes to an end, however, when the majority band 
also becomes more depleted. The reason for this can be described as follows. The Fermi 
level in the majority band, the latter being only slightly depleted, is in a region of a 
high density of states. By contrast, the density of states at in the minority band is at or 
close to the minimum in the density of states (as shown in the upper left part of Fig. 7.3.3). 
Consequently, when 3d electrons are further withdrawn from the 3d band, most of these 
electrons will come from the majority band where the density of states is high. This leads to 
a decreasing difference in the number of electrons of opposite spin direction, and hence to 
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a decrease in the 3d moment. This explains qualitatively the Slater–Pauling curve (Slater, 
1937; Pauling, 1938) shown in the bottom part of Fig. 7.3.3. It is useful to bear in mind 
that the change from strong to weak ferromagnetism occurs close to Fe metal, which is a 
weak ferromagnet whereas the metals Co and Ni are strong ferromagnets. Other important 
points are 

1.	 The designations strong ferromagnetism and weak ferromagnetism do not imply that 
the spontaneous moments per 3d atom or the magnetic ordering temperatures are higher 
in the former case than in the latter. 

2.	 It has been shown in Section 4.2 that the magnetization in the fully ordered ferromag­
netic state is given for localized moments by Once this state has been 
realized at low temperatures for a sufficiently high field, no further moment increase 
can be expected at still higher field strengths. The magnetization has become field-
independent in a plot of M versus  H and the high-field susceptibility defined in the 
saturated regime by is equal to zero. The reason for this behavior is 
the constancy of the localized moments. The situation is different, however, for itin­
erant moments. As we have seen above, the application of an external field stabilizes 
the majority-electron states with respect to the minority-electron states. This means 
that a small amount of electron transfer will be induced by a sufficiently high external 
field even in the saturated ferromagnetic state. Consequently, in a plot of M versus H 
the magnetization is not completely field independent and the high-field susceptibility 
defined in the saturated regime by is nonzero. Generally, the high-field 
susceptibility is larger for weak ferromagnets than for strong ferromagnets. Note that 
for the band shapes considered in Fig. 7.3.2 the high-field susceptibility for strong 
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ferromagnets is equal to zero because field-induced electron transfer into an already 
completely filled subband is not possible. 

3.	 Many metal systems consist of a combination of a 3d transition metal (T) with a non­
magnetic metal (A). Frequently, ferromagnetism disappears when the concentration 
of the  T component becomes too low. This happens, for instance, in the series of 
intermetallic compounds formed by combining the non-magnetic element yttrium with 
cobalt: and The first four compounds are ferro­
magnetic with Curie temperatures much higher than room temperature, whereas the 
last compound does not show magnetic ordering at any temperature. It is wrong to say 
that the Co moment in the latter compound has disappeared because electron transfer 
from Y to the more electronegative Co has led to a filling up of the 3d band of the 
latter, preventing 3d magnetism. More realistic is the explanation that mixing of the 
Y valence-electron states with the Co 3d-electron states has led to a decrease of and 
to a broadening of the 3d band and a concomitant lowering of The result is that 
3d-band splitting will not occur, leaving the compound paramagnetic. Charge-transfer 
effects, where the valence electrons of A decrease the depletion of the 3d band of T 
do occur to some extent, but have a comparatively modest effect on the 3d-moment 
reduction upon alloying. 

4. The application of the itinerant-electron model to the description of magnetism in 
3d-electron systems does not necessarily mean that the 3d-electron spin polarization 
extends uniformly through the whole crystal. The small width of the 3d-electron band 
implies that the 3d electrons are rather strongly localized at the 3d atoms, and this 
holds a fortiori for their spin polarization. This justifies to some extent the use of 
local moments in molecular-field approximations for describing the magnetic coupling 
between 3d moments. It follows from the discussion given above that the moment of 3d 
atoms consists to a first approximation only of a spin moment. It is common practice 
to use the relation 

7.4.	 INTERSUBLATTICE COUPLING IN ALLOYS OF 
RARE EARTHS AND 3d METALS 

Metallic systems composed of magnetic rare-earth elements and magnetic 3d elements 
have found their way into many modern applications such as high-performance permanent 
magnets (Chapter 11), magneto-optic-recording materials (Chapter 13), and magneto-
acoustic devices (Chapter 16). The favorable properties of these materials are partly due to 
the rare-earth sublattice (high magnetocrystalline anisotropy, high magnetostriction, high 
magnetic moments) and partly due to the 3d sublattice (high magnetic-ordering temper­
ature). In order to have this combination of favorable properties in one and the same 
compound, it is of paramount importance that there be a strong magnetic coupling between 
the two magnetic sublattices involved. 

There are several hundred intermetallic compounds composed of rare-earth metals and 
3d metals and their magnetic properties are fairly well known and have been reviewed 
by Franse and Radwanski (1993). Without exception it is found that the rare-earth-spin 
moment couples antiparallel to the 3d-spin moment. This feature can be understood by 
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means of an extension of the itinerant-electron model, as will be briefly described below. At 
first sight, an explanation in terms of the itinerant-electron model seems somewhat strange 
because we have treated 4f moments as strictly localized in Chapter 1. Also, in the present 
section we will deal with 4f electrons as localized, but additionally we will discuss the role 
played by the 5d valence electrons of the rare-earth elements. These 5d valence electrons 
are accommodated in narrow 5d bands, in a similar way as the 3d electrons of 3d transition 
metals are accommodated in 3d bands. In the rare-earth elements La and Lu, there are no 4f 
moments (see Table 2.2.1). From the magnetic properties of these elements it can be derived 
that the 5d electrons are not able to form 5d moments of their own. The reason for this is 
that the Stoner criterion (see Section 7.1) is not satisfied for the corresponding 5d bands. 
Nevertheless, these 5d electrons play a crucial role in the magnetic coupling between the 
4f and 3d moments. Below, we will closely follow the treatment presented by Brooks and 
Johansson (1993). 

Let us consider an isolated molecule of the compound A schematic represen­
tation of the relative positions of the Lu 5d and Fe 3d atomic levels is shown in Fig. 7.4.1 
before and after the two types of atoms have been combined to form a molecule. In the 
molecule, mixing of states leads to bonding and antibonding states, both states having a 
mixed 3d–5d character. Although this is of no particular concern in the present treatment, 
we will briefly mention that the electronic charges corresponding to the bonding states are 
accumulated mainly between the participating atoms. In the antibonding states, the elec­
tronic charges are accumulated mainly on the participating atoms. The bonding as well as 
the antibonding states broaden into bands when forming the solid compound, as illustrated 
in the left part of Fig. 7.4.2. Using the same simplified picture of rectangular bands as was 
done in the first part of Section 7.1, one can represent this situation by means of the diagram 
shown in the right part of Fig. 7.4.2. 

Up to now, we have dealt equally with spin-up and spin-down electrons. However, 
from the fact that the Fe atoms carry a magnetic moment in we know that the 3d 
band splits into a spin-up and a spin-down band, as discussed in the previous sections. This 
3d-band splitting is illustrated in Fig. 7.4.3. The spin-up band, shown in the lower left part 
of the figure, is seen to be completely occupied. The spin-down band, shown in the lower 
right part is partly unoccupied. In fact, this difference in occupation reflects the presence 
of 3d moments on the Fe atoms. 
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Closer inspection of the bands in Fig. 7.4.3 reveals the following. The spin-up and 
spin-down rare-earth 5d-band states mix with the transition-metal 3d-band states but do 
so to a different degree. The reason for this is the exchange splitting between the spin-
up and spin-down 3d bands. For the spin-down electrons it leads to a smaller separation 
in energy between the 5d- and 3d-electron bands than for the spin-up electrons. There­
fore, the mixing of 3d-band states and 5d-band states is larger for spin-up electrons than 
for spin-down electrons. As is indicated by the black and white areas in Fig. 7.4.3, the 
5d(R)–3d(T) mixing leads to a larger 3d character of the 5d spin-down band than of the 
spin-up band. Consequently, the overall 5d(R) moment is antiparallel to the overall 3d(T) 
moment. 

This mixing scheme is true for any rare-earth element R, independent of whether a 4f 
moment is present on the  R atoms or not. When a 4f moment is present, one has ferro­
magnetic intra-atomic exchange interaction between the 4f-spin moment and the 5d-spin 
density, so that also the 4f-spin moment is antiparallel to the 3d moment. Summarizing these 
results, one can say that the rare-earth 5d electrons act as intermediaries for the coupling 
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between the 3d and 4f spins which is always antiparallel. For more details, the reader is 
referred to the paper of Brooks and Johansson (1993). 

Before closing this section, it is good to recall that the coupling scheme presented above 
is one between the spin moments. The itinerant model describes the 3d moments exclusively 
as spin moments, as mentioned already at the end of the previous section. We have seen in 
Section 7.2 that the 4f moments are composed of a spin moment and an orbital moment. 
For the heavy rare earths, we have  J  =  L + S, meaning that the total 4f moment is also 
coupled antiparallel to the 3d moment. By contrast, we have J  = L – S for the light rare 
earths (see, for instance, Table 2.2.1). Consequently, the total 4f moment couples parallel to 
the 3d moment. In the two-sublattice model described in Section 4.4, with a negative spin-
spin coupling for both cases, this different coupling behavior is taken 
account of by the different signs of the intersublattice-molecular-field constant 
in Eq. (4.4.9). It arises from the different signs of being negative for the light rare 
earths but positive for the heavy rare earths (see Table 2.2.1). 
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Some Basic Concepts and Units


Already in 1820, Ampère discovered that a magnetic field is produced by an electrical 
charge in motion. He showed that the magnetic field depends on the shape of the circuit 
and arrived at the result 

which means that the current I in the conductor equals the line integral of H around an 
infinitely long rectilinear conductor. Performing the integration along a closed path around 
the conductor at a distance r leads to 

or 

In Chapter 6, we already introduced the force F experienced by a conductor element

carrying a current I in the presence of a magnetic field. In free space, Eq. (6.2) applies:


It can be easily shown from Eqs. (8.3) and (8.4) that if two infinitely long conductors 
(carrying currents and are mutually parallel and located at a distance d apart, the 
force per length exerted by one conductor on the other equals 

Equation (8.5) is used to define the base unit of electric current, the ampere. The equation 
contains as a factor the magnetic permeability in vacuum or the magnetic constant For 
historical reasons, this factor has been given the numerical value Using this, 
one arrives at the famous definition of the ampere: The ampere is that constant electric 
current which, if maintained in two straight parallel conductors of infinite length, of negli­
gible circular cross-section and placed 1 m apart in vacuum, would produce between these 
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conductors a force equal to newton per meter of length. This definition implies, 
using Eq. (8.5), that the permeability in vacuum takes the value 

We define the unit of magnetic field strength in terms of the base unit ampere of electric 
current. For an infinitely long solenoid with n windings per length of solenoid, one finds 
inside the solenoid, by applying Ampere’s law, 

As n is expressed in and the electric current I in A, the magnetic field H has the unit 
ampere per meter or Consequently, a magnetic field of is the magnetic 
field in an infinitely long solenoid consisting of n turns per meter of coil and carrying an 
electric current of 

The unit of the magnetic induction or magnetic flux density  B can be defined by 
rewriting Eq. (8.4) as 

This equation defines the magnetic induction B for any medium such that the force exerted 
on a current element is equal to the vector product of this element and the mag-

which is called tesla, that 
is,
magnetic induction is newton per ampere meter or

So the magnetic induction is equal to 1 T if a current element 
of 1 A experiences a force of 1 N. As the magnetic permeability in vacuum 

netic induction. As the current element is expressed in Am and the force in N, the unit of 

equals 
a magnetic field strength of in free space corresponds to a mag­

netic induction of or, equivalently, a magnetic induction of 1 T corresponds 
to a magnetic field of approximately 

The magnetic flux t through a surface element is the scalar product of the 
magnetic flux density and this surface element: 

The unit of magnetic flux density B is tesla and so the unit of magnetic flux   is equal to tesla 
square meter or which is called weber (Wb), that is or 
also 

Another definition of the magnetic flux comes from the phenomenon of induction: its 
rate of change generates an electromotive force in a closed conductor. If the current 
passes through n turns of the conductor, the e.m.f. is given by: 

This equation can also be used to define the unit of flux. As the electromagnetic force is 
expressed in volt and n is a pure number, the unit of magnetic flux becomes volt second or 

we see that the unit of magnetic flux can be transformed into 
again equal to 1 Wb. 

Vs. Remembering that the unit of energy, joule, can be written as 1 J = 1 V A s = 1 N m, 
which is 
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The magnetic induction  B is connected with the magnetic field strength  H by the 
equation 

where is the magnetic permeability. As the magnetic induction is expressed in 
the permeability has, similar to the permeability in and the magnetic field in

vacuum the unit which is also called henry per meter, that is, 
The relative permeability is of course a dimensionless number. 

The simplest circuit which is able to generate a magnetic field is a planar circular 
conductor carrying an electric current. In fact, such a current loop can be considered as the 
most elementary unit of magnetism, as we saw already in Chapter 2. If a current loop has 
an area A and carries a current  I, the corresponding magnetic moment is The 
unit of magnetic moment can therefore be taken as ampere square meter When 
expressed in these units, the Bohr magneton introduced in Eq. (2.1.2) has a magnitude of 

The magnetization can be defined as the magnetic moment per volume


where p is the number of moments per volume. With in and in this gives 
for the unit of magnetization. When M is defined in this manner, one has the same 

units for the magnetization and the magnetic field strength. 
In practice, it is more appropriate to define the magnetization as the magnetic moment 

per mass. The magnetization     is then defined by 

where is the number of magnetic moments per mass. With in and in this 
leads to for the unit of magnetization. The advantage of this choice of unit is 
that we do not need to know the volume of the sample of which we wish to determine the 
magnetization but only its mass, the latter being easily obtained by weighing the sample. 

For comparison let us introduce the magnetic moment of Bohr magnetons, where 
is Avogadro’s constant: molecules (or formula units) which are contained 

in one mole of material: 

We have the following relation between the various types of magnetizations


where Intro­ represents the molar mass of the material, expressed in 
ducing everywhere numerical values {..} by substituting 

and cross­
ing out the units in the numerator and denominator, we obtain from Eq. (8.15) the equation 
between numerical values: 
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We will now turn to the magnetic susceptibility, defined as with H in 
In accordance with the definition of M as expressed in Eq. (8.12), we may define the 

M and H 
in which 

dimension 

volume susceptibility which is a dimensionless quantity since are both expressed
Based on Eq. (8.13), we can define the mass susceptibility 

has the Division of the mass susceptibility 
by the molar mass leads to the molar susceptibility withunit 

It follows from the results discussed in the preceding chapters that if a material is 
placed in an external magnetic induction, different types of magnetic behavior can be 
observed, comprising diamagnetism, paramagnetism, or ferromagnetism. It will be clear 
that in diamagnetic materials, the internal magnetic induction, is somewhat smaller 
than the external magnetic induction, By contrast, in a paramagnetic material, the 
internal magnetic induction is somewhat larger than the external magnetic induction. In a 
ferromagnetic material, the internal magnetic induction is much larger than the external 
magnetic induction. One may also say that the magnetic induction lines are diluted in 
diamagnetic materials, concentrated in paramagnetic materials, and strongly concentrated 
in ferromagnetic materials. 

In diamagnetic and paramagnetic materials, small applied fields give rise to an internal 
magnetic induction that is directly proportional to the applied field strength 

In order to find a relation between and 
magnetic induction, or an external magnetic field

we consider a material placed in an external
   The internal magnetic induction, 

can then be written as 

isprovided demagnetization effects are neglected and the internal magnetic field
approximated by the external magnetic field    For diamagnetic or paramagnetic materials, 
this approximation is justified and, after combining Eqs. (8.17) and (8.18), one finds 

or


where is the (dimensionless) volume susceptibility. For ferromagnetic materials, it is 
not justified to approximate by the applied field  H in Eq. (8.18). In ferromagnetic 
materials, strong demagnetizing fields are present below the Curie temperature with field 
strengths that are commonly much larger than the applied fields. Instead of Eq. (8.18), we 
therefore write 

where is the demagnetizing field, and where we have assumed zero external field. The 
existence of a demagnetizing field can best be understood by considering a bar magnet for 
which the magnetic induction B and the magnetic field inside and outside the magnet are as 

the bar magnet are the same, which is plausible since in free space we have 
shown in Fig. 8.1. Inspection of this figure shows that the field lines and flux lines outside 
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On the basis of Maxwell’s equations applied to a situation in which there are no electric 
currents, one has 

and for the flux density one has 

For a bar magnet of finite dimensions, one may therefore write 

where the integration is performed over the whole space. This integral may be written as 
the sum of the integral over the volume of the bar magnet and the integral over the rest of 
the (free) space 

and
This result shows that the integral over the volume of the magnet (first term in Eq. 8.25) has 
to be negative, which is possible only if  inside the magnet have opposite direction. 
In other words, inside the magnet exists a magnetic field with a direction opposite to that 
of the magnetization and hence the name demagnetizing field.

The demagnetizing field depends on the shape of the magnet. For a homogeneously 
magnetized ellipsoid it can be expressed as 

where the demagnetization factor is dimensionless with values ranging between zero 
and one. This factor is a sensitive function of the geometry of the magnet. Examples of 
demagnetizing factors pertaining to shapes of simple geometry are listed in Table 8.1. 

Using Eqs. (8.21) and (8.26), one has for the induction inside the magnet 

The units used for describing the magnetic properties of the various magnetic materials

considered in the literature are far from being uniform. Throughout this book, the Standard

International system of units (SI) has been used, that was adopted in 1960 by the Conférence
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Générale des Poids et Mesures. These units form a coherent system and are based on seven 
basic units: meter, kilogram, second, ampere, kelvin, mole, and candela. The use of the 
SI units has been recommended by the International Union of Pure and Applied Physics 
(Cohen and Giacomo, 1987). In order to make easy contact with the enormous amount of 
magnetic data published in the scientific literature during the years, many scientists still 
use the older cgs–emu units even at present. For this reason, we have listed in Table 8.2 
relationships and conversion factors between the SI and the older units. 

The flux density B is not always a good measure to characterize a magnetic material 
since we have seen that it may include contributions from external magnetic sources. The 

zation  M (in J 
between

polarization 

intrinsic properties of a given material are therefore always characterized by the magneti-
or the magnetic polarization (in T). The following relation exists 

 and 

The flux density and field strength are related by the equation 

Ferromagnetic materials are characterized by the presence of hysteresis loops. Examples 
of such loops are shown in Fig. 8.2. In so-called soft-magnetic materials, the loops are very 
narrow; in hard-magnetic materials the loops can be extremely broad. We will return to 
these points in Chapters 12–14. Here, we will restrict ourselves to a comparison of different 
types of representations of hysteresis loops. 

Plots of B versus  H and J versus H for a given ferromagnetic material are compared 
in Fig. 8.2. Both quantities B and J become zero at sufficiently high negative fields, which 
defines the corresponding coercive fields, indicated by and respectively. The 
field where the magnetic polarization or the magnetization vanishes is often referred 
to as the intrinsic coercivity. Many authors plot the magnetization M measured versus the 
corresponding magnetic field strength by using the symbol  B of the flux density for the 
latter. In these particular cases, the flux density  B is considered to represent an external 
quantity not related to the material under investigation. It is obtained by applying Eq. (8.29) 
to an empty measuring coil (J = 0) and leads to the relation where can 
now be given in units of tesla. The advantage of this procedure is that field strengths given 
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in kOe in the older units can be compared easily with values of in tesla in modern SI 
units. 

Magnetically hard materials are characterized by a strong preference of the magneti­
zation for one of the crystallographic directions. In this direction, the full magnetization is 
already reached in comparatively low field strength, whereas much higher field strengths 
are needed in the other (hard) directions. Examples of measurements revealing this property 
are shown in Fig. 8.3. It will be clear that the difference in magnetic response between the 
various directions is more distinct in plots of J or M versus H than in plots of B versus H. 
In order to exclude demagnetization effects, such measurements are preferentially made on 
long cylinders of the material with the long axis cut in the various crystallographic directions 
considered. 

the primacy of
Before leaving this chapter we will briefly mention the existing dilemma between 

and For this reason we have summarized Maxwell’s equations and 
several other related equations in Table 8.3. When inspecting Maxwell’s equations one 
may notice two types of analogies between the electric and magnetic quantities: (i) The 
distinction according to the structure of the differential operators (curl and div) leads to the 
correspondences and In this picture, the primacy of H is based on fictive 
magnetic surface poles or magnetic charges traditionally used in magnetostatics by analogy 

equations leads to the correspondences and 
appropriate to consider the magnetic induction or magnetic flux density

suggesting that it is more
as the field in 

matter. 

with electrostatics; (ii) by contrast, the distinction by homogeneous and inhomogeneous 

the primary magnetic field is
In the codification of the field quantities of Faraday, Maxwell, and their contemporaries,

taken as the magnetizing force, now called field strength. The 
points to the status of a variable quantity that is determined 

by the sum of and 
However, as stated in (ii) above, the field within magnetized matter is not

and corresponds to the analogy mentioned under point (i) above. 
term magnetic induction for 

but since 
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is produced by both the conduction and the Amperian (atomic) currents, while has its 

point (ii) appears to be more general. It is clear that those advocating the primacy of
source exclusively in external conduction currents. Hence, the analogy considered under

have 
an excellent viewpoint although historically they are at a disadvantage, because the magnetic 
pole approach has traditionally been used in magnetostatics by analogy with electrostatics. 

preferred because the desired quantity is The relevant field
sample is the internal field, which originates not only from the external field

   in a magnetized 
In fact, for the characterization of magnetic materials the traditional approach is usually 

     but 
has to be corrected by 

the demagnetizing field
also from the stray- or self-field of the magnetized body. Thus,

 where is the demagnetizing factor and depends 
on the sample geometry, as shown in Table 8.1. A more detailed discussion regarding these 
matters can be found in articles written by Cohen and Giacomo (1987), Goldfarb (1992), 
and Hilscher (2001). 
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9 

Measurement Techniques


9.1. THE SUSCEPTIBILITY BALANCE 

Commonly, for measuring the magnetic susceptibility of samples having the shape of long 
prismatic or cylindrical rods, the Gouy method is applied. A schematic representation of a 
measuring device based on this method is shown in Fig. 9.1.1. 

The sample is suspended using a long string and a small counterweight to prevent the 
sample from being pulled to one of the magnet poles. One end of the rod-shaped sample is 
located between the poles of a magnet where the field strength is comparatively high. By 
contrast, the field strength at the other end of the sample is small. The axial force exerted 
on the sample by the field is measured, for instance, by using an automatic balance. 
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If the long axis of the rod is along the we are interested in the axial force 
exerted on a volume element dV  of the sample. Using the relations 

where E represents the magnetostatic energy of the sample in the magnetic field, we may 
write 

where is the magnetic moment of the volume element considered and  H is the cor­
responding local field strength. If the sample is homogeneous, all volume elements of 
the sample have the same magnetic moment given by For paramagnetic and 
diamagnetic samples, it has been shown in Chapters 3 and 6 that the susceptibility is 
field-independent. In that case, one may write 

After integration along the length of the sample, one finds for the total axial force 

where a is the cross-sectional area of the rod-shaped sample perpendicular to the z-axis, 
is the field strength at the bottom of the sample located between the magnet poles, and 
is the field strength at the top of the sample. 
It follows from Eq. (9.1.3) that the force is independent of the direction of and 

If is smaller than one tenth of its neglect leads to an error of at most 1 %. 
The Gouy method works satisfactorily if the susceptibility is isotropic and field-

independent. The sample rod has to be macroscopically homogeneous and a constant 
cross-section is required. Often, the sample consists of a glass tube filled with powder. 
In this case, one has to prevent inhomogeneous compression by the field, which can be 
done by fixing the powder particles by means of glue. 

In the Gouy method, one obtains the susceptibility by measuring the change of weight 
after the field in the magnet has been switched on. For practical purposes, it is sometimes 
convenient to calibrate the weight increase by means of a standard sample of well-known 
susceptibility. 

9.2. THE FARADAY METHOD 

In the Faraday method, the sample is again placed in an inhomogeneous magnetic field, 
the concomitant force being given by 
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where is the magnetic moment of a small sample located in an area where the field 
gradient has a constant value. 

For various types of magnetically ordered materials, in particular, it is desirable to 
measure the magnetization as a function of the field strength In such cases, one may 
use an apparatus as schematically shown in Fig. 9.2.1, where a homogeneous magnetic 
field along the vertical or z-direction is generated by a solenoid. This field aligns the 
moment of the sample in the z-direction, and if the magnetization of the sample is field-
dependent, the field applied will increase the magnitude of For measuring the size of 

at each field strength by means of the force (Eq. 9.2.1), one needs an auxiliary 
field gradient which can be generated by means of a set of gradient coils that are

specially designed for producing a homogeneous gradient at the site of the (small) sample.


is measured, for instance, by an automatic balance. The force can be calibrated
The force 
by measuring a standard sample of pure Ni, having a well-known magnetization. 

9.3. THE VIBRATING-SAMPLE MAGNETOMETER 

The vibrating-sample magnetometer (VSM) is based on Faraday’s law which states 
that an emf will be generated in a coil when there is a change in flux linking the coil. Using 
Eqs. (8.9) and (8.10), we may write for a coil with n turns of cross-sectional area a: 

If the coil is positioned in a constant magnetic field, one has
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When we bring a sample having a magnetization M into the coil, we have 

The corresponding flux change is 

Combining Eqs. (9.3.1) and (9.3.2) leads to


This means that the output signal of the coil is proportional to the magnetization M but 
independent of the magnetic field in which the size of M is to be determined. 

In the VSM, the sample is subjected to a sinusoidal motion (frequency and the 
corresponding voltage is induced in suitably located stationary pickup coils. The electrical 
output signal of these latter coils has the samefrequency Its intensity is proportional to the 
magnetic moment of the sample, the vibration amplitude, and the frequency A simplified 
schematic representation of the VSM is given in Fig. 9.3.1. The sample to be measured 
is centered in the region between the poles of a laboratory magnet, able to generate the 
measuring field A thin vertical sample rod connects the sample holder with a transducer 
assembly located above the magnet. The transducer converts a sinusoidal ac drive signal, 
provided by an oscillator/amplifier circuit, into a sinusoidal vertical vibration of the sample 
rod.The sample is thus subjected to a sinusoidal motion in the uniform magnetic field 
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Coils mounted on the poles of the magnet pick up the signal resulting from the motion of the 
sample. This ac signal at the vibration frequency is proportional to the magnitude of the 
moment of the sample. However, since it is also proportional to the vibration amplitude and 
frequency, the moment readings taken simply by measuring the amplitude of the signal are 
subject to errors due to variations in the amplitude and frequency of vibration. In order to 
avoid this difficulty, a nulling technique is frequently employed to obtain moment readings 
that are free of these sources of error. These techniques (not included in the diagram shown 
in the figure) make use of a vibrating capacitor for generating a reference signal that varies 
with moment, vibration amplitude, and vibration frequency in the same manner as the signal 
from the pickup coils. When these two signals are processed in an appropriate manner, it is 
possible to eliminate the effects of vibration amplitude and frequency shifts. In that case, 
one obtains readings that vary only with the moment of the sample. 

9.4. THE SQUID MAGNETOMETER 

The influence of magnetic flux on a Josephson junction may be employed for measur­
ing magnetic fields or magnetizations. The basic element of a Superconducting Quantum 
Interference Device (SQUID) magnetometer is a ring of superconducting metal containing 

critical current of an array of two Josephson junctions is periodic in field units of
one or two weak links. The name quantum interference is derived from the fact that the

due 
to interference effects of the electron-pair wave functions. A so-called dc SQUID is built 
with two Josephson junctions and a dc current is applied to this device. The effect of a radio 
frequency (RF) field on the critical current is used to detect quasi-static flux variations. The 
RF SQUID is a simple ring with only one Josephson junction. Variation of the flux in the ring 
results in a change of impedance. This change in impedance results in detuning of a weakly 
coupled resonator circuit driven by an RF current source. Therefore, when a magnetic flux 
is applied to the ring, an induced current flows around the superconducting ring. In turn, this 
current induces a variation of the RF voltage across the circuit. With a lock-in amplifier this 
variation is detected. A feedback arrangement is used to minimize the current flowing in 
the ring, the size of the feedback current being a measure of the applied magnetic flux. The 

method is capable of measuring magnetic moments in the range 
accuracy of 1%. Custom-designed dc SQUIDs can have a few orders of magnitude higher 
sensitivities. For a detailed treatise on the operation principles and design considerations 
of dc and RF SQUID sensors, we refer to the book of van Duzer and Turner (1981) or the 
chapter by Clarke (1977). 

detection by means of a SQUID is extremely sensitive. In commercial magnetometers the 
with an 
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Caloric Effects in Magnetic Materials


10.1. THE SPECIFIC-HEAT ANOMALY 

It has been shown in Chapter 4 that the magnetic susceptibility of ferromagnets, ferrimag­
nets, and antiferromagnets behaves anomalously when the temperature in the paramagnetic 
range approaches the magnetic-ordering temperature. In this section, it will be shown that 
the anomalies in magnetic behavior close to the ordering temperature are accompanied by 
anomalies in the specific heat. 

Let us first consider the effect of an external field H on a magnetic material for which 
the magnetization is equal to zero before a magnetic field is applied. The work necessary 
to magnetize a unit volume of the material is given by 

The total work required to magnetize a unit volume of the material is


In analogy with Eq. (10.1.1), one finds that the spontaneous magnetization of a ferromag­
netic material gives rise to an additional contribution to the internal energy per unit volume 
of the material 

where is the molecular field or Weiss field introduced in Chapter 4. After 
substituting for and performing the integration from 0 to  M, one obtains 

The additional specific heat due to the spontaneous magnetization is then given in the 
molecular field approach by 
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In writing down these equations, one has to realize that M depends on temperature and 
that varies strongly with temperature. When inspecting Fig. 4.2. 1c, one sees that 
M = 0 in a ferromagnet material above whereas M is almost temperature-independent 
at temperatures much below However, M varies strongly just below In terms of 
Eq. (10.1.4), this means that vanishes at very low temperatures and above


Just below
 the specific heat will be large. Infact, shows a discontinuity at 
The size of this discontinuity can be calculated as follows. The molecular field constant 
can be expressed in terms of by rewriting Eq. (4.2.5) as: 

In Section 4.2, it has already been shown that the reduced magnetization  M(T)/M(0) if 
plotted as a function of the reduced temperature has the same shape for all ferromagnetic 
materials characterized by the same quantum number J. By substituting M(T)/M(0) of 
Eq. (4.2.11) into Eq. (10.1.5), one can calculate exactly over the whole temperature 
range from to by means of a simple computational procedure. 

If one is only interested in the magnitude of the specific-heat discontinuity at one 
may write down a series expansion for of Eq. (4.2.1) and retain only the first two terms 
(Eq. 3.2.1). After some algebra, one finally finds for the magnitude of the discontinuity 
at 

It is useful to keep in mind that for the simple case the specific heat jump at equals 
for a mole of magnetic material. The temperature dependence of 

for the case is shown in Fig. 10.1.1. 
It is instructive to compare the molecular field results shown in Fig. 10.1.1 with the 

experimental results obtained for nickel, shown in Fig. 10.1.2. The upper curve in Fig. 10.1.2 
is the total specific heat In order to compare this quantity with the molecular field 
prediction, one has to subtract the non-magnetic contributions due to lattice vibrations, 
thermal expansion, and the electronic specific heat. These non-magnetic contributions may 
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be estimated from measurements on nickel alloys that show no magnetic ordering. The 
total of these contributions has a temperature dependence as shown by the broken line in 
Fig. 10.1.2. After subtraction of this contribution, one finds the magnetic contribution shown 
in the lower part of the figure. Comparison with the molecular field result in Fig. 10.1.1 shows 
that the general behavior is the same, the main difference being substantial contributions 
also above in the experimental curve. This behavior is commonly attributed to so-called 
short-range magnetic order. Above the long-range magnetic order that extends over 
many interatomic distances disappears. Some short-range order in terms of correlations 
between the directions of moments of nearest-neighbor atoms may persist, however, also 
at temperatures above the magnetic-ordering temperature. 

10.2. THE MAGNETOCALORIC EFFECT 

The magnetocaloric effect is based on the fact that at a fixed temperature the entropy 
of a system of magnetic moments can be lowered by the application of a magnetic field. 
The entropy is a measure of the disorder of a system, the larger its disorder, the higher its 
entropy. In the magnetic field, the moments will become partly aligned which means that 
the magnetic field lowers the entropy. The entropy also becomes lower if the temperature 
is lowered because the moments become more aligned. 

Let us consider the isothermal magnetization of a paramagnetic material at a tempera­
ture The heat released by the spin system when it is magnetized is given by its change 
in entropy 

If the magnetization measurement is performed under adiabatic conditions, the temperature 
of the magnetic material will increase. By the same token, if a magnetic material is adi­
abatically demagnetized, its temperature will decrease. The magnitude of the heat effects 
involved can be calculated as follows. 
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In the absence of the magnetic field, the 2J + 1 energy states of each of the participating 
Nmagnetic moments are degenerate. For a system which contains  non-interacting magnetic

moments, and therefore consists of available states, we can easily calculate 
the entropy. According to Boltzmann’s theory, the corresponding entropy is 

As has been discussed in Section 3.1 and illustrated for the case in Fig. 3.1.1, 
application of a magnetic field will lift the degeneracy of each of the N manifolds of 2J + 1 
states. It follows from Fig. 3.1.1, and also from Eq. (3.1.1), that the energy separation 
between any two of the magnetically split 2J + 1 states equals Let us suppose 
that the temperature at which the system is magnetized by means of the field H is so low 
that the thermal energy is small compared to In this case, only the lowest 
state (m = –J) will be occupied for each of the N spins. The corresponding entropy is now 
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Consequently, when the field H is applied under isothermal conditions, the heat released 
by the spin system is 

The same amount of heat will be absorbed by the system during the demagnetization process 
after the field has been switched off. 

The consecutive steps carried out in the cooling process are illustrated by means of 
Fig. 10.2.1. The field  H is applied at the temperature when the paramagnetic system 
is in good thermal contact with the high-temperature bath (path AB in the lower part of 
Fig. 10.2.1). For instance, the thermal contact is in on-position when the space between 
the paramagnetic system and the high-temperature bath (which may be liquid hydrogen or 
liquid helium) is filled with helium gas. Subsequently, the paramagnetic system is thermally 
isolated by pumping the helium gas away (heat switch in off-position). Then, the magnetic 
field is also switched off. In the lower part of Fig. 10.2.1, this corresponds to path BC. 
The temperature has now dropped to The process described above is employed for the 
production of very low temperatures in the microkelvin range (Little, 1964). 
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Magnetic Anisotropy


Phenomenologically, the anisotropy 

A magnetic material is said to possess magnetic anisotropy if its internal energy depends
on the direction of its spontaneous magnetization with respect to the crystallographic axes.

energy, in a material with uniaxial (hexagonal and 
tetragonal) symmetry may be described by a series expansion. For tetragonal symmetry, 
the lowest order terms are given by 

where and are the anisotropy constants and where the direction of the sponta­
neous magnetization relative to the single uniaxial direction and the is given 
by the polar angles and respectively (see Fig. 11.1).


In most cases, it is sufficient to consider only the
 and terms. The preferred 
magnetization direction will be along the in hexagonal or tetragonal crystal structures 
if predominates and It will be perpendicular to the if If is not 
predominant, the preferred magnetization may point in other directions. In the following, 
we will take only and into consideration. If one has a situation in which 

then one finds that the lowest value of the anisotropy energy is reached for whereas if 

the lowest anisotropy energy is reached for a value given by 

A diagram showing the preferred moment directions for different and values in a 
hexagonal crystal is given in Fig. 11.2. 

Experimental values of anisotropy fields, are commonly obtained by measur­
ing magnetic polarization curves with the field applied parallel and perpendicular to the 
easy magnetization direction. The anisotropy field is then obtained as the intersection of 
the two magnetization curves mentioned. Illustrative examples of measurements of 
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obtained in this way for several permanent-magnet materials by Strnat (1988) are shown in 
Fig. 11.3. 

Measurements of can be helpful for obtaining an estimate of Suppose that the 
spontaneous polarization of the material is held in equilibrium by a field H normal to the 
preferred direction, such that is inclined at an angle and hence at an angle with 
respect to H. The magnetic field  H then exerts a torque that tends to increase 
The torque tending to return to the preferred direction is obtained by differentiating the 
expression for the anisotropy energy 
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Equating the two torques leads to the relation 

The value of  H that makes parallel with the field is reached when The 
anisotropy field is then given by 

In some materials, is negligible and measurements of are sufficient for the 
determination of 

A frequently used method to determine and has been developed by Sucksmith 
and Thompson (1954) and is based on the relation 

which holds for the magnetization curve of a single crystal obtained in comparatively small 
fields applied perpendicular to the easy direction. Under these circumstances, one may 
assume that the value of the saturation polarization does not change with field strength 
and hence Substitution into Eq.(11.6) then leads to Eq.(11.8). When H/J is 
plotted versus the anisotropy constant in Eq. (11.8) may be derived from the vertical 
intercept and the anisotropy constant from the slope of the straight line. 

Substantial errors may arise from misalignment when this method is used for deter­
mining and on aligned powder samples. Misalignment leads to curvature of the 
magnetization, similar to what would be the effect of a larger value of Somewhat better 
in this respect is a method based on the Sucksmith–Thompson plot, as proposed by Ram and 
Gaunt (1983). In this modification, is plotted versus 
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where is the remanence in the hard direction and where the factor 
has been introduced to simulate perfect magnetic alignment of the powder particles. 
An example of a modified Sucksmith–Thompson plot, obtained on a single crystal of 

and 
derived from the intercept and slope in this plot are equal to 1.5 and 3.9 

respectively. 

by Durst and Kronmüller (1986), is shown in Fig. 11.4. The values of 

The variation of the anisotropy energy with the direction of the magnetization in cubic 
materials is commonly expressed in terms of direction cosines. Let OA, OB, OC be the 
cube edges of a crystal and let the magnetization be in the direction of OP. Furthermore, 

and The anisotropy energy per unit volume 
of the material, if it is magnetized in the direction OP, is given by 

The constant  K has been included for completeness, although it is rarely used. In many 
textbooks, the constants and are represented as and Note that odd powers 
of are absent in Eq. (11.9) because a change in sign of any of the αs should bring the 
magnetization vector into a direction that is equivalent to the original direction. Furthermore, 
the second-order terms can be left out of consideration since 

of magnetization
The anisotropy constants can most conveniently be determined by measuring the energy

 along different crystal axes of a single crystal. These determina­
tions include measurements of the J(H) curve, starting from the demagnetized state up to 
magnetic saturation. Subsequently, the area between this curve and the is determined. 
Examples of such measurements were already displayed in Fig. 8.3. 

The energies required for magnetizing cubic materials to saturation in the various 
crystallographic directions can be derived from Eq. (11.9). For the [100] direction, one 
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obtains


In this case, In the face diagonal direction, [110], one obtains 

Substitution of these values into Eq. (11.9) leads to In the same way, 
one finds for the [111] direction 

After substitution into Eq. (11.9), one finds Combining these 
results leads to 

These determinations of anisotropy constants have the advantage that possible errors due 
to strains are avoided, at least if these are isotropic and contribute equally to the energy 
of magnetization in all directions. It is also important that the energies are determined 
from curves between the remanence and the corresponding saturation value, rather than 
from initial magnetization curves because various domain processes not connected with 
crystalline anisotropy may contribute to the energy derived from the latter. 

Other methods for determining the anisotropy constants make use of a torque mag­
netometer, by means of which it is possible to measure the torque, required to keep a 
crystal with its axes inclined at various known angles with respect to an applied magnetic 
field. In the ideal case, the measurements should be made with the sample cut in the shape 
of an oblate ellipsoid but a thin disc is usually satisfactory, provided a field well in excess 
of can be applied. The disc is rotated around an axis perpendicular to both its plane 
and the applied field. It is most important that the sample have a circular shape and that 
it be mounted symmetrically about its center, because otherwise spurious torques will be 
introduced. It is difficult to interpret the results if the applied field does not saturate the 
sample (see the example given below). For this reason, the torque magnetometer is not 
frequently used for investigating permanent-magnet materials based on rare-earth elements 
that have very large anisotropies. 

In cubic materials, the torque curves are expected to depend on the crystal plane of the 
sample. For a flat sample cut with its surface perpendicular to the [001] direction, one has 
for instance 

After substitution of these values into Eq. (11.9), one finds
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The torque can be obtained by differentiating this equation:


The torque expressions for uniaxial symmetry are simpler and can be derived by 
differentiating Eq. (11.1). This leads to 

Results obtained in this way by Franse et al. (1989) on a single crystal of the compound 
are shown in Fig. 11.5. These measurements were made at 4.2 K. The easy 

magnetization direction in is in a plane perpendicular to the hexagonal axis and the 
torque was measured in the plane. It can be derived from the results shown that a magnetic 
field of 1 T is not strong enough to saturate the magnetization in the hard direction, that is, 
in the After Fourier analysis of the curves and comparison with Eq. (11.18), 
the following values for the anisotropy constants are found: 

and 
More extensive descriptions of magnetic anisotropy and its determination can be found 

in the textbooks of Chikazumi (1966) and McCaig and Clegg (1987). 
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12


Permanent Magnets


12.1. INTRODUCTION 

showing a broad hysteresis loop and a concomitant high coercivity. The remanence 
determines the flux density that remains after removal of the magnetizing field and hence 
is a measure of the strength of the magnet, whereas the coercivity 

Permanent-magnetic materials are characterized by a field dependence of the magnetization 

is a measure of the 
resistance of the magnet against demagnetizing fields (see Fig. 8.2). The performance of a 
magnet is usually specified by its energy product, defined as the product of the flux density 
B and the corresponding opposing field H. If the hysteresis loop for a given magnet material 
is available, the energy product of a particular magnet body made of this material can be 
derived relatively easily. We illustrate this by means of Fig. 12.1.1, where we compare two 
different types of magnet materials (A and B). In the left panels of the figures, the second 
quadrants of the hysteresis loops of the two magnet materials are shown. In both cases, 
these loops have been measured on samples of the magnet materials having the form of 
long cylinders so that demagnetizing effects can be neglected see Table 8.1). 

In the second quadrant, the direction of the external field is opposite to the flux density. 
Each point on the B–H curve can be taken to represent the working point of a magnet 
body subjected to its own demagnetizing field. Small demagnetizing fields and working 
points close to the B axis apply in general to elongated or rod-shaped (the length of the rod 
being large compared with its diameter) magnet bodies in their own demagnetizing field. 
By contrast, the working points of a magnet body with a flat or disk-like shape correspond 
to much larger demagnetizing fields and hence are located closer to the H axis. The energy 
products B H for low or high demagnetizing fields, that apply to the two mentioned types of 
magnet shapes, are relatively small as can be derived from the low values of the surface area 
of the corresponding B H rectangles. The energy products (horizontal scale) corresponding 
to all points of the B(H) curve are plotted as a function of the flux density (vertical scale) 
in the right-hand parts of the figure. The largest possible value of the energy product for 
each magnetic material is indicated by The corresponding working points are 
indicated on the B(H) curves of both magnet materials as a filled and an open circle. 
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12.2. SUITABILITY CRITERIA 

The maximum energy product is one of the most generally used criteria for characteriz­
ing the performance of a given permanent-magnet material. The magnitude of this product 
can be shown to be equal to twice the potential energy of the magnetic field outside the 
magnet divided by the volume of the magnet. 

The maximum energy product is not the only criterion that can be used to specify the 
quality of a given permanent-magnet material. Of importance in many static applications is, 
for instance, the magnitude of the intrinsic coercivity This is illustrated in Fig. 12.1.1, 
which compares the  J(H) and  B(H) curves of two different magnet materials that have 
different hysteresis loops but the same remanence It follows from Eq. (8.29) that 
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and will not be much different from each other when the former value is smaller than 
the remanence of the permanent-magnet material, as for the material B in Fig. 12.1.1. 

In permanent-magnet materials based on rare-earth compounds, the intrinsic coercivity 
can become much larger than the remanence. This situation is illustrated by the example 

of material A shown in Fig. 12.1.1. In this case, the value of the intrinsic coercivity consid­
erably exceeds the field corresponding to the point and also exceeds the field 
where the magnetic flux vanishes. In the following, it will be assumed that both magnets 
form part of a magnetic circuit and that they have a shape corresponding to their 
point. When incorporated into a magnetic circuit, in which external magnetic fields are 
present, the magnet material B in Fig. 12.1.1 is able to resist only a relatively small demag­
netizing field. For instance, magnetizing fields higher than twice the field corresponding 
to the point will completely demagnetize the magnet body and hence make it 
useless. In contrast, the magnet material A in Fig. 12.1.1 is able to resist demagnetizing 
fields more than three tunes higher than the field at its point. It may be seen from 
the figure that this behavior originates from the independence of the magnetic polarization 
J(broken line) on opposite external and/or internal fields up to a value close to 

High values of can generally be obtained in magnet materials that have a high 
intrinsic magnetocrystalline anisotropy, as in rare-earth compounds. In materials where the 
hard-magnetic properties originate from shape anisotropy (Alnico-type materials, as will 
be discussed in more detail in Section 12.8), it is not possible to generate large coercivities. 
The B(H) curves of representative rare-earth-based magnets are compared in Fig. 12.2.1 
with the B(H) curve of Ticonal XX (Alnico type) and with the B(H) curves of some other 
common types of magnet materials. It is the presence of large coercivities in particular that 
makes the rare-earth-based magnets suitable for applications in which flat magnet shapes 
are required. 

It follows from the foregoing that the value itself is not always a sufficient 
criterion for the suitability of a given permanent-magnet material to be applicable in electric 
motors. More relevant to this case is the extent to which reverse fields can be applied that 
leave the magnetic properties of the magnet body unchanged after removal of these fields. 
The recoil line and the recoil energy are suitability criteria commonly used to characterize 
permanent-magnet materials for use in permanent-magnet devices in which substantial 
changes of the demagnetizing field occur in the air gap. For defining these quantities, 
one may consider a magnet body characterized by a  B(H) loop like the one shown in 
Fig. 12.2.2 smaller than After application of a demagnetizing field up to a value 
corresponding to point a, the material will generally not return along the line connecting a 
and but along the line abc. This so-called recoil line has a slope similar to that of B(H) 
in the first quadrant of the loop at that is, The hatched area in the 
figure (b is midway in between a and c) is commonly referred to as the recoil energy. This 
energy generally depends on the location of a, meaning that there is a maximum attainable 
value for each material. A relatively high value of the maximum recoil product is reached 
in magnet materials in which the high coercivity originates from a large magnetocrystalline 
anisotropy and where the recoil line coincides with the B(H) curve over an extended field 
range. In magnets based on shape anisotropy, the maximum recoil energy is only a small 
fraction of 

Magnetic devices in which cyclic operations are involved and where reversibility plays 
a prominent role require quite a different criterion for the suitability ofmagnet materials. The 
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relevant parameter here is the maximum amount of mechanical work that can be obtained in 
a reversible way from a well-designed configuration with a given magnet and a magnetizable 
object. It is well known that this maximum mechanical work (available per unit volume 
during a change in configuration) is equal to in the case of an ideal magnet in which 
the complete (linear) hysteresis branch in the second quadrant is traversed reversibly. 

There are also applications of permanent-magnet materials in which temporary or even 
cyclic excursions to elevated temperatures are required. In such cases, the suitability of a 
given magnet material will depend to some extent on the temperature dependence of its 
remanence and on the temperature dependence of its coercivity in the temperature range 
of interest. For many industrial applications, it is required to have stable coercivities and 
magnetizations up to at least 150°C. If both quantities decrease significantly with increasing 
temperature, one will be faced with a corresponding loss in magnet performance upon 
increasing the temperature. In the most favorable cases, these losses in magnet performance 
are only temporary and the original values of remanence and coercivity are recovered 
after returning to room temperature. Unfortunately, for some types of materials the loss in 
performance is irreversible. Reversible temperature coefficients ofcoercivity and remanence 
can usually be dealt with by designing a machine according to a given specification in a 
manner that the magnets are sized to be sufficiently strong at the highest temperature when 
they are most prone to demagnetization effects. 

The corrosion resistance, the chemical and mechanical stability, the ease of mechanical 
processing, the weight per unit of energy product, and the electrical resistance are suitability 
criteria of a different kind that also have to be considered. Furthermore, one has to bear in 
mind that it is always necessary to magnetize magnets at some point in the manufacturing 
cycle. In favorable cases, this can conveniently be done with the magnets in situ in a partially 
or fully assembled machine, as with Alnico- and ferrite-type magnets. The production of 
machines in which premagnetized magnets are used may present severe problems. One 
of these is the attraction of magnetic dust during surface grinding. For this reason, it is 
sometimes desirable to employ magnets having coercivities that are sufficiently high for the 
purpose, but that are not so high as to make in situ magnetizing of the assembled magnet 
impossible. This means that the applicability of a magnetic material may require a lower 
as well as a higher limit for the coercivity. For more details, the reader is referred to the 
survey published by McCaig and Clegg (1987). 

12.3. DOMAINS AND DOMAIN WALLS 

It was mentioned already that not only a large maximum energy product but 
also a high intrinsic coercivity is needed in some applications. Moreover, the maximum 
energy product itself depends on the coercivity and, if falls appreciably below the value 

it may become lower than the theoretical limit 

For this reason, it is desirable to look somewhat more closely at the mechanisms that govern 
the magnitude of the coercivity in permanent-magnet materials. 
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Let us consider the case that a steadily increasing magnetic field is applied in a direction 
opposite to the direction in which a perfect single crystal of a magnetic compound of 
hexagonal or tetragonal symmetry is magnetized (i.e., opposite to the easy magnetization 
direction). One would expect all atomic moments to reverse their direction by a process 
of uniform rotation only when the applied field becomes equal in size to the anisotropy 
field (see Chapter 11). However, in reality, such high coercivities are 
seldom encountered. Most permanent-magnet materials show the magnetization reversal 
already at field strengths that are only a small fraction (10–15%) of the value of 

The reason for this comparatively easy magnetization reversal is the existence of 
magnetic-domain structures. Magnetic particles of sufficiently large size will generally not 
be uniformly magnetized but rather be composed of magnetic domains that are mutually 
separated by domain walls or Bloch walls. A schematic representation of such a wall is 
given in Fig. 12.3.1. The magnetizations in adjacent domains point into opposite directions 
in order to reduce the magnetostatic energy. The magnetization in the wall between two 
domains gradually changes from the one preferred magnetization direction to the other. The 
thickness of the wall is determined by the relative strengths of the anisotropy energy and the 
exchange energy. The former tends to reduce the wall thickness, the latter tends to increase 
it. This may be seen from the argument given below. 

According to Eq. (4.1.2), one may obtain the exchange energy between neighboring 
spins from the formula 

where is the angle between the directions of the spin-angular-momentum vectors of atom 
i and its neighbors j. Generally, the widths of domain walls involve many lattice spacings, 
sometimes more than a hundred. For this reason, the angle between two neighboring 
spins in the wall is very small, so that one may use the approximation 
The variable part of the exchange energy for a row of atoms across the wall can then be 
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if 

written as 

For two atoms with an angle between their spin moments, the variable part of the 
exchange energy is and would be equal to 
the magnetization would change abruptly over radians. Let us consider the case that the 
directional change would be realized more gradually, and would involve  N equal steps 

which is a much smaller value. This result 

the presence of the magnetocrystalline anisotropy energy, favoring collinear spin moments, 
being oriented in one of the two opposing easy directions. The actual width of the wall is 
determined by a competition between both energies. 

with equal angles between neighboring spins. The total energy would then be only 

shows that the exchange energy favors a large wall width. However, the width is limited by 

A crude estimate of the energy and width of a domain wall can easily be obtained if 
we neglect the demagnetizing energy. Consider a 180° wall of width  W in a simple cubic 
material extending along a given [100] direction in which the moment direction gradually 
changes from the positive to the negative [001] direction. Let us further assume that any 
deviation from the [001] direction involves an anisotropy energy given by 
Within the wall, the moment directions largely deviate from the easy direction and the total 
anisotropy energy involved is roughly proportional to the wall width. If a is the lattice 
constant and if the wall extends over N lattice spacings, one obtains a rough estimate of the 

where W = Na 

ic lattice, the number of rows per unit area of wall is The exchange energy 

total anisotropy energy as is the width of the wall. 
The increase in exchange energy for one row of atoms in the wall is For 
a simple cub
per unit area of wall is therefore The total energy per 
unit area associated with the wall is then 

A minimum with respect to  W is obtained when 

This leads to the following expression for the wall width W:


where A is the average exchange energy. Substitution of Eq. (12.3.6) into (12.3.4) leads to 
the following expression for the wall energy per unit area of a wall with width W: 
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and a = 0.3nm. The value of In iron metal, one has  may be 
calculated by means of Eq. (4.4.14), using Z = 8, and  S = 1.1. This leads 
to J. By means of Eq. (12.3.6), one now finds 

which is about 200 lattice spacings, and 

This may be compared with the situation in a strongly anisotropic material like the tetragonal 
compound for which and where the wall width is one order of 
magnitude smaller than in Fe metal. 

12.4. COERCIVITY MECHANISMS 

Already in 1948, Stoner and Wohlfarth showed that for a magnetization-reversal process 
proceeding by means of uniform rotation of the magnetic moments in spheroid particles, in 
which the major axis coincides with the easy direction of the magnetization, the coercivity 
is given by 

where and are the demagnetizing factors corresponding to the two extreme directions 
of the spheroid particles. The first term is the normal anisotropy field that determines the 
easy magnetization direction when there is only magnetocrystalline anisotropy. The second 
term takes account of the fact that, even in the absence of magnetocrystalline anisotropy, 
the moments would align in the direction of the lowest demagnetizing factor. As already 
mentioned, the coercivity as expressed in Eq. (12.4.1) is based on a magnetization-reversal 
mechanism in which all moments retain their parallel arrangement during magnetization 
reversal (uniform rotation). 

In practice, the coercivities obtained for most hard-magnetic materials are substantially 
lower, often by more than a factor of 10. This behavior is illustrated in Fig. 12.4.1, where 
deviations from the corresponding values of the nucleation field  to be defined shortly, 
are shown, the latter representing the values of the first term of Eq. (12.4.1). 

The reason for this is that there exists another magnetization-reversal mechanism that 
can proceed via considerably lower energy expenditure. The latter mechanism is based on 
nucleation of Bloch walls and growth of reversed domains. If, somewhere in a large single 
crystal, a tiny region with a less perfect magnetic-moment arrangement is present, it can 
serve to generate a Bloch wall. The Bloch wall will subsequently spread into the crystal 
and move across the whole crystal until magnetization reversal has been established over 
the whole crystal. Note that the energy required for this process is only equal to the wall 
energy taken over the whole surface of the wall and hence will involve only a very small 
volume compared to the total volume of the crystal. For the uniform-rotation process, the 
anisotropy energy taken over the whole volume of the crystal would be required. 

Bloch walls and reversed domains can be generated near all types of defect regions 
where the local values of the exchange field and anisotropy field have become sufficiently 
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reduced with respect to the values in the bulk of the material to make a local magnetization 
reversal possible. This nucleation of Bloch walls at defects may take place spontaneously 
or under the influence of an externally applied negative magnetic field. The field required 
for Bloch-wall nucleation, commonly referred to as the nucleation field is often used 
to describe the concomitant coercivity Non-uniform processes in which magnetiza­
tion reversal takes place by wall nucleation and propagation dominate in materials with 
high magnetocrystalline anisotropy. By analogy with Eq. (12.4.1), an empirical relation of 
the type 

is often used to describe the nucleation field   and the concomitant coercivity The 
quantities and are microstructural parameters that determine the relative importance 
of the magnetocrystalline anisotropy and the local demagnetizing field, respectively. 

In the so-called nucleation-type magnet, the motion of the walls within the grains 
is comparatively easy. For obtaining high coercivities, the wall motion must be impeded 
by grain boundaries, since otherwise a single nucleated wall would lead to magnetization 
reversal of the entire magnet. The possibility of wall pinning at grain boundaries is therefore 
considered to be a prerequisite for nucleation-type magnets. Nucleation-type magnets may 
be characterized by the following properties: The low-field susceptibility, being a measure 
of the reversible displacement of walls, is very large. Magnetic saturation is already reached 
in comparatively low fields that are not much larger than the demagnetizing fields For 
obtaining the maximum coercivity, a positive saturation field of the order of the 
coercive field is required. This necessity finds its origin in the possible persistence of 
residual domains of opposite magnetization up to In fields larger than all the 
walls will have been removed from the sample, except those walls that cannot be unpinned 
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by any applied field. Generally, the value of the coercivity cannot be further increased 
by application of positive fields larger than 

After the application of nucleation of reversed domains can occur only in a 
negative field H at least equal in size to the nucleation field. Provided is larger than 
the propagation field associated with a possible wall pinning at the grain boundaries, 
complete magnetization occurs only if meaning that in this case the coercivity 
is equal to (see Fig. 12.4.2a). 

A slightly different mechanism is also possible. Nucleation may take place at magnetic 
inhomogeneities at the grain boundaries where the propagation field associated with the 
pinning of walls at these inhomogeneities is larger than the nucleation field 
For intermediate field strengths nucleated domains may exist then 
but the domain walls will remain pinned at the grain boundary as long as 
This mechanism is commonly referred to as inhomogeneous pinning-controlled coercivity. 

the magnetization remains very close to saturation in fields 

compared to the volume of the total grain. In Fig. 12.4.2b, the corresponding decrease in 
magnetization has been strongly exaggerated for clarity. 

because 
It is difficult to distinguish it from the pure nucleation mechanism owing to the fact that 

the volume of the domain nucleated (that has reversed magnetization) is negligibly small 

The situation is completely different in pinning-type magnets. Here the Bloch walls can­
not travel freely throughout the whole grain because of magnetic inhomogeneities present 
in the grains that act as pinning centers for wall motion. Apart from the change in magneti­
zation associated with some wall bending, this pinning will prevent further magnetization 
reversal. Wall displacement (other than bending) can occur only when the force exerted 
on the wall becomes sufficiently strong. This is the case when the strength of the external 

representation ofthe hysteresis loop associated with such a situation is shown in Fig. 12.4.2c.
field exceeds the pinning field strength that then determines the coercivity. A schematic 

The presence of homogeneously distributed pinning centers inside the grain has impor­
tant consequences for the low-field behavior. As illustrated in Fig. 12.4.2c, the low-field 
susceptibility is very weak. Saturation requires a field
to surmount the potential barriers associated with the pinning centers. The corresponding

sufficiently high to allow the walls 

magnetization process is irreversible and it dominates any other reversible processes that 
may be present. The magnetization reversal occurring in a sufficiently high negative field 

is subject to the same mechanism that takes place during the initial magnetization. 
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Consequently, the coercive field is equal to the propagation field that had shown 
up as a jump in the curve of initial magnetization. More details regarding the coercivity 
mechanisms described above can be found in reviews published by Zijlstra (1982), Givord 
et al. (1990), and Kronmüller (1991). 

Permanent-magnet materials like are pinning controlled. At high temper­
atures, the alloy consists of one single phase. Heat treatment of the material at lower 
temperatures leads to the occurrence of a finely dispersed precipitate that is able to pin the 
Bloch walls and to cause high coercivities. A schematic representation of the microstruc­
ture of such a magnet material is shown in Fig. 12.4.3. In the permanent-magnet materials 

and the coercivity is nucleation controlled. 
A survey of various magnet materials is given in Table 12.5.1. Extremely high coercivi­

ties are attained in all materials based on rare-earth elements. The reason for this is their high 
magnetocrystalline anisotropy discussed in Section 5.6, which leads to high coercivities in 
nucleation as well as in pinning controlled permanent magnets. 

12.5. MAGNETIC ANISOTROPY AND EXCHANGE COUPLING IN 
PERMANENT-MAGNET MATERIALS BASED ON 
RARE-EARTH COMPOUNDS 

The anisotropy in modern rare-earth-based magnet materials mentioned in the previous 
section derives primarily from the sublattice anisotropy of the rare-earth component R. The 
anisotropy of the component is much weaker and, in some cases, has even the wrong 
sign, that is, it gives rise to an easy-plane magnetization. Generally, one may say that the 
rare-earth component in binary and ternary compounds is responsible for the magnetic 
anisotropy whereas the component provides a sufficiently high magnetization and Curie 
temperature. 

It follows from the results given in the previous section that high coercivities can be 
reached in materials in which the nucleation fields for domain walls are high or in which 
the propagation fields associated with domain-wall pinning are sufficiently high. It can 
be shown that both fields are the higher the stronger the magnetocrystalline anisotropy. 

A discussion of the crystal field and the concomitant crystal-field-induced anisotropy 
has already been given in Chapter 5. We will now go a little further and show how the 
crystal-field parameters that reflect the strength and symmetry of the crystal field are 
related to the macroscopic anisotropy constants introduced in Chapter 11 in the form 
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In lowest order approximation, the anisotropy constants and are related to these 
crystal-field parameters via the relations (Lindgard and Danielsen, 1975; Rudowicz, 
1985): 

Similar expressions can be derived for the higher order constants The quantities 
are thermal averages of the Stevens operators For instance, 

These thermal averages or statistical averages can be obtained by calculating for each 
of the 2J+1 crystal-field-split states, multiplying with the probability that a given state is 
occupied at a given temperature and then summing over all 2J+1 states. The procedure is 
similar to that used in Chapter 3 for calculating the thermal average of the magnetic moment 

practical purposes, it is sometimes useful to bear in mind that the thermal averages 
can be shown to vary with a high power of the reduced rare-earth-sublattice magnetization 

by means of Eq. (3.1.4). In general, this requires considerable computational effort. For 

with and fourth-order terms therefore vary with temperature as The second- 
and respectively. This means that at room temperature it is generally sufficient to 

consider only the second-order terms because the strong temperature dependence has made 
the fourth-order terms negligibly small. In this approximation, one has (Eq. 12.5.3) 
and in the expression for (Eq. 12.5.2) only the term with is retained. This means 
that if we would know the value of for a given compound, we would be able to obtain 
the sign and the approximate value of from Eq. (12.5.2) by using the data listed in 
Table 5.2.1. 

Although it has not explicitly been mentioned in the discussion given in the preceding 
sections, it will be clear that one of the requirements for permanent-magnet materials is that 
the magnetization adopts a unique direction as can be realized in compounds having crystal 
symmetries lower than cubic. For the case mentioned above that only the lowest order 
term contributes to the anisotropy, one finds for the magnetization M in hexagonal or 
tetragonal compounds (see Chapter 11) that 

In the latter case, the magnetization vector may have any direction in a plane perpendicular 
to the c direction. In this plane, there is no anisotropy-energy barrier that prevents the 
magnetization after alignment by an external field from rotating into the opposite direction. 
The conclusion therefore is that compounds with are not suitable for application 
as permanent magnets. For rare-earth compounds of the type the second-order 
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crystal-field parameter is positive. Using Eq. (12.5.2) and the data listed in Table 5.2.1, 
one finds 

This shows that only compounds with the former six elements can be regarded 
as suitable for permanent magnets. However, for strong magnets one needs a high magne­
tization. This is realized only if the moments of the  R atoms are parallel to the moments 
of the Fe atoms, meaning that the  R-sublattice magnetization must be coupled parallel to 
the Fe-sublattice magnetization. Numerous experimental investigations and band-structure 
calculations have shown that the magnetic-coupling constant describing the magnetic cou­
pling between these two sublattices equals about Substituting 
this value for in Eq. (4.4.9), together with and the values listed for 

in Table 2.2.1, one finds that for R = Ce, Pr, and Nd, but that 
for R = Tb, Dy, and Ho. For compounds with the latter three 

elements, the moments of the two magnetic sublattices point in opposite directions and 
consequently lead to a total magnetization value which is too low for permanent magnets. 

Let us now turn to the three remaining compounds and 
Cerium is known to have an unstable valence. The reason for this is that it 

has only one 4f electron in the trivalent state (see Table 2.1.1). In metallic systems, an elec­
tronic configuration of lower energy can often be reached when this electron is promoted to 
the conduction band, whereby the Ce ion adopts the tetravalent state. This usually happens 
when Ce is combined with 3d transition metals. For the Ce ion, the loss of its 4f electron 
implies the loss of its localized 4f moment and the corresponding rare-earth-ion anisotropy. 
The magnetic anisotropy in is therefore only due to the Fe sublattice, which is 
too small for permanent-magnet applications. 

Most of the powerful modern permanent-magnet materials are based on 
The reason why has not qualified is not a physical one. The natural abundance of 
Pr is much lower than that of Nd which implies that the price of the former is higher than 
that of the latter and consequently hampers large-scale industrial applications of 

The above discussion may have shown which arguments are behind the remarkable fact 
that for a given technological application only one out of the 15 available rare-earth elements 
qualifies. It is illustrative to compare this with the two other rare-earth permanent-magnet 
materials listed in Table 12.5.1. 
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It can be seen in Table 12.5.1 that the advantage of and over 
is their much higher Curie temperature. These materials are preferred as permanent magnets 
in electrical machines having a high use temperature, as in several automotive and aircraft 
applications with use temperatures in the range 200–300°C. The reason why, of the 
and series of compounds, only the compounds with  R = Sm qualify for permanent-
magnet materials can be sketched along the same lines as given above for Because 

is also negative, high total magnetization values are only obtained when  R belongs 
to the light rare-earth elements. In contradistinction to the crystal structure of the 
compounds, one has for the and series that Using again Eq. (12.5.2) 
and the data listed in Table 5.2.1, one finds 

This leaves R = Sm as the only possible rare-earth element that can be used in and 
permanent magnets. 

At temperatures below room temperature it is no longer legitimate to ignore the fourth-
at room temperature the 

value of
order term in Eqs. (12.5.2) and (12.5.3). Although, in

is only approximately 1% of the fourth-order term will dominate at low 
temperatures. This leads to a temperature dependence of the anisotropy constants and 

as shown in Fig. 12.5.1. It can be seen in this figure that changes sign at the spin-
reorientation temperature Below this temperature, the preferred magnetization 
direction starts to deviate from the direction and for each temperature has a direction given 
by Eq. (11.4) introduced in Chapter 11: 

It can be seen in Fig. 12.5.2 that the tilt angle reaches about 30° at 4.2 K. The results 
shown in Fig. 12.5.2 make it also clear that permanent magnets based on 
their usefulness at cryogenic temperatures. 

lose 
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12.6.	 MANUFACTURING TECHNOLOGIES OF 
RARE-EARTH-BASED MAGNETS 

The simplest production route for permanent magnets is schematically rep­
resented in Fig. 12.6.1. This is a well-established powder-metallurgical treatment that leads 
to high-performance magnet bodies. The manufacturing process to prepare 
permanent magnets is basically the same. 

The main steps consist of alloy preparation, pre-milling, milling, control, and adjust­
ment of the overall composition, particle alignment and pressing, sintering and heat 
treatment. After this treatment, the sintered magnet bodies can be machined into the 
shape desired, and are then magnetized. The consecutive steps shown in Fig 12.6.1 will be 
discussed in more detail below. 

The most common way of alloy preparation is vacuum melting of the components in 
an induction furnace. First Fe and B are melted together in an alumina crucible 
under purified argon gas. Subsequently, the reaction vessel is degassed under vacuum 
and Nd metal is added to the melt after the latter has reached a temperature only slightly 
above the Fe–B liquidus temperature. The casting is done in such a way so as to allow 
rapid cooling of the melt in order to prevent oxidation as far as possible. The composition 
of the alloy is generally chosen somewhat more Nd-rich than would correspond to the 
formula composition In that case, the grains are surrounded by small 
amounts of the Nd-rich eutectic present in the Nd–Fe–B phase diagram. The presence of 
intergranular material of the eutectic composition is important in the liquid-phase sintering 
process. 

The chill-cast alloys are generally obtained in the form of large ingot lumps, too large 
for direct milling. These lumps are therefore first crushed by means of hammer mills. 
After a sufficiently small particle size has been reached, further size reduction is achieved 
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by means of ball milling, mortar grinding, or jet milling. In order to avoid oxidation, 
all milling operations have to be performed in an inert-gas atmosphere. Organic liquids 
frequently used for ball milling and attrition milling are freon, cyclohexane, or toluene. 
In all these cases, one has to be aware of a considerable explosion hazard because of the 
presence of the Nd-rich eutectic in the cast alloy (i.e., the presence of fine Nd particles in 
the coarse powder). After the milling treatment, the powder is dried under vacuum or by 
gentle heating in a flow of purified-argon gas. 

The purpose of the milling process is to obtain fine particles that, in the most favorable 
cases, can be regarded as small single crystals. Because grain boundaries are absent, one 
may expect that the particles will have only one single axis of preferred magnetization. This 
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offers the possibility to reach almost perfect particle alignment in the alignment step (see 
also Fig. 12.6.1). Numerous investigations have shown that the ultimate sintered magnets 
have a sufficiently high coercivity only if the particles are present in sufficiently 
small grains. The coercivity in permanent magnets is nucleation controlled 
(see Section 12.4). One of the reasons why small particle sizes favor high coercivities is that 
the smaller the particle the lower the probability that it will contain an imperfection acting 
as nucleation center. It can be never completely avoided that some of the fine particles 
present contain nucleation centers and hence a fraction of the particles will be prone to 
magnetization reversal in a demagnetizing field. The magnetization reversal will affect, 
however, only the latter particles and not spread into the whole magnet body. The overall 
magnetization reversal will therefore be very modest for small particle sizes and may even 
remain unnoticed. 

In order to obtain an anisotropic magnet with the highest possible magnetization in 
a given direction, the powder particles have to be aligned after milling by means of an 
external magnetic field. After the magnetic alignment, the powder is pressed isostatically to 
yield a compact powder that, after sintering, has a sufficiently high density. It is commonly 
assumed that the degree of particle alignment does not change during isostatic pressing. 
Generally speaking, it is desirable to apply a high compacting pressure, but this pressure 
should not be chosen too high because it may then cause severe particle misorientation. 
Particle alignment and pressing can also be performed simultaneously. A non-magnetic die 
is used in this case, the desired magnetization direction being determined by the direction 
of the magnetic field set up in the cavity of the die. 

The sintering step is essential for attaining high values of the ultimate magnetization 
and coercivity. Isostatic pressing or die-pressing alone is known to lead to densities of 
only 80% of the theoretical density. Liquid-phase sintering leads to much higher densities, 
up to 99% of the theoretical density. In that case, the overall composition of the alloy is 
chosen in such a way that after casting, small amounts of a low-melting alloy component 
are present. Sintering is then performed at a temperature low enough for the main phase 

to remain solid. Only the second phase melts and makes mass transport pos­
sible during sintering with the ultimate result that all voids disappear and all 
grains are surrounded by a thin layer of the low-melting intergranular material. At room 
temperature and above, the intergranular material is non-magnetic. It magnetically isolates 
the grains and prevents magnetization reversal to spread into the whole mag­
net body if in one (or more) of the grains a domain wall is nucleated in a demagnetizing 
field. We mentioned already that the presence of very small, magnetically well-isolated, 
particles is important for achieving high coercivity. The liquid-phase sintering has a sec­
ond equally important advantage. The disappearance of voids and the concomitant high 
density implies a high magnetization per unit volume or per unit mass. This is of prime 
importance for the manufacture of magnets with high energy products because, as we 
showed already in Section 12.3, the energy product of (ideal) permanent magnets is pro­
portional to the magnetization squared. A third advantage of the liquid-phase sintering is 
the absence of porosity in the ultimate magnet body, making it more resistant to corrosion 
and giving it a substantially higher mechanical strength than would have been obtained by 
pressing alone. More sophisticated manufacturing routes have been reviewed by Buschow 
(1998). 
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12.7. HARD FERRITES 

The ferrites used for permanent-magnet purposes are the hexaferrites, also called 
hard ferrites or M-type ferrites. These are hexagonal compounds of the general formula 

with Me = Ba, Sr, or Pb which owe their hard-magnetic properties to their 
comparatively large magnetocrystalline anisotropy. The hard ferrites play a dominant role 
on the permanent-magnet market, which is mainly due to the low price per unit of available 
energy, the wide availability of the raw materials, and the high chemical stability. 

The M ferrites crystallize in the magnetoplumbite structure, characterized by a close 
packing of oxygen and Me ions with Fe atoms at the interstitial positions. There are five of 
such interstitial positions, meaning that the magnetically ordered structure is composed of 
five different magnetic sublattices.

Each of the ions in carries a magnetic moment of The moment 
of the Fe ions residing on the same crystallographic position are ferromagnetically aligned 
but the coupling between Fe moments at the different crystallographic positions may be 
ferromagnetic as well as antiferromagnetic. All these couplings are determined by the so-
called superexchange interaction, mediated by the O atoms. There is a strong preference 
for ferromagnetic coupling when the angle Fe-O-Fe approaches 180° and the distance 
Fe–O–Fe becomes smaller. This is the reason why the magnetic moments of the five 
Fe sublattices are not mutually parallel. Two of the Fe sublattices have their moments 
oriented antiparallel to those of the other three. This ferrimagnetic arrangement of the 
resultant spin structure leads to a net moment per unit cell of only (at 4.2 K). 
More details regarding the superexchange interaction can be found in the review of Guillot 
(1994). 

The Curie temperatures of the compounds are fairly high and equal to 
740, 750, and 725 K for Me = Ba, Sr, and Pb, respectively. Of particular interest in the 
M ferrites is the temperature dependence of the saturation polarization Results for the 
Ba compound are shown in Fig. 12.7.1. It may be inferred from this figure that between 

and room temperature, the values increase with decreasing temperature much more 
slowly than would be expected on the basis of the Brillouin function. As a consequence, 

while the temperature coefficient of 

these materials have a relatively low value of at room temperature (much lower than the 
value corresponding to the saturation moment of per formula unit mentioned above) 

is fairly high 
The magnetocrystalline anisotropy in the M ferrites is generally considered as arising 

from spin–orbit coupling. It is characterized by a comparatively high positive value of the 
anisotropy constant while higher order constants are negligibly small. This 
situation corresponds to an easy magnetization direction along the c-axis. 

The temperature dependence of for is shown in Fig. 12.7.1, together with 
the temperature dependence of the anisotropy field  Because decreases 
more strongly with temperature than in the lower temperature range, one finds that 

first slightly increases with temperature before it eventually decreases. This is a rather 
unusual behavior of the anisotropy field. It leads to an unusual behavior also for the coer­
civity. In magnets made of hard ferrites, the coercivity increases when the temperature is 
raised above room temperature whereas it decreases in all other permanent-magnet mate­
rials known. This is an advantageous property for high-temperature applications of such 
magnets. 
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Solid bodies of permanent magnets based on M ferrites can be made either by sintering 
or by plastic bonding. Of both types of magnets, anisotropic as well as isotropic forms are 
applied. The former types are characterized by higher remanences owing to the magnetically 
induced alignment of the powder particles during processing. In the latter magnets, the 
orientation of the powder particles has a random distribution. The anisotropic sintered form 
is the most important. 

The starting materials for the preparation of are and pos­
sible additives and/or Appropriate amounts of powders of these materials are 
dry-mixed and the resulting mixture is subsequently granulated in a disc pelletizer to gran­
ules of roughly 5 mm diameter. During the pre-firing process, performed at about 1250°C
in air, the raw materials react to form the compound Comminution of the hard 
pre-fired granules is achieved by wet milling with steel balls. This latter process leads to 
a thick suspension (slurry) in which the fine powder particles (preferably single crystals) 
have sufficient mobility to align themselves along the preferred magnetization direction 
when an external field is applied during wet pressing. The resultant compacts are first dried 
and then sintered in air at about 1250°C. Anisotropic shrinkage occurs during the sintering 
process. For this reason, the pole faces of the sintered bodies have to be ground afterwards 
when accurate dimensional control of the magnets is required. For more details regarding 
processing, the reader is referred to the reviews by Kools (1986) and McCaig and Clegg 
(1987). 

Permanent magnets made of hard ferrites can be characterized as low-cost low-
performance magnets. Their application is widespread, main applications being anisotropic 
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segments for electric motors, anisotropic rings for loudspeakers, and large anisotropic 
blocks for ore separators. Applications in which the use temperature can become substan­
tially higher than room temperature may profit from the fact that the ferrite magnets have 
a high chemical stability and that the coercivity increases rather than decreases with tem­
perature. A distinct disadvantage of magnets made of hard ferrites is their low 
value (see Table 12.5.1). It requires generally magnets of comparatively large size and this 
restricts their application to magnetic devices in which weight and space are not a concern. 

12.8. ALNICO MAGNETS 

Nowadays, the Alnico alloys have become a less important group of permanent-magnet 
materials. They contain Fe, Co, Ni, and A1 with small amounts of Cu and Ti as additives. The 
Alnicos, like the sintered and magnets discussed in Section 12.5, 
are fine-particle magnets, consisting of ferromagnetic particles in a non-magnetic matrix. 
However, there is an important difference where the rare-earth-based magnets are concerned. 
In the Alnico alloys, the fine-particle structure is not the result of powder metallurgy but 
the result of a metallurgical precipitation reaction that takes place in the solidified ingots of 
the alloy. 

The important role played by the microstructure of Alnico alloys is most conveniently 
discussed by means of alloys of the composition although Alnico alloys have in 
general a much more complicated composition, including Co. The pseudobinary section 
FeNiAl in the phase diagram is shown in Fig. 12.8.1. Permanent-magnet alloys close in 
composition to are commonly prepared by a homogenization treatment at 1250°C. 
It can be seen in Fig. 12.8.1 that the alloy consists of one single phase at this temperature. 
However, at lower temperatures there is a miscibility gap. The presence of this miscibility 
gap causes the phase to decompose into two different phases and when an alloy of 
a composition falling into the gap region is kept at temperatures confined within the gap 
for some time. This second heat treatment is of prime importance for the formation of a 
microstructure in the alloy ingot that gives it the desired hard-magnetic properties. 

Both the Fe-rich particles phase) and the non-ferromagnetic or weakly ferromag­
netic NiAl-rich matrix phase) have the bcc structure. This circumstance is one of the 
reasons that the phase separation of into and upon annealing at a temperature within 
the gap proceeds by so-called spinodal decomposition rather than by the normal nucle­
ation and growth process. This has important consequences for the microstructure and the 
magnetic properties of the alloys, as will be discussed below. 

Although the decomposition proceeds spontaneously, the rate of the spinodal decompo­
sition of the phase into and is diffusion limited. This means that the decomposition 
process will reach completion within a reasonable time only if the atoms are able to diffuse 
to a sufficient extent. Atomic motion during diffusion requires an activation energy that 
can be supplied only if the temperature is sufficiently high. Therefore, the decomposition 
rate is sufficiently high only at relatively high temperatures (850°C). The nature of the 
spinodal-decomposition process is such that the concentrations of the Fe atoms in the two 
phases show a periodic variation (sinusoidal) and the amplitude of the composition fluctu­
ations increases with time until the phase separation into and is complete. The whole 
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process takes only a very short time when performed at 850°C, being completed in a matter 
of seconds or minutes. At lower temperatures, longer times are required. 

The formation and growth of the particles to their final shape and size occurs almost 
entirely during the spinodal-decomposition reaction at 850°C. The driving force for this 
reaction is the reduction of the interfacial energy between the particles and the matrix 

Although the interfacial energy is small it is sufficiently large to 
promote particle growth. 

In general, a third heat treatment is required for good quality magnets. The main effect 
of this third heat treatment, performed at 600°C, is to increase the difference between 
the saturation polarization of the Fe-rich particles and the surrounding matrix (NiAl-rich). 
During annealing, a continuous change in the composition takes place due to the diffusion 
of Fe atoms to the ferromagnetic particles. 

The magnetic anisotropy of Alnico magnets is due to the ferromagnetic particles. 
However, this is not the type of magnetocrystalline anisotropy as found, for instance, in 
rare-earth-based magnets (see Section 12.4). In Alnico alloys, the magnetic anisotropy is 
due to the rod-like shape of the ferromagnetic particles. It originates from the difference 
in demagnetizing factor (see Chapter 8) in the two extremal directions of the particles, 
which requires that the easy magnetization direction is along the long direction of the rod-
shaped particles. The spinodal decomposition alone does not produce a sufficiently large 
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shape anisotropy in the primary ferromagnetic particles. Since the difference in 
saturation magnetization of the particles and the matrix is relatively small, the effective 
shape-anisotropy field of the particles is also small in spite of the elongation. Therefore, 
the heat treatment at 600°C is desirable in order to increase the difference in magnetization 
and the concomitant shape anisotropy. This, in turn, makes it possible to obtain the high­
est coercivities and the optimal permanent-magnet properties. The tempering treatment at 
about 600°C usually takes several hours. 

In Fig. 12.8.2, a few examples are shown of how the intrinsic coercivity for 
Fe-NiAl alloys can be varied with composition and heat treatment. In case A, the coerciv­
ities were determined after quenching and after tempering treatments to give the optimal 
coercivity. The results displayed by curve B were obtained by means of the more attrac­
tive manufacturing route of continuously controlled cooling of these materials. It should, 
however, be borne in mind that the overall magnetization of the magnets decreases 
with decreasing Fe content. Therefore, the compositions corresponding to the maximum 
coercivity need not necessarily correspond to the optimal composition of the ultimate 
magnet. 

The interfacial energy responsible for the growth of the ferromagnetic particles depends 
on the crystallographic orientation of the boundary between the and the phase. There­
fore, the particle growth is anisotropic, which results in an elongation parallel to the 
directions of the cubic alloy. Significant improvements of the magnetic properties are there­
fore generally obtained by controlled cooling of the alloys from 1200°C to about 800°C in 
a saturating magnetic field. This thermomagnetic treatment leads to anisotropic magnets in 
which the easy magnetization direction of the grains formed during the spinodal decompo­
sition is parallel to the direction of the magnetic field applied during cooling. The elongation 
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of the particles in the field direction occurs because the magnetic free energy of the parti­
cles is lower when the axis with the lowest demagnetizing factor is in the direction of the 
applied field. In principle, one would obtain the best properties when the magnetic field is 
applied parallel to one of the three directions (for instance [001]) of an oriented sin­
gle crystal. In practice, instead of expensive single crystals, so-called columnar-crystallized 
Alnico alloys are applied. These alloys can be obtained by a grain-orienting process before 
the thermomagnetic and tempering treatment. It is achieved by casting the alloys in heated 
molds onto water-cooled steel or copper slabs. When the alloys solidify on the cold surface, 
the grains tend to grow with their long axis parallel to the directions, perpendicular 
to the cold surface. The result is then a semicolumnar alloy in which the columnar axis is 
parallel to one of the directions, for instance, parallel to [001]. These alloys are often 
referred to as Alnico directed grain (DG). The thermomagnetic treatment is subsequently 
applied with the magnetic field parallel to the [001] direction of the latter alloys. 

As already mentioned above, the magnetic properties in the easy magnetization direc­
tion can be further improved by subsequent tempering for several hours at about 600°C. The 
purpose of the 600°C tempering treatment is to enhance the difference in magnetic polar­
ization between the and phases by diffusion of magnetic atoms from to and 
of non-magnetic atoms from to An example of a microstructure, observed by elec­
tron microscopy, of a grain-oriented alloy after thermomagnetic and tempering treatment is 
shown in Fig. 12.8.3. The direction of the magnetic field applied during the thermomagnetic 
treatment corresponds to the elongated direction of the columnar particles in Fig. 12.8.3a. 

The relatively high coercivities and remanences in the Alnicos are principally due to 
shape anisotropy of elongated Fe-rich particles in a non-ferromagnetic matrix. The Stoner-
Wohlfarth theory, already mentioned in Section 12.4, predicts that the coercivity in these 
materials is proportional to the saturation polarization of the Fe-rich particles and to 
a factor related to the difference in the effective demagnetization factors perpendicular 

and parallel to the preferred direction of magnetization in the particles. Using 
Eq. (12.5.2) and bearing in mind that in these materials is negligibly small, one finds that 

Here, is an averaging factor that takes account of the various orientations of the 
preferred axes of the particles with respect to the direction in which is measured. If one 
assumes that the particles are magnetically non-interacting uniaxial single-domain particles 
arranged at random, the factor equals about 0.5. But may approach the value 
one in highly elongated particles. In the case of spheroid particles, there is a considerable 
difference in the demagnetizing factor for particles magnetized perpendicular and parallel 
to the flat surface of the spheroid. In the limit of an extremely flat and elongated spheroid, 

this 
one has Hence, the coercivity in such materials may reach an upper 
limit, according to Eq. (12.8.1), equal to For 
upper limit becomes and, for the coercivity becomes 

Actual values found in Alnico materials are much lower, as may be seen from 
the data shown in Fig. 12.8.2. This has primarily been attributed to the less perfect shape of 
the thin ferromagnetic particles and also to the fact that the phase is magnetic to some 
extent. 
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A most favorable magnetic property of the Alnico alloys is that these materials have 
very high Curie temperatures (700–850° C) which leads to excellent flux stability at elevated 
temperatures. The Alnico alloys are chemically and metallurgically very stable. In fact, 
Alnico is the only magnet material that has some long-term utility at temperatures up to 
500°C. A drawback of the Alnico alloys is that their coercivity is low in comparison to 
the rare-earth-based magnets described in Section 12.5. The non-linear behavior of the 
B(H) curve in the second quadrant (Fig. 12.2) is a serious disadvantage in device design 
and dynamic operation, and this limits the attainable energy product in spite of the high 
remanence. 
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High-Density Recording Materials


13.1. INTRODUCTION 

Several magnetic materials find an application as thin magnetic films in high-density 
recording devices. The most common methods for high-density recording are schematically 
represented in Fig. 13.1.1. 

Case A represents conventional optical recording applied, for instance, in compact 
disks. A pattern of pits is burned by means of a pulsed laser beam into a non-magnetic 
film at the surface of the disk. This pattern is read out by means of a laser of much lower 
intensity, the reflected beam being out or in focus when it hits a pit or does not hit a pit, 
respectively. 

Case B is a modification of case A. Local heating of a suitable surface layer by means of 
a pulsed laser beam leads to temporary local melting. After irradiation the melt cools at a suf­
ficiently high rate to produce the amorphous state. The irradiated spot can be distinguished 
from the unmodified matrix by means of its lower reflectivity or larger transmittance. The 
advantage of case B compared to case A is the erasability of the written information. Instead 
of amorphization, one may also use local color changes produced by irradiation in special 
materials. 

Case C illustrates the principles involved in magneto-optical recording. The thin sur­
face layer of the disk consists, for instance, of an amorphous Gd–Fe or Gd–Co alloy. 
The requirements for alloys to be used as magneto-optical recording media include the 
following: 

(i)	 An easy magnetization direction perpendicular to the film plane. The corresponding 
anisotropy of the material has to be sufficiently strong to overcompensate the tendency 
of the magnetization vector to lie in the film plane because of the lower demagnetizing 
factor in this direction. 

(ii)	 A sufficiently high coercivity at room temperature but decreasing strongly with 
temperature. 

(iii)	 A low thermal conductivity. 

These properties offer the possibility of thermomagnetic writing of bits. This is accom­
plished by switching the magnetization direction of a tiny spot by local heating with a pulsed 
laser beam. The local heating brings the material in the spot area into a temperature range 
where the coercivity is low. The coercivity has to be low enough for the local demagnetizing 
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field to reverse the magnetization of the irradiated material. After the laser beam has moved 
away, the temperature of the material returns to room temperature keeping its reversed 
magnetization direction. The written bits are stable at room temperature because the high 
room-temperature coercivity prevents further changes of the magnetization direction. 

Properties (ii) and (iii) guarantee a comparatively small diameter of the reversed domain 
and therefore a large bit density. Reading of the written bits is performed by means of the 
Kerr effect, as will be discussed later. The advantage of magneto-optical recording compared 
to conventional optical recording (case A) is the erasability of the written information. By 
means of a special technique, that will not be discussed here, it is possible to overwrite old 
information by new one. A further advantage is the higher bit density. 

Case D represents vertical recording by means of a recording head on a tape or a 
rigid disk covered with a thin magnetic film. In normal (longitudinal) magnetic recording, 
the easy magnetization direction is within the film plane. The difference between vertical 
recording and longitudinal recording and the requirement for the corresponding materials 
will be discussed together with the physical problems associated with their application. 

It is good to bear in mind that magnetic and magneto-optical recording media fall 
in the class of hard-magnetic materials because of the requirement of sufficiently high 
coercivity that keeps the written artificial domain pattern from changing as a function 
of time. By contrast, inductive and magnetoresistive recording-head materials fall in the 
class of soft-magnetic materials. These materials and their application will be dealt with in 
Chapter 14. 
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13.2. MAGNETO-OPTICAL RECORDING MATERIALS 

An important group of magneto-optical recording media is based on amorphous alloys 
of Gd–Fe or Gd–Co with some alloying additives to optimize the magnetic and magneto-
optical properties. 

The relative concentrations of rare-earth (R) and 3d elements are chosen in such a way 
that the R-sublattice magnetization exceeds the 3d-sublattice magnetization at low tempera­
tures. The exchange-coupling constants responsible for the magnetic coupling 
between the  R moments and the 3d moments are negative, as in the case of crystalline 
materials. The absolute values of these intersublattice-coupling constants are much smaller 
than the 3d-intrasublattice-coupling constant The  R-intrasublattice-coupling 
constant is comparatively small and can be neglected in most cases. Using Eqs. (4.4.7) 
and (4.4.9) and the fact that one then finds that the 3d-sublattice moment is 
coupled antiparallel to the R-sublattice moment if the R component belongs to the heavy-R 
elements see Table 2.2.1). The temperature dependence of the magnetic polar­
ization can then be calculated by means of Eqs. (4.4.15–4.4.19) and behaves as shown in 
Fig. 13.2.1. 

It is essential for the application of amorphous R-3d alloys that their easy magnetization 
direction be perpendicular to the film plane, that is, Here, we have used the symbol 

instead of to indicate the difference from crystalline materials with uniaxial lattice 
symmetry. 

Various models have been proposed in the literature that describe the origin of 
the positive anisotropy constant found in some of the  R-3d films. The model of 
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Gambino et al. (1973) is the most prominent one and will be discussed briefly. Gambino and 
co-workers conclude that short-range ordering of the atoms is the main source of anisotropy 
in sputtered Gd–Co films. These authors also provide a clue as to which type of short-range 
ordering causes the anisotropy. On the basis of studies on hep-cobalt, they conclude that the 
easy magnetization direction most likely is due to the presence of Co–Co atom pairs having 
their pair axes perpendicular to this direction, the magnitude of the anisotropy energy being 
of the order of J per pair. 

In order to understand the formation of such pair-atoms during vapor deposition, one has 
to consider the following. During the deposition process the ad-atom impinges on the film 
surface with considerable energy. After impingement, it rapidly loses this energy to the 
substrate and the main body of the film. If the substrate temperature is sufficiently high, the 
ad-atom will be able to move by means of surface diffusion to favorable sites of relatively 
low energy, so as to produce eventually a crystalline film. Low substrate temperatures and 
high evaporation rates do not favor such rearrangements of the ad-atoms and then may lead 
to amorphous films. 

In the intermediate case, the ad-atom may still have the opportunity to jump to any of its 
nearest-neighbor surface sites, the jump probability being proportional to the corresponding 
activation energy. Differences in activation energy for jumps between the initial site and the 
nearest-neighbor surface site can have chemical, geometrical, and magnetic origins. This 
difference in activation energy for atomic jumps can be exploited for the generation of a 
higher concentration of Co pairs with their axes in the film plane than would correspond 
to a statistical distribution. Use is made of so-called bias sputtering, leading to conditions 
where an ad-atom bonded to a similar surface atom has a higher resputtering probability 
than an ad-atom bonded to a dissimilar atom. Consequently, there will be a greater statistical 
probability of Gd–Co pairs with their pair axes oriented perpendicular to the film plane than 
parallel to the film plane. The opposite holds for Co–Co pairs. This behavior of Gd–Co alloys 
is due to the fact that the bonding between a Co atom and a Gd atom is stronger than between 
two Co atoms or two Gd atoms. This is intimately related to the negative heats of solution 
of Gd in Co and of Co in Gd (see, for instance, de Boer et al., 1988). The corresponding 
heat-of-solution values are by far less negative in the case of Gd–Fe. The weaker bonding 
between Fe and Gd atoms is probably the reason why the perpendicular anisotropy is less 
easily attained by means of this method in the Gd–Fe alloys than in the Gd–Co alloys. 

There are several observations that support the pair-ordering model of anisotropy. First, 
the anisotropy is relatively temperature independent near room temperature. The magnetic 
ordering of the Co sublattice is almost complete at room temperature, in contrast to the Gd 
sublattice that becomes magnetically ordered more gradually at lower temperatures. This 
indicates that the anisotropy is to be associated with the Co sublattice. Second, the growth-
induced anisotropy increases with increasing resputtering but decreases at high deposition 
rates and low substrate temperatures. 

Other models dealing with the occurrence of positive uniaxial anisotropy in amor­
phous  R-3d alloys consider various types of shape anisotropy associated with structural 
inhomogeneities on a microstructural scale, including phase separation. 

It was shown in Chapter 11 that in uniaxial materials, the following relation exists 
between the anisotropy field  and the anisotropy constant 
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We mentioned already that the anisotropy constant does not vary strongly at room temper­
ature and below. However, varies extremely strongly near the compensation temperature 

In fact, since becomes zero at one expects that at the same temperature 
will diverge. The coercivity is correlated with so that it is plausible that the coercivity 
shows a very strong increase at In practice, one observes a temperature dependence 
of the coercivity around the compensation temperature as shown in Fig. 13.2.2. 

The strong temperature dependence of the coercivity is of prime importance for the 
writing of the domains with reversed magnetization direction. The local heating by means 
of a laser beam brings about a local reduction in coercivity so that the demagnetizing field 
can reverse the magnetization in the heated area. A strong decrease of the coercivity with 
respect to the room temperature value is most desirable because the temperature excursion 

needed to reverse the magnetization can be kept low and the same holds for the writing 
power of the laser beam. The temperature will again decrease quickly to room temperature 
after the laser beam has moved away. The original coercivity is restored and keeps the local 
magnetization in the opposite direction. Unlike an intermetallic R-3d compound of fixed 
composition, it is possible to vary the composition of an amorphous alloy continuously. This 
compositional freedom associated with the amorphous state makes it possible to choose the 
appropriate  R/3d composition ratio in such a way that the maximum of the coercivity 
(occurring at ) is located at a temperature close to room temperature. 

Read-out of the written bits is done by means of a laser beam of lower intensity than 
the one used for writing the bits. It is essential for the read-out process that the laser beam 
be linearly polarized. In that case, the spots of reversed magnetization can be distinguished 
from regions of the original magnetization direction by means of the Kerr effect. In 1877, 
Kerr discovered that the plane of polarization of linearly polarized light is rotated over 
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a small angle when the light is reflected by a magnetic layer. This rotation of the 
polarization plane depends on the direction of the magnetization, that is, it is in opposite 
directions for regions having an opposite magnetization direction. The written bits can 
then be distinguished from the matrix region by means of Nichol prisms (or Mylar foils). 
An example of magnetic domains written and read-out using an amorphous Gd–Fe film is 
shown in Fig. 13.2.3. 

If the substrate is translucent and the amorphous film is sufficiently thin, one may use 
transmitted, linearly polarized light to read out the written bits. Also, in this case there will 
be a rotation of the polarization plane (Faraday effect). The advantage of transmitted 
light is that the rotation angle increases with the thickness of the magnetic layer. This 
offers a better possibility of optimizing the contrast between written bits and the matrix, 
bearing in mind that the film is no longer translucent if it becomes too thick. A more detailed 
description of magneto-optical recording devices and materials can be found in the reviews 
of Buschow (1984), Reim and Schoenes (1990), and Hansen (1991). 

It is interesting to discuss briefly the temperature dependence of or Results 
obtained on several amorphous films are shown in Fig. 13.2.4. These results 
have to be compared with the temperature dependence of the magnetization, shown for a 
number of such alloys in Fig. 13.2.1. It follows from the results of the latter figure that 
there is a compensation temperature in the temperature dependence of the magnetization 
of the amorphous alloys when the Fe concentration falls into the range 

Inspection of the results shown in Fig. 13.2.4 makes it, however, clear that such 
features are absent in the temperature dependence of the Faraday rotation. This means that 
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the magneto-optical rotation does not originate from the overall magnetization of the film 
but is due to one of the two sublattice magnetizations. This can be understood from the 
results shown in Fig. 4.5.1, illustrating that both sublattice magnetizations have a smooth 
temperature dependence even in a ferrimagnetic material with a compensation temperature. 

In the upper part of Fig. 13.2.5, a schematic representation of the magnitude and direc­
tion of the two sublattice magnetizations around the compensation temperature is given. 
Here, we have assumed that the direction of the total magnetization 
follows the direction of the applied field, meaning that both the Fe-sublattice magnetiza­
tion and the Gd-sublattice magnetization reverse their direction when passing from above 

to below The Fe-sublattice magnetization is dominant in the high-temperature 
regime, whereas the Gd-sublattice magnetization dominates below the compensation 
temperature. 

Hysteresis loops are shown for both temperature regions in the lower part of the figure. 
These results were obtained not by measuring the magnetization as a function of field 
strength but by measuring the rotation angle versus field strength. The fact that the hysteresis 
loop becomes reversed when passing the compensation temperature agrees with the notion 
that the optical rotation originates from only one of the two sublattice magnetizations and 
not from the total magnetization. 

At this stage, it is difficult to decide which of the two sublattice magnetizations is 
responsible for the magneto-optical rotation, since both sublattice magnetizations change 
their direction when passing the compensation temperature. This dilemma has been solved 
by measuring the optical rotation at a fixed temperature on alloys of increasing Fe con­
centration. Results of magneto-optical measurements are shown in Fig. 13.2.6. It can be 
seen that the Kerr rotation (full curve) does not follow the total magnetization (broken 
curve), but increases with Fe concentration. This shows that the magneto-optical rotation 
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is due to the Fe sublattice. It can also be seen in the figure that there is a reversal of the 
hysteresis loops when going from the Gd-dominated range (x < 0.79) to the Fe-dominated 
range (x > 0.79). 

13.3. MATERIALS FOR HIGH-DENSITY MAGNETIC RECORDING 

Magnetic recording has been a subject of interest already for a long time. It has received 
additional impetus with the advent of computer systems and the associated demand for high-
density recording devices. In most of such devices, digital magnetic recording is used in 
which a transducing head (write/read head) magnetizes small areas on a magnetic-recording 
medium so as to record digital data and scan the magnetized areas to read the data. The only 
commercially useful systems employed in the past were so-called longitudinal magnetic-
recording materials having an easy axis of magnetization parallel to a major surface of the 
material. 

For longitudinal magnetic recording, a head of the granular type is used. It comprises 
a core of a magnetically highly permeable material (see also Chapter 14), provided with a 
narrow air gap. The gap is placed transversely to the direction of movement of the magnetic-
recording medium in such a way that flux coupling is possible. A current pulse applied 
to a coil wound around the core generates magnetic flux lines in the core which close 
along a path that comprises one edge of the gap, the part of the magnetic tape adjoining 
the gap, and the other edge of the gap. The flux passing through the magnetic layer in 
this manner causes data to be recorded. The data are read as the magnetized area on the 
medium moves past the gap, thereby closing the flux through the core. As a result, flux 
lines pass through the coil and induce an electric signal which is representative of the stored 
information. 

The disadvantage of conventional longitudinal recording is that the system can handle 
only a rather restricted linear bit density. This restriction occurs because the magnetized 
areas in the magnetic layer are magnetically oriented in the longitudinal direction of the 
medium, that is, in the plane of the tape or the rigid disk. In conventional longitudinal 
recording methods, there is a certain maximum tolerable demagnetization field at the bit 
boundary, as a result of which the number of bits that can be stored per centimeter of the 
information track is limited. 

A further problem arises when high recording currents are used. In that case, the mag­
netization pattern recorded will have a shape such that the magnetic-flux lines close inside 
the medium, which reduces the flux available for read out. Such a circular magnetization 
mode is schematically represented in Fig. 13.3.1. In order to obtain high densities, it is 
essential to avoid the nucleation of such magnetization modes. There are two methods to 
accomplish this. One is the use of longitudinal recording materials that have an enhanced 
longitudinal magnetization component. This can be achieved when the recording medium 
is made extremely thin so that the magnetization is forced to he in the medium plane. The 
use of thin magnetic films is equivalent to media having a strong-shape anisotropy so that 
the magnetization is within the film plane. The thinner the film, the narrower the transition 
region will become. Such high-density longitudinal recording media can be made from 
films consisting of chemically deposited Co–Ni–P or Co–P 
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The second method is based on so-called perpendicular magnetic recording, in which 
materials are used that have an enhanced perpendicular magnetization component. These 
perpendicular recording materials have a high anisotropy. The preferred magnetization 
direction is perpendicular to the film plane, which inhibits the formation of the circular 
polarization mode. Thin films of Co–Cr alloys possess such favorable properties. They 
make it possible to obtain sharp transitions between domains of opposite magnetization, 
which is a prerequisite for high-density recording. 

The two types of magnetic recording, longitudinal and perpendicular, are compared in 
Fig. 13.3.2. Step-like changes in the initial distribution of the magnetized areas in the 
medium would occur if the recording process were an ideal one. This is indicated in 
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Fig. 13.3.3 by for perpendicular recording and by for longitudinal recording. How­
ever, the presence of demagnetizing fields ( associated with and with ) makes 
the transition less sharp. In general, one may expect that demagnetization will occur in 
regions where the fields and are larger than the corresponding coercivities. It can 
be seen from the figure that there is hardly any demagnetization in the region around the
transition center for perpendicular recording. Consequently, the transition remains 

demagnetized and leads to a broad transition 
sharp. By contrast, the region around the transition for longitudinal recording is strongly 

It should be borne in mind that the explanations given above are based exclusively on 
the difference in magnetization direction in the two types of media. The sharp magnetization 
transition in perpendicular recording and the broad transition in longitudinal recording are 
therefore intimately connected with the intrinsic properties of the recording media, namely 
with their demagnetizing behavior. Models for the transition region and their sizes are shown 
for some typical recording media in Fig. 13.3.2. 

In perpendicular recording, sputtered Co–Cr films are superior to many other per­
pendicular recording media, as regards perpendicular anisotropy, grain growth, and size. 
The films consist of tiny columns of hexagonal Co–Cr with their axes normal to the film 
plane. Each column is separated from the adjacent one by Cr-rich non-magnetic layers and 
therefore behaves as a magnetically isolated single-domain particle. It is mainly the shape 
anisotropy of each of the individual columns that gives rise to the perpendicular anisotropy. 
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The minimum magnetization transition length L for a Co–Cr film is assumed to be of the 
order of a column diameter, which is roughly one-tenth to one-twentieth of the film thick­
ness, and is independent of the saturation magnetization and coercivity of the film. 
A possible magnetic-transition model for this film is shown in Fig. 13.3.2a. 

In longitudinal recording, if conventional so-called particulate media are used, which 
consist of an assembly of coated magnetic particles (for instance,
persed in a binder, one expects a rather wide transition region as shown in Fig. 13.3.2b. 
The magnetization transition is composed of an assembly of particles in this case, and the 
transition width L is independent of the particle size. It can be shown that L is given by the 
expression (see, for instance, Mee and Daniel, 1987) 

dis-

where is the remanence, the coercivity, and the film thickness. If one also takes into 
account the demagnetization in the write process, one finds a somewhat different value: 

It follows from these expressions that these media must be made very thin if one wishes to 
obtain a high bit density. For particulate media, this requirement is difficult to achieve. 

A better approach to high-density longitudinal recording employs ultrathin metallic 
films (thinner than 100 nm) to prevent the circular magnetization mode. In this case, how­
ever, a sawtooth magnetization mode is frequently obtained at the transition, even in very 
thin and highly coercive films. The effective transition length is given by the sawtooth 
amplitude and is approximately equal to which usually amounts to one half 
to one third of the thickness for typical film parameters. It should be noted that the minimum 
transition length depends on as well as on for all types of longitudinal recording 
media. This is a distinct disadvantage, because it is difficult to optimize both quantities 
simultaneously with respect to the transition width. We recall that this problem is absent in 
perpendicular recording media. 

We will conclude this section by briefly discussing the most important magnetic-
recording materials currently employed. More details can be found in the surveys of Hibst 
and Schwab (1994) and Richter (1993). Particulate recording media are most widely used. 
In these media, magnetic particles are dispersed in an organic binder system. A survey of 
some important materials used for these magnetic particles is given in Table 13.3.1. The 
requirement of high bit density on the ultimate tape or rigid disk dictates that the particle 
size be small. It was mentioned already that, for avoiding the circular mode, it is desirable 
to have sufficient anisotropy that keeps the magnetization in the film plane of longitudinal 
recording media. 

Not all of the materials listed have a sufficiently high magnetocrystalline anisotropy so 
that additional shape anisotropy of the particles is required. For this reason, considerable 
attention is paid in the manufacturing process of the particles to give them an elongated 
shape. The presence of anisotropy is also needed for the attainment of coercivity. The 
exact value of the coercivity needed depends on the specific recording system and has to 
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be optimized in the manufacturing process. As a rule, higher recording densities require 
higher coercivities in order to avoid demagnetizing effects when the written bits are closely 
spaced. However, the switching field provided by the head during writing is limited so 

coercivities in the range 
that the coercivities must not be too high. Satisfactory results are generally obtained with 

An important property for obtaining a high signal-to-noise ratio is also the remanence 
of the recording layer. One of the criteria for selecting recording particles is therefore a 
high specific magnetization and the capability of the particles to be loaded at high volume 
fractions into the polymeric binder system. Volume fractions close to 40 vol.% should 
be possible. Higher volume fractions are less desirable because of the high demands in 
mechanical properties required for the polymer/particle composite medium. Schematic 
representations of the microstructure in Metal Particle (MP) tapes and Barium Ferrite (BaFe) 
tapes are displayed in the top part of Fig. 13.3.4. 

Magnetic oxides have the advantage of being chemically fairly stable. Their disadvan­
tage is their comparatively low specific magnetization. Much higher specific magnetizations 
would be obtained when using pure-metal particles. However, the small metal particles are 
pyrophoric and have to be protected by a passivation layer. The latter is usually obtained 
during the manufacturing process by means of controlled particle oxidation. This leads to 
a stable oxide shell when the thickness is about 4 nm, meaning that roughly half of the 
particle consists of oxide. This is the main reason why the range of specific saturation mag­
netization values listed in Table 13.3.1 for the MP materials are far below the values of the 
pure metals. Figure 13.3.4 illustrates that the saturation magnetization of the tape, due to 
particle passivation and the low volume fraction, has dropped by a factor of about six with 
respect to the value for pure iron. 

Magnetic thin-film media are free of organic binder materials and principally can have 
much higher remanences than particulate media. Generally, they have thicknesses of only a 
few hundred nanometers. Even in magnetic thin films prepared by metal evaporation (ME), 
only a part of the volume is magnetic. This can be seen in the lower part of Fig. 13.3.4. 
Roughly half of the volume consists of voids, which is a consequence of the vapor-deposition 
process. However, the amount of oxygen in the film is much lower than in metal-particle 
films, giving them a substantially higher remanence. A further advantage is the very uniform 
orientation of the particles, which is hardly achieved with particulate media and which 
generates favorable switching characteristics. 
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Thin magnetic films have replaced most of the particulate media in rigid-disk drives and 
are preferred media in videotape applications. Lodder (1998) has presented a comprehensive 
review of such media. An illustration of the vapor-deposition process is given in Fig. 13.3.5. 
The electron gun consists of a hot-metal filament from which electrons are emitted via a high 
voltage. The beam of electrons is directed into the crucible containing the master alloy via 
magnetic fields that can deflect this beam. The evaporation rate of the alloy can be adjusted 
instantaneously by adjusting the power generating the electron beam. The orientation of the 
crystallites in the film depends on the position of the crucible. In the arrangement shown in 
the figure, a curved columnar structure of the magnetic layer is obtained. Tapes prepared 
by this oblique-evaporation technique are used for longitudinal recording. Thin magnetic 
films used for perpendicular recording are prepared by a symmetrical arrangement of the 
source relative to the tape. In this case, a columnar structure is obtained with the column 
axes perpendicular to the film plane. Co–Cr alloys are a preferred medium for perpendicular 
recording. 
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Soft-Magnetic Materials


14.1. INTRODUCTION 

Soft-magnetic materials are mainly used in magnetic cores of transformers, motors, 
inductors, and generators. Of prime importance for applications in cores are a high per­
meability, low magnetic losses, and a low coercivity. Definitions of all these quantities are 
given in Fig. 14.1.1. Other important factors, in particular for large electrical equipment, 
are a high magnetic flux and low costs. 

Unalloyed iron, silicon–iron, and aluminium–iron alloys are widely used in high-
power machines. However, for some critical applications, more expensive materials are 
more suitable. Examples of such materials are Permalloy, Supermalloy, various types of 
amorphous alloys and nanocrystalline alloys. Several important soft-magnetic materials 
will be discussed below. 

147 
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Domain theory for rotational processes leads to the following expression for the initial 
permeability: 

where is the average saturation magnetization of the material and is a dimension­
less prefactor close to unity. The effective anisotropy constant covers all sources of 
anisotropy energy such as, for instance, the intrinsic magnetocrystalline anisotropy of 
the material considered and the shape anisotropy. 

The coercivity is closely related to the initial permeability because both quantities 
depend on the effective anisotropy constant : 

where is a dimensionless prefactor close to unity. 
A domain-wall-motion model in which the grain size is taken into account leads to the 

expression: 

where A is the exchange constant and D the grain size. Maximization of the initial perme­
ability requires maximization of and minimization of The latter possibility is the 
one that is exploited most generally. 

The minimization of all sources of anisotropy is important when the attainment of high 
initial permeability is the primary objective. However, a finite but small anisotropy is still 
desirable for achieving a square or skew hysteresis loop in an assembly of aligned particles. 
If the magnetization process is performed with the field applied in the easy direction of the 
aligned anisotropic particles, one obtains a high remanence and the hysteresis loop is square. 
By contrast, the material exhibits a low remanence and a skew hysteresis loop when it is 
magnetized perpendicular to the easy direction. Square-loop materials are commonly used 
in magnetic amplifiers, memory devices, inverters, and converters. Skew-loop materials are 
primarily used in unipolar pulse transformers. 

It will be discussed later that the magnitude and the directional dependence of the 
various types of anisotropy depend on the composition and the heat treatment. Magne­
tocrystalline anisotropy has been the most exploited source of anisotropy. Other types are 
thermomagnetic anisotropy, slip-induced anisotropy, and shape anisotropy. In practice, one 
aims at the dominance of one particular type of anisotropy by excluding all other sources of 
anisotropy as far as possible. Of course, this is not necessary if the easy directions originat­
ing from two or more types of anisotropy are parallel. A survey of the anisotropy in various 
Fe-based soft-magnetic materials has been presented by Soinski and Moses (1995). 

14.2. SURVEY OF MATERIALS 

Iron. Electrical-grade steel is the soft-magnetic material employed in the largest 
quantities. The annual demand of the electronics industry amounts to several hundred of 
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thousands of tons. The major part of this material is used for the generation and distribution 
of electrical energy of which the application in motors takes a prominent position. 

Fe–Si alloys. Already at the beginning of the 20th century, it was discovered that 
the addition of a few percent of Si to Fe increases the electrical resistivity and reduces the 
coercivity. The latter property leads to higher permeability and lower hysteresis losses. The 
former property is important because it reduces eddy-current losses. The eddy-current losses 
increase with the frequency squared and can become a major problem in high-frequency 
applications. The discovery mentioned has led to a widespread application of Fe–Si alloys, 
although Si addition results in a slight lowering of the saturation magnetization. 

The random orientations of the grains in normally cast Fe–Si alloys imply that magnetic 
saturation can be reached only by applying magnetic fields considerably higher than the 
coercivity. This limits the useful maximum magnetic flux B to about 1T. On the other hand, 
the hysteresis loops of single crystals are nearly rectangular so that only fields slightly higher 
than the coercivity are required to drive the core to saturation. This fact was used by Goss 
(1935) in his development of grain-oriented sheets of Fe–Si with considerably improved 
properties. 

Non-grain-oriented sheets or strips are generally hot rolled to a thickness of about 
2 mm and then cold rolled to their final thickness. In order to produce sheets with Goss 
texture, two cold-rolling steps followed by annealing are required after hot rolling. The 
annealing treatment after the first cold rolling causes recrystallization and sets a defined 
initial structure for the Goss texture. In the second cold-rolling step, the final thickness is 
reached. Also this step is followed by annealing leading to recrystallization. After these 
treatments, high-temperature annealing in a magnetic field leads to oriented grain growth. 
The ultimate grain-oriented sheets consist of crystallites that have their (110) planes oriented 
parallel to the plane of the sheet and that have a common [110] direction within this plane. 
Results of grain-oriented Fe–Si are compared with those obtained on pure Fe in Fig. 14.2.1. 

Fe–Ni alloys. Several magnetic alloys, as for instance Ni–Fe alloys, can acquire 
magnetic anisotropy when annealed below their Curie temperature. Materials having a 
fairly square hysteresis loop are obtained when the annealing is performed in the presence 
of an applied magnetic field. The hysteresis loop may become constricted if no field is 
present. Examples of both types of materials are shown in Fig. 14.2.2. 

The anisotropy obtained in a magnetic material by annealing in a magnetic field is called 
thermomagnetic anisotropy. Its occurrence has been explained by various authors as being 
due to short-range directional ordering of atom pairs. The magnetic-coupling energy of a 
pair of atoms generally depends on the nature of the atoms involved (e.g., Fe–Fe, Fe–Ni, 
Ni–Ni). Detailed studies have shown that it is primarily the concentration of like-atom 
pairs that is important for the generation of anisotropy in Ni-rich Ni–Fe alloys. Annealing 
below the Curie temperature in the presence of an applied magnetic field tends to align the 
coupled pair atoms in a way that they have their moments in the field direction, so as to 
minimize the free energy. Fast cooling to a sufficiently low temperature then freezes in the 
directional order obtained. It leads to a uniaxial magnetic anisotropy, the easy axis of the 
magnetization direction lying in the field direction. Hysteresis loops measured in this same 
direction are square. By contrast, skew hysteresis loops are obtained when measuring in 
a direction perpendicular to the direction of the alignment field applied during annealing. 

In an unmagnetized piece of a magnetic material, there is no net magnetization because 
it is composed of an assembly of magnetic domains with different magnetization directions 
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in a way so as to minimize the magnetostatic energy. An example of such a domain pattern 
for a single crystal of a cubic material is shown in Fig. 14.2.3. 

A domain pattern of a similar nature is also present in a non-magnetized Ni–Fe alloy. 
When no field is applied during the annealing treatment, the pair moments will become 
aligned in the local field corresponding to the local magnetization in each magnetic domain. 
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For a polycrystalline alloy, the magnetization directions of the various domains have a 
random orientation, meaning that the induced anisotropy directions in the various domains 
will also have a random orientation. This results in a constricted hysteresis loop as shown 
by means of curve B in Fig. 14.2.2. At this stage, it is good to recall that the main effect 
of a magnetic field when applied during annealing is to destroy the domain pattern and to 
align the local magnetization in the field direction across the whole sample. 

The value of the thermomagnetic anisotropy constant is generally of the order of 
a few hundred As can be seen in Fig. 14.2.4, it increases with Fe concentration as 
a result of an increased number of aligned atom pairs. The value of is generally higher 
the lower the annealing temperature. More details can be found in the review of Ferguson 
(1958). 

It is important to bear in mind that the thermomagnetic anisotropy is generated by 
annealing treatments performed below the Curie temperature. Because the pair formation 
requires diffusion of atoms and because diffusion is a thermally activated process, too low 
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annealing temperatures lead to poor results. That means that large values can only be 
generated in alloys with sufficiently high Curie temperatures. This is the case for Ni–Fe 
alloys with Ni content near 65% because at this composition the Curie temperature reaches 
its maximum in this binary alloy system. Thermomagnetic treatments appear to be less 
successful in ternary and quaternary alloys in which the Curie temperatures are lower. 

Slip- or deformation-induced anisotropy is a second mechanism by means of which the 
magnetic properties of soft-magnetic materials can be unproved (Chin and Wernick, 1980). 
Also, this type of induced anisotropy depends on directional order of atom pairs, as already 
discussed above. The difference with thermomagnetically induced anisotropy is that the 
atomic order is brought about mechanically by means of plastic deformation. Figure 14.2.5 
may serve to illustrate the mechanism of slip-induced anisotropy. The atoms are seen to be 
perfectly ordered before slip (case a), each atom having only dissimilar neighbors. After 
applying a horizontal sheer stress, the situation has changed (case b). The sheer stress has 
caused the atoms to slip over one another and has led to the formation of crystallographic 
defects known as antiphase domain boundaries. Pairs of similar atoms have been created 
in the vertical direction across the antiphase domain boundaries, whereas the atoms have 
kept their dissimilar neighbors in the horizontal direction. As in the thermomagnetic case, 

The magnitude of the slip-induced-anisotropy constants are of the order of 
which is about 50 times higher than the anisotropy constants obtained by magnetic anneal­
ing. The slip-induced-anisotropy constants increase with increasing Fe concentration, as 
was also found with magnetic annealing. Furthermore, the larger the degree of atomic order 
prior to deformation, the larger the ultimate anisotropy. This is true in particular for alloys 
near the 

this directional difference in pair ordering is the origin of the slip-induced anisotropy. 

composition. The direction of the easy axis of the slip-induced anisotropy 
depends on the type of order (long- or short-range), and on the crystal orientation (or texture 
in the case of polycrystalline material). 

Fe–Al and Fe–Al–Si alloys. This is an important group of soft-magnetic materials 
that are primarily applied in recording heads, to be discussed in the next section. These 
materials are characterized by high electrical resistivities, high hardness, high permeability, 
and low magnetic losses. Optimal magnetic properties for the ternary alloys are obtained in 
a fairly narrow concentration range around 9.6% Si, 5.4% Al, and 85% Fe. This material is 
also known under the name Sendust. 
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Soft ferrites. In contradistinction to the hard ferrites discussed in Section 12.7, there 
exists a group of ferrites that have very low magnetic anisotropy. These materials can be 
visualized as consisting of mixed oxides and have the general formula with 
M = Ni, Cu, or Zn. Another group can be described by the formula with 
M = Cu, Mn, Ni, or Mg. Of particular interest are the ferrites composed of Mn–Zn, 
Cu–Zn, Cu–Mn, Ni–Zn, Mg–Zn, and Mg–Mn. These materials are primarily used in high– 
frequency applications where reduction of the various losses accompanying high-frequency 
magnetization is more important than the static magnetic characteristics. These include head 
applications to be discussed in a separate section below. A survey of this interesting class 
of materials has been given by Brabers (1995). 

Amorphous alloys. Several types of amorphous alloys have been found to exhibit soft-
magnetic properties much superior to those found in crystalline materials. For instance, the 
core losses measured in amorphous alloys of the composition have values 
that are about an order of magnitude smaller than those of commercial Fe–Si sheets. Most 
amorphous alloys are prepared by ejecting a molten alloy onto a rotating copper wheel (melt 
spinning). The high cooling rate associated with this method suppresses crystallization. 
Amorphous alloys prepared in this manner are also called metallic glasses. 

In the amorphous state, the constituting atoms have a more or less random arrange­
ment, grain boundaries being absent. The amorphous state is less stable than the crystalline 

amorphous-to-crystalline transformation takes place at the crystallization temperature 
which depends on the composition of the alloy. Most amorphous alloys show a slight atomic 
rearrangement already at temperatures somewhat below 

state and this causes amorphous alloys to spontaneously crystallize upon heating. This 

known as structural relaxation. 
As with many crystalline soft-magnetic alloys, after casting or mechanical deformation, 

a mild thermal treatment is required to remove mechanical stress that can act as a source 
of coercivity. In amorphous alloys, this stress-release treatment generally does not have 
the desired result because of the occurrence of structural relaxation. The reason for this 
is the following. As in crystalline materials, the magnetization processes are governed by 
nucleation and growth of magnetic domains. This implies that in the remanent state and in 
the absence of an external magnetic field there will be a distribution of magnetic domains 
and a corresponding distribution of local magnetization directions. When an amorphous 
alloy is annealed (below ) under these circumstances, structural relaxation will usually 
be accompanied by an increase in coercivity. This may be illustrated by means of the results 
shown in Fig. 14.2.6 where the annealed material (curve B) has a substantially higher 
coercivity than the original melt-spun material (curve A). This increase is a consequence 
of the presence of magnetic domains with different local magnetization directions, which 
causes the local structural rearrangements to proceed in a different way. 

It is shown in Fig. 14.2.7 how different local-field orientations may lead to different 
local rearrangements. In the schematic representation in Fig. 14.2.7, it is assumed that 
pair ordering of the larger type of atoms leads to lower magnetic energy when the axis 
of the pair of atoms is perpendicular to the local field. The directional ordering in each 
magnetic domain therefore results in the formation of a local anisotropy. The consequence 
of this is that the distribution of domains and domain walls during annealing, in the absence 
of an external field becomes further stabilized and fixed at the original position. These 
stabilized domain walls cause the mentioned increase in coercivity. In order to be able to 
stress anneal amorphous alloys under suppression of the undesirable domain-wall fixing 
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due to structural relaxation, one has to destroy the domain pattern by means of an external 
field during annealing. The beneficial influence of field annealing is shown in Fig. 14.2.6, 
curve C. Stress release has led to the disappearance of the comparatively large coercivity, 
whereas the field alignment of the local anisotropies induced by structural relaxation has 
led to the enhanced remanence. One of the advantages of amorphous alloys is their high 
electrical resistivity, which leads to low eddy-current losses up to very high frequencies. 

It is interesting to compare the effect of magnetic annealing of amorphous alloys with 
the thermomagnetic treatment of the Fe–Ni alloys discussed above. In both cases, anneal­
ing causes changes due to atomic rearrangements. In the Fe–Ni alloys, the corresponding 
atomic motions proceed by normal diffusion requiring temperatures higher than 450°C. The 
structural rearrangements in the metastable amorphous alloys occur below 400°C. In both 
cases, the main effect of the external field is to destroy the domain structure and to align 
all local fields and hence all thermally induced anisotropies in one direction, that is, in the 
direction of the external field. 
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Nanocrystalline alloys. Nanocrystalline alloys have a microstructure consisting of 
ultrafine grains in the nanometer range. The first step in the manufacturing ofnanocrystalline 
alloys is the same as used for amorphous alloys. Subsequently, these alloys are given 
a heat treatment above the corresponding crystallization temperature. The composition 
of nanocrystalline alloys has been slightly modified with respect to that of soft-magnetic 
metallic glasses and contains small additions of Cu and Nb. A well-known composition is for 
instance The effect of the additions is to control the nucleation and 
growth rates during crystallization. The result is a homogeneous, ultrafine grain structure. 
In the example mentioned, the grains consist of (or rather having a grain 
diameter of typically 10 nm. This structure leads to relatively high electrical resistivities 
and makes these alloys suitable for high-frequency applications. In fact, nanocrystalline 
alloys fill the gap between amorphous alloys and conventional polycrystalline alloys and 
offer the possibility of tailoring superior soft-magnetic properties for specific applications. 
In Fig. 14.2.8, the soft-magnetic properties of various groups of materials are compared. 

It was mentioned already at the beginning of this chapter that a major requirement 
for the attainment of superior soft-magnetic properties is generally a low or vanishing 
magnetocrystalline anisotropy. The magnetocrystalline anisotropy constant of the ultra-
fine grains is related to the crystal symmetry; the local easy axis of magnetization being 

grains 
determined by the crystal axis. The anisotropy constant is about for 
the of that form the main constituent phase in nanocrystalline 

This is much too large to explain by itself the low coercivity 
and the high permeability 

The key to the understanding of the superior soft-magnetic properties of the nanocrys­
talline alloys mentioned is that the anisotropy contribution of the small, randomly oriented, 
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grains is quite substantially reduced by exchange interaction (Herzer, 1989, 
1996). The critical scale where the exchange energy starts to balance the anisotropy energy 
is given by the ferromagnetic-exchange length 

where A represents the average exchange energy as already introduced in Chapter 12. For
the value of the exchange length is about The quantity 

is a measure of the minimum length scale over which the direction of the magnetic 
moments can vary appreciably. For example, it determines the extent of the domain-wall 
width, as was discussed in Chapter 12. However, the magnetization will not follow the 

than the exchange length
 D,randomly oriented easy axes of the individual grains if the grain size,  becomes smaller

Instead, the exchange interaction will force the magne­
tization of the individual grains to align parallel. The result of this is that the effective 
anisotropy of the material is an average over several grains and, hence, will strongly reduce 
in magnitude. In fact, this averaging of the local anisotropies is the main difference with 
large-grain materials where the magnetization follows the randomly oriented easy axes of 
the individual grains and where the magnetization process is controlled by the full magne­
tocrystalline anisotropy of the grains. A more detailed description by means of which one 
can quantitatively describe this dramatic reduction in anisotropy will be presented for the 
interested reader in the next section. 

14.3. THE RANDOM-ANISOTROPY MODEL 

The random-anisotropy model has originally been developed by Alben et al. (1978) to 
describe the soft-magnetic properties of amorphous ferromagnets. The advent of nanocrys­
talline magnetic materials has shown, however, that the model is of substantial technical 
relevance and more generally applicable than considered by Alben. The random-anisotropy 
model has been applied to nanocrystalline soft-magnetic materials by Herzer (1989,1996) 
and the simplified version of the model presented in the review by Herzer (1996) will be 
followed here. 

A schematic diagram representing an assembly of exchange-coupled grains of size D 
is given in Fig. 14.3.1. The volume fraction of the grains is and their easy magnetization 
directions are statistically distributed over all directions. The effective anisotropy constant, 

, relevant to the magnetization process of the whole material, can be obtained by aver­
aging the individual grain anisotropies over the grains contained 
within the ferromagnetic-correlation volume determined by the exchange length 

For a finite number N of grains contained within the exchange volume, there will 
always be some easiest direction determined by statistical fluctuations. Thus, the averaged 
anisotropy-energy density is determined by the mean fluctuation amplitude of the anisotropy 
energy of the N grains, that is, 
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As the local magnetocrystalline anisotropies are averaged out this way, the scale on which 
the exchange interaction dominates expands at the same time. Thus, the exchange length, 

has to be renormalized by substituting for in Eq. (14.2.1), that is, is 
self-consistently related to the averaged anisotropy by 

After combining Eqs. (14.2.1) and (14.3.2), one finds for grain sizes smaller than the 
exchange length that the averaged anisotropy is given by 

It should be borne in mind that this result is essentially based on statistical and scaling 
arguments. This implies that it is not limited to uniaxial anisotropies, but also applies to 
cubic or other symmetries. 

The most prominent feature of the random-anisotropy model is that it predicts a strong 
dependence of on the grain size. Because it varies with the sixth power of the grain size, 
one finds for (grain sizes in the order of 10–15 nm) that the magnetocrystalline 
anisotropy is reduced by three orders of magnitude (toward a few It is this very 
property, that is, the small grain size and the concomitant strongly lowered anisotropy that 
gives the nanocrystalline alloys their superior soft-magnetic behavior. Correspondingly, 
the renormalized exchange length as given by Eq. (14.3.2) reaches values that fall into 
the This is almost two orders of magnitude larger than the natural exchange 
length as given by Eq. (14.2.1). This has as a further consequence that the domain-wall 
width, discussed in Section 12.3, can become fairly large in these nanocrystallrne materials. 
It has already been mentioned briefly in Section 13.2 that magnetic domains of different 
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magnetization direction can be optically distinguished from each other by using plane-
polarized light and a polarization microscope. High-resolution Kerr-effect studies made on 
nanocrystalline have confirmed the presence of very wide domain 
walls of about in thickness. 

If there are no other forms of anisotropies present, both the coercivity and the initial 
permeability depend on the randomized effective anisotropy constant and are closely 
related via Eqs. (14.1.1) and (14.1.2). It is important to realize that these relations normally 
apply to magnetization processes governed by coherent magnetization rotation. According 
to an argument given by Herzer (1996), these relations are also applicable to magnetization 
processes proceeding by domain-wall displacements for cases in which
fact, on the scale of the nanocrystalline grains (10 nm), the magnetization vector appears 
to rotate coherently if a domain wall with a width of 

 In 

passes by. 

14.4.	 DEPENDENCE OF SOFT-MAGNETIC PROPERTIES ON 
GRAIN SIZE 

The grain-size dependence of the magnetic properties of various types of soft-magnetic 
materials is compared in Fig. 14.4.1. The random-anisotropy model apparently provides a 
good description of the magnetic properties for grain sizes below about 
The dependence derived in the preceding section is well reflected in the coercivity 
and the initial permeability. This implies that Rayleigh‘s constant, which is proportional 
to varies as If the grain size becomes equal to the exchange length, the 
magnetization process is determined by nearly the full magnetocrystalline anisotropy 
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Accordingly, and are seen to pass through a maximum in this grain-size regime. 
When the grain size has eventually become so large that it exceeds the domain-wall width, 
domains can be formed within the grains. As a consequence, and tend to decrease 
again according to the well known 1/D law (see Eq. 14.1.3). 

14.5. HEAD MATERIALS AND THEIR APPLICATIONS 

14.5.1. High-Density Magnetic-Induction Heads 

A conventional inductive recording head consists of a slit toroid of a high-permeability 
material wound by several conductor turns. A schematic representation is shown in 
Fig. 14.5.1.1. The output voltage V of the head is determined by Faraday’s law (Eq. 8.7) 
and hence by the flux changes due to the medium when passing along the slit. However, 
in the setup shown in the figure, also the field H(x, y, z) produced by a current i passing 
through the head windings is of influence. It can be shown that the following expression 
holds for the output voltage  V (Mee and Daniel, 1990): 

where M(x, y, z) is the magnetization of the medium, and v is the medium velocity in the 
x direction. 

It follows from Eq. (14.5.1.1) that the output voltage depends on the velocity v of the 
medium relative to the head. This implies that the larger the speed of the medium, higher 
is the sensitivity. In some applications where a high sensitivity and a high storage density 
are required (video applications and several audio and data-processing applications) one 
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therefore does not employ stationary heads but rotating heads. Heads in modern magnetic 
storage systems are designed in a way that they can develop a hydrodynamic and self-acting 
air bearing under steady operating condition, which minimizes the head–medium contact. 
There is only physical contact between the medium and the head during the starts and stops. 

In modern data-storage tape and disk drives, the head-to-medium separation is of the 
order of 0.1–0.3 mm, the head and medium surfaces have roughnesses of the order of 
2–10 nm. The need for higher recording densities requires that the surfaces be as smooth as 
possible and the flying heights as low as possible. A schematic representation of a recording 
process is shown in Fig. 14.5.1.2. 

In general, one may distinguish between two types of heads, magnetic inductive heads 
and magnetoresistive heads. There are two different physical principles involved in these 
heads. Consequently also the material requirements for the two types are different. In the 
next two sections, both types of materials will be briefly discussed. 

Soft-magnetic materials are widely employed for the fabrication of magnetic recording 
heads. These materials must have a high saturation magnetization in order to produce a large 
gap field. A high permeability is required in order to ensure high efficiency and a small 
magnetostriction in order to ensure low medium-contact noise. The coercivity has to be low 
in order to ensure a low thermal noise, and a high electrical resistivity in order to reduce 



161 SECTION 14.5. HEAD MATERIALS AND THEIR APPLICATIONS 

eddy currents. To ensure good reliability and a long operating life, the materials must exhibit 
a good thermal stability and a high resistance to wear and corrosion. Table 14.5.1.1 lists a 
number of materials used for inductive-head applications. 

14.5.2. Magnetoresistive Heads 

In the early 1970s, a novel type of reading heads was introduced, based on several 
types of transition-metal alloys such as Ni–Fe, Ni–Co, and Co-Fe. The working principle 
of these heads is the magnetoresistive effect, which entails a decrease of the electrical 
resistivity when the direction of the applied current is rotated away from the magnetization 
direction. 

The magnetoresistive heads have characteristics that are fundamentally different from 
those of the inductive heads described in the preceding section. In its simplest form, the head 
consists of a narrow sensor strip of height h and width w mounted in a plane perpendicular 
to the moving recording medium. It is connected to leads at each end carrying a sense 
current I as shown in Fig. 14.5.2.1. 

and the current-density 
vector 

Due to the magnetoresistive effect, the electrical resistivity of each portion of this strip 
depends on the angle between the direction of magnetization

In most of the conventional transition-metal alloys, the values of are 2–6%. Values 
of about an order of magnitude higher can be reached in special alloys consisting of small 
ferromagnetic single-domain particles in a non-magnetic metallic medium (granular films). 
High values of are also reached in multilayer films. Multilayer thin films and granular 
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thin films are currently indicated as materials giving rise to giant magnetoresistance (GMR) 
effects. 

In most applications of vertical magnetoresistive heads, one has in the quiescent 

the anisotropy field
state, owing to the magnetic anisotropy. In Fig. 14.5.2.1, this anisotropy is represented by 

During operation of the head, the magnetization vector will 
rotate over an angle given by 

where is the sum of the field emanating from the recording medium and a bias 
field applied to linearize the response of the head to the field of the medium. The field 

in Eq. (14.5.2.2) accounts for local demagnetization effects of the magnetoresistive 
element, the latter effects being more pronounced at the edges of the magnetoresistive 
element. Assuming that the bias and demagnetizing fields are constant, and that only the 
field from the medium depends on y and z one finds for the output voltage 

The signal levels of magnetoresistive heads are much higher than that of conventional 
inductive heads. Furthermore, the output signal of the magnetoresistive head depends only 
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on the instantaneous fields of the media, and hence is independent of the media velocity 
or the time rate of change of the fields. This offers a significant advantage for reading 
low-velocity media. Here, we recall that the sensitivity of inductive reading is strongly 
dependent on the relative velocity between head and medium, since this type of recording 
is based on Faraday‘s law (see Section 14.5.1). 
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Invar Alloys


The origin of thermal expansion is the presence of anharmonic terms in the potential energy 
expression describing the mutual separation of a pair of atoms at a temperature T. If x 
represents the displacement of the atoms from their equilibrium position, the potential 
energy may be written as 

The term in is a measure of the asymmetry of the mutual repulsion of the atoms, and 
the term in can be regarded as describing the general softening of the vibrations at large 
amplitudes. 

In order to calculate the average displacement, we will follow Kittel (1953) and use 
the Boltzmann distribution function (analogous to Eqs. 3.1.3 and 3.1.4), which weights the 
possible values of x with a factor representing their thermodynamic probability. 

For small displacements, the anharmonic contribution to the potential energy is relatively 
small. In this case, the integrands may be expanded as 

and 

so that 

This result shows that the temperature coefficient of the thermal expansion is a constant.

In classical mechanics, the mean value of the energy  E of an oscillator in the harmonic
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approximation is equal to For this reason, one may also write Eq. (15.3) in the form 

which suggests that the approximate quantum-mechanical result would be obtained by 
substituting for the corresponding quantum-mechanical expression for the energy of 
a harmonic oscillator with frequency This then leads to 

It is useful to bear in mind that the specific heat as well as the thermal-expansion coefficient 
are temperature derivatives of E, which means that the thermal-expansion coefficient is 
proportional to the specific heat. 

On the basis of Eq. (15.5), one would furthermore expect the thermal-expansion 
coefficient to decrease rather abruptly when the temperature falls below the characteris­
tic temperature of the oscillator and to go to zero if the temperature goes to zero kelvin. 
This is what is commonly observed. The third law of thermodynamics requires that the 
thermal-expansion coefficient vanishes if the temperature goes to zero. 

A schematic representation of the thermal-expansion behavior expected, if only the 
lattice anharmonicity contributes, is shown in Fig. 15.1 (dashed-dotted curve). In many 
magnetic materials, the thermal expansion takes quite a different form, as shown for instance 
by the full curve in the same figure. The total thermal expansion can be subdivided into a 
lattice contribution and a contribution due to magnetic effects. The latter contribution 
is called the spontaneous volume magnetostriction and is indicated by the broken curve 
in Fig. 15.1. 
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The most conventional treatment of magnetovolume effects is based on a model in 
which the magnetic moments are assumed to be localized. The magnetic contribution to the 
volume change can be represented by the two-spin correlation function via 

where the summation is taken over all magnetic sites, and where is the compressibility. 
The quantity is the magnetovolume coupling constant. It originates from the volume 
dependence of the exchange constant responsible for the magnetic coupling between 
two magnetic moments i and j (see, for instance, Eq. 4.4.2). This means that     is 
proportional to 

In the case of alloys or intermetallic compounds based on 3d metals, one has to realize 
that the 3d electrons occupy a narrow energy band having a width of a few electron volts, 
as has been discussed in Section 7.1. In order to describe magnetovolume effects in these 
materials, it is therefore necessary to take the band character of these electrons into con­
sideration. The reason for this is that there is an intimate connection between interatomic 
distances, bandwidth and magnetic properties, as will be further discussed below. 

It was outlined in Section 7.2 that the spin polarization of the 3d band that causes the 
formation of magnetic moments is a trade-off between exchange energy (which is gained) 
and the kinetic energy (which is lost). However, the increase in kinetic energy required 
for the band polarization can be kept low if this band polarization is accompanied by 
volume expansion. This may be seen as follows. If volume expansion occurs, one expects 
a concomitant decrease of the bandwidth  W on the basis of Eq. (7.1.1). It can be easily 
verified by means of Fig. 7.1.1 that the expenditure in kinetic energy required to realize 
a given 3d-band polarization (i.e., to realize a given amount of electron transfer from the 
minority band to the minority band) will be lower, the smaller the bandwidth (i.e., the higher 
the density of states). 

To a first approximation, the increase in kinetic energy is proportional to the square of 
the magnetization. The volume change due to band polarization can therefore be written as 

where represents the magnetovolume coupling constant associated with the band 
character of the 3d electrons. 

in Eq. (15.6) mayAt low temperatures the spin-correlation function 
be approximated by so that the total volume magnetostriction can now be written as 

Well-known materials with Invar properties are alloys of iron and nickel in a concen­
tration range close to the composition It is interesting and instructive to compare 
the Invar properties of these alloys with results of calculations of their electronic band 
structure. The volume dependence of the total energies of non-magnetic and ferromag­
netic states derived from these calculations (Williams et al., 1983) is shown in Fig. 15.2. 
In fcc FeNi (top part), the ferromagnetic state is the ground state, having an energy lower 
than the paramagnetic state. The situation for fcc Fe is shown in the bottom part of the 
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figure. It is seen that here the non-magnetic state has the lower energy. Computational 
results for the Invar alloy are shown in the middle part of the figure. There is not 
much difference in energy between the non-magnetic state and the ferromagnetic state. 
At low temperatures, only the ferromagnetic state will be populated, having its minimum 
energy at a comparatively high volume. Williams and co-workers ascribe the Invar prop­
erties to thermal excitations into the non-magnetic state for which the energy minimum 
is seen to occur at a significantly lower volume. Increasing temperature, therefore, leads 
to a gradual loss of the spontaneous volume expansion associated with the ferromagnetic 
state. 

Invar alloys are employed in many devices for which a low thermal expansion is desir­
able. A detailed description of the physics and application of Invar alloys is presented in the 
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surveys of Kaya (1978), Wasserman (1991), and Shiga (1994). The properties of a number 
of Invar alloys based on stainless steel are shown in Fig. 15.3. Invar properties are also 
found in many intermetallic compounds. For example, compounds of the type, 
discussed extensively in Section 12.5, also display such properties (Fig. 15.4). 
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Magnetostrictive Materials


Magnetostriction can be defined as the change in dimension of a piece of magnetic material 
induced by a change in its magnetic state. Generally, a magnetostrictive material changes 
its dimension when subjected to a change of the applied magnetic field. Alternatively, 
it undergoes a change in its magnetic state under the influence of an externally applied 
mechanical stress. By far the most common type of magnetostriction is the Joule mag­
netostriction where the dimensional change is associated with a distribution of distorted 
magnetic domains present in the magnetically ordered material. It is well known that fer­
romagnetic and ferrimagnetic materials adopt a magnetic domain structure with zero net 
magnetization in the demagnetized state in order to reduce the magnetostatic energy. In 
a material showing Joule magnetostriction, each of the magnetic domains is distorted by 
interatomic forces in a way so as to minimize the total energy. 

Concentrating on a single of these domains, for materials with positive (negative) 
magnetostriction, the dimension along the magnetization direction is increased (decreased) 
while simultaneously the dimension in the direction perpendicular to the magnetization 
direction is decreased (increased), keeping the volume constant. This means that for a piece 
of magnetostrictive material, consisting of an assembly of many magnetostrictively distorted 
domains, one expects dimensional changes when an external field causes a rotation of the 
magnetization direction within a domain, and/or when the external field causes a growth of 
domains, for which the magnetization direction is close to the field direction, at the cost of 
domains for which the magnetization direction differs more from the field direction. We will 
return to this point later. 

The magnetostrictive properties will reflect the symmetry of the crystal lattice when the 
piece of material is a single crystal. In this case, the length changes observed at magnetic 
saturation depend on the measurement direction as well as on the initial and final direction 
of the magnetization of the single crystal. As shown in more detail in several reviews 
(Cullen et al., 1994; Gignoux, 1992; Andreev, 1995), frequently only two magnetostrictive 
constants are required to describe the fractional length change associated with the saturation 
magnetostriction in cubic materials: 
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In this expression, and represent the direction cosines with respect to the x, y 
and z crystal axes of the magnetization direction and the length-measurement direction, 
respectively. This relation makes it possible to describe the magnetostrictive properties for 
any choice of the latter two directions if the two magnetostrictive constants and are 

represents the change in length or saturation magnetostriction in the 
direction when the magnetization direction is also along the 

available. These two magnetostriction constants have the following physicalmeaning: 

direction after 
the material has been cooled through its Curie temperature. 

In the following, we will consider the macroscopic properties of a cubic ferromag­
netic material for which the preferred magnetization direction is along When a large 
single crystal of this material is cooled to below the Curie temperature, it will be in the 
unmagnetized state by adopting a magnetic-domain structure that reduces its magnetostatic 
energy. The magnetization in each of these domains is along one of the directions 
and, if each of these domains is elongated in the corresponding direc­
tion. However, no distortion will be observed upon cooling to below the Curie temperature 
because the distribution of directions in the domain structure leads to a cancelation 
of the distortion. This may be illustrated by means of Fig. 16.1. In this figure, we have 
assumed for simplicity that only domains are present in which the preferred direction is 
along cubic directions of the type [100] or [010]. The situation changes drastically if we 
apply a magnetic field along one of these cubic directions, say [ 100]. The single crystal now 
has become one single domain with the magnetization along the field direction. No can­
cellation of distortive contributions is possible and the single crystal has become elongated 
along the field direction. In other words, when applying a magnetic field along one of the 
main crystallographic directions of a magnetically ordered but unmagnetized piece of cubic 
material, we can produce an elongation or shrinking. Which of these latter two possibilities 
is realized depends on the sign of the magnetostriction constant in this particular direction. 

In tetragonal or hexagonal materials, one frequently encounters easy-axis anisotropy, 
the preferred magnetization direction being along the crystallographic direction. In that 
case, the domain structure will consist of domains separated by 180° walls. Because of 
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the equivalence of the positive and negative c direction, domains on either side of the 
domain wall will experience the same type of deformation in the magnetically ordered 
state. This means that no special effect will be observed when applying a magnetic field in 
one of these directions, causing the disappearance of domains that have their magnetization 
in the opposite direction. Therefore, cubic materials are generally considered to be more 
appropriate for obtaining magnetostriction effects generated by domain-wall motion. The 
magnetostriction constant of several cubic materials can be compared with each other in 
Table 16.1. 

In polycrystalline materials, the situation is more complex than in single crystals 
because one has to relate the magnetostriction of the whole piece of material to the mag­
netoelastic and elastic properties of the individual grains. This problem cannot be solved 
by an averaging procedure. For this reason, it is assumed that the material is composed of 
a large number of domains with the strain uniform in all directions. It can be shown that, 
for a material in which there is no preferred grain orientation, this leads to the expression 
(Chikazumi, 1966): 

Inspection of the data listed in Table 16.1 shows that in particular the cubic compound 
(also called Terfenol) has quite outstanding magnetostrictive properties. For this 

reason, this compound has found applications in magneto-mechanical transducers. It can, 
for instance be used to generate field-induced acoustic waves at low frequencies in the 
kHz range (Sonar). Alternatively, its changes in magnetic properties under external stresses 
have led to applications in sensors for force or torque. A variety of other magnetostrictive 
materials and their properties are discussed in the reviews of Cullen et al. (1994) and 
Andreev (1995). 

The microscopic origin of magnetostrictive effects has sometimes been attributed to 
dependencies of the exchange energy or the magnetic dipolar energy on interatomic spacing. 
However, these approaches proved less satisfactory because they were not able to account 
for the magnitude of the observed magnetostriction. As discussed in more detail by Morrish 
(1965), it is more likely that magnetostriction has the same origin as the magnetocrystalline 
anisotropy. In that case, magnetostriction can be viewed as arising because the spontaneous 
straining of the lattice lowers the magnetocrystalline energy more than it raises the elastic 
energy. Indeed, the analysis of modern magnetostrictive materials based on rare earths (R) 
and 3d metals (T) has shown that there is an intimate connection between magnetostriction 
and crystal-field-induced anisotropy, as is explained in more detail in the treatments of 
Clark (1980), Morin and Schmitt (1990), and Cullen et al. (1994). Generally, the theoretical 
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framework describing magnetostrictive effects is fairly complex. We will restrict ourselves 
therefore to a simplified discussion of these effects as given by Gignoux (1992). 

Inspection of the crystal-field Hamiltonian presented in Eq. (5.2.7) shows that strain 
effects can be introduced via strain dependence of the crystal-field parameters that 
characterize the surrounding of the aspherical 4f-electron charge cloud. The lowest order 
magnetoelastic effects depend on the derivative of these parameters with respect to strain, 
which leads to supplementary terms in the Hamiltonian that couple strains with the second-
order Stevens operators. It gives rise to isotropic as well as to anisotropic distortions of 
which the latter have magnetic symmetry and are dominant. For instance, Morin and Schmitt 
(1990) have shown that the magnetoelastic-energy term associated with the tetragonal-strain 
mode and hence with reads as: 

where is a magnetoelastic coefficient and the are strain components of the corre­
sponding symmetry. When calculating the magnetoelastic energy at finite temperatures, 
one has to form thermal averages of the Stevens operators. These thermal averages 
are generally small above the magnetic-ordering temperature in rare-earth–transition-metal 
compounds, but can adopt appreciable values below Figure 16.2 presents a very simple 
example illustrating the physical principles behind magnetoelastic effects. Here, a simple 
ferromagnetic rare–earth compound has been chosen where normally the 4f-charge cloud 
does not have an electric quadrupolar moment in the paramagnetic state. In this case, the 
cubic crystal field leads to energy levels whose 4f orbitals correspond to a cubic distribution 
of the 4f electrons, as displayed in the left part of the figure. The magnetic symmetry is 
tetragonal below when one of the fourfold axes is the easy magnetization direction. 
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The second-order crystal-field term introduced by this symmetry leads to a ground state 
with a 4f-electron distribution that is no longer cubic. If one assumes, for instance, a prolate 
shape, the coupling to the strain mode gives rise to a lattice expansion along the [001] direc­
tion and a contraction along [100] and [010]. For a different sign of the magnetostriction 
constant one would have observed a lattice contraction along [001] and an expansion 
along [100] and [010]. 
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