
Graph signal processing
Concepts, tools and applications

Xiaowen Dong
Department of Engineering Science

/35

Outline

2

• Motivation
• Graph signal processing (GSP): Basic concepts
• Spectral filtering: Basic tools of GSP
• Applications and perspectives

/35

Outline

2

• Motivation
• Graph signal processing (GSP): Basic concepts
• Spectral filtering: Basic tools of GSP
• Applications and perspectives

/35

Data are often structured

3

Electrical data Traffic data

Social network dataTemperature data

/35

Data are often structured

3

Electrical data Traffic data

Social network dataTemperature data

We need to take into account the structure behind the data

/35

Graphs are appealing tools

4

l Efficient representations for pairwise relations between entities

The Königsberg Bridge Problem
[Leonhard Euler, 1736]

/35

Graphs are appealing tools
• Efficient representations for pairwise relations between entities

5

v1

v2
v3 v4

v5
v6v7v8

v9

/35

Graphs are appealing tools
• Efficient representations for pairwise relations between entities

5

l Structured data can be represented by graph signals

f : V ! RN

RN

+
0

-
v1

v2
v3 v4

v5
v6v7v8

v9
v1

v2
v3 v4

v5
v6v7v8

v9

/35

Graphs are appealing tools
• Efficient representations for pairwise relations between entities

5

l Structured data can be represented by graph signals

Takes into account both structure (edges) and data (values at vertices)

f : V ! RN

RN

+
0

-
v1

v2
v3 v4

v5
v6v7v8

v9
v1

v2
v3 v4

v5
v6v7v8

v9

/35

Graph signals are pervasive

6

• Vertices:
- 9000 grid cells in London

• Edges:
- Connecting cells that are

geographically close
• Signal:

- # Flickr users who have taken
photos in two and a half year

/35

Graph signals are pervasive

7

• Vertices:
- 1000 Twitter users

• Edges:
- Connecting users that have

following relationship
• Signal:

- # Apple-related hashtags they
have posted in six weeks

/35

Research challenges

8

How to generalize classical signal processing
tools on irregular domains such as graphs?

f : V ! RN

v1

v2
v3 v4

v5
v6v7v8

v9

/35

Graph signal processing
• Graph signals provide a nice compact format to encode structure within

data

• Generalization of classical signal processing tools can greatly benefit
analysis of such data

• Numerous applications: Transportation, biomedical,
social network analysis, etc.

• An increasingly rich literature
- classical signal processing
- algebraic and spectral graph theory
- computational harmonic analysis

9

f : V ! RN

v1

v2
v3 v4

v5
v6v7v8

v9

/35

Outline

10

• Motivation
• Graph signal processing (GSP): Basic concepts
• Spectral filtering: Basic tools of GSP
• Applications and perspectives

/35

Two paradigms

11

l The main approaches can be categorized into two families:
- Vertex (spatial) domain designs
- Frequency (graph spectral) domain designs

f : V ! RN

v1

v2
v3 v4

v5
v6v7v8

v9

/35

Two paradigms

11

l The main approaches can be categorized into two families:
- Vertex (spatial) domain designs
- Frequency (graph spectral) domain designs

Important for analysis of signal properties

f : V ! RN

v1

v2
v3 v4

v5
v6v7v8

v9

/35

Need for frequency
• Classical Fourier transform provides the frequency domain representation

of the signals

12

Source: http://www.physik.uni-kl.de

f : V ! RN

v1

v2
v3 v4

v5
v6v7v8

v9

http://www.physik.uni-kl.de
http://www.physik.uni-kl.de

/35

Need for frequency
• Classical Fourier transform provides the frequency domain representation

of the signals

12

Source: http://www.physik.uni-kl.de

A notion of frequency for graph signals:
We need the graph Laplacian matrix

f : V ! RN

v1

v2
v3 v4

v5
v6v7v8

v9

http://www.physik.uni-kl.de
http://www.physik.uni-kl.de

/35

Graph Laplacian

13

v1

v2

v3

v4 v5

v6

v7
v8

A

G = {V,E}

Weighted and undirected graph:

/35

Graph Laplacian

13

v1

v2

v3

v4 v5

v6

v7
v8

A

G = {V,E}

Weighted and undirected graph:

0

BBBBBBBBBB@

1 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 1

1

CCCCCCCCCCA

D

D = diag(degree(v1) ... degree(vN))

L

/35

Graph Laplacian

13

v1

v2

v3

v4 v5

v6

v7
v8

L = D �A

A

G = {V,E}

Weighted and undirected graph:

Equivalent to G!

0

BBBBBBBBBB@

1 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 1

1

CCCCCCCCCCA

D

D = diag(degree(v1) ... degree(vN))

L

/35

Graph Laplacian

13

v1

v2

v3

v4 v5

v6

v7
v8

L = D �A

A

G = {V,E}

Weighted and undirected graph:

Equivalent to G!

0

BBBBBBBBBB@

1 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 1

1

CCCCCCCCCCA

D

l Symmetric
l Off-diagonal entries non-positive
l Rows sum up to zero

D = diag(degree(v1) ... degree(vN))

L

/35

Graph Laplacian

13

v1

v2

v3

v4 v5

v6

v7
v8

L = D �A

A

G = {V,E}

Weighted and undirected graph:

Equivalent to G!

0

BBBBBBBBBB@

1 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 1

1

CCCCCCCCCCA

D

l Symmetric
l Off-diagonal entries non-positive
l Rows sum up to zero

D = diag(degree(v1) ... degree(vN))

Why graph Laplacian?
- standard stencil approximation of the Laplace operator
- leads to a Fourier-like transform

/35

Graph Laplacian

14

f(1)

f(2)

f(3)

f(4)
f(5)

f(6)

f(7)

f(8)

Graph signal

L

f : V ! RN

/35

Graph Laplacian

14

f(1)

f(2)

f(3)

f(4)
f(5)

f(6)

f(7)

f(8)

A difference operator:

Graph signal

L

Lf =
NX

i,j=1

Aij (f(i)� f(j))

f : V ! RN

f

/35

Graph Laplacian

14

f(1)

f(2)

f(3)

f(4)
f(5)

f(6)

f(7)

f(8)

A difference operator:

Graph signal

L

Laplacian quadratic form:

A measure of “smoothness” [Zhou04]

Lf =
NX

i,j=1

Aij (f(i)� f(j))

fTLf =
1

2

NX

i,j=1

Aij (f(i)� f(j))2

f : V ! RN

f

/35

Graph Laplacian

15

v1

v2
v3 v4

v5
v6v7v8

v9

v1

v2
v3 v4

v5
v6v7v8

v9

fTLf = 1 fTLf = 21

/35

Graph Laplacian
• has a complete set of orthonormal eigenvectors:

16

L L = �⇤�T

2

64
�0 0

. . .
0 �N�1

3

75L

2

64
�0 0

. . .
0 �N�1

3

75· · ·�0 �N-1

2

64
�0 0

. . .
0 �N�1

3

75· · ·

�0

�N-1

� ⇤ �T

/35

Graph Laplacian
• has a complete set of orthonormal eigenvectors:

16

L L = �⇤�T

2

64
�0 0

. . .
0 �N�1

3

75L

2

64
�0 0

. . .
0 �N�1

3

75· · ·�0 �N-1

2

64
�0 0

. . .
0 �N�1

3

75· · ·

�0

�N-1

l Eigenvalues are usually sorted increasingly: 0 = �0 < �1  . . .  �N�1

� ⇤ �T

/35

Graph Fourier transform

17

[Shuman13]�0 �50�1

/35

Graph Fourier transform

17

[Shuman13]�0 �50�1

Low frequency High frequency

�T
50L�50 = �50

l Eigenvectors associated with smaller eigenvalues have values that vary less rapidly
along the edges

L = �⇤�T �T
0 L�0 = �0 = 0

/35

Graph Fourier transform

17

[Shuman13]�0 �50�1

Low frequency High frequency

�T
50L�50 = �50L = �⇤�T

ff̂(`) = h�`, fi :

2

64
�0 0

. . .
0 �N�1

3

75· · ·�0 �N-1

T
Graph Fourier transform:
[Hammond11]

�T
0 L�0 = �0 = 0

/35

Graph Fourier transform

17

[Shuman13]�0 �50�1

Low frequency High frequency

�T
50L�50 = �50L = �⇤�T

Low frequency High frequency

ff̂(`) = h�`, fi :

2

64
�0 0

. . .
0 �N�1

3

75· · ·�0 �N-1

T
Graph Fourier transform:
[Hammond11]

�0 �4

· · ·
· · · ��1 �2 �3 �N�1

�T
0 L�0 = �0 = 0

/35

Graph Fourier transform
• The Laplacian admits the following eigendecomposition:

18

L�` = �`�`L

/35

Graph Fourier transform
• The Laplacian admits the following eigendecomposition:

18

L�` = �`�`L

one-dimensional Laplace operator: d

2

dx

2

eigenfunctions: ej�x

Classical FT:

f(x) =
1

2�

Z
f̂(⇥)ej�xd⇥

f̂(�) =

Z
(ej�x)⇤f(x)dx

/35

Graph Fourier transform
• The Laplacian admits the following eigendecomposition:

18

L�` = �`�`L

one-dimensional Laplace operator: d

2

dx

2

eigenfunctions: ej�x

Classical FT:

f(x) =
1

2�

Z
f̂(⇥)ej�xd⇥

graph Laplacian:

eigenvectors: �`

Graph FT: f̂(⇥) = h��, fi =
NX

i=1

�⇤
� (i)f(i)

f(i) =
N�1X

�=0

f̂(⇥)��(i)

f̂(�) =

Z
(ej�x)⇤f(x)dx

L

f : V ! RN

/35

Graph Fourier transform
• The Laplacian admits the following eigendecomposition:

18

L�` = �`�`L

one-dimensional Laplace operator: d

2

dx

2

eigenfunctions: ej�x

Classical FT:

f(x) =
1

2�

Z
f̂(⇥)ej�xd⇥

graph Laplacian:

eigenvectors: �`

Graph FT: f̂(⇥) = h��, fi =
NX

i=1

�⇤
� (i)f(i)

f(i) =
N�1X

�=0

f̂(⇥)��(i)

f̂(�) =

Z
(ej�x)⇤f(x)dx

L

f : V ! RN

/35

Two special cases

19

[Vandergheynst11]

/35

Two special cases

20

[Vandergheynst11]

/35

Outline

21

• Motivation
• Graph signal processing (GSP): Basic concepts
• Spectral filtering: Basic tools of GSP
• Applications and perspectives

/35

Classical frequency filtering

22

Classical FT: f̂(�) =

Z
(ej�x)⇤f(x)dx f(x) =

1

2�

Z
f̂(⇥)ej�xd⇥

/35

Classical frequency filtering

22

Classical FT: f̂(�) =

Z
(ej�x)⇤f(x)dx f(x) =

1

2�

Z
f̂(⇥)ej�xd⇥

Apply filter with transfer function to a signal

FT IFT

f

ĝ(·)

f̂(!) ĝ(!)f̂(!) f ⇤ g
ĝ(!)

f

/35

Classical frequency filtering

22

Classical FT: f̂(�) =

Z
(ej�x)⇤f(x)dx f(x) =

1

2�

Z
f̂(⇥)ej�xd⇥

Apply filter with transfer function to a signal

FT IFT

f

ĝ(·)

f̂(!) ĝ(!)f̂(!) f ⇤ g
ĝ(!)

f

/35

Graph spectral filtering

23

f̂(`) = h�`, fi =
NX

i=1

�⇤
` (i)f(i) f(i) =

N�1X

`=0

f̂(`)�`(i)GFT:

/35

Graph spectral filtering

23

GFT IGFT

f

f̂(`) = h�`, fi =
NX

i=1

�⇤
` (i)f(i) f(i) =

N�1X

`=0

f̂(`)�`(i)GFT:

ĝ(�`)

f̂(`) ĝ(�`)f̂(`) f(i) =
N�1X

`=0

ĝ(�`)f̂(`)�`(i)

Apply filter with transfer function to a graph signal f : V ! Rnĝ(·)

/35

Graph spectral filtering

23

GFT IGFT

f

f̂(`) = h�`, fi =
NX

i=1

�⇤
` (i)f(i) f(i) =

N�1X

`=0

f̂(`)�`(i)GFT:

ĝ(�`)

f̂(`) ĝ(�`)f̂(`) f(i) =
N�1X

`=0

ĝ(�`)f̂(`)�`(i)

` ` `

Apply filter with transfer function to a graph signal f : V ! Rnĝ(·)

/35

Graph spectral filtering

23

f̂(`) = h�`, fi =
NX

i=1

�⇤
` (i)f(i) f(i) =

N�1X

`=0

f̂(`)�`(i)GFT:

ĝ(⇤) =

2

64
ĝ(�0) 0

. . .
0 ĝ(�N�1)

3

75

GFT IGFT

f �T f ĝ(⇤)�T f �ĝ(⇤)�T f

ĝ(⇤)

Apply filter with transfer function to a graph signal f : V ! Rnĝ(·)

/35

Graph Laplacian revisited

24

f̂(`) = h�`, fi =
NX

i=1

�⇤
` (i)f(i) f(i) =

N�1X

`=0

f̂(`)�`(i)GFT:

/35

Graph Laplacian revisited

24

The Laplacian is a difference operator:

GFT IGFT

f �⇤�T f

f̂(`) = h�`, fi =
NX

i=1

�⇤
` (i)f(i) f(i) =

N�1X

`=0

f̂(`)�`(i)GFT:

�T f ⇤�T f

The Laplacian operator filters the signal in the spectral domain by its eigenvalues!

2

64
�0 0

. . .
0 �N�1

3

75

ĝ(⇤) = ⇤

L Lf = �⇤�T f

/35

Graph Laplacian revisited

24

The Laplacian is a difference operator:

GFT IGFT

f �⇤�T f

f̂(`) = h�`, fi =
NX

i=1

�⇤
` (i)f(i) f(i) =

N�1X

`=0

f̂(`)�`(i)GFT:

�T f ⇤�T f

The Laplacian operator filters the signal in the spectral domain by its eigenvalues!

The Laplacian quadratic form: fTLf = ||L 1
2 f ||2 = ||�⇤ 1

2�T f ||2

2

64
�0 0

. . .
0 �N�1

3

75

ĝ(⇤) = ⇤

L Lf = �⇤�T f

/35

Graph transform/dictionary design
• Transforms and dictionaries can be designed through graph spectral

filtering: Functions of graph Laplacian!

25

GFT IGFT

f �T f ĝ(⇤)�T f �ĝ(⇤)�T f

ĝ(⇤)

ĝ(L)

/35

Graph transform/dictionary design
• Transforms and dictionaries can be designed through graph spectral

filtering: Functions of graph Laplacian!

25

GFT IGFT

f �T f ĝ(⇤)�T f �ĝ(⇤)�T f

ĝ(⇤)

ĝ(L)

l Important properties can be achieved by properly defining , such
as localization of atoms

ĝ(L)

l Closely related to kernels and regularization on graphs [Smola03]

/35

A simple example

26

GFT IGFT

f �T f ĝ(⇤)�T f �ĝ(⇤)�T f

ĝ(⇤)

ĝ(L)

/35

A simple example

26

GFT IGFT

f �T f ĝ(⇤)�T f �ĝ(⇤)�T f

ĝ(⇤)

ĝ(L)

Problem: We observe a noisy graph signal and wish to recoverf = y0 + ⌘ y0

y⇤ = argmin
y

{||y � f ||22 + �yTLy}

/35

A simple example

26

GFT IGFT

f �T f ĝ(⇤)�T f �ĝ(⇤)�T f

ĝ(⇤)

ĝ(L)

Problem: We observe a noisy graph signal and wish to recoverf = y0 + ⌘ y0

y⇤ = argmin
y

{||y � f ||22 + �yTLy}
Data fitting term

“Smoothness” assumption

/35

A simple example

26

GFT IGFT

f �T f ĝ(⇤)�T f �ĝ(⇤)�T f

ĝ(⇤)

ĝ(L)

Problem: We observe a noisy graph signal and wish to recoverf = y0 + ⌘ y0

y⇤ = (I + �L)�1f

y⇤ = argmin
y

{||y � f ||22 + �yTLy}
Data fitting term

“Smoothness” assumption

Laplacian (Tikhonov) regularization is equivalent to
low-pass filtering in the graph spectral domain!ĝ(L)

/35

Example designs
• Consider a noisy image as the observed noisy graph signal

• Consider a regular grid graph (weights inv. prop. to pixel value difference)

27

[Shuman13]

/35

Example designs

28

GFT IGFT

f �T f ĝ(⇤)�T f �ĝ(⇤)�T f

ĝ(⇤)

ĝ(L)

/35

Example designs

28

Low-pass filters:

Shifted and dilated band-pass filters: Spectral graph wavelets

Parametric polynomials:

Adapted kernels: Learn values of directly from data

GFT IGFT

f �T f ĝ(⇤)�T f �ĝ(⇤)�T f

ĝ(⇤)

ĝ(L)

ĝ(L) = (I + �L)�1 = �(I + �⇤)�1�T

ĝs(L) =
KX

k=0

↵skL
k = �(

KX

k=0

↵sk⇤
k)�T

ĝ(L) [Zhang12]

[Thanou14]

ĝ(sL) [Hammond11,
Shuman11, Dong13]

Window kernel: Windowed graph Fourier transform [Shuman12]

/35

Spectral graph wavelets

29

Fourier multiplier operator: scaled kernel ̂⇤(s!)

/35

Spectral graph wavelets

29

Fourier multiplier operator: scaled kernel

dT s
g f(`) = g(s�`)f̂(`)

T
s
g
= g(s

L)

 ̂⇤(s!)

/35

Spectral graph wavelets

29

Fourier multiplier operator: scaled kernel

dT s
g f(`) = g(s�`)f̂(`)

(T s
g f)(i) =

N�1X

�=0

g(s��)f̂(⇤)⇥�(i)
T
s
g
= g(s

L)

 ̂⇤(s!)

/35

Spectral graph wavelets

29

Fourier multiplier operator: scaled kernel

dT s
g f(`) = g(s�`)f̂(`)

(T s
g f)(i) =

N�1X

�=0

g(s��)f̂(⇤)⇥�(i)
T
s
g
= g(s

L)

 ̂⇤(s!)

/35

Spectral graph wavelets

29

Fourier multiplier operator: scaled kernel

dT s
g f(`) = g(s�`)f̂(`)

(T s
g f)(i) =

N�1X

�=0

g(s��)f̂(⇤)⇥�(i)
T
s
g
= g(s

L)

 ̂⇤(s!)

/35

Spectral graph wavelets

30

[Hammond11]

/35

Outline

31

• Motivation
• Graph signal processing (GSP): Basic concepts
• Spectral filtering: Basic tools of GSP
• Applications and perspectives

/35

Applications of GSP
• Signal processing and machine learning tasks

- Denoising [Graichen15, Liu16]

- Semi-supervised learning / Classification [Kipf16, Manessi17]

- Clustering [Tremblay14, Tremblay16]

- Dimensionality reduction [Rui16]

32

/35

Applications of GSP
• Signal processing and machine learning tasks

- Denoising [Graichen15, Liu16]

- Semi-supervised learning / Classification [Kipf16, Manessi17]

- Clustering [Tremblay14, Tremblay16]

- Dimensionality reduction [Rui16]

32

• Application domains
- Neuroimaging / Brain activity analysis [Huang16, Smith17, Ktena17]

- Social network analysis (e.g., community detection [Bruna17], recommendation
[Monti17], link prediction [Schlichtkrull17])

- Urban computing (e.g., mobility inference [Dong13])

- Computer graphics [Monti16, Yi16, Wang17, Simonovsky17]

- Geoscience and remote sensing [Bayram17]

/35

Future of GSP
• Mathematical models for graph signals

- global and local smoothness / regularity
- underlying physical processes

• Graph construction
- how to infer topologies given observed data?

• Fast implementation
- fast graph Fourier transform
- distributed processing

• Connection to / combination with other fields
- statistical machine learning
- deep learning (on graphs and manifolds)

• Applications

33

/35

References
• Three review papers:

34

/35

Resources
• Graph signal processing

- MATLAB toolbox: https://lts2.epfl.ch/gsp/
- Python toolbox: https://pygsp.readthedocs.io/en/stable/

• Spectral graph wavelet transform
- MATLAB toolbox: https://wiki.epfl.ch/sgwt
- Python toolbox: https://github.com/aweinstein/pysgwt

• Topology inference
- Tutorial: http://web.media.mit.edu/~xdong/presentation/GSP_GraphLearning.pdf

• Geometric deep learning
- Workshops, tutorials, papers and code: http://geometricdeeplearning.com

35

contact: xiaowen.dong@eng.ox.ac.uk

https://lts2.epfl.ch/gsp/
https://lts2.epfl.ch/gsp/
https://pygsp.readthedocs.io/en/stable/
https://pygsp.readthedocs.io/en/stable/
https://wiki.epfl.ch/sgwt
https://wiki.epfl.ch/sgwt
https://github.com/aweinstein/pysgwt
https://github.com/aweinstein/pysgwt
http://web.media.mit.edu/~xdong/presentation/GSP_GraphLearning.pdf
http://web.media.mit.edu/~xdong/presentation/GSP_GraphLearning.pdf
http://geometricdeeplearning.com
http://geometricdeeplearning.com

