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1 Introduction

This tutorial is aimed at introducing some basic ideas of stochastic programming. The in-
tended audience of the tutorial is optimization practitioners and researchers who wish to
acquaint themselves with the fundamental issues that arise when modeling optimization
problems as stochastic programs. The emphasis of the paper is on motivation and intuition
rather than technical completeness (although we could not avoid giving some technical de-
tails). Since it is not intended to be a historical overview of the subject, relevant references
are given in the “Notes” section at the end of the paper, rather than in the text.

Stochastic programming is an approach for modeling optimization problems that involve
uncertainty. Whereas deterministic optimization problems are formulated with known pa-
rameters, real world problems almost invariably include parameters which are unknown at
the time a decision should be made. When the parameters are uncertain, but assumed to lie
in some given set of possible values, one might seek a solution that is feasible for all possible
parameter choices and optimizes a given objective function. Such an approach might make
sense for example when designing a least-weight bridge with steel having a tensile strength
that is known only to within some tolerance. Stochastic programming models are similar in
style but try to take advantage of the fact that probability distributions governing the data
are known or can be estimated. Often these models apply to settings in which decisions are
made repeatedly in essentially the same circumstances, and the objective is to come up with
a decision that will perform well on average. An example would be designing truck routes for
daily milk delivery to customers with random demand. Here probability distributions (e.g.,
of demand) could be estimated from data that have been collected over time. The goal is
to find some policy that is feasible for all (or almost all) the possible parameter realizations
and optimizes the expectation of some function of the decisions and the random variables.
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Stochastic programming can also be applied in a setting in which a one-off decision
must be made. Here an example would be the construction of an investment portfolio to
maximize return. Like the milk delivery example, probability distributions of the returns on
the financial instruments being considered are assumed to be known, but in the absence of
data from future periods, these distributions will have to be elicited from some accompanying
model, which in its simplest form might derive solely from the prior beliefs of the decision
maker. Another complication in this setting is the choice of objective function: maximizing
expected return becomes less justifiable when the decision is to be made once only, and the
decision-maker’s attitude to risk then becomes important.

The most widely applied and studied stochastic programming models are two-stage (lin-
ear) programs. Here the decision maker takes some action in the first stage, after which a
random event occurs affecting the outcome of the first-stage decision. A recourse decision
can then be made in the second stage that compensates for any bad effects that might have
been experienced as a result of the first-stage decision. The optimal policy from such a
model is a single first-stage decision and a collection of recourse decisions (a decision rule)
defining which second-stage action should be taken in response to each random outcome. As
an introductory example we discuss below the classical inventory model.

Example 1 (Inventory model) Suppose that a company has to decide an order quantity
x of a certain product to satisfy demand d. The cost of ordering is c > 0 per unit. If the
demand d is bigger than x, then a back order penalty of b ≥ 0 per unit is incurred. The cost
of this is equal to b(d− x) if d > x, and is zero otherwise. On the other hand if d < x, then
a holding cost of h(x− d) ≥ 0 is incurred. The total cost is then

G(x, d) = cx+ b[d− x]+ + h[x− d]+, (1.1)

where [a]+ denotes the maximum of a and 0. We assume that b > c, i.e., the back order
cost is bigger than the ordering cost. We will treat x and d as continuous (real valued)
variables rather than integers. This will simplify the presentation and makes sense in various
situations.

The objective is to minimize the total cost G(x, d). Here x is the decision variable and the
demand d is a parameter. Therefore, if the demand is known, the corresponding optimization
problem can be formulated in the form

min
x≥0

G(x, d). (1.2)

The nonnegativity constraint x ≥ 0 can be removed if a back order policy is allowed. The
objective function G(x, d) can be rewritten as

G(x, d) = max
{
(c− b)x + bd, (c + h)x− hd

}
, (1.3)

which is piecewise linear with a minimum attained at x̄ = d. That is, if the demand d is
known, then (no surprises) the best decision is to order exactly the demand quantity d.
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For a numerical instance suppose c = 1, b = 1.5, and h = 0.1. Then

G(x, d) =

{
−0.5x+ 1.5d, if x < d
1.1x− 0.1d, if x ≥ d.

Let d = 50. Then G(x, 50) is the pointwise maximum of the linear functions plotted in
Figure 1.
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Figure 1: Plot of G(x, 50). Its minimum is at x̄ = 50

Consider now the case when the ordering decision should be made before a realization
of the demand becomes known. One possible way to proceed in such situation is to view
the demand D as a random variable (denoted here by capital D in order to emphasize that
it is now viewed as a random variable and to distinguish it from its particular realization
d). We assume, further, that the probability distribution of D is known. This makes sense
in situations where the ordering procedure repeats itself and the distribution of D can be
estimated, say, from historical data. Then it makes sense to talk about the expected value,
denoted E[G(x,D)], of the total cost and to write the corresponding optimization problem

min
x≥0

E[G(x,D)]. (1.4)

The above formulation approaches the problem by optimizing (minimizing) the total cost
on average. What would be a possible justification of such approach? If the process repeats
itself then, by the Law of Large Numbers, for a given (fixed) x, the average of the total cost,
over many repetitions, will converge with probability one to the expectation E[G(x,D)].
Indeed, in that case a solution of problem (1.4) will be optimal on average.

The above problem gives a simple example of a recourse action. At the first stage, before
a realization of the demand D is known, one has to make a decision about ordering quantity
x. At the second stage after demand D becomes known, it may happen that d > x. In that
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case the company can meet demand by taking the recourse action of ordering the required
quantity d− x at a penalty cost of b > c.

The next question is how to solve the optimization problem (1.4). In the present case
problem (1.4) can be solved in a closed form. Consider the cumulative distribution function
(cdf) F (z) := Prob(D ≤ z) of the random variable D. Note that F (z) = 0 for any z < 0.
This is because the demand cannot be negative. It is possible to show (see the Appendix)
that

E[G(x,D)] = bE[D] + (c− b)x+ (b + h)

∫ x

0

F (z)dz. (1.5)

Therefore, by taking the derivative, with respect to x, of the right hand side of (1.5) and
equating it to zero we obtain that optimal solutions of problem (1.4) are defined by the
equation (b + h)F (x) + c − b = 0, and hence an optimal solution of problem (1.4) is given
by the quantile 1

x̄ = F−1 (κ) , (1.6)

where κ := b−c
b+h

.
Suppose for the moment that the random variable D has a finitely supported distribu-

tion, i.e., it takes values d1, ..., dK (called scenarios) with respective probabilities p1, ..., pK.
In that case its cdf F (·) is a step function with jumps of size pk at each dk, k = 1, ..., K.
Formula (1.6), for an optimal solution, still holds with the corresponding κ-quantile, coin-
ciding with one of the points dk, k = 1, ..., K. For example, the considered scenarios may
represent historical data collected over a period of time. In such case the corresponding
cdf is viewed as the empirical cdf giving an approximation (estimation) of the true cdf, and
the associated κ-quantile is viewed as the sample estimate of the κ-quantile associated with
the true distribution. It is instructive to compare the quantile solution x̄ with a solution
corresponding to one scenario d = d̄, where d̄ is, say, the mean (expected value) of D. As it
was mentioned earlier, the optimal solution of such (deterministic) problem is d̄. The mean
d̄ can be very different from the κ-quantile x̄. It is also worthwhile mentioning that typically
sample quantiles are much less sensitive than the sample mean to random perturbations of
the empirical data.

In most real settings, closed-form solutions for stochastic programming problems such as
(1.4) are rarely available. In the case of finitely many scenarios it is possible to model the
stochastic program as a deterministic optimization problem, by writing the expected value
E[G(x,D)] as the weighted sum:

E[G(x,D)] =
K∑

k=1

pkG(x, dk). (1.7)

1Recall that, for κ ∈ (0, 1), the (left side) κ-quantile of the cumulative distribution function F (·) is defined
as F−1(κ) := inf{t : F (t) ≥ κ}. In a similar way the right side κ-quantile is defined as sup{t : F (t) ≤ κ}.
The set of optimal solutions of problem (1.4) is the (closed) interval with end points given by the respective
left and right side κ-quantiles.
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The deterministic formulation (1.2) corresponds to one scenario d taken with probability
one. By using the representation (1.3), we can write problem (1.2) as the linear programming
problem

min
x,t

t

s.t. t ≥ (c− b)x + bd,
t ≥ (c + h)x− hd,
x ≥ 0.

(1.8)

Indeed, for fixed x, the optimal value of (1.8) is equal to max{(c−b)x+bd, (c+h)x−hd}, which
is equal to G(x, d). Similarly, the expected value problem (1.4), with scenarios d1, ..., dK,
can be written as the linear programming problem:

min
x,t1,...,tK

∑K
k=1 pktk

s.t. tk ≥ (c− b)x + bdk, k = 1, ..., K,
tk ≥ (c + h)x− hdk, k = 1, ..., K,
x ≥ 0.

(1.9)

The tractability of linear programming problems makes approximation by scenarios an at-
tractive approach for attacking problems like (1.4). In the next section we will investigate
the convergence of the solution of such a scenario approximation as K becomes large. It
is also worth noting here the “almost separable” structure of problem (1.9). For fixed x,
problem (1.9) separates into the sum of optimal values of problems of the form (1.8) with
d = dk. Such decomposable structure is typical for two-stage linear stochastic programming
problems.

We digress briefly here to compare the exact solution to (1.4) with the scenario solution
for the numerical values c = 1.0, b = 1.5, and h = 0.1. Suppose that D has a uniform
distribution on the interval [0, 100]. Then for any x ∈ [0, 100],

E[G(x,D)] = bE[D] + (c− b)x+ (b + h)

∫ x

0

F (z)dz

= 75− 0.5x + 0.008x2

as shown in Figure 2.
Suppose the demand is approximated by a finitely supported distribution with two equally

likely scenarios d1 = 20, d2 =80. Then

E[G(x,D)] =
1

2

2∑

k=1

G(x, dk),

which is shown plotted in Figure 3 in comparison with the plot for uniformly distributed D.
Figure 3 also shows the same construction with three scenarios d1 = 20, d2 = 50, d3 = 80,
with respective probabilities 2

5
, 1
5
, 2
5
. This illustrates how more scenarios in general yield a
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Figure 2: Plot of E[G(x,D)]. Its minimum is at x̄ = 31.25.

better approximation to the objective function (although in this case this has not made the
approximate solution any better). The plot for three scenarios also illustrates the fact that
if the scenarios are based on conditional expectations of D over respective intervals [0, 40],
(40, 60], and (60, 100] (with corresponding probabilities) and G(x,D) is convex in D, then
the approximation gives a lower bounding approximation to E[G(x,D)] by virtue of Jensen’s
inequality. �

This example raises several questions. First, how should we approximate the random
variable by one with a finitely-supported probability distribution? Second, how should we
solve the resulting (approximate) optimization problem? Third, how can we gauge the
quality of the approximate solution? In the next section we will discuss these issues in the
context of two-stage linear stochastic programming problems. One natural generalization of
the two-stage model, which we discuss in section 3, extends it to many stages. Here each
stage consists of a decision followed by a set of observations of the uncertain parameters
which are gradually revealed over time. In this context stochastic programming is closely
related to decision analysis, optimization of discrete event simulations, stochastic control
theory, Markov decision processes, and dynamic programming. Another class of stochastic
programming models seeks to safeguard the solution obtained against very bad outcomes.
Some classical approaches to deal with this are mean-variance optimization, and so-called
chance constraints. We briefly discuss these in section 4, and explore the relationship with
their modern counterparts, coherent risk measures and robust optimization.

2 Two-stage stochastic programming

In this section we discuss the two-stage stochastic programming approach to optimization
under uncertainty. The basic idea of two-stage stochastic programming is that (optimal)
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Figure 3: Scenario approximations of E[G(x,D)].

decisions should be based on data available at the time the decisions are made and should
not depend on future observations. The classical two-stage linear stochastic programming
problems can be formulated as

min
x∈X

{
g(x) := cTx + E[Q(x, ξ)]

}
, (2.1)

where Q(x, ξ) is the optimal value of the second-stage problem

min
y

qTy subject to Tx + Wy ≤ h. (2.2)

Here x ∈ Rn is the first-stage decision vector, X is a polyhedral set, defined by a finite
number of linear constraints, y ∈ Rm is the second-stage decision vector and ξ = (q, T,W, h)
contains the data of the second-stage problem. In this formulation, at the first stage we have
to make a “here-and-now” decision x before the realization of the uncertain data ξ, viewed
as a random vector, is known. At the second stage, after a realization of ξ becomes available,
we optimize our behavior by solving an appropriate optimization problem.

At the first stage we optimize (minimize) the cost cTx of the first-stage decision plus the
expected cost of the (optimal) second-stage decision. We can view the second-stage problem
simply as an optimization problem which describes our supposedly optimal behavior when
the uncertain data is revealed, or we can consider its solution as a recourse action where the
term Wy compensates for a possible inconsistency of the system Tx ≤ h and qTy is the cost
of this recourse action.
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The considered two-stage problem is linear since the objective functions and the con-
straints are linear. Conceptually this is not essential and one can consider more general
two-stage stochastic programs. For example, if the first-stage problem is integer (combina-
torial), its feasible set X could be discrete (finite).

Let us take a closer look at the above two-stage problem. Its formulation involves the
assumption that the second-stage data2 ξ can be modelled as a random (not just uncer-
tain) vector with a known probability distribution. As mentioned in the inventory example
this would be justified in situations where the problem is solved repeatedly under random
conditions which do not significantly change over the considered period of time. In such sit-
uations one may reliably estimate the required probability distribution and the optimization
on average could be justified by the Law of Large Numbers.

The other basic question is whether the formulated problem can be solved numerically. In
that respect the standard approach is to assume that random vector ξ has a finite number of
possible realizations, called scenarios, say ξ1, ..., ξK , with respective (positive) probabilities
p1, ..., pK . Then the expectation can be written as the summation

E[Q(x, ξ)] =
K∑

k=1

pkQ(x, ξk), (2.3)

and, moreover, the two-stage problem (2.1)—(2.2) can be formulated as one large linear
programming problem:

min
x,y1,...,yK

cTx +
∑K

k=1 q
T

k yk

s.t. x ∈ X, Tkx+ Wkyk ≤ hk, k = 1, ..., K.
(2.4)

In the above formulation (2.4) we make one copy yk, of the second stage decision vector, for
every scenario ξk = (qk, Tk,Wk, hk). By solving (2.4) we obtain an optimal solution x̄ of the
first-stage problem and optimal solutions ȳk of the second-stage problem for each scenario
ξk, k = 1, ..., K. Given x̄, each ȳk gives an optimal second-stage decision corresponding to a
realization ξ = ξk of the respective scenario.

Example 2 (Inventory model) Recall the inventory model with K scenarios. This can
be written as

min
x,t1,...,tK

0x +
∑K

k=1 pktk

s.t. (c− b)x− tk ≤ −bdk, k = 1, ..., K,
(c + h)x− tk ≤ hdk, k = 1, ..., K,
x ≥ 0.

(2.5)

The first-stage decision is x, and the second-stage decisions are tk, k = 1, ..., K. �

2We use the same notation ξ to denote a random vector and its particular realization. Which one of these
two meanings will be used in a particular situation will be clear from the context.
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When ξ has an infinite (or very large) number of possible realizations the standard ap-
proach is then to represent this distribution by scenarios. As mentioned above this approach
raises three questions, namely:

1. how to construct scenarios;

2. how to solve the linear programming problem (2.4);

3. how to measure quality of the obtained solutions with respect to the ‘true’ optimum.

The answers to these questions are of course not independent: for example, the number
of scenarios constructed will affect the tractability of (2.4). We now proceed to address the
first and third of these questions in the next subsections. The second question is not given
much attention here, but a brief discussion of it is given in the Notes section at the end of
the paper.

2.1 Scenario construction

In practice it might be possible to construct scenarios by eliciting experts’ opinions on the
future. We would like the number of constructed scenarios to be relatively modest so that the
obtained linear programming problem can be solved with reasonable computational effort.
It is often claimed that a solution that is optimal using only a few scenarios provides more
adaptable plans than one that assumes a single scenario only. In some cases such a claim
could be verified by a simulation. In theory, we would want some measure of guarantee that
an obtained solution solves the original problem with reasonable accuracy. We also would
like to point out that typically in applications only the first stage optimal solution x̄ has
a practical value since almost certainly a “true” realization of the random (uncertain) data
will be different from the set of constructed (generated) scenarios.

A natural question for a modeler to ask is: “what is a reasonable number of scenarios to
choose so that an obtained solution will be close to the ‘true’ optimum of the original prob-

lem”. First, it is clear that this question supposes the existence of some good methodology
to construct scenarios - a poor procedure may never get close to the optimum, no matter
how many are used. If one seeks to construct scenarios, say by using experts, then it quickly
becomes clear that, as the number of random parameters increases, some automated pro-
cedure to do this will become necessary. For example, suppose that the components of the
random vector ξ ∈ R

d are independent of each other and we construct scenarios by assigning
to each component three possible values, by classifying future realizations as low, medium
and high. Then the total number of scenarios is K = 3d. Such exponential growth of the
number of scenarios makes model development using expert opinion very difficult already
for reasonably sized d (say d = 25).

Even assuming an automated scenario generation process, with K = 325 ≈ 1012, say,
the corresponding linear program (2.4) becomes too large to be tractable. The situation
becomes even worse if we model ξi as random variables with continuous distributions. To
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make a reasonable discretization of a (one dimensional) random variable ξi we would need
considerably more than 3 points. At this point the modeler is faced with two somewhat con-
tradictory goals. On one hand, the number of employed scenarios should be computationally
manageable. Note that reducing the number of scenarios by a factor of, say, 10 will not help
much if the true number of scenarios is K = 1012, say. On the other hand, the constructed
approximation should provide a reasonably accurate solution of the true problem. A possible
approach to reconcile these two contradictory goals is by randomization. That is, scenarios
could be generated by Monte-Carlo sampling techniques.

Before we discuss the latter approach, it is important to mention boundedness and fea-
sibility. The function Q(x, ξ) is defined as the optimal value of the second-stage problem
(2.2). It may happen that for some feasible x ∈ X and a scenario ξk, the problem (2.2) is
unbounded from below, i.e., Q(x, ξk) = −∞. This is a somewhat pathological and unrealistic
situation meaning that for such feasible x one can improve with a positive probability the
second-stage cost indefinitely. One should make sure at the modeling stage that this does
not happen.

Another, more serious, problem is if for some x ∈ X and scenario ξk, the system Tkx +
Wky ≤ hk is incompatible, i.e., the second-stage problem is infeasible. In that case the
standard practice is to set Q(x, ξk) = +∞. That is, we impose an infinite penalty if the
second-stage problem is infeasible and such x cannot be an optimal solution of the first-stage
problem. This will make sense if such a scenario results in a catastrophic event. It is said that
the problem has relatively complete recourse if such infeasibility does not happen, i.e., for
every x ∈ X and every scenario ξk, the second-stage problem is feasible. It is always possible
to make the second-stage problem feasible (i.e., exhibit complete recourse) by changing it to

min
y,t

qTy + γt subject to Tx + Wy − te ≤ h, t ≥ 0, (2.6)

where γ > 0 is a chosen constant and e is a vector of an appropriate dimension with all
its coordinates equal to one. In this formulation the penalty for a possible infeasibility is
controlled by the parameter γ.

2.2 Monte Carlo techniques

We now turn our attention to approaches that reduce the scenario set to a manageable size
by using Monte Carlo simulation. That is, suppose that the total number of scenarios is
very large or even infinite. Suppose, further, that we can generate a sample ξ1, ..., ξN of N
replications of the random vector ξ. By this we mean that each ξj , j = 1, ...,N , has the same
probability distribution as ξ. Moreover, if ξj are distributed independently of each other, it
is said that the sample is iid (independent identically distributed). Given a sample, we can
approximate the expectation function q(x) = E[Q(x, ξ)] by the average

q̂N (x) = N−1
N∑

j=1

Q(x, ξj),
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and consequently the “true” (expectation) problem (2.1) by the problem

min
x∈X

{
ĝN(x) := cTx +

1

N

N∑

j=1

Q(x, ξj)

}
. (2.7)

This rather simple idea was suggested by different authors under different names. In
recent literature it has became known as the sample average approximation (SAA) method.
Note that for a generated sample ξ1, ..., ξN , the SAA problem (2.7) is of the same form as
the two-stage problem (2.1)—(2.2) with the scenarios ξj , j = 1, ..., N , each taken with the
same probability pj = 1/N . Note also that the SAA method is not an algorithm, one still
has to solve the obtained SAA problem by an appropriate numerical procedure.

Example 3 (Inventory model continued) We can illustrate the SAA method on the
instance of the inventory example discussed in section 1. Recall that

G(x,D) =

{
−0.5x + 1.5D, if x < D
1.1x− 0.1D, if x ≥ D,

where D has a uniform distribution on [0, 100]. In Figure 4, we show SAA approximations
for three random samples, two with N = 5 ( ξj =15, 60, 72, 78, 82, and ξj = 24, 24, 32, 41,
62), and one with N = 10 (ξj = 8, 10, 21, 47, 62, 63, 75, 78, 79, 83). These samples were
randomly generated from the uniform [0, 100] distribution and rounded to integers for the
sake of simplicity of presentation. The true cost function is shown in bold. �
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Figure 4: SAA approximations of E[G(x,D)].
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We now can return to the question above: “how large should we choose the sample size
N (i.e., how many scenarios should be generated) in order for the SAA problem (2.7) to give
a reasonably accurate approximation of the true problem (2.1)”. Monte Carlo simulation
methods are notorious for slow convergence. For a fixed x ∈ X and an iid sample, the
variance of the sample average q̂N (x) is equal to Var[Q(x, ξ)]/N . This implies that, in
stochastic terms, the sample average converges to the corresponding expectation at a rate of
Op(N

−1/2). That is, in order to improve the accuracy by one digit, we need to increase the
sample size by the factor of 100.

It should be clearly understood that it is not advantageous to use Monte Carlo techniques
when the number d of random variables is small. For d ≤ 2 it would be much better to use
a uniform discretization grid for numerical calculations of the required integrals. This is
illustrated by the example above. For d ≤ 10 quasi-Monte Carlo methods usually work
better than Monte Carlo techniques3. The point is, however, that in principle it is not
possible to evaluate the required expectation with a high accuracy by Monte Carlo (or any
other) techniques in multivariate cases. It is also possible to show theoretically that the
numerical complexity of two-stage linear programming problems grows fast with an increase
of the number of random variables and such problems cannot be solved with a high accuracy,
like say 10−4, as we expect in deterministic optimization.

The good news about Monte Carlo techniques is that the accuracy of the sample average
approximation does not depend on the number of scenarios (which can be infinite), but
depends only on the variance of Q(x, ξ). It is remarkable and somewhat surprising that the
SAA method turns out to be quite efficient for solving some classes of two-stage stochastic
programming problems. It was shown theoretically and verified in numerical experiments
that with a manageable sample size, the SAA method (and its variants) solves the “true”
problem with a reasonable accuracy (say 1% or 2%) provided the following conditions are
met:

(i) it is possible to generate a sample of realizations of the random vector ξ,

(ii) for moderate values of the sample size it is possible to efficiently solve the obtained
SAA problem,

(iii) the true problem has relatively complete recourse,

(iv) variability of the second-stage (optimal value) function is not “too large”.

3Theoretical bounds for the error of numerical integration by quasi-Monte Carlo methods are proportional
to (logN)dN−1, i.e., are of order O

(
(logN)dN−1

)
, with the proportionality constant Ad depending on d.

For small d it is “almost” the same as of order O(N−1), which of course is better than Op(N
−1/2). However,

the theoretical constant Ad grows superexponentially with increase of d. Therefore, for larger values of d
one often needs a very large sample size N for quasi-Monte Carlo methods to become advantageous. It is
beyond the scope of this paper to discuss these issues in detail. The interested reader may be referred to
[22], for example.
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Usually the requirement (i) does not pose a serious problem in stochastic programming
applications, and there are standard techniques and software for generating random sam-
ples. Also modern computers coupled with good algorithms can solve linear programming
problems with millions of variables (see the Notes section at the end of the tutorial).

Condition (iii), on the other hand, requires a few words of discussion. If for some fea-
sible x ∈ X the second-stage problem is infeasible with a positive probability (it does not
matter how small this positive probability is) then the expected value of Q(x, ξ), and hence
its variability, is infinite. If the probability p of such an event (scenario) is very small, say
p = 10−6, then it is very difficult, or may even be impossible, to verify this by sampling. For
example, one would need an iid sample of size N significantly bigger than p−1 to reproduce
such a scenario in the sample with a reasonable probability.

The sample average approximation problems that arise from the above process are large-
scale programming problems. Since our purpose in this tutorial is to introduce stochastic
programming models and approaches, we point to the literature for a further reading on that
subject in the “Notes” section.

2.3 Evaluating candidate solutions

Given a feasible point x̂ ∈ X, possibly obtained by solving a SAA problem, a practical
problem is how to evaluate the quality of this point viewed as a candidate for solving the true
problem. Since the point x̂ is feasible, we clearly have that g(x̂) ≥ v∗, where v∗ = minx∈X g(x)
is the optimal value of the true problem. The quality of x̂ can be measured by the optimality
gap

gap(x̂) := g(x̂)− v∗.

We outline now a statistical procedure for estimating this optimality gap. The true value g(x̂)
can be estimated by Monte Carlo sampling. That is, an iid random sample ξj, j = 1, ...,N ′,
of ξ is generated and g(x̂) is estimated by the corresponding sample average ĝN ′(x̂) = cTx̂+
q̂N ′(x̂). At the same time the sample variance

σ̂2N ′(x̂) :=
1

N ′(N ′ − 1)

N ′∑

j=1

[
Q(x̂, ξj)− q̂N ′(x̂)

]2
, (2.8)

of q̂N ′(x̂), is calculated. Note that it is feasible here to use a relatively large sample size N ′

since calculation of the required values Q(x̂, ξj) involves solving only individual second-stage
problems. Then

UN ′(x̂) := ĝN ′(x̂) + zασ̂N ′(x̂) (2.9)

gives an approximate 100(1− α)% confidence upper bound for g(x̂). This bound is justified
by the Central Limit Theorem with the critical value zα = Φ−1(1−α), where Φ(z) is the cdf
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of the standard normal distribution. For example, for α = 5% we have that zα ≈ 1.64, and
for α = 1% we have that zα ≈ 2.33.

In order to calculate a lower bound for v∗ we proceed as follows. Denote by v̂N the
optimal value of the SAA problem based on a sample of size N . Note that v̂N is a function
of the (random) sample and hence is random. To obtain a lower bound for v∗ observe that
E[ĝN (x)] = g(x), i.e., the sample average ĝN(x) is an unbiased estimator of the expectation
g(x). We also have that for any x ∈ X the inequality ĝN(x) ≥ infx′∈X ĝN (x′) holds, so for
any x ∈ X, we have

g(x) = E [ĝN(x)] ≥ E
[

inf
x′∈X

ĝN (x′)

]
= E [v̂N ] .

By taking the minimum over x ∈ X of the left hand side of the above inequality we obtain
that v∗ ≥ E[v̂N ].

We can estimate E[v̂N ] by solving the SAA problems several times and averaging the
calculated optimal values. That is, SAA problems based on independently generated samples,
each of size N , are solved to optimality M times. Let v̂1N , ..., v̂

M
N be the computed optimal

values of these SAA problems. Then

v̄N,M :=
1

M

M∑

j=1

v̂jN (2.10)

is an unbiased estimator of E[v̂N ]. Since the samples, and hence v̂1N , ..., v̂
M
N , are independent,

we can estimate the variance of v̄N,M by

σ̂2N,M :=
1

M(M − 1)

M∑

j=1

(
v̂jN − v̄N,M

)2
. (2.11)

An approximate 100(1− α)% lower bound for E[v̂N ] is then given by

LN,M := v̄N,M − tα,νσ̂N,M , (2.12)

where ν = M − 1 and tα,ν is the α-critical value of the t-distribution with ν degrees of
freedom. In applications it often suffices to use small values of M , say M = 5 or M = 10.
For a small number of degrees of freedom, the critical value tα,ν is slightly bigger than
the corresponding standard normal critical value zα, and tα,ν quickly approaches zα as ν
increases. Since v∗ ≥ E[v̂N ], we have that LN,M gives a valid lower statistical bound for v∗

as well. Consequently

ĝap(x̂) := UN ′(x̂)− LN,M (2.13)

gives a statistically valid (with confidence at least 1− 2α) bound on the true gap(x̂). It can
be noted that the lower bound LN,M is somewhat conservative since the bias v∗ − E[v̂N ] of
the SAA estimator of the true optimal value could be significant for not “too large” values
of the sample size N .
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Example 4 (Inventory model continued) We can illustrate this procedure on the in-
stance of the inventory example (example 1) discussed in section 1. The following derivations
are given for illustration purposes only. As discussed above, in the case of one dimensional
random data it is much better to use a uniform discretization grid on the interval [0, 100]
rather than a uniformly distributed random sample. Recall

G(x, d) =

{
−0.5x+ 1.5d, if x < d
1.1x− 0.1d, if x ≥ d.

and for x ∈ [0, 100]

E[G(x,D)] = 75− 0.5x+ 0.008x2

which has a minimum of v∗ = 67.19 at x̄ = 31.25. (We round all real numbers to two decimal
places in this example.) Suppose we have a candidate solution x̂ = 40. Then it is easy to
compute the true value of this candidate:

E[G(40,D)] = 67.80.

To obtain statistical bounds on this value, we sample from D, to give d1, d2, . . . , dN ′. Con-
sider the following (ordered) random sample of {1, 11, 26, 26, 36, 45, 45, 46, 50, 54, 56, 56,
59, 62, 70, 98} (again this random sample is rounded to integers). With N ′ = 16, this gives
an estimated cost of

ĝN ′(x̂) =
1

16

16∑

k=1

G(40, dk)

=
1

16

(
5∑

k=1

(
44− 0.1dk

)
+

16∑

k=6

(
−20 + 1.5dk

)
)

= 59.47,

and σ̂2N ′(x̂) = 31.13. Then an approximate 95% confidence upper bound for E[G(40, D)] is

UN ′(x̂) = ĝN ′(x̂) + z0.05σ̂N ′(x̂)

= 59.47 + 1.64
√

31.13

= 68.65.

Computing a statistical lower bound is a bit more involved. Here we have solved (offline)
M = 9 SAA problems (each with N = 5) to give v̂N = 56.39, 35.26, 69.53, 77.97, 54.87,
42.95, 68.52, 61.99, 78.93. The sample variance is σ̂2N,M = 24.80, and t0.05,8 = 1.86, which
gives

LN,M = v̄N,M − tα,νσ̂N,M

= 60.71− 1.86
√

24.80

= 51.45
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as an approximately 95% confidence lower bound for E[v̂N ]. It follows that 68.65-51.45=17.20
is an approximate 90% confidence bound on the true value of gap(x̂). To try and reduce
this, one might first try to increase N to a value larger than 5. �

3 Multi-stage stochastic programming

The stochastic programming models that we have discussed so far have been static in the
sense that we made a (supposedly optimal) decision at one point in time, while accounting
for possible recourse actions after all uncertainty has been resolved. There are many sit-
uations where one is faced with problems where decisions should be made sequentially at
certain periods of time based on information available at each time period. Such multi-stage
stochastic programming problems can be viewed as an extension of two-stage programming
to a multi-stage setting. In order to demonstrate some basic ideas let us discuss an extension
of the inventory model (example 1) to a multi-stage setting.

Example 5 (Inventory model continued) Suppose now that the company has a plan-
ning horizon of T periods of time. We view demand Dt as a random process indexed by the
time t = 1, ..., T . In the beginning, at t = 1, there is (known) inventory level y1. At each
period t = 1, ..., T the company first observes the current inventory level yt and then places
an order to replenish the inventory level to xt. This results in order quantity xt − yt which
clearly should be nonnegative, i.e., xt ≥ yt. After the inventory is replenished, demand dt
is realized and hence the next inventory level, at the beginning of period t + 1, becomes
yt+1 = xt − dt. The total cost incurred in period t is

ct(xt − yt) + bt[dt − xt]+ + ht[xt − dt]+, (3.1)

where ct, bt, ht are the ordering cost, backorder penalty cost and holding cost per unit, re-
spectively, at time t. The objective is to minimize the expected value of the total cost over
the planning horizon. This can be written as the following optimization problem

min
xt≥yt

T∑
t=1

E
{
ct(xt − yt) + bt[Dt − xt]+ + ht[xt −Dt]+

}

s.t. yt+1 = xt −Dt, t = 1, ..., T − 1.
(3.2)

For T = 1 the above problem (3.2) essentially is the same as the (static) problem (1.4)
(the only difference is the assumption here of the initial inventory level y1). However, for
T > 1 the situation is more subtle. It is not even clear what is the exact meaning of the
formulation (3.2). There are several equivalent ways to give precise meaning to the above
problem. One possible way is to write equations describing dynamics of the corresponding
optimization process. That is what we discuss next.

Consider the demand process Dt, t = 1, ..., T . We denote by D[t] = (D1, ...,Dt) the
history of the demand process up to time t, and by d[t] = (d1, ..., dt) its particular realization.
At each period (stage) t, our decision about the inventory level xt should depend only on
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information available at the time of the decision, i.e., on an observed realization d[t−1] of the
demand process, and not on future observations. This principle is called the nonanticipativity
constraint. We assume, however, that the probability distribution of the demand process
is known. That is, the conditional probability distribution of Dt, given D[t−1] = d[t−1], is
assumed to be known.

At the last stage t = T we need to solve the problem:

min
xT

cT (xT − yT ) + E
{
bT [DT − xT ]+ + hT [xT −DT ]+

∣∣D[T−1] = d[T−1]
}

s.t. xT ≥ yT . (3.3)

The expectation in (3.3) is taken conditional on realization d[T−1] of the demand process
prior to the considered time T . The optimal value (and the set of optimal solutions) of
problem (3.3) depends on yT and d[T−1], and is denoted VT (yT , d[T−1]). At stage t = T − 1
we solve the problem

min
xT−1

cT−1(xT−1 − yT−1) + E
{
bT−1[DT−1 − xT−1]+

+hT−1[xT−1 −DT−1]+ + VT
(
xT−1 −DT−1,D[T−1]

) ∣∣D[T−2] = d[T−2]
}

s.t. xT−1 ≥ yT−1.

(3.4)

Its optimal value is denoted VT−1(yT−1, d[T−2]). And so on, going backwards in time we write
the following dynamic programming equations

Vt(yt, d[t−1]) = min
xt≥yt

ct(xt − yt) + E
{
bt[Dt − xt]+

+ht[xt −Dt]+ + Vt+1
(
xt −Dt,D[t]

) ∣∣D[t−1] = d[t−1]
}
,

(3.5)

t = T − 1, ..., 2. Finally, at the first stage we need to solve the problem

V1(y1) = min
x1≥y1

c1(x1 − y1) + E
{
b1[D1 − x1]+ + h1[x1 −D1]+ + V2 (x1 −D1,D1)

}
.

(3.6)

Let us take a closer look at the above dynamic process. We need to understand how
the dynamic programming equations (3.4)—(3.6) could be solved and what is the meaning
of an obtained solution. Starting with the last stage t = T , we need to calculate the value
functions Vt(yt, d[t−1]) going backwards in time. In the present case the value functions can-
not be calculated in a closed form and should be approximated numerically. For a generally
distributed demand process this could be very difficult or even impossible. The situation
is simplified dramatically if we assume that the process Dt is stagewise independent, that
is, if Dt is independent of D[t−1], t = 2, ..., T . Then the conditional expectations in equa-
tions (3.3)—(3.5) become the corresponding unconditional expectations, and consequently
value functions Vt(yt) do not depend on demand realizations and become functions of the
respective univariate variables yt only. In that case by using discretizations of yt and the
(one-dimensional) distribution of Dt, these value functions can be calculated with a high
accuracy in a recursive way.
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Suppose now that somehow we can solve the dynamic programming equations (3.4)—(3.6).
Let x̄t be a corresponding optimal solution, i.e., x̄T is an optimal solution of (3.3), x̄t is an
optimal solution of the right-hand side of (3.5) for t = T − 1, ..., 2, and x̄1 is an optimal
solution of (3.6). We see that x̄t is a function of yt and d[t−1], for t = 2, ..., T , while the first-
stage (optimal) decision x̄1 is independent of the data. Under the assumption of stagewise
independence, x̄t = x̄t(yt) becomes a function of yt alone. Note that yt, in itself, is a function
of d[t−1] = (d1, ..., dt−1) and decisions (x1, ..., xt−1). Therefore we may think about a sequence
of possible decisions xt = xt(d[t−1]), t = 1, ..., T , as functions of realizations of the demand
process available at the time of the decision (with the convention that x1 is independent
of the data). Such a sequence of decisions xt(d[t−1]) is called a policy. That is, a policy
is a rule which specifies our decisions, at every stage based on available information, for
any possible realization of the demand process. By its definition any policy xt = xt(d[t−1])
satisfies the nonanticipativity constraint. A policy is said to be feasible if it satisfies the
involved constraints with probability one (w.p.1). In the present case a policy is feasible if
xt ≥ yt, t = 1, ..., T , for almost every realization of the demand process.

We can now formulate the optimization problem (3.2) as the problem of minimizing
the expectation in (3.2) with respect to all feasible policies. An optimal solution of such a
problem will give us an optimal policy. We have that a policy x̄t is optimal if and only if it
is given by optimal solutions of the respective dynamic programming equations. Note again
that in the present case under the assumption of stagewise independence, an optimal policy
x̄t = x̄t(yt) is a function of yt alone. Moreover, in that case it is possible to give the following
characterization of the optimal policy. Let x∗t be an (unconstrained) minimizer of

ctxt + E
{
bt[Dt − xt]+ + ht[xt −Dt]+ + Vt+1 (xt −Dt)

}
, t = T, ..., 1, (3.7)

with the convention that VT+1(·) = 0. Then by using convexity of the value functions it is
not difficult to show that x̄t = max{yt, x∗t} is an optimal policy. Such policy is called the
basestock policy. A similar result holds without the assumption of stagewise independence,
but then critical values x∗t depend on realizations of the demand process up to time t− 1.

As mentioned above, if the stagewise independence condition holds, then each value
function Vt(yt) depends solely on the univariate variable yt. Therefore in that case we can
accurately represent Vt(·) by a discretization, i.e., by specifying its values at a finite number
of points on the real line. Consequently, the corresponding dynamic programming equations
can be accurately solved recursively going backwards in time. The effectiveness of this
approach starts to change dramatically with an increase in the number of variables on which
the value functions depend. In the present case this may happen if the demand process is
dependent across time. The discretization approach may still work with two, maybe three, or
even four, variables. It is out of the question, however, to use such a discretization approach
with more than, say, 10 variables. This is the so-called “curse of dimensionality”, the term
coined by Bellman. Observe that solving the dynamic programming equations recursively
under stagewise independence generates a policy that might be more general than we require
for the solution to (3.2). That is, the dynamic programming equations will define x̄t(yt) for
all possible values of yt, even though some of these values cannot be attained from y1 by any
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combination of demand outcomes (d1, ..., dt−1) and decisions (x1, ..., xt−1).
Stochastic programming tries to approach the problem in a different way by using a

discretization of the random process D1, ..., DT in the form of a scenario tree. That is, N1

possible realizations of the (random) demand D1 are generated. Next, conditional on every
realization of D1, several (say the same number N2) realizations of D2 are generated, and so
on. In that way N := N1× ...×NT different sample paths of the random process D1, ...,DT

are constructed. Each sample path is viewed as a scenario of a possible realization of the
underline random process. There is a large literature of how such scenario trees could (and
should) be constructed in a reasonable and meaningful way. One possible approach is to
use Monte Carlo techniques to generate scenarios by conditional sampling. This leads to
an extension of the SAA method to a multi-stage setting. Note that the total number of
scenarios is the product of the numbers Nt of constructed realizations at each stage. This
suggests an explosion of the number of scenarios with increase of the number of stages.
In order to handle an obtained optimization problem numerically one needs to reduce the
number of scenarios to a manageable level. Often this results in taking Nt = 1 from a certain
stage on. This means that from this stage on the nonanticipativity constraint is relaxed.

In contrast to dynamic programming, stochastic programming does not seek Vt(yt) for
all values of t and yt, but focuses on computing V1(y1) and the first-stage optimal deci-
sion x̄1 for the known inventory level y1. This makes stochastic programming more akin to a
decision-tree analysis than dynamic programming (although unlike decision analysis stochas-
tic programming requires the probability distributions to be independent of decisions). A
possible advantage of this approach over dynamic programming is that it might mitigate
the curse of dimensionality in situations where the states visited as the dynamic process
unfolds (or the dimension of the state space) are constrained by the currently observed state
y1 (whatever the actions might be). In general, however, the number of possible states that
might be visited grows explosively with the number of stages, and so multi-stage stochastic
programs are tractable only in special cases. �

4 Risk averse optimization

In this section we discuss the problem of risk. We begin by recalling the example of the
two-stage inventory problem.

Example 6 (Inventory model continued) Recall that

G(x,D) =

{
(c− b)x + bD, if x < D,
(c + h)x− hD, if x ≥ D.

We have already observed that for a particular realization of the demand D, the cost G(x̄, D)
can be quite different from the optimal-on-average cost E[G(x̄, D)]. Therefore a natural
question is whether we can control the risk of the cost G(x,D) to be not “too high”. For
example, for a chosen value (threshold) τ > 0, we may add to problem (1.4) the constraint
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G(x,D) ≤ τ to be satisfied for all possible realizations of the demand D. That is, we want
to make sure that the total cost will be at most τ in all possible circumstances. Numerically
this means that the inequalities (c − b)x + bd ≤ τ and (c + h)x − hd ≤ τ should hold for
all possible realizations d of the uncertain demand. That is, the ordering quantity x should
satisfy the following inequalities:

bd− τ

b− c
≤ x ≤ hd+ τ

c + h
for all realizations d of the uncertain demand D. (4.1)

This, of course, could be quite restrictive. In particular, if there is at least one realization d
greater than τ/c, then the system (4.1) is incompatible, i.e., the corresponding problem has
no feasible solution.

In such situations it makes sense to introduce the constraint that the probability of
G(x,D) being bigger than τ is less than a specified value (significance level) α ∈ (0, 1). This
leads to the so-called chance or probabilistic constraint which can be written in the form

Prob{G(x,D) > τ} ≤ α, (4.2)

or equivalently

Prob{G(x,D) ≤ τ} ≥ 1− α. (4.3)

By adding the chance constraint (4.2) to the optimization problem (1.4) we want to optimize
(minimize) the total cost on average making sure that the risk of the cost being large (i.e.,
the probability that the cost is bigger than τ) is small (i.e., less than α). We have that

Prob{G(x,D) ≤ τ} = Prob

{
(c + h)x− τ

h
≤ D ≤ (b− c)x + τ

b

}
. (4.4)

For x ≤ τ/c the inequalities in the right hand side of (4.4) are consistent and hence for such
x,

Prob{G(x,D) ≤ τ} = F

(
(b− c)x + τ

b

)
− F

(
(c + h)x− τ

h

)
. (4.5)

Even for small (but positive) values of α, the chance constraint (4.3) can be a significant
relaxation of the corresponding constraints (4.1).

In the numerical instance where D has uniform distribution on the interval [0, 100], and
c = 1, b = 1.5, and h = 0.1, suppose τ = 99. Then τ/c = 99 is less than some realizations of
the demand, and the system (4.1) is inconsistent. That is, there is no feasible x satisfying
constraint G(x, d) ≤ τ for all d in the range [0, 100]. On the other hand, (4.5) becomes

Prob{G(x,D) > 99} = 1− F

(
0.5x+ 99

1.5

)
+ F

(
1.1x− 99

0.1

)

=





1− x
300
− 66

100
, 0 ≤ x ≤ 90,

1 + 32
300

x− 1056
100

, 90 < x ≤ 99,
1, 99 < x < 100.
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Figure 5: Plot of Prob{G(x,D) > 99}. The horizontal line is α = 0.1.

This function is plotted in Figure 5. It is easy to see that if we set α = 0.1, then the
choices of x that satisfy the chance constraint lie in the interval [72, 90 9

16
] (where the plot

of Prob{G(x,D) > 99} lie below 0.1 as shown by the horizontal line). With the chance
constraint the optimal choice of x that minimizes E[G(x,D)] is thus x = 72. In contrast the
solution x = 31.25 that minimizes expected cost has Prob{G(x,D) > 99} ≈ 0.24.

In the example just described the chance constraint gives rise to a convex feasible region
for the decision variable x. To see that this does not always happen, suppose now that the
demand has density

f(z) :=





1
100

, 0 < z ≤ 20,
1
50
, 60 < z ≤ 100,

0, otherwise.

If we choose x = 90 then G(90, d) exceeds 99 exactly when D ≥ 96, i.e., with probability
0.08. If we now choose x = 95, then G(95, d) exceeds 99 exactly when D ≤ 55 or D ≥ 97.67,
i.e. with probability 0.247. Now suppose we choose x = 92. Then G(92, d) exceeds 99
exactly when D ≤ 22 or D ≥ 96.67, i.e. with probability 0.267. Thus x = 90 and x = 95
both satisfy the chance constraint

Prob{G(x,D) > 99} ≤ 0.25

but x = 92 (a convex combination of these points) does not. When α = 0.25, the feasible
region of the chance-constrained problem fails to be convex. This can be illustrated by
plotting Prob{G(x,D) > 99} as a function of x as shown in Figure 6. �
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Figure 6: Plot of Prob{G(x,D) > 99}. The horizontal line is α = 0.25.

In general a chance (probabilistic) constraint has the form

Prob
{
G(x, ξ) > τ

}
≤ α. (4.6)

Here G(x, ξ) is a real valued function of the decision vector x and random data vector ξ, and
τ ∈ R and α ∈ (0, 1) are chosen constants. As discussed above, such chance constraints ap-
pear naturally in a risk-averse approach where the event “G(x, ξ) > τ” represents something
undesirable and one wants to control this by making the probability of this event small.
From the above example, one can see that optimization models with chance constraints are
not guaranteed to be easily solved, because in general their feasible regions are not convex,
and even if convex may be not efficiently computable. We proceed to give a discussion on
how they might be approximated by tractable models.

Consider the random variable Zx := G(x, ξ)− τ (in order to simplify notation we some-
times drop the subscript x and simply write Z for a given value of x). Let FZ(z) := Prob(Z ≤
z) be the cdf of Z. Since constraint (4.6) is equivalent to the constraint

Prob
{
G(x, ξ)− τ ≤ 0

}
≥ 1− α,

we have that the point x satisfies this constraint if and only if FZ(0) ≥ 1−α, or equivalently
if and only if F−1

Z (1− α) ≤ 0.
In the finance literature, the (left-side) quantile F−1

Z (1− α) is called Value at Risk and
denoted VaR1−α(Z), i.e.,

VaR1−α(Z) = inf {t : FZ(t) ≥ 1− α} . (4.7)
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Note that VaR1−α(Z + τ) = VaR1−α(Z)+ τ , and hence constraint (4.6) can be written in the
following equivalent form

VaR1−α[G(x, ξ)] ≤ τ . (4.8)

Example 7 In the above example (with the bimodal density function) we can show after
some algebra 4 that

VaR0.75[G(x,D)] =





131.25− 0.5x, 0 ≤ x < 82.03,
15.44 + 0.91x, 82.03 ≤ x < 92. 66,
146.25− 0.5x, 92. 66 ≤ x < 95.16,
x + 3.52, 95.16 ≤ x < 97.67,
1.1x− 6.25, 97.67 ≤ x < 100.

We plot VaR0.75[G(x,D)] in Figure 7. It is easy to see that VaR0.75[G(x,D)] is not a
convex function. Also comparing plots shows that VaR0.75[G(x,D)] ≤ 99 is equivalent to
Prob{G(x,D) > 99} ≤ 0.25. �
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Figure 7: VaR0.75[G(x,D)] for bimodal demand density

We now want to formally construct a convex approximation to VaR1−α[G(x, ξ)], thereby
enabling convex approximations of chance constraints. To do this we will make use of the

4We assume as before that real numbers are rounded to two decimal places.
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step function

1l(z) :=

{
1, if z > 0,
0, if z ≤ 0.

We have that

Prob(Z > 0) = E [1l(Z)] ,

and hence constraint (4.6) can also be written as the expected value constraint:

E [1l(Zx)] ≤ α. (4.9)

As we have observed in example 7, since 1l(·) is not a convex function this operation often
yields a nonconvex constraint, even though the function G(·, ξ) might be convex for almost
every ξ.

Let ψ : R → R be a nonnegative-valued, nondecreasing, convex function such that
ψ(z) ≥ 1l(z) for all z ∈ R. By noting that 1l(tz) = 1l(z) for any t > 0, we have that
ψ(tz) ≥ 1l(z) and hence the following inequality holds

inf
t>0
E [ψ(tZ)] ≥ E [1l(Z)] . (4.10)

Consequently, the constraint

inf
t>0
E [ψ(tZ)] ≤ α (4.11)

is a conservative approximation of the chance constraint (4.6) in the sense that the feasible
set defined by (4.11) is contained in the feasible set defined by (4.6).

Of course, the smaller the function ψ(·) is, the better this approximation will be. It can
be shown (see the Appendix) that ψ(z) := [1 + z]+ is a best choice of such a function from
this point of view (see Figure 8). For this choice of function ψ(·), we have that constraint
(4.11) is equivalent to

inf
t>0
{tE[t−1 + Z]+ − α} ≤ 0,

or equivalently

inf
t>0

{
α−1E[Z + t−1]+ − t−1

}
≤ 0.

Now replacing t with −t−1 we get the form:

inf
t<0

{
t+ α−1E[Z − t]+

}
≤ 0. (4.12)

Consider the following inequality, which is obtained from (4.12) by removing the constraint
“t < 0”,

inf
t∈R

{
t+ α−1E[Z − t]+

}
≤ 0 (4.13)
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Figure 8: Convex approximations to 1l(z). [1 + z]+ is shown in bold.

Since the left hand side of (4.13) is less than or equal to the left hand side of (4.12), it follows
that if Z satisfies (4.12), then Z also satisfies (4.13). Conversely, suppose that Z satisfies
inequality (4.13). Then the minimum in the left hand side of (4.13) is attained at t∗ ≤ 0
(this is because E[Z − t]+ is always nonnegative). In fact, t∗ is strictly less than 0 unless Z
is identically zero. Therefore, the constraints (4.12) and (4.13) are equivalent.

The quantity

CVaR1−α(Z) := inf
t∈R

{
t+ α−1E[Z − t]+

}
(4.14)

is called the Conditional Value at Risk of Z at level 1 − α. It can be verified that the
minimum in the right hand side of (4.14) is attained at the set (interval) of (1−α)-quantiles
of the distribution of Z, and in particular at t∗ = VaR1−α(Z). Therefore, CVaR1−α(Z) is
bigger than VaR1−α(Z) by the amount of α−1E[Z − t∗]+.

We may also observe that

t∗ + α−1E[Z − t∗]+ = α−1
(
αt∗ +

∫∞
t∗

(z − t∗)dFZ(z)
)

= α−1
∫∞
t∗

zdFZ(z)

= E[Z | Z ≥ t∗],

provided that FZ(·) is continuous at t∗. Therefore, CVaR1−α(Z) may be thought of as the
tail expectation conditioned on being larger than VaR1−α(Z). This makes it easy to see that
for any a ∈ R,

CVaR1−α(Z + a) = CVaR1−α(Z) + a. (4.15)
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Therefore, the constraint

CVaR1−α[G(x, ξ)] ≤ τ (4.16)

is equivalent to the constraint (4.12) and gives a conservative approximation of the chance
constraint (4.6) (recall that (4.6) is equivalent to (4.8)). Also by the above analysis we have
that (4.16) is the best possible convex conservative approximation of the chance constraint
(4.6).

Example 8 After some algebra it is possible to show in the example 7 that

CVaR0.75[G(x,D)] =





140.63− 0.5x, 0 ≤ x < 82.03,
0.06x2 − 10.38x + 545.96, 82.03,≤ x < 92. 66,
0.78x + 28.83 92. 66 ≤ x < 95.16,
−11.4x+ 608.33 + 0.06x2, 95.16 ≤ x < 97.66,
1. 1x− 2.03, 97.66 ≤ x < 100.

This is plotted in Figure 9. Observe that it is convex, and that the convex set

90

95

100

105

110

60 70 80 90 100
x

Figure 9: CVaR0.75[G(x,D)] for example with bimodal demand density. The horizontal line
is α = 99.

{x | CVaR0.75[G(x,D)] ≤ 99}
= (83.52, 88.85)

⊆ {x | Prob{G(x,D) > 99} ≤ 0.25}.

�
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The function ρ(Z) := CVaR1−α(Z) has the following properties.

(i) It is convex, i.e., if Z1 and Z2 are two random variables and t ∈ [0, 1], then

ρ (tZ1 + (1− t)Z2) ≤ tρ(Z1) + (1− t)ρ(Z2).

(ii) It is monotone, i.e., if Z1 and Z2 are two random variables such that with probability
one Z2 ≥ Z1, then ρ(Z2) ≥ ρ(Z1).

(iii) It is positively homogeneous, i.e., if Z is a random variable and t > 0, then ρ(tZ) =
tρ(Z).

(iv) It has the (translation equivariance) property: ρ(Z + a) = ρ(Z) + a for any a ∈ R.

Functions ρ(Z), defined on a space of random variables, satisfying properties (i)—(iv) were
called coherent risk measures in [2]. Properties (i) and (ii) ensure that if G(·, ξ) is convex for
almost every ξ, then the function f(x) := ρ(G(x, ξ)) is also convex. That is, coherent risk
measures, and in particular CVaR, preserve convexity of G(·, ξ). This property is of crucial
importance for the efficiency of numerical procedures.

Now let us consider the following optimization problem

min
x∈X

E[G(x, ξ)] subject to CVaR1−α[G(x, ξ)] ≤ τ . (4.17)

Suppose that the set X is convex and for almost every ξ the function G(·, ξ) is convex. For
example, in the case of two-stage linear programming with recourse we can take G(x, ξ) :=
cTx+ Q(x, ξ). By the above discussion, it follows that the problem (4.17) is convex. Under
standard regularity conditions we have that problem (4.17) is equivalent to the problem

min
x∈X

{
g(x) := E[G(x, ξ)] + λCVaR1−α[G(x, ξ)]

}
, (4.18)

where λ ≥ 0 is an optimal solution of the dual problem. By using definition (4.14) of
CVaR1−α, we can write problem (4.18) in the form

min
x∈X, t∈R

E[Hξ(x, t)], (4.19)

where

Hξ(x, t) := G(x, ξ) + λt+ λα−1[G(x, ξ)− t]+.

By using the equality [a]+ = a + [−a]+ it is straightforward to verify that

t+ α−1[Z − t]+ = [t− Z]+ + κ[Z − t]+ + Z,

where κ := α−1 − 1. Consequently

Hξ(x, t) = (1 + λ)
(
G(x, ξ) + γ[t−G(x, ξ)]+ + γκ[G(x, ξ)− t]+

)
,
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where γ := λ/(λ + 1). Note that γ ∈ [0, 1) and κ > 0.
The computational complexity of problem (4.19) is almost the same as that of the ex-

pected value problem:

min
x∈X

E[G(x, ξ)]. (4.20)

The function Hξ(·, ·) is convex if G(·, ξ) is convex, and is piecewise linear if G(·, ξ) is piecewise
linear. If both these conditions hold, X is a polyhedral set, and ξ has a finite number of
realizations then (4.19) can be formulated as a linear program.

The additional term in (4.18), as compared with (4.20), has the following interpretation.
For a random variable Z define

Dκ[Z] := inf
t∈R
E {[t− Z]+ + κ[Z − t]+} . (4.21)

Note that the minimum in the right hand side of (4.21) is attained at the quantile t∗ =
VaR κ

1+κ
(Z), and observe that κ/(1 + κ) = 1 − α. We can view Dκ[Z] as an (asymmetric)

measure of dispersion of Z around its (1− α)-quantile. We obtain that problem (4.19), and
hence problem (4.18), are equivalent to the problem

min
x∈X

{E[G(x, ξ)] + γDκ[G(x, ξ)]} . (4.22)

It is possible to give yet another interpretation for the problem (4.22). Let Z = Z(ξ)
be a random variable defined on a probability space (Ξ,F , P ). We have the following dual
representation of the coherent risk measure ρ(Z) = E[Z] + γDκ[Z]:

ρ(Z) = sup
F∈A

EF [Z], (4.23)

where A is a set of probability distributions on (Ξ,F) such that

F ∈ A iff (1− γ)P (A) ≤ F (A) ≤ (1 + γκ)P (A) for any A ∈ F .

In particular, if the set Ξ = {ξ1, ..., ξK} is finite with probability distribution P defined by
probabilities p1, ..., pK, then a probability distribution p′1, ..., p

′
K on Ξ belongs to A iff

(1− γ)pk ≤ p′k ≤ (1 + γκ)pk, k = 1, ...,K.

Consequently, problem (4.22) can be written in the following minimax form

min
x∈X

sup
F∈A

EF [G(x, ξ)]. (4.24)

In the terminology of robust optimization, the set A can be viewed as an uncertainty set

for the probability distributions and problem (4.24) as the worst-case-probability stochastic
program.
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A popular traditional approach to controlling risk in optimization is to try to reduce vari-
ability of the (random) cost G(x, ξ), and hence to make it closer to its average (expectation)
E[G(x, ξ)]. In classical statistics, variability of a random variable Z is usually measured by
its variance or standard deviation. This suggests adding the constraint Var[G(x, ξ)] ≤ ϑ to
problem (1.4), for some chosen constant ϑ > 0. Note that this constraint is equivalent to the
corresponding constraint

√
Var[G(x, ξ)] ≤

√
ϑ for the standard deviation of the total cost.

There are, however, several problems with this approach. Firstly, constraining either
the variance or standard deviation of G(x, ξ) means that the obtained constraint set is
not guaranteed to be convex unless G(x, ξ) is linear in x. Secondly variance and standard
deviation are both symmetrical measures of variability, and, in the minimization case, we are
not concerned if the cost is small; we just don’t want it to be too large. This motivates the use
of asymmetrical measures of variability (like the coherent risk measure ρ(Z) = E[Z]+γDκ[Z])
which appropriately penalize large values of the cost G(x, ξ). The following example shows
that the symmetry of variance and standard deviation is problematic even if the cost function
is linear.

Example 9 Suppose that the space Ξ = {ξ1, ξ2} consists of two points with associated
probabilities p and 1− p, for some p ∈ (0, 1). Consider dispersion measure D[Z], defined on
the space of functions (random variables) Z : Ξ→ R, either of the form

D[Z] :=
√

Var[Z] or D[Z] := Var[Z],

and the corresponding ρ(Z) := E[Z] + λD[Z]. Consider functions Z1, Z2 : Ξ→ R defined by
Z1(ξ1) = −a and Z1(ξ2) = 0, where a is some positive number, and Z2(ξ1) = Z2(ξ2) = 0.
Now, for D[Z] =

√
Var[Z], we have that ρ(Z2) = 0 and ρ(Z1) = −pa + λa

√
p(1− p). It

follows that for any λ > 0 and p < (1 + λ−2)−1 we have that ρ(Z1) > ρ(Z2). Similarly, for
D[Z] = Var[Z] we have that ρ(Z1) > ρ(Z2) if a > λ−1 and p < [1 − (λa)−1]−1. That is,
although Z2 dominates Z1 in the sense that Z2(ξ) ≥ Z1(ξ) for every possible realization of
ξ ∈ Ξ, we have here that ρ(Z1) > ρ(Z2), i.e., ρ(·) is not monotone.

Consider now the optimization problem

min
x∈R2

ρ[G(x, ξ)] s.t. x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0, (4.25)

with G(x, ξ) = x1Z1(ξ) + x2Z2(ξ). Let x̄ := (1, 0) and x∗ := (0, 1). We have here that
G(x, ξ) = x1Z1(ξ), and hence G(x̄, ξ) is dominated by G(x, ξ) for any feasible point x of
problem (4.25) and any realization ξ ∈ Ξ. And yet x̄ is not an optimal solution of the
corresponding optimization (minimization) problem since ρ[G(x̄, ξ)] = ρ[Z1] is greater than
ρ[G(x∗, ξ)] = ρ(Z2).�

5 Notes

The inventory model, introduced in example 1 (also called the Newsvendor Problem) is
classical. This model, and its multistage extensions, are discussed extensively in Zipkin [37],
to which the interested reader is referred for a further reading on that topic.
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The concept of two-stage linear stochastic programming with recourse was introduced in
Beale [4] and Dantzig [8]. Although two-stage linear stochastic programs are often regarded
as the classical stochastic programming modeling paradigm, the discipline of stochastic pro-
gramming has grown and broadened to cover a wide range of models and solution approaches.
Applications are widespread, from finance to fisheries management. There is a number of
books and monographs where theory and applications of stochastic programming is dis-
cussed. In that respect we can mention, for example, monographs [6, 26, 30, 36]. Chance
constraints problems were introduced in Charnes, Cooper and Symonds [7]. For a thorough
discussion and development of that concept we may refer to Prékopa [26]. An introductory
treatment is available in the on-line tutorial by Henrion [12].

Questions of how to construct scenarios and to measure quality of obtained solutions have
been studied extensively in the stochastic programming literature. A way of reducing the
number of scenarios by certain aggregations techniques are discussed in Heitsch and Römisch
[11] and Pflug [25], for example. The approach to statistical validation of a candidate
solution, discussed in section 2.3, was suggested in Norkin, Pflug and Ruszczyński [23], and
developed in Mak, Morton and Wood [17]. For a more recent work in that direction see
Bayraksan and Morton [3].

The first mathematical discussion of risk aversion (using utility functions) is often at-
tributed to Daniel Bernouilli [5]. The concept of utility was formally defined and expounded
by von Neumann and Morgenstern [21]. The idea of using a mean-variance approach to
stochastic optimization goes back to Markowitz [18]. Coherent risk measures were first in-
troduced by Artzner et al [2]. A discussion of drawbacks of using variance or standard
deviation as measures of dispersion in stochastic programming can be found in Takriti and
Ahmed [33], for example. The approach of using CVaR for approximating chance constraints
is due to Rockafellar and Uryasev [27]. We follow Nemirovski and Shapiro [20] to show
that the CVaR approximation is the best convex approximation of a chance constraint. It
is also suggested in [20] to use the exponential function ψ(z) = ez, instead of the piecewise
linear function [1 + z]+, for constructing convex conservative approximations, which has the
potential advantage of treating the obtained constraints analytically.

The term “sample average approximation” method was coined in Kleywegt et al [15],
although this approach was used long before that paper under various names. Statistical
properties of the SAA method are discussed in Shapiro [31] and complexity of two and
multi-stage stochastic programming in Shapiro and Nemirovski [32]. From a deterministic
point of view, complexity of two-stage linear stochastic programming is discussed in Dyer
and Stougie [9]. Rates of convergence of Monte Carlo and Quasi-Monte Carlo estimates of
the expected values are discussed in Niederreiter [22]. Numerical experiments with the SAA
method are reported in [16, 17, 35], for example.

The sample average approximation problems that arise from the sampling process of two
(and multi) stage linear stochastic programs are large-scale linear programming problems.
These can be attacked directly using commercial optimization software which is widely avail-
able (see e.g. [10]). As the problems grow in size (with the number of scenarios) they become
too large to solve using general-purpose codes. Of course for astronomically large numbers of
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scenarios we cannot hope to solve any problem exactly, but at the boundary of tractability
of general purpose codes we can exploit the special structure inherent in the formulation
(2.4) to solve problems in a reasonable amount of time.

The mathematical programming literature on exploiting structure to solve large-scale
linear programs is extensive. Since our purpose in this tutorial is to introduce stochastic
programming models and approaches to readers, we give below only a brief (and selective)
overview of this body of work. A more comprehensive picture is available in the monographs
[6, 30, 14].

The formulation (2.4) has a structure that lends itself to the decomposition techniques
developed to solve large-scale linear programming problems. These include variants of Ben-
ders decomposition (also called the L-shaped method [34]), Lagrangian and augmented La-
grangian decomposition ([28],[19]) interior-point methods [29], and operator splitting [24].

The SAA approach to solving stochastic linear programs may require the solution of a
sequence of problems with increasing numbers of scenarios (e.g. if the error in the solution
from the current SAA is deemed to be too large). In this case it makes sense to use informa-
tion obtained in the solution of the problem to guide the solution to a larger SAA problem.
This is the approach adopted by so-called internal sampling methods, e.g., the stochastic
decomposition method developed by Higle and Sen [13].

When some or all of the decision variables must take integer values, the formulation (2.4)
becomes an integer linear program, which in general lacks the convexity properties to enable
decomposition techniques. To overcome this, stochastic integer programs are attacked using
a variety of techniques that combine advances in large-scale integer programming with the
special structure that arises in applications. A more comprehensive discussion of this is
provided in the online tutorial by Ahmed [1].

It should be clearly understood that simple examples given in this paper are for illus-
tration purposes only. It could be dangerous to make general conclusions based on such
simple examples. Our intuition based on an analysis of one-dimensional models could be
quite misleading in higher dimensional cases.

6 Appendix

6.1 Derivation of (1.5)

Recall

G(x,D) = cx + bmax{D − x, 0}+ hmax{x−D, 0}. (6.1)

Let g(x) = E[G(x,D)]. It is a convex continuous function. For x ≥ 0 we have

g(x) = g(0) +

∫ x

0

g′(z)dz,
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where at nondifferentiable points the derivative g′(z) is understood as the right hand side
derivative. Since D ≥ 0 we have that g(0) = bE[D]. Also observe that

d

dx
E[max{D − x, 0}] = Prob(D ≥ x)

and

d

dx
E[max{x−D, 0}] = Prob(D ≤ x)

so

g′(z) = c + d
dz
E [bmax{D − z, 0}+ hmax{z −D, 0}]

= c− bProb(D ≥ z) + hProb(D ≤ z)
= c− b(1− F (z)) + hF (z)
= c− b + (b + h)F (z).

Thus

E[G(x,D)] = bE[D] + (c− b)x+ (b + h)

∫ x

0

F (z)dz. (6.2)

6.2 Derivation of best convex approximation to chance constraints.

Let ψ : R → R be a nonnegative valued, nondecreasing, convex function such that ψ(z) ≥
1l(z) for all z ∈ R, and ψ(0) = 1. Since ψ is convex, it is supported, at 0, by a linear
function, i.e., there is a ∈ R such that ψ(z) ≥ 1 + az for all z ∈ R. Moreover, since ψ(z)
is nondecreasing, it follows that a ≥ 0. If a = 0, then ψ(z) ≥ 1 of course. So suppose that
a > 0. Then since ψ(z) is nonnegative, we have that ψ(z) ≥ max{0, 1 + az} = [1 + az]+ for
all z. Note now that the function ψ is defined up to a scaling, i.e., the basic inequality (4.10)
is invariant with respect to rescaling t �→ at. It follows that ψ(z) := [1 + z]+ is a minimal
value (and hence a best) choice of such function ψ.
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[30] Ruszczyński, A. and Shapiro, A., (Eds.), Stochastic Programming, Handbook in OR &
MS, Vol. 10, North-Holland Publishing Company, Amsterdam, 2003.

[31] Shapiro, A., Monte Carlo sampling methods, in: Ruszczyński, A. and Shapiro, A.,
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