‘— AN5054
’l ife.augmented Application note

Secure programming using STM32CubeProgrammer

Introduction

This document specifies the steps and tools required to prepare SFI (secure firmware
install) or SMI (secure module install) images (or a combination of both) and to program
them into the STM32H7 on-chip Flash memory.

These tools are compatible with all STM32 devices supporting SFI.

The main objective of SFI and SMI processes, is the installation of security and cloning
prevention in OEMs’ and software-partner’s firmware respectively.

Please refer to AN4992 [1], which provides an overview of the secure firmware install (SFI)
solution and how this provides a practical level of protection of the IP chain from the
firmware development up to programming the device on-chip Flash memory.

N
sTM3Z" NP
CubeProgrammer

April 2019 AN5054 Rev 2 1/75

www.st.com

http://www.st.com

Contents AN5054

Contents
1 Generalinformation i 8
1.1 Licensing information 8
1.2 Acronyms and abbreviations oo L, 8
2 How to generate an execute-only/position independent library for SMi
preparation i i 9
2.1 Requirements e 9
22 Toolchains allowing SMl generation 9
2.3 Execute-only/position independent library scenario example under
EWARM . 10
2.3.1 Relocatable library preparation steps 10
232 Relocatable SMI module preparationsteps 14
233 Application execution Scenario L. 15
3 Encrypted firmware(SFl)/module(SMI) preparation using
STM32TrustedPackageCreator 17
3.1 Systemrequirements 17
3.2 SFlgeneration process 17
3.3 SMl generation process 26
3.4 STM32TrustedPackageCreator tool in the command line interface 29
3.4.1 Steps for SFl generation (CLI) 30
3.4.2 Steps for SMI generation(CLI) i 32
3.5 Using the STM32TrustedPackageCreator tool graphical user interface . 34
3.5.1 SFl generation using STPCinGUImode 34
SFIGUItab fIeldSo oottt ettt e 35
3.5.2 SMI generation using STPCinGUImode 38
SMIGUItab fieldsttt 39
3.5.3 Settings 40
3.54 Loggeneration 42
3.5.5 SFl and SMI file checking function 43
2/75 AN5054 Rev 2 ‘W

AN5054 Contents
4 Encrypted firmware(SFl)/module(SMI) programming using
STM32CubeProgrammer iiiiiiiinnnnnnnnns 44
41 Chip certificate authenticity check and license mechanism 44
411 Device authentication 44
4.1.2 License mechanism 44
Licenses mechanismgeneralscheme 44
License distribution. 45
HSM programming by OEM for License distribution. 45
4.2 Secure programming using bootloader interface 47
421 Secure firmware installation using Bootloader interface flow 47
422 Secure Module installation using bootloader interface flow 49
423 STM32CubeProgrammer for SFI using bootloader interface 49
424 STM32CubeProgrammer for SMI via Bootloader interface 50
425 STM32CubeProgrammer for get certificate via Bootloader interface .. 50
4.3 Secure programming using JTAG/SWD interface 51
4.3.1 SFl programming using JTAG/SWD flow 51
4.3.2 SMI programming through JTAG/SWD flow 52
43.3 STM32CubeProgrammer for secure programming using JTAG/SWD . . 54
5 Example SFl programmingscenariociiiiinnnnns 55
51 Scenario OVervIEW 55
5.2 Hardware and software environment 55
53 Step-by-stepexecution 55
5.3.1 Build OEM application 55
5.3.2 Perform the SFI generation (GUImode) 55
5.3.3 Performing HSM programming for license generation using STPC
(GUIMOdE) ... 57
534 Programming input conditions o L. 58
5.3.5 Perform the SFl install using STM32CubeProgrammer 58
Using JTAG/SWDo e 58
m AN5054 Rev 2 3/75

Contents AN5054
6 Example SMI programming scenarioccvvuuuunn. 61
6.1 SCENANO OVEIVIEW . . . v e e e 61

6.2 Hardware and software environment 61

6.3 Step-by-stepexecution 61

6.3.1 Build 3rd party Library 61

6.3.2 Performthe SMlgeneration 62

6.3.3 Programming input conditions 63

6.3.4 Perform the SMlinstall 63

USiNG JTAGISWD oo e et e e e e e e e e 63

6.3.5 How to test for SMl install success 65

7 Example combined SFI-SMI programming scenario 67

71 SCeNArio OVEIVIEW oo e 67

7.2 Hardware and software environment 67

7.3 Step-by-stepexecution 67

7.3.1 Using JTAG/SWD e 69

7.3.2 How to test the combined SFlinstall success 71

8 Referencedocumentsc ittt innenrnrnnensns 73

9 Revision history i e 74
4175 AN5054 Rev 2 ‘Yl

AN5054 List of tables

List of tables

Table 1. List of abbreviations 8
Table 2. Document referenCes i 73
Table 3. Document revision history 74

3

AN5054 Rev 2 5/75

List of figures AN5054

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.

6/75

IAR example project overview 10
Update compiler extraoptions 11
Linker extra oplions 12
Setting post-build option 13
Postbuild batch file 14
How to exclude the “lib.o” file frombuild, 15
app.acffile . .. e 16
SFl preparation mechanism 17
SFlimage process generation i 18
RAM size and CT address inputs used for SFImultiinstall 19
'P'and ‘R’ area specifics versus aregular SFlarea 20
Error message when firmware files with address overlapsused 21
Error message when SMI address overlaps with a firmware areaaddress 22
Error message when a SFI area address is not located in Flashmemory 23
SFlformatlayout 24
SFlimage layoutincase of split 25
SMI preparation mechanism 26
SMIimage generation ProCESSttt 27
SMIformat layout 28
STM32TrustedPackageCreator tool - available commands 29
Option bytes file example 31
SFl generation example usingan Elffile 31
SMIl generation example 33
SFlgeneration Tab 34
Firmware parsing example e 35
SFI successful generation in GUI mode example 37
SMigeneration Tab 38
SMI successful generationin GUImodeexample 40
Settings icon and Settings dialogbox 41
Log eXample e 42
Check SFlfile example. 43
HSM programming GUl inthe STPCtool 46
HSM programming GUl inthe STPCtool 47
Secure programming via STM32CubeProgrammer overview on STM32H7 devices 48
Secure programming via STM32CubeProgrammer overview on STM32L4 devices 48
Example of getcertificate command execution using UART interface 50
SFI programming by JTAG/SWD flow overview (monolithic SFI image example) 52
SMI programming by JTAG flow overview 53
Example of getcertificate command using JTAG 54
STPC GUI during SFlgeneration. e 56
Example of HSM programming using STPC GUI. 57
SFlinstall success using SWD connection (1) i, 59
SFl install success using SWD connection (2). ... i 60
STPC GUI during SMIgeneration 62
SMl install success viadebuginterface 64
OB display command showing that a PCROP zone was activated after SMI. 66

AN5054 Rev 2 ‘Yl

AN5054 List of figures

Figure 47. GUI of STPC during combined SFI-SMl generation. 68
Figure 48. Combined SFI-SMI programming success using debug connection 70
Figure 49. Option bytes after combined SFI-SMl install success. 72
IS73 AN5054 Rev 2 7175

General information

ANS5054

1.1

1.2

8/75

General information

Licensing information

STM32CubeProgrammer supports STM32 32-

processors.

Acronyms and abbreviations

bit devices based on Arm®@) Cortex®-M

arm

Table 1. List of abbreviations

Abbreviations Defnition
AES Advanced encryption standard
CLI Command line interface
CM Contract manufacturer
GCM Galois counter mode (one of the modes of AES)
GUI Graphical user interface
HSM Hardware security model
HW Hardware
MAC Message authentication code
MCU Microcontroller unit
OEM Original equipment manufacturer
PCROP Proprietary code read-out protection
Pl Position independent
ROP Read-out protection
RSS Root security service (secure)
SFI Secure firmware install
STPC STM32TrustedPackageCreator
SMI Secure modules install
STM32 ST family of 32-bit ARM based microcontrollers
SwW Software
X0 Execute only

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

AN5054 Rev 2

3

AN5054

How to generate an execute-only/position independent library for SMI preparation

2

2.1

2.2

3

How to generate an execute-only/position
independent library for SMI preparation

This section describes the requirements and procedures for the preparation of an execute-
only (XO) and position independent (PI) library using a partner toolchain

These kinds of libraries serve in encrypted SMI-module generation.

Requirements

SMI modules run in Execute Only (XO) areas, also called PCROP areas, and must be
relocatable to be linkable with final OEM application. Nevertheless, today, 3rd party
toolchains for STM32 devices (such as MDK-ARM for ARM, EWARM for IAR and GCC
based IDEs) do not allow both features to be activated at the same time. So, starting from
particular versions of 3rd party toolchains, the two features below are possible for SMI
support:

e Position independent support (code + rw data + ro data)
e No literal pool generation; needed for the PCROP feature.

Toolchains allowing SMI generation

Three toolchains allow SMI generation:
e EWARM

Version 7.42.0 allows execute-only (XO) and position independent (PI) library
generation for SMI support through the following options: “--ropi_cb” + “rwpi” + “--
no_literal_pool”.

— “—ropi_cb” + “rwpi” are needed for position independent support
— option “no_literal_pool” is needed for the PCROP feature.
e MDK-ARM

The customized version allows execute-only (XO) and position independent (P1) library
generation for SMI support through the following options: “-fropi-cb”, “frwpi”, “-
mexecute-only”.

— “fropi-cb” is needed for ro data independent position
— “frwpi” is needed for rw data independent position
— option “-mexecute-only” is needed for PCROP feature.

All library symbols being used in the final application should be added to the final
project in a .txt file format.

e GCC
The customized version of GCC based toolchains allows execute-only (XO) and
position independent (PI) library generation for SMI support through the following
options: “-masset”.

Option “-masset” has the same role as “--ropi --ropi_cb --rwpi --no_literal_pool” options
used for EWARM toolchain.

AN5054 Rev 2 9/75

How to generate an execute-only/position independent library for SMI preparation AN5054

2.3 Execute-only/position independent library scenario example
under EWARM

In order to generate an execute-only (XO) and position independent (PI) library a
customized version of the IAR toolchain must be used: version 7.42.0.
231 Relocatable library preparation steps

1. Open the project available in the “Example” folder: double click on
“Example/AdvEx.eww”.

The project architecture is illustrated in Figure 1.

Figure 1. IAR example project overview

File Edit View Project Simulator Tools Window Help

NeH@ &S| %2R0 o YA o PGB BURS| LD
Workspace ®

[app-Debug v]

Files £ B

B EAdvEx

I—Eﬂapp—Debug v

F— B memony_proxy.c
F— [posthuild bat
L Qtastc

3

10/75 AN5054 Rev 2

AN5054 How to generate an execute-only/position independent library for SMI preparation

The following steps update the old “lib.o” linked to the example application by making it
support both Pl and XO features:

2. Within Lib-Debug options -> C/C++ Compiler: go to tab “Extra Options” and add the
following line:
“--ropi_cb”

This action is illustrated in Figure 2.

Figure 2. Update compiler extra options

Workspace * app.icf postbuild.bat
app - Debug h flecho off
Files Lo ﬁ Th:i.s iz a simple.script that ecr
using the tocols in (%1).
B [AdvEx
I—L——_Iﬂapp—DEbug v EEM Make sure the old files are del
|) app.c N if exist %2.tmp |
| | D lib.o J del %2.tmp
!—L—_I OUUt » if exist %3 (
EfwLib - Debug del %3
libh.c]
b N
memDr.y_pery.c Options for nede "Lib" I_EE
— [posthuild bat by
test.c
=1 (7 Output !
[Lib.out Categony: i
General Options [Muilti-file Campilation
Static Analysis Diszard Unused Publics Le
Runtime Checking (h
| Diagnostics | MISRALC:2004 | MISRAC:1398 | Edra Options D -
Assembler
QOutput Converter
Custom Build
Build Actions Use command line options
Linker)) _
Debuager Command line options: (one per ling)
Simulator —ropi_ch -
Angel
CMSIS DAP
GOB Server
IAR. ROM-monitor
I-Het/TTAGet
JHink/J-Trace
T1 stellaris
Macraigor
PE micro
ROI i
STAINK
Third-Party Driver
TIXD5
QK.] ’ Caticel
|

3

AN5054 Rev 2 11/75

How to generate an execute-only/position independent library for SMI preparation

ANS5054

Within Lib-Debug options -> Linker: go to the “Extra Options” tab and add the following

lines:

--no_literal_pool

--ropi_cb
--loadable
--no_entry

This action is illustrated in Figure 3.
— “ropi_cb” is needed for Position Independent support
— the “no_entry” is a linker option that sets the entry point field to zero.

Figure 3. Linker extra options

Workspace

app.icf postbuild.bat

[app - Diebug

v fecho off

Files
B B 4chEx

2 @ app - Debug
| app.c

| Do

| 3 Output

mMemony_proxy.c
— [postbuild bat

[teste
=1 (7 Output

[Lib.out

G P, REM This is & simple script that cr
BEM using the tools in (%1).

v BEM Make sure the old files are dels
x if exist F2.tmp |
del £2.tmp
)
if exist %3 |
del &3
1

-
Options for node "Lib™

[|

Category:

General Options
Static Analysis
Runtime Checking
C/C++ Compiler
Assembler
Qutput Converter
Custom Build
Build Actions
Debugger
Simulator
Angel
CMSIS DAP
GDB Server
IAR ROM-monitor
I-et/TTAGjet
J-link/1-Trace
TI Stellaris
Macraigar
PE micro
RDI
STLINK
Third-Party Driver

TIXDS

Factory Settings =

| Output | List | #define | Disgnostics | Checksum | Bxra Options | [« [+ -

Use command line options

Command line options: (one per ling)

~no_literal_pool -
—opi_ch

—Joadable

—no_entry

[0K][Cancel]

—m—m—m—e——_—_TTTY€<€T€V€V€T?-éAAmY———————————————————

12/75

AN5054 Rev 2

3

AN5054 How to generate an execute-only/position independent library for SMI preparation

4. Within Lib-Debug options -> Build actions: in post build command line execute the

batch file “postbuild.bat” by inserting, if it is not already configured, the following
command line :

"$PROJ_DIRS\postbuild.bat" "$TOOLKIT_DIRS" "STARGET_PATHS"
"$PROJ_DIRS\1lib.o"

This action is illustrated in Figure 4.

Figure 4. Setting post-build option

wig

v rkbench p—
File Edit View Project Simulator Tools Window Help

DwH@ S b Balo o

-y el oerdh BURS| LY

Wiorkspgee
..
app - Debug X
Files By

B B AdvEx

-2 9 app - Debug v

| Bleppc

| B Dliko

| [Output

(=N]Lik - Cebug
—Blibe
— B memony_prose. ¢
— [postouild bat

L Btestc

Categary:

General Options
Static Analysis
Runtme Checking
C/C++Compier | || Buld Actions Configuration |
Assembler .)
Output Converter Pre-build command line:
Custom Build E

PR

:":E' *$PROJ_DIRS \postbuid bat" "STOOLKIT_DIRS" "STARGET_PATF
ebugger

Simulator

Angel

CMSIS DAP

GDB Server

TAR ROM-monitor
T4jet/ITAGjet
JHlink/3-Trace

TI Stellaris

Third-Party Driver
TIXDS

3

AN5054 Rev 2 13/75

How to generate an execute-only/position independent library for SMI preparation

ANS5054

The postbuild.bat file is used to perform some key actions:
e --wrap: adds veneers to library functions to initialize registers used for ropi code
. ‘iexe2obj.exe” transforms the elf into a linkable object file.

See Figure 5.

Figure 5. Postbuild batch file

[S U S

1

feche off
EEM This is a simple script that creates and ckject file (%3) from an image (%2)
EEM using the tools in (%1).

EEM Make sure the old files are deleted before we try to generate the new cnes
if exist LEmp |
del . TR
1
if exist
del

echo Do magic encryption here (copy is just a placeholder)
copy -LIp

M AL lill heve 2 prapper ceperzrod

SET _ WRAP=--wrap ToString --wrap setup memory --wrap Setup memoryd I

REM convert the image to a linkable cbject file using _Lib as prefix

REM and keeping all mode symbols Jgs%ts a bit with debugging)
“binYiexe2obj.exe —-prefix Lik ——keep mode symbols . Lo I

2.3.2

14/75

5. Rebuild the project “Lib”

Relocatable SMI module preparation steps

From the object file created, “lib.o”, generate the SMI relocatble module using the
STM32TrustedPackageCreator tool “libr.smi” and its corresponding data clear part
(libr_clear.o: corresponding to the input “ib.o” without the protected section code).

To execute this step, follow the steps explained for SMI generation under section
“Section 3.4.2: Steps for SMI generation(CLI)”.

3

AN5054 Rev 2

AN5054

How to generate an execute-only/position independent library for SMI preparation

2.3.3 Application execution Scenario
1. Flash the already generated SMI relocatable module to address 0x08080000 using
STM32Cube Programmer v0.4.0 or newer (see section 4 to perform this action).
2. Link the data clear part, ‘libr_clear.0”, generated from STM32TrustedPackageCreator
tool to the final IAR example application instead of the old previously used “ib.o”.
3. Exclude ‘lib.o” from the build (Figure 6).
Figure 6. How to exclude the “lib.o” file from build
Workspace =
[app—Dabug -
Files £ B
B B AdvEx
=1 app - Debug v
\ app.c -
| ED_--
LE-‘ bC_)lg[;ubtug v Options for node "app"‘ léj
lr‘nbr-.'j'nory aroy.c Exclude fram build
|— [postauild bat Category [Overide inherited setfings
B
[Likn.out
Custom Tool Corfiguration
II Filename extensions:
Command line
Qutput files {one per line):
Addtional input files (one per line):
[Run this tool before all other tools :
4. Rebuild the application.
5. Do these modifications in an example application ICF file:

3

a) Define region for PCROP block:
define symbol __ICFEDIT_region_PCROP_start__ = 0x08080000;
define symbol __ICFEDIT_region_PCROP_end__ = Ox0809FFFF;

define region PCROP_region = mem:[from __ ICFEDIT region_ PCROP_start
to__ ICFEDIT_region_PCROP_end__J;

b) Define PCROP region as 'noload’ (since it is already installed using
STM32CubeProgrammer so no need to load it again) :

"SMI": place noload in PCROP_region { ro code section __code _ Lib};

AN5054 Rev 2

15/75

How to generate an execute-only/position independent library for SMI preparation AN5054

These modifications are illustrated within the “app.icf” file, which is shown in Figure 5.

Figure 7. app.icf file

» Ll x

appic |
/*4##1CF44# Section handled by ICF editor, don't Touch! *#++/
/*-Editor annotation file-+/
/% IcfEditorFile= KIT_DIR$\config\ide\IcfEditor\cortex_vl_0.aml™ */
/¥-Specials-*/

ICFEDIT_region ROM start__ = 0x24000000;
ICFEDIT region ROM end = 0x24002FFF;
ICFEDIT region RAM start__ = 0x24003000;

ICFEDIT region RAM end__ 0x2407FFFE;

— ICFEDIT region PCROP start
—_ICFEDIT region PCROP end

__ICFEDIT_size_cstack__ = 0x2000;
CFEDIT size hesp = 0x2000;
F editor section. $EICF43S%/

0x10000000;
0X1000FFFF;

__region RAMI_start__
__region REMI end

; mem with size = 4G;
ROM_region

om __ICFEDIT region
ICFEDIT region

{ start__ to _ ICFEDIT region I
start__ to
o

m,

define block CSTACK with alignment

= L)
define block HEAP with alignment = {1

/*define block PCROE block with alignment = 256 {r0 code section _ code Lib}:*/

initialize by copy [readwrite };
do not initialize [section .noimit };

place at address mem: ICFEDIT intvec starc__ { readonly section .intvec };

place in ROM region { readonly }:
place in RAM_region | readurite,

block CSTACK, block EEAP };
place in RAMl region [section .stam };

l'Sl:’I": place noload in PCROP region | ro code section _ code Lib}: I

/*place in PCROP region [block ECROE_block }i*/

6. To check that example application executed successfully on the STM32H7 device:
a) check that address 0x08080000 was protected with PCROP.
b) You should see the expected “printf” packets in the terminal output.

3

16/75 AN5054 Rev 2

AN5054 Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator

3

3.1

3.2

Encrypted firmware(SFl)/module(SMI) preparation
using STM32TrustedPackageCreator

The STM32TrustedPackageCreator tool allows the generation of SFI and SMI images for
STM32H7 devices. It is available in both CLI and GUI modes free of charge from
www.st.com.

System requirements

Using the STM32TrustedPackageCreator tool for SFI and SMI image generation requires a
PC running on either Windows 7 or Ubuntu 14 in both 32-bit and 64-bit versions.

SFI generation process

The SFI format is an encryption format for Firmware created by STMicroelectronics that
transforms firmware (in Elf, Hex, Bin or Srec formats) into encrypted and authenticated
firmware in SFI format using AES-GCM algorithm with a 128-bit key. The SFI preparation
process used in the STM32TrustedPackageCreator tool is described in Figure 8.

Figure 8. SFI preparation mechanism

OEM FW Cleartext

01101
OEMFW p1010

STM32TrustedPackageCreator

+ 10101

Option Byted 1010 Encrypted SFl image file
Enc MAC ENC
Nonce — 01101

OEMFW gi510
+ 10%n1

OEM Option Bytesq r

FW Key m—
P T ———

3

AN5054 Rev 2 17/75

Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

The SFI generation steps as currently implemented in the tool are described in Figure 9.

Figure 9. SFl image process generation

Read Firmware files

Supporte:
formats?

Parse firmware files

Perform AES-GCM
encryption

Create SFlfile

Before performing AES-GCM to encrypt an area, we calculate the Initialization Vector (IV)
as:

IV = nonce + Area Index.

The tool partitions the firmware image into several encrypted parts corresponding to
different memory areas.

These encrypted parts appended to their corresponding descriptors (the unencrypted
descriptive header generated by the tool) are called areas.

3

18/75 AN5054 Rev 2

AN5054 Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator

These areas can be of different types:

e ‘F’for a firmware area (a regular segment in the input firmware)

e ‘M’ for a module area (used in SFI-SMI combined-image generation, and corresponds
to input from an SMI module)

e ‘C’ for a configuration area (used for option-byte configuration)

o ‘P’ for a“pause” area
. ‘R’ for a “resume area.

Areas ‘P’ and ‘R’ do not represent a real firmware area, but are created when an SFl image
is split into several parts, which is the case when the global size of the SFI image exceeds
the allowed RAM size predefined by the user during the SFI image creation.

The STM32TrustedPackageCreator overview below (Figure 12) shows the RAM size input
for SFI image generation, and also the ‘Continuation token address’ input, which is used by
SFI multi install to store states in Flash memory during SFI programming.

Figure 10. RAM size and CT address inputs used for SFI multi install

o e]

{ 1, 5TM32 Trusted Package Creator

File Edit Options

Firmware files

Help

Encryption key file

M3ZTrustedPackageCreatorInput/SFI good /test_firmware_key.bin m
Nonce file

fprojects/STM3ZTrustedPackageCreatorInput/SFI/good nonce. bin m
Option bytes file

‘projects/SFMI-PreparationToolv, 2.0_test1/Input/SFI good/ob.cav m
SMI files (Only for combined case)
] [aad]

Remove

Image version

24 |5
RAM size Continuation token address
Output SFI file

C:/projects/STM32TrustedPackageCreator foutputfout.sfi Select folder

‘,’ life.augmented

Firmware information SFI information

Overview

File name

Size

Protocol version

Segments

Index Type

Size

Address

3

AN5054 Rev 2

19/75

Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

Figure 11 (below) shows the specifics of these new areas compared to a regular SFI area.

Figure 11. 'P' and ‘R’ area specifics versus a regular SFl area

Area format

Type ('F, ‘M, 'C’)
Version

Index

Size

Address

Total Nb of areas
Tag

Encrypted Area
Content

- Firmware

- Module

- Configuration

New Pause Area

New Resume Area

‘ Type ‘P’ | ‘ Type R’ ‘
Version Version
Index Index
Size = 0 | Size = 0 |

Address of CT

| Address of CT |

Total Nb of areas
Tag

Total Nb of areas
Tag

Note:

20/75

A top-level image header is generated then authenticated, for this the tool performs AES-
GCM with authentication only (without encryption), using the SFl image header as an AAD,

and the nonce as IV.

An authentication tag is generated as output.

To prepare an SFI image from multiple firmware files you have to make sure that there is no
overlap between their segments, otherwise an error message appears (Figure 12).

AN5054 Rev 2

3

AN5054 Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator

Figure 12. Error message when firmware files with address overlaps used

|1

{4}, STM32 Trusted Package Creator [=@] =

File Edit Options Help ‘,’ i
lle.

Firmware files - = - -

Firmware information SFI information
|| tests.axf - Overview
Remove

File name

Encryption key file

Type
- (S

Overlap between segments, Unable to merge firmware files

M32TrustedPackageCreator Input/SFI good test_firmware_key.bin

Nonce file

fprojects/STM32TrustedPackageCreator,

Address
Option bytes file

‘projects/SFMI-PreparationToolv0, 2.0_

SMI files (Only for combined case)
Remove
Image version
24 |5
RAM size Continuation token address
Output SFI file
C:/projects/STM32TrustedPackageCreator foutputfout.sfi Select folder

3

AN5054 Rev 2 21/75

Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

For combined SFI-SMI images, there is also an overlap check between firmware and
module areas. If the check fails, an error message appears (Figure 13).

Figure 13. Error message when SMI address overlaps with a firmware area address

SFI SMI

Firmware files

Firmware information SFI information

Remove ToEn=s
Encryption key file File name STM32F4-DISCO0.smi
\aration_tool_v0.2.0_windows/bin/Input/SFLjtest_firmwd (¢ Error - : ﬂ
p— B
Nonce file / 1

Overlap between SFI areas

1.0/SFMIPreparation_tool_v0. 2.0_windows,bin/Input,S

“ Size Address
Option bytes file

262144 B 08000000

‘0. 2.0/SFMIPreparation_tool_v0. 2.0_windows /bin/Inpu

SMI files (Only for combined case)

Ll m

Image version

23 |5
Qutput SFI file

ol _w0.2.0/SFMIPreparation_tool_w0,2.0_windows/binfoutputfout.sfi FEE a5 =0

22/75 AN5054 Rev 2

3

AN5054 Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator

Also, all SFI areas must be located in Flash memory, otherwise the generation fails and you
see the following error message (Figure 14).

Figure 14. Error message when a SFl area address is not located in Flash memory

{45 5TM32 Trusted Package Creator

File Edit

Firmware files

Options

|| tests.axf

Encryption key file

Nonce file

Jfprojects/STM32TrustedPackageCreator /Input/SF

Option bytes file

‘projects/SFMI-PreparationToolvd, 2.0_test1/Inpu

SMI files (Only for combined case)

Help

Remove

M32TrustedPackageCreatorInput/SFIfgood/ /test_firmware_key.bin m

Firmware information SFI information

|1

(=o[@] = |

"I life..augmented

Overview
File name out.sfi
Size 266.656 KB

Protocol version 01

S

Error: One or more SFI areas are not located in Flash memory

L

Image version

24 =

RAM size

Output SFI file

Continuation token address

C:/projects/5TM32TrustedPackageCreator foutput/out. sfi

Remove

Select folder

4 Configuration

368

Address
0x8000000

(0x8030000

(0x8000000

00

3

AN5054 Rev 2

23/75

Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

The final output from this generation process is a single file, which is the encrypted and
authenticated firmware in “sfi” format. The SFI format layout is described in Figure 15.

Figure 15. SFI format layout

~ SFI signed header

“F" magic
Version of image
Area order number
Area size in bytes
Area Dest address ~— Firmware area(s)
Total number of areas
Area Tag
Area

Encrypted data blob

“M" magic

Version of image
Area order number

Area size in bytes
Area Dest address ~ Module area(s)
Total bumber of areas (combined case)
Area tag
Area

Encrypted data blob
“C" magic
Version of image
Area order number (TotalN)
Area size in bytes
Area Dest address (0) ~ Option bytes area
Total number of areas
Area Tag

Option bytes config

structure

3

2475 AN5054 Rev 2

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

When the SFI image is split during generation, areas ‘P’ and ‘R’ appear in the SFl image
layout, as in the example below Figure 16.

Figure 16. SFl image layout in case of split

Unsplit Image Split Image

Image Header Image Header

Area 1 ‘F Area1‘F

Area 2 ‘F Area 2 ‘F’

Area 3 ‘P’ause

Area 3 'F Area 4 ‘R’'esume

Area 4 ‘M’ Area 5 ‘F’
Area 5 'C

Area6 ‘M’
Area 7 'C

3

AN5054 Rev 2 25/75

Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

3.3 SMI generation process

SMl is a format created by STMicroelectronics that aims to protect partners’ Software (SW:

software modules and libraries).

The SMI preparation process is described below (Figure 17).

Figure 17. SMI preparation mechanism

Library Cleartext

f ! STM32TrustedPackageCreator

_____ Nonce & e e
............... Hod.sml
:Module - —

‘Enc Key £ e Q v,
AP Encrypted SMI

: : image file

26/75 AN5054 Rev 2

3

AN5054 Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator

The SMI generation steps as currently implemented in the tool are described in the diagram
below (Figure 18).

Figure 18. SMI image generation process
| Read ELFfile

Farse the ELF file

arsing
successfull

Extract PCROP
section

v

Perform AES-GCM
encryption

v

Make ShI structure

Fail

Create SMI file

The AES-GCM encryption is performed using the following inputs:
e 128-bit AES encryption key

e The input nonce as Initialization Vector (IV)

e The security version as Additional Authenticated Data (AAD).

3

AN5054 Rev 2 27175

Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

Before SMI image creation, PCROP checks are performed on the SMI image validity:

e A PCROP section must be aligned on a Flash word (256 bits), otherwise a warning is
shown

e The section’s size must be at least 2 Flash words (512 bits), otherwise a warning is
shown

e The section must end on a Flash word boundary (a 256-bit word), otherwise a warning
is shown

o |[f the start address of the section immediately following the PCROP section overlaps
the last Flash word of the PCROP section (after performing the PCROP alignment
constraint), the generation fails and an error message appears.

If everything is OK, tow outputs are created under the specified path:

e the SMI image (Figure 19 represents the SMI format layout)

e the library data part.

Figure 19. SMI format layout

- SMI signed
header
Encrypted protected
module code SN Encoypeed
section

3

28/75 AN5054 Rev 2

AN5054 Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator

3.4

3

STM32TrustedPackageCreator tool in the command line

interface

This section describes how to use the STM32TrustedPackageCreator tool from the
command line interface in order to generate SFl and SMI images.

The available commands are listed in Figure 20.

Figure 20. STM32TrustedPackageCreator tool - available commands

EFI preparation options
—-=fi, —sfi

—fir, ——f irmuare
{Firm_File>
[{Address>]

k. —key
{Hey_Filex>

n. ——nonce
{Monce_File>

—u, ——yer
<Image_lersion>

—obh, ——obfile
<{CSU_File>

-m, ——module
{SMI_File>
[{Address>]

s, ——pransize
{Size>

—ct., —token
{Address>

-0, ——outfile
{Output_File>

SMI preparation options
—=mi, ——smi.

—-elf. —elfile
{ELF_File>
-z, ——zec
{Section>
- —key
{Hey_File>
——nonce
{MNonce_File>
sU, ——gyuep
{8U_File>
——outfile
{Output_FileX
C. ——clear
{Clear_File>

Generate SFI image.

You also need to provide the information listed helow
Add an input firmware file

Supported firmuware filesz are ELF HEX SREC BIN
Only in case of BIN input file <(in any hase?
AES-GCH encryption key

Bin file, its zdi=e must he 16 hytes

AES-GCH nonce

Bin file. its size must he 12 hytes

Image version

Its value must he in <B..255> {in any base)
Option bytes configuration file

CS5U file with 9 values

Add an SMI file <optional for combined case?
SMI file

Only in case of a relocatabhle SMI <with Address = BA>
define available ram size (for multi-—image?
Size in bytes

Continuation token address (for multi—image>
Address

Generated SFI file

8FI file to be created

Generate SMI image

¥You alse need to provide the information listed below
Input ELF file

ELF file

Zection to he encrypted

Section name in the ELf file
AES-GCH encryption key

Bin file, its sdi=e must he 16 hytes
AES-GCH nonce

Bin file. its sdize must he 12 hytes
Security version

Its size must he 16 hytes

Generated SMI file

8MI file to be created

Clear ELF file

Clear ELF file to be generated

ANS5054 Rev 2 29/75

Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

3.4.1

30/75

Steps for SFI generation (CLI)

In order to generate an SFl image in CLI mode, the user must use the “-sfi, --sfi” command
followed by the appropriate inputs.

Inputs for “sfi” command are:

-fir, --firmware

Description: adds an input firmware file (supported formats are Bin, Hex,
Srec and ELF). This option can be used more than once in order to add multiple

firmware files.

Syntax: -fir <Firmware_file> [<Address>]

<Firmware_ file> :Firmware file.
[<address>] :Used only for binary firmwares.
-k, --key

Description: sets the AES-GCM encryption key.
Syntax: -k <Key_file>
<Key _file> : A 16 bytes binary file.
-n, --nonce
Description: sets the AES-GCM nonce.
Syntax: -n <Nonce_file>
<Nonce _file> A 12-byte binary file.
-V, --ver
Description: sets the image version.
Syntax: -v <Image_version>
<Image_version> :A value between 0 and 255 in any base.
-ob, --obfile

Description: provides an option bytes configuration file.

The option bytes file field is only mandatory for SFI applications (first install) to allow
option bytes programming, otherwise it is optional.

Only CSV (Comma Separated Value) file format is supported as input for this field, it
is composed from two vectors: register name and register value respectively.

Example: for STM32H7xx devices, 9 option bytes registers must be configured, which
corresponds to a total of 9 lines in the csv file (Figure 21).

Syntax: -ob <csv_file>

<csv_file >: A csv file with 9 values.

3

AN5054 Rev 2

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

3

Figure 21. Option bytes file example

[=| FIR_ob csv E4

1 FOPTSE PRG,O0x13FEQOQOFE
2 FPEAR PRG &, Ox8806€0800
: FPRAR FRG B, OxB0000FFF
4 FSCLR PRG R, Ox80000FFF
5 FSCLR PRG B, Ox80000FFF
& FWPSN_PRG_R, Ox000000FF
7 FWPSN_PRG_E, Ox000000FF
= FBOOTT_PRG,O0x1FF10800
S RFU,0=x10000810

-m, --module

Description: adds an input SMI file.
This option can be used more than once in order to add multiple SMI files.
This is optional (used only for combined SFI-SMI).

Syntax: -m <SMI_file>

<SMI_file > : SMI file.[<Address>] : Address is provided only for relocatable SMI.
-rs, --ramsize

Description: define the available ram size (in case of SFI multi-install)
Syntax: -rs <Size>

< Size > : RAM available size in bytes

-ct, --token

Description: continuation token address (in case of SFI multi-install)
Syntax: -ct <Address>

< Address > : continuation token Flash address

-0, --outfile

Description: sets the output SFI file to be created.

Syntax: -0 <out_file>

<out_file> : the SF file to be generated (must have the “.sfi’
extension).

Example of SFI generation command using an ELF file:

STM32TrustPackageCreator_ CLI.exe -sfi -fir tests.axf -k
test_firmware_key.bin -n nonce.bin -ob ob.csv -v 23 -o out.sfi

The result of previous command is shown in Figure 22.

Figure 22. SFI generation example using an EIf file

C:“Program Files“8TMicroelectronics*STHM32Cube~5THIZCubeProgrammer>~bin>STH32Trust
edPackageCreator_CLI.exe —=s=fi —fir testsz_axf —k test_firmuare key._.bin —n nonce_h|

in —ob oh.csv —v 23 -0 out.sfi
SFI generation SUCCES

AN5054 Rev 2 31/75

Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

3.4.2

32/75

Steps for SMI generation(CLI)

In order to generate an SMI image in CLI mode, the user must use the “-smi, --smi”
command followed by the appropriate inputs.

Inputs for the “smi” command are:
-elf, --elfile
Description: sets the input ELF file (only elf format is supported).
Syntax: -elf <ELF_file>

<ELF_file> : ELF file. An ELF file can have any of the extensions: “.elf’, “.axf”,

.0”, “.s0”,“.out”.

-s, --sec

Description: sets the name of the section to be encrypted.

Syntax: -s <section_name>

<section_name> : Section name.

-k, --key

Description: sets the AES-GCM encryption key.

Syntax: -k <Key_file>

<Key _file> : A 16-byte binary file.

-n, --nonce

Description: sets the AES-GCM nonce.

Syntax: -n <Nonce_file>
<Nonce_file> : A 12-byte binary file.

-sv, --sver

Description: sets the security version file

The security version file is used to make the SMI image under preparation compatible with a
given RSS version, since it contains a corresponding identifying code (almost the HASH of
the RSS).

Syntax: -sv <SV_file>
<SV_file> : A 16-byte file.
-0, --ouftfile
Description: Sets the SMI file to be created as output
Syntax: -0 <out_file>
<out_file> : SMIlfile to be generated, must have the .smi extension.
-c, --clear

Description: Sets the clear ELF file to be created as output corresponding to the data
part of the input file

Syntax: -¢ <ELF_file>

3

AN5054 Rev 2

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

<ELF_file> : Clear ELF file to be generated.
Example of SMI generation command:
STM32TrustPackageCreator_CLI.exe —smi -elf FIR_module.axf -
S “ER_PCROP” -k test_firmware_key.bin -n nonce.bin -sv
svFile -0 test.smi -c clear.smi

Figure 23. SMI generation example

C=“8FHIPreparation Tool vB.2_ B>EFHIPreparationTool CLI -=mi —elf FIR_module.axf
-5 "ER_PCROP" -k test_firmware_key.bin -n nonce.bin —-sv svFile —o test.smi —c cl

-axf
ection does not end on a Flash word boundary
o

3

AN5054 Rev 2 33/75

Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

3.5 Using the STM32TrustedPackageCreator tool graphical user
interface

The STPC is also available in graphical mode, this section describes its use. The
STM32TrustedPackageCreator tool GUI presents two tabs, one for SFI generation and one
for SMI generation.

3.51 SFI generation using STPC in GUI mode

Figure 23 shows the graphical user interface tab corresponding to SFI generation.

Figure 24. SFI generation Tab
£, STM32 Trusted Package Creator (E=Rl N

File Edit Options Help ‘,’ i

SF1 SMI SFU HSM
e ﬁles
C |
Overview
Remove
File name tests.axf
Encryption key file
Type ELF
M3ZTrustedPackageCreator [Input/SFI/good/test_firmware_key.bin m
Size 815,887 KB
Nonce file
Segments
fprojects/STM32TrustedPackageCreator Input/SFIfgood fnonce. bin m
Index Size Address
lucoby i 1 844 B 0xB000000
projects/SFMI-PreparationToolvO, 2.0_test1/Inputy/5FI /good ob. csv m 2 0884 B 0x8030000
SMI files (Only for combined case)
[} STM32F4-DISCO0.5mi [Add | i
Remove
Image version
24 =
RAM size Continuation token address
Qutput SFI file
C:/projects/STM3ZTrustedPackageCreator foutput fout.sfi

To generate an SFl image successfully from the supported input firmwares formats, the user
must fill in the interface fields with valid values.

3

34/75 AN5054 Rev 2

AN5054 Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator

SFI GUI tab fields

e Firmwares files:
The user needs to add the input firmware files with the “Add” button.

If the file is valid, it is appended to the “input firmware files® list, otherwise an error
message box appears notifying the user that either the file could not be opened, or the
file is not valid.

Clicking on “input firmware file* causes information related information to appear in the
“Firmware information” section (Figure 25).

Figure 25. Firmware parsing example

{4}, STM32 Trusted Package Creator =B % |
File Edit Options Help ‘
lile.augrmented
i ﬁles
Overview
File name | tests.axf el
Encryption key file
- Type ELF
Iﬂ_Package_Creamr_v1.0.ZﬂnputfsFIfgnndftest_ﬁrmware_key.bln e
Size 815,887 KB -
Nonce file _I
Segments
I'M32_Trushed_Padcage_Creahor_vl.O.anuthFIfgoodfnonce.bin m
We}(Size Address
i 1 8448 08000000
32_Trusted_Package_Creator_v1.0. FI, dfob. m
I,.’STM _Trusted_Package_Creator_v1.0.2/Input/5FI/good fob.csv 2 ETAE ETETT
SMI files (Only for combined case)
Remove
Image version
|12 33
RAM size I Continuation token address I
Qutput SFI file
lIoads,.’STM32_Trusted_Pad<age_Creahor_v1.0.2£oun:|ut,|fout_hohol.
Kys AN5054 Rev 2 35/75

Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

Note:

36/75

Encryption key and nonce file:

The encryption key and nonce file can be selected by entering their paths (absolute or
relative), or by selecting them with the “Open” button. Notice that sizes must be
respected (16 bytes for the key and 12 bytes for nonce).

Option bytes file :

The option bytes file can be selected the same way as the encryption key and nonce.
Only csv files are supported.

SMI files:

SMI files can be added the same way as the firmware files. Selecting a file causes
related information to appear in the “Firmware information” section.

Image version :

Choose the image version value of the SFI under generation within this interval :
[0..255].

Output file:

Sets the folder path in which the SFl image is to be created. This can be done by
entering the folder path (absolute or relative) or by using the “Select folder” button.

By using the “Select folder” button, the name “out.sfi” is automatically suggested, you can
keep this or change it.

‘Generate SFI’ button:
Once all fields are filled in properly, the “Generate SFI” button becomes enabled. The
user can generate the SFl file by a single click on it.

If everything goes well, a message box indicating successful generation appears
(Figure 26) and information about the generated SFl file is displayed in the SFI
information section.

3

AN5054 Rev 2

AN5054 Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator

Figure 26. SFI successful generation in GUl mode example

{25 5TM32 Trusted Package Creator

File Edit Options

Help

Firmware files

’

Firmware information SFI information

Nonce file

I'M32_Trushed_Pad<age_Creahor_v 1.0.2{Input/SF1/good /noni

. SHI successfully created

k. * 4

Option bytes file

IISTM32_Trushed_Pad<age_Creahor_v 1.0.2{Input/SF1/good)

SMI files (Only for combined case)

h “—— 3 ‘
ware

Overview
Remove
File name out_totel sfi |
Encryption key file
Size 10627 KB
Iﬂ_Pad(age_Creator_vl.O.Zﬂnput,.’SFIIgoodfhest_ﬁrmware_ke i F
{35 Success szl | (o1 B

Iype Size Address
I‘nware a44B 0x8000000
9384 B 0x8030000
3 Configuration El:) 00

Remove

Image version

[z =

RAM size I Continuation token address I

Output SFI file

lIoads{STMSZ_Trushed_Pad(age_Creator_v 1.0.2foutputfout_toto1, FEEEEETLES

|1

[=o@] = |

‘ " lile.augmented

3

AN5054 Rev 2

37175

Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

3.5.2 SMI generation using STPC in GUIl mode

Figure 27 shows the graphical user interface tab corresponding to SMI generation.

Figure 27. SMI generation Tab

r ™Y
{3}, STM32 Trusted Package Creator = (= g

File Edit Options Help ‘ , I S
e,

[__oven_ NE O
Encryption key file File name
ELF Machine
Nonce file i
Size LI
| [__oven RIS
Security version file Index Name Type Size |
i
Section to encrypt
Output SMI file
Select folder
Output clear ELF file
K I »
Select folder —I

To generate an SMI image successfully from an EIf file, the user must fill in the interface
fields with valid values.

3

38/75 AN5054 Rev 2

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

Note:

3

SMI GUI tab fields

Elf file:
In this case the input file can be only an elf file.

If the file is valid, information is displayed in the “ELF information” tab, otherwise an
error message box appears notifying the user that either the file could not be opened or
the file is not valid.

Encryption key and nonce file:

As for SFI, the encryption key and nonce file can be selected in the same way as the
Elf file. Notice that sizes must be respected (16 bytes for the key and 12 bytes for
nonce file).

Security version file:

The security version file is used for the same purpose as explained in the CLI section.
The security version file size must be 16 bytes.

Section:

This is a section list that can be used to select the name of the section to be encrypted.
output files:

Sets the folder path into which the SMI image and its clear part are to be created. This
can be done by entering the folder path (absolute or relative) or by using the “Select
folder” button.

For both output fields, when using the “Select folder” button, a name is suggested
automatically, you can keep this or change it.

‘Generate SMI’ button:
When all fields are filled in properly the ‘Generate SMI’ button is enabled, and the user
can generate the SMI file and its corresponding clear data part by a single click on it.

A message box informing the user that generation was successful must appear
(Figure 28), with additional information about the generated SMI file displayed into the
“SMI information” section. In the case of any invalid input data, an error message box
appears instead.

AN5054 Rev 2 39/75

Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

Figure 28. SMI successful generation in GUI mode example

{25 5TM32 Trusted Package Creator = B &

File Edit Options Help "I P
lle.

ELF file ELF information SMI information

kkage_Creahor_v1.0.Zﬂnput,.’SMIIgoodfMDK—ARM]FIR_moduIe.axf m Overview

Encryption key file Original file name | FIR_module.smi

LPad(age_Creahor_v1.0.Zﬂnput,.’SMIIgoodfhest_ﬁrmware_key.bin Dpe Number of files :

£}, Information s3] 164844 k8

(0x8080000 LI

Nonce file

SMI successfully created

lVISZ_Trushed_Pad(age_Creahor_v 1.0.2{Input/SMIfgood /i

Security version file

IsJSTMSZ_Trushed_Pad@ge_Creator_v 1.0.2/Input/SMIgood fsvFile

Section to encrypt
IER_PCROP = I

Output SMI file

ITSTM32_Trushed_Pad<age_Creahor_v 1.0.2foutput/FIR_module.smi B2 S80S

Output clear ELF file

h_Trusted_Pad(age_Creamr_v1.U.Zfoun:luthIR_moduIe_dear.axf

Generate SMI

3.5.3 Settings

The STPC allows generation to be performed respecting some user-defined settings. The
settings dialog can be displayed by clicking the settings icon (see Figure 29) in the tool bar
or in the menu bar by choosing: Options -> settings.

3

40/75 AN5054 Rev 2

AN5054 Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator

Figure 29. Settings icon and Settings dialog box
{5 STM32 Trusted Package Creator oo) |

File Edit Options Help ‘ , ’ T
lle.

SFI SMI SFU

Firmware files Firmware information SFI information

i

Overview

File name tests.axf
Encryption key file

Type ELF
M3ZTrustedPackageCreator,/Input/SFIfgood/test_firmware_key.bin
Size 815887 KB
Nonce file
Segments
Jfprojects [STM32ZTrustedPackageCreator /Input/SFI/good nonce. bin
Index Size Address
ntielivies e 1 844 B 08000000
‘projects/SFMI-PreparationToolv, 2.0_test1/Input/SFI /good job. cav 2 9884 B 0+8030000

SMI files (Only for combined case)

|| STM32F4-DISCO0.5mi

7 F
g g
i i

Image version

24 5

RAM size Continuation token address
Qutput SFI file
C:/projects/STM32TrustedPackageCreator foutputfout.sfi Select folder

Settings can be performed on:
e Padding byte:

When parsing Hex and Srec files, padding can be added to fill gaps between close
segments in order to merge them and reduce the number of segments. The user might
choose to perform padding either with OxFF (default value) or 0x00.

e Settings file:

When checked, a “settings.ini” file is generated in the executable folder. It saves the
application state: window size and fields contents.

e Logfile:
When checked, a log file is generated in the selected path.

3

AN5054 Rev 2 41/75

Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

3.54 Log generation

A log can be visualized by clicking the “log” icon in the tool bar or menu bar: Options-> log.

Figure 30 shows a log example:

Figure 30. Log example

{23 STM32 Trusted Package Creator

log icon r
'I life.augmented

m
09:15:06:674 SFI preparation started

ELF file 09:15:06: 788 Area 1 prepared with size 844 : firmware area I SMI information
09:15:06: 788 Area 2 prepared with size 9884 : firmware area

09:15:06: 788 Area 3 prepared with size 36 : option bytes area
irkage_Creator_v1.0.2/Input/SMI/good/MDH | | 09:15:06:788 ST header prepared

e 09:15:06: 788 SFI preparation finished

'7:531 SMI preparation started

18
Encryption key file 10:18:27:531 1 5MI to prepare mi
10:18:27:532 SMI data prepared with size 1640
10:18:27:532 SMI header prepared
10:18:27:532 SMI preparation finished

LPad(age_Creahor_v 1.0.2/Input/SMI good,

Nonce file

lVISZ_Trushed_Pad(age_Creator_v 1.0.2/Inp

Security version file

IsfSTMSZ_Trushed_Pad(age_Creator_v1.0.2 |

Section to encrypt

ER_PCROP |

Output SMI file

l"STMSZ_Trushed_Pad(age_Creamr_v1.0.2} i

Output clear ELF file

l2_Tru5hed_Pad<age_Creahor_v1.0.Zfouu:lut,.fFIR_moduIe_dear.axf

Generate SMI

42/75 AN5054 Rev 2

3

AN5054 Encrypted firmware(SFl)/module(SMI) preparation using STM32TrustedPackageCreator

3.5.5 SFI and SMil file checking function

This function checks the validity and information parsing of an SFI or SMI file.

It can be accessed by clicking the Check SFI/SMI button in the tool bar or the menu bar:
File -> Check SFI/SMI.

Figure 31 shows a check SFI example:

Figure 31. Check SFl file example

Firmware identifier HSM information
. -
| Firmware ID
Max counter
Encryption key file HSM status ﬂ
| |
|
Monce file
|
I Maximum counter
0 EI:
[Set HSM to operational state (HSM will be locked)
Program HSM

3

AN5054 Rev 2 43/75

Encrypted firmware(SFl)/module(SMI) programming using STM32CubeProgrammer AN5054

4

4.1

41.1

41.2

44/75

Encrypted firmware(SFl)/module(SMI) programming
using STM32CubeProgrammer

STM32CubeProgrammer is a tool for programming STM32 devices through UART, USB,
SPI, CAN, I2C, JTAG and SWD interfaces. So far, programming via JTAG/SWD is only
supported with ST-LINK probe.

The STM32CubeProgrammer tool currently also supports secure programming of SFl and
SMI images using UART, USB, SPI, JTAG/SWD interfaces.

The tool is currently available only in CLI mode, it is available free of charge from
www.st.com.

Chip certificate authenticity check and license mechanism

The SFI solution was implemented to provide a practical level of IP protection chain from the
firmware development up to Flashing the device, and to attain this objective, security assets
are used, specifically device authentication and license mechanisms.

Device authentication

The device authentication is guaranteed by the device’s own key.

In fact, a certificate is related to the device’s public key and is used to authenticate this
public key in an asymmetric transfer: the certificate is the public key signed by a Certificate
Authority (CA) private key. (This CA is considered as fully trusted).

This asset is used to counteract usurpation by any attacker who could substitute the public
key with their own key.

License mechanism

One important secure Flashing feature is the ability of the firmware provider to control the
number of chips that can be programmed. This is where the concept of licenses comes in to
play. The license is an encrypted version of the firmware key, unique to each device and
session. It is computed by a derivation function from the device’s own key and a random
number chosen from each session (the nonce).

Using this license mechanism the OEM is able to count each install for a given piece of
firmware, since each license is specific to a unique chip, identified by its public key.

Licenses mechanism general scheme

When a firmware provider wants to distribute new firmware, they generate a firmware key
and use it to encrypt the firmware.

When a customer wants to download the firmware to a chip, they send a chip identifier to
the provider server, HSM or any provider license generator tool, which returns a license for
the identified chip. The license contains the encrypted firmware key, and only this chip can
decrypt it.

3

AN5054 Rev 2

AN5054

Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer

3

License distribution

There are many possible ways for the firmware provider to generate and distribute licenses:

e Server based: an internet server can be set up, and when a customer needs to Flash
the firmware on to a chip, they connect to the server which generates a license for this
chip.

e HSM based: Hardware Security Modules can be built, one of which is installed on the
programming house production line.

e Licenses can be generated in advance (but the firmware provider must know which
chips to generate licenses for).

There is no STMicroelectronics secret involved in license generation, so each firmware
provider is free to choose their preferred method.

For ST we offer an SFI solution based on SmartCards HSM as a license distribution tool for
use in programming houses.

HSM programming by OEM for License distribution

When an OEM needs to deliver an HSM to a programming house for deployment as a
license generation tool for programming of relevant STM32 devices, some customization of
the HSM must first be performed.

The HSM needs to be programmed with all the data needed for the license scheme
deployment. In the production line, a dedicated API is available for each piece of data to be
programmed in the HSM.

These data are:

e The counter: the counter is set to a maximum value that corresponds to the maximum
number of licenses that could be delivered by the HSM. It aims to prevent over-
programming.

It is decremented with each license delivered by the HSM.
No more licenses are delivered by the HSM once the counter is equal to zero.

The maximum counter value must not exceed a maximum predefined value, which is
16 Ku for HSM version 1.0.

e The Firmware key: this key is 32 bytes and is composed of two fields, the initialization
vector (1V) (first field) and the key (last field) that were used to AES128-GCM encrypt
the firmware.

Both fields are 16 bytes long, but the last 4 bytes of the IV must be zero (only 96 bits of
IV are used in the AES128-GCM algorithm).

Both fields must remain secret; that's why there are encrypted before being sent to the
chip.
The key and IV remains the same for all licenses for a given piece of firmware.

However, they must be different for different firmware or different versions of the same
firmware.

e The Firmware identifier: allows the correct HSM to be identified for a given firmware.

The HSM must be in “OPERATIONAL STATE” (locked) when shipped by the OEM to
guarantee his data confidentiality and privacy.

ST provides the tools needed to support SFI via HSM. In fact, HSM programming is
supported by the STM32TrustedPackageCreator tool. Figure 32 shows the GUI for HSM
programming in STPC tool.

AN5054 Rev 2 45/75

Encrypted firmware(SFl)/module(SMI) programming using STM32CubeProgrammer AN5054

Figure 32. HSM programming GUI in the STPC tool

= 0O X

m ackage Ci

‘,’ life.augmented

Firmware identifier HSM information
. -
[Firrnware ID
Max counter
Encryption key file HSM status j
|
|
Nonce file
|
| Maximum counter
0 El:

" Set HSM to operational state (HSM will be locked)

During SFl install, STM32CubeProgrammer communicates with the device to get the chip
certificate, upload it into the HSM to request the license. Once the license is generated by
the HSM, it gives it back to the STM32 device. This process is illustrated in Figure 33.

3

46/75 AN5054 Rev 2

AN5054 Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer

Figure 33. HSM programming GUI in the STPC tool

Uritrusted
manufacturer

- SFI/SMI/SSP
Programming

— A

This Chip Chip

FW ID

Bl todecryp
3 FW

GetFirmwareldentifier

Generatel icense
GetCounte GetCardLife
HSMAPI |m—p ! a CrakSon

rHSM ‘ 7 ’ Chip certificate + Live session ID - hardcoded 0 T 3

R License for
BL ext digest min | i
version

1
1
1
1
1
1
: | Type | [ST Public Key] | PrOdI.I(Et ID | {
1
1
1
1
1

4.2

4.2.1

Note:

3

For further details, please refer to the SFI-HSM specification document and the SFI-HSM
user manual (UM2428) [2].

Secure programming using bootloader interface

Secure firmware installation using Bootloader interface flow

The production equipment on the OEM-CM production line needs to be equipped with a
Flashing Tool (FT) supporting the programming of SFl images. The Flashing tool to be used
on OEM-CM production line is STM32CubeProgrammer, which is given the data blob
prepared by the STPC, containing the image header and the encrypted image data blob.

The SFl install is performed successfully only if a valid license is given to the Flashing tool.

STM32CubeProgrammer supports secure firmware install for STM32H753xI and
STM32L451CE specific part number so far.

For STM32H753xI devices, one important outcome is that RSS fully manages the
installation (no secure bootloader) and SFl is supported for USART, SPI and USB interfaces
for those devices .Otherwise for STM32L451CE specific part number devices the
installation is performed through a secure bootloader via USART or SPI interfaces only.

For more details on SFI over these STM32 devices refer to AN4992 [1]. This document is
available on www.st.com.

AN5054 Rev 2 47175

Encrypted firmware(SFl)/module(SMI) programming using STM32CubeProgrammer

ANS5054

48/75

devices

The general flow of the Secure Firmware Installation using bootloader interface on a chip for
H7 and L4 secure devices is shown respectively in Figure 33 and Figure 34 below.

Figure 34. Secure programming via STM32CubeProgrammer overview on STM32H7

HOST

STM32CubeProgrammer

USART, SPI, USB

STM32

| UsaRT 1-» 4]

= FLASH
______ [p]
TSPl e g
——————— Q

g
—aian—— 1
-2

devices

Figure 35. Secure programming via STM32CubeProgrammer overview on STM32L4

USART, SPI

—_—_—————————

[

Host

[5TM32CubeProgrammey

—_—_—————————

STM32L4

Flash memory

- Secure

bootloader

A

AN5054 Rev 2

3

AN5054 Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer
4.2.2 Secure Module installation using bootloader interface flow
As explained in Section 3.3: SMI generation process, outputs are generated for this
particular use case:
e The first part, not encrypted: this is a regular ELF/AXF file, containing all the sections
except the code section extracted by the STPC to prepare the SMI module
e The encrypted SMI module, which contains the protected code.
The first part can be programmed into the chip using any means (JTAG Flasher, UART
Bootloader and so on, as for any regular ELF/AXF file.
The full content of the SMI image file and its corresponding license are given to
STM32CubeProgrammer which places them in RAM
The RSS_SMI_resetAndInstallModules () function is then invoked through the
start_smi () secure bootloader command with the following parameters:
e Pointer to the license
e Pointer to the content of the SMI image file.
This causes a reset and the decryption, authentication and install of the protected module
code into a properly setup Pc-ROP area
Note: The SMI install is performed successfully only if the adequate license is given to the
Flashing tool.
4.2.3 STM32CubeProgrammer for SFl using bootloader interface

3

For SFI programming, the STM32CubeProgrammer is used in CLI mode (the only mode so-
far available) by launching the following command:

-sfi, --sfi
Syntax: -sfi protocol=<Ptype> <file_path> <licenseFile_path>

protocol=<Ptype > :Protocol type to be used: static/live (only static protocol is currently
supported).

<file_path> : Path of SFl file to be programmed.
<licenseFile_path>:Path to the license file of the smi to be programmed.

[<licenseMod_path>] : Path to the license files of the integrated SMI module(s), (used
only when the SFIl image is composed of one or many SMI modules areas).

Example using UART bootloader interface:

STM32_Programmer.exe -c port=COM1 br=115200 -sfi protocol=static
"C:\SFI\data.sfi" "C:\SFI\license.bin"

This command allows secure installation of firmware “data.sfi” into a dedicated Flash
memory address.

AN5054 Rev 2 49/75

Encrypted firmware(SFl)/module(SMI) programming using STM32CubeProgrammer AN5054

4.2.4 STM32CubeProgrammer for SMI via Bootloader interface

For SMI programming, STM32CubeProgrammer is used in CLI mode by launching the
following command:

-smi, --smi
Syntax: -smi protocol=<Ptype> <file_path> [<address>] <licenseFile_path>

protocol=<Ptype>: Protocol type to be used : static/live (only static protocol is supported so
far)

<file_path>: Path of SMI file to be programmed.

[<address>]:: Destination address of the SMI module (only needed when relocatable).
<licenseFkile_path>: Path to the license file of the SMI to be programmed.
Example using UART bootloader interface:

STM32_Programmer .exe -c¢ port=COM1 br=115200 -smi protocol=static
"C:\SMI\data.smi" 0x08080000 "C:\SMI\license.bin"

This command allows programming the SMI specified file “data.smi” into a dedicated
PCROPed area.

4.2.5 STM32CubeProgrammer for get certificate via Bootloader interface

To get the chip certificate, STM32CubeProgrammer is used in CLI mode by launching the
following command:

-gc, --getcertificate

Syntax: —gc <file_path>

Example using UART bootloader interface:

STM32_Programmer .exe -c port=COM1 -gc "C:\Demo_certificate.bin"

This command allows the chip Certificate to be read and uploaded
into the specified file: "C:\Demo_certificate.bin"

The execution results are shown in Figure 36.

Figure 36. Example of getcertificate command execution using UART interface
sting Chip Certifi e from co cted device. . .
t 0] | (
: ating device: 0K i
Port configuration: parity = none, baudrate = 115200, data-bit = 8,
i i stop—bit = 1.000008, flow-control = off
Chip ID: Ox450

BootLoader version: 3.1

Certificate F - Demo_certificate.bin
F already rerwritte
By o -
1ng ta to f1l -
writing chip certificate tc

3

50/75 AN5054 Rev 2

AN5054 Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer
4.3 Secure programming using JTAG/SWD interface
4.3.1 SFI programming using JTAG/SWD flow

3

It is also possible to program the SFI image using the JTAG interface. Here the read out
protection mechanism (RDP level 1) cannot be used during SFI as user Flash memory is
not accessible after firmware chunks written to RAM through the JTAG interface.

The whole process happens in RDP level 0. The code in Flash memory is protected from
the debugger by the PCROP mechanism. The whole user Flash memory is PCROPed
during SFI.

One important outcome is that RSS fully manages the installation. This means that the
whole SFl image and the license must be transferred to RAM before starting. The SFl image
header and areas can be written to different locations.

SFI via debug interface is currently supported only for STM32H753I devices.

For these devices, there is around 1 Mbyte of RAM available, with 512 Kbytes in main
SRAM. This means that the maximum image size supported is 1 Mbyte, and the maximum
area size is 512 Kbytes.

To remedy this, we resort to splitting the SFI image into several parts, so that each part fits
into the allowed RAM size.

An SFI multi install is then performed. Once all its SFI parts are successfully installed, the
global SFI image install is successful.

Other limitations are that security must be left activated in the configuration area if there is a
PCROP area.

AN5054 Rev 2 51/75

Encrypted firmware(SFl)/module(SMI) programming using STM32CubeProgrammer AN5054

43.2

52/75

The SFI flow for programming through JTAG is described in Figure 37.

Figure 37. SFl programming by JTAG/SWD flow overview
(monolithic SFl image example)

=| Preparing programmation Ir

5 waite license 10 RAN

6 wmita imags haader io RAK

L

loop) [For =ach areas in image]
¥ owite area haadar o RAM

8 wiite area payload to RAM

9 waite global headar with links to all the parls fo RAM
*

II Flashing areas rl
| 10 UEF-’]-LI' heanse
("
| 11 suthenticats imags header
»)
!n.u:E A Ifor wach arean in global hesde |

12 authenbicale aréa haades

-
| 13 decrypt area payload and flash o
-

'IFrnllhing L

| E——

14 wan urlil n's fnished

{ SFI saicoess b

SMI programming through JTAG/SWD flow

For SMI programming through JTAG/SWD the process flow is similar to that using the
UART bootloader. In fact, RSS fully manages the installation in both cases.

This means that the whole SMI image and its corresponding license must be transferred to
RAM before starting. Then, to access RSS services through JTAG, there are two options:

e write a small program in RAM that calls the public API
e use the secure API directly.
Once the RSS function “RSS_SMI_resetAndInstallModules” execution has finished

successfully, the SMI module is decrypted, Flashed and protected by the PCROP
mechanism.

The essential steps of the SMI programming by JTAG flow are described in Figure 38.

3

AN5054 Rev 2

AN5054 Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer

Figure 38. SMI programming by JTAG flow overview

LT

args = 2| Set write mode
for SMI

—
@) exit
failure
Write license in RAM
No exit
failure
es

Is img len No

multiple of 4
add padding

address = 0x24050000

bytes

-]

mod_dest_add = write module img in RAM |

license_dest+len(License)
No
Abort " exit
!/J failure

reset+decrypt+authenticate+install
protected module into PCROP
area

|s wnte
memaory

oK

args= license_add,
img_hdr_add,
mod_data_add

No Abort exit
failure
get security state
Mo
exit failure
es

exit success

3

AN5054 Rev 2 53/75

Encrypted firmware(SFl)/module(SMI) programming using STM32CubeProgrammer AN5054

4.3.3

Note:

54/75

STM32CubeProgrammer for secure programming using JTAG/SWD

The only modification in the STM32CubeProgrammer secure command syntax is the
connection type which must be set to “jtag” or “swd”, otherwise all secure programming
syntax for supported commands is identical.

Using a debug connection “HOTPLUG” mode must be used with the connect command.
Example of “getcertificate” command using JTAG:

STM32_Programmer .exe —-c port=jtag mode=HOTPLUG -gcC
testJTAG_Certif.bin

The result of this example is shown in Figure 39.

Figure 39. Example of getcertificate command using JTAG

I —LINK Firmware version = U2J2856
TAG Frequency 7888 KH=
Connection mode: Hot Plug

device ID: Bx4508

Ceptificate File = testJTAG_Certif _bin

if .bin
JIAG_Certif.bin finished successfully
ime elapsed during the getcertificate operation is: BB:80:08.832

Example of “smi” command using SWD

-c port=swd mode=HOTPLUG -smi protocol=static
"RefSMI_MDK/FIR_module.smi" "RefSMI_MDK/licenseSMI.bin" -vb 3 -log

3

AN5054 Rev 2

AN5054 Example SFI programming scenario
5 Example SFI programming scenario
5.1 Scenario overview
The actual user application to be installed on the STM32H753xI device makes “printf”
packets appear in serial terminals.
The application was encrypted using the STPC.
The OEM provides tools to the CM to get the appropriate license for the concerned SFI
application.
5.2 Hardware and software environment
For successful SFI programming, some HW and SW prerequisities are needed:
e STM32H743I-EVAL board
e STM32H753xI with Bootloader v13.2-RC2 and RSS v0.9 programmed
e RS232 cable for SFI programming via UART
e Micro-USB for debug connection
e PC running on either Windows 7 or Ubuntu 14 in both 32-bit and 64-bit versions
e STM32TrustPackageCreator v0.2.0 (or greater) package available from www.st.com
e STM32CubeProgrammer v0.4.0 (or greater) package available from www.st.com.
5.3 Step-by-step execution
5.3.1 Build OEM application
OEM application developers can use any IDE to build their own firmware.
5.3.2 Perform the SFI generation (GUI mode)

3

To be encrypted with the STM32TrustedPackageCreator Tool, OEM firmware is provided in
Axf format in addition to a csv file to set the option bytes configuration. A 128-bit AES
encryption key and a 96-bit nonce are also provided to the tool. They are available in the
SFI_ImagePreparation directory.

A “sfi” image is then generated (out. sfi).
Figure 40 shows the STPC GUI during SFI generation.

AN5054 Rev 2 55/75

Example SFI programming scenario AN5054

Figure 40. STPC GUI during SFI generation

{£% STM32 Trusted Package Creator

File Edit Options Help

LI arEies Firmware information
’ | 1 [add]
Overview
Remove
File name out_totol.sfi -
Encryption key file
Size 10627 KB
Iﬂ_Package_Creamr_vl.U.ZﬂnputJ‘SFIfgoodfhest_ﬁrmware_ke

{4 Success g 01 LI

Nonce file

.y SFI successfully created

I'MSZ_Trusbed_Padege_Creabor_v 1.0.2{Input/SFI/goodfnon

Size Address
Option bytes file 844 B (0x8000000
IfSTMSZ_Trushed_Pad(age_Creahor_v1.0.2ﬂnput,|’SFI,|fgood 0884 B 0xB030000
SMI files (Only for combined case) 3 Configuration 36B 00
Remove

Image version

12 =
RAM size I Continuation token address
Output SFI file

lloadsJ‘STM32_Trusted_Pad<age_Creator_v 1.0.2foutputfout_totol, EEE&a0 TS

Generate SFI

3

56/75 AN5054 Rev 2

AN5054

Example SFI programming scenario

5.3.3

Performing HSM programming for license generation using STPC
(GUI mode)

The OEM must provide a license generation tool to the programming house to be used for
license generation during the SFl install process.

In this example, HSMs are used as license generation tools in the field.See Section 4.1.2:
License mechanism for HSM use and programming.

Figure 41 shows an example for HSM programming by OEM to be used for SFl install.

The maximum number of licenses delivered by the HSM in this example is 1000.

Figure 41. Example of HSM programming using STPC GUI

{43, STM32 Trusted Package Creator =B
‘ " life.augmented
HSM card index HSM information
E Firmware ID | SFI01 -
Max counter |1000
A e HSM status | OEM_STATE =]
|sF101 L
{44 Success M
EaCVEDonEe vt e HSM successfully programmed
Ikage_Creahor_vl.D.Z (1)ﬂnput,.’SFI,.’good,.’hest_ﬁrmware:l
Nonce file T
[Trushed_Pad(age_Creamr_v1.0.2 (1)/Input/SFI/good /nonce. bin
Maximum counter
1000 3:
[~ Set HSM to operational state (HSM will be locked)
Program HSM

Note:

3

When programming the HSM for real in-the-field use (here it is just an example scenario),
the filed “Set HSM to operational state” must be checked to lock the HSM before it is
shipped to the programming house (untrusted environment).

AN5054 Rev 2 57175

Example SFI programming scenario AN5054

5.34

5.3.5

58/75

Programming input conditions

Before performing an SFl install be sure that:

e Flash memory is erased.

e No PCROPed zone is active, otherwise destroy it.

e The chip must support security (a security bit must be present in the option bytes)
e When using a UART interface the User security bit in option bytes must be enabled

before launching the SFI command. For this, the following STM32CubeProgrammer
command can be launched:

— Launch the following command (Uart Bootloader used => Boot0 pin set to VDD):
-c port=COM9 -ob SECURITY=1

e When using a UART interface the Boot0 pin must be set to VSS:

— After enabling security (boot0 pin set to VDD), a power off/power on is needed
when switching the Boot0 pin from VDD to VSS: power off, switch pin then power
on.

e When performing an SFl install using UART BL then, no debug interface must be
connected to any USB host, if there is a debug interface that was used/connected,
then, disconnect it then perform a power off/power on before launching the SFI install
to avoid any debug intrusion problem.

e Boot0 pin set to VDD When using a debug interface.

e You have a valid license at your disposal, generated for the currently used chip, or a
license generation tool to generate the license during SFl install (HSM).

Perform the SFl install using STM32CubeProgrammer

lin this section the STM32CubeProgrammer tool is used in CLI mode (the only mode so-far
available for secure programming) to program the SFl image “out.sfi” already created in the
previous section.

STM32CubeProgrammer supports communication with ST HSMs (Hardware Secure
Modules based on smart card) to generate a license for the connected STM32 device during
SFl install.

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package _path>/bin, then launch the following
STM32CubeProgrammer command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi protocol=static
"<local_path>/out.sfi" hsm=1 slot=<slot_id>

3

AN5054 Rev 2

AN5054

Example SFl programming scenario

3

Figure 42 shows the SFI install via SWD execution and the HSM as license generation tool

in the field.

Figure 42. SFl install success using SWD connection (1)

~LINK SN: B672FF554949677067034831
ST-LINK Firmware version: U2J3IBM1Y
Target voltage: 3.21U
SWD fregquency: 4888 KHz
Connection mode: Hot Plug
Device ID: Bx458

Device name: STM3I2H7xx

Device type: MCU

Device CPU : Cortex—M?7/M4
Protocol Information

8FI File Information

SFI file path : out_EH.sfi
SFI ID = 111
SFI header information
SFI protocol version
SFI total number of areas
SF1 image version
SFI Areas information

Parsing Area 1/3 H
Area type : F
Area size : B44
Area destination address : Bx8BABRBA

Parsing Area 2/3 H

Area type

Area size : 168528

Area destination address : Bx8B3P00PA
Parsing Area 3/3 H

Area type - G

Area size : 36

Area destination address : B

Reading the chip Certificate...

Requesting Chip Certificate using debug interface...
Get Certificate done successfully

Requesting Licesne for firmware with ID = 111
requesting license for the current STHM32 device

Init Communication ...

ldm_LoadModule<?: loading module “stlibpli SAM_d411Y ...

ldm_LoadModule<WIN32>: OK loading library “stlibpll_SAM.d11": Bx5FCARBAA ..

C_GetFunctionList(> returned BxBBBBBOBB. g_pFunctionList=Bx5FCCBAYE
Init Communication with slot 2 Success?

Succeed to generate license for the current 5TM32 device
Closing communication with HSM...

Communication closed with HSM

Succeed to get License for Firmware with ID 111

Starting Firmware Install operation...

Activating security...

Warning: Option Byte: SECURITY. value: Bx1. was not modified.
Harning: Option Bytes are unchanged. Data won’t be downloaded
fActivating security Success

Setting write mode to SFI

Warning: Option Byte: SECURITY. value: Bxl1. was not modified.
Warning: Option Byte: ST_RAM_SIZE, value: Bx3,. was not modified.
Succeed to set write mode for SFI

Starting SFI part 1

Writing license to address Bx24030880
ting Img header to address Bx24831088

Writing areas and areas wrapper...

all areas processed

RS8S process started...

R58 cummaqd execution 0K

ANS5054 Rev 2

59/75

Example SFI programming scenario

AN5054

60/75

Figure 43. SFl install success using SWD connection (2)

RS5 command execution 0K
Reconnecting. .

ST-LINK SN: 0672FF554949677067034831
ST-LINK Firmware version: UZJ30M1%?
Target voltage: 3.21U

Error: ST-LINK error <DEU_NO_DEUICE>
...pretrying. ..

ST-LINK SH: ©8672FF554949677067034831
ET-LINK Firmuware version: UZJ36M1?
Target voltage: 3_21U

SWD frequency: 4HHH KH=

Connection mode: Hot Plug

Device ID: Bx458

Reconnected ¢

Requesting security state...

SECURITY State Success

SFI SUCCESS!

EFI file out_EH.zfi Install Operation Success

AN5054 Rev 2

3

AN5054 Example SMI programming scenario
6 Example SMI programming scenario
6.1 Scenario overview
In this scenario, the 3rd party’s library to be installed on the STM32H753xI device makes
“printf” packets appear in the serial terminal if the library code execution called by the
application does not crash.
The library code was encrypted using the STPC.
The OEM provides tools to the CM to get the appropriate license for the concerned SMI
module.
6.2 Hardware and software environment
The same environment as explained in Section 4.1.1: Device authentication.
6.3 Step-by-step execution
6.3.1 Build 3™ party Library

3

ST or 3rd party developers can use any IDE to build the library to be encrypted and installed
into the STM32H7 device.

In this scenario the SMI module based on the built library is not relocatable. The destination
address is hardcoded in SMI module to the following value: 0x08080000.

AN5054 Rev 2 61/75

Exam

ple SMI programming scenario

ANS5054

6.3.2

Perform the SMI generation

For encryption with the STM32TrustedPackageCreator Tool, the 3rd party module is
provided in EIf format. A 128-bit AES encryption key, a 96-bit nonce and a security version
file are also provided to the tool. They are available in the SMI_ImagePreparation directory.
After choosing the name of the section to be encrypted, a “.smi” image is then generated

(FIR_module.smi).

The clear data part of the library without the encrypted section is also created in EIf format

(FIR_module_clear.axf).

Figure 37 shows the STPC GUI during SMI generation.

Figure 44. STPC GUI during SMI generation

{45 5TM32 Trusted Package Creator

= = 28

File Edit Options Help

"I lite.augmented

ELF file

Ibad_Pad(age_Creator_vl.D.Z (1)/Input/sMI good/FIR_module.axf m

Encryption key file

Iackage_Creatnr_vl.D.Z (1)/Input/SMIfgood ftest_firmware_key.hin m

ELF information SMI information

Overview

Original file name

FIR_module.smi

MNumber of files

1

Last file size 1.64844 KB
Nonce file
SMI adldress (:B080000 LI
-
I’__Trusted_Pad(age_Creahor_v1.0.2 (1)/Input/SMI good /nonce.bin {?& Information |__SZ |
Security version file . . SMI successfully created
I'M327TrushedfPackagefCreatorfv1.0.2 {1)/Input/SMI/good /svFile “

Section to encrypt

ER_PCROP |

Output SMI file

}‘I32_Trusted_Pad<age_Creahor_v1.0.2 (L)foutput/FIR_module.smi 255801020

Output clear ELF file

l’ushed_Package_Creamr_v1.0.2 {1)joutput/FIR_module_dear.axf EZ2EES00L S

Generate SMI

62/75

AN5054 Rev 2

3

AN5054 Example SMI programming scenario
6.3.3 Programming input conditions
Before performing the SMI install be sure that:
e The SMI module destination address is not already PCROPed, otherwise destroy this
PCROPed area.
e The Boot0 pin set to VDD.
e The chip supports security (existing security bit in option bytes).
e When performing SMI install using UART BL, no debug interface is connected to any
USB host. If there is a debug interface that was used/connected, disconnect it then
perform a power off/power on before launching the SMI install to avoid any debug
intrusion problem.
e You have the proper license generated for the currently used chip, or an HSM or secure
server to generate it during SMI programming.
6.3.4 Perform the SMI install

3

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -smi
protocol=static "<local_path>/FIR _module.smi"
"<local_path>/<licenseSMI.bin>"

This command allows the SMI specified file “FIR_module.smi”’ to be programmed into a
dedicated PCROPed area at address (0x08080000).

Figure 45 shows the SMI install via SWD execution:

AN5054 Rev 2 63/75

Example SMI programming scenario AN5054

64/75

Figure 45. SMI install success via debug interface

EX Administrator: C\Windows\system32iemd.exe = &

Microzoft Windows [Uersion 6.1.76811
Copyright <c> 288? Microsoft Corporation. All rights reserved.

C:~Usersshannachi*cd C:“Usersshannachi~Documents“Projects*STM3I2H? _projectsdocs™d
ocs_forSTMIZH7Re lease~AN“Su_packagessstmdZ_programmer_package_vHA.4.8

C:“Usersshannachi~Documents>Projects*8STHIZHY projectrdocs docs_FforSTHIZH7Re lease
~AN“Sw_packages»stm3d2_programmer_package_vB.4.8>cd hin

C:sUzeprsshannachisxDocuments»Frojects E8THIZH? _project docssdocs _forSTHIZH7Release
~AN~Sw_packagessstmd2_programmer_package vB_4_8~bin>83TH3Z2_Programmer_CLI .exe —c
port=swd mode=HOTPLUG —smi protocol=static "C:Users-hannachisxDocumentsz“Projects
~ETH3IZH? _project docs docs_forETMH3ZHY7RHe leaze AN~SHI_ImagePreparation~FIR_module.
emi" "C:isUszersshannachisDocumentssProjects E8THIZH? projectdocs docs_forSTHIZHYR
eleaze~AN~SHI _ImagePreparation~licenszeSHI .hin"

ST-LINK Firmware version U2J27M15
SUD frequency = 480A KH=z

Connection mode: Hot Plug

Device ID: Bx45%8

PPntncnl @ static
= GC:slUsersshannachisDocumentssProjects \STHIZH? projectsdocs™
furSTH32H?Releaue\HN\SHI_ImagePreparatiun\FIR_mndule.smi

Etarting SMI install operation for file : CGC:slUsersshannachisDocumentssProjects™
STMIZH? _projectdocsdocs_forSTM32ZH7Release AN\EMI_ImagePreparation“FIR_module.s

mi ...
EMI File Information H

EMI file path : C:sUsersshannachisxDocunentssProjects~5THIZH
7 prugect\ducé\ducg _for5THIZHYRelease~AN~EMI _InagePreparation“FIR_module.zmi

licenze file path : C:sUsersshannachisxDocunentssProjects~5THIZH
?_projectsdocssdocs_forS8TH32H?Releaze~AN~SHI _ImagePreparationslicenseSHI .hin
SMI code destination addressz : BxBAEEHBA
SMI code zice : 1688

Setting write mode to SMI
Succeed to set write mode for SHMI
Writing license @ address HAx248568068. ..

License file successfully written at adress Bx24@5608008
Writing SMI module image to addressz BxZ24858883.._.

EMI image successfully written at address BxZ24850833
Starting SMI process with license B Bx248588008 and image @ Bx2405%0088. ..

REE process started. ..
REE command execution OK
Heconnecting. ..

—LINK Firmware version = U2J27M15
WD frequency = 4888 KH=
Connection mode: Hot Plug
Device ID: Bx45%8

Heconnected *

Requesting security state...

SECURITY State Success

SMI SUCCESS?

SMI file C:sUsershannachisDocuments»Projects~STM3I2ZH? _projectsdocssdocs_forSTHIZ
H7Re lease~ANSMI _ImagePreparation“FIR_module.smi Install Operation Success

Time elapsed during the SMI install operation iz: BB:08:83_294

C:sUzeprszsshannachixDocumentsz»Frojects E8THIZH? _project docssdocs _forSTHIZH7?Release
~AN~Sw_packagessstmd2_programmer_package vB_4_8-hin>

3

ANS5054 Rev 2

AN5054 Example SMI programming scenario

6.3.5 How to test for SMI install success
1. Flash the clear data part “FIR_module_clear.hex” (available under the Tests directory)
into address 0x08084000 using STM32Cubeprogrammer or any other Flashing tool.

2. Flash the test application “tests.hex” (which is is based on the SMI module), available
under the Tests directory at start user Flash address “0x08000000” using
STM32Cubeprogrammer or any other Flashing tool.

The option bytes configuration becomes as below (Figure 46).

AN5054 Rev 2 65/75

3

Example SMI programming scenario

ANS5054

66/75

Figure 46. OB display command showing that a PCROP zone was activated after SMI

OPTION BYTES BANK: B

Read Out Protection:
RDFP : BxAA (Level B, no protection?

RSS:
RES1 (Mo SFI process on going)

BOR Level:
BOR_LEV : Bx8 (reset level is set to 2.1 U}

User Configuartion:
IWDG1 : Bx1l (Independent watchdog is controlled by harduwared
MRST_STOP_D1 : Bx1 <(STOP mode on Domain 1 is entering without resetl

MRST_STBY_D1 Bx1 (STANDBY mode on Domain 1 is entering without reset)

FZ_IWDG_STOP Bx1l (Independent watchdog is running in STOP mode>
FZ_IWDG_SDBY Bx1 {Independent watchdog is running in STANDBY mode>
SECURITY Bxl (Security feature enabled>

BCM? Bxl <(CM-?7 hoot enabled>

NRST_STOF_DZ2 Bx1 (STOPF mode on Domain 2 is entering without reset?>

NRST_STBY_D2 Bx1 (STANDBY mode on Domain 2 is entering without reset)

SWAP_BANK Bx@ (after boot loading. no swap for user sectorsd
DMEPA Bx1l (delete PcROP protection and earse protected area
DMESA Bxl (delete Secure protection and erase protected aread
Boot address Option Bytes:
BOOT_CM7_ADDA: Bx888 (AxBAABRAAA)
BOOT_CM7_ADD1: Bx1FFB (Bx1FFAABAA>
PCROP Protection:
PCROPA_str 1 BxEBA (080100885
PCROPA_end : BxBB6 (OxBOBRGAA)
Secure Protection:
SECA_stw : BxFF <(Bx8881FEA>
SECA_end - AxB (BxBABBBFF >
DTCH RAM Protection:
ST_RAM_SIZE : Bx2
Write Protection:
ni/RF8B (llrite protection active sectopr)
nWRP1 (Urite protection active sectopr)
nWRP2 CUrite protection active sectopr?
nWRP3 (lprite protection active sectop)
ni/RP4 (lrite protection active sectop)
nW/RPS (lrite protection active sectop)

nl/RP6 (lrite protection active sectopd

nWRP? (lrite protection active sectoprd

3.

If a UART connection is available on the board used, open the Hercule.exe serial
terminal available under the Tests directory, open the connection. On reset you should

see the dedicated “printf” packets

ANS5054 Rev 2

S74

AN5054

Example combined SFI-SMI programming scenario

7

71

7.2

7.3

3

Example combined SFI-SMI programming scenario

Scenario overview

The actual user application to be installed on the STM32H753xI device makes “printf”
packets appear in the serial terminal.

In this case the OEM application is built based on a third party’s library as explained in IAR
example (Section 2.3: Execute-only/position independent library scenario example under
EWARM.)

The application is encrypted using the STPC, the SMI module corresponding to 3rd party’s
library code is uploaded as input during combined SFI generation and represented as an
area of type ‘M’ within firmware application areas.

The SFI OEM application firmware could then be uploaded (on an OEM server for example)
with all the inputs needed for license generation by the CM.

The OEM provides tools to the CM to get the appropriate licenses for the SFI application
concerned and the integrated SMI module(s).

Hardware and software environment

The same environment as explained in Section 5.2: Hardware and software environment.

Step-by-step execution

1. Build the OEM application

OEM application developers may use any IDE to build their firmware as well as using
SMI modules provided by STMicoelectronics or 3rd parties for example.

In this example we use firmware based on a single library (just one SMI module is
integrated in the SFI image).

2. Perform the SFI generation.

For encryption with the STM32TrustedPackageCreator Tool, OEM firmware and the
clear data part are both provided in hex format (corresponding to the SMI module to be
integrated within the SFIl image). A csv file to set the option bytes configuration is also
necessary. The SMI module used is also provided as an input to the tool, in addition to
a 128-bit AES encryption key and a 96-bit nonce. All inputs needed are available in the
“SFI_ImagePreparation/Combined” directory. A “.sfi” image is then generated
(out_comb.sfi).

AN5054 Rev 2 67/75

Example combined SFI-SMI programming scenario AN5054

Figure 47 shows the STPC GUI during combined SFI generation.

Figure 47. GUI of STPC during combined SFI-SMI generation

{1, STM32 Trusted Package Creator o @3 =

File Edit Options Help ‘,’ S

Firmware files Firmware information SFIinformation

‘ || FIR_data.hex Overview

Remove
File name out_comb.sfi -
Encryption key file
Size 13.9336 KB
Iad<age_Creator_v1.0.2{1}ﬂnput,.’SFIfgoodftest_ﬁrmware_ke .bin Dpe
| £5 Success u 01 d

Nonce file

.

IZ_Trusted_Pad(age_Creator_\r 1.0.2 (1)/Input/SFI/good noni < SH successfully created
— - Type Size Address

CEbonivE R [ok] - 122808 058000000

I’ad(age_Creator_\r 1.0.2 (1)/Input/SFI_SMI_combined/FIR. _¢

ware 116B (x8084000
SMI files (Only for combined case) 3 Module 1688 B 0x8080000
|| FIR_pcrop.smi m 4 Configuration 368 0:0

Image version

Izo 3:
RAM size I Continuation token address I

Output SFI file

kSTM32_Tru5ted_Pad<age_Creahor_v 1.0.2 (1)/outputfout_comb.sfi

3. Programming input conditions are the same as for SFI programming scenario
(Section 5.3.4: Programming input conditions).

4. Perform the SFl install using SWD/JTAG or bootloader interface (here SWD interface
will be used).

68/75 AN5054 Rev 2

3

AN5054

Example combined SFI-SMI programming scenario

7.3.1

3

Using JTAG/SWD

Once all input conditions are respected, go to the stm32_programmer_package v0.4.1/bin
directory and launch the following command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi
protocol=static "<local_path>/out_comb.sfi" "<local_path>/
<licenseSFI.bin>"

Once all input conditions are respected, go to the
<STM32CubeProgrammer_package path>/bin directory and launch the following
command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi
protocol=static "<local_path>/out_comb.sfi"
"<local_path>/<licenseSFI.bin>"

Figure 48 shows the combined SFI-SMI install trace success.

AN5054 Rev 2 69/75

Example combined SFI-SMI programming scenario AN5054

70/75

Figure 48. Combined SFI-SMI programming success using debug connection

ST-LIMK Firmware version : U2J26M15
SWD fregquency = 4888 KHz

Connection mode: Hot Pluyg

Device ID: Ax45@

Protocol
SFI File

static
Ref 8F1_MDK-8FI_Combined~out_comb.sfi

Starting SFI install operation for file : RefSFI_MDK-SFI_Combined~-out_comb.sfi
"SFI File Information

SFI file path RefSFI_MDK-SFI_Combined/out_comh_sfi
8FI license file path Ref SFI_MDK-SFI _Combhined-licenseSFIcombh_h?53hEH.

S8FI header information
SFI protocol version 1
8FI total number of areas 4
SFI image wversion 2
SFI Areas information H

3

Parzing Area 1.4 H
Area tupe F
Area size 12280
Area destination address Bx8AARBAA

Parszing Area 2.-4 H
Area type F
Area size 116
Area destination address Bx80348000

Parsing Area 3-4 H
Area tupe M
Area size 1688
Area destination address Bx8A3ABHA

Parzing Area 4.4 H
Area type [
Area size 36
Area destination address

write mode to SFI
to set write mode for SFI
license to address BxZ24807800
Img header to addressz Bx2400808000
areas and areas wrapper...

R85 process started. ..

RSS command execution 0K
Reconnecting. ..

ST-LIMK Firmware version : U2J26M15
SWD freguency = 4888 KHz

Connection mode: Hot Plug

Device ID: BAx458

Reconnected *

Requesting security state...

SECURITY State Success

SFI SUCCESSt

SFI file RefSFI_MDK-SFI_Combhined-out_combh.sfi Install Operation Success

Time elapzed during the SFI install operation is: 00:80:-04.85%6
Press <RETURN> to close this window...

ANS5054 Rev 2

3

AN5054 Example combined SFI-SMI programming scenario

7.3.2 How to test the combined SFl install success

The option bytes configuration should be modified as shown in Figure 49.

o 3 party library module is programed into a PCROP area

e The SFlimage is protected using RDP level1.

If a UART connection is available on the board used, open the Hercule.exe serial terminal

available under the Tests directory, open the connection and on reset you should see the
dedicated “printf” packets.

3

AN5054 Rev 2 71/75

Example combined SFI-SMI programming scenario

ANS5054

72/75

Figure 49. Option bytes after combined SFI-SMI install success

OFTION BYTES BANK: @

Read Out Protection:
RDP : BxA (Level 1, read protection of memories)

RSE:
R851 BxB (No SFI process on goingl

BOR Level:
BOR_LEU : Bx2 (reset level is set to 2.7 U

User Configuartion:
IWDG1 : Bx1l <(Independent watchdog is controlled by harduware?
1UDG2 Bx1 (Window watchdog is controlled by hardware?
MRST_STOP_D1 Bx1 (STOP mode on Domain 1 is entering without reset?
NRST_STBY_D1 Bx1 (STANDBY mode on Domain 1 is entering without reset)
FZ_IWDG_STOP Bx1 (Independent watchdog iz running in STOP mode?
FZ_IWDG_SDBY Bx1 (Independent watchdog is running in STANDEBEY mode>
SECURITY Bx1 (Security feature enabled>

BCM? Bx1 (CM-7 boot enahbhled>

MRST_STOP_D2 Bx1 (STOP mode on Domain 2 is entering without reset?
NRST_STBY_D2 Bx1 (STANDBY mode on Domain 2 is entering without reset)
SUAP_BANK Bx@ C(after boot loading,. no swap for user sectors)

DHEPA Bx1 (delete PcROP protection and earse protected area?

DMESA Bx1 (delete Secure protection and erase protected aread

Boot address Option Buyutes:
BOOT_CHM7_ADDA: Bx80@ (BAxEAROBAA>
BOOT_CM?7_ADD1: Bx1FF1 {B@x1FFi8808>

PCROP Protection:
PCROPA_str 1 BxBBA (BxBB10008>
PCROPA_end : BxBB6 <(BxBBB0688>

Secure Protection:
SECA_str : BxFFF <(Bx8B1FFE@>
SECA_end : BxB (OxBABBOFF>

DTCH RAM Protection:
ST_RAM_SIZE : Bx3 <16 KB>

Write Protection:
nWRPB (lrite protection active sector)
nWRP1 (Urite protection active sector)
nWRP2 (Urite protection active sector)
nWRP3 (Urite protection active sector)
nW/RP4 (Urite protection active zsector)
nWRPS CUrite protection active sector)
nWRP6 (Urite protection active sector)

nWRP? (lrite protection active sector)

ANS5054 Rev 2

3

AN5054

Reference documents

8

Reference documents

Table 2. Document references

Reference

Version

Document title

(1]

Latest version

AN4992, STM32H7 secure firmware/module install overview.
STMicroelectronics.

(2]

Latest version

UM2428, Hardware secure modules (HSM) for secure firmware install (SFI).
STMicroelectronics.

3

AN5054 Rev 2 73/75

Revision history AN5054

9 Revision history

Table 3. Document revision history

Date Revision Changes
03-Aug-2018 1 Initial release.
18-Apr-2019 5 ’Upda_te,d publication scope from ‘ST restricted' to
Public'.
74175 AN5054 Rev 2 Kys

AN5054

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics — All rights reserved

3

AN5054 Rev 2 75/75

	1 General information
	1.1 Licensing information
	1.2 Acronyms and abbreviations
	Table 1. List of abbreviations

	2 How to generate an execute-only/position independent library for SMI preparation
	2.1 Requirements
	2.2 Toolchains allowing SMI generation
	2.3 Execute-only/position independent library scenario example under EWARM
	2.3.1 Relocatable library preparation steps
	Figure 1. IAR example project overview
	Figure 2. Update compiler extra options
	Figure 3. Linker extra options
	Figure 4. Setting post-build option
	Figure 5. Postbuild batch file

	2.3.2 Relocatable SMI module preparation steps
	2.3.3 Application execution Scenario
	Figure 6. How to exclude the “lib.o” file from build
	Figure 7. app.icf file

	3 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator
	3.1 System requirements
	3.2 SFI generation process
	Figure 8. SFI preparation mechanism
	Figure 9. SFI image process generation
	Figure 10. RAM size and CT address inputs used for SFI multi install
	Figure 11. 'P' and ‘R’ area specifics versus a regular SFI area
	Figure 12. Error message when firmware files with address overlaps used
	Figure 13. Error message when SMI address overlaps with a firmware area address
	Figure 14. Error message when a SFI area address is not located in Flash memory
	Figure 15. SFI format layout
	Figure 16. SFI image layout in case of split

	3.3 SMI generation process
	Figure 17. SMI preparation mechanism
	Figure 18. SMI image generation process
	Figure 19. SMI format layout

	3.4 STM32TrustedPackageCreator tool in the command line interface
	Figure 20. STM32TrustedPackageCreator tool - available commands
	3.4.1 Steps for SFI generation (CLI)
	Figure 21. Option bytes file example
	Figure 22. SFI generation example using an Elf file

	3.4.2 Steps for SMI generation(CLI)
	Figure 23. SMI generation example

	3.5 Using the STM32TrustedPackageCreator tool graphical user interface
	3.5.1 SFI generation using STPC in GUI mode
	Figure 24. SFI generation Tab
	Figure 25. Firmware parsing example
	Figure 26. SFI successful generation in GUI mode example

	3.5.2 SMI generation using STPC in GUI mode
	Figure 27. SMI generation Tab
	Figure 28. SMI successful generation in GUI mode example

	3.5.3 Settings
	Figure 29. Settings icon and Settings dialog box

	3.5.4 Log generation
	Figure 30. Log example

	3.5.5 SFI and SMI file checking function
	Figure 31. Check SFI file example

	4 Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer
	4.1 Chip certificate authenticity check and license mechanism
	4.1.1 Device authentication
	4.1.2 License mechanism
	Figure 32. HSM programming GUI in the STPC tool
	Figure 33. HSM programming GUI in the STPC tool

	4.2 Secure programming using bootloader interface
	4.2.1 Secure firmware installation using Bootloader interface flow
	Figure 34. Secure programming via STM32CubeProgrammer overview on STM32H7 devices
	Figure 35. Secure programming via STM32CubeProgrammer overview on STM32L4 devices

	4.2.2 Secure Module installation using bootloader interface flow
	4.2.3 STM32CubeProgrammer for SFI using bootloader interface
	4.2.4 STM32CubeProgrammer for SMI via Bootloader interface
	4.2.5 STM32CubeProgrammer for get certificate via Bootloader interface
	Figure 36. Example of getcertificate command execution using UART interface

	4.3 Secure programming using JTAG/SWD interface
	4.3.1 SFI programming using JTAG/SWD flow
	Figure 37. SFI programming by JTAG/SWD flow overview (monolithic SFI image example)

	4.3.2 SMI programming through JTAG/SWD flow
	Figure 38. SMI programming by JTAG flow overview

	4.3.3 STM32CubeProgrammer for secure programming using JTAG/SWD
	Figure 39. Example of getcertificate command using JTAG

	5 Example SFI programming scenario
	5.1 Scenario overview
	5.2 Hardware and software environment
	5.3 Step-by-step execution
	5.3.1 Build OEM application
	5.3.2 Perform the SFI generation (GUI mode)
	Figure 40. STPC GUI during SFI generation

	5.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	Figure 41. Example of HSM programming using STPC GUI

	5.3.4 Programming input conditions
	5.3.5 Perform the SFI install using STM32CubeProgrammer
	Figure 42. SFI install success using SWD connection (1)
	Figure 43. SFI install success using SWD connection (2)

	6 Example SMI programming scenario
	6.1 Scenario overview
	6.2 Hardware and software environment
	6.3 Step-by-step execution
	6.3.1 Build 3rd party Library
	6.3.2 Perform the SMI generation
	Figure 44. STPC GUI during SMI generation

	6.3.3 Programming input conditions
	6.3.4 Perform the SMI install
	Figure 45. SMI install success via debug interface

	6.3.5 How to test for SMI install success
	Figure 46. OB display command showing that a PCROP zone was activated after SMI

	7 Example combined SFI-SMI programming scenario
	7.1 Scenario overview
	7.2 Hardware and software environment
	7.3 Step-by-step execution
	Figure 47. GUI of STPC during combined SFI-SMI generation
	7.3.1 Using JTAG/SWD
	Figure 48. Combined SFI-SMI programming success using debug connection

	7.3.2 How to test the combined SFI install success
	Figure 49. Option bytes after combined SFI-SMI install success

	8 Reference documents
	Table 2. Document references

	9 Revision history
	Table 3. Document revision history

