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Data are often structured

United States
transmission grid

Electrical data

Mean Yearly Temperature (degC) 1981-2010
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Temperature data
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Social network data
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Data are often structured

Source: : FEMA

Electrical data

Mean Yearly Temperature (degC) 1981-2010

Temperature data Social network data

We need to take into account the structure behind the data
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Graphs are appealing tools

o Efficient representations for pairwise relations between entities

The Konigsberg Bridge Problem
[Leonhard Euler, 1736]
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Graphs are appealing tools

e Efficient representations for pairwise relations between entities

e Structured data can be represented by graph signals

RN
+ f: V- RN
0
U1
(Y (Y
(08} U7 U

Takes into account both structure (edges) and data (values at vertices)
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Graph signals are pervasive
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e Vertices:
- 9000 grid cells in London

e Edges:
- Connecting cells that are
geographically close

e Signal:
- # Flickr users who have taken
photos in two and a half year
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Graph signals are pervasive

e \ertices:
- 1000 Twitter users
e Edges:
- Connecting users that have
following relationship
e Signal:

- # Apple-related hashtags they
have posted in six weeks
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Research challenges

How to generalize classical signal processing

tools on irregular domains such as graphs?
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Graph signal processing

e Graph signals provide a nice compact format to encode structure within
data

e Generalization of classical signal processing tools can greatly benefit
analysis of such data

e Numerous applications: Transportation, biomedical,
social network analysis, etc.

f:V%RN

e An increasingly rich literature
- classical signal processing
- algebraic and spectral graph theory

- computational harmonic analysis
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Outline

e Motivation

e Graph signal processing (GSP): Basic concepts
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Two paradigms

e The main approaches can be categorized into two families:
Vertex (spatial) domain designs

Frequency (graph spectral) domain designs
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Two paradigms

e The main approaches can be categorized into two families:

- Vertex (spatial) domain designs

Important for analysis of signal properties
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Need for frequency

Classical Fourier transform provides the frequency domain representation
of the signals

 cos(wyt) F {cos(w,t)}
/\\//}\//\\ d E> _[00 - on .

Source: http://www.physik.uni-kl.de
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Need for frequency

e Classical Fourier transform provides the frequency domain representation
of the signals

 cos(wyt) F {cos(w,t)}
/\\//}\//\\ d E> _[00 - on .

Source: http://www.physik.uni-kl.de

A notion of frequency for graph signals:

We need the graph Laplacian matrix
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Graph Laplacian

Weighted and undirected graph:

V, E}

O
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Graph Laplacian

Weighted and undirected graph:

V, E}

O

degree(vy))

D = diag(degree(v)
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Graph Laplacian

Weighted and undirected graph:

V, E}

O

degree(vy))

D = diag(degree(v)

L=D-A

Equivalent to G!
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Graph Laplacian

V7 Weighted and undirected graph:
G={V,FE}
D = diag(degree(vy) ... degree(vy))

L=D—A Equivalent to G!

000000 01000000 1 -1 0 0 0 0 0 0 :

000000 /10100100\ (—1 3 -1 0 0 -1 0 o\ ¢ Symmetrlc

40000 0 010107110 0 -1 4 -1 0 -1 -1 0

020000 0oo101000| _]o o -1 2 -1 0 0 o - - _ "
I R T O BT R A o Off-diagonal entries non-positive
000400 01101010 0 -1 -1 0 -1 4 -1 0

0000 30 00100101 0 0 -1 0 0 -1 3 -1 e Rows sum up to zero
000001 \0 000001 0 \o 0 0 0 0 0 -1 1)

3
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Graph Laplacian

O OO OO kOO

V7 Weighted and undirected graph:
G={V,FE}
D = diag(degree(vy) ... degree(vy))

L=D—A Equivalent to G!

00000 01000000 1 -1 0 0 0 0 0 0 :
00000 /10100100\ (—1 3 -1 0 0 -1 0 0\ * Symmetrlc

00000 010101710 0 -1 4 -1 0 -1 -1 0

200 00 00101000 __]0 0 -1 2 -1 0 0 0 - - L
2O 0o o0l 0000 — 0 8 b2 ot o0 0 e Off-diagonal entries non-positive
00 40 0 011010710 0 -1 -1 0 -1 4 -1 0

00030 00100101 0o 0 -1 0 0 -1 3 -1 o Rowssumuptozero

00001 \0 000001 0 \o 0 0 0 0 0 -1 1)
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Why graph Laplacian?
- standard stencil approximation of the Laplace operator
- leads to a Fourier-like transform
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Graph Laplacian
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Graph Laplacian

Graph signal f:V — RY

A difference operator:
(1—1000000\1‘(1)\ N

1 3 -1 0 0 -1 0 0 £(2) . .
R Rl ol Lf="Y A (f@) - f())
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Graph Laplacian

Graph signal f:V — RY

A difference operator:
\ (T N

/1—100000

—13—100—108 £(2)

el R Lf =) A (f(i) - £(5))
8 —01 —01 _01 —21 _41 —01 g ;Egi i,J=1

o 0 0 0 o 0 -1 1/ \?EQ) Laplacian quadratic form:

L f TLf— Z Aii (f ()’

A measure of smoothness [Zhou04]
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Graph Laplacian

V3 V4
U5
Vg U7 g
T
frLf =1
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = yAx?

| ] [P 0 1[—— Xo—~
L = XO XNI
_‘ ‘ - _O )\N_l_ -_XN-I_—
X A X
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = yAx?

| ] [P 0 1[—— Xo—~
L = XO XNI
_‘ ‘ - _O )\N_l_ -_XN-I_—
X A X

 Eigenvalues are usually sorted increasingly: 0 = A\g < A1 < ... < An_1
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raph Fourier transform
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Graph Fourier transtorm
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X50 [Shuman13]

Low frequency High frequency
- XgLXO = A =0 XzoLx50 = Aso

e Eigenvectors associated with smaller eigenvalues have values that vary less rapidly

>

along the edges
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Graph Fourier transtorm
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Low frequency High frequency S
Xo Lxo = Ao =0 XooL x50 = As0

Graph Fourier transform:
[Hammond11] -‘ ‘ - T‘
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Graph Fourier transtorm

[Shuman13]

Low frequency High frequency

- XgLXO = A =0 X5ToLX50 = A50

Graph Fourier transform:
[Hammond11] -‘ ‘ -T

|
fO) =(xes ) [Xo 0 Xy J‘f =)

!

>

T)

Low frequency

AOAL Ao A3 Ay o0 AN A

High frequency
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Ly, = Apxy
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Graph Fourier transtorm

e The Laplacian L admits the following eigendecomposition: Ly, = Apxy

d2
one-dimensional Laplace operator:

dxz?
eigenfunctions: e’/%“*
Classical FT: = /(eij)*f(x)da:

fla)= o / F(w)e™= duw
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Graph Fourier transtorm

e The Laplacian L admits the following eigendecomposition: Ly, = Apxy

d2

. graph Laplacian: L
dz? .

$

eigenfunctions: ' eigenvectors: X/

$ A
) N

Classical FT:  f(w) = /(6‘7W)>'<f(ilf)dilj Graph FT: f(£) = (x¢. [) = sz(i)f(i)

one-dimensional Laplace operator:

$

eij

fo) = 5 [ F)eao; i)=Y F(Oxeli)
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Graph Fourier transtorm

e The Laplacian L admits the following eigendecomposition: Ly, = Apxy

d2
dx?

one-dimensional Laplace operator:

$

. graph Laplacian: L

$

eigenfunctions: e/%* ' eigenvectors: X/

$ A

Classical FT: f(w) — Iltejww “f ‘daz E Graph FT: f = (xe, f) = Z

N-—-1

fo) =5 [ Flw)ehdu i)=Y F(Oxeli)

£=0
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Two special cases

&OQQQ"‘J

m (Unordered) Laplacian eigenvalues: Ay = 2 — 2 cos (2‘%)

m One possible choice of orthogonal Laplacian eigenvectors:

— 2nj
Xe = [l,we,wze, . ,w(N 1)2] , Where w = e™N
I |
B | xo --- xn_1 | isthe Discrete Fourier Transform (DFT) matrix

[Vandergheynst11]
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Two special cases

6D Aezz_zcos(%@) @ xo(i) = . Xg(i)z\/%cos("e(';oﬁ)), (=12 . N—1

Eigenvector 0

°-¥ m] ] =] =] m] ] [m]
05 1 L l I I I |
1 2 3 4 5 6 7 8
0 Eigenvector 1
05 1 | t ‘.#—!
1 3 4 5 6
0 Eigenvector 2 -
035 2 3 - ! 6 7 tl;
o Eigenvector 3 =
Elgenvectors [.\'
*\! A n
o ,/'\limvem:l/_'\,
K Eigenvector 7
| . : . :
is the Discrete Cosine Transform matrix (DCT-II, Strang, 1999),
XO « o o XN—].

which is used in JPEG image compression

| |
[Vandergheynst11]
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Outline

e Motivation
e Graph signal processing (GSP): Basic concepts

e Spectral filtering: Basic tools of GSP
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Classical frequency filtering

Classical FT:  f(w) = / (7" f(z)dx  f(z) = % /f(w)ejwmdw
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Classical frequency filtering

Classical FT: f(w)

0y f(2)de f(2) = —— [ Flw)e* du
/ )

Apply filter with transfer function §(:) to a signal f

FT

fo|

]E

(w)

g(w)

-)

(@) f(w)

IFT

-)

f*g
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Classical frequency filtering

Classical FT: f(w)

Apply filter with transfer function §(-

FT

fo|

[ (=) ()

| r

1 ¢ jwx
= %/f(w)e dw
to a signal f
IFT
g(w)f(w) | ™ | fxg
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Graph spectral filtering

N—-1

GFT: () = (xe, f) = ng 16 = 3" F(O)xeli)

¢=0
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Graph spectral filtering

GFT: f(¢)

Apply filter with transfer function g(-) to a graph signal f:V —R"

GFT

fo| =

XE?

]?

(£)

N

j§:>§

g(Ae)

-)

N—-1

14

=0

a(\e) f(£)

F(0)xe (i)

IGFT

-)

d(\e) F(0)xe(d)
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Graph spectral filtering

GFT: f(0) = (x¢, f)

Apply filter with transfer function g(-) to a graph signal f:V —R"

GFT

N—-1

f@) =) FO)xe(i)

14

a(\e) f(£)

" s
\

High-pass

p

14

=y

Band-pass

[

IGFT

-)

AN

g(Ae) f(€)xe(7)
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Graph spectral filtering

N N—-1

GFT: (0= (v f) = i 0F) 1) = 3 F(Ould

¢=0

Apply filter with transfer function g(-) to a graph signal f:V —R"

IGFT

GFT (G(8)
f | mp ! GgAXTf | | xg(A)XT f

(o) 0

0 G(An-1)]
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Graph Laplacian revisited

GFT: f(0) = (xe, £) = Y_xi(@FG)  £() =Y FOxeli
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Graph Laplacian revisited

N N—-1

GFT: f(0) = (x¢, f sz FG) = F(O)xe(d)

¢=0

The Laplacian L is a difference operator: Lf = yAx' f

GFT IGFT

fo|omy 'f AxTr | i | AXT)f

The Laplacian operator filters the signal in the spectral domain by its eigenvalues!
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Graph Laplacian revisited

N N—-1

GFT: f(0) = (xe, f Z X; (i)

¢=0

The Laplacian L is a difference operator: Lf = yAx' f

GFT IGFT

AxTr | i | AXT)f

fo|mp 'f

The Laplacian operator filters the signal in the spectral domain by its eigenvalues!

The Laplacian quadratic form: f1Lf = |]L%f||2 = HXA%XTsz

24/35



Graph transform/dictionary design

e Transforms and dictionaries can be designed through graph spectral
filtering: Functions of graph Laplacian!

GFT g(A) IGFT

fopm xf L g(Axf | m xg(A)x S
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Graph transform/dictionary design

e Transforms and dictionaries can be designed through graph spectral
filtering: Functions of graph Laplacian!

GFT

fo|

X' f

g(A)

-)

(A)x" f

e Important properties can be achieved by properly defining §(L) , such

as localization of atoms

e Closely related to kernels and regularization on graphs [Smola03]
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A simple example

GFT

fo| =y

X' f

g(A)

-)
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A simple example

GFT g(A) IGFT

folm xF S g(Axf m xg(A)x S

Problem: We observe a noisy graph signal f = yo +7 and wish to recover g

(= argmin]ly — f13 + 75" Ly} |
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A simple example

GFT g(A) IGFT

folm xF S g(Axf m xg(A)x S

Problem: We observe a noisy graph signal f = yo +7 and wish to recover g

— Data fitting term

[ y* = arg myinml ~

“Smoothness’ assumption
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A simple example

GFT g(A) IGFT

folm xF S g(Axf m xg(A)x S

Problem: We observe a noisy graph signal f = yo +7 and wish to recover g

— Data fitting term

[y =g mgnml _
$

“Smoothness’ assumption

. —1
Y _V(I ™ VL_) _f Laplacian (Tikhonov) regularization is equivalent to
A low-pass filtering in the graph spectral domain!
g( L) p g graph sp
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Example designs

e Consider a noisy image as the observed noisy graph signal
e Consider a regular grid graph (weights inv. prop. to pixel value difference)

Gaussian Filtered Gaussian Filtered
(Std. Dev. = 1.5) (Std. Dev. = 3.5)

L S
RN

Graph Filtered

o

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.

[Shuman13]
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Example designs

GFT

fo| =y

X' f

g(A)
-
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Example designs

GFT g(A) IGFT

folm xF S g(Axf m xg(A)x S

Low-pass filters: §(L) = (I + L)™' = x(I +~yA) " 'x?

Shifted and dilated band-pass filters: Spectral graph wavelets g(sL) [Hammond11,
Shumanll, Dongl3]

Window kernel: Windowed graph Fourier transform [Shuman12]

K K
Parametric polynomials: gs(L) = Z&skLk = X(Z askA)x" [Thanoul4]
k=0 k=0

Adapted kernels: Learn values of g(L) directly from data [Zhangl2]
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Spectral graph wavelets

—a
Vs,o(X) = ‘// ( )

o0

%w (x a)f(X)dX— f Ys(a —x) f(x)dx

= (s = f)(Q)

TS f () = Us(@) f (@) = ¥* (sw) f (o)

1 I - -
(Tsf)(a)zg / e"" (w)dw

Fourier multiplier operator: scaled kernel *(sw)

29/35



Spectral graph wavelets

—a
Vs,o(X) = 1,0 ( )

o0

1
Wie(s,a)= / ;w*(XT)f(x)dx

%t/f*(x a)f(X)dX—fws(a X) f (x) dx

= (s = f)(Q)

TS f(w) = ¥rs(@) f (@) = ¥* (sw) f (@)

1 [ ~ -
(Tsf)(a)ZZ_n / e"“ (w)dw

Fourier multiplier operator: scaled kernel *(sw)
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Spectral graph wavelets

—a
Vs,o(X) = 1,0 ( )

o0

1
Wie(s,a)= j ;g[/*(XT)f(x)dx

—00

§iw=1v(3) Ts7(0) = g(she) f(0)

oo

(T°f)@= / %w (X a)f(X)dx— f Us(a — X) f (x) dx ‘
= (Ys* f)(a) N—-1 )
_ . ) . T )(1) = S ¢/ )
(Tsf)(a)=% / eiwh(w)dw

Fourier multiplier operator: scaled kernel *(sw)

29/35



Spectral graph wavelets

—a
Vs,o(X) = 1,0 ( )

(Tsf)(a)=/ lt/f (X a)f(X)dx fws(a x) f (x) dx

—00

= (Y5 * f)(a) N—1 ]
T ) — Gt F o) — (s TEF)E) =) lg(she)f (O)xe i
TS f(w) = ¥s(w) f(w) =¥*(sw) f (w) ( gf)( ) — g( f)hf( 1‘X€( )
(Tsf)(a)=2in / e“"“l&*(sw)li(w)\dw

Fourier multiplier operator: scaled kernel *(sw)
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Spectral graph wavelets

—ce MV~ N

o0

Wie(s,a)= f ;W*()(T)f(x)dx 00 A 10

—00

§iw=1v(3) Ts7(0) = g(she) f(0)

(Tsf)(a)=/ lt/f (X a)f(X)dx fws(a X) f (x) dx ‘
= (Us * f)(0) N—1 ]
. T @) =Y lg(sho)f (O)xe(i
T* f(w) = ¥s(w) f(w) =¥ (sw) f (w) ( gf)(l) —o g(s £>|V( j‘xg(z)
(T* f)(a)=2in / e“““l&*(sw)lf(w)‘dw

Fourier multiplier operator: scaled kernel *(sw)
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Spectral graph wavelets

[ i ] [ H B ]
-0.01 0 0.01 -0.02 0 0.02
-i‘. : ..?: ‘b‘o
\ '.;. ‘.. B L
. ‘ ." | 34 X
(a) (b) ()
[ E— ] [ E— ] [ ]
-0.15 0 015 -04 0 0.4 -0.2 0 0.2
(d) () (f)

Fig. 4. Spectral graph wavelets on Minnesota road graph, with K = 100, J = 4 scales. (a) Vertex at which wavelets are centered, (b) scaling function,
(c)-(f) wavelets, scales 1-4.

[Hammond11]
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Outline

e Motivation
o Graph signal processing (GSP): Basic concepts
e Spectral filtering: Basic tools of GSP

e Applications and perspectives
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Applications of GSP

e Signal processing and machine learning tasks
- Denoising [Graichen15, Liul6]

- Semi-supervised learning / Classification [Kipf16, Manessil7]
- Clustering [Tremblayl4, Tremblay16]

- Dimensionality reduction [Ruil6]
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Applications of GSP

e Signal processing and machine learning tasks
- Denoising [Graichen15, Liul6]
- Semi-supervised learning / Classification [Kipf16, Manessil7]
- Clustering [Tremblayl4, Tremblay16]

- Dimensionality reduction [Ruil6]

e Application domains
- Neuroimaging / Brain activity analysis [Huangl6, Smith17, Ktenal7]

- Social network analysis (e.g., community detection [Brunal7], recommendation
[Montil7], link prediction [Schlichtkrull17])

- Urban computing (e.g., mobility inference [Dong13])
- Computer graphics [Montil6, Yil6, Wangl7, Simonovsky17]
- Geoscience and remote sensing [Bayram17]
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Future of GSP

e Mathematical models for graph signals
- global and local smoothness / regularity

- underlying physical processes

e Graph construction

- how to infer topologies given observed data?

e Fast implementation
- fast graph Fourier transform

- distributed processing

e Connection to / combination with other fields
- statistical machine learning

- deep learning (on graphs and manifolds)

e Applications
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The Emerging Field
of Signal Processing
on Graphs

Extending high-dimensional data analysis
to networks and other irregular domains

n applications such as social, energy, transportation, sensor,
and neuronal networks, high-dimensional data naturally
reside on the vertices of weighted graphs. The emerging field
of signal processing on graphs merges algebraic and spectral
graph theoretic concepts with computational harmonic anal-
ysis to process such signals on graphs. In this tutorial overview,
we outline the main challenges of the area, discuss different ways
to define graph spectral domains, which are the analogs to the
classical frequency domain, and highlight the importance of
incorporating the irregular structures of graph data domains
‘when processing signals on graphs. We then review methods to
generalize fundamental operations such as filtering, translation,
modulation, dilation, and downsampling to the graph setting
and survey the localized, multiscale transforms that have

Digitsd Ofject kientéer M. LFSNSP 36502 3155192
Date ofpublicetion: 5 Apeil 3613

been proposed to efficiently extract information from high-
dimensional data on graphs. We conclude with a brief discussion
of open issues and possible extensions.

INTRODUCTION

Graphs are generic data representation forms that are useful
for describing the geometric structures of data domains in
numerous applications, including social, energy, transporta-
tion, sensor, and neuronal networks. The weight associated
with each edge in the graph often represents the similarity
between the two vertices it connects. The connectivities and
edge weights are either dictated by the physics of the problem
at hand or inferred from the data. For instance, the edge
weight may be inversely proportional to the physical distance
between nodes in the network. The data on these graphs can
be visualized as a finite colkction of samples, with one sample
at each vertex in the graph. Collectively, we refer to these
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o daract—_in socal setings, & 1 through webs either develop or assume network models that capture the in-
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‘We Iabel the data by ifs source, or formally stated, we index the

mmmmnmwmmm(mm

by the nodes) are far removed from time or image signals indexed

by well ordered time samples or pixels. DSP, discrete signal pro-
ptvriesa( elegant, and efficient method-
T e el e Gams o s ok ThGs popes

or image sigraks. This paper ex-

m-wnmmuammmm

convolution, z-transform, impulse response, spectral represeata-

tion, Fourier transform, frequency response, -dmmmr

terdependencies among the data and then analyze the structural
ies of these Models often consi may be
deterministic like complete or regular graphs, or random like
the Erdos-Reényi and Poisson graphs, the confizuration and
expected degree models, small world or scale free networks
[’L[d],wmnma&w Th&emndglsmus«lhmnfy
network ics, such as
size of the giant slzzs,
degmeanddaned:snibmms.ndmdeowedgeqnuﬁ:

on graphs by

parameters including clustering coefficients, path length, diam-
eter, and 1t

Timear
data from irregularly Jocated weather stations, or predicting be-
hﬁudmlauﬁimem.
Index Terms—Graph Fourier tramsform, graphical modeks,
Markov random fields, nefwork science, signal processing.

1 INTRODUCTION

HERE is an explosion of interest in processing and an-

dynngkrgdmsqscoﬂmdmvuyd:ﬁaunmgs,
including social and
mmmmmmmmm
ologym;,n»lzaﬂnndgmngnhmymaks cita-

Another body of li is with I and
leaming from such large datasets Much work falls under
the generic label of graphical models [S]-{10]. In graphical
models, data is viewed as a family of random varisbles indexed
by the nodes of a graph, where the graph captures probabilistic
dependencies among data elements. The random variables are
described by a family of joint probability distributions. For ex-
ample, directed (acyclic) graphs [11], [12] represent Bayesian
networks where each random variable is independent of others

[13], [14], describe date where the variables defined on two sets
ofmdssqnmdbyabmﬁxymofnoﬂmmcﬂy

tion and ¢ studies, as well as
physical & like sensor power
grids, and other critical in-
ﬁmm%m:ﬂymewsomeofﬂnensmgm
Many authors focus on the structure

tool in graphical models is the Hammersley-Clifford theorem
[13], [15), [16], and the Markov-Gibbs equivalence that, under

of the data by: 1) inferring the structure from comnmmity

relations and friendships, or from perceived alliances between

mummmmmﬁs[ll,[”],

«quantifying the connectedness of the world; and 3)

the relevance of particular agents, or studying the strength of

their interactions. Other authors are interested in the network
ion by quantifying the impact of the network structure

Amction
on the diffusion of disease, spread of news and information,

vmgnm&mmmmdsomlmﬁue,mdmm
failure global ing from seem-
ingly random local interactions [2]-{4]. Mnchofthsewod:s

factors the joint distribution
of the graphical model as a product of potentials defined on the
cliques of the graph. Graphical models exploit this factorization
mmm«fmm;mmmeﬁmn-
gorithms for 1 by !
memgnphmm]sxsgmnydeﬂmd:sﬁnﬂng
from the joint distributions lower order marginal distributions,
likelihoods, modes, and other moments of individual vaniables
or their subsets. Comumon inference algorithms include belief

ion and its izati as well as other message
passmgalgmﬂms A recent block-graph algorithm for fast

approximate inference, in which the nodes are non-overlapping
clusters of nodes from the original graph, is in [17]. Graphical
models are employed in many areas; for sample applications,
see [18] and references therein.

Octobar 1 s.munmpu ) " . .
Deocamber 17, 2012. Dndm-y—zyu 2013; date work is to discovering efficient data rep-
qu“ .u“m Sor publication was ann":: forlarge high-dimensional data [19]-{22]. Many of
it
mm-pbymlg-rmwmoon these works use spectral graph theory and the graph Laplacian
The authors are with the Departmaat of C"&T’.ﬁ m]wdmurlaw@mmsmﬂmbym
mmpmﬂnmwmlmn the data on a I subspace by a small
prs - _ .. .. subset of the Laplacian eigenbasis. The graph Laplacian ap-
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proximates the Laplace-Beltrami operator on 3 compact man-
ifold [21], [24], in the sense that if the dataset is large and sam-
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any scientific fields study data with an underlying
structure that is non-Euclidean. Some examples
include social networks in computational social sci-
ences, seasor networks in communications, func- o
tional networks in brain imaging. regulatory networks in
genetics, and meshed surfaces in computer graphics. In
plex (in the case of social networks, on the scale of billions)
and are natural targets for machine-Jeaming techniques.
In particular, we would like to use deep neural networks,
which have recently proven to be powerful tools for a broad
range of problems from computer vision, natural-language
processing, and audio analysis. However, these tools have
been most successful on data with an underlying Fuclidean or
grid-like structure and in cases where the invaniances of these
structures are built into networks used to model them.
Geometric deep learning is an umbrella term for emerging
T ing to generalize deep neural mod-
els to non-Euclidean domains, such as graphs and manifolds. The o . @
purpose of this article is to overview different examples of geometric o
deep-leamning problems and present available solutions, key difficul-
ties, applications, and future research directioas in this nascent field.

Overview of deep learning © °
Deep learning refers to leaming complicated concepts by building them from
simpler ones in a hierarchical or multilayer manner. Astificial neural networks are .
popular realizations of such deep multilayer hi ies. In the past few years, the growing .
computational power of modem graphics processing unit (GPU)-based computers and the avail-

ability of large training data sets have allowed successfully training neural networks with many layers .

and degrees of freedom (DoF) [1]. This has led to qualitative breakthroughs on a wide variety of tasks, from . Y
speech recognition [2], [3] and machine translation [4] to image analysis and computer visioa [S}-[11] (see [12] <

Geometric Deep Learning .

Going beyond Euclidean data ©
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Resources

e Graph signal processing
- MATLAB toolbox: https://Its2.epfl.ch/gsp/
- Python toolbox: https://pygsp.readthedocs.io/en/stable/

e Spectral graph wavelet transform
- MATLAB toolbox: https://wiki.epfl.ch/sgwt
- Python toolbox: https://github.com/aweinstein/pysgwt

e Topology inference
- Tutorial: http://web.media.mit.edu/~xdong/presentation/GSP _ Graphlearning.pdf

e Geometric deep learning

- Workshops, tutorials, papers and code: http://geometricdeeplearning.com

contact: xiaowen.dong@eng.ox.ac.uk
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