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Electrical data Traffic data

Social network dataTemperature data

We need to take into account the structure behind the data
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Graphs are appealing tools

4

l Efficient representations for pairwise relations between entities

The Königsberg Bridge Problem 
[Leonhard Euler, 1736]
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Graphs are appealing tools
• Efficient representations for pairwise relations between entities
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l Structured data can be represented by graph signals

Takes into account both structure (edges) and data (values at vertices)

f : V ! RN

RN

+
0

-
v1

v2
v3 v4

v5
v6v7v8

v9
v1

v2
v3 v4

v5
v6v7v8

v9



/35

Graph signals are pervasive

6

• Vertices: 
- 9000 grid cells in London

• Edges: 
- Connecting cells that are 

geographically close
• Signal: 

- # Flickr users who have taken 
photos in two and a half year
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Graph signals are pervasive

7

• Vertices: 
- 1000 Twitter users

• Edges: 
- Connecting users that have 

following relationship
• Signal: 

- # Apple-related hashtags they 
have posted in six weeks
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Research challenges

8

How to generalize classical signal processing 
tools on irregular domains such as graphs?
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Graph signal processing
• Graph signals provide a nice compact format to encode structure within 

data

• Generalization of classical signal processing tools can greatly benefit 
analysis of such data

• Numerous applications: Transportation, biomedical,                                 
social network analysis, etc.

• An increasingly rich literature
- classical signal processing
- algebraic and spectral graph theory
- computational harmonic analysis

9
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Two paradigms

11

l The main approaches can be categorized into two families:
- Vertex (spatial) domain designs
- Frequency (graph spectral) domain designs
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Two paradigms

11

l The main approaches can be categorized into two families:
- Vertex (spatial) domain designs
- Frequency (graph spectral) domain designs

Important for analysis of signal properties
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Need for frequency
• Classical Fourier transform provides the frequency domain representation 

of the signals

12

Source: http://www.physik.uni-kl.de
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Need for frequency
• Classical Fourier transform provides the frequency domain representation 

of the signals

12

Source: http://www.physik.uni-kl.de

A notion of frequency for graph signals:
We need the graph Laplacian matrix
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D = diag(degree(v1) ... degree(vN ))
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Graph Laplacian
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A

G = {V,E}

Weighted and undirected graph:

Equivalent to G! 

0

BBBBBBBBBB@

1 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 4 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 1

1

CCCCCCCCCCA

D

l Symmetric
l Off-diagonal entries non-positive
l Rows sum up to zero

D = diag(degree(v1) ... degree(vN ))

Why graph Laplacian?
- standard stencil approximation of the Laplace operator
- leads to a Fourier-like transform
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Graph Laplacian
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A difference operator:

Graph signal

L

Laplacian quadratic form:

A measure of “smoothness” [Zhou04]

Lf =
NX

i,j=1

Aij (f(i)� f(j))

fTLf =
1

2

NX

i,j=1

Aij (f(i)� f(j))2
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Graph Laplacian
•     has a complete set of orthonormal eigenvectors: 
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Graph Fourier transform

17

[Shuman13]�0 �50�1

Low frequency High frequency

�T
50L�50 = �50

l Eigenvectors associated with smaller eigenvalues have values that vary less rapidly 
along the edges

L = �⇤�T �T
0 L�0 = �0 = 0
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Graph Fourier transform
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[Shuman13]�0 �50�1

Low frequency High frequency
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Low frequency High frequency

ff̂(`) = h�`, fi :
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Graph Fourier transform:
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�0 �4

· · ·
· · · ��1 �2 �3 �N�1

�T
0 L�0 = �0 = 0
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Two special cases

19

[Vandergheynst11]
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Classical frequency filtering

22

Classical FT: f̂(�) =

Z
(ej�x)⇤f(x)dx f(x) =

1

2�
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Classical frequency filtering
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Classical FT: f̂(�) =

Z
(ej�x)⇤f(x)dx f(x) =

1

2�

Z
f̂(⇥)ej�xd⇥

Apply filter with transfer function        to a signal

FT IFT

f
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Graph spectral filtering
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Graph spectral filtering
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Graph spectral filtering
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f̂(`) = h�`, fi =
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Graph Laplacian revisited
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The Laplacian     is a difference operator:
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The Laplacian operator filters the signal in the spectral domain by its eigenvalues!
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The Laplacian     is a difference operator:
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f �⇤�T f
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i=1

�⇤
` (i)f(i) f(i) =

N�1X

`=0

f̂(`)�`(i)GFT:
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The Laplacian operator filters the signal in the spectral domain by its eigenvalues!

The Laplacian quadratic form: fTLf = ||L 1
2 f ||2 = ||�⇤ 1
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Graph transform/dictionary design
• Transforms and dictionaries can be designed through graph spectral 

filtering: Functions of graph Laplacian!

25
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Graph transform/dictionary design
• Transforms and dictionaries can be designed through graph spectral 

filtering: Functions of graph Laplacian!

25

GFT IGFT

f �T f ĝ(⇤)�T f �ĝ(⇤)�T f

ĝ(⇤)

ĝ(L)

l Important properties can be achieved by properly defining        , such 
as localization of atoms

ĝ(L)

l Closely related to kernels and regularization on graphs [Smola03]



/35

A simple example

26

GFT IGFT
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ĝ(L)



/35

A simple example

26

GFT IGFT
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y

{||y � f ||22 + �yTLy}
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A simple example
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GFT IGFT

f �T f ĝ(⇤)�T f �ĝ(⇤)�T f

ĝ(⇤)

ĝ(L)

Problem: We observe a noisy graph signal                 and wish to recoverf = y0 + ⌘ y0

y⇤ = (I + �L)�1f

y⇤ = argmin
y

{||y � f ||22 + �yTLy}
Data fitting term

“Smoothness” assumption

Laplacian (Tikhonov) regularization is equivalent to 
low-pass filtering in the graph spectral domain!ĝ(L)
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Example designs
• Consider a noisy image as the observed noisy graph signal

• Consider a regular grid graph (weights inv. prop. to pixel value difference)

27

[Shuman13]
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Example designs
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Example designs

28

Low-pass filters:

Shifted and dilated band-pass filters: Spectral graph wavelets 

Parametric polynomials:

Adapted kernels: Learn values of          directly from data

GFT IGFT

f �T f ĝ(⇤)�T f �ĝ(⇤)�T f

ĝ(⇤)

ĝ(L)

ĝ(L) = (I + �L)�1 = �(I + �⇤)�1�T

ĝs(L) =
KX

k=0

↵skL
k = �(

KX

k=0

↵sk⇤
k)�T

ĝ(L) [Zhang12]

[Thanou14]

ĝ(sL) [Hammond11, 
Shuman11, Dong13]

Window kernel: Windowed graph Fourier transform [Shuman12]
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Spectral graph wavelets
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Fourier multiplier operator: scaled kernel  ̂⇤(s!)
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Spectral graph wavelets

30

[Hammond11]
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• Motivation
• Graph signal processing (GSP): Basic concepts
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• Applications and perspectives
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Applications of GSP
• Signal processing and machine learning tasks

- Denoising [Graichen15, Liu16]

- Semi-supervised learning / Classification [Kipf16, Manessi17]

- Clustering [Tremblay14, Tremblay16]

- Dimensionality reduction [Rui16]

32
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32

• Application domains
- Neuroimaging / Brain activity analysis [Huang16, Smith17, Ktena17]

- Social network analysis (e.g., community detection [Bruna17], recommendation 
[Monti17], link prediction [Schlichtkrull17])

- Urban computing (e.g., mobility inference [Dong13])

- Computer graphics [Monti16, Yi16, Wang17, Simonovsky17]

- Geoscience and remote sensing [Bayram17]
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Future of GSP
• Mathematical models for graph signals

- global and local smoothness / regularity
- underlying physical processes

• Graph construction
- how to infer topologies given observed data?

• Fast implementation
- fast graph Fourier transform
- distributed processing

• Connection to / combination with other fields
- statistical machine learning
- deep learning (on graphs and manifolds)

• Applications

33
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References
• Three review papers:
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Resources
• Graph signal processing

- MATLAB toolbox: https://lts2.epfl.ch/gsp/
- Python toolbox: https://pygsp.readthedocs.io/en/stable/

• Spectral graph wavelet transform
- MATLAB toolbox: https://wiki.epfl.ch/sgwt
- Python toolbox: https://github.com/aweinstein/pysgwt

• Topology inference
- Tutorial: http://web.media.mit.edu/~xdong/presentation/GSP_GraphLearning.pdf

• Geometric deep learning
- Workshops, tutorials, papers and code: http://geometricdeeplearning.com

35
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