
April 2019 AN5054 Rev 2 1/75

1

AN5054
Application note

Secure programming using STM32CubeProgrammer

Introduction

This document specifies the steps and tools required to prepare SFI (secure firmware
install) or SMI (secure module install) images (or a combination of both) and to program
them into the STM32H7 on-chip Flash memory.

These tools are compatible with all STM32 devices supporting SFI.

The main objective of SFI and SMI processes, is the installation of security and cloning
prevention in OEMs’ and software-partner’s firmware respectively.

Please refer to AN4992 [1], which provides an overview of the secure firmware install (SFI)
solution and how this provides a practical level of protection of the IP chain from the
firmware development up to programming the device on-chip Flash memory.

www.st.com

http://www.st.com

Contents AN5054

2/75 AN5054 Rev 2

Contents

1 General information . 8

1.1 Licensing information . 8

1.2 Acronyms and abbreviations . 8

2 How to generate an execute-only/position independent library for SMI
preparation . 9

2.1 Requirements . 9

2.2 Toolchains allowing SMI generation . 9

2.3 Execute-only/position independent library scenario example under
EWARM . 10

2.3.1 Relocatable library preparation steps . 10

2.3.2 Relocatable SMI module preparation steps . 14

2.3.3 Application execution Scenario . 15

3 Encrypted firmware(SFI)/module(SMI) preparation using
STM32TrustedPackageCreator . 17

3.1 System requirements . 17

3.2 SFI generation process . 17

3.3 SMI generation process . 26

3.4 STM32TrustedPackageCreator tool in the command line interface 29

3.4.1 Steps for SFI generation (CLI) . 30

3.4.2 Steps for SMI generation(CLI) . 32

3.5 Using the STM32TrustedPackageCreator tool graphical user interface . 34

3.5.1 SFI generation using STPC in GUI mode . 34

SFI GUI tab fields .35

3.5.2 SMI generation using STPC in GUI mode . 38

SMI GUI tab fields .39

3.5.3 Settings . 40

3.5.4 Log generation . 42

3.5.5 SFI and SMI file checking function . 43

AN5054 Rev 2 3/75

AN5054 Contents

4

4 Encrypted firmware(SFI)/module(SMI) programming using
STM32CubeProgrammer . 44

4.1 Chip certificate authenticity check and license mechanism 44

4.1.1 Device authentication . 44

4.1.2 License mechanism . 44

Licenses mechanism general scheme .44

License distribution. .45

HSM programming by OEM for License distribution. .45

4.2 Secure programming using bootloader interface 47

4.2.1 Secure firmware installation using Bootloader interface flow 47

4.2.2 Secure Module installation using bootloader interface flow 49

4.2.3 STM32CubeProgrammer for SFI using bootloader interface 49

4.2.4 STM32CubeProgrammer for SMI via Bootloader interface 50

4.2.5 STM32CubeProgrammer for get certificate via Bootloader interface . . 50

4.3 Secure programming using JTAG/SWD interface 51

4.3.1 SFI programming using JTAG/SWD flow . 51

4.3.2 SMI programming through JTAG/SWD flow . 52

4.3.3 STM32CubeProgrammer for secure programming using JTAG/SWD . . 54

5 Example SFI programming scenario . 55

5.1 Scenario overview . 55

5.2 Hardware and software environment . 55

5.3 Step-by-step execution . 55

5.3.1 Build OEM application . 55

5.3.2 Perform the SFI generation (GUI mode) . 55

5.3.3 Performing HSM programming for license generation using STPC
(GUI mode) . 57

5.3.4 Programming input conditions . 58

5.3.5 Perform the SFI install using STM32CubeProgrammer 58

Using JTAG/SWD. .58

Contents AN5054

4/75 AN5054 Rev 2

6 Example SMI programming scenario . 61

6.1 Scenario overview . 61

6.2 Hardware and software environment . 61

6.3 Step-by-step execution . 61

6.3.1 Build 3rd party Library . 61

6.3.2 Perform the SMI generation . 62

6.3.3 Programming input conditions . 63

6.3.4 Perform the SMI install . 63

Using JTAG/SWD. .63

6.3.5 How to test for SMI install success . 65

7 Example combined SFI-SMI programming scenario 67

7.1 Scenario overview . 67

7.2 Hardware and software environment . 67

7.3 Step-by-step execution . 67

7.3.1 Using JTAG/SWD . 69

7.3.2 How to test the combined SFI install success . 71

8 Reference documents . 73

9 Revision history . 74

AN5054 Rev 2 5/75

AN5054 List of tables

5

List of tables

Table 1. List of abbreviations . 8
Table 2. Document references . 73
Table 3. Document revision history . 74

List of figures AN5054

6/75 AN5054 Rev 2

List of figures

Figure 1. IAR example project overview . 10
Figure 2. Update compiler extra options . 11
Figure 3. Linker extra options . 12
Figure 4. Setting post-build option . 13
Figure 5. Postbuild batch file . 14
Figure 6. How to exclude the “lib.o” file from build . 15
Figure 7. app.icf file . 16
Figure 8. SFI preparation mechanism . 17
Figure 9. SFI image process generation . 18
Figure 10. RAM size and CT address inputs used for SFI multi install . 19
Figure 11. 'P' and ‘R’ area specifics versus a regular SFI area . 20
Figure 12. Error message when firmware files with address overlaps used 21
Figure 13. Error message when SMI address overlaps with a firmware area address 22
Figure 14. Error message when a SFI area address is not located in Flash memory 23
Figure 15. SFI format layout . 24
Figure 16. SFI image layout in case of split . 25
Figure 17. SMI preparation mechanism . 26
Figure 18. SMI image generation process . 27
Figure 19. SMI format layout . 28
Figure 20. STM32TrustedPackageCreator tool - available commands . 29
Figure 21. Option bytes file example . 31
Figure 22. SFI generation example using an Elf file . 31
Figure 23. SMI generation example . 33
Figure 24. SFI generation Tab . 34
Figure 25. Firmware parsing example . 35
Figure 26. SFI successful generation in GUI mode example . 37
Figure 27. SMI generation Tab . 38
Figure 28. SMI successful generation in GUI mode example . 40
Figure 29. Settings icon and Settings dialog box . 41
Figure 30. Log example . 42
Figure 31. Check SFI file example. 43
Figure 32. HSM programming GUI in the STPC tool . 46
Figure 33. HSM programming GUI in the STPC tool . 47
Figure 34. Secure programming via STM32CubeProgrammer overview on STM32H7 devices 48
Figure 35. Secure programming via STM32CubeProgrammer overview on STM32L4 devices 48
Figure 36. Example of getcertificate command execution using UART interface 50
Figure 37. SFI programming by JTAG/SWD flow overview (monolithic SFI image example) 52
Figure 38. SMI programming by JTAG flow overview . 53
Figure 39. Example of getcertificate command using JTAG . 54
Figure 40. STPC GUI during SFI generation . 56
Figure 41. Example of HSM programming using STPC GUI . 57
Figure 42. SFI install success using SWD connection (1) . 59
Figure 43. SFI install success using SWD connection (2) . 60
Figure 44. STPC GUI during SMI generation . 62
Figure 45. SMI install success via debug interface . 64
Figure 46. OB display command showing that a PCROP zone was activated after SMI. 66

AN5054 Rev 2 7/75

AN5054 List of figures

7

Figure 47. GUI of STPC during combined SFI-SMI generation . 68
Figure 48. Combined SFI-SMI programming success using debug connection 70
Figure 49. Option bytes after combined SFI-SMI install success. 72

General information AN5054

8/75 AN5054 Rev 2

1 General information

1.1 Licensing information

STM32CubeProgrammer supports STM32 32-bit devices based on Arm®(a) Cortex®-M
processors.

1.2 Acronyms and abbreviations

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Table 1. List of abbreviations

Abbreviations Defnition

AES Advanced encryption standard

CLI Command line interface

CM Contract manufacturer

GCM Galois counter mode (one of the modes of AES)

GUI Graphical user interface

HSM Hardware security model

HW Hardware

MAC Message authentication code

MCU Microcontroller unit

OEM Original equipment manufacturer

PCROP Proprietary code read-out protection

PI Position independent

ROP Read-out protection

RSS Root security service (secure)

SFI Secure firmware install

STPC STM32TrustedPackageCreator

SMI Secure modules install

STM32 ST family of 32-bit ARM based microcontrollers

SW Software

XO Execute only

AN5054 Rev 2 9/75

AN5054 How to generate an execute-only/position independent library for SMI preparation

74

2 How to generate an execute-only/position
independent library for SMI preparation

This section describes the requirements and procedures for the preparation of an execute-
only (XO) and position independent (PI) library using a partner toolchain

These kinds of libraries serve in encrypted SMI-module generation.

2.1 Requirements

SMI modules run in Execute Only (XO) areas, also called PCROP areas, and must be
relocatable to be linkable with final OEM application. Nevertheless, today, 3rd party
toolchains for STM32 devices (such as MDK-ARM for ARM, EWARM for IAR and GCC
based IDEs) do not allow both features to be activated at the same time. So, starting from
particular versions of 3rd party toolchains, the two features below are possible for SMI
support:

• Position independent support (code + rw data + ro data)

• No literal pool generation; needed for the PCROP feature.

2.2 Toolchains allowing SMI generation

Three toolchains allow SMI generation:

• EWARM

Version 7.42.0 allows execute-only (XO) and position independent (PI) library
generation for SMI support through the following options: “--ropi_cb” + “rwpi” + “--
no_literal_pool”.

– “--ropi_cb” + “rwpi” are needed for position independent support

– option “no_literal_pool” is needed for the PCROP feature.

• MDK-ARM

The customized version allows execute-only (XO) and position independent (PI) library
generation for SMI support through the following options: “-fropi-cb”, “-frwpi”, “-
mexecute-only”.

– “fropi-cb” is needed for ro data independent position

– “frwpi” is needed for rw data independent position

– option “-mexecute-only” is needed for PCROP feature.

All library symbols being used in the final application should be added to the final
project in a .txt file format.

• GCC

The customized version of GCC based toolchains allows execute-only (XO) and
position independent (PI) library generation for SMI support through the following
options: “-masset”.

Option “-masset” has the same role as “--ropi --ropi_cb --rwpi --no_literal_pool” options
used for EWARM toolchain.

How to generate an execute-only/position independent library for SMI preparation AN5054

10/75 AN5054 Rev 2

2.3 Execute-only/position independent library scenario example
under EWARM

In order to generate an execute-only (XO) and position independent (PI) library a
customized version of the IAR toolchain must be used: version 7.42.0.

2.3.1 Relocatable library preparation steps

1. Open the project available in the “Example” folder: double click on
“Example/AdvEx.eww”.

The project architecture is illustrated in Figure 1.

Figure 1. IAR example project overview

AN5054 Rev 2 11/75

AN5054 How to generate an execute-only/position independent library for SMI preparation

74

The following steps update the old “lib.o” linked to the example application by making it
support both PI and XO features:

2. Within Lib-Debug options -> C/C++ Compiler: go to tab “Extra Options” and add the
following line:
“--ropi_cb”

This action is illustrated in Figure 2.

Figure 2. Update compiler extra options

How to generate an execute-only/position independent library for SMI preparation AN5054

12/75 AN5054 Rev 2

3. Within Lib-Debug options -> Linker: go to the “Extra Options” tab and add the following
lines:

--no_literal_pool

--ropi_cb

--loadable

--no_entry

This action is illustrated in Figure 3.

– “ropi_cb” is needed for Position Independent support

– the “no_entry” is a linker option that sets the entry point field to zero.

Figure 3. Linker extra options

AN5054 Rev 2 13/75

AN5054 How to generate an execute-only/position independent library for SMI preparation

74

4. Within Lib-Debug options -> Build actions: in post build command line execute the
batch file “postbuild.bat” by inserting, if it is not already configured, the following
command line :
"$PROJ_DIR$\postbuild.bat" "$TOOLKIT_DIR$" "$TARGET_PATH$"
"$PROJ_DIR$\lib.o"

This action is illustrated in Figure 4.

Figure 4. Setting post-build option

How to generate an execute-only/position independent library for SMI preparation AN5054

14/75 AN5054 Rev 2

The postbuild.bat file is used to perform some key actions:

• --wrap: adds veneers to library functions to initialize registers used for ropi code

• “iexe2obj.exe”: transforms the elf into a linkable object file.

See Figure 5.

Figure 5. Postbuild batch file

5. Rebuild the project “Lib”

2.3.2 Relocatable SMI module preparation steps

From the object file created, “lib.o”, generate the SMI relocatble module using the
STM32TrustedPackageCreator tool “libr.smi” and its corresponding data clear part
(libr_clear.o: corresponding to the input “lib.o” without the protected section code).

To execute this step, follow the steps explained for SMI generation under section
“Section 3.4.2: Steps for SMI generation(CLI)”.

AN5054 Rev 2 15/75

AN5054 How to generate an execute-only/position independent library for SMI preparation

74

2.3.3 Application execution Scenario

1. Flash the already generated SMI relocatable module to address 0x08080000 using
STM32Cube Programmer v0.4.0 or newer (see section 4 to perform this action).

2. Link the data clear part, “libr_clear.o”, generated from STM32TrustedPackageCreator
tool to the final IAR example application instead of the old previously used “lib.o”.

3. Exclude “lib.o” from the build (Figure 6).

Figure 6. How to exclude the “lib.o” file from build

4. Rebuild the application.

5. Do these modifications in an example application ICF file:

a) Define region for PCROP block:

define symbol __ICFEDIT_region_PCROP_start__ = 0x08080000;

define symbol __ICFEDIT_region_PCROP_end__ = 0x0809FFFF;

define region PCROP_region = mem:[from __ICFEDIT_region_PCROP_start__
to __ICFEDIT_region_PCROP_end__];

b) Define PCROP region as 'noload' (since it is already installed using
STM32CubeProgrammer so no need to load it again) :

"SMI": place noload in PCROP_region { ro code section __code__Lib};

How to generate an execute-only/position independent library for SMI preparation AN5054

16/75 AN5054 Rev 2

These modifications are illustrated within the “app.icf” file, which is shown in Figure 5.

Figure 7. app.icf file

6. To check that example application executed successfully on the STM32H7 device:

a) check that address 0x08080000 was protected with PCROP.

b) You should see the expected “printf” packets in the terminal output.

AN5054 Rev 2 17/75

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

74

3 Encrypted firmware(SFI)/module(SMI) preparation
using STM32TrustedPackageCreator

The STM32TrustedPackageCreator tool allows the generation of SFI and SMI images for
STM32H7 devices. It is available in both CLI and GUI modes free of charge from
www.st.com.

3.1 System requirements

Using the STM32TrustedPackageCreator tool for SFI and SMI image generation requires a
PC running on either Windows 7 or Ubuntu 14 in both 32-bit and 64-bit versions.

3.2 SFI generation process

The SFI format is an encryption format for Firmware created by STMicroelectronics that
transforms firmware (in Elf, Hex, Bin or Srec formats) into encrypted and authenticated
firmware in SFI format using AES-GCM algorithm with a 128-bit key. The SFI preparation
process used in the STM32TrustedPackageCreator tool is described in Figure 8.

Figure 8. SFI preparation mechanism

Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

18/75 AN5054 Rev 2

The SFI generation steps as currently implemented in the tool are described in Figure 9.

Figure 9. SFI image process generation

Before performing AES-GCM to encrypt an area, we calculate the Initialization Vector (IV)
as:

IV = nonce + Area Index.

The tool partitions the firmware image into several encrypted parts corresponding to
different memory areas.

These encrypted parts appended to their corresponding descriptors (the unencrypted
descriptive header generated by the tool) are called areas.

AN5054 Rev 2 19/75

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

74

These areas can be of different types:

• ‘F’ for a firmware area (a regular segment in the input firmware)

• ‘M’ for a module area (used in SFI-SMI combined-image generation, and corresponds
to input from an SMI module)

• ‘C’ for a configuration area (used for option-byte configuration)

• ‘P’ for a “pause” area

• ‘R’ for a “resume area.

Areas ‘P’ and ‘R’ do not represent a real firmware area, but are created when an SFI image
is split into several parts, which is the case when the global size of the SFI image exceeds
the allowed RAM size predefined by the user during the SFI image creation.

The STM32TrustedPackageCreator overview below (Figure 12) shows the RAM size input
for SFI image generation, and also the ‘Continuation token address’ input, which is used by
SFI multi install to store states in Flash memory during SFI programming.

Figure 10. RAM size and CT address inputs used for SFI multi install

Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

20/75 AN5054 Rev 2

Figure 11 (below) shows the specifics of these new areas compared to a regular SFI area.

Figure 11. 'P' and ‘R’ area specifics versus a regular SFI area

A top-level image header is generated then authenticated, for this the tool performs AES-
GCM with authentication only (without encryption), using the SFI image header as an AAD,
and the nonce as IV.

An authentication tag is generated as output.

Note: To prepare an SFI image from multiple firmware files you have to make sure that there is no
overlap between their segments, otherwise an error message appears (Figure 12).

AN5054 Rev 2 21/75

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

74

Figure 12. Error message when firmware files with address overlaps used

Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

22/75 AN5054 Rev 2

For combined SFI-SMI images, there is also an overlap check between firmware and
module areas. If the check fails, an error message appears (Figure 13).

Figure 13. Error message when SMI address overlaps with a firmware area address

AN5054 Rev 2 23/75

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

74

Also, all SFI areas must be located in Flash memory, otherwise the generation fails and you
see the following error message (Figure 14).

Figure 14. Error message when a SFI area address is not located in Flash memory

Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

24/75 AN5054 Rev 2

The final output from this generation process is a single file, which is the encrypted and
authenticated firmware in “.sfi” format. The SFI format layout is described in Figure 15.

Figure 15. SFI format layout

AN5054 Rev 2 25/75

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

74

When the SFI image is split during generation, areas ‘P’ and ‘R’ appear in the SFI image
layout, as in the example below Figure 16.

Figure 16. SFI image layout in case of split

Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

26/75 AN5054 Rev 2

3.3 SMI generation process

SMI is a format created by STMicroelectronics that aims to protect partners’ Software (SW:
software modules and libraries).

The SMI preparation process is described below (Figure 17).

Figure 17. SMI preparation mechanism

AN5054 Rev 2 27/75

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

74

The SMI generation steps as currently implemented in the tool are described in the diagram
below (Figure 18).

Figure 18. SMI image generation process

The AES-GCM encryption is performed using the following inputs:

• 128-bit AES encryption key

• The input nonce as Initialization Vector (IV)

• The security version as Additional Authenticated Data (AAD).

Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

28/75 AN5054 Rev 2

Before SMI image creation, PCROP checks are performed on the SMI image validity:

• A PCROP section must be aligned on a Flash word (256 bits), otherwise a warning is
shown

• The section’s size must be at least 2 Flash words (512 bits), otherwise a warning is
shown

• The section must end on a Flash word boundary (a 256-bit word), otherwise a warning
is shown

• If the start address of the section immediately following the PCROP section overlaps
the last Flash word of the PCROP section (after performing the PCROP alignment
constraint), the generation fails and an error message appears.

If everything is OK, tow outputs are created under the specified path:

• the SMI image (Figure 19 represents the SMI format layout)

• the library data part.

Figure 19. SMI format layout

AN5054 Rev 2 29/75

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

74

3.4 STM32TrustedPackageCreator tool in the command line
interface

This section describes how to use the STM32TrustedPackageCreator tool from the
command line interface in order to generate SFI and SMI images.

The available commands are listed in Figure 20.

Figure 20. STM32TrustedPackageCreator tool - available commands

Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

30/75 AN5054 Rev 2

3.4.1 Steps for SFI generation (CLI)

In order to generate an SFI image in CLI mode, the user must use the “-sfi, --sfi” command
followed by the appropriate inputs.

Inputs for “sfi” command are:

-fir, --firmware

Description: adds an input firmware file (supported formats are Bin, Hex,
Srec and ELF). This option can be used more than once in order to add multiple

firmware files.

Syntax: -fir <Firmware_file> [<Address>]

 <Firmware_file> :Firmware file.

 [<Address>] :Used only for binary firmwares.

-k, --key

Description: sets the AES-GCM encryption key.

Syntax: -k <Key_file>

 < Key _file> : A 16 bytes binary file.

-n, --nonce

Description: sets the AES-GCM nonce.

Syntax: -n <Nonce_file>

 <Nonce _file> A 12-byte binary file.

-v, --ver

Description: sets the image version.

Syntax: -v <Image_version>

 <Image_version> : A value between 0 and 255 in any base.

-ob, --obfile

Description: provides an option bytes configuration file.
The option bytes file field is only mandatory for SFI applications (first install) to allow
option bytes programming, otherwise it is optional.
Only CSV (Comma Separated Value) file format is supported as input for this field, it
is composed from two vectors: register name and register value respectively.

Example: for STM32H7xx devices, 9 option bytes registers must be configured, which
corresponds to a total of 9 lines in the csv file (Figure 21).

Syntax: -ob <CSV_file>

<CSV_file >: A csv file with 9 values.

AN5054 Rev 2 31/75

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

74

Figure 21. Option bytes file example

-m, --module

Description: adds an input SMI file.
This option can be used more than once in order to add multiple SMI files.
This is optional (used only for combined SFI-SMI).

Syntax: -m <SMI_file>

<SMI_file > : SMI file.[<Address>] : Address is provided only for relocatable SMI.

-rs, --ramsize

Description: define the available ram size (in case of SFI multi-install)

Syntax: -rs <Size>

< Size > : RAM available size in bytes

-ct, --token

Description: continuation token address (in case of SFI multi-install)

Syntax: -ct <Address>

< Address > : continuation token Flash address

-o, --outfile

Description: sets the output SFI file to be created.

Syntax: -o <out_file>

<out_file > : the SFI file to be generated (must have the “.sfi”
extension).

Example of SFI generation command using an ELF file:

STM32TrustPackageCreator_CLI.exe -sfi -fir tests.axf -k
test_firmware_key.bin -n nonce.bin -ob ob.csv -v 23 -o out.sfi

The result of previous command is shown in Figure 22.

Figure 22. SFI generation example using an Elf file

Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

32/75 AN5054 Rev 2

3.4.2 Steps for SMI generation(CLI)

In order to generate an SMI image in CLI mode, the user must use the “-smi, --smi”
command followed by the appropriate inputs.

Inputs for the “smi” command are:

-elf, --elfile

Description: sets the input ELF file (only elf format is supported).

Syntax: - elf <ELF_file>

<ELF_file> : ELF file. An ELF file can have any of the extensions: “.elf”, “.axf”,
“.o”, “.so”,“.out”.

-s, --sec

Description: sets the name of the section to be encrypted.

Syntax: -s <section_name>

<section_name> : Section name.

-k, --key

Description: sets the AES-GCM encryption key.

Syntax: -k <Key_file>

< Key _file> : A 16-byte binary file.

-n, --nonce

Description: sets the AES-GCM nonce.

Syntax: -n <Nonce_file>

 <Nonce_file> : A 12-byte binary file.

-sv, --sver

Description: sets the security version file

The security version file is used to make the SMI image under preparation compatible with a
given RSS version, since it contains a corresponding identifying code (almost the HASH of
the RSS).

Syntax: -sv <SV_file>

<SV_file> : A 16-byte file.

-o, --outfile

Description: Sets the SMI file to be created as output

Syntax: -o <out_file>

 <out_file > : SMI file to be generated, must have the .smi extension.

-c, --clear

Description: Sets the clear ELF file to be created as output corresponding to the data
part of the input file

Syntax: -c <ELF_file>

AN5054 Rev 2 33/75

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

74

<ELF_file > : Clear ELF file to be generated.

Example of SMI generation command:
STM32TrustPackageCreator_CLI.exe –smi -elf FIR_module.axf -
s “ER_PCROP” -k test_firmware_key.bin -n nonce.bin -sv
svFile -o test.smi -c clear.smi

Figure 23. SMI generation example

Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

34/75 AN5054 Rev 2

3.5 Using the STM32TrustedPackageCreator tool graphical user
interface

The STPC is also available in graphical mode, this section describes its use. The
STM32TrustedPackageCreator tool GUI presents two tabs, one for SFI generation and one
for SMI generation.

3.5.1 SFI generation using STPC in GUI mode

Figure 23 shows the graphical user interface tab corresponding to SFI generation.

Figure 24. SFI generation Tab

To generate an SFI image successfully from the supported input firmwares formats, the user
must fill in the interface fields with valid values.

AN5054 Rev 2 35/75

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

74

SFI GUI tab fields

• Firmwares files:

The user needs to add the input firmware files with the “Add” button.

If the file is valid, it is appended to the “input firmware files“ list, otherwise an error
message box appears notifying the user that either the file could not be opened, or the
file is not valid.

Clicking on “input firmware file“ causes information related information to appear in the
“Firmware information” section (Figure 25).

Figure 25. Firmware parsing example

Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

36/75 AN5054 Rev 2

• Encryption key and nonce file:

The encryption key and nonce file can be selected by entering their paths (absolute or
relative), or by selecting them with the “Open” button. Notice that sizes must be
respected (16 bytes for the key and 12 bytes for nonce).

• Option bytes file :

The option bytes file can be selected the same way as the encryption key and nonce.
Only csv files are supported.

• SMI files:

SMI files can be added the same way as the firmware files. Selecting a file causes
related information to appear in the “Firmware information” section.

• Image version :

Choose the image version value of the SFI under generation within this interval :
[0..255].

• Output file:

Sets the folder path in which the SFI image is to be created. This can be done by
entering the folder path (absolute or relative) or by using the “Select folder” button.

Note: By using the “Select folder” button, the name “out.sfi” is automatically suggested, you can
keep this or change it.

• ‘Generate SFI’ button:

Once all fields are filled in properly, the “Generate SFI” button becomes enabled. The
user can generate the SFI file by a single click on it.

If everything goes well, a message box indicating successful generation appears
(Figure 26) and information about the generated SFI file is displayed in the SFI
information section.

AN5054 Rev 2 37/75

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

74

Figure 26. SFI successful generation in GUI mode example

Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

38/75 AN5054 Rev 2

3.5.2 SMI generation using STPC in GUI mode

Figure 27 shows the graphical user interface tab corresponding to SMI generation.

Figure 27. SMI generation Tab

To generate an SMI image successfully from an Elf file, the user must fill in the interface
fields with valid values.

AN5054 Rev 2 39/75

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

74

SMI GUI tab fields

• Elf file:

In this case the input file can be only an elf file.

If the file is valid, information is displayed in the “ELF information” tab, otherwise an
error message box appears notifying the user that either the file could not be opened or
the file is not valid.

• Encryption key and nonce file:

As for SFI, the encryption key and nonce file can be selected in the same way as the
Elf file. Notice that sizes must be respected (16 bytes for the key and 12 bytes for
nonce file).

• Security version file:

The security version file is used for the same purpose as explained in the CLI section.

The security version file size must be 16 bytes.

• Section:

This is a section list that can be used to select the name of the section to be encrypted.

• output files:

Sets the folder path into which the SMI image and its clear part are to be created. This
can be done by entering the folder path (absolute or relative) or by using the “Select
folder” button.

Note: For both output fields, when using the “Select folder” button, a name is suggested
automatically, you can keep this or change it.

• ‘Generate SMI’ button:

When all fields are filled in properly the ‘Generate SMI’ button is enabled, and the user
can generate the SMI file and its corresponding clear data part by a single click on it.

A message box informing the user that generation was successful must appear
(Figure 28), with additional information about the generated SMI file displayed into the
“SMI information” section. In the case of any invalid input data, an error message box
appears instead.

Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

40/75 AN5054 Rev 2

Figure 28. SMI successful generation in GUI mode example

3.5.3 Settings

The STPC allows generation to be performed respecting some user-defined settings. The
settings dialog can be displayed by clicking the settings icon (see Figure 29) in the tool bar
or in the menu bar by choosing: Options -> settings.

AN5054 Rev 2 41/75

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

74

Figure 29. Settings icon and Settings dialog box

Settings can be performed on:

• Padding byte:

When parsing Hex and Srec files, padding can be added to fill gaps between close
segments in order to merge them and reduce the number of segments. The user might
choose to perform padding either with 0xFF (default value) or 0x00.

• Settings file:

When checked, a “settings.ini” file is generated in the executable folder. It saves the
application state: window size and fields contents.

• Log file:

When checked, a log file is generated in the selected path.

Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator AN5054

42/75 AN5054 Rev 2

3.5.4 Log generation

A log can be visualized by clicking the “log” icon in the tool bar or menu bar: Options-> log.

Figure 30 shows a log example:

Figure 30. Log example

AN5054 Rev 2 43/75

AN5054 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator

74

3.5.5 SFI and SMI file checking function

This function checks the validity and information parsing of an SFI or SMI file.

It can be accessed by clicking the Check SFI/SMI button in the tool bar or the menu bar:
File -> Check SFI/SMI.

Figure 31 shows a check SFI example:

Figure 31. Check SFI file example

Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer AN5054

44/75 AN5054 Rev 2

4 Encrypted firmware(SFI)/module(SMI) programming
using STM32CubeProgrammer

STM32CubeProgrammer is a tool for programming STM32 devices through UART, USB,
SPI, CAN, I2C, JTAG and SWD interfaces. So far, programming via JTAG/SWD is only
supported with ST-LINK probe.

The STM32CubeProgrammer tool currently also supports secure programming of SFI and
SMI images using UART, USB, SPI, JTAG/SWD interfaces.

The tool is currently available only in CLI mode, it is available free of charge from
www.st.com .

4.1 Chip certificate authenticity check and license mechanism

The SFI solution was implemented to provide a practical level of IP protection chain from the
firmware development up to Flashing the device, and to attain this objective, security assets
are used, specifically device authentication and license mechanisms.

4.1.1 Device authentication

The device authentication is guaranteed by the device’s own key.

In fact, a certificate is related to the device’s public key and is used to authenticate this
public key in an asymmetric transfer: the certificate is the public key signed by a Certificate
Authority (CA) private key. (This CA is considered as fully trusted).

This asset is used to counteract usurpation by any attacker who could substitute the public
key with their own key.

4.1.2 License mechanism

One important secure Flashing feature is the ability of the firmware provider to control the
number of chips that can be programmed. This is where the concept of licenses comes in to
play. The license is an encrypted version of the firmware key, unique to each device and
session. It is computed by a derivation function from the device’s own key and a random
number chosen from each session (the nonce).

Using this license mechanism the OEM is able to count each install for a given piece of
firmware, since each license is specific to a unique chip, identified by its public key.

Licenses mechanism general scheme

When a firmware provider wants to distribute new firmware, they generate a firmware key
and use it to encrypt the firmware.

When a customer wants to download the firmware to a chip, they send a chip identifier to
the provider server, HSM or any provider license generator tool, which returns a license for
the identified chip. The license contains the encrypted firmware key, and only this chip can
decrypt it.

AN5054 Rev 2 45/75

AN5054 Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer

74

License distribution

There are many possible ways for the firmware provider to generate and distribute licenses:

• Server based: an internet server can be set up, and when a customer needs to Flash
the firmware on to a chip, they connect to the server which generates a license for this
chip.

• HSM based: Hardware Security Modules can be built, one of which is installed on the
programming house production line.

• Licenses can be generated in advance (but the firmware provider must know which
chips to generate licenses for).

There is no STMicroelectronics secret involved in license generation, so each firmware
provider is free to choose their preferred method.

For ST we offer an SFI solution based on SmartCards HSM as a license distribution tool for
use in programming houses.

HSM programming by OEM for License distribution

When an OEM needs to deliver an HSM to a programming house for deployment as a
license generation tool for programming of relevant STM32 devices, some customization of
the HSM must first be performed.

The HSM needs to be programmed with all the data needed for the license scheme
deployment. In the production line, a dedicated API is available for each piece of data to be
programmed in the HSM.

These data are:

• The counter: the counter is set to a maximum value that corresponds to the maximum
number of licenses that could be delivered by the HSM. It aims to prevent over-
programming.

It is decremented with each license delivered by the HSM.

No more licenses are delivered by the HSM once the counter is equal to zero.

The maximum counter value must not exceed a maximum predefined value, which is
16 Ku for HSM version 1.0.

• The Firmware key: this key is 32 bytes and is composed of two fields, the initialization
vector (IV) (first field) and the key (last field) that were used to AES128-GCM encrypt
the firmware.

Both fields are 16 bytes long, but the last 4 bytes of the IV must be zero (only 96 bits of
IV are used in the AES128-GCM algorithm).

Both fields must remain secret; that’s why there are encrypted before being sent to the
chip.

The key and IV remains the same for all licenses for a given piece of firmware.
However, they must be different for different firmware or different versions of the same
firmware.

• The Firmware identifier: allows the correct HSM to be identified for a given firmware.

The HSM must be in “OPERATIONAL STATE” (locked) when shipped by the OEM to
guarantee his data confidentiality and privacy.

ST provides the tools needed to support SFI via HSM. In fact, HSM programming is
supported by the STM32TrustedPackageCreator tool. Figure 32 shows the GUI for HSM
programming in STPC tool.

Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer AN5054

46/75 AN5054 Rev 2

Figure 32. HSM programming GUI in the STPC tool

During SFI install, STM32CubeProgrammer communicates with the device to get the chip
certificate, upload it into the HSM to request the license. Once the license is generated by
the HSM, it gives it back to the STM32 device. This process is illustrated in Figure 33.

AN5054 Rev 2 47/75

AN5054 Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer

74

Figure 33. HSM programming GUI in the STPC tool

For further details, please refer to the SFI-HSM specification document and the SFI-HSM
user manual (UM2428) [2].

4.2 Secure programming using bootloader interface

4.2.1 Secure firmware installation using Bootloader interface flow

The production equipment on the OEM-CM production line needs to be equipped with a
Flashing Tool (FT) supporting the programming of SFI images. The Flashing tool to be used
on OEM-CM production line is STM32CubeProgrammer, which is given the data blob
prepared by the STPC, containing the image header and the encrypted image data blob.

Note: The SFI install is performed successfully only if a valid license is given to the Flashing tool.

STM32CubeProgrammer supports secure firmware install for STM32H753xI and
STM32L451CE specific part number so far.

For STM32H753xI devices, one important outcome is that RSS fully manages the
installation (no secure bootloader) and SFI is supported for USART, SPI and USB interfaces
for those devices .Otherwise for STM32L451CE specific part number devices the
installation is performed through a secure bootloader via USART or SPI interfaces only.

For more details on SFI over these STM32 devices refer to AN4992 [1]. This document is
available on www.st.com.

Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer AN5054

48/75 AN5054 Rev 2

The general flow of the Secure Firmware Installation using bootloader interface on a chip for
H7 and L4 secure devices is shown respectively in Figure 33 and Figure 34 below.

Figure 34. Secure programming via STM32CubeProgrammer overview on STM32H7
devices

Figure 35. Secure programming via STM32CubeProgrammer overview on STM32L4
devices

AN5054 Rev 2 49/75

AN5054 Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer

74

4.2.2 Secure Module installation using bootloader interface flow

As explained in Section 3.3: SMI generation process, outputs are generated for this
particular use case:

• The first part, not encrypted: this is a regular ELF/AXF file, containing all the sections
except the code section extracted by the STPC to prepare the SMI module

• The encrypted SMI module, which contains the protected code.

The first part can be programmed into the chip using any means (JTAG Flasher, UART
Bootloader and so on, as for any regular ELF/AXF file.

The full content of the SMI image file and its corresponding license are given to
STM32CubeProgrammer which places them in RAM

The RSS_SMI_resetAndInstallModules() function is then invoked through the
start_smi() secure bootloader command with the following parameters:

• Pointer to the license

• Pointer to the content of the SMI image file.

This causes a reset and the decryption, authentication and install of the protected module
code into a properly setup Pc-ROP area

Note: The SMI install is performed successfully only if the adequate license is given to the
Flashing tool.

4.2.3 STM32CubeProgrammer for SFI using bootloader interface

For SFI programming, the STM32CubeProgrammer is used in CLI mode (the only mode so-
far available) by launching the following command:

-sfi, --sfi

Syntax: -sfi protocol=<Ptype> <file_path> <licenseFile_path>

protocol=<Ptype > :Protocol type to be used: static/live (only static protocol is currently
supported).

<file_path> : Path of SFI file to be programmed.

<licenseFile_path>:Path to the license file of the smi to be programmed.

[<licenseMod_path>] : Path to the license files of the integrated SMI module(s), (used
only when the SFI image is composed of one or many SMI modules areas).

Example using UART bootloader interface:

STM32_Programmer.exe -c port=COM1 br=115200 -sfi protocol=static
"C:\SFI\data.sfi" "C:\SFI\license.bin"

This command allows secure installation of firmware “data.sfi” into a dedicated Flash
memory address.

Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer AN5054

50/75 AN5054 Rev 2

4.2.4 STM32CubeProgrammer for SMI via Bootloader interface

For SMI programming, STM32CubeProgrammer is used in CLI mode by launching the
following command:

-smi, --smi

Syntax: -smi protocol=<Ptype> <file_path> [<address>] <licenseFile_path>

protocol=<Ptype>: Protocol type to be used : static/live (only static protocol is supported so
far)

<file_path>: Path of SMI file to be programmed.

[<address>]:: Destination address of the SMI module (only needed when relocatable).

<licenseFkile_path>: Path to the license file of the SMI to be programmed.

Example using UART bootloader interface:

STM32_Programmer.exe -c port=COM1 br=115200 -smi protocol=static
"C:\SMI\data.smi" 0x08080000 "C:\SMI\license.bin"

This command allows programming the SMI specified file “data.smi” into a dedicated
PCROPed area.

4.2.5 STM32CubeProgrammer for get certificate via Bootloader interface

To get the chip certificate, STM32CubeProgrammer is used in CLI mode by launching the
following command:

-gc, --getcertificate

Syntax: –gc <file_path>

Example using UART bootloader interface:

STM32_Programmer.exe -c port=COM1 -gc "C:\Demo_certificate.bin"

This command allows the chip Certificate to be read and uploaded
into the specified file: "C:\Demo_certificate.bin"

The execution results are shown in Figure 36.

Figure 36. Example of getcertificate command execution using UART interface

AN5054 Rev 2 51/75

AN5054 Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer

74

4.3 Secure programming using JTAG/SWD interface

4.3.1 SFI programming using JTAG/SWD flow

It is also possible to program the SFI image using the JTAG interface. Here the read out
protection mechanism (RDP level 1) cannot be used during SFI as user Flash memory is
not accessible after firmware chunks written to RAM through the JTAG interface.

The whole process happens in RDP level 0. The code in Flash memory is protected from
the debugger by the PCROP mechanism. The whole user Flash memory is PCROPed
during SFI.

One important outcome is that RSS fully manages the installation. This means that the
whole SFI image and the license must be transferred to RAM before starting. The SFI image
header and areas can be written to different locations.

SFI via debug interface is currently supported only for STM32H753l devices.

For these devices, there is around 1 Mbyte of RAM available, with 512 Kbytes in main
SRAM. This means that the maximum image size supported is 1 Mbyte, and the maximum
area size is 512 Kbytes.

To remedy this, we resort to splitting the SFI image into several parts, so that each part fits
into the allowed RAM size.

An SFI multi install is then performed. Once all its SFI parts are successfully installed, the
global SFI image install is successful.

Other limitations are that security must be left activated in the configuration area if there is a
PCROP area.

Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer AN5054

52/75 AN5054 Rev 2

The SFI flow for programming through JTAG is described in Figure 37.

Figure 37. SFI programming by JTAG/SWD flow overview
(monolithic SFI image example)

4.3.2 SMI programming through JTAG/SWD flow

For SMI programming through JTAG/SWD the process flow is similar to that using the
UART bootloader. In fact, RSS fully manages the installation in both cases.

This means that the whole SMI image and its corresponding license must be transferred to
RAM before starting. Then, to access RSS services through JTAG, there are two options:

• write a small program in RAM that calls the public API

• use the secure API directly.

Once the RSS function “RSS_SMI_resetAndInstallModules” execution has finished
successfully, the SMI module is decrypted, Flashed and protected by the PCROP
mechanism.

The essential steps of the SMI programming by JTAG flow are described in Figure 38.

AN5054 Rev 2 53/75

AN5054 Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer

74

Figure 38. SMI programming by JTAG flow overview

Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer AN5054

54/75 AN5054 Rev 2

4.3.3 STM32CubeProgrammer for secure programming using JTAG/SWD

The only modification in the STM32CubeProgrammer secure command syntax is the
connection type which must be set to “jtag” or “swd”, otherwise all secure programming
syntax for supported commands is identical.

Note: Using a debug connection “HOTPLUG” mode must be used with the connect command.

Example of “getcertificate” command using JTAG:

STM32_Programmer.exe –c port=jtag mode=HOTPLUG -gc

testJTAG_Certif.bin

The result of this example is shown in Figure 39.

Figure 39. Example of getcertificate command using JTAG

Example of “smi” command using SWD

-c port=swd mode=HOTPLUG -smi protocol=static
"RefSMI_MDK/FIR_module.smi" "RefSMI_MDK/licenseSMI.bin" -vb 3 -log

AN5054 Rev 2 55/75

AN5054 Example SFI programming scenario

74

5 Example SFI programming scenario

5.1 Scenario overview

The actual user application to be installed on the STM32H753xI device makes “printf”
packets appear in serial terminals.

The application was encrypted using the STPC.

The OEM provides tools to the CM to get the appropriate license for the concerned SFI
application.

5.2 Hardware and software environment

For successful SFI programming, some HW and SW prerequisities are needed:

• STM32H743I-EVAL board

• STM32H753xI with Bootloader v13.2-RC2 and RSS v0.9 programmed

• RS232 cable for SFI programming via UART

• Micro-USB for debug connection

• PC running on either Windows 7 or Ubuntu 14 in both 32-bit and 64-bit versions

• STM32TrustPackageCreator v0.2.0 (or greater) package available from www.st.com

• STM32CubeProgrammer v0.4.0 (or greater) package available from www.st.com.

5.3 Step-by-step execution

5.3.1 Build OEM application

OEM application developers can use any IDE to build their own firmware.

5.3.2 Perform the SFI generation (GUI mode)

To be encrypted with the STM32TrustedPackageCreator Tool, OEM firmware is provided in
Axf format in addition to a csv file to set the option bytes configuration. A 128-bit AES
encryption key and a 96-bit nonce are also provided to the tool. They are available in the
SFI_ImagePreparation directory.

A “.sfi” image is then generated (out.sfi).

Figure 40 shows the STPC GUI during SFI generation.

Example SFI programming scenario AN5054

56/75 AN5054 Rev 2

Figure 40. STPC GUI during SFI generation

AN5054 Rev 2 57/75

AN5054 Example SFI programming scenario

74

5.3.3 Performing HSM programming for license generation using STPC
(GUI mode)

The OEM must provide a license generation tool to the programming house to be used for
license generation during the SFI install process.

In this example, HSMs are used as license generation tools in the field.See Section 4.1.2:
License mechanism for HSM use and programming.

Figure 41 shows an example for HSM programming by OEM to be used for SFI install.

The maximum number of licenses delivered by the HSM in this example is 1000.

Figure 41. Example of HSM programming using STPC GUI

Note: When programming the HSM for real in-the-field use (here it is just an example scenario),
the filed “Set HSM to operational state” must be checked to lock the HSM before it is
shipped to the programming house (untrusted environment).

Example SFI programming scenario AN5054

58/75 AN5054 Rev 2

5.3.4 Programming input conditions

Before performing an SFI install be sure that:

• Flash memory is erased.

• No PCROPed zone is active, otherwise destroy it.

• The chip must support security (a security bit must be present in the option bytes)

• When using a UART interface the User security bit in option bytes must be enabled
before launching the SFI command. For this, the following STM32CubeProgrammer
command can be launched:

– Launch the following command (Uart Bootloader used => Boot0 pin set to VDD):
-c port=COM9 -ob SECURITY=1

• When using a UART interface the Boot0 pin must be set to VSS:

– After enabling security (boot0 pin set to VDD), a power off/power on is needed
when switching the Boot0 pin from VDD to VSS: power off, switch pin then power
on.

• When performing an SFI install using UART BL then, no debug interface must be
connected to any USB host, if there is a debug interface that was used/connected,
then, disconnect it then perform a power off/power on before launching the SFI install
to avoid any debug intrusion problem.

• Boot0 pin set to VDD When using a debug interface.

• You have a valid license at your disposal, generated for the currently used chip, or a
license generation tool to generate the license during SFI install (HSM).

5.3.5 Perform the SFI install using STM32CubeProgrammer

IIn this section the STM32CubeProgrammer tool is used in CLI mode (the only mode so-far
available for secure programming) to program the SFI image “out.sfi” already created in the
previous section.

STM32CubeProgrammer supports communication with ST HSMs (Hardware Secure
Modules based on smart card) to generate a license for the connected STM32 device during
SFI install.

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi protocol=static
"<local_path>/out.sfi" hsm=1 slot=<slot_id>

AN5054 Rev 2 59/75

AN5054 Example SFI programming scenario

74

Figure 42 shows the SFI install via SWD execution and the HSM as license generation tool
in the field.

Figure 42. SFI install success using SWD connection (1)

Example SFI programming scenario AN5054

60/75 AN5054 Rev 2

Figure 43. SFI install success using SWD connection (2)

AN5054 Rev 2 61/75

AN5054 Example SMI programming scenario

74

6 Example SMI programming scenario

6.1 Scenario overview

In this scenario, the 3rd party’s library to be installed on the STM32H753xI device makes
“printf” packets appear in the serial terminal if the library code execution called by the
application does not crash.

The library code was encrypted using the STPC.

The OEM provides tools to the CM to get the appropriate license for the concerned SMI
module.

6.2 Hardware and software environment

The same environment as explained in Section 4.1.1: Device authentication.

6.3 Step-by-step execution

6.3.1 Build 3rd party Library

ST or 3rd party developers can use any IDE to build the library to be encrypted and installed
into the STM32H7 device.

In this scenario the SMI module based on the built library is not relocatable. The destination
address is hardcoded in SMI module to the following value: 0x08080000.

Example SMI programming scenario AN5054

62/75 AN5054 Rev 2

6.3.2 Perform the SMI generation

For encryption with the STM32TrustedPackageCreator Tool, the 3rd party module is
provided in Elf format. A 128-bit AES encryption key, a 96-bit nonce and a security version
file are also provided to the tool. They are available in the SMI_ImagePreparation directory.
After choosing the name of the section to be encrypted, a “.smi” image is then generated
(FIR_module.smi).

The clear data part of the library without the encrypted section is also created in Elf format
(FIR_module_clear.axf).

Figure 37 shows the STPC GUI during SMI generation.

Figure 44. STPC GUI during SMI generation

AN5054 Rev 2 63/75

AN5054 Example SMI programming scenario

74

6.3.3 Programming input conditions

Before performing the SMI install be sure that:

• The SMI module destination address is not already PCROPed, otherwise destroy this
PCROPed area.

• The Boot0 pin set to VDD.

• The chip supports security (existing security bit in option bytes).

• When performing SMI install using UART BL, no debug interface is connected to any
USB host. If there is a debug interface that was used/connected, disconnect it then
perform a power off/power on before launching the SMI install to avoid any debug
intrusion problem.

• You have the proper license generated for the currently used chip, or an HSM or secure
server to generate it during SMI programming.

6.3.4 Perform the SMI install

Using JTAG/SWD

After making sure that all the input conditions are respected, open a cmd terminal and go to
<STM32CubeProgrammer_package_path>/bin, then launch the following
STM32CubeProgrammer command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -smi
protocol=static "<local_path>/FIR_module.smi"
"<local_path>/<licenseSMI.bin>"

This command allows the SMI specified file “FIR_module.smi” to be programmed into a
dedicated PCROPed area at address (0x08080000).

Figure 45 shows the SMI install via SWD execution:

Example SMI programming scenario AN5054

64/75 AN5054 Rev 2

Figure 45. SMI install success via debug interface

AN5054 Rev 2 65/75

AN5054 Example SMI programming scenario

74

6.3.5 How to test for SMI install success

1. Flash the clear data part “FIR_module_clear.hex” (available under the Tests directory)
into address 0x08084000 using STM32Cubeprogrammer or any other Flashing tool.

2. Flash the test application “tests.hex” (which is is based on the SMI module), available
under the Tests directory at start user Flash address “0x08000000” using
STM32Cubeprogrammer or any other Flashing tool.

The option bytes configuration becomes as below (Figure 46).

Example SMI programming scenario AN5054

66/75 AN5054 Rev 2

Figure 46. OB display command showing that a PCROP zone was activated after SMI

3. If a UART connection is available on the board used, open the Hercule.exe serial
terminal available under the Tests directory, open the connection. On reset you should
see the dedicated “printf” packets

AN5054 Rev 2 67/75

AN5054 Example combined SFI-SMI programming scenario

74

7 Example combined SFI-SMI programming scenario

7.1 Scenario overview

The actual user application to be installed on the STM32H753xI device makes “printf”
packets appear in the serial terminal.

In this case the OEM application is built based on a third party’s library as explained in IAR
example (Section 2.3: Execute-only/position independent library scenario example under
EWARM.)

The application is encrypted using the STPC, the SMI module corresponding to 3rd party’s
library code is uploaded as input during combined SFI generation and represented as an
area of type ‘M’ within firmware application areas.

The SFI OEM application firmware could then be uploaded (on an OEM server for example)
with all the inputs needed for license generation by the CM.

The OEM provides tools to the CM to get the appropriate licenses for the SFI application
concerned and the integrated SMI module(s).

7.2 Hardware and software environment

The same environment as explained in Section 5.2: Hardware and software environment.

7.3 Step-by-step execution

1. Build the OEM application

OEM application developers may use any IDE to build their firmware as well as using
SMI modules provided by STMicoelectronics or 3rd parties for example.

In this example we use firmware based on a single library (just one SMI module is
integrated in the SFI image).

2. Perform the SFI generation.

For encryption with the STM32TrustedPackageCreator Tool, OEM firmware and the
clear data part are both provided in hex format (corresponding to the SMI module to be
integrated within the SFI image). A csv file to set the option bytes configuration is also
necessary. The SMI module used is also provided as an input to the tool, in addition to
a 128-bit AES encryption key and a 96-bit nonce. All inputs needed are available in the
“SFI_ImagePreparation/Combined” directory. A “.sfi” image is then generated
(out_comb.sfi).

Example combined SFI-SMI programming scenario AN5054

68/75 AN5054 Rev 2

Figure 47 shows the STPC GUI during combined SFI generation.

Figure 47. GUI of STPC during combined SFI-SMI generation

3. Programming input conditions are the same as for SFI programming scenario
(Section 5.3.4: Programming input conditions).

4. Perform the SFI install using SWD/JTAG or bootloader interface (here SWD interface
will be used).

AN5054 Rev 2 69/75

AN5054 Example combined SFI-SMI programming scenario

74

7.3.1 Using JTAG/SWD

Once all input conditions are respected, go to the stm32_programmer_package_v0.4.1/bin
directory and launch the following command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi
protocol=static "<local_path>/out_comb.sfi" "<local_path>/
<licenseSFI.bin>"

Once all input conditions are respected, go to the
<STM32CubeProgrammer_package_path>/bin directory and launch the following
command:

STM32_Programmer_CLI.exe -c port=swd mode=HOTPLUG -sfi
protocol=static "<local_path>/out_comb.sfi"
"<local_path>/<licenseSFI.bin>"

Figure 48 shows the combined SFI-SMI install trace success.

Example combined SFI-SMI programming scenario AN5054

70/75 AN5054 Rev 2

Figure 48. Combined SFI-SMI programming success using debug connection

AN5054 Rev 2 71/75

AN5054 Example combined SFI-SMI programming scenario

74

7.3.2 How to test the combined SFI install success

The option bytes configuration should be modified as shown in Figure 49.

• 3rd party library module is programed into a PCROP area

• The SFI image is protected using RDP level1.

If a UART connection is available on the board used, open the Hercule.exe serial terminal
available under the Tests directory, open the connection and on reset you should see the
dedicated “printf” packets.

Example combined SFI-SMI programming scenario AN5054

72/75 AN5054 Rev 2

Figure 49. Option bytes after combined SFI-SMI install success

AN5054 Rev 2 73/75

AN5054 Reference documents

74

8 Reference documents

Table 2. Document references

Reference Version Document title

[1] Latest version
AN4992, STM32H7 secure firmware/module install overview.
STMicroelectronics.

[2] Latest version
UM2428, Hardware secure modules (HSM) for secure firmware install (SFI).
STMicroelectronics.

Revision history AN5054

74/75 AN5054 Rev 2

9 Revision history

Table 3. Document revision history

Date Revision Changes

03-Aug-2018 1 Initial release.

18-Apr-2019 2
Updated publication scope from ‘ST restricted’ to
‘Public’.

AN5054 Rev 2 75/75

AN5054

75

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

	1 General information
	1.1 Licensing information
	1.2 Acronyms and abbreviations
	Table 1. List of abbreviations

	2 How to generate an execute-only/position independent library for SMI preparation
	2.1 Requirements
	2.2 Toolchains allowing SMI generation
	2.3 Execute-only/position independent library scenario example under EWARM
	2.3.1 Relocatable library preparation steps
	Figure 1. IAR example project overview
	Figure 2. Update compiler extra options
	Figure 3. Linker extra options
	Figure 4. Setting post-build option
	Figure 5. Postbuild batch file

	2.3.2 Relocatable SMI module preparation steps
	2.3.3 Application execution Scenario
	Figure 6. How to exclude the “lib.o” file from build
	Figure 7. app.icf file

	3 Encrypted firmware(SFI)/module(SMI) preparation using STM32TrustedPackageCreator
	3.1 System requirements
	3.2 SFI generation process
	Figure 8. SFI preparation mechanism
	Figure 9. SFI image process generation
	Figure 10. RAM size and CT address inputs used for SFI multi install
	Figure 11. 'P' and ‘R’ area specifics versus a regular SFI area
	Figure 12. Error message when firmware files with address overlaps used
	Figure 13. Error message when SMI address overlaps with a firmware area address
	Figure 14. Error message when a SFI area address is not located in Flash memory
	Figure 15. SFI format layout
	Figure 16. SFI image layout in case of split

	3.3 SMI generation process
	Figure 17. SMI preparation mechanism
	Figure 18. SMI image generation process
	Figure 19. SMI format layout

	3.4 STM32TrustedPackageCreator tool in the command line interface
	Figure 20. STM32TrustedPackageCreator tool - available commands
	3.4.1 Steps for SFI generation (CLI)
	Figure 21. Option bytes file example
	Figure 22. SFI generation example using an Elf file

	3.4.2 Steps for SMI generation(CLI)
	Figure 23. SMI generation example

	3.5 Using the STM32TrustedPackageCreator tool graphical user interface
	3.5.1 SFI generation using STPC in GUI mode
	Figure 24. SFI generation Tab
	Figure 25. Firmware parsing example
	Figure 26. SFI successful generation in GUI mode example

	3.5.2 SMI generation using STPC in GUI mode
	Figure 27. SMI generation Tab
	Figure 28. SMI successful generation in GUI mode example

	3.5.3 Settings
	Figure 29. Settings icon and Settings dialog box

	3.5.4 Log generation
	Figure 30. Log example

	3.5.5 SFI and SMI file checking function
	Figure 31. Check SFI file example

	4 Encrypted firmware(SFI)/module(SMI) programming using STM32CubeProgrammer
	4.1 Chip certificate authenticity check and license mechanism
	4.1.1 Device authentication
	4.1.2 License mechanism
	Figure 32. HSM programming GUI in the STPC tool
	Figure 33. HSM programming GUI in the STPC tool

	4.2 Secure programming using bootloader interface
	4.2.1 Secure firmware installation using Bootloader interface flow
	Figure 34. Secure programming via STM32CubeProgrammer overview on STM32H7 devices
	Figure 35. Secure programming via STM32CubeProgrammer overview on STM32L4 devices

	4.2.2 Secure Module installation using bootloader interface flow
	4.2.3 STM32CubeProgrammer for SFI using bootloader interface
	4.2.4 STM32CubeProgrammer for SMI via Bootloader interface
	4.2.5 STM32CubeProgrammer for get certificate via Bootloader interface
	Figure 36. Example of getcertificate command execution using UART interface

	4.3 Secure programming using JTAG/SWD interface
	4.3.1 SFI programming using JTAG/SWD flow
	Figure 37. SFI programming by JTAG/SWD flow overview (monolithic SFI image example)

	4.3.2 SMI programming through JTAG/SWD flow
	Figure 38. SMI programming by JTAG flow overview

	4.3.3 STM32CubeProgrammer for secure programming using JTAG/SWD
	Figure 39. Example of getcertificate command using JTAG

	5 Example SFI programming scenario
	5.1 Scenario overview
	5.2 Hardware and software environment
	5.3 Step-by-step execution
	5.3.1 Build OEM application
	5.3.2 Perform the SFI generation (GUI mode)
	Figure 40. STPC GUI during SFI generation

	5.3.3 Performing HSM programming for license generation using STPC (GUI mode)
	Figure 41. Example of HSM programming using STPC GUI

	5.3.4 Programming input conditions
	5.3.5 Perform the SFI install using STM32CubeProgrammer
	Figure 42. SFI install success using SWD connection (1)
	Figure 43. SFI install success using SWD connection (2)

	6 Example SMI programming scenario
	6.1 Scenario overview
	6.2 Hardware and software environment
	6.3 Step-by-step execution
	6.3.1 Build 3rd party Library
	6.3.2 Perform the SMI generation
	Figure 44. STPC GUI during SMI generation

	6.3.3 Programming input conditions
	6.3.4 Perform the SMI install
	Figure 45. SMI install success via debug interface

	6.3.5 How to test for SMI install success
	Figure 46. OB display command showing that a PCROP zone was activated after SMI

	7 Example combined SFI-SMI programming scenario
	7.1 Scenario overview
	7.2 Hardware and software environment
	7.3 Step-by-step execution
	Figure 47. GUI of STPC during combined SFI-SMI generation
	7.3.1 Using JTAG/SWD
	Figure 48. Combined SFI-SMI programming success using debug connection

	7.3.2 How to test the combined SFI install success
	Figure 49. Option bytes after combined SFI-SMI install success

	8 Reference documents
	Table 2. Document references

	9 Revision history
	Table 3. Document revision history

