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Preface

The present book is the outcome of some decades of research and teaching in
plasticity and fracture mechanics at various places and institutions. Both subjects
have been graduate courses for engineering students over four semesters of four
hours per week at the Technical University of Berlin in the 1980s and 1990s. The
correspondent lecture notes, jointly written with my former colleagues Knut Burth
and Jürgen Olschwski, who both passed away much too early, comprised 200–250
pages per semester. With the European Bologna reform of university education
starting in 2000, the curriculum had to be reduced to one course “Plasticity and
Fracture”, and since a second course on “Elasticity and Fracture” was no com-
pulsory precognition, a short survey on linear elastic fracture mechanics appeared
necessary before plasticity could start. This forced the author to compress the
substance of teaching by 75% and restrict it to what he considered to be the absolute
minimum of knowledge which a student has to learn in order to be able to educate
himself in later years, when working in industry or science. The purpose could not
be giving a comprehensive presentation of plasticity and fracture mechanics, any
more, but providing a general and science-based impression of basic concepts
which should be useful for both industrial practice and science.

This has become the design principle of the present book which relies on
respective lecture notes, again. Combining both, plasticity and fracture, in one
course and in one book means curtailing any encyclopaedic pretence but opens the
chance for an interdisciplinary view on both subjects with regular cross references
in the context of a unified nomenclature. This relieves the reader from switching
between different books and different terminologies. Links to corresponding stan-
dards help clarifying the scientific foundation of engineering applications and rating
their potentials and limits.

Beyond that, the book wants to make students familiar with relevant original
literature in a time when the number of journals and publications expands expo-
nentially and is overgrowing seminal and fundamental papers of the past. Research
politics enforces publishing, and hence writing own papers has gained priority to
studying other people’s publications. The consequences for research and science are
obvious. The total number of papers increases but the number of really significant
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publications does not, making it difficult to separate the wheat from the chaff,
particularly for students, young engineers and scientists.

Not least, the motivation for compiling this book results from experiences with
reading and reviewing manuscripts submitted to scientific journals, in which similar
misconceptions of established concepts reappear regularly and identical problems
are solved again and again by young scientists who are not thoroughly advised by
senior scientists. It is alarming which weird opinions about the J-integral and its
path dependence in incremental plasticity can still be found in the literature and in
computer manuals 50 years after its introduction into fracture mechanics.
Manuscripts on correction terms of J for multiphase materials are submitted peri-
odically. If the present book could help bringing some light into obscurity, the
author would be delighted.

On the background of its history, the present book could not have been written
without the valuable help, cooperation and assistance of many colleagues along my
professional career, starting with Georgia Künecke and Dieter Noack at BAM
Berlin, Knut Burth and Jürgen Olschewski jointly lecturing plasticity and fracture
mechanics at the TU in Berlin, and ending with Ingo Scheider, Dirk Steglich and
Manfred Schödel at GKSS (now Helmholtz Centre) Geesthacht, just to mention the
most outstanding. I acknowledge their contributions whose merit and value are
greater than references of their publications in the bibliography can express.

Geesthacht, Germany Wolfgang Brocks
June 2017
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G Shear modulus
G ¼ �@U=B @a Energy release rate (Griffith)
GI, GII, GIII Energy release rates for modes I, II, III
Gh Energy release rate for a (virtual) crack extension under

an angle h
In Parameter in HRR stress equations, Eq. (5.66)
J J integral of Cherepanov and Rice, Eq. (5.20)
DJ “Cyclic” J-integral, Eq. (5.79)
Ji J value at initiation of crack extension
J1, J2, J3 Components of the J vector, Eq. (5.15)
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J2 r0ij
� �

, J3 r0ij
� �

Invariants of deviatoric stress tensor, Eq. (3.19)

K Bulk modulus (Table 3.1)
Kr = K/Kc Normalised SIF in FAD
KI, KII, KIII Stress-intensity factors for modes I, II, III
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Keff
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{K} = {Ka} Column matrix of stress-intensity factors (a = I, II, III)
L Length
L0 Initial length
Lpl Plastic constraint factor
Lr = F/Fpl Normalised force in FAD
Mb Bending coefficient for semi-elliptical surface cracks,

ASTM BPVC
Mm Membrane coefficient for semi-elliptical surface cracks,

ASTM BPVC
N Number of cycles in Eq. (2.19), power-law exponent in

Eq. (5.83)
Pf Failure probability
Pij Energy momentum tensor
Q Q-stress, Eq. (5.73)
Q(k) Elliptical shape factor, Eq. (4.10)
R(x,t) (column matrix of) Structural response data, Sect. 8.5
R0 = RF(0) (uniaxial) Yield strength
R0
0 Modified yield strength depending on lateral constraint,

Eq. (4.8)
Reff = 0.5(R0+Rm) “Effective” yield strength
ReL Lower yield point
RF(ep) (uniaxial) Flow curve
Rf Parameter in Rousselier’s model, Eq. (8.27)
Rm Tensile strength (nominal stress at maximum force)
Rp Proof stress
S Surface
Sp ¼ RF

�
ep Plastic secant modulus

T T-stress, Eq. (2.22)
Tp ¼ dRF

�
dep Plastic tangent modulus

U Potential energy
Ue ¼ R R

rij _eeij dt dV Elastic strain energy
Udis Dissipated energy
Urel Released potential energy due to cracking
Usep Work of separation, separation energy
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V Volume
@V Boundary (surface) of V
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Y(a/W,…) Geometry function of SIF, Eq. (2.25)
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work-conjugate to damage D
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cracks, crack depth of surface flaws
aeff Effective crack length for SSY, Eq. (4.5)
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c (column matrix of) Material parameters (Sect. 8.5)
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length in Dugdale’s model
d Diameter
dn Proportionality factor between J and dt, Eq. (5.69)
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ei Unit vectors along coordinates
fi Volume (or body) forces
fij(h) Angular functions of asymptotic stress fields in LEFM
fv Void volume fraction or porosity, Eq. (8.18)
f cv Critical void volume fraction at the onset of void

coalescence
f fv Void volume fraction at final failure
f 0v Initial void volume fraction
f �u Ultimate value of modified damage parameter in GTN

model
f �v Modified damage parameter of the GTN model,

Eq. (8.21)
f/ Elliptical shape function
gi(h) Angular functions of asymptotic displacement fields in

LEFM
h (element) Height
hj(/) Geometry functions for semi-elliptical surface cracks
k = a/c Aspect ratio
m Weibull exponent
n Exponent in Paris law, Eq. (2.19), hardening exponent in

Ramberg–Osgood power law, Eq. (3.48)
n = ni ei Unit normal vector
nI, nII, nIII Unit vectors along principal coordinates
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p Pressure
q1, q2, q3 Adjustable parameters of the GTN model, Eq. (8.20)
ri, ro Inner, outer radius of a cylinder
r, h, z Cylindrical coordinates at crack-tip
r, u, z Cylindrical coordinates
s Exponent of singularity in HRR field, Eq. (5.53)
sc Arc length of crack front
sij ¼ rij � nij (components of) Effective stress tensor, Eq. (3.17)

�s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
�U s0ij
� �r

Equivalent uniaxial effective stress

t Time, scalar loading parameter in incremental plasticity
t = ro−ri Wall thickness of cylinders
ti Surface forces, tractions
u = ui ei Displacement vector (field)
~ui hð Þ Dimensionless angular functions of asymptotic

displacement fields in EPFM
vL Load point displacement
vLL Load line displacement, C(T) specimen
�w ¼ R

rij _eijdt Strain energy density
_�wp ¼ rij _e

p
ij Plastic dissipation rate density

x Spatial coordinates of material points in a body
x, y, z Cartesian coordinates
xc Characteristic distance from crack-tip in RKR model
xp Half size of plastic zone in the ligament in SSY

Greek Symbols
a Parameter of Ramberg–Osgood power law, Eq. (3.48)
aij Internal state variables conjugate to back stresses nij
ath Coefficient of thermal expansion
C Contour of J-integral
Cc ¼ 2c ¼ @Usep

�
@Ac Separation energy per cracked area

c Surface energy
D Increment
d Crack opening displacement (COD), separation in TSL
d Separation vector (cohesive model)
dij Kronecker symbol, identity tensor
dn, dt, ds Normal and shear separations in cohesive model
dt Crack-tip opening displacement (CTOD)
d5 CTOD according to Schwalbe, Fig. 5.17
e ¼ DL=L0 Normal strain, elongation
Eij Mesoscopic strains

xiv Nomenclature



eij ¼ @ui
�
@xj Strains, (components of) linear strain tensor

e0ij ¼ eij � ekkdij Deviatoric strains
�ep Accumulated (equivalent) plastic strain

_�epvM ¼
ffiffiffiffiffiffiffiffiffiffi
2
3_e
p
ij _e

p
ij

q
Equivalent plastic strain rate, work-conjugate to von
Mises equivalent stress

e0 Normalising parameter of Ramberg–Osgood power law,
Eq. (3.47), strain at onset of yielding

ef Failure or fracture strain
e
_

ij hð Þ Dimensionless angular functions of asymptotic strain
fields in EPFM (HRR field)

f (dimensionless) Load factor
g ¼ rh=�r Triaxiality of stress state
ηJ η-factor for plastic J of bend specimens
H Temperature
h Angular coordinate at crack-tip
j Factor characterising elastic in-plane deformation in

dependence on lateral constraint, Eq. (2.3)
jf Parameter of modified damage in GTN model, Eq. (8.22)
�j Radius of flow cylinder

k ¼ r1xx
.
r1yy

Biaxiality factor

k, l Lamé’s coefficients (Table 3.1)
kp Plastic multiplier (finite plasticity)
_kp Plastic multiplier (incremental plasticity)

ks ¼ a=
ffiffiffiffiffi
rit

p
Shell parameter

m Poisson’s ratio
U Yield function, Eq. (3.10), plastic potential, dissipation

potential in CDM
Ucoh Potential of cohesive law (TSL), Eq. (9.19)
u Angular coordinate
/ Parametric angle for semi-elliptical surface crack,

orientation of maximum shear stress in slip-line theory
r = F/A Uniaxial, tensile stress
r Traction vector (cohesive model)
r∞, r∞ Remote nominal tensile stress
�r Equivalent uniaxial stress
�rT Equivalent stress according to Tresca
�rvM ¼ ffiffiffiffiffiffiffi

3J2
p

Equivalent von Mises stress
r0 Normalising parameter of Ramberg–Osgood power law
rb Bending part of stress distribution, ASME BPVC
rc Cleavage fracture stress in RKR model
rh ¼ 1

3rkk Hydrostatic stress
Rij Mesoscopic stresses
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rij (true) Stresses, (components of) Cauchy stress tensor
r0ij ¼ rij � rhdij Deviatoric stresses

r_ij hð Þ Dimensionless angular functions of asymptotic stress
fields in EPFM (HRR field)

~rij Effective stresses in CDM (Sect. 8.4)
rm Membrane part of stress distribution, ASME BPVC
rn, rt, rs Normal and shear tractions in cohesive model
ru Reference stress in Weibull distribution of failure
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HRR Hutchinson, Rice, Rosengren
ISO International Standards Organization
LEFM Linear elastic fracture mechanics
LBB Leak before break
LCF Low-cycle fatigue
M(T) Middle crack in tension
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Chapter 1
Introduction

Abstract The general concept of the present book is outlined. A survey of its
contents and background are given. The motivation for selecting its topics and their
practical relevance for structural assessment are specified. Some references for
supplementing textbooks are presented.

There could be no better introductory statement to a book concerned with strength
of materials than that of Timshenko [10]: “From the earliest times when people
started to build, it was found necessary to have information regarding the strength
of structural materials so that rules for determining safe dimensions of members
could be drawn up.” Modern concepts of structural assessment and stress analysis
date back to the conceptual inspiration of Navier and Cauchy who established the
notion of stresses and strains in the beginning 19th century. With the emerging
theory of elasticity, structural components of different shapes under various loading
conditions could now be mathematically analysed with respect to the resulting
deformations based on Young’s modulus of elasticity, which was obtained in a
simple test. Two serious limitations were encountered, however: deformation
beyond the elastic limit and fracture. The concept of “admissible” stresses gov-
erning structural design until the mid 20th century, at least, limited the maximum
stresses in a structure which were calculated by the theory of elasticity to either the
“yield strength” or the “tensile strength”. While the latter is dubious because the
respective value is no material constant, the former may result in undesirable
conservatism of the design. Brittle fracture is not captured by either of these limits,
anyway.

Two new areas transcending these limits arose in the 20th century, namely
plasticity and fracture mechanics. The latter began as a special subject within the
theory of elasticity analysing stress fields at singularities by means of advanced
mathematical techniques like series expansions, complex stress functions or integral
transforms. Engineering applications of “linear elastic fracture mechanics” (LEFM)
emerged after World War II particular with the upcoming nuclear industry. The
theory of plasticity developed in parallel and found industrial applications as limit
design concept primarily for steel constructions in civil engineering after 1970,
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but only rather recent developments of numerical methods and computer capacities
promoted more general implementations.

It was inevitable that both subjects met and merged together in the last quarter of
the 20th century when the limits of LEFM where encountered, partly because
structural materials became more and more ductile and hence LEFM based
toughness values obsolete, and partly because new demands with respect to
light-weight design appeared. Last not least, the progress in numerical methods and
computer science laid the cornerstone for tackling the new task.

This is the motive and starting point of the present book. It is no text book on
plasticity and does not claim to be one. There are others more detailed, extensive,
and substantial like Kachanov [5], Chakrabarty [4] or Khan and Huang [6]. It
provides an introduction into fundamental concepts of the classical rate and time
independent theory of plasticity as deep as necessary to understand non-linear
fracture mechanics. Neither is it a comprehensive book on fracture mechanics like
the monographs of Broek [3], Andersson [1], Saxena [9] or Broberg [2], which is
just due to its rather small volume which enforces restrictions. Instead, it exceeds
the common frontiers of classical fracture mechanics by advancing into damage
mechanics and cohesive models to illuminate present-day developments and
approaches.

Lemaitre and Chaboche [7] and Maugin [8] elaborated the thermodynamics of
material behaviour in general and plasticity and fracture in particular. Apart from
the advancements during the last 25 years, particularly in numerical modelling,
becoming manifest in the ever increasing literature, engineers might miss practical
aspects of structural assessment and standardisation. Some sections of the present
book are hence particularly concerned with the background of present-day
assessment procedures and ASTM standards for fracture testing.

Putting this spectrum into one book of less than 200 pages requires serious
restrictions. The presentation focuses on quasi-static loading and failure by either
plastic collapse or static fracture. Neither high-cycle fatigue nor creep fracture are
addressed, and just some remarks on alternating plasticity (low-cycle fatigue) are
included.

Finally, the author would be happy if he had helped students and engineers to an
interdisciplinary view of plasticity and fracture and motivated them to have a look
into some of the books listed below or read the original and historic papers in the
detailed bibliography of the respective chapters. There is more of present relevance
to be found there than some people seem to believe.
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Chapter 2
Concepts of Fracture Mechanics

Abstract To begin with, linear elastic behaviour is assumed to explicate the basic
concepts of fracture mechanics, namely energy and stress intensity approaches. The
respective terminology is introduced and the physical quantities of energy release
rate and stress intensity factor are defined. Criteria for unstable “brittle” fracture
based on the energy release rate and the stress intensity factor are established. Some
analytical expressions for stress intensity factors of real structures are given and the
problem of a cracked cylinder under internal pressure is addressed, in particular.

Classical fracture mechanics is based on the theory of continuum mechanics and
constitutive equations for stable material behaviour (see Sect. 6.1.1 on stability
postulates) like elasticity, plasticity or viscoplasticity. It does not account for any
damage of the material preceding crack growth or any kind of material separation. It
postulates the existence of a defect or crack in a body or structure and either
analyses stress and strain fields at the “crack tip”, which is a singular point, or
considers the energy balance of cracked and uncracked media to derive “crack
driving forces” and respective criteria of crack extension. For actually modelling
crack growth, the topology of the body has to be modified.

Generally, two basic concepts of classical fracture mechanics have been estab-
lished, the energy and the stress intensity approach, which are outlined in the
following for linear-elastic material behaviour, first, and extended to
elasto-plasticity later (see Chap. 5 on elastic-plastic fracture mechanics).

Linear-elastic fracture mechanics (LEFM) is based on Hooke’s equation pos-
tulating a linear relationship between stresses, rij, and strains, eij,

eij ¼ 1
E

1þ mð Þrij � mrkkdij
� � ð2:1Þ

with E being Young’s modulus and m Poisson’s ratio, under the assumption of small
deformations. The latter is actually not consistent with strain singularities occurring
at a crack tip but it is essential for closed form solutions which represent a model of
the conditions governing the physical state in some process zone of material
degradation where the requirements of continuum mechanics are not met, anyway.
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Aside from inner circular (penny shaped) or elliptical cracks investigated by
Sneddon [35] and Irwin [18], respectively, most analytical models of cracked
bodies are two-dimensional. They represent panels of arbitrary in-plane shape but
constant thickness, B, with through-thickness cracks. Irwin [17] identified three
fundamental modes of crack displacements, Table 2.1 and Fig. 2.1. Loading in
mode I and mode II is in-plane, and in mode III is out-of-plane. Mode I configu-
rations are particularly important in engineering practice (pressure vessels, bending
of beams) and hence most frequently investigated.

The out-of-plane boundary conditions for panels in mode I or II is either plane
strain (zero lateral strain, ezz = 0) or plane stress (zero lateral stress, rzz = 0),
respectively, which are the limiting cases for very thick or very thin panels. The
out-of-plane condition affects the in-plane deformation owing to Poisson’s ratio, m,
which is captured by a modified Young’s modulus,

Table 2.1 Fundamental modes of crack displacements

Mode Local appearance Types of loading

Mode I Opening of crack faces under tensile
stresses normal to the crack plane

Loading by normal forces or bending,
wedging of crack faces

Mode II Slipping of crack faces along ligament Pure shear forces,
Inclined crack by 45° under biaxial
tension-compression forces,
Cutting and stamping processes

Mode III Out-of-plane shearing Torsion, anti-plane tearing

Fig. 2.1 Fundamental modes of crack displacements according to Irwin [17]
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E0 ¼
E

1�m2 for plane strain, ezz ¼ 0
E for plane stress, rzz ¼ 0

�
: ð2:2Þ

and a factor j, defined as

j ¼ 3� 4m for plane strain, ezz ¼ 0
3�m
1þ m for plane stress, rzz ¼ 0

�
: ð2:3Þ

Extensions to “real” three-dimensional configurations will be addressed as
required.

2.1 The Energy Approach of Griffith

The first one ever studying a cracked structure as an engineering problem was
Griffith [11, 12], who treated the occurrence of fracture by the theorem of minimum
energy and applied this theory to an “infinite” panel with a centre crack of length
2a under biaxial tension, see Fig. 2.2, where “infinite” indicates that the panel
width, 2 W, is very large compared to the crack size, a=W � 1. This configuration
is known as Griffith crack, since.

The elastic strain energy which is stored in a circular region of radius W of a
panel without a crack is

Fig. 2.2 The Griffith crack:
centre crack of length 2a in an
“infinite” panel (W � a)
under biaxial tension
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Ue
0 ¼

pBW2r21
16G

ðj� 1Þð1þ kÞ2 þ 2ð1� kÞ2
h i

; ð2:4Þ

where B is the panel thickness, r∞ the applied uniform far-field stress, G ¼
E=2ð1þ mÞ the shear modulus and k the biaxiality factor.

The strain energy depends on the size of the panel and becomes infinite for W !
∞. If a hole is cut into the panel, stress and strain fields change and so does the
strain energy. It increases or decreases depending on the boundary conditions.
Assuming a constant far-field displacement, that is fixed grip, energy is released,

Ue ¼ Ue
0 � Ue

rel: ð2:5Þ

The decrease of strain energy due to an elliptical hole with principal axes 2a and
2c can be calculated with the equations of Inglis [16] as

Ue
rel ¼

pBr21
32G

ð1þ jÞ 1� kð Þ2 aþ cð Þ2
h

þ 2 1� k2
� �

a2 � c2
� �þ 1þ kð Þ2 a2 þ c2

� �i
:

ð2:6Þ

It depends only on the dimensions of the hole and is always finite. The Griffith
crack of length 2a is obtained for c ! 0,

Ue
rel ¼

pa2Br21
8G

ð1þ jÞ: ð2:7Þ

Stresses kr∞ parallel to the crack do not affect the released energy.
Now Griffith established a condition for the crack to grow, which balances the

released energy and the material resistance to crack extension,

@

B @ 2að Þ Ue
rel � Usep

� �� 0: ð2:8Þ

Note that the Griffith crack has a length of 2a with two crack tips. The second
term, Usep, the work of separation, equals the surface energy per unit thickness of
the four crack faces,

Usep ¼ 4Bac: ð2:9Þ

Griffith [11] offered the following argument for his quite unconventional idea of
the specific surface energy, c: “Just as in a liquid, so in a solid the bounding
surfaces possess a surface tension which implies the existence of a corresponding
amount of potential energy. If owing to the action of a stress a crack is formed, or a
pre-existing crack is caused to extend, therefore, a quantity of energy proportional
to the area of the new surface must be added”.
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An existing crack will start to extend in an unstable manner if the equality sign in
Eq. (2.8) holds, i.e. if the energy release rate,

G ¼ � @Ue

B @ð2aÞ ¼
@Ue

rel

B @ð2aÞ ¼
par21
8G

ð1þ jÞ; ð2:10Þ

equals the work of separation (sometimes also called separation energy) per
increment of crack area,

@Usep

B @ð2aÞ ¼ 2c ¼ Cc; ð2:11Þ

which is necessary to create two new crack surfaces (at each crack tip),

GðaÞ ¼ Cc: ð2:12Þ

This is Griffith’s criterion for the onset of unstable crack extension. It balances
an “applied” quantity, G, which depends on the geometry of the structure and the
crack as well as external loading with a characteristic material parameter, Cc. For
G\Cc, the structure is “safe”, i.e. the crack will not grow. Note that crack extension
under linear elastic (brittle) conditions occurs in an unstable manner, always, since
different from plastic behaviour there is no other dissipative term in the energy
balance.

Equation (2.12) yields the macroscopic fracture stress of the centre-cracked
panel in plane strain as

r1f ¼
ffiffiffiffiffiffiffiffiffi
2E0c
pa

r
: ð2:13Þ

2.2 The Stress-Intensity Approach of Irwin

The stress field at the crack tip is commonly described in dependence on the polar
coordinates r, h, Fig. 2.3.

Fig. 2.3 Cartesian (x, y) and
cylindrical (r, h) coordinates
and stresses at the crack tip
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Though fundamental solutions of stress fields at singularities in elastic media
were published in the early and mid 20th century, already, [16, 35, 38], this
knowledge did not find its way into the design of engineering structures. It was
Irwin [17] who first realised the essential resemblance of all asymptotic singular
stress fields at crack tips and concluded to use the intensities of these fields for
fracture mechanics based assessments of structural integrity. Actually, the asymp-
totic stress fields exhibit a 1=

ffiffi
r

p
singularity for all crack opening modes which is

governed by a stress intensity factor (SIF). Due to the assumption of linear elastic
material behaviour and small deformations, the respective fields of all three modes
can be superimposed,

lim
r!0

rijðr; hÞ ¼ 1ffiffiffiffiffiffiffiffi
2pr

p KIf
I
ijðhÞþKIIf

II
ij ðhÞþKIIIf

III
ij ðhÞ

h i
: ð2:14Þ

The subscripts i, j indicate Cartesian or cylindrical coordinates.

• KI, KII, KIII are the SIFs of the three crack opening modes depending on the
geometry of the structure and the crack as well as on the external forces.

• f Iij, f
II
ij , f

III
ij , are dimensionless angular functions of h; the first two are graphically

displayed in Fig. 2.4. The distribution of normal stresses, rxx, ryy, is symmetric
to the ligament, h = 0, that of shear stresses, rxy, antisymmetric in mode I; for
mode II it is the other way round. Note that the maximum of stresses, ryy, in
opening direction is not in the ligament but at ±60°.

The associated displacement field is given as

uiðr; hÞ ¼ 1
2G

ffiffiffiffiffiffi
r
2p

r
KIg

I
iðhÞþKIIg

II
i ðhÞþKIIIg

III
i ðhÞ� �

; ð2:15Þ
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Fig. 2.4 Angular functions of stress fields in Cartesian coordinates at the crack tip in LEFM for
mode I and II
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where G is the shear modulus and gIi , g
II
i , g

III
i are respective angular functions again.

Displacements are not singular at the crack tip, of course, but vanish for r ! 0.
Table 2.2 summarises all angular functions for the three modes.
Irwin also depicted the relationship between the stress intensity and the energy

approach by deriving that

G ¼ K2
I

E0 : ð2:16Þ

Corresponding to Griffith’s Eq. (2.12), a criterion for unstable “brittle” fracture
in LEFM can be established based on the SIF,

KI að Þ ¼ KIc; ð2:17Þ

which balances an “applied” quantity, KI, depending on the geometry of the
structure and the crack as well as external loading with a characteristic material
parameter, the “fracture toughness”, KIc. For KI\KIc, the structure is “safe”, i.e. the
crack will not grow. The fracture toughness has to be experimentally determined
according to standards like ASTM E399 [4]. For further details see Sect. 7.2.2 on
linear-elastic plane-strain fracture toughness.

More generally, the energy release rate in mixed mode results from the SIFs by

G ¼ GI þGII þGIII ¼ K2
I

E0 þ
K2
II

E0 þ K2
III

2G
: ð2:18Þ

Table 2.2 Angular functions of stress and displacement fields in Cartesian coordinates at the
crack tip in LEFM

Mode I Mode II Mode III

fxx cos h2 1� sin h
2 sin

3h
2

� � � sin h
2 2� cos h2 cos

3h
2

� �
0

fyy cos h2 1þ sin h
2 sin

3h
2

� �
sin h

2 cos
h
2 cos

3h
2

0

fzz 0 plane stress
2m cos h2 plane strain

0 plane stress
�2m sin h

2 plane strain
0

fxy sin h
2 cos

h
2 cos

3h
2 cos h2 1� sin h

2 sin
3h
2

� �
0

fxz 0 0 � sin h
2

fyz 0 0 cos h2
gx cos h2 j� 1þ 2 sin2 h

2

� �
sin h

2 jþ 1þ 2 cos2 h
2

� �
0

gy sin h
2 jþ 1� 2 cos2 h

2

� � � cos h2 j� 1� 2 sin2 h
2

� �
0

gz 0 for plane strain 0 for plane strain 4 sin h
2
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Together with Eq. (2.12), this relation suggests a simple fracture criterion for
mixed mode [14, 15], which is not always confirmed by experiments, however.
Other criteria have been proposed by Erdogan and Sih [9], Sih [34] or Richard and
Kuna [31], for instance. An extensive literature exists on mixed mode problems
which are still a matter of research. Further details would overshoot the purpose of
the present book.

Likewise, any up-to-date overview on fatigue crack growth would exceed the
self-established limits and this issue is solely mentioned to demonstrate the wide
application range of the K-concept. Paris and Erdogan [26] correlated the rate of
crack extension, da/dN, where N is the number of loading cycles, with the cyclic
stress intensity factor, DK ¼ Kmax � Kmin, and found a power law relationship

da
dN

�DKn; ð2:19Þ

where the exponent, n, for many metallic materials is typically between 2 and 4.
Enhancements of this “Paris-equation” include effects of the mean stress, crack
closure effects etc.

A final remark appears necessary on so-called “higher-order” approaches. For
simplicity and because the singular terms of the stress fields, Eq. (2.14), appeared to
be dominant, Irwin and his successors restricted to the SIFs (or the energy release
rate, G) as crack driving forces. Irwin, however, was aware that the asymptotic
stress field included a second non-vanishing parameter for r ! 0: “The influence of
the test configuration, loads and crack length upon the stresses near an end of the
crack may be expressed in terms of two parameters. One of these is an adjustable
uniform stress parallel to the direction of a crack extension…. The other parameter,
called the stress intensity factor, is proportional to the square root of the force
tending to cause crack extension”. Williams [39] presented a series expansion of the
stress field for the biaxially loaded Griffith crack, in which

rxx ¼ A�1ffiffi
r

p cos
h
2

1� sin
h
2
sin

3h
2

� 	
� C�1ffiffi

r
p sin

h
2

2þ cos
h
2
cos

3h
2

� 	
þA0 ð2:20Þ

contains a constant stress

A0 ¼ 1
2
r1ðk� 1Þ: ð2:21Þ

depending on the biaxiality factor, k, for the Griffith crack and more generally on
the specimen geometry. This issue of a second parameter in fracture mechanics
became topical many years later in discussions on “geometry effects” on the
fracture toughness, see historical overview by Brocks and Schwalbe [7], leading
Rice [30] to come up with the T-stress approach,
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rijðr; hÞ ¼ KIffiffiffiffiffiffiffiffi
2pr

p fijðhÞþ T d1id1j: ð2:22Þ

Understanding the effect of the T-stress requires the investigation of plastic
zones at the crack tip and will be discussed in Chap. 4 on extension of LEFM for
small-scale yielding.

2.3 Determination of SIFs

Stress intensity factors have attained an important role in the assessment of engi-
neering structures against brittle fracture. They are a measure of the “powerfulness”
of the 1=

ffiffi
r

p
-singularity of stresses,

KI

KII

KIII

8<
:

9=
; ¼ lim

r!0

ffiffiffiffiffiffiffiffi
2pr

p ryyðr; h ¼ 0Þ
rxyðr; h ¼ 0Þ
ryzðr; h ¼ 0Þ

8<
:

9=
;: ð2:23Þ

Correspondingly,

KI

KII

KIII

8<
:

9=
; ¼ lim

r!0

ffiffiffiffiffiffi
2p
r

r 1
jþ 2 uyðr; h ¼ pÞ
1

jþ 1 uxðr; h ¼ pÞ
1
4 uzðr; h ¼ pÞ

8<
:

9=
; ð2:24Þ

holds for the crack edge displacements. From Eq. (2.23), the dimension of K can be
read as [force � length−3/2]. Typical units are MPa

ffiffiffiffi
m

p ¼ 10
ffiffiffiffiffi
10

p
N mm�3=2.

If the asymptotic stress fields, rij(r,h), or the crack edge displacements are
known from analytical or numerical solutions, the associated K-factors can be
immediately calculated by comparisons with Eqs. (2.23) or (2.24). Calculations
based on the displacements require an assumption on plane stress or plane strain

Table 2.3 SIFs for some basic loading cases

(a) Griffith crack KI KII KIII

Uniaxial tension, r1yy r1yy
ffiffiffiffiffiffi
pa

p
0 0

In-plane shear, r1yx ¼ r1xy 0 r1xy
ffiffiffiffiffiffi
pa

p
0

Anti-plane shear, r1yz 0 0 r1yz
ffiffiffiffiffiffi
pa

p

Crack face pressure, p0 p0
ffiffiffiffiffiffi
pa

p
0 0

Two pin-forces, F, wedging problem F
pBa

ffiffiffiffiffiffi
pa

p
0 0

(b) circular crack KI KII KIII

Uniaxial tension, r1yy r1yy
2
p

ffiffiffiffiffiffi
pa

p
0 0

Crack face pressure, p0 p0 2
p

ffiffiffiffiffiffi
pa

p
0 0
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conditions, neither of which is actually realised in a real three-dimensional struc-
ture. It is hence approximately assumed, frequently, that the free surface of a
specimen is in plane stress and its mid section in plane strain.

SIFs depend on the geometry of the structure, the type of loading (tension or
bending, for instance), the crack configuration and (linearly) on the external forces.
K-factors of some elementary loading cases of the Griffith crack and a circular
(“penny-shaped”) centre crack of radius a in an “infinite cylinder [36] are listed in
Table 2.3.

The SIF of an arbitrary plane crack problem can be written as a generalisation of
the expressions in Table 2.3,

K ¼ r1
ffiffiffiffiffiffi
pa

p
Y a=W ; . . .ð Þ; ð2:25Þ

where r∞ is an appropriately defined “nominal stress” in the far-field of the crack
and Y a dimensionless function of geometry parameters like a/W, which can be
determined from analytical or numerical solutions. Classical handbooks like

• “Compendium of Stress Intensity Factors”, Rooke and Cartwright [32],
• “The Stress Analysis of Cracks Handbook”, Tada et al. [37],
• “Stress Intensity Factors Handbook”, Murakami et al. [23]

provide numerous solutions and respective fit functions. It is subject to the engi-
neers’ experience with modelling to attribute real structures to these compilations of
problems and approximate solutions. The principle of superposition supplies a
universal methodology to generate geometry functions of complex structures and
loading cases from fundamental solutions. Due to the linear-elastic constitutive
equations and the assumption of small deformations, the boundary value problem is
linear so that K-factors of the same mode may be added,

Ka ¼
X
n

KðnÞ
a ; a ¼ I; II; III; n ¼ loading cases ð2:26Þ

For instance, the mode I and II SIFs of an infinite panel with a centre crack of
length 2a which is inclined by an angle, b, to the x-axis under tensile and shear
stresses, r∞, s∞, are obtained by superposition from equations given in Table 2.3
as

KI ¼ r1 sin b� s1 cos bð Þ sin b ffiffiffiffiffiffi
pa

p

KII ¼ r1 cos bþ s1 sin bð Þ sin b ffiffiffiffiffiffi
pa

p
:

ð2:27Þ

SIFs for test specimens which are used to determine fracture parameters like KIc,
Eq. (2.17), can be found in ASTM E399 [4], see Sect. 7.2.2.

The calculation of SIFs for real structures and practically relevant loading cases
requires complex mathematical methods. In the past, analytical solutions have been
obtained by complex stress functions [24], series expansions [39] or integral
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transforms [36]. They do not necessitate complete solutions of the boundary value
problem but just the stress field at the crack tip. Stress fields without the charac-
teristic 1=

ffiffi
r

p
singularity do not affect the SIF. If numerical solutions of stress or

displacement fields are available, K-factors can be determined with Eqs. (2.23) or (2.24).
With the emerging power of soft- and hardware numerical methods like boundary

element or finite element methods, e.g. [21], became increasingly important and
popular also for the determination of K-factors. Respective analyses can be done for
3D configurations with straight or curved crack fronts, when the stress field and the
SIF depend on the crack-front coordinate, z, or an arc length, sc, respectively, K(z) or
K(sc), see example of a railway axle in Sect. 7.1.3. In the beginning, numerically
calculated courses of stresses or displacements were extrapolated to calculate SIFs
according to Eqs. (2.23) and (2.24), but this did not yield sufficiently accurate results,
particularly if they are based on stresses. More advanced methods exploit the relation
to the energy release rate, Eqs. (2.16) and (2.18) where the latter is commonly
evaluated by a domain integral [1], which was first suggested by Parks [27, 28] and
became an established technique in FEM [33]. More details will be presented in
Sect. 7.1.2 on the numerical determination of energy release rate and J-integral and
Sect. 7.1.3 on the numerical determination of SIFs.

2.3.1 Cracked Cylinders

An axial through-crack of length 2a in a long pressurised cylinder or pipe, Fig. 2.5,
can be considered as a Griffith crack (W ) L), as the condition of a/L « 1 is
fulfilled. The remote stresses result from the well-known formula

r1 ¼ rt ¼ p
ri
t

ð2:28Þ

for circumferential (tangential) stresses, rt = ruu, in a thin walled cylinder,
t=ro � 1, where ri and t = ro − ri are the (inner) radius and the wall-thickness,

Fig. 2.5 Thick-walled
cylinder of length, 2L, under
internal pressure, p, with axial
through-crack, 2a, inner
radius ri, outer radius ro,
Young’s modulus E,
Poisson’s ratio m
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respectively, of the tube and p is the internal pressure. A cylinder is not plane as a
panel, however, but bent. Thus, the geometry function depends on the curvature and
the wall thickness, Y a=

ffiffiffiffiffi
rit

pð Þ. In the following, the shell parameter ks ¼ a=
ffiffiffiffiffi
rit

p
is

introduced. As the stress intensity in a cylindrical tube was first analysed by Folias
[10], this function is addressed as Folias factor in the literature, e.g. Kiefner et al.
[20]. Misleadingly, it is sometimes associated with bulging of the cylinder wall in
the vicinity of the crack (BS 7910, [8]).

Murakami et al. [23] present diagrams and tables of Y ksð Þ in the range
0� ks � 4:4, and British Standard 7910 tabulated values for 0� ks � 6:7 and
5� ro=t� 100. In his solution of the boundary value problem, Folias [10] derived

rshell
rpanel

¼ Y ksð Þ 	 1þ c1 þ c2 ln ksð Þk2s þO 1
r2o

� 	
; ð2:29Þ

which represents a good approximations of the tabulated values of BS 7910 [8] for
ks ¼ a=

ffiffiffiffiffiffi
rot

p � 6:5, taking c1 = 0.4612, c2 = −0.1806.
Equation (2.28) holds approximately for thin-walled cylinders, t=ro � 1, only.

Stresses in thick-walled cylinders (without any crack) can be derived from the
axisymmetric boundary value problem in cylindrical coordinates r;u; zð Þ,
@ð:Þ=@u ¼ 0, described by the balance equations,

@rrr
@r

þ 1
r

rrr � ruu
� � ¼ 0;

@rzz
@z

¼ 0; ð2:30Þ

and Hooke’s law, Eq. (2.1), together with the boundary conditions rrrðroÞ ¼ 0,
rrrðriÞ ¼ �p. The equivalence condition for axial forces in a capped cylinder,

Nz ¼ 2p
Zra
ri

rzzr dr ¼ p
Zra
ri

rrr þ ruu
� �

r dr ¼ pr2i p; ð2:31Þ

results in

rzz ¼ 1=2 rrr þ ruu
� �

: ð2:32Þ

Finally, Lamé’s equations, are obtained,

rrr ¼ r2i
r2o�r2i

1� ro
r

� �2h i
p� 0;

rt ¼ ruu ¼ r2i
r2o�r2i

1þ ro
r

� �2h i
p

rzz ¼ r2i
r2o�r2i

p

; ð2:33Þ

which are graphically displayed in Fig. 2.6. Maximum circumferential stresses
occur at the inner surface.
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2.3.2 Semi-elliptical Surface Crack

Cracks originating from the surface of a component without penetrating the whole
wall thickness are of great practical relevance. They may initiate from notches or
surface roughness under cyclic loading, thermal stresses or corrosion and grow
under service loads to a critical size when failure of the structure occurs.
A simplified model for the variety of crack shapes is the semi-elliptical surface flaw,
see Fig. 2.7, which is characterised by its depth a, the small principal axis, and its
length 2c, twice the large principal axis, with the aspect ratio,
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Fig. 2.6 Radial, circumferential (tangential) and axial stresses, rrr, rt 
 ruu, rzz, in an uncracked
thick-walled cylinder, t/ro = 0.3 and 0.1, under internal pressure, p

Fig. 2.7 PS(T) specimen (ASTM E1823 [5]) with semi-elliptical surface crack

2.3 Determination of SIFs 17



0� k ¼ a=c� 1: ð2:34Þ

An arbitrary point on the crack front may be identified by a parametric angle, /,
which is defined by the projection of an ellipse point to a circle of radius a. The
deepest point of the crack in the centre is characterised by / = 0, and the pene-
trations points of the crack front with the surface by / = ±p/2. Irwin [18] presented
the solution for an elliptical inner crack under uniaxial tension

KI /ð Þ ¼ r1
ffiffiffiffiffiffi
pa

p f/ /ð Þ
EðkÞ ; ð2:35Þ

with the elliptical shape function,

f/ /ð Þ ¼ cos2 /þ k2 sin2 /
� �1=4

; ð2:36Þ

which becomes f/ = 1 for the penny-shaped crack (k = 1), and the 2nd kind el-
liptical integral,

EðkÞ ¼
Z p=2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� k2ð Þ sin2 /

q
d/; ð2:37Þ

which becomes E(k) = 1 for the Griffith crack (2c ! ∞, k = 0) and E(k) = p/2 for
the penny-shaped crack (k = 1), see Fig. 2.8. The extrema of KI(/) are

Kmax
I ¼ KI 0ð Þ ¼ r1

ffiffiffiffi
pa

p
EðkÞ

Kmin
I ¼ KI � p

2

� � ¼ r1
ffiffiffiffi
pa

p ffiffi
k

p
EðkÞ

: ð2:38Þ
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Fig. 2.8 Shape factor of
semi-elliptical surface flaws:
2nd kind elliptical integral
E(k) and SSY modifications,
Eq. (4.10), according to
ASME BPVC
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Analogous to Eq. (2.25), arbitrary structures with semi-elliptical surface cracks
are described by geometry functions, hj(/), which have been calculated numerically
and can be found in the literature, for instance Heliot et al. [13], Isida et al. [19],
McGowan and Raymund [22], Newman and Raju [25], Raju and Newman [29]
among others. General inhomogeneous stress fields are captured by superposition.
The problem of a semi-elliptical surface crack in an arbitrary tensile stress field is
thus treated as a crack with pressure, �p xð Þ, on the crack faces which equals the
nominal stress distribution in the uncracked component at the position of the crack,
r0yyðxÞ, and the latter is fitted by a polynomial,

r0yyðxÞ ¼
X
j

r0j
x
t


 � j
: ð2:39Þ

For j = 0 the part of homogeneous tension is obtained, for j = 1 pure bending,
etc. The resulting stress intensity factor is

KI /ð Þ ¼
X
j

r0j
ffiffiffiffiffiffi
pa

p f/ /ð Þ
EðkÞ hj /ð Þ: ð2:40Þ

In the following, a surface crack in a pressure vessel is considered. According to
Eq. (2.33), ruu(r) in the uncracked cylinder is maximum at the inner surface, r = ri,
and hence a crack at the inner surface is most hazardous. According to Eq. (2.39),
r0yyðxÞ ¼ ruu r � rið Þ is expanded in a series. The ASME Boiler and Pressure Vessel
Code [3] suggests a linear fit, namely a constant fraction, the membrane stresses,
rm, and the bending stresses, rb,

ruu xð Þ ¼ rm þ rbð Þ � 2rb
x
t


 �
; ð2:41Þ

with

rm ¼ p0 1� r2o
2 r2o þ r2ið Þ 1� r2i

ri þ að Þ2

 �

t
a

� 


rb ¼ p0
r2o

2 r2o þ r2ið Þ 1� r2i
ri þ að Þ2


 �
t
a

; ð2:42Þ

and p0 ¼ p r2o�r2i
r2o þ r2i

as abbreviation. The SIF is

KI /ð Þ ¼ rmh0 /ð Þþ rb h0 /ð Þ � 2
a
t
h1 /ð Þ


 �h i ffiffiffiffiffiffi
pa

p f/ /ð Þ
EðkÞ : ð2:43Þ

Considering its maximum at / = 0 and the condition for brittle fracture,
Eq. (2.17),
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Kmax
I ¼ Mmrm þMbrbð Þ

ffiffiffiffiffiffi
pa

p
EðkÞ �KIc; ð2:44Þ

the critical pressure, pc, for an assumed or detected crack depth, a, or a critical crack
depth, ac, for the service pressure can be determined accounting for an additional
safety factor. The coefficients Mm ¼ h0ð0Þ and Mb ¼ h0ð0Þ � 2 a=tð Þh1ð0Þ for
membrane and bending stresses can be found in the ASME BPVC [3], which also
introduces a modified shape factor, Q, instead of E(k) accounting for small plastic
zones at the crack tip, see Sect. 4.1 on the equivalent elastic crack.

ASTM E2899 [6] defines test methods and nomenclature for surface cracks
under tension and bending. Recent applications can be found in Arafah et al. [2].
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Chapter 3
Phenomenological Theory of Time-
and Rate-Independent Plasticity

Abstract The phenomenological framework for describing the inelastic deforma-
tion of metals at low temperatures and quasistatic loading is explained and the
respective equations are presented. The theories of Tresca, von Mises, Prandtl and
Reuss are introduced. Stresses in a pressurised cylinder are analysed assuming
perfect plasticity, continuing the respective stress analysis for elastic material
behaviour in Chap. 2. Incremental plasticity takes the main part of the present
chapter but is complemented by the finite (or “deformation”) theory of plasticity
which provides the constitutive background for elasto-plastic fracture mechanics.

This theory describes the inelastic deformation behaviour of metals at “low” tem-
peratures under “slow” (quasi-static) loading, i.e. excluding time dependence
(creep, relaxation) and rate dependence (high-speed impact). The deformation is
due to motion of dislocations at the microscale (crystal lattice). However, only the
macroscopically observable phenomena are described in the framework of con-
tinuum mechanics.

As plastic deformations occur nonlinearly and depend on the loading history, the
constitutive equations are established “incrementally”, namely for small changes of
stresses and strains,

Drij ¼ _rijDt; Deij ¼ _eijDt; ð3:1Þ

where the parameter t > 0 is some monotonically increasing scalar variable char-
acterising the load history. It is not a physical time, so that stress and strain rates,
_rij, _eij, are no (physical) velocities. That is why the theory presented in Sects. 3.2
and 3.3 is called “incremental plasticity” unlike the “finite plasticity” of Hencky
[14], see Sect. 3.4 on deformation plasticity.
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3.1 Uniaxial Tensile Test

A uniaxial stress, r = F/A, below the elastic limit, R0, causes a fully reversible
elongation, e ¼ DL=L0, of a tensile bar. The limit is an idealised value within the
present theory, which may be identified with the lower yield point, ReL, or a proof
stress, Rp, of real materials and will be addressed as “yield strength” in the fol-
lowing. Deformations follows Hooke’s law,

r�R0 : r ¼ Ee; ð3:2Þ

with E being Young’s modulus. As soon as the applied stress exceeds R0, the stress
strain curve becomes nonlinear, see Fig. 3.1, and permanent (plastic) strains remain
after unloading,

e ¼ ee þ ep ¼ r
E
þ ep: ð3:3Þ

The constitutive behaviour for r > R0 is characterised by a yield condition, a
flow curve, Hooke’s law of isotropic elasticity and a loading/unloading criterion.

• Yield condition

Stresses always have to remain below the limiting curve, RF(ep), which depends on
the present plastic deformation,

r�RF ep
� �

; RFð0Þ ¼ R0: ð3:4Þ

RF(ep) is called (uniaxial) flow curve of the material. Starting from r < RF(ep)
results in elastic changes of strains, only; stresses r > RF(ep) are not admissible.
A material without hardening RF(ep) = R0 is called perfectly plastic.

Fig. 3.1 Uniaxial true
stress-strain curve
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• Hooke’s law

Holding for elastic (total) strains or elastic fraction, ee, of total strains,

r ¼ Eee ¼ E e� ep
� �

: ð3:5Þ

• Loading/unloading criterion

Loading, _r[ 0, occurs along the flow curve, RF(ep), and is associated with addi-
tional plastic deformations; unloading, _r\0, follows Hooke’s linear slope, see
arrows in Fig. 3.1

_r[ 0 : _ep [ 0 loading
_r\0 : _ep ¼ 0 unloading

: ð3:6Þ

3.2 Generalisation to Triaxial Stress States

• Additive decomposition of strain rates

Different from the uniaxial situation, no additive decomposition of total strains as in
Eq. (3.3) is possible because the principal axes of eij may rotate. Instead, a
decomposition of elastic and plastic strain rates is postulated,

_eij ¼ _eeij þ _epij: ð3:7Þ

This is an approximation for small elastic strains of the multiplicative decom-
position of the elastic and plastic deformation gradient. Total plastic strains follow
by integration over the deformation history

epij ¼
Z t

s¼0

_epij ds: ð3:8Þ

Plastic deformations are due to motions of dislocations which do not result in
any volume change. Hence, the incompressibility condition,

_epkk ¼ 0; ð3:9Þ

holds, and thus _epij ¼ _epkkdij þ _e0pij ¼ _e0pij is deviatoric. The trace (first invariant) of the
strain tensor, ekk, is the volume dilatation, and the deviatoric strains,
e0ij ¼ eij � ekkdij, describe distortion. Materials containing micro-voids are
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plastically compressible. A special plasticity theory of porous media has been
developed for these materials, see Sect. 8.3.

• Yield condition

A yield function U rij; e
p
ij

� �
� 0 characterises all physically admissible stress states.

Starting from stress states U < 0 results in elastic changes of deformation, only, and
U = 0 defines the limiting yield surface in the stress space. It is commonly pos-
tulated as being convex [2, 3], because a straight loading path between two elastic
stress states, U < 0, should not be associated with permanent deformations.
Convexity follows also from Drucker’s postulates of stability [10–12], Sect. 6.1.1.
Assuming an “associated flow rule”, the yield function equals the flow potential, see
Eq. (3.12) below. For plastically incompressible materials, Eq. (3.9), yielding does
not depend on the hydrostatic stresses, rh ¼ 1

3rkk, and the yield function takes the
form,

U r0ij; e
p
ij

� �
� 0 ; r0ij ¼ rij � rhdij; ð3:10Þ

which is represented by a (convex) cylinder in the principal stress space whose axis
is along the diagonal, see Fig. 3.2 [5].

• Hooke’s law of isotropic elasticity

Hooke’s law, Eq. (2.1), is expressed in terms of stress rates and elastic strain rates,
_eeij. The latter can be total strain rates for U < 0 or unloading as well as the elastic
part of total strain rates as in Eq. (3.7) for U = 0.

Fig. 3.2 Flow cylinder in the
space of principal stresses, rI,
rII, rIII
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If the elastic strain rate tensor is split into a volumetric and a distortional part
respective relations to the hydrostatic and the deviatoric stress rate tensors via the
bulk modulus, K, and the shear modulus, G, are obtained,

_eeij ¼ _e0eij þ 1
3
_eekkdij ¼

1
E

1þ mð Þ _rij � m _rkkdij
� � ¼ _r0ij

2G
þ _rhdij

3K
: ð3:11Þ

The material constants of isotropic elasticity are compiled in Table 3.1. Two at a
time are independent, (E, m), (k, l), (G, K).

• Flow rule

As for the elastic strain rates, a constitutive law for the plastic strain rates is
required. Commonly, an associated flow rule,

_epij ¼ _kp
@U
@rij

; ð3:12Þ

is assumed, for which the plastic potential equals the yield function. The plastic
strain rates are aligned orthogonal to the yield surface, and hence, Eq. (3.12) is also
addressed as “normality rule”, which, like the convexity condition, can be derived
from the postulates of stability [10–12]. The magnitude of plastic strain rates is
governed by the plastic multiplier, _kp, which can be determined from the uniaxial
flow curve, RF(ep), considering the principle of equivalence of dissipation rate
densities linking up triaxial and uniaxial stress states.

• Equivalence of dissipation rate densities

Triaxial and uniaxial stress states have to meet the postulate of equivalence of
dissipation rate densities,

_�wp ¼ rij _e
p
ij ¼ _kp

@U
@rij

rij ¼ �r _�ep; ð3:13Þ

with appropriately defined equivalent uniaxial stresses, �r, and equivalent plastic
strain rates, _�ep, which are work-conjugate.

Table 3.1 Material constants of isotropic elasticity: Lamé’s coefficients, k, l, Young’s modulus,
E, Poisson’s ratio, m, shear modulus, G, bulk modulus, K

k = l = E = m = K = G =

k, l k l l 3kþ 2lð Þ
kþ l

k
2 kþ lð Þ kþ 2

3l l

G, K K � 2
3G G 9K G

3K þG
3K�2G
6Kþ 2G

K G

E, m Em
ð1þ mÞð1�2mÞ

E
2ð1þ mÞ E m E

3ð1�2mÞ
E

2ð1þ mÞ
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• Loading/unloading criterion

Discerning loading and unloading is a bit more difficult than in the tensile test. The
respective condition is based on the angle between the directions of stress rates, _rij,
and the normal to the yield surface, @U

�
@rij,

@U
@rij

_rij
� 0 loading _epij 6¼ 0
\0 unloading _epij ¼ 0

	
: ð3:14Þ

Different from the uniaxial case, also a neutral rearrangement of stresses is
possible, @U

�
@rij

� �
_rij ¼ 0, which is associated with plastic deformations _epij 6¼ 0.

• Hardening law

The flow curve changes with increasing plastic deformation, Fig. 2.1, and likewise,
the change of the yield function, Eq. (3.10), has to be described mathematically in
dependence on the loading history. This is realised by introducing scalar and ten-

sorial inner variables, �jn and nðnÞij ,

U r0ij; e
p
ij

� �
¼ ~U r0ij; n

ðnÞ
ij ; �jn

� �
¼ 0; ð3:15Þ

which follow specific evolution laws

_�jn ¼ fn rij; n
ðnÞ
ij ; �jn; e

p
ij; _e

p
ij;�e

p; _�ep
� �

_nðnÞij ¼ gðnÞkl rkl; n
ðnÞ
kl ; �jn; e

p
kl; _e

p
kl;�e

p; _�ep
� � : ð3:16Þ

The number of inner variables is mostly restricted to two, namely a stress
measure, �j, which is work-conjugate to the accumulated plastic strain,
�ep ¼ R t

s¼0
_�ep ds, and the deviatoric “back stress” tensor, nij ¼ n0ij. If the yield

function is assumed to take the special form (which is not possible for Tresca’s
yield condition, however, see Sect. 3.3.1),

~U r0ij; nij; �j
� �

¼ �U s0ij
� �

� �j2ð�epÞ ¼ 0; ð3:17Þ

defining an “effective” stress tensor, sij ¼ rij � nij, and an equivalent uniaxial

effective stress �s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
�U s0ij
� �r

, scalar and tensorial internal variables can be inter-

preted as follows:

• �j describes the increase of some “radius” of the flow cylinder, Fig. 2.2, char-
acterising the “isotropic hardening” in dependence on �ep, and

• nij is the shift of its axis, the “kinematic hardening”, which is essential for cyclic
loading [13].
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Whereas �jð�epÞ can be directly measured in a uniaxial tensile test, nij require an
evolution law according to Eq. (3.16) with cyclic and, where necessary, multiaxial
tests for identifying the respective parameters. Two classical approaches, _nij ¼
cð�ePÞ_epij and _nij ¼ cð�ePÞ rij � nij

� �
, date back to Prager [19] and Ziegler [27],

respectively. More advanced evolution laws have been introduced by Chaboche and
Rousselier [8] and Chaboche [7] to describe complex hardening phenomena and
loading histories, see Brocks and Olschewski [4].

3.3 Isotropic Yielding

Further simplifying assumptions and special cases of the above equations will be
considered in the following,

• Isotropic yield surface

The representation of the yield surface must not depend on the choice of the
coordinate system. Thus, it may only depend on the 2nd and 3rd invariants, J2ðs0ijÞ,
J3ðs0ijÞ, of the effective deviatoric stress tensor [1, 3, 11, 18]. The 1st invariant
vanishes due to the incompressibility condition, Eq. (3.9). Kinematic hardening is
still possible, however.

• Purely isotropic hardening

If kinematic hardening is excluded, nij ¼ 0, the equivalent stress becomes,

�s ¼ �r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
�U J2ðr0ijÞ; J3ðr0ijÞ
� �r

; ð3:18Þ

with the invariants

J2ðr0ijÞ ¼ 1
2
r0ikr

0
ki

� �
¼ 1

6
rxx � ryy
� �2 þ ryy � rzz

� �2 þ rzz � rxxð Þ2
h i

þ r2xy þ r2yz þ r2xz

J3ðr0ijÞ ¼ detðr0ijÞ ¼ 1
3
rij rjk rki:

ð3:19Þ

The first invariant of the deviatoric stresses vanishes by definition.

• Effect of the 3rd invariant

The yield surface ~U ¼ J2ðr0ijÞ � �j2 ¼ 0, which represents the yield condition by
von Mises [25, 26] described below in Sect. 3.3.2, is rotationally symmetric and
illustrated by a circular cylinder in the stress space, see Fig. 3.2, or a sphere in the
space of deviatoric stresses. The 3rd invariant, J3ðr0ijÞ, allows for describing
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deviations from rotational symmetry. A number of yield conditions exist which
include the 3rd invariant, Betten [1, 3], Ismar and Mahrenholtz [15, 16],
Mahrenholtz and Ismar [17], the most well known of them is Tresca’s yield con-
dition, see Sect. 3.3.1 and Eq. (3.23) below. Yield functions having the form
�U J

3
2 þ cJ23

� �
describe symmetric yielding in tension and compression, Drucker [9,

11], whereas �U J
3=2
2 þ cJ3

� �
represent an asymmetric yielding in tension and

compression [2, 3, 6] as J3 is an uneven cubic function of stresses. In both cases,
the convexity condition confines the range of admissible values of the constant,
c [11, 18].

3.3.1 The Yield Condition of Tresca

Tresca’s yield condition [24] is also known as hypothesis of maximum shear
stresses. It is commonly expressed as piecewise linear relations in terms of principal
stresses, ra ða ¼ I; II; IIIÞ, known as the Tresca hexagon, Fig. 3.3.

rI � rII � rIII : ~U1 ¼ rI � rIII � 2sF ¼ 0
rII � rI � rIII : ~U2 ¼ rII � rIII � 2sF ¼ 0
rII � rIII � rI : ~U3 ¼ rII � rI � 2sF ¼ 0
rIII � rII � rI : ~U4 ¼ rIII � rI � 2sF ¼ 0
rIII � rI � rII : ~U5 ¼ rIII � rII � 2sF ¼ 0
rI � rIII � rII : ~U6 ¼ rI � rII � 2sF ¼ 0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ð3:20Þ

The yield limit in shear, sF, is related to the uniaxial yield strength, RF, by

sFðepÞ ¼ 1
2
RFðepÞ; ð3:21Þ

and the associated equivalent stress is

�rT ¼ max
a 6¼b

ra � rb
�� �� ¼ max

a6¼b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ra � rb
� �2q

; ða; b ¼ I,II,IIIÞ: ð3:22Þ

If the principal stresses are arranged by their magnitudes, rI � rII � rIII, only ~U1

is relevant as yield condition. However, calculations of the plastic strain rates in one
of the corners, rI ¼ rII [ rIII or rI [ rII ¼ rIII, have to consider ~U2 or ~U6 as well,
see Eq. (3.25) below.

Considering that the product of all piecewise yield functions, ~Ui (i = 1, …, 6),
vanishes, Tresca’s yield condition may be written in closed form of the 2nd and 3rd
invariants, J2ðr0ijÞ, J3ðr0ijÞ, Eq. (3.19),
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~UT J2; J3ð Þ ¼
Y6
i¼1

~Ui ¼ 4J32 � 27J23 � 9R2
FJ

2
2 þ 6R4

FJ2 � R6
F ¼ 0: ð3:23Þ

As the yield function is piecewise defined, the same holds for the associated flow
rule, Eq. (3.12), for example rI [ rII [ rIII,

_ep ¼ _epana ¼ _kp
@ ~U1

@ra
na ¼ _kp nI � nIIIð Þ; ð3:24Þ

where nI, nII, nIII, are the unit vectors along the principal axes. In the corner,
rI ¼ rII [ rIII,

_ep ¼ _kp1
@ ~U1

@ra
na þ _kp2

@ ~U2

@ra
na ¼ _kp nI þ nII � 2nIIIð Þ; ð3:25Þ

holds, assuming _kp1 ¼ _kp2 ¼ _kp for isotropic materials. The condition of incom-

pressibility, Eq. (3.9),
PIII

a¼I _e
p
a ¼ 0, is met. The plastic multiplier, _kp, follows from

comparison with plastic deformations, _ep ¼ _epa na ¼ _kp 2nI � nII � nIIIð Þ, in a uni-
axial tensile test, r ¼ rI nI rI [ rII ¼ rIII ¼ 0ð Þ, by accounting for the equivalence
of dissipations rate densities, Eq. (3.13),

_�wp ¼ ra _e
p
a ¼ 2 _kprI ¼ �rT _�e

p ¼ RF _ep: ð3:26Þ

as _kp ¼ 1
2_ep, i.e.

_ep ¼ _ep nI � 1
2
nII � 1

2
nIII

� �
: ð3:27Þ

Fig. 3.3 Yield conditions of
Tresca and von Mises
displayed in the deviatoric
plane
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Aside from the mathematical drawback that Tresca’s yield condition is not
continuously differentiable in the corners, the inevitable transformation to principal
coordinates and the elaborate formulation of the flow rule are major reasons for
preferring the yield condition of von Mises [25, 26] particularly for numerical
applications. Frequently, the Tresca condition is even combined with a flow rule
associated to the Mises condition, which violates the equivalence of dissipations
rate densities.

3.3.2 The Theory of Von Mises, Prandtl and Reuß

The most commonly applied incremental theory of plasticity consists of the yield
condition of von Mises [25, 26] and the equations for plastic deformations by
Prandtl [20] and Reuß [23]. The yield condition is based on the 2nd invariant,

~UvM ¼ 3J2 � 3
2
�j2ðepÞ ¼ �r2vM � R2

FðepÞ ¼ 0; ð3:28Þ

which results in the definition of the equivalent stress,

�rvM ¼
ffiffiffiffiffiffiffi
3J2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
3
2
r0ijr

0
ij

r
: ð3:29Þ

Hence, the theory of von Mises is often addressed as J2-theory. It is represented
by a circle in the deviatoric plane, Fig. 3.3. The yield conditions of Tresca and von
Mises coincide for principal stress states. Different from Eq. (3.21), the relation
between the uniaxial yield strength, RF, and the yield limit in shear, sF, is

RFðepÞ ¼
ffiffiffi
3

p
sFðepÞ: ð3:30Þ

Thus, the two yield conditions differ by 2/√3 = 1.15, at most.
The associated flow rule follows from Eq. (3.12),

_epij ¼ _kpr
0
ij; ð3:31Þ

and the equivalence of dissipations rate densities, Eq. (3.13), provides a
work-conjugate equivalent plastic strain rate

_�epvM ¼
ffiffiffiffiffiffiffiffiffiffi
2
3
_epij _e

p
ij

r
: ð3:32Þ

Note, that this definition is only valid in combination with the von Mises yield
condition! The plastic multiplier can again be calculated from the yield curve,
RF(ep), of the uniaxial tensile test,
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_epij ¼
3
2

_�epvM
RF

r0ij ¼
3
2

_�rvM
TpRF

r0ij; ð3:33Þ

where TpðepÞ ¼ dRF
�
dep is the plastic tangent modulus.

Finally, the criterion for loading or unloading writes as

r0ij _rij
[ 0 loading _epij 6¼ 0
\0 unloading _epij ¼ 0

	
: ð3:34Þ

Adding up elastic, Eq. (3.11), and plastic, Eq. (3.33), strain rates according to
Eq. (3.7) results in the equations of Prandtl [20] and Reuß [23] for the total strain
rates,

_eij ¼ _eeij þ _epij ¼ _e0eij þ
1
3
_eekkdij þ _e0pij ¼

1
2G

_r0ij þ
1
3K

_rhdij þ 3
2Tp

_�rvM
RF

r0ij: ð3:35Þ

Volume dilatation is purely elastic, _ekk ¼ _eekk, distortion consists of an elastic and
a plastic part, _e0ij ¼ _e0eij þ _e0pij .

The constitutive Eqs. (3.28)–(3.35) do not allow for analytical closed form
solutions, generally, and, different from elasticity, load versus displacement curves
as well as stress and strain fields are dependent on the loading history, so that only a
step-wise integration for a certain loading path is possible. Just a limited number of
analytical solutions for uniaxial stress states as in tension and pure bending or for
axisymmetric or rotationally symmetric stress states exist.

3.3.3 Example: Pressure Vessel

The cylinder of Fig. 2.5 is considered without a crack and cylindrical coordinates
r;u; zð Þ are introduced, again. The elastic boundary value problem yields Lamé’s
equations for the distribution of stresses in the cylinder wall, Eq. (2.33). The elastic
limit is reached, if von Mises equivalent stress,

�rvM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

rrr � ruu
� �2 þ rrr � rzzð Þ2 þ ruu � rzz

� �2h ir
¼

ffiffiffi
3

p

2
ruu � rrr
� �

;

ð3:36Þ

considering Eq. (2.32), equals the yield strength, R0, at r = ri. The corresponding
elastic limit pressure is
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pel ¼ R0ffiffiffi
3

p 1� r2i
r2o

� 

ð3:37Þ

The total rest of the cylinder, ri < r � ro, is still elastic so that the pressure may
further increase until the whole wall is plastified. The respective pressure is called
plastic limit pressure, ppl, assuming a perfectly plastic material, RF(ep) = R0. The
stress distribution can be easily calculated by introducing the yield condition into
the balance Eq. (2.30),

drrr
dr

� 2ffiffiffi
3

p R0

r
¼ 0: ð3:38Þ

The solution of this first order differential equation, with the boundary conditions
rrrðroÞ ¼ 0, rrrðriÞ ¼ �p, and the yield condition finally result in,

rrr ¼ 2R0ffiffi
3

p ln r
ro

ruu ¼ 2R0ffiffi
3

p 1þ ln r
ro

� �
rzz ¼ 2R0ffiffi

3
p 1

2 þ ln r
ro

� � ; ð3:39Þ

which are graphically displayed in Fig. 3.4. The stress distributions for the inter-
mediate range, pel < p < ppl, can be found in Reckling [22] or Burth and Brocks
[5].

The plastic limit pressure results from the boundary condition, rrrðriÞ ¼ �p,

ppl ¼ 2R0ffiffiffi
3

p ln
ro
ri
: ð3:40Þ
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Fig. 3.4 Radial, circumferential (tangential) and axial stresses, rrr, rt � ruu, rzz, in a
thick-walled cylinder at plastic limit pressure, ppl
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Elastic and plastic limit pressure may both be taken as design criteria if brittle
fracture can be excluded according to Eq. (2.44). The plastic limit state is unique
and not dependent on the loading history. It can hence be determined without
considering intermediate steps. The ratio of plastic and elastic limit pressure is
called limit load factor and characterises the capacity for excessive loading beyond
the elastic limit until failure due to plastic collapse (see Sect. 6.1.2), Fig. 3.5,

ppl
pel

¼ ln ro=rið Þ
1� ri=roð Þ2 : ð3:41Þ

3.4 Deformation Theory of Plasticity

In contrast to the incremental equation of Prandtl [20] and Reuß [23], Eq. (3.35),
Hencky [14] suggested a finite deformation law for non-linear constitutive beha-
viour, which is particularly used in fracture mechanics in combination with the
hardening law of Ramberg and Osgood [21]. Actually, it does not describe plastic
but non-linear elastic (hyperelastic) behaviour. It is advantageous with respect to its
mathematically simpler handling which allows for closed-form solutions of
boundary value problems like the HRR equations for stress and strain fields at a
crack tip along the lines of LEFM, Eq. (2.14). Under the severely restrictive
assumption of proportional loading, rijðtÞ ¼ r0ij fðtÞ ; fð0Þ ¼ 1, in each point of the
continuum, which excludes any kind of local rearrangement of stresses or
unloading, the finite Hencky equations can be derived from Prandtl-Reuß equations.
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p p
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p e
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Fig. 3.5 Limit load factor,
ppl/pel, for a thick-walled
cylinder under internal
pressure in dependence on
wall-thickness, t
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The conditions of isotropy and incompressibility, Eq. (3.9), and von Mises
hypothesis, Eq. (3.29), still apply. But instead of the additive decomposition of
strain rates, Eq. (3.7), an additive decomposition of total strains is assumed,

eij ¼ eeij þ epij; ð3:42Þ

and instead of the incremental flow rule, Eq. (3.31), a finite deformation law,

epij ¼ kpr
0
ij: ð3:43Þ

is assumed, and the finite plastic multiplier is determined via the uniaxial flow curve
as above,

kp ¼ 3
2
ep
RF

¼ 3
2Sp

; ð3:44Þ

with SpðepÞ ¼ RF
�
ep as plastic secant modulus. As only loading is admissible

�rvM ¼ RFðepÞ is always met. Total strains result from

eij ¼ 1
2G

þ 3
2Sp

� 

r0ij þ

1
3K

rhdij: ð3:45Þ

The analogy to Hooke’s law with a Poisson’s ratio of m = 0.5 is obvious.
Defining

SpðepÞ ¼ r0
ae0

�rvM
r0

� 
1�n

ð3:46Þ

according to Ramberg and Osgood [21] with the material parameters a > 0 and
n � 1 and normalising quantities, r0, e0, the plastic part of Hencky’s law,
Eq. (3.45), becomes

epij
e0

¼ 3
2
a

�rvM
r0

� 
n�1r0ij
r0

: ð3:47Þ

This equation is known as three-dimensional generalisation of the
Ramberg-Osgood power law,

e
e0

¼ r
r0

þ a
r
r0

� 
n

; ð3:48Þ

which is displayed in Fig. 3.6. Commonly, r0 = R0 and e0 = r0/E are assumed.
This law is non-linear from the beginning and there is no distinct transition from
elastic to plastic behavior and hence no yield conditions.
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Though the term “deformation theory” solely characterises the finite theory (or
“flow theory”) of plasticity it is frequently identified by the combination of
Hencky’s equations with the Ramberg-Osgood power law in elasto-plastic facture
mechanics (EPFM).
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Chapter 4
Extension of LEFM for Small-Scale
Yielding

Abstract Linear elastic fracture mechanics as introduced in Chap. 2 is extended to
account for plastic deformations at the crack tip. The concept of an equivalent
elastic crack and an effective stress intensity factor for small-scale yielding is
explicated. Size and shape of the plastic zone ahead of the crack tip are calculated
and the effect of biaxial external loading is discussed. The crack tip opening dis-
placement (CTOD) is introduced as an alternative intensity parameter.

The stresses calculated at a notch root can exceed the yield strength so that local
plastification occurs. In any case, the yield strength is exceeded at a crack tip in
LEFM, as the stress field has a singularity. The size of the resulting plastic zone,
which is assumed to be small compared to the ligament, W − a, and the actual
stress distribution depend on the stress triaxiality.

4.1 The Equivalent Elastic Crack (Mode I)

Irwin [12] presented the idea to calculate the size of the plastic zone approximately
from the stress field in the elastic continuum and to introduce a fictitious crack
extension with a modified effective SIF. This idea is explicated in the following for
the two limiting conditions of plane stress, rzz = 0, and plane strain, ezz = 0. Shear
stresses in the ligament vanish for mode I, normal stresses are principal stresses, and
the yield conditions of von Mises and Tresca accord.

• Plane stress (rzz = 0)

According to Eq. (2.14) and Table 2.2, the in-plane normal stresses in the ligament,
h = 0, are

rxx xð Þ ¼ ryy xð Þ ¼ KIffiffiffiffiffiffiffiffi
2px

p ð4:1Þ
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The yield condition for a perfectly plastic material requires ryy(r) = R0 in a range
0 � x � xp. In particular, it characterises the point, x = xp, where the stresses of
LEFM reach the yield strength,

xp ¼ 1
2p

KI

R0

� �2

ð4:2Þ

• Plane strain (ezz = 0)

Equation (4.1) holds and the third principal stress follows from Eq. (2.1) as
rzz = m (rxx + ryy), which result in the yield condition (1 − 2m) ryy(x) = R0 and

xp ¼ 1� 2mð Þ2
2p

KI

R0

� �2

¼ 1
2p

KI

R0
0

� �2

; ð4:3Þ

with R0
0 ¼ R0= 1� 2mð Þ for plane strain. The difference between plane stress and

plane strain, i.e. the different triaxiality of the respective stress states, affects the size
of the plastic zone. The following considerations are independent of the stress state,
however.

The truncated stresses in the range [0, xp] where the yield limit is reached,

Zxp

0

ryyðxÞ dx� R0
0 xp ¼

Zxp

0

KIffiffiffiffiffiffiffiffi
2px

p dx� R0
0 xp ¼

ffiffiffiffiffiffiffi
2xp
p

r
� R0

0 xp ¼ R0
0 xp; ð4:4Þ

see Fig. 4.1, have to be compensated. This is realised by introducing a fictitious
crack of “effective” length,

aeff ¼ aþ xp; ð4:5Þ

where the conditions of LEFM hold. The respective “effective” SIF for small plastic
zones, xp � a, is approximately

Fig. 4.1 Irwin’s concept of
an effective crack tip
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Keff
I ¼

ffiffiffiffiffiffiffi
aeff
a

r
Y aeffð Þ
Y að Þ KI: ð4:6Þ

Stresses ahead of the notional crack tip are described by Eq. (4.1) with
KI ) KIeff. They reach the yield limit, R0

0, in a distance of xp, and the total
extension of the plastic zone in the ligament is

dIrwinp ¼ 2xp ¼ 1
p

KI

R0
0

� �2

; ð4:7Þ

with

R0
0 ¼

R0
1�2m for plane strain, ezz ¼ 0
R0 for plane stress, rzz ¼ 0

�
: ð4:8Þ

Analogously, an “effective” energy release rate for small scale yielding
(SSY) can be calculated according to Eq. (2.16),

Geff ¼
Keff
I

� �2
E0 : ð4:9Þ

The concept of an effective crack length is picked up in ASTM E 561 [2] for
determination of K-based resistance curves, KR(aeff), for metal sheets (see
Sect. 7.2.4 on crack extension in thin structures). Crack extension under plane
stress conditions and SSY is assumed and aeff is either calculated from Eq. (4.2) or
(experimentally) determined from the compliance.

A SSY correction for semi-elliptical surface cracks (see Sect. 2.3.2) is applied by
modifying the elliptical integral, E(k), Eq. (2.37), and defining a shape factor
according to ASME BPVC [1],

QðkÞ ¼ E2 kð Þ � 0:212
rm þ rb

R0
; ð4:10Þ

instead, Fig. 2.8, which results in

Kmax
I ¼ Mmrm þMbrbð Þ

ffiffiffiffiffiffi
pa
Q

r
: ð4:11Þ
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4.2 Crack Tip Opening Displacement (CTOD)

An important fracture parameter for plastic materials can be defined based on
Irwin’s concept, namely the crack tip opening displacement (CTOD), dt. according
to Eq. (2.15) with h = p. The elastic crack opening in mode I is

uyðr; pÞ ¼ 4
KI

E

ffiffiffiffiffiffi
r
2p

r
1 for plane stress

1� m2 for plane strain

�
: ð4:12Þ

Following a conception of Wells [22], the CTOD is defined by the elastic
opening of the “effective” crack at the locus of the real crack, see Fig. 4.2,

dt ¼ 2uyðxpÞ: ð4:13Þ

Introducing Irwin’s Eqs. (4.2) and (4.3) results in

dIrwint ¼ 4
p
K2
I

ER0

1 for plane stress
1� m2ð Þ 1� 2mð Þ for plane strain

�
: ð4:14Þ

CTOD has become a fracture parameter besides the J–integral in EPFM (see
Sect. 5.3.3 on CTOD and CTOA). Aside from Eq. (4.13), other definitions exist
[19]; ASTM E 2472 [3]; BS 7448 [7]. The CTOD concept is based on the physical
perception that a critical plastic deformation, dt = dc, is responsible for the initiation
of crack extension. It has particularly become relevant for thin-walled structures
like panels and shells in aircraft construction [17, 20] where the application of
J exceeds its validity.

4.3 Shape of the Plastic Zone

In Sect. 4.1, the extension of the plastic zone in the ligament has been calculated.
Since the complete distribution of stresses according to the asymptotic approxi-
mation, Eq. (2.14), is known, the two-dimensional shape of the plastic zone in SSY

Fig. 4.2 Wells’ definition of
CTOD based on Irwin’s
concept of an effective crack
tip
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can be determined from the yield condition, �rvMjrp¼ R0. The boundary of the

plastic zone is [10, 13]

dpðhÞ ¼ 1
2p

KI

R0

� �2 1þ 3
2 sin

2 hþ cos h for plane stress
3
2 sin

2 hþ 1� 2mð Þ2 1þ cos hð Þ for plane strain

�
; ð4:15Þ

see Fig. 4.3a. For h = 0, Eq. (4.7) is obtained, but this is obviously not the max-
imum extent of the plastic zone.

The shape of the plastic zone changes along the crack front in three-dimensional
structures. Assuming stress states of plane strain in the centre and plane stress at the
surface, Hahn and Rosenfield [11] suggested the “dog-bone” model for the
three-dimensional plastic zone in SSY, Fig. 4.3b.

Figure 4.3a reveals that the maximum extent of the plastic zone is not at h = 0,
of course, which is obvious from the angular stress distributions in Fig. 2.4. It is
rather at 87.0° for plane strain and 70.5° for plane stress, see Fig. 4.4.

Size and shape of the plastic zone are of vital importance for the definition of valid
fracture toughness values, KIc (see Sect. 7.2.2 on linear-elastic plane-strain fracture
toughness). Fierce discussions on the “geometry dependence” of fracture toughness
in the 1990s stimulated a revival of earlier considerations on the “biaxiality” of stress
states and “two-parameter concepts” of fracture mechanics. Since the singularity of
stresses appeared so dominant, the constant term, Eq. (2.21), in the series expansion
of Williams [23], Eq. (2.20), had been neglected since Irwin [12] and then forgotten
for a long time. Larsson and Carlsson [14] investigated the “influence of non-sin-
gular stress terms and specimen geometry on small scale yielding at crack-tips” by
FEM analyses and found that both the size and the shape of the plastic zone were
significantly affected by the biaxiality of loading and the specimen geometry. Rice
[18] studied the “limitations to the small scale yielding approximation for crack tip
plasticity” and introduced the T-stress, Eq. (2.22), which is the ancestor of all
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“second parameters” in fracture mechanics. He also presented an analytical estimate
of the T-stress effect on the extent of the plastic zone, dp(h),

dpðhÞ ¼ 3p
32

KI

R0

� �2 sin2 h 1þ cos hð Þ
1þ T=s0ð Þ sin h cos h½ �2 ; ð4:16Þ

displayed in Fig. 4.5 in comparison with Irwin’s model, Eq. (4.15). Figure 4.5a
shows the various shapes of the plastic zone, Fig. 4.5b the maximum of dp and
Fig. 4.5c the respective angle at which it occurs. The orientation of the plastic zone
is significantly affected by the T-stress. A major effect on the size occurs for
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negative T-stress whereas the effect of positive T-stress is negligible, meaning that
no additional plastic constraint beyond plane strain and T = 0 can be applied.

Finally, Leevers and Radon [15] further investigated the “inherent stress biax-
iality in various fracture specimen geometries”. It became clear, in the end, that
specimen geometry and stress biaxiality have a major effect on both, size and
orientation of the plastic zone in SSY and hence require a “second parameter”.

Table 4.1 summarises T-stress values for some standard fracture specimens [18].

4.4 The Models of Barenblatt and Dugdale

Sharp cracks induce singularities of stresses and strains in the theory of elasticity.
Griffith’s theory of brittle fracture obviates this problem by the energetic approach.
Barenblatt [4] offered the physically motivated idea to introduce a cohesive zone at
the end of the crack in order to avoid the singularity, Fig. 4.6a, and he suggests that
brittle fracture will occur if the stresses in a “process zone” exceed the cohesive
forces of atomic or molecular attraction.

The difficulty with applying this model is that the distribution of cohesive
stresses, r(x), ahead of the crack tip is not known and cannot be measured. Modern
adaptions of Barenblatt’s model use cohesive models in which the cohesive stresses
depend on a separation, d, characterising the creation of new surfaces in the process
zone. This dependence is established by a cohesive law, r(d), see e.g. Brocks et al.
[6], Brocks [5] and Chap. 9.

Table 4.1 T-stress values for
standard fracture specimens
[18]

Specimen T/R0

Centre cracked panel, M(T) −0.33

Double edge cracked panel, DE(T) −0.07

Single edge crack bar in bending, SE(B) 0.02

Compact specimen, C(T) 0.16

Fig. 4.6 a Barenblatt model; b Dugdale model

4.3 Shape of the Plastic Zone 45



Closely related to Barenblatt’s model is the “strip yield” model of Dugdale [8], who
found that a narrow band of plastic deformations developed ahead of the crack tip in
thin steel sheets. His basic idea is that for a perfectly plastic material in plane stress,

ryyðx; 0Þ ¼ R0 ; a� xj j � aþ dp ð4:17Þ

is reached, Fig. 4.6b. The effect of yielding is studied by assuming a fictitious crack
of length, 2c = 2a + 2dp, which is closed by stresses R0 in the plastic zones,
a� xj j � c. Stresses ryy are limited to R0 and have no singularity, which determi-
nates the size, dp, of the plastic zone. Two solutions for cracks of length, 2c,

(1) with stress-free crack faces under remote stresses, r∞, and
(2) with crack faces partly loaded by compressive stresses, ryy = −R0, at the ends,

a� xj j � c, without remote loading.

are superimposed. The respective SIFs are,

Kð1Þ
I ¼ r1

ffiffiffiffiffi
pc

p
; Kð2Þ

I ¼ � 2
p
R0

ffiffiffiffiffi
pc

p
arccos

a
c
; ð4:18Þ

see Muschelishwili [16] or Hahn [10] for the solution of the second problem. The
crack length, c, follows from the condition that the singularities neutralise each

other, Kð1Þ
I þKð2Þ

I ¼ 0,

a
c
¼ cos

p
2
r1
R0

� �
ð4:19Þ

and the size of the plastic zone follows from dp = c − a as

dDugdalep ¼ c 1� cos
p
2
r1
R0

� �
 �
¼ a sec

p
2
r1
R0

� �
� 1


 �
ð4:20Þ

Though the condition a=W � 1 for the Griffith crack has to hold, no assumption
on the size of the plastic zone has yet been made. A series expansion of the cosine
for SSY, r1=R0 � 1, results in

dDugdalep � p2

8
c

r1
R0

� �2

� 1:23 a
r1
R0

� �2

: ð4:21Þ

The CTOD in Dugdales model results from the definition in Eq. (4.13), again,

dDugdalet ¼ 2uyðx ¼ aÞ ¼ 8
p
R0

E
a ln sec

p
2
r1
R0

� �
ð4:22Þ

For comparison, Irwin’s model for the Griffith crack in plane stress yields
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dIrwinp ¼ 1
p

KI

R0

� �2

¼ a
r1
R0

� �2

ð4:23Þ

for the extension of the plastic zone in the ligament and

dIrwint ¼ 4a
R0

E
r1
R0

� �2

ð4:24Þ

for the CTOD.
As an example, a centre cracked panel of thickness B, width 2 W and crack

length 2a is considered as in Fig. 2.2. It is loaded by nominal stresses, r∞ = F/
(2BW). This configuration is designated as “middle cracked”, M(T), specimen in the
fracture standards (see Sect. 7.2.1 on nomenclature). Numerous approximate
equations for the geometry function, Eq. (2.25), exist (Tada et al. [21]), mostly
based on Isida’s Laurent series expansion of a complex stress potential. Here, the
equation of Feddersen [9],

Y a=Wð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sec pa=2Wð Þ

p
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos pa=2Wð Þp ð4:25Þ

with an accuracy of 0.3% for a/W � 0.7 is applied.
Figure 4.7 shows the extension of the plastic zone in the ligament, the CTOD and

the effective SIF according to the above equations by Irwin (plane strain and plane
stress) and Dugdale (plane stress) for a/W = 0.5 in dependence on r∞/R0 � 0.5.

The diagrams are clipped at dp/W � 0.1, i.e. dp/(W − a) � 0.2, Keff/K � 1.1
and (dt/W)(E/R0) � 0.4 as higher values may in no case be considered as “small
scale” yielding, which implies r∞/R0 � 0.4 for plane stress. The considerable
large differences between plane strain and plane stress conditions are obvious.
Irwin’s plane stress and Dugdale’s model show no significantly different results
with respect to dp and Keff.
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Chapter 5
Elastic-Plastic Fracture Mechanics

Abstract Deformation theory of plasticity is applied to generalise fracture
mechanics concepts to nonlinear material behaviour. Special emphasis is put on the
J-integral as energy release rate and crack-tip intensity parameter in perfect analogy
to linear-elastic fracture mechanics. Its definition as path independent integral and
calculation from experimental records is addressed. Requirements, extensions,
applications, validity and limitations of J as “crack driving force” are discussed, in
particular its application to ductile crack extension. The asymptotic J-dominated
stress and strain fields at the crack tip are derived. Alternative fracture parameters
like dissipation rate, crack-tip opening displacement (CTOD) and angle (CTOA)
are introduced and procedures for structural integrity assessment based on these
parameters are briefly introduced.

The advantage of LEFM is that due to the linearity of the constitutive equations and
backed by the assumption of small strains, closed form solutions for stress and
strain fields at a crack tip can be obtained. This is generally impossible in incre-
mental plasticity, as the constitutive equations are not only non-linear but the
current stress-strain state depends on the loading history. With the approach of
deformation theory of plasticity (see Sect. 3.4) and the introduction of a
“path-independent integral” by Cherepanov [24] and Rice [68], a perfect analogy to
LEFM could be established in elastic-plastic fracture mechanics (EPFM). This
so-called J-integral gained significance as an intensity parameter of the crack-tip
fields as well as a plastic energy release rate.

5.1 The J-Integral

5.1.1 Definition and Path Independence

The J-integral of EPFM is a special case of path independent integrals, in general,
which represent primarily a purely mathematical concept. Assume that w(xi) is a
scalar, vectorial or tensorial field function which is steadily differentiable in a
domain B and
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w;i¼:
@w
@xi

¼ 0 in B: ð5:1Þ

The divergence theorem states that

Z
B

w;i dv ¼
Z
@B

wni da ¼ 0; ð5:2Þ

with ni being the outward normal to the boundary @B of B. If a singularity, S, exists
in B, then w(xi) is not differentiable in this point. The divergence theorem is only
applicable in a domain, B0 ¼ B � Bs, excluding the singularity with the closed
boundary @B0 ¼ @B[ @BS [ @Bþ [ @B�, Fig. 5.1,

ð5:3Þ

From

ð5:4Þ

the path independence of all contour integrals surrounding the singularity in the
same sense results,

ð5:5Þ

Eshelby [33] derived a conservation principle for the energy momentum tensor,

Pij ¼ �wdij � @�w
@uk;j

uk;i with Pij;j ¼ 0: ð5:6Þ

where �w is an energy density, e.g. the strain energy density of a hyperelastic
material, and ui(xj) is the displacement field. The Eshelby tensor allows for cal-
culating material forces acting on a singularity (defect) like dislocations or inclu-
sions in a continuum [48, 51],

Fig. 5.1 Domain B with
singularity S
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ð5:7Þ

The J-integral of Cherepanov [24] and Rice [68] is such a material force for the
singular crack tip. Consider the boundary value problem for quasistatic loading of a
body B which is described by the following equations:

• Balance equations, neglecting body forces like weight,

rij;j ¼ 0 in B; ð5:8Þ

• Boundary conditions for surface forces and displacements,

rijni ¼ t
_

j on @Br

ui ¼ u_i on @Bu

; ð5:9Þ

• Small (linear) strains,

eij ¼ 1
2
ui;j þ uj;i
� �

in B; ð5:10Þ

• Hyper-elastic material,

rij ¼ @�w
@eij

in B: ð5:11Þ

Particularly, the assumption of Eq. (5.11) is crucial. It postulates the existence of
a strain energy density, �w ¼ R rij _eijdt, as potential from which the stresses can be
derived. This postulate is met by the “deformation theory” (Sect. 3.4) but violated
by incremental theory of plasticity.

The components of the material force,

ð5:12Þ
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are non-zero if B contains a singularity. The integral is now applied to a panel of
constant thickness, B, having a straight crack along the x1 axis, Fig. 5.2. The area
within the closed contour,

C0 ¼ C1 [Cþ [C2 [C�; ð5:13Þ

does not include any singularity, hence

ð5:14Þ

The integral

ð5:15Þ

is called “J-vector” and is a force per thickness.
Assume that the crack faces, h = ±p, are straight and stress free,

n1 ds ¼ sin hds ¼ �dx2 ¼ 0
rjknk ¼ �tj ¼ 0

�
on Cþ ;C�; ð5:16Þ

then the first component of the J-vector vanishes along the contours C+, C−,

I
Cþ

�wni � rjknkuj;i
� �

ds ¼
I
C�

�wni � rjknkuj;i
� �

ds ¼ 0; ð5:17Þ

(note that C+, C−, may have different lengths) and with

ð5:18Þ

Fig. 5.2 Definition of
J-integral
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as in Eq. (5.4), the path independence of J1 is obtained

ð5:19Þ

for arbitrary contours, C1, C2. This holds for the other two components, J2, J3, if
and only if the contours around the crack tip and the loading are symmetric to the
x1-axis. Equation (5.19) defines the J-integral as it has been introduced into fracture
mechanics by Cherepanov [24] and Rice [68],

ð5:20Þ

The integration on an arbitrary contour, C, is done anti-clock-wise, i.e. mathe-
matically positively. Because of its path independence, J can be calculated in the
remote field and determines the near-field state at the crack tip likewise, which
constitutes its suitability as fracture parameter and “crack driving force”. A criterion
for fracture instability or the onset of crack extension,

JðaÞ ¼ Jc; ð5:21Þ

(see Sect. 7.2.3) can hence be established. Different from brittle materials, this
crack extension does not necessarily implicate catastrophic structural failure, since
plasticity is another source of dissipation, see Sect. 5.3.1 on dissipation rate.

For a circular contour of radius, r, around the crack tip, J becomes,

J ¼ r
Zþ p

�p

�wðr; hÞ cos h� rijðr; hÞnjui;x
� �

dh; ð5:22Þ

It retains a finite, non-zero value for r ! 0 if and only if the strain energy density,
�w, has a singularity of the order O 1=rð Þ. This is ensured in LEFM, where stresses
and strains have a singularity of Oð1=prÞ, see Sect. 2.2. For singularities in EPFM
see Sect. 5.2.2 and in particular Eq. (5.64).

It is important to well remember the assumptions introduced above, namely

• time-independent processes,
• neglect of body forces,
• small deformations (linear strains),
• homogeneous hyper-elastic material,
• plane stress and strain fields, i.e. no dependence on the x3 coordinate,
• straight and stress free crack surfaces parallel to x1.

Any violation of one of these prerequisites will compromise the path-independence
(see Sect. 7.1.4). Extensions and corrections with respect to three-dimensional
configurations, dynamic processes, body forces and multiphase materials will be
presented in Sects. 5.1.3 and 5.1.4. The requirement of a hyper-elastic material,

5.1 The J-Integral 53



Eq. (5.11), is equivalent with the assumption of deformation theory of plasticity.
Misleadingly, it is frequently argued that a restriction to monotonic loading is
sufficient to guarantee path independence in incremental plasticity. This is definitely
unfounded, as only under the severely restrictive assumption of proportional
loading, rijðtÞ ¼ fðtÞ r0ij, in each point of the continuum, which forbids all local
rearrangements of stresses due to plasticity, the finite Hencky equations can be
derived from the incremental Prandtl-Reuß equations.

5.1.2 J as Energy Release Rate

Rice [68] and Rice et al. [71] have also shown that the J-integral is identical to
Griffith’s energy release rate for plane crack extension, BDa, in an elastic material,
Eq. (2.10), as well as in a hyper-elastic material meeting Eq. (5.11). In LEFM, J is
therefore related to the SIFs by Eq. (2.18).

The property of being an energy release rate is exploited for the experimental
determination of J from the load versus load-point displacement curve of fracture
mechanics specimens, see Fig. 5.3. The procedure is of course also based on
hyper-elastic behaviour which differs from the behaviour of real materials. To begin
with, a constant crack length a = a0 is assumed. Physical crack extension, Da, will
be considered in Sect. 5.1.5 on resistance curves to ductile crack extension.

The potential energy is split into an elastic and a plastic part,

U ¼
Z

FdvL ¼ Ue þUp ¼ 1
2
FveL þ

Z
FdvpL; ð5:23Þ

with veL ¼ vL � vpL according to the assumption of “finite” plasticity. A small
increase of the crack area, DAc, under “fixed grips”, vL = const, releases mechanical
work, and the negative ratio DU/DAc for D Ac ! 0 is the J-integral,

J ¼ G ¼ � lim
DAc!0

DU
DAc

� �
vL

: ð5:24Þ

Fig. 5.3 Load versus
load-point displacement curve
of a fracture mechanics
specimen
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For panels of constant thickness, B, where DAc = BDa, this becomes,

J ¼ � 1
B

lim
Da!0

DU
Da

� �
vL

¼ � 1
B

@U
@a

� �
vL

¼ 1
B

@U
@b

� �
vL

; ð5:25Þ

with b = W-a being the ligament width. A crack extension of 2Da as in Eq. (2.10)
applies to specimens with a crack length of 2a and two crack tips like centre
cracked and double edge cracked panels. Because of Eq. (5.23), J can also be split
into an elastic and a plastic part, where the elastic one follows from the mode I SIF,
Eq. (2.16),

J ¼ Je þ Jp ¼ K2
I

E0 �
1
B

@Up

@a

� �
vL

: ð5:26Þ

Alternatively to Eq. (5.25),

J ¼ 1
B

Z
@vL
@a

� �
F
dF ¼ � 1

B

Z
@vL
@b

� �
F
dF ð5:27Þ

and

Jp ¼ 1
B

Z
@vpL
@a

� �
F
dF ¼ � 1

B

Z
@vpL
@b

� �
F
dF: ð5:28Þ

hold for fixed load according to Begley and Landes [9] and Rice et al. [71].
As the derivative, @Up=@a, is required in Eq. (5.25) which cannot be realised

experimentally, relations with Up have been deduced analytically [9], resulting in

Jp ¼ gJ
Up

B W � að Þ ; ð5:29Þ

for bend-type specimens, like a C(T), Fig. 5.4a or a single-edge bend specimen,
SE(B). The respective η-factors can be found in ASTM E1820 [6].

For a centre cracked panel, Fig. 5.4b, Rice et al. [71] derived the relation

Jp ¼ U�

bB
¼ U�

B W � að Þ ; ð5:30Þ

with the area U�, in the load-displacement diagram, Fig. 5.3,

U� ¼
Z

FdvL � 1
2
FvL: ð5:31Þ

Provided that no plastic deformations occur between the points of force trans-
mission and the measuring points, M, for crack (mouth) opening displacement

5.1 The J-Integral 55



(CMOD) in the symmetry line, the plastic load point displacements and the plastic
crack opening are equal,

vpL ¼ vL � veL ¼ vpM ¼ vM � veM; ð5:32Þ

which requires a minimum measuring length, L0 � 3(W-a0), of the specimen. Note
that this equality holds for the plastic part, only, but not for the elastic part and
hence not for the total displacements, vL 6¼ vM.

The Eqs. (5.29) and (5.30) are used for determining J from experimental records,
but they can also be exploited for the evaluation of numerical results to check
J-integral values calculated by the contour integral, Eq. (5.20). The property of J as
an energy release rate, Eq. (5.24), also constitutes an alternative technique of cal-
culating it by a domain integral. Numerical evaluations of the contour integral are
quite unfavourable in FEM as coordinates and displacements refer to nodal points
and stresses and strains to Gaussian integration points. Stress fields are generally
discontinuous over element boundaries and extrapolation of stresses to nodes
requires additional assumptions. Hence, a domain integral method is commonly
used in FEM codes to evaluate contour integrals [1]. The J-integral is defined in
terms of an energy release rate associated with a fictitious small local crack
extension, Da. For further details see Sect. 7.1.2. Because of this interpretation, the
domain integral method is also known as “virtual crack extension“ (VCE) method.
“Path dependence” of J, if it occurs, becomes a “domain dependence”. The domain

Fig. 5.4 Geometries of fracture specimens: a compact specimen, C(T); b centre cracked panel, M(T)
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integral method accounts for three-dimensional configurations [26]. If the whole
crack front is shifted by the same amount, Da, an average value,
�J ¼ 1=‘cð Þ R ‘c0 J scð Þ dsc, for the total structure is obtained as in the experimental
procedures, ASTM E1820 [6].

5.1.3 The Three-Dimensional J

Holding to the assumption of a plane crack surface in the (x1, x3)-plane, the
J-integral can also be applied to three-dimensional problems with straight or curved
crack fronts. It is defined locally, J(sc), in dependence on the crack front coordinate,
sc, ([2, 8, 46]. A local coordinate system, n1, n2 = x2, n3) is introduced in any point
P tangential to the crack front as in Fig. 5.5, so that the (n1, n2)-plane is perpen-
dicular to the crack, Fig. 5.5a.

The domain B0 ¼ B � Bs, is again a material sheet of constant thickness, Dsc,
with Dsc ! 0, but as this is a three-dimensional problem, its border now also
contains the upper and lower faces, S+ and S− in the (n1, n2)-plane, Fig. 5.5b,

@B0 ¼ C0 [ Sþ [S�; ð5:33Þ

Equation (5.14) becomes

Fi

Dsc
¼
I
C0

�wni � rjknkuj;i
� �

dsþ
ZZ

Sþ
::½ � dsþ

ZZ
S�

::½ � ds ¼ 0: ð5:34Þ

and for an infinitesimal thickness Dsc, the Taylor expansion,

ZZ
Sþ

::½ � dS ¼ �
ZZ

S�
::½ � dS� Dsc

ZZ
S�

@ ::½ �
@n3

dS; ð5:35Þ

holds. With the same assumptions and the same arguments as above, the first
component of the three-dimensional J-integral is obtained,

Fig. 5.5 Three-dimensional J: a local coordinates; b integration contours
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ð5:36Þ

It is a local value and varies along the crack front. The second term vanishes if
J is constant with respect to the crack front coordinate but may contribute signif-
icantly if strong gradients occur, e.g. at the specimen surface. The domain integral
(or VCE) method, Eq. (7.1) in Sect. 7.1.2, already includes three-dimensional
terms [26].

As an example, a cylinder under internal pressure, Fig. 2.5, made of a high
strength - high toughness steel with a semi-elliptical outer surface crack, Fig. 2.7,
a/c = 0.77, a/t = 0.39, is considered [3, 4]. LEFM predicts that crack initiation
starts at the deepest point, i.e. the centre of the crack where KI(/) is maximum,
Eq. (2.38). It is always followed by catastrophic failure of the whole structure. For
ductile materials, crack extension may take place in a stable or at least controlled
manner (see Sect. 5.1.5 on resistance curves), however, but it will not necessarily
initiate at the deepest point and the crack may grow in axial direction. This effect
has been addressed as “canoe” shape of the crack. It is crucial with respect to safety
as a crack penetrating through the vessel wall is preferable to one extending in axial
direction and finally resulting in rupture of the vessel. The former can be detected
and will release the internal pressure before global failure occurs. The respective
concept of “leak-before-break” (LBB) failure has hence been a big issue in
pressure-vessel technology and research in the 1980s, see e.g. Brocks and Noack
[19]; Brocks et al. [15].

Figure 5.6a illustrates that the maximum J occurs around / = ±30° and
respective tests by Arafah et al. [4] indicate that this is indeed the location of
maximum crack extension along the crack front, Fig. 5.7.
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Fig. 5.6 Pressure vessel with semi-elliptical surface flaw [3]: a normalised J along the crack front;
b triaxiality, g ¼ rh=�rvM, at r = 2 J/R0 for J = Jc along the crack front
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Earlier experimental and numerical investigations of large-scale pressure vessels
gave evidence, that this “canoeing” may also occur if the maximum J is somewhere
else. This motivated research on a second parameter (like T stress in LEFM)
affecting ductile tearing resistance [10, 18, 61, 62] and, indeed, it could be shown
that the experimentally observed canoe shape could be explained with the variation
of stress triaxiality,

g ¼ rh=�rvM; ð5:37Þ

along the crack front [15–17]. Figure 5.6b shows that the locations of maximum
J and maximum triaxiality coincide in the present case. The issue of a “second
parameter” in EPFM (O’Dowd and Shih [61]) will be addressed in Sects. 5.1.6 and
5.2.5 on the validity of R-curves and the HRR solution, again. The stress triaxiality,
in particular, governs the evolution of ductile damage due to void growth
(Sect. 8.2.2).

5.1.4 Extensions for Multi-phase Materials, Body Forces,
Surface Tractions and Thermal Loading

Some of the restrictions listed in Sect. 5.1.1 can be overcome by special correction
terms which re-establish the path (or domain) independence of J. One of them is the
assumption of a homogeneous material. The assessment of defects in composite or
gradient materials or in welded structures requires an extension to multi-phase
materials. A correction term is introduced which eliminates the effect of an addi-
tional singularity occurring at the material interface. In addition, the boundary
conditions become asymmetric resulting in a mixed mode problem, so that the

Fig. 5.7 Pressure vessel with semi-elliptical surface flaw: Canoe-shape of ductile crack extension [3]

5.1 The J-Integral 59



complete J-vector, Eq. (5.15), is required to characterise the crack tip field, in
particular J1 and J2 in 2D problems.

If the contour C passes a phase boundary between two materials near the crack
tip, Fig. 5.8, it includes an additional singularity of stresses and strains [85]. This
contribution has to be eliminated by a closed contour integral along the phase
boundary, Cphase, [45],

ð5:38Þ

The equilibrium conditions, Eq. (5.8), postulate that the stress tensor is diver-
gence free. They are restricted to static and stationary processes without body forces
or heat sources acting in B. Constant body forces like gravitational forces, which
have a potential not explicitly depending on the coordinates, xi, can easily be
included in the �w-term and do not affect path independence. In all other cases,
J becomes path dependent unless an extra term is added [25, 90],

J ¼ 1
DAc

ZZZ
V

rijuj;k � �w dik
� �

Dxk;i � fiui;jDxj
� �

dV : ð5:39Þ

The forces fi can be body forces like gravitational forces, f = qg, or inertial
forces, fi ¼ q€xi in the case of dynamic loading.

The boundary conditions, Eq. (5.9), state that the crack faces, C+, C− are traction
free. A respective surface correction term,

J ¼ 1
DAc

ZZZ
V
. . .½ �dV �

ZZ
Sc

ti ui;jDxj dS

	 �
; ð5:40Þ

accounts for surface tractions (or pressure), ti, acting on the crack faces, Sc, [25, 90].

Fig. 5.8 J-integral near a
phase boundary
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The correction term for thermal fields is

J ¼ 1
DAc

ZZZ
V
. . .½ �dV þ

ZZZ
V
rij

@a
@H

H�H0ð Þþ ath


 �
@H
@xk

dijDxkdV

	 �
; ð5:41Þ

where H(xi) is the temperature field, H0 the reference temperature and ath the
coefficient of thermal expansion [58, 89, 90].

The above correction terms are available in commercial FE codes like Abaqus [1].
Actually, Eqs. (5.39) to (5.41) do not use the contour integral definition of J but employ
the VCE method (Sect. 7.1.2) based on the property of J as an energy release rate.

5.1.5 Resistance Curves Against Ductile Crack Extension

Ductile crack extension may occur in a stable manner, i.e. under increasing force, or
at least deformation controlled, because plasticity provides a source of energy
dissipation. A so-called “resistance curve” describes the dependence of a quantity
like J or CTOD on crack extension, Da. For thick-walled components, R-curves are
commonly based on J [6], whereas crack growth in metal sheets is described by
CTOD R-curves [7, 60, 74, 78], see Sect. 5.3.1. ASTM E561 [5] describes the
determination of KR-curves for metal sheets based on the SIF.

The formulas derived for C(T), Eq. (5.29), and for M(T), Eq. (5.30), respec-
tively, have to be extended to increasing crack length, a + Da. Starting from a
plastic J-value at the initial crack length, a0, J

p
ðiÞ ¼ Jp aðiÞ

� �
is successively calcu-

lated for increments, DaðiÞ ¼ aðiÞ � aði�1Þ according to recursion formulas.
According to ASTM E1820 [6]

JpðiÞ ¼ Jpði�1Þ þ
gði�1Þ
J

bði�1Þ

DUp
ðiÞ

B

 !
1� cði�1Þ

J

DaðiÞ
bði�1Þ

� �
; ð5:42Þ

with

gðiÞJ ¼ 2:0þ 0:522 bðiÞ
�
W

� �
; cðiÞJ ¼ 1:0þ 0:76 bðiÞ

�
W

� �
; ð5:43Þ

holds for a C(T) specimen. The changes of the work of plastic strains are calculated
from the area under the load-displacement curve, Fig. 5.3, by the trapezoidal rule,

DUp
ðiÞ ¼ Up

ðiÞ � Up
ði�1Þ ¼

ZvpLLðiÞ
vp
LLði�1Þ

FdvpLLðiÞ �
1
2
FðiÞ þFði�1Þ
� �

DvpLLðiÞ: ð5:44Þ
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The plastic load-line displacement,

vpLLðiÞ ¼ vLLðiÞ � veLLðiÞ ¼ vLLðiÞ � FðiÞCLLðiÞ; ð5:45Þ

is determined from the total displacement by means of the elastic compliance, CLL,
of the specimen, see ASTM E1820 [6].

Respective considerations [12] for M(T) specimens generalising Eq. (5.30) of
Rice et al. [71] result in

JpðiÞ ¼ Jpði�1Þ
bðiÞ
bði�1Þ

þ
Fði�1Þv

p
LðiÞ � FðiÞv

p
Lði�1Þ

2Bbði�1Þ
: ð5:46Þ

Local plastic deformations at the point of applied load, which are not relevant for
J, are disregarded. As long as no plastic deformations occur in the symmetry line
between the load points and the measuring points of crack opening (CMOD)
Eq. (5.32) holds. The elastic parts, veL and veM, of the total displacements can be
calculated from the respective compliances, CL and CM [5, 32, 93]. No standards
exists for JR-curves of M(T) specimens except ASTM E561 [5] for thin metal
sheets. The respective literature is hence considerable and the number of different
equations confusing. A critical review and a validation of various formulas are
given by Brocks et al. [13].

Though the application of JR-curves for characterisation of ductile tearing
resistance is subject to certain criteria with respect to the specimen dimensions,
B and W, (see Sect. 7.2.3 on measurement of fracture toughness in EPFM),
so-called validity conditions, no respective conditions exist with respect to the
evaluation formulas, which can be applied to metal sheets, as well. Unfortunately,
the term “validity” is often used ambiguously, denoting both the physical signifi-
cance of a JR-curve and the accuracy of evaluation formulas. The following
statements refer to the latter, only.

As there is no possibility of deciding on the correctness of evaluation formulas
for J based on experimental data, a validation can only be performed based on
numerical simulations. Brocks et al. [13] have analysed numerical results of crack
extension simulations with the cohesive model (Chap. 9) for C(T) and M(T)
specimens, W = 150 mm, B = 3 mm, made of an aluminium alloy [73]. The
parameters of the cohesive model have been determined from C(T) specimens. The
evaluation presented in Fig. 5.9 is based on consistent (numerical) data, namely
domain-integral [1] and F(vL, Da) results, for quite large crack extensions up to
0.67b0 for the C(T) and 0.54b0 for the M(T).

Little differences between contour integral and release rate results exist up to
crack extensions Da � 0.13b0 for the C(T) and Da � 0.08b0 for the M(T),
respectively, but significant deviations occur for large crack extensions. ASTM
E561 (rp) based on the SSY correction, Eqs. (4.2), (4.5) and (4.6), fails beyond
Da = 0.13b0 even yielding a physically meaningless decreasing JR-curve for the
C(T), and it does not provide any useful results at all for the M(T), which is even
more notable as this standard is particularly used for centre-cracked panels in the
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aircraft industry. ASTM E561 (C), however, calculating aeff from the compliance,
Eq. (7.15), gives the best approximation over the whole range up to Damax for the
C(T) and a reasonable one for Da � 0.10b0 for the M(T). ASTM E1820 is specific
for the C(T) but becomes improper beyond Da > 0.27b0. The formula by Garwood
et al. [35], curve GRT, and Eq. (5.46) generalising the formula of Rice et al. [71],
curve RPM, provide quite perfect approximations for the M(T) up to Damax.
Notably, “new” formulas have been presented by Hellmann and Schwalbe [38],
Neimitz et al. [59] and in the test procedure EFAM GTP [31] long after a better one
by Garwood et al. [35] existed.

Considering the above spectrum of different approximations, results of experi-
mental JR-curves and all the more respective conclusions drawn in the literature must
be treated with caution, as long as it remains unclear how they have been determined.

5.1.6 Application and Validity of Resistance Curves

The analogy to LEFM which had been established based on J in EPFM and which
worked reasonably well for stationary cracks, a = a0, was somewhat later extended
for crack extension, and JR-curves were suggested to provide a sound tool for safety
analyses in EPFM [71, 86]. According to this approach, a cracked structure is
“safe”, as long as the “applied” J-value (“driving force”) for some crack extension,
Da, balances the material resistance curve,

J F; a0 þDað Þ ¼ JR Dað Þ: ð5:47Þ

Fig. 5.9 Validation of evaluation formulas for JR-curves [13]: a C(T), a0/W = 0.5; b M(T), a0/
W = 0.2
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Based on this consideration, Paris et al. [64] and Hutchinson and Paris [42]
established the stability condition

@J
@a

� �
v
� @JR

@a
: ð5:48Þ

and introduced the “tearing modulus”, E
�
R2
0

� �
@J=@að Þ, as a dimensionless quantity

for stability analyses.
Application of Eqs. (5.47) or (5.48) requires that J is “valid” and something like

a “material” resistance curve exists. More and more evidence arose however, that
JR-curves may depend on the specimen geometry, for instance Garwood [34],
Hellmann and Schwalbe [38] and Turner [95]. The JR-curves in Fig. 5.9 clearly
demonstrate that they are considerably different for C(T) and M(T) specimens,
which is supported by Fig. 5.10, displaying the correspondent experimental results
presented by Scheider et al. [73]. The test data for the C(T) have been evaluated
according to ASTM E1820 [6] and of the M(T) by Eq. (5.46). In addition,
numerical analyses by Brocks and Yuan [22] and Yuan and Brocks [99] indicated
that J becomes increasingly path dependent and even vanishes close to the crack tip.

The geometry dependence of R-curves and the path dependence of J have been a
highly controversial subjects in the fracture mechanics community in the 1980s and
1990s, and respective evidence was brushed aside as “anomalous” Two ASTM
conferences were dedicated to “constraint effects in fracture” before these effects
were finally accepted as real. Requirements for the applicability of JR-curves,
so-called “validity conditions” were established [87], disregarding the difficulty that
these conditions can be enforced for specimens but are ineffective for real struc-
tures. Two-parameter approaches came up in which the global quantity, J, was
combined with local field parameters like the crack-tip triaxiality, η, Fig. 5.6b. They
were purely phenomenological after all and could not overcome the physical factum
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that the incremental nature of plasticity is not captured by a cumulative quantity like
J, which ceases to be an energy-release rate as soon as the crack starts extending
[95], see Sect. 5.3.1 on the dissipation rate.

5.2 Asymptotic Solution of Stress and Strain Fields
in Mode I

The constitutive behaviour is described by the deformation theory of plasticity
(Sect. 3.4) and the Ramberg-Osgood [67] power law, Eq. (3.48), confining to the
nonlinear (“plastic”) part.

5.2.1 The Boundary Value Problem

As in LEFM, the near field at the crack tip is described in a polar coordinate system,
{r,h}, Fig. 2.3, and the limiting cases of plane stress, rzz ¼ rrz ¼ rhz ¼ 0, and
plane strain, ezz ¼ erz ¼ ehz ¼ 0, are considered. The von Mises equivalent stress,
Eq. (3.29), becomes

�r2vM ¼ r2rr � rrrrhh þ r2rr þ 3r2rh in plane stress
3
4 rrr � rhhð Þ2 þ 3r2rh in plane strain

	
: ð5:49Þ

The balance equations for plane problems, @ðÞ=@z ¼ 0, in polar coordinates are
identically fulfilled by introducing Airy’s stress function, W(r,h), with

rrr ¼ 1
r
@W
@r

þ 1
r2
@2W

@h2
¼: 1
r
W0 þ 1

r2
€W

rrh ¼ � @

@r
1
r
@W
@h

� �
¼: � 1

r
_W

� �0

rhh ¼ @2W
@r2

¼: W00

; ð5:50Þ

defining @W=@r ¼W0 and @W=@h ¼ _W as simplified notations. Two partial non-
linear homogeneous 4th order differential equations for W(r,h) can be deduced in
plane stress and plane strain, respectively, by eliminating the strains in the com-
patibility condition,

1
r

rehhð Þ00 þ 1
r2
€err � 1

r
e0rr �

2
r2

r _erhð Þ0¼ 0; ð5:51Þ
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via the constitutive Eq. (3.47), see details in Brocks et al. [14]. The stress-free crack
faces, rhh r; h ¼ 	pð Þ ¼ rrh r; h ¼ 	pð Þ ¼ 0, are realised by the boundary condi-
tions for W,

W r; h ¼ 	pð Þ ¼ 0
_W r; h ¼ 	pð Þ ¼ 0:

ð5:52Þ

5.2.2 Singular Crack Tip Fields

A separation ansatz is made for the asymptotic solution,

W r; hð Þ ¼ Krr
sw
_ðhÞ: ð5:53Þ

The exponent, s, represents the dominating singular term of a more general
power series in r. Introducing this ansatz in Eq. (5.50) yields

rrr ¼ Krr
s�2 sw

_ þ _
w
_

� �
¼ Krr

s�2r_rrðhÞ

rrh ¼ Krr
s�2 1� sð Þ _w_ ¼ Krr

s�2r_rhðhÞ
rhh ¼ Krrs�2s s� 1ð Þw_ ¼ Krrs�2r_hhðhÞ

: ð5:54Þ

The equivalent stress, Eq. (5.49) has the same form, �rvM ¼ Krrs�2r_ðhÞ, so that
generally,

rij ¼ Krrs�2r_ijðhÞ; ð5:55Þ

can be written. The correspondent strain field follows from Eq. (3.47) as

eij ¼ 3
2
ae0

Kr

r0

� �n

rn s�2ð Þr_ðhÞr_0
ijðhÞ ¼ ae0

Kr

r0

� �n

rn s�2ð Þe_ijðhÞ: ð5:56Þ

In order to describe a singular field, s < 2 has to hold. On the other hand, the
strain energy stored in a circular disk of thickness, B, and radius, r0, around the
crack tip,

w ¼ B
Zr0
r¼0

Zp
h¼�p

�wðr; hÞ r dr dh; ð5:57Þ
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has to remain finite, which requires that the strain energy density,

�w ¼
Z

rij _eijdt ¼ ae0r0
n

nþ 1
Kr

r0

� �nþ 1

rðs�2Þðnþ 1Þ r_
nþ 1

; ð5:58Þ

has a singularity not exceeding O(r−2), hence s � 2n/(n + 1), Hutchinson [40].
The separation ansatz, Eq. (5.55), allows for reducing the partial differential

equation in W(r,h) to an ordinary nonlinear differential equation in w
_ðhÞ, which is

linear in its highest derivative,

w
_
...:

¼ f w
_
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_
::

;w
_
:

;w
_

� �
; ð5:59Þ

and the boundary conditions become

w
_

h ¼ 	pð Þ ¼ 0
_
w
_

h ¼ 	pð Þ ¼ 0
; ð5:60Þ

which can alternatively be written as,

w
_

h ¼ pð Þ ¼ 0; w
_
::

h ¼ pð Þ ¼ 0

w
_
:

h ¼ 0ð Þ ¼ 0; w
_
...

h ¼ 0ð Þ ¼ 0
; ð5:61Þ

accounting for the symmetry conditions, rrrðr;�hÞ ¼ rrrðr; þ hÞ,
rhhðr;�hÞ ¼ rhhðr; þ hÞ, rrhðr; hÞ ¼ 0, in mode I.

The homogeneous differential Eq. (5.59) and the homogeneous boundary con-
ditions, Eq. (5.61), constitute an eigenvalue problem with the exponent s as
eigenvalue. Hutchinson [40] derived

s ¼ 2nþ 1
nþ 1

ð5:62Þ

from numerical analyses, and Rice and Rosengren [72] received the same result
from the conclusion that the strain energy density of Eq. (5.58) must have a r−1

singularity,

�w ¼ ae0r0
n

nþ 1
Kr

r0

� �nþ 1

r�1 r_
nþ 1

; ð5:63Þ

in order to ensure a finite, non-zero value of the J-integral for r ! 0, see Eq. (5.22).
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Finally, the singular stress and strain fields are

rij ¼ Krr�1=ðnþ 1Þr_ijðhÞ

eij ¼ ae0
Kr

r0

� �n

r�n=ðnþ 1Þe_ijðhÞ
; ð5:64Þ

which take the well-known 1/√r singularity of LEFM for n = 1. They are called
HRR field, in summary, with the initials of the authors Hutchinson [40, 41], Rice
and Rosengren [72]. The dimensionless angular functions, r_ijðhÞ and e

_

ijðhÞ, can be
obtained from numerical solutions of Eq. (5.59) and have been tabulated for
Cartesian and polar coordinates by Shih [83] and Brocks et al. [14]. Figure 5.11
shows examples in Cartesian coordinates for plane strain and plane stress for three
different hardening exponents, n. The correspondent stress-strain curves are shown
in Fig. 3.6. Different from the stress fields in LEFM, Fig. 2.4, the HRR fields are
different in plane strain and plane stress, because the stresses rzz affect the yield
condition.
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Fig. 5.11 Angular functions, r_xxðhÞ, r_yyðhÞ, r_xyðhÞ, of the HRR field in plane strain (above) and
plane stress (below) for n = 5, 10, 15
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5.2.3 J-Integral as Crack-Tip Intensity

In every eigenvalue problem, the intensity parameter Kr is undetermined. It
depends on the external loading. As in LEFM, Eq. (2.16), the stress intensity
is related to the energy release rate or J-integral which has been generalised
to nonlinear material behaviour, Eq. (5.24). Writing J for a circular contour
around the crack tip as in Eq. (5.22), taking the strain energy density, �wðr; hÞ,
Eq. (5.63), and

rijnjui;x ¼ cos h rrrur;r þ rrhuh;r
� �þ sin h

rrr
r

uh � ur;h
� �� rrh

r
ur � uh;h
� �h i

;

ð5:65Þ

finally yields the relation,

Kr ¼ r0
J

ar0e0In

� �1=ðnþ 1Þ
; ð5:66Þ

after integration of the strain displacement relations and some lengthy calculations,
see details in Brocks et al. [14]. For n = 1, the intensity factor becomes,
Kr 


ffiffiffi
J

p 
KI, as the SIF in LEFM. The parameter In is an integral along h of
angular stress and displacement functions, r_ijðhÞ, u_iðhÞ, depending on n and the
stress state, which can only be numerically evaluated, see Fig. 5.12.
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5.2.4 Crack Tip Opening Displacement

The HRR displacement field

ui ¼ ae0
J

ar0e0In

� �n=ðnþ 1Þ
r1=ðnþ 1Þ u_iðhÞ ð5:67Þ

provides a simple definition of the crack tip opening displacement (CTOD), dt, by
the intersection of two 45° secants with the opening profile of the crack [82],

dt ¼ 2uyðrt; pÞ with rt � uxðrt; pÞ ¼ uyðrt; pÞ ð5:68Þ

see Fig. 5.13, which results in a linear relationship between J and dt,

dt ¼ dn
J
r0

: ð5:69Þ

The proportionality factor is

dn ¼ ae0ð Þ1=nDn ¼ 2 ae0ð Þ1=n
In

u_xðpÞþ u_yðpÞ
� �1=n

u_yðpÞ; ð5:70Þ

and the constant Dn is plotted in Fig. 5.12 (dashed lines) in dependence on n for
plane strain and plane stress.

5.2.5 Validity of the HRR Solution

The size of the HRR dominated zone has been investigated for 2D FE models under
plane strain and fully plastic conditions by McMeeking [53], McMeeking and Parks
[55], Shih [84], Shih and German [87], applying incremental plasticity but small
deformations. It was found to be

rHRR ¼ 0:07 W � að Þ in bending
0:01 W � að Þ in tension

	
: ð5:71Þ

Fig. 5.13 Definition of
CTOD by Shih [82]
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A small portion of bending increases the size of the J dominated zone quite quickly
to the pure bending case [84].

FE calculations by McMeeking [53] and Brocks and Olschewski [20], the latter
for large deformations, confirmed the linear relation between J and dt. according to
Eq. (5.69). Both quantities are hence equivalent as fracture mechanics parameters
characterising the crack tip field.

The CTOD controls the regime where large displacements affect the stress field
and the HRR solution deviates from the “real” stresses calculated with incremental
plasticity. No stress singularities occur at the blunting crack tip, and the boundary
condition requires that rxx ! 0 for r ! 0. A stress maximum like that at a notch
appears, instead. Figure 5.14 shows FE results for the stresses in the ligament at a
crack tip obtained with incremental plasticity for two different J values. The
abscissa is normalised by J/r0 * dt, indicating that the stresses are indeed
J-controlled, even in the regime of large displacements. Note that the stresses
follow the plane-strain condition, rzz = (rxx + ryy)/2, in this zone. FE calculations
by Rice and Johnson [70], McMeeking [54] and Brocks and Olschewski [20]
proved that the zone of large deformations is about two to three times dt. In order to
have a J-dominated zone, rHRR > 3dt has to hold. Size conditions can now be
derived from Eq. (5.71) with dn = 2 as,

W � a� 20J=R0 for bend specimens
150J=R0 for tensile specimens

	
; ð5:72Þ

which differ from the size conditions for bend specimens in ASTM E1820 [6], see
Sect. 7.2.3 on measurement of fracture toughness in EPFM.

Parks and Wang [65] and Brocks and Noack [19] analysed problems of real
three-dimensional structures with curved crack fronts. Again, the J-dominance of
stress fields depends on the type of loading and the geometry. Due to the variety of
geometries and the complexity of 3D elastic-plastic analyses, no general conclu-
sions can be made.

Fig. 5.14 Normalised
stresses in the ligament over
normalised abscissa, x/(J/
r0) * x/dt at the crack tip of
a C(T) specimen for two J-
values, plane strain FE
analysis with incremental
plasticity
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Discussions on J-dominance finally resulted in the introduction of a “second
parameter” like the T-stress in LEFM. Sharma and Aravas [81] investigated higher
order terms in the series expansion of the stress fields. O’Dowd and Shih [61, 62]
introduced the Q-stress,

rijðr; hÞ ¼ rHRRij ðr; hÞþQr0dij for hj j\p=2; ð5:73Þ

mimicking Eq. (2.22). It is not based on an analytical solution, however, but a
phenomenological approximation of several non-singular terms based on FE
analyses. The Q-stress has been suggested as a second term to calibrate R-curves
and thus capture phenomena of geometry dependence. It competed with approaches
based on T-stress [97], stress triaxiality, η, Eq. (5.37), Brocks and Schmitt [21], and
several other “second parameters”. Obviously, Q is directly related to rh and η
[100]. All approaches are purely phenomenological and cannot remedy the physical
deficiency of J in incremental plasticity.

5.3 Extended and Alternative Concepts

The stringent theoretical foundation of J notably by the contributions of Rice and
co-authors and the successful transfer of Griffith’ concept of the energy release rate
as crack driving force from LEFM to EPFM promoted not only its application in
fracture mechanics based concepts of safety assessments particularly in the USA
but also motivated attempts to extend its applicability to non-monotonic loading.
Other concepts and approaches based on CTOD have been particularly developed
in the UK and became part of respective design procedures. Discussions on the
geometry dependence of JR-curves fostered an alternative view considering incre-
mental plasticity. The following sections can only give a condensed overview over
the respective concepts, approaches and procedures.

5.3.1 Dissipation Rate

Various inconsistencies in the characterisation of ductile tearing resistance in terms
of JR-curves, in particular their geometry dependence and the increase of J with Da,
are due to the fact that J is actually not the true driving force any more if the crack is
extending. Turner [95] proposed a straight transfer of Griffith’s energy release rate
criterion, Eq. (2.8), to plastic processes, instead, and defined the energy dissipation
rate as a physically more meaningful quantity which is consistent with the incre-
mental nature of plastic deformations,
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Rdis ¼ @Udis

@Ac

� �
vL

¼ @Wext

@Ac

� �
vL

� @Ue

@Ac

� �
vL

¼ @Up

@Ac

� �
vL

þ dUsep

dAc
; ð5:74Þ

where Wext is the external work, and Ue and Up are the recoverable elastic strain
energy and the work of plastic deformation, respectively. The dissipation rate
consists of two contributions, namely the work rate of remote plastic deformation,
@Up=@Ac, and the local work rate of separation, dUsep

�
dAc ¼ Cc.

The dilemma of R-curves becomes obvious from a simple energy balance as in
Fig. 5.15: what people measure as “fracture resistance” does to a great deal not
result from local material separation, Cc � @Up=@Ac, but from remote plasticity
[47], which is different for bend and tensile specimens. The geometry dependence is
hence inherent and cannot be remedied. Attempts to establish “an alternative view
of R-curve testing” based on the dissipation rate [56, 92, 96] did not become
accepted, however, because no possibility based on continuum mechanics was
found to split the two contributions in Eq. (5.74). Only an understanding of the
energy dissipation mechanisms in the process zone at the crack tip can help to
identify “fracture toughness” as a material property [91].

Turner’s approach is helpful, however, to understand the shape of JR-curves.
ASTM E1820 [6] simply suggests a power-law regression,

J Dað Þ ¼ C1
Da
k

� �C2

; ð5:75Þ

with C1, C2 as adjustable parameters, but this is a pure curve fit without any
physical background. Analysing R-curves for various materials and various spec-
imen geometries, Brocks and Anuschewski [11] found that the dissipation rate,
Rdis(Da), like CTOA (Sect. 5.3.3), reaches a constant steady state value, R∞, after a
transition region and can hence be fitted by a function,
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Rdis Dað Þ ¼ R1 1þC1 exp �C2
Da

W � a0

� �
 �
; ð5:76Þ

with three adjustable parameters, R∞, C1, C2. Since according to their respective
definitions, Rdis(Da) and J(Da) are related by

Rdis Dað Þ ¼
W�a
gJ

� �
dJp
da þ Jp c

gJ
for SE(B) and C(T)

W � að Þ dJpda for DE(T) and M(T)

8<
: ; ð5:77Þ

the typical shapes of J(Da)-curves can be obtained by integration of Eq. (5.76),
Fig. 5.16. The correspondent solutions are geometry specific, namely logarithmic
functions for M(T), straight lines for SE(B) and some lengthy expressions of
exponential functions for C(T) specimens [11], which underlines the general
geometry dependence of JR-curves and its physical background.

5.3.2 J-Integral for Cyclic Plasticity

In analogy to the cyclic SIF, DK, of Paris and Erdogan [63], Eq. (2.19), Dowling
and Begley [28] and Dowling [27] suggested a “cyclic J-integral”, DJ, for appli-
cation to low-cycle fatigue (LCF). The justification was and is still mostly based on
cursory arguments “by analogy to the original J-integral” [52]. Though being
aware that “for elastic-plastic materials, J loses its interpretation in terms of the
potential energy available for crack extension”, Dowling [27] argues that it “retains
physical significance as a measure of the characteristic crack-tip strain field”,

Fig. 5.16 Dissipation rate, Rdis, and cumulative plastic J for an M(T) specimen
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leaving the obvious question unanswered what a characteristic crack-tip strain field
in a cyclic process is supposed to be.

Tanaka [94] specifies that DJ “may be interpreted as a measure of the intensity
of the field of cyclic strains around the crack tip”. This has apparently become
consensus among the followers of a cyclic J though no evidence has ever been
presented. It is necessary, “to assume that the material behaves according to
kinematic hardening” [29] and shows Masing behaviour [57] resulting in a sta-
bilised “cyclic” stress-strain curve, Dr(Dep), which relates the strain range to the
stress range and is, of course, different from the monotonic curve, r(ep), Fig. 3.1.

Contradicting Dowling’s argument of 1976, McClung et al. [52] postulate that
the cyclic J “is related to the rate of change of potential energy with change in
crack size”, since this is vital for its experimental determination. Note, however,
that the release rate definition of J in Eq. (5.24) is based on a mathematical vari-
ation of the crack length, a. No physical crack extension, Da, occurs for constant
J in EPFM, whereas in cyclic plasticity a constant DJ is supposed to induce a crack
extension rate, da/dN. Thus, not even the physical meaning of a “release rate” is
clear with respect to DJ.

Whereas Dr = rmax – rmin and De = emax – emin, the “cyclic J” is no difference
between two states, DJ 6¼ Jmax–Jmin, because unlike Eq. (2.14) in LEFM the
relation between J and stresses and strains is nonlinear. Instead, stresses, strains and
displacements in the contour integral definition of J, Eq. (5.20), are replaced by
ranges of the respective quantities [29],

ð5:78Þ

with

Dwe ¼
Z

Drijd Deij
� �

: ð5:79Þ

McClung et al. [52] admit that “in this sense, ‘Delta J’ is something of a
misnomer.” The authors fail to explain how to evaluate the contour integral of
Eq. (5.78). The experimental determination of the J-integral in EPFM is not based
on the contour integral, Eq. (5.20), but on its property as energy release rate [71],
Eq. (5.24). Likewise, the evaluation of the cyclic J would require a science-based
release rate interpretation, which is still missing. Dowling and Begley [28] deter-
mined “values of cyclic J … from areas under load versus deflection lines during
rising load” but gave no explicit formula.

Though numerous experimental investigations on DJ are published, its theo-
retical background and foundation have remained nebulous. There is no reason that
basic and substantial features should hold for a quantity which fails to meet the
requirements of J, in particular Eq. (5.11). Substantiations are just based on
“analogy” arguments. After all, it may be some measure of dissipation energy per
loading cycle which correlates with crack growth.
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5.3.3 CTOD and CTOA

Historically, the first elastic-plastic fracture mechanics concept was developed in
the UK, where Wells [98] suggested that the crack tip deformation at the instant of
initiation of crack extension should be taken as a material property and

dt ¼ dc; ð5:80Þ

as fracture criterion. The CTOD test method developed at The Welding Institute
(TWI) became the British Standard BS 5762 [23] and was later included in ISO
12135 [43]. Harrison et al. [37] suggested the Design Curve as a simple assessment
method for short cracks where the CTOD is proportional to the local strain.

Analytical foundations of CTOD are given in LEFM by Eq. (4.14) where dt is
related to the SIF, or in EPFM by Eq. (5.69) where it is related to J. Thus, the
CTOD concept can be viewed as equivalent to the K- or J-concept, and any
preference for dt may be motivated by its feature that it is an observable quantity
which can be (more or less) directly measured without encountering uncertainties of
evaluation formulas as for the J-integral.

However, the above definitions work for stationary cracks, only, since a growing
crack does not exhibit any blunting at the tip. Schwalbe [74] introduced a technique
where the CTOD is measured on the specimen surface over a gauge length of 5 mm
at the location of the initial crack tip, Fig. 5.17a. It is particularly suited for growing
cracks in thin specimens and became part of the standards ISO 22889 [44] and
ASTM E2472 [7] for specimens under low constraint conditions [78].

Figure 5.17b shows that the validity range is significantly larger than for the
JR-curves of the same specimens, compare Fig. 5.10. Hellmann and Schwalbe [38]
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investigated geometry and size effects on JR- and d5R-curves under plane
stress conditions for various materials and Heerens and Schödel [39] established
criteria for the validity of d5R-curves. The latter are independent of the specimen
width, W, if

• Da � 0.25(W-a0) for C(T) specimens,
• Da � W-a0-4B, W-a0 > 4B for M(T) specimens.

Another parameter applied to simulations of large ductile crack extension par-
ticularly in metal sheets is the crack tip opening angle, CTOA, Scheider et al. [73].
It has been observed that the wR(Da) curve reaches a constant saturation value, w∞,
after some transition region, Fig. 5.18. Direct measurements suffer from large
scatter, but the transition region can be easily determined from the slope of the
d5R-curve, Heerens and Schödel [39],

w Dað Þ � dd5
da

: ð5:81Þ

and w∞ can be identified from simulations of tests. The CTOA test method is also
included in the standards ASTM E2472 [7] and ISO 22889 [44].

The theoretical background of CTOA can be found in the analysis of the near-tip
field at a growing crack by Rice et al. [69]. Newman et al. [60] give a review of the
CTOA and CTOD fracture criteria.

5.3.4 Assessment Procedures

Numerous engineering assessment procedures have been developed by different
institutions from various countries and for different sectors of industry.
Standardisation is required in order to make assessments independent of individual
persons using them. Just a short overview can be given here and the reader is
referred to the literature. Basically, they all have to satisfy the condition that a
“crack driving force” like K, J, dt has to be less than the correspondent material
resistance [101], see Eqs. (2.12), (2.17), (5.21), (5.47) and (5.80). The analytical or

Fig. 5.18 Crack-tip opening
angle (CTOA) from direct
measurements [39] and from
the d5R-curve
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numerical calculation of the crack driving forces has been elaborated above, and the
determination of material resistance will be addressed in Sect. 7.2 on test methods
and standards. The information to be gained from such an assessment are the
maximum load which a component is able to carry, a critical crack size or residual
life time. Inspection intervals can be quantified in order to find cracks before they
become critical.

Along with the “Design Curve” by Harrison et al. [37], the “Failure Assessment
Diagram” (FAD) was developed in the UK. It is based on the two-criteria approach
by Dowling and Townly [30], which covers the range from brittle to ductile failure
and divides an area of safety from one of unsafe conditions, Fig. 5.19. Its ordinate
represents the applied SIF normalised by the respective critical value, Kr = K/Kc,
and is a measure of proximity to LEFM failure. The abscissa is the applied load
normalised by a plastic limit load, Lr = F/Fpl, and is a measure of proximity to
plastic collapse, see Sect. 6.1.2. Fpl is the applied force at net section yielding, see
Madia et al. [50] for surface cracks, for instance. The borderline between the areas
of safe and unsafe conditions is [36]

Kr ¼ Lr
8
p2

� �
ln sec

pLr
2

� �
 ��1=2

: ð5:82Þ

Several enhancements have been executed in the meantime to adjust the FAD to
the development in fracture mechanics, see e.g. Zerbst et al. [102]. It has become
essential part of the British R6 procedure [66].

A handbook for J as a driving force parameter has been developed by the
Electric Power Research Institute (EPRI) in the US in the 1970s and 80s [49, 88]. It
is based on partitioning the J integral into an elastic and a plastic component,
Eq. (5.26), with

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2

K
r=

K
/K

c

L r= F/Fpl

FAD line
load
crack size

safe

unsafe

Fig. 5.19 Two criteria
approach: failure assessment
diagram

78 5 Elastic-Plastic Fracture Mechanics



Jp ¼ ag a=W ; nð Þ F
Fpl

� �ð1þ nÞ=n
ð5:83Þ

where a and n are the parameters of the Ramberg-Osgood strain hardening law. The
function g(a/W, n) represents the effects of the geometry and strain hardening. It has
been determined and tabulated for a number of configurations from finite element
analyses. A parameter explosion due to the combination of geometry and material
parameters finally terminated the project. However the approach to develop J-
formulas has influenced other authors.

Schwalbe [75] developed the “Engineering Treatment Model” (ETM) as a
method for the determination of the driving force parameter d5 in analytical form
[79, 80]. For fully plastic conditions (F � Fpl), the respective formula is

d5
d5pl

¼ F
Fpl

� �1
N

¼ J
Jpl

� � 1
1þN

: ð5:84Þ

with 0 < N < 1 being the hardening exponent of the stress strain curve,

r
R0

¼ e
e0

� �N

: ð5:85Þ

Note that the Ramberg-Osgood exponent, n, is approximately the inverse of N in
Eq. (5.85) for a = 1.

The procedure has been extended to the analysis of yield-strength mismatched
welded joints [77], which is characterised by a bi-material model consisting of the
base metal and a strip of weld metal. The respective document includes plastic limit
load solutions for some standard cases.

The ETM is part of the “Engineering Flaw Assessment Method” [76] which is a
comprehensive assessment scheme also incorporating the experimental determi-
nation of the material properties including corrosive environments, strength
mis-matched welded joints and high temperature behaviour.

The “Structural Integrity Assessment Procedure for European Industry”
(SINTAP) was developed in a European Brite-Euram project of seventeen insti-
tutions from nine European countries. It offers the FAD routine of R6 as well as
crack driving force routines like ETM which have been harmonised in order to
deliver identical results. The user has the option to alternatively use the J-integral or
the CTOD. Several levels of analysis are provided [102].

A second European project, the “Fitness-for Service Network” (FITNET)
comprised about 50 organisations. The document incorporates a fracture module
based on the SINTAP options and modules for fatigue crack extension, fatigue life,
corrosion and creep.
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Chapter 6
Solutions for Fully Plastic Conditions

Abstract The concept of limit-load analysis is presented which allows for an
analytical assessment of the critical load for fully plastic conditions, the “collapse”
load, in incremental plasticity. It is suited as approximation of the ultimate load of a
structure if instability or fracture can be excluded or as reference load in some
fracture assessment procedures. Theorems and extremum principles based on
Drucker’s postulates of stability have been established which provide upper and
lower bounds of the collapse load. Analytical solutions for plane strain plastic flow
can be obtained by the method of characteristics. This approach is known as slip
line theory and is generally suited for calculating plastic limit loads of fracture
mechanics specimens.

The ambiguous nature of the constitutive equations in incremental plasticity does
generally not allow for unique solutions of boundary value problems as in elasticity
or hyper-elasticity. It is rather necessary to calculate the state of stresses and
deformations step by step for a particular loading history. Under the assumption of
a perfectly plastic material, however, the final state of fully plastic conditions in a
structure does not depend on this history. The corresponding “plastic limit load”
(see example in Sect. 3.3.3) is characterised by the feature that plastic deformations
increase unboundedly under constant loads. Theorems have been established for
determining or at least estimating the respective load without calculating all
intermediate steps by extremum principles which provide upper and lower bounds.

Whereas analytical solutions for arbitrary three-dimensional configurations and
elastic-plastic materials are basically impossible, the problem of plane strain flow
can be described by a system of two first order partial differential equations whose
solution is obtained by the method of characteristics. This approach is known as slip
line theory and has been successfully applied in metal forming. It is generally suited
for calculating plastic limit loads and hence plays also an important role in
elastic-plastic fracture mechanics.
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6.1 Plastic Collapse and Limit Load Theorems

If the plastic limit load in a perfectly-plastic body is reached, plastic flow is
unbounded. For geometrically linear systems, this ultimate state can be regarded as
failure state. It is called “plastic collapse” and allows for a simple assessment of the
“ultimate load” of an elastic-plastic structure. The latter is defined as the highest
load in a sequence of stable equilibrium states which a structure can bear.
Geometric instabilities like buckling and unstable crack extension are out of scope,
however, and have to be considered in a separate analysis, see e.g. the “two-criteria
approach” in Sect. 5.3.4.

The limit load theorems are established by means of Drucker’s stability postu-
lates for materials. They are well-known and used for structural assessment in civil
engineering [9] but much less among mechanical engineers.

6.1.1 Drucker’s Postulates of Stability

The idea of material stability has been introduced into plasticity by Drucker [4, 5] in
1950 and further elaborated in later years [6, 7]. In combination with the conception
of yield surfaces, it enabled to generalise phenomena observed in uniaxial tensile
tests to multiaxial stress states (Sect. 3.2). This concept is particularly important for
inelastic material behaviour: Starting from a stress state on the yield surface,
inelastic (permanent) deformations can occur under rising, constant or decreasing
stresses. The respective behaviour is called hardening, perfectly plastic or softening.
The meaning of the term “stability” is obvious.

Drucker applied the energy criterion of stability to deformable bodies made of
inelastic but time-independent material. Starting from an equilibrium state at some
time, t0, of the actual loading path, an arbitrary additional external load (“perturba-
tion”) is applied quasi-statically and removed again. The structure is called stable if
the work done by the perturbation forces or stresses on the correspondent displace-
ments or strains is positive. This so-called “limited criterion” refers to a fixed initial
state. In order to capture instabilities going along with changes of the load, he
extended the classical criterion: A perturbation is applied at t0, which changes the
loading path. The structure is called stable if the work of the additional stresses done
on the strain differences between the original and the disturbed state are non-negative.
This “extended postulate” is a condition for uniqueness rather than a stability crite-
rion. Different from classical criteria, where the perturbations are commonly
infinitesimally small, Drucker’s postulates also allow for large perturbations.

From these criteria, Drucker [6] derived the definition of stability of materials by
excluding all geometrical effects which can significantly affect the structural sta-
bility. One may imagine a material cube subject to a homogeneous stress and strain
state. The concept serves as indicator for classifying material behaviour according
to the known categories of the theory of stability and allows for fundamental
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conclusions on the shape of the yield curve and the flow rule [ 19, 23, 24]. It can be
consistently applied to materials as well as to structural elements, components and
structures including geometrical effects [2], [21], [22].

Consider an actual and a disturbed path in the stress space, rð1Þij ðtÞ and rð2Þij ðtÞ,
respectively, for the most general case. The perturbation is finite and applied at
time, t0. Then Drucker’s extended large scale postulate requires,

Zt0 þDt

t0

rð2Þij � rð1Þij

� �
_eð2Þij � _eð1Þij

� �
dt[ 0: ð6:1Þ

The small scale postulate follows from a Taylor expansion for an infinitesimally
neighbouring state,

_rð2Þij � _rð1Þij

� �
_eð2Þij � _eð1Þij

� �
[ 0: ð6:2Þ

If the state (1) is time independent, rð1Þij ðtÞ ¼ rð1Þij ðt0Þ ¼ r0ij and _eð1Þij ¼ 0, one

obtains the limited postulates. Omitting superscript (2), rð2Þij ¼ rij, the large scale
postulate,

Zt0 þDt

t0

rij � r0ij

� �
_eij dt[ 0; ð6:3Þ

and the small-scale postulate,

_rij _eij ¼ _rij _eeij þ _epij
� �

[ 0; ð6:4Þ

can be derived from Eqs. (6.1) and (6.2), respectively.
These postulates apply to monotonic loading. Additionally, Drucker considered

loading cycles during which perturbations, rijðtÞ, of a fixed initial state, r0ij, meeting

the yield condition, U r0ij

� �
� 0, are applied and removed, again. The work done

during this cycle has to be non-negative for a stable material, that is

rij � r0ij

� �
_epij � 0; U r0ij

� �
� 0 ð6:5Þ

for a large-scale cycle and

_rij _e
p
ij � 0: ð6:6Þ
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for a small-scale cycle. These postulates are only relevant for inelastic material
behaviour, because the elastic deformations are reversible and hence, the respective
work done during a cycle vanishes. If the initial state is a “safe”, i.e. elastic state,

r0ij ¼ rðsÞij with U rðsÞij

� �
\0, then Eq. (6.5) for a large-scale cycle yields

rij � rðsÞij

� �
_epij [ 0; U rðsÞij

� �
\0: ð6:7Þ

A small-scale loading cycle in a perfectly plastic material results in

_rij _e
p
ij ¼ 0: ð6:8Þ

The postulate of Eq. (6.5) is also known as Prager’s minimum principle [25] and
represents the fundamental relation for the proof of the limit theorems of plasticity
[8]. Materials complying this postulate have convex yield surfaces and the plastic
strain rates are normal to the yield surface, Eq. (3.12), see Phillips and Sierakowski
[24], Justusson and Phillips [19]. The latter is also known as normality rule or
associated flow rule.

Drucker’s postulates differ in rigorousness. The most severe restriction follows
from Eq. (6.1) for finite perturbations. All others can be derived from it by reducing
some restrictions, but they are not necessarily equivalent and do not follow any
hierarchy. A material exhibiting an upper yield point is locally softening beyond it
and hence violates the postulate Eq. (6.6) for a small cycle, but it may meet
Eq. (6.5) for a large cycle [23]. The postulates of Eqs. (6.2) and (6.4) impose the
least restrictions, where Eq. (6.4) is the classical stability criterion and eq. (6.2) a
condition for bifurcation of equilibrium [2].

6.1.2 Plastic Limit State (Collapse): Definitions
and Theorems

Whereas the ultimate load is generally also affected by geometrically non-linear
behaviour, the definition of the plastic limit load disregards geometrical effects and
the balance equations are established with respect to the undeformed configuration.

Definition (I) The plastic limit state of a structure of perfectly-plastic
material, denoted by a subscript or superscript “pl”, is the state in which for
the first time in the loading history the displacements, ui, can increase under
constant external forces, if geometrical changes are disregarded,
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_uðpcÞi 6¼ 0 for
_fj ¼ 0 in V
_tj ¼ 0 on @V

�
; ð6:9Þ

where _uðpcÞi is the velocity field of the collapse mechanism, fj are the volume
forces (like weight) and tj the surface forces (like pressure) acting on the
body.

Since the plastic limit state is a state of equilibrium, the principle of virtual work,Z
@V

tplj duj dSþ
Z
V

f plj duj dV ¼
Z
V

rplij deij dV ; ð6:10Þ

holds. The virtual displacement and strain fields, dui and deij, have to be kine-
matically admissible, i.e. fulfil the geometrical boundary conditions and the com-
patibility conditions. These conditions are of course met by the actual velocity field
of the limit state, that is by the collapse mechanism,

duj ¼ _uðpcÞj Dt; deij ¼ _eðpcÞij Dt ¼ 1
2

_uðpcÞi;j þ _uðpcÞj;i

� �
Dt; ð6:11Þ

and Eq. (6.10) can be written asZ
@V

tplj _uðpcÞj dSþ
Z
V

f plj _uðpcÞj dV ¼
Z
V

rplij _e
ðpcÞ
ij dV : ð6:12Þ

According to definition (I) and the decomposition of strain rates, Eq. (3.7),

0 ¼
Z
@V

_tj _u
ðpcÞ
j dSþ

Z
V

_fj _u
ðpcÞ
j dV ¼

Z
V

_rij _e
ðpcÞ
ij dV ¼

Z
V

_rij _e
ðpcÞe
ij dV þ

Z
V

_rij _e
ðpcÞp
ij dV :

ð6:13Þ

holds for an infinitesimal change of state. The postulate of Eq. (6.4) requires that

_rij ¼ 0 and Hooke’s law yields _eðpcÞeij ¼ 0 for the elastic part of the strains. Different
from frequent statements in the literature, the limit load theorems do not require the
assumption of a rigid-plastic material behaviour. Elastic deformation rates vanish as
a natural outcome of definition (I).

Theorem (I) If the plastic limit load (collapse load) is reached, stresses

remain constant, _rij ¼ 0, and the elastic strain rates vanish, _eðpcÞeij ¼ 0. Only

plastic strain rates and deformation rates appear, _eðpcÞij ¼ _eðpcÞpij , _uðpcÞi ¼ _uðpcÞpi .
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Any solution of a mechanical boundary value problem has to satisfy equilibrium
equations (or principle of virtual work), physical and kinematic boundary condi-
tions, compatibility conditions and constitutive equations. States complying with a
less number of these conditions are easier to determine, but some show significant
characteristics, nevertheless.

Definition (II) A stress state is called statically admissible, rðsaÞij , if it satisfies

the equilibrium conditions, rðsaÞij;i þ fj ¼ 0, within the volume V, the physical

boundary conditions, nir
ðsaÞ
ij;i ¼ tj, on its boundary ∂V and the yield condition,

U rðsaÞij

� �
� 0 in V. It is called statically admissible and safe, rðsÞij , if

U rðsÞij

� �
\0.

The existence of a safe stress state for a particular load level guarantees that the
structure does not fail by plastic collapse, independent of whether or not the
respective stress distribution is “real”. It will in general not meet the flow rule,
Eq. (3.12).

Theorem (II) Static theorem As long as a statically admissible and safe

stress distribution, rðsÞij , can be found at every load level, no collapse occurs
under the respective load.

As long as no collapse occurs, a statically admissible and safe stress

distribution, rðsÞij , can be found at every load level.

The existence of a collapse mechanism _uðcÞi , even though a statically admissible

and safe stress distribution rðsÞij can be found, would contradict Drucker’s postulate,
Eq. (6.6).

Definition (II) A velocity field is called kinematically possible (collapse

mechanism), _uðkÞi , if it satisfies the geometrical boundary conditions on

∂V and the incompressibility condition, _eðkÞii ¼ _uðkÞi;i ¼ 0, i.e. _eðkÞpij ¼ _eðkÞij ¼
1
2 _uðkÞi;j þ _uðkÞj;i

� �
in V and if the stresses resulting from the flow rule,

_eðkÞij ¼ _kp@U
�
@rij, meet the yield condition, U rðkÞij

� �
� 0.

This collapse mechanism indicates that a load level at or beyond the plastic limit
load is reached.
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Theorem (II) Kinematic theorem If a kinematically possible (collapse)

mechanism, _uðkÞi , can be found at some load level for which the equilibrium
condition is violated,Z

@V

tj _u
ðkÞ
j dSþ

Z
V

fj _u
ðkÞ
i dV [

Z
V

rðkÞij _eðkÞij dV ;

the structure cannot bear this load any more.

If a kinematically possible (collapse) mechanism, _uðkÞi , can be found at
some load level for which the equilibrium condition is satisfied,Z

@V

tj _u
ðkÞ
j dSþ

Z
V

fj _u
ðkÞ
i dV ¼

Z
V

rðkÞij _eðkÞij dV ;

collapse of the structure will occur under this load.

The first part of this theorem follows again from proving a contradiction to

Drucker’s postulate, Eq. (6.6), if a safe stress state, rðsÞij , is assumed. Assuming a

statically admissible stress field, rðsaÞij , does not implicate any contradiction.
The theorems (II) and (III) immediately result in

Theorem IV If a statically admissible stress state, rðsaÞij , and a kinematic

possible collapse mechanism, _uðkÞi , can be found for some load, then this load

is the plastic limit load of the structure, rðsaÞij ¼ rðkÞij ¼ rplij , and _uðkÞi ¼ _uðpcÞi

Some immediately evident conclusions of these theorems are

• Adding (weightless) material cannot degrade the plastic limit load;
• Removing (weightless) material cannot increase the plastic limit load;
• Increasing the yield stress in some part cannot increase the plastic limit load;
• Residual stresses, ~rij, do not affect the plastic limit load as they are self bal-

anced,
R
V
~rij _eij dV ¼ 0.

So far, continuous stress and displacement fields have been implicitly assumed.
A generalisation to discontinuous fields is based on the argument that any dis-
continuities in a continuum are merely large gradients of the respective field in a
thin layer. An example of a “discontinuous” stress field for generating a statically
admissible stress state is given below. Discontinuous displacement fields
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constituting kinematically possible mechanisms can be devised with the slip-line
theory (see Sect. 6.2).

The application of the theorems is simplified if they are specialised to propor-
tional loading. Volume forces are neglected, fj ¼ 0, as they cannot be applied
proportionally. Surface forces are assumed to increase proportionally,
tj ¼ ft0j ; f� 0, with t0j as a fixed reference distribution sufficiently below plastic
collapse . According to definition (II), fsa > 1 denotes a statically admissible load

factor, tðsaÞj ¼ fsat0j , and fs > 1 a (statically admissible and) safe load factor,

tðsÞj ¼ fst0j . As in definition (III), fk > 1 is a load factor, tðkÞj ¼ fkt0j , which goes
along with a kinematically possible collapse mechanism, and fpl > 1 is the plastic
limit load factor, tplj ¼ fplt0j .

With these definitions, the limit load theorems take the form

Theorem (IIa) Static theorem, lower bound The plastic limit load factor is
the largest statically admissible load factor, fs < fsa � fpl

and

Theorem (IIIa) Kinematic theorem, upper bound The plastic limit load
factor is the smallest load factor belonging to a kinematically possible
mechanism, fk � fpl

In summary, the plastic limit load factor is confined as follows,

fs\fsa � fpl � fk: ð6:14Þ

The problem of determining the plastic limit load is reduced to finding suffi-
ciently close upper and lower bounds according to the definitions given above.

6.2 Example of a Statically Admissible Stress Field

Definition (II) and the static theorem (IIa) of Sect. 6.1.2 are applied to find a lower
bound of the plastic limit load for the flat notched tensile bar shown in Fig. 6.1a.
The simplest assumption is that the net section stress, rnet, that is the nominal
tensile stress in the narrowest section, W − a, reaches the yield strength, R0, and

hence rðsaÞ1 ¼ R0 W � að Þ=W � rpl1. This corresponds to a homogeneous uniaxial
stress state and is equivalent to the assumption of a plane stress state together with
Tresca’s yield condition as will be shown below.
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However, the stress state in the smallest section is bi-axial (in plane stress) or
triaxial (in plane strain), which allows for normal stresses higher than the yield strength
and increases the limit load. This effect is called plastic constraint, and the ratio

Lpl ¼ rplnet
R0

¼ rpl1
R0

W
W � a

� 1; ð6:15Þ

is called plastic constraint factor.
A statically admissible stress state accounting for the biaxiality of the stress state

can be realised by means of a simple trapezoidal discontinuity field displayed in
Fig. 6.1b, which consist of homogeneous segments, see Burth and Brocks [3]. The
stress field is discontinuous along the lines OA, OB, OC, OD, and only normal and
shear stresses, r and s, are continuous. The stress states in the segments [1, 2, 3]
are:

[1] Triangle AOB is subject to principle stresses r½1�I ¼ r½1� and r½1�II \r½1�I ;

[2] Triangle COD is subject to principle stresses r½2�I ¼ r½2� ¼ r1 and r½2�II \r½2�I ;

[3] Triangles AOC and BOD are under uniaxial tension r½3�I parallel to the edges
AC and BD, respectively.

They fulfil the physical boundary conditions. Overall equilibrium and theorem
(IIa) state that

rðsaÞ1 ¼ rðsaÞ½2� ¼ W � a
W

rðsaÞ½1� � rpl1: ð6:16Þ

The trapezium is defined by the base and top edges, CD ¼ 2W and
AB � 2 W � að Þ, the latter holding for small notch radii, and three angles, a, b, c,
with

Fig. 6.1 Flat notched tensile bar a and trapezoidal stress discontinuity field b with homogeneous
segments c
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W � a
tan a

þ W
tan b

¼ a
tan c

: ð6:17Þ

The angles have to be identified such that the highest statically admissible load,

rðsaÞ½2�
h i

max
, is achieved, which provides the best approach to the plastic limit. The

stress state must satisfy the equilibrium conditions along OA and OC, Fig. 6.1c,

rOA ¼ r½1�I sin2 aþ r½1�II cos2 a ¼ r½3�I sin2ðaþ cÞ
sOA ¼ r½1�I � r½1�II

� �
sin a cos a ¼ r½3�I sinðaþ cÞ cosðaþ cÞ

rOC ¼ r½2�I sin2 bþ r½2�II cos2 b ¼ r½3�I sin2ðb� cÞ
sOC ¼ r½2�I � r½2�II

� �
sin b cos b ¼ r½3�I sinðb� cÞ cosðb� cÞ

; ð6:18Þ

resulting in

r½1�I ¼ r½3�I
sinðaþ cÞ cos c

sin a

r½1�II ¼ r½3�I
sinðaþ cÞ sin c

cos a

r½2�I ¼ r½3�I
sinðb� cÞ cos c

sin b

r½2�II ¼ r½3�I
sinðb� cÞ sin c

cos b

: ð6:19Þ

The yield conditions of Tresca, Eq. (3.20), and von Mises, Eq. (3.28), depend on
the stress state, i.e. plane stress or plane strain, Fig. 6.2.

Fig. 6.2 Yield surfaces of von Mises and Tresca in the (rI,rII)-plane for a plane stress and
b conditions
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• Plane stress and Tresca’s criterion:

½1� AOB : r½1�I � 2sT0 ¼ R0

½2� COD : r½2�I � 2sT0 ¼ R0

½3� AOC;BOD : r½3�I � 2sT0 ¼ R0

; ð6:20Þ

Since r½2�I \r½1�I , Eq. (6.16), the yield condition for segment [1] is more stringent

than that for segment [2]. The condition r½3�I � r½1�I and Eq. (6.18)1 require that
a� p=2� c. The premise of a plane stress state in combination with Tresca’s yield
condition is equivalent to the assumption that the normal stresses in the narrowest
section, like in a smooth tensile bar, cannot exceed the yield strength, R0.

• Plane stress and von Mises’ criterion:

½1� AOB: r½1�I

� �2
�r½1�I r½1�II þ r½1�II

� �2
�R2

0

½2� COD: r½2�I

� �2
�r½2�I r½2�II þ r½2�II

� �2
�R2

0

½3� AOC, BOD: r½3�I �R0

ð6:21Þ

Segment [1] is determinant, again. The highest value which rI can take in the
von Mises ellipse, Fig. 6.2a, is,

rðsaÞ½I�
h ivM;pl:stress

max
¼ r½1�I

h i
max

¼ 2
. ffiffiffi

3
p� �

R0 [ rðsaÞ½I�
h iT;pl:stress

max
: ð6:22Þ

The correspondent value of the second principal stress fulfilling the yield con-

dition is r½1�II ¼ 1
� ffiffiffi

3
p� �

R0. The yield criterion for segment [3], Eq. (6.21)3 and
Eq. (6.19) provide the side condition

cos2 c� 2 1� 1
. ffiffiffi

3
p� �

; ð6:23Þ

that is c � 23°.
A plane stress state is a lower limit for thin specimens. The upper limit for

specimens of finite thickness is a plane strain state.

• Plane strain and von Mises or Tresca criterion, respectively, Fig. 6.2b.

½1� AOB: r½1�I � r½1�II � 2s0
½2� COD: r½2�I � r½21II � 2s0
½3� AOC, BOD: r½3�I � 2s0

; ð6:24Þ
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with the shear strength,

s0 ¼ sT0 ¼ R0
�
2 Tresca

svM0 ¼ R0
� ffiffiffi

3
p

von Mises

�
; ð6:25Þ

according to Eqs. (3.21) and (3.30), respectively. The principal stresses in the

segments [I] and [II] are proportional to r½3�I , Eq. (6.19), whose greatest value is 2s0.
This results in the conditions,

½1� AOB: tan 2a� cot c
½2� COD: sin 2c=sin 2b� 0

: ð6:26Þ

The condition of Eq. (6.26) for segment [2] is met for all 0� c\b� p=2, and
the condition for segment [1] requires a� p=4� c=2. In order to get the greatest

value of r½1�I in Eq. (6.19)1, the smallest value a ¼ p=4� c=2 has to be taken, and
finally

1:39�
rðsaÞ½I�
h ipl:strain

max

2s0
¼ cos2 c 1þ tan c

tan p=4� c=2ð Þ
	 


\1:71 ð6:27Þ

is obtained, where 23° � c < 45° depends on a/W and is determined from an
extremum condition. As the right-hand side of Eq. (6.27) is monotonously
increasing with c, the greatest value of c < p/4 which for a given a/W still yields a
value b < p/2 in Eq. (6.15) provides the closest approximation to the plastic limit
load. Figure 6.3 shows the angle a and corresponding values of b for increasing a/
W in dependence on c. Solutions exist only for deeply notched bars, a/W � 0.4.

0

30
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90

20 25 30 35 40 45

α ,
 β

[°]

γ [°]

alfa
beta(0,5)
beta(0,6)
beta(0,7)

Fig. 6.3 Geometry of the
statically admissible
trapezoidal stress
discontinuity field shown in
Fig. 6.1b for plane strain
states: angles a and b(a/W)
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6.3 Slip Line Theory

The boundary value problem of plane plastic flow can be described by a system of
coupled partial differential equations of hyperbolic type whose characteristics, the
“slip lines”, are lines of maximum shear stresses and shear strain rates and represent
kinematically possible velocity fields according to definition (II) in Sect. 6.1.2. The
construction of respective fields for specific boundary conditions provides solutions
for upper bounds of the stress states under fully plastic conditions.

6.3.1 Basic Equations for Plane-Strain Conditions

In a perfectly plastic body under plane strain conditions, _ezz ¼ _exz ¼ _eyz ¼ 0, a
two-dimensional velocity field of yielding, _uxðx; yÞ; _uyðx; yÞ; _uz ¼ 0, with purely
plastic strain rates,

_eij ¼ _epij ¼ 1
2
_ui;j þ _uj;i

� �
; ð6:28Þ

ði; jÞ¼̂ðx; yÞ, _ui;j¼: @ui
�
@xj, arises at sufficiently high loading. No shear stresses

rxz and ryz exist and the stress state can be entirely described by the superposition
of the hydrostatic mean normal stress,

r̂ ¼ rzz ¼ 1
2
rxx þ ryy
� � ¼ 1

2
rI þ rIIð Þ; ð6:29Þ

and the maximum shear stress,

sm ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxx � ryy
� �2 þ 4r2xy

q
¼ s0; ð6:30Þ

where the latter has to meet the yield condition with s0 according to Eq. (6.25).
Whereas only maximum and minimum principal stresses, rI, rII, affect Tresca’s
condition, Eq. (3.20), the condition of von Mises, Eq. (3.28), includes also the
mean principal stress, rIII, see Fig. 6.2b. The principal stresses become

rI ¼ r̂þ sm ¼ r̂þ s0
rII ¼ r̂� sm ¼ r̂� s0
rIII ¼ r̂

: ð6:31Þ

see Mohr’s circle in Fig. 6.4.
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The equilibrium conditions,

rxx;x þ rxy;y ¼ 0

rxy;x þ ryy;y ¼ 0
; ð6:32Þ

and the yield condition, Eq. (6.30), provide three equations for three stress com-
ponents. Elimination of the stress ryy by means of Eq. (6.30) yields a system of two
coupled quasilinear first order partial differential equations,

rxx;x þ rxy;y ¼ 0

rxx;y þ rxy;x � 2rxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 � r2xy

q rxy;y ¼ 0 ; ð6:33Þ

which can be converted to one second order differential equation

rxy;xx � rxy;yy � 2rxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 � r2xy

q rxy;yx ¼ 0: ð6:34Þ

The solution depends on its type. If it can be integrated for specified stress
boundary conditions, the yield state is statically determined, and the velocity field
can be calculated by means of the flow rule.

6.3.2 Cauchy’s Initial Value Problem

The general form of a quasi-linear second order partial differential equation of a
function v(x,y) is

Fig. 6.4 Mohr’s circle for a
plane-strain state
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c0ðx; y; v; vx; vyÞvxx þ 2c1ðx; y; v; vx; vyÞvxy þ c2ðx; y; v; vx; vyÞvyy
¼ rðx; y; v; vx; vyÞ

: ð6:35Þ

The behaviour of its solution, hyperbolic, parabolic or elliptic, depends on the
sign of the discriminant,

D ¼ c21 � c0c2
[ 0 hyperbolic
¼ 0 parabolic
\0 elliptic

8<
: : ð6:36Þ

Cauchy’s initial value problem intends to find a surface, v(x, y), passing through
an arbitrary curve, C0, in the three-dimensional space, {x, y, v}, which is defined by
initial values,

v xðsÞ; yðsÞð Þ ¼ v_ðsÞ along C0 : xðsÞ; yðsÞ½ �: ð6:37Þ

The function v_ðsÞ is assumed as being continuously differentiable. Its derivatives
tangential and normal to C0 are,

v_tðsÞ¼: dv
_

ds
¼ dv_

dx
dx
ds

þ dv_

dy
dy
ds

¼ v_xxs þ v_yys

v_nðsÞ¼: dv
_

dn
¼ dv_

dx
dx
dn

þ dv_

dy
dy
dn

¼ �v_xys þ v_yxs

; ð6:38Þ

where dðÞ=ds ¼ ðÞs:
This is a linear system of equations for the two partial derivatives, v_xðsÞ, v_yðsÞ,

which has a unique solution for x2s þ y2s [ 0, and Eqs. (6.37) and (6.38) thus
determine an infinitesimal band of v(x, y). A continuation of this band to a full
solution may be tried by a Taylor expansion. Three linear equations,

xsv
_

xx þ ysv
_

yx ¼ v_t;xðsÞ
xsv

_

xy þ ysv
_

yy ¼ v_t;yðsÞ
c0v

_

xx þ 2c1v
_

xy þ c2v
_

yy ¼ rðsÞ
: ð6:39Þ

are available for the second partial derivatives. A unique solution requires that the
determinant,

D ¼
xs ys 0
0 xs ys
c0 2c1 c2

������
������ ¼ c0y

2
s � 2c1 xsys þ c2x

2
s ; ð6:40Þ
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does not vanish. If D 6¼ 0 holds for all points of C0, the Cauchy problem has a
unique solution.

For D = 0, either no solution at all or more than one solution for the second
derivatives exist, depending on the right hand side of Eq. (6.38). Curves C0 along
which D = 0, that is,

c0y
0 2 � 2c1 y0 þ c2 ¼ 0; ð6:41Þ

y0 ¼ ys=xs, are of particular interest. This ordinary differential equation is called
“characteristic differential equation” and its solutions are “characteristics”. The
quadratic Eq. (6.41) has the solutions,

y01;2ðxÞ ¼
c1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 � c0c2

p
c0

ð6:42Þ

which are governed by the discriminant, Eq. (6.36), in particular

• two real families of characteristics exist for hyperbolic differential equations,
D > 0,

• one real family of characteristics exists for parabolic differential equations,
D = 0,

• two complex families of characteristics exist for elliptic differential equations,
D < 0.

6.3.3 The Characteristics of Plane Strain Flow

If initial conditions

rxxðxðsÞ; yðsÞÞ ¼ r_xxðsÞ
rxyðxðsÞ; yðsÞÞ ¼ r_xyðsÞ

ð6:43Þ

with continuous derivatives

r_xx;s ¼ rxx;xxs þ rxx;yys

r_xy;s ¼ rxy;xxs þ rxy;yys
; ð6:44Þ

are given along some curve C0, the partial derivatives r_xx;x, r
_

xx;y, r
_

xy;x, r
_

xy;y on C0
can be calculated provided that the determinant
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D ¼
xs ys 0 0
0 0 xs ys
1 0 0 0
0 1 1 � 2rxyffiffiffiffiffiffiffiffiffiffi

s20�r2xy
p

���������

���������
ð6:45Þ

is non-zero. The correspondent characteristic equation,

y0 2 � 2rxyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 � r2xy

q y0 � 1 ¼ 0; ð6:46Þ

is hyperbolic, and its solutions,

y01 ¼
�rxy þ s0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 � r2xy

q ¼ tan/

y02 ¼
�rxy � s0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 � r2xy

q ¼ tanð/þ p
2
Þ
: ð6:47Þ

provide the direction fields of two families of orthogonal characteristics, which
physically represent lines of maximum shear stresses or maximum shear rates,
called slip lines. The angle / signifies the direction of maximum shear stresses,

/ ¼ u� p
4
: ð6:48Þ

and u the direction of maximum normal stresses (see Fig. 6.4). Along the slip lines,

rnt ¼ �sm ¼ �s0; ð6:49Þ

holds, with n, t being the normal and the tangent to the slip line. The components in
the (x,y) coordinate system are

rxx ¼ r̂� s0 sin 2/

ryy ¼ r̂þ s0 sin 2/

rxy ¼ s0 cos 2/

: ð6:50Þ

Thereby, the stress state is completely determined in every point by the mean
principal stress, r̂ ¼ rIII, and the angle, /, of the lines of maximum shear stress
against the x-axis. Equation (6.48) represents an orthogonal mesh of curves. Those
which are rotated anti-clockwise by / against the x-axis, i.e. in a mathematically
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positive sense, are called a-lines, and the curves orthogonal to the a-lines are
b-lines. The first principal axis divides the right angle between them. Stresses
rI;II ¼ r̂� s0, rIII ¼ r̂ act on a material element which is oriented along the
principal axes. The equilibrium conditions, Eq. (6.32), become

r̂x � 2s0 cosð2/Þ/x � 2s0 sin 2/ð Þ/y ¼ 0

�2s0 sinð2/Þ/x þ r̂y þ 2s0 cos 2/ð Þ/y ¼ 0
: ð6:51Þ

Its resolvability condition yields Henky’s equation (Hencky [16]),

dr̂
d/

� 2s0 ¼ 0 for
a� lines
b� lines

�
; ð6:52Þ

stating that the derivative of r̂� 2s0/ vanishes along the a- and b-lines and thus
r̂� 2s0/ is constant,

r̂� 2s0 / ¼ Ca along a� line

r̂þ 2s0 / ¼ Cb along b� line
: ð6:53Þ

The constants Ca and Cb vary from one a- or b-line to the next.
As stress and strain rate tensor are collinear for isotropic materials, the charac-

teristics of the stress and the deformation rate equations are the same, and
Geiringer’s equations [13],

d _ua
d/

� _ub ¼ 0 along a� line

d _ub
d/

þ _ua ¼ 0 along b� line
; ð6:54Þ

are obtained as the equivalent to Hencky’s Eq. (6.52).

6.3.4 Generation of Slip-Line Fields—Boundary Conditions

A Cauchy problem is on hand, if the stresses, rxx, ryy, rxy, are prescribed along a

non-characteristic dAB, Fig. 6.5a. Then a unique solution exists in the triangle ABP,
and according to Eq. (6.53),

r̂C � 2s0/C ¼ r̂E � 2s0/E

r̂D þ 2s0/D ¼ r̂E þ 2s0/E
; ð6:55Þ
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holds in the intersection point, E, of the a- and b-lines passing C and D, respec-
tively, that is

/E ¼ 1
4s0

r̂D � r̂Cð Þþ 1
2
/D þ/Cð Þ

r̂E ¼ 1
2
r̂D þ r̂Cð Þþ 2s0 /D � /Cð Þ

: ð6:56Þ

If the arc dAB is stress free, its normal is a principal direction and the slip lines
intersect with the surface contour by ±45°. The slip-line field ABP is determined by
the shape of the boundary. At a straight boundary, Fig. 6.5b, the stress state is
homogeneous,

rxx ¼ �2s0
rzz ¼ �s0
ryy ¼ rxy ¼ 0

: ð6:57Þ

At a circular stress-free boundary of radius a, Fig. 6.5c, radial and circumfer-
ential directions are principal directions which are cut by the characteristics at an
angle of ±45°. The slip lines become logarithmic spirals described by

u� ln
r
a
¼ Ca;b ð6:58Þ

in a polar coordinate system, (r, u). Along cBP (a-line) and cAP (b-line),
respectively,

uB ¼ �c ¼ u� ln
r
a
¼ � ln

rP
a

uA ¼ c ¼ uþ ln
r
a
¼ ln

rP
a

: ð6:59Þ

hold with rP ¼ OP
�!

.

Fig. 6.5 Generation of slip-line fields: a arbitrary non-characteristic dAB, b straight stress-free
boundary, c circular stress-free boundary
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The stress state in an arbitrary point along the x-axis (u = 0) in a distance of
x � a follows from Eqs. (6.50), and (6.53) as [17].

rxx ¼ rrrðu ¼ 0Þ ¼ 2s0 ln
x
a

� �
ryy ¼ ruuðu ¼ 0Þ ¼ 2s0 1þ ln

x
a

� �h i
rxy ¼ rruðu ¼ 0Þ ¼ 0

: ð6:60Þ

The logarithmic slip-line field of Eq. (6.58) provides also a solution for the fully
plastic state of a cylinder under internal pressure (Sect. 3.3.3), Fig. 6.6, which does
not only represent a kinematically possible velocity field but at the same time a
statically admissible stress state. Thus the corresponding internal pressure is the
plastic limit pressure, ppl, according to the theorems of Sect. 6.1.2.

Though the inner surface, r = ri, is not stress free, but rrr = −p, radial and
circumferential directions are principal directions due to axial symmetry and
rru = 0, and hence Eq. (6.58) holds for the slip-lines. The direction of the greatest
principal stress bisects the right angle between a- and b-lines. The stress state in

point C is rrr = 0, ruu = rI = 2s0, and hence dABC is an a-line with

uA � ln
ri
ri
¼ 0 ¼ u0 � ln

ro
ri
: ð6:61Þ

The plastic limit pressure follows from the boundary condition and Eq. (6.31),

rrrðriÞ ¼ rArr ¼ r̂A � s0 ¼ �ppl; ð6:62Þ

where r̂A can be calculated from Hencky’s Eq. (6.53) regarding Eqs. (6.48) and
(6.29)

Fig. 6.6 Slip-lines for a
pressure vessel
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r̂A ¼ r̂C � 2s0 /C � /Að Þ ¼ r̂C � 2s0 uC � uAð Þ ¼ s0 � 2s0 u0 ð6:63Þ

which finally results in

ppl ¼ 2s0 ln
ro
ri


 �
; ð6:64Þ

taking u0 from Eq. (6.61). This is Eq. (3.40), again, with s0 according to
Eq. (6.25).

6.3.5 Examples of Notched Structures

Besides applications in metal forming [18], slip-line fields have gained importance
in fracture mechanics for calculating approximations of the plastic limit load for
notched and cracked specimens. Hill [17] gave a solution for a notched tensile bar
as in Fig. 6.1a, which works only for a specific ratio of the notch radius, r0, to the
half ligament width, b = W − a, however.

The notch surface is stress free, rrr(r0, u) = rru(r0, u) = 0, and the circumfer-
ential stress is the greatest principal stress, ruu(r0, u) = rI(r0, u) = 2s0. The slip

lines are logarithmic spirals, Eq. (6.58), again, cutting the surface at ±45°. dAOB is

an a-line and dDOC a b-line, Fig. 6.7a. With uA = −u0, rA = r0, uO = 0,

rO = r0 + b, we have �u0 ¼ � ln r0 þ bð Þ=r0½ � along dAO and hence

u0 ¼ ln 1þ b
r0


 �
: ð6:65Þ
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Fig. 6.7 Hill’s slip-line solution for a notched tensile bar, b/r0 < 3.81: a geometry, b stress
distribution
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Because of u0 � p/2, a ratio of

b
r0

� ep=2 � 1 ¼ 3:81 ð6:66Þ

has to be observed in order to realise the slip-line field. The hydrostatic stress in the
specimen centre, point O, follows from Hencky’s Eq. (6.53),
r̂O ¼ r̂A þ 2s0 /O � /Að Þ ¼ r̂A þ 2s0u0, with boundary and yield conditions as

r̂O ¼ s0 1þ 2u0ð Þ; ð6:67Þ

and for an arbitrary point, P, on dCOD with uP = u, rP = r, we finally obtain

r̂P ¼ r̂ðr;uÞ ¼ s0 1þ 2 u0 � uð Þ½ � ¼ s0 1þ 2 ln
r
r0


 �	 

: ð6:68Þ

Principal stresses and stresses in the ligament, u = 0, result from Eq. (6.31),

rxxðxÞ ¼ 2s0 ln 1þ bþ x
r0


 �

ryyðxÞ ¼ 2s0 1þ ln 1þ bþ x
r0


 �	 
 ; ð6:69Þ

which are plotted in Fig. 6.7b. They represent the stress state for a kinematically
possible mechanism according to definition (II) in Sect. 6.1.2. The corresponding
force is obtained by integration,

Fk ¼ B
Z þ b

�b
rðkÞyy ðxÞ dx ¼ 4Bb s0 1þ r0

b

� �
ln 1þ b

r0


 �
�Fpl; ð6:70Þ

which is an upper bound to Fpl. The plastic constraint factor according to Eq. (6.15)
becomes Lpl � 1.98 for (b/r0)max = 3.81. The plastic limit load of a notched
specimen can hence become nearly double as high as that of a smooth tensile bar of
same net width, 2b, which more than once has caught experimentalists by surprise
when testing notched bars.

If the limit condition of Eq. (6.66) is exceeded, the slip line field has to be
complemented by triangular constant stress fields according to Fig. 6.5b along the
straight flanks of the notch, GHC, and in the specimen centre, RSO, see Fig. 6.8a.

Stresses in the triangle RSO are constant,

rxx ¼ s0 p

ryy ¼ 2s0 1þ p
2

� � ; ð6:71Þ
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and the stress distribution between E and R follows from Eq. (6.69). The plastic
limit load factor becomes

Lpl � 1þ p
2

� �
1þ r0

b

� �
� r0

b
ep=2: ð6:72Þ

In the limit of a crack, that is r0 ! 0, the slip-line field of Fig. 6.8b is obtained.
The stresses in the ligament are the same as in the triangle RSO of the notched bar,
Eq. (6.71), and the plastic constraint factor is obtained from Eq. (6.72) for r0 ! 0,
Lpl � 1 + p/2 = 2.57.

Slip-line fields for V-notched tensile bars can be found in Ewing and Hill [12]
and Ewing [10], and a substantial number of publications exists also for bending of
notched bars: Green [14], Green and Hundy [15], Lianis and Ford [20], Alexander
and Komoly [1], Wilshaw and Pratt [26], Ewing [11] etc.
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Chapter 7
Determination of Fracture Parameters

Abstract Numerical methods for determining fracture mechanics parameters or
“crack-driving forces” like J-integral or energy release rate and stress intensity
factors by finite element analyses are presented and explained. Special emphasis is
placed on the capabilities of the finite element code ABAQUS. Path dependence of
the J-integral in incremental plasticity is addressed and rules for calculating
physically meaningful J values are given. Likewise, experimental procedures for
determining the fracture toughness in terms of J or K as codified in the ASTM
standards are described, starting with a discussion on fracture mechanics
terminology.

Fracture criteria as in Eqs. (2.12), (2.17), (5.21), (5.47), (5.80) compare applied
“crack driving forces” like G;K; J; d with the respective crack resistance of the
material, Gc;KIc; JIc; dc, as single values or R-curves, JR or dR, respectively.
A fracture mechanics assessment requires the determination of both driving force
and resistance. The previous chapters were primarily concerned with the definition
of the respective quantities and simple analytical formulas for their evaluation.
Calculations for real structures and particularly for non-linear material behaviour
require numerical methods, where most frequently the finite element method
(FEM) is applied [22]. The present chapter focuses on numerical analyses of
cracked structures and the determination of driving forces like G; J;K by com-
mercial FE-codes in its first part and on the standards for experimental determi-
nation of material parameters in its second.

7.1 Numerical Methods: Crack Driving Forces

Cracks and crack-like defects cause high stress and strain gradients which call for a
fine discretisation of the FE mesh. This results in large numbers of elements and
degrees of freedom. Nonlinear simulations of components with stress concentrators
can therefore be quite expensive with respect to computation time and memory.
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Some leads for an appropriate and effective layout of FE meshes are given in the
following, and common methods for determining energy release rate, J-integral and
stress intensity factors are presented. Particular emphasis is focussed on the
elasto-plastic J and its path dependence.

7.1.1 FE Meshes for Structures with Cracks

Modelling means simplification and reduction of complexity. Models should only
be as complex as inevitable to include significant effects. For plane specimen
geometries two-dimensional models should be employed, at least for pre-analyses
of a new problem. Thin specimens and sheet metal components are commonly
adequately represented by plane-stress, and thick or side-grooved specimens by
plane strain models. Three-dimensional analyses are necessary, of course, if the
geometry is not plane or if 3D effects through the thickness and along the crack
front shall be studied. All additional possibilities for reducing the number of
degrees of freedom should be exploited like (i) coarsening the mesh remote from
the defect, (ii) introducing symmetry conditions. For more details and examples see
Brocks et al. [10] and Brocks [9], for example.

Figure 7.1 shows examples of two-dimensional FE meshes near the crack tip of
a fracture mechanics specimen for mode I. As loading and geometry are symmetric,
just the upper half is modelled and vertical displacements are suppressed in the
ligament, uy = 0. Collapsed elements are used for the analysis of a stationary crack,
Fig. 7.1a, and a regular element arrangement for the analysis of an extending crack,
Fig. 7.1b. Both meshes demonstrate common strategies used for coarsening the
mesh away from the crack.

Singular elements were suggested by Barsoum [8] to increase the accuracy of
stress calculations and K-factors at a time when computer capacities were limited.
Triangular or prismatic isoparametric elements which are obtained by collapsing
one side reveal a 1/√r-singularity of strains in linear elasticity as well as a 1/r-
singularity for perfectly plastic materials. A pure 1/√r-singularity is obtained if

Fig. 7.1 Details of FE meshes at the crack tip for a stationary crack. b extending crack
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additionally the respective mid-side nodes of the crack-tip elements are shifted to
quarter positions. The strain energy remains finite for r ! 0 in linear elasticity as
well as for HRR-like fields, because the strain energy density, �w, has a singularity
of O r�1ð Þ. Numerical studies by McMeeking and Rice [25] and Brocks et al. [12]
have shown that triangular or prismatic collapsed elements are well suited for
calculations in EPFM. Crack tip blunting can be simulated applying a large-strain
analysis, Fig. 7.2a, and principal stresses exhibit a maximum ahead of the crack tip
as in Fig. 5.14. CTOD can be evaluated either according to the definition of
Fig. 5.13, dt, or by extrapolation of the crack opening profile to the crack tip, dex.

Singular elements for stationary cracks lost importance in recent years because
SIFs are no longer calculated from stress fields but from the energy release rate
(Sect. 5.1.2), and because J calculations by the virtual crack extension method
(Sect. 7.1.2) yield accurate results even for rather coarse meshes. Singular elements
cannot be applied at all for crack growth simulations, which require a regular
arrangement of elements in the ligament as shown in Fig. 7.1b. These meshes,
however, do not provide sufficiently accurate results of CTOD or stresses at the
crack tip for stationary cracks.

If a critical value of some fracture parameter, Jc or dc, is exceeded, a crack starts
to grow. For ductile materials, this may occur in a stable manner, i.e. under still
growing external forces, or at least deformation controlled even beyond maximum
load. Crack growth can be simulated by

• node release controlled by an R-curve for J, CTOD or CTOA (Sects. 5.1.5 and
5.3.3), e.g. Siegele and Schmitt [39]; Brocks and Yuan [15]; Brocks et al. [11];
Gullerud et al. [21];

• cohesive elements (Chap. 9);
• constitutive equations based on damage mechanics concepts (Chap. 8).

Figure 7.2b illustrates crack growth by node release [34] which is controlled by
a criterion assuming constant crack tip opening angle (Fig. 5.16), wR(Da).

Fig. 7.2 a CTOD, d, at a blunting crack tip b CTOA, w, for an extending crack
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7.1.2 Energy Release Rate and J-Integral

Griffith [20] defined the (elastic) energy release rate as the negative change of strain
energy, DU, with some crack advance, Da, Eq. (2.10). Rice et al. [32] showed that
the J-integral is identical to Griffith’s energy release rate not only in an elastic
material but also in a hyper-elastic material, Eq. (5.24). The mathematical back-
ground of this equivalence is the divergence theorem, Eq. (5.2), which converts the
contour integral, Eq. (5.20), into an area integral in two dimensions or a volume
integral in three dimensions over a finite domain surrounding the crack front. The
relation between G and J constitutes a unique methodology for their respective
analytical, numerical and experimental determination, which has been addressed in
Sect. 5.1.2, already.

The determination of J in FE codes is based on the domain integral method (see
Sect. 11.4.2 on contour integral evaluation in Abaqus [1], e.g.), which was first
suggested by Parks [27, 28], further worked out by DeLorenzi [17, 18] and has
became an established technique [38]. The method is quite robust, and accurate
values are obtained even for quite coarse meshes [23]. As the domain integral is
based on energy quantities and is taken over a finite region of elements, disconti-
nuities of stresses or any other numerical imprecisions of local field quantities have
less effect. The J-integral is defined in terms of the energy release rate, associated
with a fictitious small crack advance. Because of this interpretation, the domain
integral method is also known as “virtual crack extension” (VCE) method.

The change of energy in a domain, B0, for some (fictitious) small crack
extension, Da, see Fig. 7.3, is calculated as

Gh ¼ 1
BDa

ZZ
B0

rijuj;k � �wdik
� �

Dxk;i dV ; ð7:1Þ

where �w ¼ R
rij _eijdt is the strain energy density and Dxk the shift of the crack front

coordinates. Equation (7.1) allows for an arbitrary shift of the crack tip coordinates,
Dxk, yielding the energy release rate, Gh, in the respective direction, h = arctan(Dx2/

Fig. 7.3 Virtual crack
extension for calculating the
energy release rate
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Dx1), which can be applied for investigations of mixed mode fracture problems. The
respective results for h = 0 and h = p/2 equal the first two components of the J-
integral vector, Eq. (5.15),

J1 ¼ G1 ¼ Gh¼0; J2 ¼ G2 ¼ Gh¼p=2: ð7:2Þ

The volume integral of Eq. (7.1) already includes three-dimensional effects as in
the contour definition of J in Eq. (5.36), DeLorenzi [18]. Local values, J(sc), along
the crack front are calculated if rings around single crack tip nodes are shifted. Thus
J(/) in Fig. 5.6a for the semi-elliptical surface flaw in the pressure vessel has been
calculated. If the whole crack front is moved by the same amount, Da, an average

value, J ¼ ð1=BÞ R B
0 JðzÞ dz, is obtained for a fracture specimen of finite thickness,

B, which equals the global J-integral calculated from the F(vL) data. The extensions
of J for body forces, surface tractions and thermal loading presented in section by
Eqs. (5.39)–(5.41) are also based on the domain integral method.

7.1.3 Stress Intensity Factors

Stress intensity factors (SIF) can be calculated from Eqs. (2.23) or (2.24) if the
asymptotic stress fields, rij(r, 0), or the crack edge displacements, ui(r, p) are
known from numerical calculations. This does not yield sufficiently accurate results,
however, particularly if they are based on stresses. More advanced methods exploit
the relation to the energy release rate, which is commonly evaluated by a domain
integral. The components of J or G, Eq. (7.2), are related to the SIFs of mode I and
II by

G1 ¼ Gh¼0 ¼ K2
I þK2

II

E0 ; G2 ¼ Gh¼p=2 ¼ �2
KIKII

E0 : ð7:3Þ

Bear in mind not to mistake the components, G1;G2, in Eq. (7.3) for the energy
release rates in mode I and II, GI;GII, in Eq. (2.18), respectively.

Two equations for two unknowns exist, but as Eq. (7.3) is symmetric in KI, KII

the resulting quadratic equation for K2 does not offer a unique solution which is KI

and which is KII,

K2
I=II ¼

1
2
E0G1 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E02 G2

1 � G2
2

� �q
; ð7:4Þ

and side conditions based on Eqs. (2.23) or (2.24) are required to decide.
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Shih and Asaro [37] developed the interaction integral method to extract the
individual SIFs for a crack under mixed-mode loading (Sect. 2.16.2 in Abaqus [1]).
It is s applicable to cracks in isotropic and anisotropic linear materials and, of
course, for 3D configurations [19].

The relation (2.18) can be written more generally as

G ¼ Kf gT Bf g�1 Kf g; ð7:5Þ

where {K} is the column matrix of the three SIFs, Kf gT¼ KI; KII; KIIIf g and {B} a
matrix of elastic constants, which becomes

Bf g ¼
E0 0 0
0 E0 0
0 0 2G

8<
:

9=
;; ð7:6Þ

for isotropic materials. If a mode I “auxiliary” crack tip field with SIF, Kaux
I , and

release rate, Gaux
I ¼ Kaux

I B�1
11 K

aux
I , is defined and superimposed onto the actual field,

the total energy release rate for mode I becomes

Gtot
I ¼ KI þKaux

I

� �
B�1
11 KI þKaux

I

� �þ 2 KI þKaux
I

� �
B�1
12 KII

þ 2 KI þKaux
I

� �
B�1
13 KIII þ . . .ð Þ: ð7:7Þ

Since the terms (…) not involving KI or Kaux
I in Gtot

I and G are equal, an
“interaction integral” can be defined as,

Gint
I ¼ Gtot

I � G � Gaux
I ¼ 2Kaux

I B�1
11 KI þB�1

12 KII þB�1
13 KIII

� �
: ð7:8Þ

Repeating this for mode II and III finally results in a linear system of equations,

Gint
að Þ ¼ 2Kaux

að Þ B
�1
að ÞbKb; a; b ¼ I, II, III, ð7:9Þ

(no summation on a). If the Kaux
a are assigned unit values, Eq. (7.9) yields the

solution

Kf g ¼ 1
2
Bf g�1 Gint� �

with Gint� � ¼
Gint
I

Gint
II

Gint
III

8<
:

9=
;: ð7:10Þ

The interaction integrals, Gint
a , are calculated with the domain integral method,

Eq. (7.1). Numerical errors due to discretisation may lead to a domain dependence,
see the following example of a surface crack in a railway axle.

The fatigue life of a railway axle under service loads, Fig. 7.4, can be assessed
with help of the Paris Eq. (2.19), Zerbst et al. [41]. It requires the determination of
mode I, II and III SIFs for some postulated surface flaw. Here, the surface crack is
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assumed as semi-elliptical of aspect ratio a/c = 0.5 and penetrating 10% of the wall
thickness. The structure is subject to normal stresses, bending and shear by vertical
and horizontal forces acting at the contact points of wheels and rail. As the position
of the crack changes due to the rotation of the axle, the K-factors vary with time
between maximum and minimum values. Due to the linearity of the problem, the
analyses can be performed successively for unit reference values of the four forces,
FV1, FV2, FH1, FH2, and the resulting K-factors for the actual time dependent values
superimposed according to Eq. (2.26).

The local SIFs, KI, KII, KIII, in MPa√m along the crack front for a horizontal
force, FH1 = 100 kN, are displayed in Fig. 7.5. The crack front coordinate is the
normalised arc length, −0.5 � 2sc/(p(c + a)) � 0.5. The K-values at the end
points where the crack front penetrates the free surface are defective and not

Fig. 7.4 Railway axle with assumed semi-elliptical surface flaw under service loads
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displayed since no 1/√r singularity is present in these points. The curve numbers,
#1–4, indicate increasing sizes of the integration domain around the crack
tip. Whereas the first (blue) curve which represents the closest contour around the
crack tip is definitely inappropriate for KI and KII the domain dependence decreases
with increasing domain size for KI and has completely vanished for KII. The courses
of KI and KII are symmetric to the centre, KI having a minimum in the centre and KII

a maximum, and it is antisymmetric for KIII. The domain dependence of KIII is less
distinct; obviously KIII � 0 for −0.25 � 2sc/(p(c + a)) � 0.25.

The same analyses have to be performed for the other forces, FH2, FV1, FV2.
Assuming a mixed-mode criterion for fatigue, for instance based on an equivalent
cyclic SIF [33], a life estimate based on Eq. (2.19) for monitored service loads can
be conducted [41].

7.1.4 Path (Domain) Dependence of J in Incremental
Plasticity

Whereas the domain dependence in the previous example of a linear-elastic material
results from numerical errors due to discretisation, path (or domain) dependence of
the elasto-plastic J may have a second reason originating in violations of the
assumptions of small strains and deformation theory of plasticity (Sect. 5.1.1).
Particularly, violation of the requirement of hyper-elastic material behaviour,
Eq. (5.11), is the most frequent trouble in numerical calculations of J, and it appears
to be one of the most “mysterious” problems in the literature: “J-integral estimates
from different rings may vary because of the approximate nature of the finite
element solution” (Sect. 11.4.2 in [1]). This is indeed true for the determination of
SIFs but path dependence of J in incremental plasticity is a physical phenomenon
and a consequence of energy dissipation [40]. Any pseudo restriction that “the J-
integral calculated is suitable only for monotonic loading of elastic-plastic mate-
rials” is a necessary but not at all sufficient condition since local rearrangements of
stresses owing to plastic yielding may nevertheless occur. Likewise, recommen-
dation to refine the FE mesh in order to increase the “accuracy” of J-calculations is
counterproductive and rather escalates the problem.

For small scale and contained yielding, a path independent integral can be
computed outside the plastic zone. This means that the contour, C, has to be large
enough to surround the plastic zone and pass through the elastic region only, which
is also recommended in the Abaqus manual. In gross plasticity, this is not possible,
however, and some more or less pronounced path-dependence will always occur.

The following example is supposed to illustrate this phenomenon and how to
deal with it. The mechanical behaviour of an M(T) specimen with a constant
(initial) crack length, Fig. 5.4b, under monotonic loading made of an aluminium
alloy has been simulated as a 2D model using Abaqus [1] by Brocks and Rabbolini
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[13]. The results of the J-analysis applying the domain integral option are displayed
in Fig. 7.6.

Various contours or domains have been defined, starting with “J1” which is the
first ring of elements around the crack tip. The correspondent J values are definitely
useless. The size of the domains increases with their number, and “J24” was the
largest possible one not touching the specimen boundary. For contours larger than
“J10”, the J values start saturating. Path dependence increases with load-point
displacement, vL.

Because of its relation to the global energy release rate, Eq. (5.24), J has to be
understood as a “saturated” value reached in the “far-field” remote from the crack
tip. This is the only meaningful definition which is compatible with the experi-
mental evaluation of J. Figure 7.7 demonstrates that indeed the domain integral
values obtained in the far-field coincide with the results of Eqs. (5.26) and (5.30)
based on the numerical F-vL curve and also match the test results. The minor
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deviation between experimental and numerical results arising beyond vL � 2 mm
can be traced back to some crack extension occurring in the test which is not
considered in the present FE analysis.

The J-integral is a monotonously increasing function of the distance, r, to the
crack tip [40],

Jtip � JðrÞ� Jfarfield; ð7:11Þ

Any other behaviour would mean an energy production instead of energy dis-
sipation and therefore violate the second law of thermodynamics. Hence the highest
calculated J-value with increasing domain size is always closest to the “real”
far-field J. This characteristic also substantiates that any “near-field” integrals [7,
16] are physically meaningless. Considerable stress re-arrangements occur at a
blunting crack tip violating the assumption of small strains, Eq. (5.10), as well as
the assumption of a hyperelastic material, Eq. (5.11), and the correspondent path
dependence increases strongly. This explains why recommendations to refine the
FE mesh at the crack tip or to apply a geometrically non-linear, large strain analysis
are absurd. A finite value of J in the limit of a vanshingly small contour is only
ensured if the strain energy density, �w, has a singularity of O r�1ð Þ. As there is no
stress singularity at the blunting crack tip in incremental plasticity at all, see
Fig. 5.14, J will even vanish at the crack tip,

Jtip ¼ lim
r!0

Z�p=2

�p=2

�w r cos h dh ) 0: ð7:12Þ

The same occurs at growing cracks [15, 40], where stresses and strains are still
singular but their singularity is not strong enough to provide a non-zero local
energy release rate. Rice et al. [31] showed that the singularity of the strain energy
density at a moving crack is ln(r−1) in incremental plasticity. Rice [29, 30]
emphasised this as the “paradox of elastic-plastic fracture mechanics” that no
“energy surplus” exists for crack propagation

Conclusions and recommendations how to calculate reliable J-values were given
by Brocks and Scheider [14]. If analytical formulas for calculating J from the global
energy release rate are available, FE data of contour or domain integrals should
always be compared with the results of the respective formulas.
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7.2 Test Methods and Standards: Material Resistance

Fracture toughness, “a generic term for measures of resistance to extension of a
crack” (ASTM E1823 [5]), is an empirical material property that is determined by
conducting a test following standard test procedures. These test standards have
traditionally been written by national and international organisations: in the USA by
the American Society for Testing and Materials (ASTM), in the UK by the British
Standards Institution (BSI), in Japan by the Japanese Standards Association (JSA),
in Europe through the European Structural Integrity Society (ESIS) and worldwide
through the International Standards Organization (ISO), see Schwalbe et al. [35] for
an overview.

The following sections are confined to fracture mechanics standards of ASTM
because of having a major international impact, and in particular to the general
terminology and facture toughness testing. Standards for fatigue testing will not be
addressed.

7.2.1 Standard Terminology

ASTM E1823 [5] regulates the terminology relating to fatigue and fracture testing.
It contains definitions, symbols, and abbreviations approved for use in standards on
fatigue and fracture testing. The definitions are preceded by two alphabetical lists,
namely of symbols used and of relevant abbreviations. Definitions range from
accuracy (“the quantitative difference between a test measurement and a reference
value”) to zero crossings (“in fatigue loading, the number of times that the force-
time history crosses zero force level”). Technical definitions in standards are pri-
marily operational and may thus differ from colloquial language. Collins Compact
Dictionary defines “accuracy” as “faithful representation of the truth”, for instance,
which is obviously no useful definition for measurements.

With some exceptions, the present book keeps to the ASTM definitions, sym-
bols, and abbreviations used in fracture mechanics. The major exceptions are:

• The yield strength (rYS) is denoted by the generic symbol, R0, in Eqs. (3.2) and
(3.4) in Chap. 3 on the theory of time- and rate-independent plasticity, which
represents an idealised upper limit of elastic behaviour and may be identified
with the lower yield point, ReL, or a proof stress, Rp, of real materials,
respectively.

• The tensile strength (rTS) is denoted by Rm, and not considered as a material
property but just related to the maximum load, Fm, in a tensile test at the onset of
necking. Correspondingly, the “effective” yield strength (rY) is Reff = 0.5
(R0 + Rm).

• Forces are denoted by the symbol F for “force”, not by P (for “power”) as in the
ASTM standards.

7.2 Test Methods and Standards: Material Resistance 119



• The crack length, a, is always considered as “physical” and hence the subscript
“p” is omitted.

• The ASTM definition of “crack-tip plane stress” as “a stress-strain field (near
the crack tip) that is not in plane strain” is definitely nonsensical as it disagrees
with the evident meaning that no stresses exist in the out-of-plane direction,
rzz = 0.

• The “crack-extension force, G”, defined as “the elastic energy per unit of new
separation area that is made available at the front of an ideal crack in an elastic
solid during a virtual increment of forward crack extension” is actually
Griffith’s energy release rate, G, which seems to be a more evident and coherent
denomination than “force”. Since J is an energy release rate as well, it is
inconsistent to call it “J-integral” but the energy release rate, G, “force”. Both
may be considered as “material forces” [24], however, and the generic term
“crack driving force” is common for all parameters, K;G; J; d, characterising the
crack tip fields. The symbol G avoids that it is confused with the shear modulus
G.

• The definition of “stable crack extension” as “a displacement-controlled crack
extension” is inconsistent with the mechanical definition of stability (Sect. 6.1.1).
Unfortunately, this confusion occurs frequently in the fracture mechanics
literature.

The terminology for designating fracture mechanics specimens displayed in
Fig. 7.8 is used throughout the present book. The symbol code of abbreviations for
specimen configuration has one or two capital letters and the applied loading code,
bending or tension, consists of a one-letter abbreviation that is enclosed in

(a) C(T) (b) SE(B)

(c) M(T) (d) DE(T)

Fig. 7.8 Designation of most common fracture specimens a compact (tension). b single edge
crack in bending. c middle crack in tension. d double edge crack in tension
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parentheses. Note however that the ligament of the C(T) specimen is predominantly
in bending. Further specimen configurations like modified compact (MC),
disk-shaped compact (DC), arc (A), double beam (DB), round double beam
(RDB) or round bar (R-BAR), which are adapted to special material blanks, are not
considered here. For the part-through surface (PS) specimen see Fig. 2.7.

7.2.2 Linear-Elastic Plane-Strain Fracture Toughness

ASTM E399 [2] is the standard test method for linear-elastic plane-strain fracture
toughness, KIc. The significance and use of this characteristic parameter is described
as

• “Characterizes the resistance of a material to fracture in a neutral environment
in the presence of a sharp crack under essentially linear-elastic stress and
severe tensile constraint, such that (1) the state of stress near the crack front
approaches tritensile plane strain, and (2) the crack-tip plastic zone is small
compared to the crack size, specimen thickness, and ligament ahead of the
crack;

• Is believed to represent a lower limiting value of fracture toughness;
• May be used to estimate the relation between failure stress and crack size for a

material in service wherein the conditions of high constraint described above
would be expected;

• Only if the dimensions of the product are sufficient to provide specimens of the
size required for valid KIc determination.”

Note the cautious statements “is believed to” and “may be used” which mirror
the doubts arising with the discussions on “constraint effects” in the 1990s.

Specimen configurations are restricted to bend type considering that bending is
dominant in the C(T). Thickness is specified by B = 0.5 W. The SE(B) is loaded in
three-point bending, Fig. 7.8b, with a support span, S = 4 W. Specimens are fatigue
precracked from a starter notch, and the total crack size (crack starter plus fatigue
crack) has to be in the range of 0.45 � a/W � 0.55. Thus, a nearly square shaped
ligament is realised, which guarantees the highest constraint. The requirement that
“the crack-tip plastic zone is small compared to the… ligament ahead of the crack”
is specified by the size condition,

W � a� 2:5
KIc

R0

	 
2

; ð7:13Þ

where R0 = rYS = Rp0.2 is the 0.2% offset yield strength. It results from Eq. (4.3)
with the assumption that dp = 2xp � 0.02(W − a). The condition of Eq. (7.13)
cannot be assured in advance but has to be checked after testing. Thus, specimen
dimensions shall be conservatively selected for the first test in a series.
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After static testing, a force FQ is determined by a 5% offset secant in the
force-displacement record. If Fmax/FQ � 1.1 a value KQ is calculated as

KQ ¼ FQ

BW
Y

a
W

� �
; ð7:14Þ

depending on the specimen configuration. If the size condition of Eq. (7.13) is met,
then KIC = KQ. Ductile materials may require unreasonably large specimens at
room temperature, which exceed the disposable raw material and thus set limita-
tions to KIc testing.

7.2.3 Measurement of Fracture Toughness in EPFM

ASTM E1820 [4] is the standard test method for measurement of fracture toughness
for mode I loading using the parameters K, J, and d. Toughness can be measured as
R-curve or as single value. The recommended specimens are single-edge bend, SE
(B), compact, C(T), and disk-shaped compact. All specimens contain notches that
are sharpened with fatigue cracks. No size conditions as in ASTM E399 are
required. Hence, this test method is particularly useful when the material response
cannot be anticipated before the test.

Characteristic parameters defined by this standard are

Jc fracture toughness at fracture instability prior to the onset of significant stable
tearing crack extension,

Ju fracture instability after the onset of significant stable tearing crack extension,
dIc near the onset of slow stable crack extension, defined as occurring at

Da = 0.2 mm + 0.7dIc
dc at the onset of unstable crack extension when Da < 0.2 mm + 0.7dc,
du at the onset of unstable crack extension, when the event is preceded by

Da > 0.2 mm + 0.7du,
dc
* fracture toughness at fracture instability prior to the onset of significant stable

tearing crack extension.

The definitions given for characteristic values of J and d are not completely
consistent. A JIc value as in former standards is not explicitly defined here, any
more. It may be understood as converted from KIc according to Eq. (2.16),
addressed as JKIC in annex A9.10. In contrast to the definitions given in section 3 of
ASTM E1823 [5] on terminology, JIc is addressed as “a size independent value of
fracture toughness” in the annex A9.9, “if

• thickness B > 10 JQ/rY,
• initial ligament, b0 > 10 JQ/rY”, compare Eq. (5.72),
• “the slope of the power law regression line, dJ/da, evaluated at DaQ is less than

rY”, see Eq. (5.75),
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where rY = Reff = 0.5(R0 + Rm), and JQ is a preliminary value for the load FQ as
KQ in ASTM E390.

Beside the single values defined above, the standard is particularly relevant for
the determination of R-curves, see Sect. 5.1.5 where the respective formulas for
evaluating J from the experimental F(vL) data can be found. Due to severe criticism
and uncertainties with respect to JR-curves in the 1990s (Sect. 5.1.6), the signifi-
cance and use of the toughness values identified by this test method are qualified to

• “Serve as a basis for material comparison, selection and quality assurance;
rank materials within a similar yield strength range;

• Serve as a basis for structural flaw tolerance assessment.”

But: “Awareness of differences that may exist between laboratory test and field
conditions is required to make proper flaw tolerance assessment”. This is all the
more important as some statements are not completely consistent as indicated
above. Cautionary statements are added

• “Particular care must be exercised in applying to structural flaw tolerance
assessment the fracture toughness value associated with fracture after some
stable tearing has occurred. … This response is especially sensitive to material
inhomogeneity and to constraint variations that may be induced by planar
geometry, thickness differences, mode of loading, and structural details.”

• “The J-R curve from bend-type specimens … has been observed to be conser-
vative with respect to results from tensile loading configurations”—see
Fig. 5.10.

• “The values of dc, du, Jc, and Ju may be affected by specimen dimensions”, since
they are not subject to size conditions.

7.2.4 Crack Extension in Thin Structures

Thick-walled structures like pressure vessels in nuclear power plants have been the
primary industrial application area of classical EPFM from the 1960s to 1980s.
Respective standards like ASTM E399 and ASTM E1820 and its precursors are
hence focused on “high constraint” conditions. Starting with the accident of a de
Havilland Comet in 1954 fatigue failure cracks of aircrafts came into focus, and
with the Aloha Airlines accident in 1988 ductile rupture of light-weight structures
has become an increasingly important issue. Classical EPFM and its testing pro-
cedures were not applicable to metal sheets and “low constraint” conditions. In
addition, the respective structures are subject to tension rather than bending.

ASTM E561 [3] has been established as the standard test method for determi-
nation of the resistance to fracture under quasi-static mode I loading using M(T) or
C(T) specimens by a K-R curve, which is defined as continuous record of toughness
development in terms of KR plotted against “effective” crack extension. The stan-
dard allows for tension type specimens, and “materials are not limited by strength,
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thickness or toughness, so long as specimens are of sufficient size to remain pre-
dominantly elastic”. Any specification what is understood as “sufficient” and
“predominant” is missing, however. The term KR is indistinct as well, since
K characterises stress fields in LEFM, and fracture occurs in an unstable manner if
KIc is exceeded. Nothing like a curve K(Da) can hence exist in a strict sense, but
before people became acquainted with J they used to formally convert J to K by the
relation K ¼ ffiffiffiffiffiffi

JE
p

. The standard is obviously aimed at small-scale yielding under
plane stress conditions in large thin panels and shells, and is therefore particularly
applied in aircraft industry.

Different options for the determination of the effective crack length, aeff, exist,
either by adding the plastic zone size according to Irwin’s Eq. (4.2) to the measured
“physical” crack length, Eq. (4.5), or by determining it from the loading
compliance,

vL ¼ CL að ÞFþ vpL ¼ CL aeffð ÞF ð7:15Þ

The physical crack size can be measured by direct observation or by the elastic
unloading compliance.

Results of numerical investigations of JR-curves for thin specimens displayed in
Fig. 5.9 show that ASTM E561 based on the SSY correction, Eqs. (4.2) and (4.5),
yielded a partly physically meaningless decreasing JR-curve for the C(T), and did not
provide any useful results at all for the M(T) specimen. However calculating aeff
from the compliance, Eq. (7.15), gave the best approximation over the whole range
up to Damax for the C(T) and a reasonable one for Da � 0.10(W − a0) for the M(T).
On the whole, ASTM E561 is obsolete and its practical use questionable.

ASTM E2472 [6] has been established much later as a standard test method for
determination of resistance to stable crack extension in terms of critical crack-tip
opening angle (CTOA), wc, and/or crack tip opening displacement (CTOD) as d5
resistance curve. Materials are not limited by strength, thickness or toughness, as
long as a/B � 4 and b/B � 4, ensuring low constraint conditions in M(T) and C
(T) specimens. It thus covers the same area of application as ASTM E561, namely
ductile rupture of thin structures, but is much more advanced and scientifically
up-to date. The background has been addressed in Sect. 5.3.4 and is further
described in Newman et al. [26] and Schwalbe et al. [36].
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Chapter 8
Damage and Fracture

Abstract Micromechanical aspects, mechanisms and models of fracture are
addressed, which have become increasingly topical since the 1990s though the
basic ideas and perceptions date back to the early years of fracture mechanics. The
characteristics of brittle and ductile damage on the micro-scale and the respective
fractographic appearance are outlined and the implications on local criteria of
fracture are specified. Two approaches for establishing constitutive equations of
damage are distinguished, namely micro-mechanical models which aim at
describing the physical processes of damage on the micro-scale following the
concept of representative volume elements and phenomenological constitutive
equations for stresses and strains describing macroscopically observable effects of
degradation based on thermodynamical principles. Two particular models of major
significance, the Gurson and the Rousselier yield function are described. A brief
introduction to parameter identification ends the chapter.

The following chapter turns from the macroscopic to a microscopic view, i.e. to the
mechanisms of damage and fracture at the scale of the micro-structure of poly-
crystals and their mathematical modelling. Since the respective literature fills books,
just a rather raw overview on characteristic phenomena can be given intending to
convey some physical understanding of the micromechanical background of
macroscopic fracture. Though local approaches like the statistical theory of brittle
fracture by Weibull [67, 68] or the RKR criterion of Ritchie et al. [44] were
proposed prior or in parallel to the progress of macroscopic fracture mechanics, the
latter became much more successful for engineering applications, in the beginning.
It encountered limits, however: Controversial discussions in the 1980s and 1990s
on unrecognised phenomena like geometry dependence of fracture parameters and
R-curves could only be cleared after reconsidering the micro-mechanisms of frac-
ture [16] and establishing respective damage models. Damage mechanics com-
plements fracture mechanics but cannot substitute it, however, as dislocation
dynamics helps in understanding phenomena of plastic deformation but cannot
replace phenomenological plasticity.
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The literature on damage models is vast and fills books [30, 31]. Any claim for
completeness would be hubristic. The present chapter hence focuses to some
aspects of brittle and predominantly to models of ductile fracture of metals to
complete the present view on ductile fracture.

8.1 Phenomena and Models

During deformation, the cohesion of matter is conserved. Elastic deformations of
metals occur on the atomic level by reversible changes of the interspaces. This
alters the volume of a body. Plastic deformations happen on crystallographic planes
by motion of dislocations resulting in permanent shifts of atoms of one plane
against the atoms of the neighbouring plane. The volume is not changed by this
process. Pile-up of dislocations at grain boundaries, particles or intersecting planes
induces macroscopic hardening. The phenomenological behaviour on the
macro-scale is stable in Drucker’s sense (Sect. 6.1.1) for both elastic and plastic
deformations.

In contrast to this, damage is characterised by the development of laminar or
volumetric discontinuities at the micro-scale like micro-cracks or -voids. The dis-
continuities are induced by local concentration of deformation like pile-up of dislo-
cations in metals, changes of molecular bonds in organic substances,
micro-decohesions at crystallographic imperfections in minerals. Damage evolution
is an irreversible process whose global manifestation can hardly be discerned from
inelastic deformations. The effects of damage are significantly different, however.
Damage causes reduction of performance (degradation) of structures and softening,
i.e. unstable material behaviour. Macroscopic effects comprise decreasing of elastic
modulus, yield strength, hardness, density, sound-propagation velocity, increasing of
creep strain rate, electrical resistance etc. Damage can result in macroscopic cracks
and finally global failure of a structure. Examples for damage processes are
micro-cracking or ductile damage of metals, creep damage, fiber cracking or
fiber-matrix delamination in reinforced composites, corrosion, fatigue etc.

Failure under macroscopically elastic deformation is called “brittle” fracture
though it is preceded by micro-plasticity in metals. It is characterised by inter-
granular separation or transgranular cleavage at the microscale. Fractographic
images display typical shining facets, Fig. 8.1a. Ductile fracture or rupture occurs at
significant global plastic deformation and is the outcome of growth of micro-voids.
The fracture surface is matted and shows a honeycombed structure with dimples at
larger magnification, Fig. 8.1b. Fatigue fracture is the initiation and growth of
macro-cracks by micro-plasticity under alternating loads. Creep fracture is due to
the growth of cavities mainly at grain boundaries by diffusion processes at high
temperatures. Both fatigue and creep fracture finally lead to fast fracture and global
failure after a critical crack length is reached. Stress corrosion cracking is the
unexpected sudden failure of normally ductile metals subjected to tensile stresses in
a corrosive environment.
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The point-shaped crack tip of classical fracture mechanics is a mathematical
idealisation. In reality, a finite region, the process zone, exists where material is
damaged and finally separated so that new surfaces are created. In this region,
micromechanical mechanisms of damage are dominant. Three levels of abstraction
exist for modelling this process:

• The process zone has shrunk to a point in classical fracture mechanics. Material
behaviour is characterised by conventional constitutive equations like elasticity,
plasticity or viscoplasticity, and a macroscopic criterion for crack growth based
on “driving forces” like K, J, CTOD, CTOA is required. Crack growth is
realised by node release in FEM [49].

• The process zone is assumed as a surface, the cohesive zone, and separation is
determined by phenomenological decohesion laws (see Chap. 9 on the cohesive
model) by which new crack faces are created. The material outside of this zone
is described by conventional constitutive equations.

• The process zone is an actual volume in which the degradation of the material
occurs. The softening is captured by additional internal variables characterising
the local damage which evolves with loading. Critical values of these variables
represent the fracture criterion. Two approaches can be distinguished, namely

– Micro-mechanical models which aim at describing the physical processes of
damage on the micro-scale, which are nucelation, growth and coalescence of
micro-voids, initiation of micro-cracks etc., following the concept of repre-
sentative volume elements (Sect. 8.2.3), and

– Phenomenological constitutive equations for stresses and strains describing
macroscopically observable effects of degradation based on thermodynami-
cal principles (Sect. 8.4).

Fig. 8.1 Fracture surfaces of the steel 15NiCuMoNb5 a cleavage and b ductile rupture, Aurich
et al. [1]
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8.2 Local and Micromechanical Approaches

8.2.1 Brittle Fracture and Cleavage

Genuine brittle materials are ceramics, glass, rocks etc., which do not show any
inelastic deformation. Initiation sites of micro-cracks are “built-in” defects and
imperfections like micro-cavities in sintered materials or interfaces in rocks. The
term “brittle” for polycrystals is macroscopically motivated, because failure occurs
abruptly out of the elastic regime though it is associated with some local plasticity
at the grain-scale. The initiation of micro-cracks in metals is due to dislocation
pile-up at obstacles like grain boundaries, inclusions or particles, or at intersecting
dislocations, Fig. 8.2. Different from ceramics, initiation sites in polycrystals evolve
with loading. Obstacles which stop the free motion of dislocations are beneficial for
strength and hardening of metals. Refinement of grains or precipitation hardening is
therefore often executed to produce high-strength alloys. But at the same time, this
procedure increases the predisposition to micro-crack initiation and thus the risk of
“catastrophic” failure. Numerous examples of unexpected failure can be found
because engineers chose a “high strength” material to reduce the weight of a
structure or to improve the fatigue resistance but did not consider the increased
susceptibility of the material to crack initiation.

As material separation occurs along lattice planes, crack growth is discontinuous
and has to follow the lattice orientations of the grains. This leads to the typical
facets of the fracture surface as displayed in Fig. 8.1a. The microstructurally jus-
tified term for this type of fracture is transgranular fracture or cleavage.

Initiation and coalescence of micro-cracks is stress controlled. Since a number of
geometrical and physical parameters like grain size, orientation of lattice planes to
global loading, inhomogeneous local toughness properties etc. affect this process, it
is highly stochastic, and as no dissipative terms like macroscopic plasticity are
involved, global brittle failure reveals scatter as well. Particularly in body centred
cubic (bcc) materials, a transition region in dependence on the temperature from
low-toughness cleavage to high-toughness ductile tearing exists where significant
scatter occurs [29, 66]. Existing micromechanical models of cleavage [12, 19] are
based on both deterministic and stochastic approaches.

Fig. 8.2 Initiation of micro-cracks due to dislocation pile-up at grain boundary, inclusion
(particle) or intersecting dislocations
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The Swedish engineer and mathematician Weibull [67, 68] was the first who
studied the stochastic nature of brittle failure. His basic idea is the so-called
“weakest link” assumption that the probability of having cleavage fracture of a
structure at any given load equals the probability that its weakest element (link) fails
at this load. The macroscopic failure criterion of Griffith, Eq. (2.13), is established
on a “mesoscopic” level for every material element, (i), which is subject to a

principal stress, rðiÞI . The corresponding critical length, ‘ðiÞc ¼ 2aðiÞc , of an assumed
microcrack derives from Griffith’s criterion as

‘ðiÞc ¼ 4E0c

p rðiÞI
� �2 : ð8:1Þ

Now assume that the probability of having a crack in the element (i) is inversely
proportional to its length, P ‘ið Þ ¼ a1=‘

a2
i , where a1 and a2 are parameters

depending on the material’s microstructure and mechanism of microcrack forma-
tion. Then its failure probability becomes

PðiÞ
f rðiÞI
� �

¼
Z 1

‘
ðiÞ
c

P ‘ið Þd‘i ¼ rðiÞI
ru

 !m

ð8:2Þ

with the Weibull parameters,

m ¼ 2 a2 � 1ð Þ; ð8:3Þ

and

ru ¼ a2 � 1
a1

� �1=m
ffiffiffiffiffiffiffiffiffi
4E0c
p

r
: ð8:4Þ

According to the weakest link assumption, the survival probability of a structure
of n elements is

1� Pf ¼
Yn
i¼1

1� PðiÞ
f rðiÞI
� �h i

: ð8:5Þ

For PðiÞ
f � 1, this equation can be transformed as ln 1� Pfð Þ �Pn

i¼1 P
ðiÞ
f rðiÞI
� �

so that the failure probability [69] of the entire structure becomes

Pf rWð Þ ¼ 1� exp � rW
ru

� �m� �
; ð8:6Þ
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where the Weibull stress, rW, is obtained by a summation of the maximum prin-
cipal stresses, which can be done by an integration,

rW ¼ 1
V

Z
V

rðiÞI
� �m

dV

2
4

3
5
1=m

; ð8:7Þ

if the stress distribution is known analytically or by a summation over the finite
elements

rW ¼
Xn
i¼1

rðiÞI
� �m Vi

V0

" #1=m
; ð8:8Þ

with some reference volume, V0, if the stress distribution results from a numerically
analysis.

The French team of authors, Beremin [4], which stands for Dominique François,
François Mudry, André Pineau, presented this model as a “local approach” for
calculating the failure probability of ferritic steels [28]. Since plastic deformations
are a prerequisite for the initiation of micro-cracks in a metal, the integration or
summation is performed over the plastically deformed part of the volume, only.
Using a summation over “elements” instead of an integration over the volume does
not only refer to its application in FEM but also accounts for the necessity of
averaging stresses over some characteristic volume, particularly in regions of steep
stress gradients as at a crack tip. The choice of V0 is controversial. There is some
minimum volume for a given microstructure for which statistical independence (see
Sect. 8.2.3 on representative volume elements) can be assumed. Average stress
values over much smaller volumes are not reasonable. That is why the reference
volume is often taken as the minimum mesh size [35]. For low stress gradients the
mesh size is not significant and V0 may be chosen arbitrarily [4], but as it affects the
reference stress, ru, by rmu V0 ¼ constant, a transfer of Weibull distributions from
specimens to components is only admissible for a fixed reference volume. No
physical meaning should be assigned to ru in the case of an arbitrarily chosen V0,
anyway.

Though the Weibull parameters, m and ru, are related to physical quantities,
Eqs. (8.3) and (8.4), they are phenomenological and determined by tests of notched
tensile bars complemented by a FE analysis [17]. A sample of N specimens is tested
and the specimens are ordered in ascending sequence with respect to a monoton-
ically increasing loading parameter, commonly the external displacement, which
uniquely characterises the event of cleavage failure. A relative failure probability,
Pj = (j−0.5)/N, is correlated with the respective Weibull stress, rW, Eq. (8.8),
which is determined in dependence on the loading parameter by an elastoplastic FE
analysis. As m is unknown in the beginning, the evaluation starts with an assumed
value which is updated in an iterative procedure. The data are plotted as ln [ln (1/(1
−Pf))] versus ln (rW/MPa) to assure that they follow a Weibull distribution with
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sufficient accuracy. The parameters, m and ru, are assessed by the maximum
likelihood method.

Whereas the determination of Weibull parameters as material properties is
common practice for ceramics, their application to cleavage fracture of metals
encountered numerous problems. The definition of V0 has been addressed above,
already. A second problem is the magnitude of the Weibull exponent m for common
steels, which is about 20. Thus, when calculating

ffiffiffiffiffiffiffi
r20I

20
p

in Eq. (8.8) one must not
only take care of numerical inaccuracy but the result equals more or less the
maximum of rI occurring in the structure, i.e. the stresses in the crack tip element
which are of dubious significance. A third one appeared with experimental efforts to
predict the temperature dependence of fracture toughness, where it was assumed
that Weibull parameters do not depend on the temperature. Respective investiga-
tions of various specimens at different temperatures and loading rates raised doubts,
however. The reason is quite obvious: Different from ceramics where the defect
distribution is material specific and determined by the manufacturing process,
defects in a ductile metal form with plastic deformation and the defect distribution
will therefore depend on the loading history. In addition, nucleated defects may just
enlarge in a ductile manner (Sect. 8.2.2) and not become the origin of cleavage.
Several phenomenological modifications introducing the plastic strain among oth-
ers, have been proposed for this reason (Mudry [35], Bernauer et al. [6]). After all,
the expectance liaised with this local approach was not fulfilled.

Ritchie et al. [44] suggested a deterministic model based on a material specific
cleavage fracture stress, rc, known as RKR model according to the names of the
authors. As stresses become infinite at the crack tip in LEFM, they introduced an
additional parameter, xc, the critical distance from the crack tip, which was assumed
to be a material parameter depending on the grain size [14, 15]. Cleavage occurs if

ryyðxcÞ� rc: ð8:9Þ

Fig. 8.3 Ductile crack extension: a nucleation of voids by particle fracture or matrix decohesion
at particles; b coalescence of voids ahead of a crack tip
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Discussions on the significance of the cleavage strength and its temperature
dependence have been topical in the 1980s for predicting the transition behaviour
of ferritic steels but statistical models gained more interest and importance after
all [29].

8.2.2 Ductile Damage und Fracture

Ductile damage and fracture of metals is governed by the nucleation of voids at
inclusions or particles and their growth up to final coalescence [2, 3, 53, 59–61].
Figure 8.3 shows the nucleation of voids by breaking particles or matrix decohesion
for an aluminium alloy and the growth of a crack by coalescence of voids ahead of
the crack tip. Coalescence may occur by the formation of shear bands between
larger voids or along a second population of smaller particles like carbides. It is
preceded by localisation of deformation [62]. Whereas models of stress or strain
controlled void nucleation have been established [13] and void growth has been
intensively studied both analytically and numerically [34, 43, 59], the process of
void coalescence is more complex [27, 60] and often just captured empirically by
fitting numerical simulations to test data [63].

Void growth is strain controlled but depends on the hydrostatic stress as was
shown by McClintock [34] for a 2D plane strain model, Fig. 8.4a, and Rice and
Tracey [43] for a spherically symmetric void, Fig. 8.4b. This dependence explains
the experimental result of Bridgmen [7] that the failure strain of tensile bars
depends on hydrostatic pressure (and is hence no physically meaningful material
parameter).

Fig. 8.4 Void growth models of a McClintock [34], b Rice and Tracey [43]
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McClintock [34] considered a regular arrangement of unit cells (Sect. 8.2.3) in
plane strain having the dimensions ax, ay including elliptical voids with principal
axes, 2rx, 2ry, Fig. 8.4a, and introduced the logarithmic damage measure

Dzx ¼
Z

dDzx ¼
Z

d ln rx=axð Þ½ �
ln a0x=r

0
x

	 
 � 1: ð8:10Þ

which becomes 1 in the case of void coalescence, 2rx = ax. For a power-law
hardening material, �r ¼ c�eNp � c�eN , the damage evolution can be calculated,

dDzx

d�e
¼ 1

ln a0x=r
0
x

	 
 ffiffiffi
3

p

2ð1� NÞ sinh
ffiffiffi
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p ð1� NÞ
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� �
;

ð8:11Þ

and the coalescence criterion yields the fracture strain,

ef ¼
ð1� NÞ ln a0x=r

0
x

	 

sinh ð1� NÞ rxx þ ryy

	 
�
2�r=

ffiffiffi
3

p	 
� 
	 
 ; ð8:12Þ

which depends exponentially on the stress triaxiality, Eq. (5.37),

g ¼ rh
�r

¼ rxx þ ryy
2�r

: ð8:13Þ

Rice and Tracey [43] consider a spherical cavity of radius, r, in a strain field
meeting the incompressibility condition of Eq. (3.9), _e33 ¼ _e; _e11 ¼ _e22 ¼ �1

2_e, of an
infinite perfectly plastic continuum, Fig. 8.4b. The assumption of a “rigid”-plastic
material, which is often spread in the literature, is unnecessary as is shown by
Theorem (I) in Sect. 6.1.2 on plastic collapse. Rice and Tracey provide an
approximate solution,

D ¼ _r
_er

� 0:283 exp 2
3
g

� �
: ð8:14Þ

Huang [25] presented a modification of the proportionality factor in Eq. (8.14)
for high triaxialities but also confirmed the exponential dependence of void growth
on η, Eq. (5.37). Thus, the attempt to use η as a second parameter for scaling JR-
curves has some micromechanical justification, at least. The drawback is that η is a
local quantity depending on the distance to the crack tip whereas J is a global
fracture parameter.

Based on the void-growth model of Rice and Tracey, Eq. (8.14), Beremin [3, 4]
suggested a local approach to ductile fracture. Crack initiation occurs for D = Dc,
which is determined from a test of a notched tensile bar [17]. It is an uncoupled
model, which, like the model of cleavage fracture, allows for an a posteriori
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calculation of damage from the conventionally evaluated stress and strain field,
only. Thus, only the crack initiation and no crack extension can be predicted.
A coupling of damage as an inner variable in the constitutive equations has been
realised in the models of Gurson [24] and Rousselier [45], see Sect. 8.3 on porous
metal plasticity.

8.2.3 The Concept of Representative Volume Elements

A material element is an infinitesimal neighbourhood, DV = DxDyDz ! 0, of a
material point in classical (local) continuum mechanics. Material properties,
stresses and strains of these idealised materials are assumed as homogeneous in
DV. In real materials, however, the material neighbourhood is not homogeneous but
exhibits a complex and evolving micro-structure.

Micromechanics now tackles the problem of expressing the constitutive equa-
tions in terms of quantities which characterise the micro-structure and its properties
[39]. For this, the concept of representative volume elements (RVE) is used.
An RVE is a material volume which is considered as statistically representative for
the microstructure of the material and constitutes the neighbourhood of an arbitrary
material point. It will, in general, contain a number of cavities, cracks, particles or
inclusions. If the microstructure is idealised as periodic arrangement of volume
elements with just one cavity or particle as in Fig. 8.5, these elements are some-
times called unit cells or “computational cells” [2, 18, 20, 47, 70, 71].

The constitutive behaviour is described on a meso-scale by mesoscopic stress
and strain fields defined by homogenisation (averaging) over the RVE

Fig. 8.5 Schematic of micromechanical approach: a macro-scale (structure), b meso-scale (unit
cell)
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Typical unit cells for describing ductile damage are cylinders with spherical or
ellipsoidal cavities, Koplik and Needleman [28]. Figure 8.6 displays the meso-
scopic response in terms of mesoscopic stresses, R33, versus logarithmic strains,
E33, of a cylindrical unit cell of initial diameter, d0, and height, h0 = d0, with a
spherical void of volume fraction f 0v ¼ 0:005, Brocks et al. [10]. It confirms the
effect of (mesoscopic) triaxiality, g ¼ Rh=�R ¼ Rkk=3�R, on maximum stress and
ductility: increasing triaxiality raises ultimate stress but lowers failure strain.
Actually, the area under the R33 E33ð Þ curve represents the work of separation in
Eq. (5.75) for a crack extension of DAc = pd 2/4,

h
Z

R33dE33 ¼ DUsep

DAc
¼ Cc: ð8:16Þ

The steep decrease of R33 in the final stage is due to local internal necking. In an
arrangement of unit cells like in Fig. 8.5a, the void would start interacting with
neighbouring voids.

The mesoscopic behaviour depends also on the void shape, of course. Gologanu
et al. [21, 22] studied unit cells with elliptical voids. Constitutive equations for
porous materials are just one possible application of micromechanics, of course.

Fig. 8.6 Mesoscopic
response of a cylindrical unit
cell, diameter d0, with
spherical void, f 0v ¼ 0:005, in
dependence on triaxiality,
Brocks et al. [10]
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8.3 Porous Metal Plasticity

Porous metal plasticity accounts for the fact that real materials are not ideally dense
but contain cavities at the microscale which grow with hydrostatic tension
(Sect. 8.2.2). The basic features that no plastic volume dilatation occurs, Eq. (3.9),
and that the yield condition does not depend on the hydrostatic stress are lost. If the
softening effect of void growth exceeds plastic hardening, the material does not
meet Drucker’s stability condition, Eq. (6.6), any more. The yield surface is still
supposed to be convex, and an associated flow rule, Eq. (3.12), is adopted. The
effect of voids on elasticity, i.e. Young’s modulus is disregarded.

8.3.1 Gurson Model

Gurson [24] calculated the mesoscopic yield surface of a perfectly plastic material
by homogenisation of two- and three-dimensional unit cells containing cylindrical
or spherical cavities, respectively,

�R2

R2
0
þ 2fv cosh

3Rh

2R0

� �
� 1� f 2v ¼ 0; ð8:17Þ

which depends on the local void-volume fraction,

fv ¼ DVvoid

DVRVE
; ð8:18Þ

representing volumetric damage. Actually, DVvoid is the total volume of all voids
within DVRVE and not just a single void as in the unit cell, and fv is the average
porosity. For fv = 0, Eq. (8.17) turns into the von Mises yield condition,
�R2 � R2

0 ¼ 0, with �R ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
2
�R0
ijR

0
ij

q
as mesoscopic equivalent stress.

The yield surface of Gurson is no cylinder as in Fig. 3.2 anymore but capped at
the ends, Fig. 8.7a. It is symmetric in hydrostatic tension and compression.

Damage evolution results from void growth,

_f growthv ¼ 1� fvð Þ _Ep
kk; ð8:19Þ

which is derived from conservation of mass and incompressibility of the plastic
matrix material. Note that due to void growth the “mesoscopic” plastic volume
dilatation of porous materials, _Ep

kk, is not zero, of course.
Equation (8.17) is limited to a perfectly plastic matrix material and does not

account for the interaction of neighbouring voids. Tvergaard and Needleman [63]
and Needleman and Tvergaard [37, 38] introduced several phenomenological
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modifications for the application of the Gurson model to ductile crack extension and
fracture of metals. They replaced the yield strength, R0, by the flow curve, RF(ep),
inserted three adjustable parameters, q1, q2, q3, and incorporated the effect of void
coalescence by modifying the damage variable, fv ! f �v fvð Þ,

�R2

R2
FðepÞ

þ 2q1f �v cosh q2
3Rh

2R2
FðepÞ

� �
� 1� q3f

�2
v ¼ 0: ð8:20Þ

The modified damage variable equals the void volume fraction up to a critical
value, f cv , which characterises the onset of void coalescence, and increases more
rapidly by a factor jf beyond,

f �v fvð Þ ¼ fv for fv � f cv
f cv þ jf fv � f cv

	 

for fv [ f cv

�
: ð8:21Þ

The factor jf is defined as

jf ¼ f �u � f cv
f fv � f cv

; ð8:22Þ

with f fv as the void volume fraction at failure, i.e. loss of stress carrying capacity,
and

f �u ¼ q1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 � q3

p
q3

ð8:23Þ

(a) (b)

Fig. 8.7 Effect of void volume fraction, fv, on yield surfaces of a Gurson [24], Req 	 �R,
b Rousselier [45], req 	 �r, perfectly plastic matrix material
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as the respective ultimate damage value. In practice, jf is not determined from
Eq. (8.22) but empirically fixed as some large number in order to match the steep
decrease of the force in a tensile test after the onset of fracture, Fig. 8.8. The
parameters q1, q2, q3 are commonly assumed as q1 = 1.5, q2 = 1, q3 = q1

2 = 2.25
[65], and hence f �u ¼ 1=q1 ¼ 2=3.

The yield function (plastic potential) of Eq. (8.20) is known as GTN model
owing to the initials of the authors. It has found frequent applications for simula-
tions of ductile crack extension in metals, e.g. Sun et al. [58], Brocks et al. [8],
Bernauer and Brocks [7], Steglich [52]. The parameters are partly identified from
tensile tests. Figure 8.8 displays respective results in terms of force versus reduction
of diameter. Localised necking of the bar starts at maximum force and results in a
decreasing curve due to (macroscopic) geometric instability, while the true
stress-strain curve is still increasing due to plastic hardening. A large-strain analysis
with the Mises-Prandtl-Reuß equations (Sect. 3.3.2) matches this macroscopic
behaviour. Any effects of damage are negligible in this state. The von Mises theory
will not predict fracture, however, but an unlimited reduction of diameter. A rather
sudden evolution of damage in the necking zone as described by the GTN model
results in a much steeper decrease of the load which indicates fracture. The
respective point is triggered by the parameter f cv characterising the onset of void
coalescence, which is hence commonly identified by fitting numerical simulations
to test data. As it interacts with the value of the initial void-volume fractions, f 0v , this
procedure is not unique. Zhang et al. [73] implemented a coalescence criterion
based on a model of Thomason [59]. They call their approach the “complete”
Gurson model and use the tensile test data for identifying f 0v .

Fig. 8.8 Tensile test of a round bar, test data and simulations with Mises-Prandtl-Reuß equations
and GTN model: force, F, versus reduction of diameter, −Dd
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For further information on parameter identification see Sect. 8.5 and Brocks and
Steglich [9]. The GTN model predicts that damage starts in the centre of a smooth
tensile bar and at the notch root for sharply notched bars. It is also capable of
predicting the geometry effect on JR-curves, Fig. 8.9, which additionally contains
simulation results obtained with the cohesive model (Chap. 9), Siegmund et al. [50].
As shown in Fig. 8.6, local void growth and coalescence and hence dUsep=dAc are
dependent on triaxiality, but this effect is minor compared to the effect of global
plastic dissipation, dUp=dAc, on the total dissipation rate, Eq. (5.74).

Equation (8.19) describes void growth starting from an initial void volume
fraction, f 0v . Chu and Needleman [13] introduced additional evolution equations for
stress and strain induced void nucleation,

_fv ¼ _f nuclv þ _f growthv : ð8:24Þ

The GTN model has also been applied to dynamic processes by Sun et al. [57]
who considered both the effect of strain rate on plastic hardening and the coupled
effect of thermal softening by incorporating a strain rate, _ep, and temperature, H,
dependent flow curve, RFðep; _ep;HÞ, in Eq. (8.20).

Extensions of the GTN model to ellipsoidal voids [23, 41] account for aniso-
tropic ductile damage [55].

Due to the large number of adjustable and material parameters applications of
the GTN model in industrial practice are rare. Parameter identification (Sect. 8.5)
requires some expert knowledge, simulation results may be user dependent [5] and
no accepted standards exist. Expectations that the parameters can be completely
identified by tensile tests did not realise. The intrinsic triaxiality dependence
requires test data of fracture specimens representing stress states of high constraint.
In addition, the fine mesh which is required in the ligament due to the mesh
dependence of results (see Sect. 8.3.3) interferes with FE modelling of large
structures.

Fig. 8.9 Simulations of JR-
curves of a C(T) and a M(T)
specimen by GTN model and
cohesive model (CM),
Siegmund et al. [50]
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8.3.2 Rousselier Model

Rousselier [45] derived a similar yield function based on arguments of continuum
damage mechanics (Sect. 8.4), namely the concept of “effective” stresses,
~rij ¼ rij=ð1� DÞ, where D is a scalar damage parameter. Without particular insight
into the micromechanical mechanisms of void growth and identification of damage
with void volume fraction, D 	 fv, Eq. (8.18), it would not be suited as a consti-
tutive description of ductile damage in real materials,

~r
~RFðepÞ

þ cfv
2Rf

3
exp

3~rh
2~Rf

� �
� 1 ¼ 0; ð8:25Þ

with

~r ¼ �rvM
1� fv

; ~rh ¼ rh
1� fv

; ~RF ¼ RF

1� f 0v
; ~Rf ¼ Rf

1� f 0v
: ð8:26Þ

c is some constant which “can be considered as material independent”, c = 2,
and Rf an adjustable parameter which as “a first try is the mean of” RF(ep) “over the
range of deformation”, 0 � ep � ef, “experienced by smooth tensile specimens”
[46], which becomes

Rf ¼ ceNf
Nþ 1

¼ RF efð Þ
Nþ 1

ð8:27Þ

for power law hardening matrix materials, RFðepÞ ¼ ceNp . In order to keep to a
consistent nomenclature in the present book, Rousselier’s notation has been partly
modified.

Figure 8.7b shows Rousselier’s yield surface for a perfectly plastic material,
RF = R0, N = 0, and varying fv ¼ f 0v . It is capped for tensile hydrostatic stress but
unlimited for compressive hydrostatic stress. Considering that Gurson’s model
contains adjustable parameters, too, both models will not yield fundamentally
different results for cases of tensile hydrostatic stresses. Significant differences will
occur however for applications to cyclic plasticity [42, 54], but neither model is
qualified for application to cyclic loading, anyway, because the damage evolution,
Eq. (8.19), should be different in tension and compression in general. Note also that
models of void growth due to hydrostatic stress are not suited for shear failure.
A respective generalisation of the Gurson model has been presented by Nahshon
and Hutchinson [36], for instance. Likewise, applications of the GTN or the
Rousselier model to thin structures close to plane stress conditions will fail due to
the low stress triaxiality.
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8.3.3 Length Scales and Local Instability

Different from local constitutive equations in classical continuum theory, modelling
at the meso-scale considering the micro-structure is not invariant against changes of
the length scale. This has severe consequences for damage mechanics. Since
damage is assumed as homogeneous within the RVE and described by an average
defect density like fv, no difference can be made between many small or few large
micro-voids or micro-cracks. For a real material, this difference is essential,
however.

Softening materials behave unstable which results in localisation of deformation
(slip bands) and damage. This localisation is limited by the microstructure (grain
size) in a real material and by the discretisation, i.e. the element size, in a finite
element model. Therefore, damage models generally yield mesh dependent results,
and no convergent solution as for stable material behaviour (see Drucker’s postu-
lates in Sect. 6.1.1) of elasto-plasticity or viscoplasticity exists at mesh refinement.
The calculated failure load may thus be “user dependent” [5] as it becomes arbi-
trarily small for (Dx, Dy, Dz)! 0. This effect is often used as fundamental objection
against damage mechanics in general. This argument ignores, however, that mod-
elling of material softening is not only of practical relevance for predicting failure
loads but that localisation of deformation and damage is also a real physical
phenomenon.

A realistic reproduction of the material and structural behaviour requires the
introduction of an additional material parameter, namely a characteristic
microstructural length [51, 56] which is related to the size of the RVE or unit cell,
Eq. (8.16). Non-local theories incorporating deformation or damage gradients in the
constitutive equations provide theoretically sound realisations [64, 72]. They are
difficult to implement in commercial FE codes, however. Regularisation by vis-
coplastic effects has also been applied [40]. A frequently used engineering approach
is the introduction of the element height in the process zone as material parameter
[51]. To avoid uproar of FE experts, some authors use the term “computational
cells” [18, 20, 47, 70, 71] instead of finite elements to indicate their relation to
RVEs. Some authors claim that the element size directly represents the mean dis-
tance of voids but in fact, the relation is determined by the dissipation energy
density according to Eq. (8.16).

8.4 Continuum Damage Mechanics

Continuum damage mechanics (CDM) is a phenomenological theory which aims at
unifying the constitutive description of damage in arbitrary materials. The basic
idea is that internal defects like micro-voids, micro-cavities, micro-cracks cause
deterioration of materials by reducing the load-bearing area of volume elements so
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that instead of an area DA of an RVE orthogonal to the surface normal, n, only an
“effective” area

D~A ¼ DA� DAD ð8:28Þ

is available for transmission of forces. The areal density of defects, i.e. micro-cracks
or sections of micro-voids with the plane,

DðnÞ ¼ DAD

DA
; ð8:29Þ

depends on the orientation, n, of the section plane, in general. For isotropic damage,
the defect density is independent of n and damage can be described by a scalar
variable, D,

D~A ¼ 1� Dð ÞDA with D ¼ DAD

DA
: ð8:30Þ

Anisotropic damage requires tensorial damage variables, either as 2nd rank
tensor,

~niD~A ¼ dij � Dij
	 


njDA; ð8:31Þ

or 4th rank tensor,

mi~njD~A ¼ dikdjl � Dijkl
	 


mknlDA; ð8:32Þ

having the symmetries Dijkl ¼ Dijlk ¼ Djikl ¼ Dklij. The latter is the most general
(and most complex) case.

By means of the effective area, effective stresses are defined, namely .

~rij ¼ rij
1� D

: ð8:33Þ

as in Eq. (8.25) for isotropic damage and

~rij ¼ dikdjl � Dijkl
	 
�1

rkl ð8:34Þ

for anisotropic damage with a 4th rank tensor. As dik � Dikð Þ�1rkj is not symmetric,
the definition of respective stresses with a 2nd rank damage tensor requires
symmetrisation,

~rij ¼ 1
2

dik � Dikð Þ�1rkj þ dki � Dkið Þ�1rkj
h i

: ð8:35Þ
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CDM is based on effective stresses and the principle of strain equivalence
postulating that the constitutive equations for a damaged material are obtained from
the constitutive equations of the undamaged material by simply replacing the stress
tensor by the effective stress tensor. Scalar or tensorial damage enters the respective
equations as additional internal variable. Whereas total strains, eij, and temperature,
H, are observable state variables, internal variables are non-observable. In the
framework of a thermodynamically consistent theory, all evolution equations are
derived from a unified dissipation potential, U rij; �j; nij; Y or Yijkl

� 
	 

, which is a

convex function of all state variables being work conjugate to
fepij;�ep; aij;D orDijkl

� 
g, see Table 8.1. The internal variable, Y, which is conjugate
to D, is sometimes called “energy density release rate”, which is an energy per
volume, not to be mistaken for Griffith’ energy release rate, G, which is an energy
per area.

The dissipation potential is a generalisation of the flow potential in plasticity,
Eq. (3.10), from which the associated flow rule, Eq. (3.12), has been derived. It
ensures that that the total dissipation rate is positive or in other words, the
Clausius-Duhem inequality,

rij _e
p
ij � �j _�ep � nij _aij þ Y _D or Yijkl _Dijkl

� 
� 0; ð8:36Þ

which is the local form of the second principle of thermodynamics, is met. Thus, a
unified framework for dissipative processes of plasticity and damage is established,

_epij ¼ � _kp
@U

@ �rij
	 
 ¼ _kp

@U
@rij

_�ep ¼ � _kp
@U
@�j

_aij ¼ � _kp
@U
@nij

_D ¼ � _kp
@U

@ �Yð Þ ¼
_kD

@U
@Y

or _Dijkl ¼ _kp
@U
@Yijkl

:

ð8:37Þ

Table 8.1 Work conjugate internal state variables

Phenomenon Internal state variable Conjugate variable

Plasticity epij −rij

Isotropic hardening �ep �j

Kinematic hardening aij nij
Isotropic damage D −Y

Anisotropic damage Dijkl −Yijkl
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CDM provides a consistent framework, why it is favoured by theoreticians of
engineering mechanics, but it cannot help with the problem how to establish the
dissipation potential. Only detailed knowledge of micromechanics and damage
mechanisms can accomplish this. For further details see Chap. 6 on cracking and
fracture in Lemaitre [30] and Chap. 7 on damage mechanics in Lemaitre and
Chaboche [31].

8.5 Parameter Identification

Material constants in classical constitutive theories like Young’s modulus in elas-
ticity or yield strength in plasticity, which can be directly measured in tensile tests,
for instance, are traditionally regarded as genuine material “properties”. A more
present-day view, however, considers them as nothing more than parameters in
some constitutive model which more or less approximately describes a specific
material behaviour for a certain range of application. There is no Young’s modulus
outside Hooke’s law of elasticity, no yield strength outside the von Mises theory, no
creep exponent outside Norton’s law. This view avoids fruitless discussions about
an artificial discrimination between real material properties and “fit parameters”.

The increasing number of parameters in complex constitutive equations raises
the problem of their experimental identification, however, as they cannot be directly
evaluated from measured data any more. Instead, hybrid methods are required by
which tests are numerically simulated and the model parameters identified by a
comparison between numerical and experimental results [9, 32]. Very often, this is
still done by a trial-and-error method based on an optical assessment of coincidence
of load-displacement curves, which is mostly not that bad if based on expert
knowledge and experience. If the number of parameters is too large and their
interaction unclear, numerical optimisation techniques, evolution strategies or
neural networks are employed.

Let R(x,t) be the response of a structure in terms of measurable quantities to
mechanical or thermal impact, F(x,t), where x 2 G denote the spatial coordinates of
material points and t the time. The response of the respective model is given by a
functional,

Rmodðx; tÞ ¼ F t
s¼0fG; c;Fðx; sÞg; ð8:38Þ

in dependence on the geometry,G, material parameters, c, and loading history, F(x, t).
The functional, F , is commonly represented by the numerical solution of the
boundary value problem.

Equation (8.38) represents the “direct problem”, where G, c, F are input vari-
ables, and Rmod is the output. The structural response is given by a finite number of
data at locations, xi (i = 1,…,M), and time steps, tj (j = 1,…,K). For fixed geometry
and loading history and assuming that a unique solution as well as a method for
obtaining it exist, the functional F reduces to a mapping,
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c 7! G;FRmod: Rmod ¼ RðcÞ; ð8:39Þ

with c 2 C and Rmod 2 R being elements of the sets of physically meaningful
model parameters and structural responses, respectively.

Parameter identification is the corresponding “inverse problem”, which consists
in finding model parameters, c, for a given, experimentally measured response R,

R 7! c : c ¼ R�1 Rð Þ��
G;Fðxi;tjÞ: ð8:40Þ

This requires that the available information allows for a unique solution, namely
that R�1 is unique and R is complete. In order to call c material parameters, R�1

has to be independent of G and F within a certain range of application.
Nevertheless, specimen geometries and loading histories for determining material
parameters of common constitutive equations of elasticity, plasticity, creep etc. are
prescribed in test procedures and standards. Respective rules for advanced
present-day constitutive models are still missing.

Methods of parameter identification are:

• Graphical best-fit curves, if material parameters can be directly related to
recorded test data;

• Trial and error with optical check of coincidence between simulation results and
measured data, a simple but often time consuming method;

• Numerical optimisation techniques minimising the difference between simula-
tion and test data with respect to some target, error or quality function,

qðcÞ ¼ RmodðcÞ � Rk k ! min
c2C

; ð8:41Þ

applying deterministic (e.g. gradient method [33]) or stochastic methods (Monte
Carlo) or evolution strategies [48];

• Neural networks learning to recognise nonlinear relations by training, a concept
derived from observations of information flux between biological neurons [11]

The objective is to determine a unique set of material parameters which can be
applied to arbitrary components. There is no possibility of proving uniqueness,
however, but only counter-evidence can be attained, if so. The application of
optimisation algorithms does not per se guarantee an objective result, because a
number of user dependent decisions are implied like choice of the error function,
weighting of experiments, selection of involved parameters, etc. Parameter identi-
fication requires interdisciplinary expertise in modelling, material science and
experimental techniques. Any blind trust in results of simulations and optimisations
can be fatal.
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Chapter 9
The Cohesive Model

Abstract A phenomenological approach which has found numerous applications
for all kinds of decohesion and separation processes is based on Barenblatt’s idea of
a cohesive zone. The basic concept and numerical realisation in the framework of
finite elements are described. A number of proposed traction-separation laws for
various applications including mixed mode and the physical significance of the
cohesive parameters are discussed. Recent approaches to relate decohesion laws to
damage mechanics are critically reviewed. Examples of applications to the simu-
lation of crack extension in thin panels and shells are presented.

Numerical simulation of crack extension can be simulated in FE models by various
techniques [12]:

• Release of element nodes in the ligament according to a global “driving force”
like J, CTOD, CTOA (Chap. 5);

• Constitutive equations of damage mechanics (Chap. 8);
• Cohesive (zone) models.

The cohesive model is a phenomenological approach of high flexibility, a low
number of parameters compared to damage models, parameters which nevertheless
allow for a plausible physical interpretation, and numerical stability also for large
crack extension. Its most apparent purpose is modelling of bonded interfaces in
composite materials, where the intermediate glue material is very thin and for all
practical purposes may be considered to be of zero thickness [1]. But it has found
applications for all kinds of decohesion and separation processes where the
thickness of the process zone can be assumed as negligible and in particular in
fracture mechanics, Fig. 9.1. The cohesive zone represents degradation and failure,
the bulk material, i.e. continuum elements, deformation of the material.

The present chapter will focus on ductile fracture under quasi-static loading.
A broader overview can be found in Brocks et al. [12].

© Springer International Publishing AG 2018
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9.1 The Cohesive Zone

The idea of a cohesive zone at the crack tip to avoid non-physical singularities dates
back to Barenblatt [4, 5] and Dugdale [22]. Two regions of the crack are distin-
guished, the stress-free crack faces and a process zone where cohesive stresses act,
Fig. 4.6. Whereas Dugdale assumed that cohesive stresses equal the yield strength,
R0, which holds only for plane stress states and perfectly-plastic materials,
Barenblatt assumed a stress distribution, r(x), at the crack tip which is specific to
the material but independent of the loading. This stress distribution is not known,
however, and cannot be measured, either. An application of this concept became
possible with the advanced possibilities of numerical simulations.

The Barenblatt model has been modified by introducing a separation law, r(d),
instead of r(x). Cohesive stresses do not depend on the distance to the crack tip but
on the separation,

d¼ ½u�¼uþ � u�; ð9:1Þ

which is the vector of the displacement discontinuity in the process zone. This
approach has been introduced by Hillerborg et al. [26] for concrete, where it is still
known as the “fictitious crack model”, and has become the basis of all modern
realisations of the cohesive model in FEM. Cohesive stresses or tractions and
separations are vectors, in general, r ¼ rn; rt; rsf g, d ¼ dn; dt; dsf g, with one

Fig. 9.1 Schematic of cohesive model and its applications
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normal component, rn, dn, corresponding to mode I, and two tangential compo-
nents, rt, rs, dt, ds. For isotropic materials, the separation laws in t- and s-direction
are identical so that only two separation laws remain. The process zone is modelled
like an interface by surface or line elements of zero height located between two or
three dimensional continuum elements in a co-rotating local coordinate system,
Fig. 9.2.

This initially vanishing thickness is basic for cohesive elements. Introducing an
artefact like a “constitutive thickness”, which is “usually different from the geo-
metric thickness” [1] is nonsensical.

As a result of material degradation, the initially collapsed corner nodes of the
upper and lower surfaces of the cohesive element separate until the element com-
pletely loses its stiffness at some critical separation, dcn, d

c
t , respectively, so that the

adjacent continuum elements are disjoined. The crack can only propagate along the
element boundaries prescribed by the meshing. Additionally to the critical sepa-
rations, the maximum tractions or cohesive strengths, rcn, r

c
t , are introduced as

material parameters. The integration of the traction-separation laws,

Cc
n ¼

Zdcn
0

rnðdnÞjdn¼0 ddn or Cc
t ¼

Zdct
0

rtðdtÞjdt¼0 ddt; ð9:2Þ

yields the mechanical work, which is dissipated in a cohesive element by the
degradation process until final failure by normal or shear separation These sepa-
ration energies can be used as material parameters alternatively to the critical
separation. They represent energy release rates in Griffith’s sense, Eqs. (2.11) and
(5.24). Under the validity conditions of Eqs. (5.8)–(5.11), particularly the defor-
mation theory of plasticity, the separation energy, Cc

n, equals Rice’s J-integral at
crack initiation for mode I. In incremental theory of plasticity,

Cc
n � Ji; ð9:3Þ

holds for “real” materials.

Fig. 9.2 Cohesive element at
the boundaries of two
neighbouring continuum
elements in the undeformed
state, 0n; 0 g

� �
, and deformed

state, tn; t gf g; n¼̂t for mode

II separation, g¼̂n for mode I
separation
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9.2 Cohesive Laws

9.2.1 Shapes of Traction-Separation Laws

Different from constitutive equations in continuum mechanics, which establish
relations between stresses and strains, cohesive laws are relations between stresses
and displacements. This is a second fundamental feature like the zero thickness of
the elements, and the two are interdependent. Abaqus [1] has to introduce a ficti-
tious “constitutive thickness” since the cohesive laws are expressed in dependence
on stresses and strains like the constitutive laws of continuum elements. This
abandons fundamental advantages of cohesive elements compared to continuum
elements, however, most notably their characteristic feature represented by
Eq. (9.2) that the dissipated energy is not dependent on some element height as in
damage mechanics, Eq. (8.16).

The shape of a cohesive law or traction-separation law (TSL) depends on the
respective separation mechanism, and thus there is a diversity of approaches for
traction-separation laws in the literature, see overviews by Brocks et al. [12] and
Schwalbe et al. [49]. Their suitability to describe crack extension in a structure can
be estimated by comparisons of macroscopic experimental and numerical data. For
particular damage mechanisms, micromechanical simulations can be performed to
conclude on the TSL. Unit cell calculations by Koplik and Needleman [28] or
Siegmund and Brocks [51] as displayed in Fig. 8.6 show the typical damage
behaviour due to void growth, which can be modelled by laws like those shown in
Fig. 9.2b, c, f. Krull and Yuan [29] present analyses based on molecular dynamics
which depict the behaviour due to atomic debonding, Fig. 9.3e as it was studied by
Rose et al. [41]. Figure 9.3 compiles common cohesive laws of the literature, where
r(d) stands for either rn(dn) or rt(dt). The interaction of the two modes is examined
in Sect. 9.2.4.

Hillerborg et al. [26] used a simple linear softening law for describing crack
growth in concrete, Fig. 9.3a,

r ¼ rc 1� d
dc

� �
; Cc ¼ 1

2
rcdc: ð9:4Þ

It is generally suited for brittle, mineral materials.
The bilinear law of Bažant [6, 7], Fig. 9.3b,

r ¼ rc
1� d

d1
þ r1

rc
d
d1

for 0� d� d1
r1
rc

1� d�d1
dc�d1

� �
for d1 � d� dc

( )
; Cc ¼ 1

2
rcdc

d1
dc

þ r1
rc

� �
; ð9:5Þ

contains two additional shape parameters r1, d1, which increase the flexibility for
describing different separation mechanisms. In its concave form, see solid curve
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with r1 = 0.2rc, d1 = 0.2dc, it is applied to concrete [6, 7, 31], in its convex form,
see dashed curve with r1 = rc, d1 = 0.5dc, it can be used for ductile fracture due to
void growth as in Fig. 8.6.

Though cohesive elements are not supposed to describe (elastic) deformation,
numerical problems may arise for an infinite initial stiffness like in the TSLs of
Hillerborg, Eq. (9.4) and Bažant, Eq. (9.5). That is why Tvergaard and Hutchinson
[59, 60] introduced a trilinear TSL, Fig. 9.3c,

r ¼ rc

d
d0

; for d� d0
1 ; for d0 � d� d1
dc�d
dc�d1

; for d1 � d� dc

8<
:

9=
;; Cc ¼ 1

2
rcdc 1� d0

dc
þ d1

dc

� �
; ð9:6Þ

having an initial compliance, C0 = d0/rc. This compliance has no physical meaning
but only numerical significance and should be chosen as small as possible
(Sect. 9.2.2). In Fig. 9.2c, the dashed curve represents d1 = 0.2dc, and the solid one
d1 = 0.7dc. For d1 = d0 ! 0, the TSL approaches Hillerborg’s Eq. (9.4) and
describes a brittle behaviour. The “rectangular” TSL of Lin et al. [30] is obtained
for d0 = 0, and d1 = dc.
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Fig. 9.3 Common cohesive laws: a linear [26]; b bilinear [6, 7]; c trilinear [59, 60]; d cubic [34];
e exponential [35]; f piecewise polynomial [42, 43]

9.2 Cohesive Laws 155



Needleman [34] introduced a 3rd order polynomial,

r ¼ rc
27
4

d
dc

1� d
dc

� �2

; Cc ¼ 9
16

rcdc; ð9:7Þ

as cohesive law for mode I separation of ductile materials, Fig. 9.3d. It has been
applied to a mode II problem, the debonding of fibres in a fibre reinforced metal, by
Tvergaard [58].

The exponential TSL of Needleman [35], Fig. 9.3(e),

r ¼ rc
16
9
e2

d
dc

exp � 16
9
e
d
dc

� �
; Cc ¼ 9

16
rcdc; ð9:8Þ

with e = exp(1), has been derived from an energy function of atomic binding forces
by Rose et al. [41]. Different from the other cohesive laws, the cohesive stress does
not vanish at dc but remains finite, r(dc) = 0.105rc. The separation energy is the
same as for the cubic TSL in Eq. (9.7). It has been applied to brittle [62] as well as
ductile materials [51].

Scheider [42, 43] suggested a piecewise polynomial, Fig. 9.3f,

r ¼ rc

2 d
d0

� �
� d

d0

� �2
for d� d0

1 for d0 � d� d1

2 d�d1
dc�d1

� �3
�3 d�d1

dc�d1

� �2
þ 1 for d1 � d� dc

8>><
>>:

9>>=
>>;

Cc ¼ 1
2rcdc 1� 2

3
d0
dc
þ d1

dc

� � ; ð9:9Þ

which is similar to the TSL by Tvergaard and Hutchinson, Eq. (9.6), but differ-
entiable in the transition points, d0, d1. The dashed curve represents d1 = 0.2dc, and
the solid one d1 = 0.7dc, again. For d0 = d1 = 0.33dc, it resembles Needleman’s
cubic law, its softening part being actually identical.

Abaqus [1] offers a basically different approach based on some “damage”
concept (Sect. 9.2.5). The initial response of the cohesive element is assumed to be
linear. Once an initiation criterion is met, material damage occurs according to a
user-defined evolution law. Only two TSLs, r(d), are explicitly provided, namely
linear softening as in Eq. (9.6) with d1 = d0, and exponential softening,

r ¼ rc
d0
d

1� 1� exp �a d� d0ð Þ= dc � d0ð Þ½ �
1� expð�aÞ

� 	
; ð9:10Þ

with a as an adjustable parameter. Alternatively, “damage evolution” can be defined
tabularly resulting in a more or less meaningful TSL.

The choice of the cohesive law is on the user’s responsibility. The ability to
predict a specific separation process in terms of measurable macroscopic quantities
like R-curves is the crucial decision criterion. As the shape of the TSL affects the
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simulation results [45], model parameters as identified for a material are tied to the
once chosen function, and transferability is ensured only for retaining this function
in further simulations.

Cohesive parameters, like damage parameters, can be identified by numerical
simulations of tests, primarily fracture mechanics tests, see general remarks in
Sect. (8.5). Additional information can be found in Maier et al. [31], Brocks and
Steglich [15], Brocks and Scheider [14].

9.2.2 Significance of Initial Compliance

Whereas the shape parameter d1 in the models of Tvergaard and Hutchinson,
Eq. (9.6), and Scheider, Eq. (9.9), is specific for different separation mechanisms,
the parameter d0 has only numerical significance. Since the deformation of the
structure is determined by the constitutive equations of the bulk material, i.e. by the
continuum elements, the initial compliance of cohesive elements,

C0 ¼ dd
dr

� �
d¼0

; ð9:11Þ

should be smaller than the compliance, h/E, of the continuum elements,

C0E
h

’ d0
h
R0

rc

E
R0

\1; ð9:12Þ

where E is Young’s modulus and h is the (smallest) element height of the FE model.
This can be realised by a sufficiently small d0/h. The “ideal” case of d0 = 0 as
(apparently) in the TSLs of Hillerborg, Eq. (9.4), and Bažant, Eq. (9.5), is not
feasible as an infinite stiffness will spoil the global stiffness matrix of the structure
in a deformation based FE scheme. Cohesive elements of too high compliance can
produce numerical artefacts, particularly if a high number of cohesive elements is
placed in the mesh. Deterrent examples can be found in the literature.

A problem arises with respect to the cubic and the exponential laws of
Needlemen, Eqs. (9.7) and (9.8), because their initial compliances cannot be chosen
independently but depend on dc/rc,

C0 ¼ dc
rc

4
27 ¼ 0:148 cubic TSL
9

16e2 ¼ 0:076 exponential TSL

�
: ð9:13Þ

An example of a defective result due to the improper choice of a TSL has been
obtained during simulations of cup-cone fracture of round tensile bars by Scheider
and Brocks [44], Fig. 9.4. The whole necking section of the bar had to be meshed
by triangular continuum elements with cohesive elements at all boundaries,
Fig. 9.4a, in order to allow for crack bifurcation (Sect. 9.3.2). Physically
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meaningful results, Fig. 9.4a, were achieved with a mixed mode version of
Scheider’s TSL, Eq. (9.9). Applying the cubic TSL, Eq. (9.7) yielded a defective
result, Fig. 8.4b: necking occurred prior to the load maximum due to shear sepa-
ration and an additional elongation of 18% was simply due to normal separation of
the cohesive elements.

Compliance issues are addressed in Elices et al. [23] and Song et al. [55].

9.2.3 Unloading and Reloading

The above TSLs have to be complemented by assumptions for unloading and
reloading processes in mode I and II, Fig. 9.5.

Two limiting cases can be considered:

• Unloading, _d\0, at point A occurs parallel to the initial slope of the TSL as in
plasticity. A permanent separation remains at r = 0. Reloading follows the same
line up to point A and along r(d) from there on. For compressive normal
stresses, rn < 0, the separation rate, _d, has to be zero. Numerical reasons require
a finite, though small compliance however, Fig. 9.5a. Reversal shear stresses,
rt < 0, follow the unloading line until point B, where the same absolute value as

in point A is reached, rðBÞt ¼ �rðAÞt . For continuing _dt\0, cohesive shear
stresses decline to zero, Fig. 9.5b. This behaviour suits for modelling ductile
damage and fracture.

Fig. 9.4 Modelling of cup-cone fracture of a round tensile bar by cohesive elements: a FE mesh
and deformed necking section with crack bifurcation [44]; b defective result due to high
compliance of cohesive elements
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• Unloading, _d\0, at point A traces back to the origin of r(d), Fig. 9.5c, d, and
reloading follows up the unloading line. There is no permanent separation at
r = 0. The material degradation manifests in an increase of the elastic com-
pliance, C0. This behaviour describes brittle damage processes. It is the only
option available in Abaqus [1].

As and when required, combined models may be implemented.

9.2.4 Mixed Mode

The cup-cone fracture of a round tensile bar depicted in Fig. 9.4 and all cases of
in-plane crack kinking [36] are examples of local mixed mode I + II conditions
which require consideration of the interaction between normal and shear separation,
rn(dn,dt), rt(dt,dn). Shear separation will reduce normal tractions and vice versa.
Likewise, the out-of-plane slant fracture occurring in thin sheets [53] is a mode I +
III situation. Note, that all these examples represent local mixed mode, where the
global loading is still pure mode I.

As for the shapes of the TSL, Fig. 9.3, various approaches exist in the literature
for the interaction between normal and shear separation. It may be modelled
entirely phenomenologically,

Fig. 9.5 Unloading and reloading of cohesive elements: a, b “ductile” unloading; c, d “brittle”
unloading
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rn dn; dtð Þ ¼ rcnf ðdnÞgðdtÞ
rt dt; dnð Þ ¼ rct f ðdtÞgðdnÞ

; ð9:14Þ

with some user-defined interaction function g(d) with g(0) = 1, g(dc) = 0, and f(d)
being any of the functions, Eqs. (9.4–9.9), defined above. This approach requires
four parameters, rcn, d

c
n, r

c
t , d

c
t , plus some user-defined parameters for g(d), if

necessary.
Camacho and Ortiz [16] introduced effective values for separation and traction,

in which different weight is assigned to the components of the separation by a
factor, b,

deff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2n þ bd2t

q
: ð9:15Þ

As in Eq. (9.14), all cohesive laws presented in Sect. 9.2.1 can be applied to
mixed-mode situations requiring three parameters, rc, dc, b.

Tvergaard [58] extended the cubic TSL, Eq. (9.7), to mixed mode by defining a
potential resulting in

rn;t ¼ rcn;t
27
4
dn;t
dcn;t

1� deff
dcn

� �2

; ð9:16Þ

with the weighting factor, b ¼ dcn=d
c
t . Four model parameters, rcn, d

c
n, r

c
t , d

c
t are

required. A similar approach is used for the cohesive law of Tvergaard and
Hutchinson [60], replacing d in Eq. (9.9) by deff,

rn ¼ r deffð Þ dcn
deff

dn
dcn

rt ¼ r deffð Þ dcn
deff

dcn
dct

dt
dct

: ð9:17Þ

It requires five parameters in total, namely rcn ¼ rct ¼ rc, d
c
n, d

c
t and two shape

parameters, d0, d1.
Xu and Needleman [62] extended the exponential cohesive law, Eq. (9.8), which

has been derived from an energy function of atomic binding forces by Rose et al.
[41], to combined normal and shear separation by an interaction parameter,
0 � q � 1,

rn ¼ rc e
dn
d0
exp � dn

d0

� �
exp � dt

d0

� �2
þ 1� qð Þ 1� exp � dt

d0

� �2
� �� 	

rt ¼ 2rc e dt
d0
q 1þ dn

d0

� �
exp � dn

d0

� �
exp � dt

d0

� �2
; ð9:18Þ

where d0 denotes the separation at maximum normal traction, rn(d0) = rc.
Abaqus [1] offers several stress and strain criteria for the onset of softening in

mixed mode, which are based on a respective maximum value or a quadratic

160 9 The Cohesive Model



interaction function, and two options for describing “damage evolution” in terms of
either tractions, rn, rt, rs, or energies, Cc

n, C
c
t , C

c
s , as defined by Eq. (9.2).

On the whole, the approaches to local mixed mode are manifold and a consistent
background theory including rules for parameter identification does not appear as
finally established. Mixed-mode laws are favourably deduced by introducing
potentials [38] from which tractions are derived,

r ¼ @Ucoh

@d
; ð9:19Þ

but, as in CDM, this cannot help with the problem how to establish the appropriate
potential which reflects the specific separation process. Nevertheless, the fascina-
tion of a thermodynamically consistent unified framework as established for CDM
has also caught the “cohesive community”, and several attempts have been started
to adopt the concept of damage to the formulation of cohesive laws [37].

9.2.5 Cohesive Laws and Damage

A scalar damage variable, D, which represents the overall damage in the material
and evolves from 0 to 1 after the initiation of damage is introduced in combination
with an elastic potential,

Ucoh ¼ 1� Dð Þ1
2
d �Kcoh � d: ð9:20Þ

from which the traction separation law is derived according to Eq. (9.19),

r ¼ ð1� DÞKcoh � d; ð9:21Þ

where Kcoh ¼ C�1
0 is an “elastic” stiffness or inverse of compliance matrix of the

cohesive element [2, 17, 33]. This concept is realised in Abaqus [1].
Assigning an elastic stiffness to cohesive elements is a fundamentally disparate

concept to the basic idea of a cohesive zone representing material separation. The
deformation of a material is described by constitutive equations of elasticity,
plasticity, viscoplasticity etc. in the framework of continuum mechanics. It is
decoupled from degradation and failure restricted to occur in some boundary layer
or interface of negligible thickness. The concept of a cohesive interface realises the
idea of a surface energy, c, introduced by Griffith [25], see Sect. 2.1. Endowing this
layer with deformation properties, whether they are elastic or plastic, is physically
questionable.

Furthermore, the discussion in Sect. 9.2.2 has clarified that the initial compliance
of a TSL, C0 = d0/rc, has no physical significance but plays, first and foremost, a
numerical role. Thus, it may be chosen arbitrarily but should follow the condition of
Eq. (9.12). As shown in Fig. 9.4b, a too high compliance may be detrimental. Since
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C0 has no physical meaning, “damage” D does not have any, either, because it is
defined according to Eq. (9.21) as

D ¼ 1� rðdÞ
Kcohd

¼ 1� rðdÞ
rc

d0
d
; ð9:21Þ

i.e. it depends on the choice of the fictitious numerical value, d0.
Figure 9.6 demonstrates the consequences. Three TSLs are chosen, one linear

and two bilinear ones as in Fig. 9.3a, b with an initial “elastic” slope, d0, and the
corresponding damage curves are calculated from Eq. (9.21) for d0 = 0.05 dc. in
Fig. 9.6b and d0 = 0.025 dc. in Fig. 9.6c. The three curves r(d) display consider-
able qualitative differences as rather ductile (green curve) or rather brittle (red
curve). Changing the initial slope from 0.05 dc to 0.025 dc does not change their
typical shapes. The corresponding damage curves, D(d), do not mirror the
appearances of the TSLs at all. Even worse, they change quantitatively with smaller
d0, and any differences between the three curves will completely vanish for d0 ! 0.
Obviously, “damage” has no physical meaning, and it is impossible to define a
unique D(d) curve (as required in Abaqus) to obtain a specific r(d) law.

Realising that it might not be a smart idea to define ductile damage with ref-
erence to a (fictitious) elastic compliance, some authors have proposed
“elastic-plastic” cohesive laws [56, 61], but this does not remedy the conceptual
defect of mixing continuum with cohesive properties. After all, it is not clear what
the advantage of introducing a “damage” variable in a cohesive law could be.

9.2.6 Triaxiality Dependence of Cohesive Parameters

Whereas the damage models of Gurson and Rousselier account for the effect of
hydrostatic stress on void growth, the cohesive parameters are considered as
material parameters which do not depend on the stress state. This is an approxi-
mation and not fully correct, of course, as the results of respective cell model
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Fig. 9.6 Cohesive laws a and corresponding “damage” for b d0 = 0.05 dc, c d0 = 0.025 dc
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calculations in Fig. 8.6 and the models of McClintock [32] and Rice and Tracey
[39] indicate. The cohesive parameters depend on the triaxiality, Eq. (5.37), of the
stress state. The cohesive strength increases and the separation energy decreases
with increasing triaxiality, η, [43, 51] and both approach limiting values. This effect
is known from macroscopic tests on smooth and notched round tensile bars in
which the maximum load increases and the fracture strain decreases with increasing
notch radius.

The dependencies rc(η) and Cc(η) can be incorporated in the TSL [3], if
quantitatively known, but numerical simulations of crack growth under plane-strain
conditions revealed that the predicted R-curves did not not significantly depend on
whether or not the triaxiality effect has been considered. Actually, the separation
energy supplies only a small contribution to the overall dissipated work, Eq. (5.74),
namely less than 10% for C(T) specimens and just about 1% for M(T) specimens
[9, 11]. The major contribution results from overall plasticity, which explains the
geometry dependence of R-curves, Fig. 8.9. In addition, high values of triaxiality
are reached at the crack tips of fracture specimens and thick-walled structures at
which the dependence of cohesive parameters on triaxiality is minor, anyway.

The addressed dependence prohibits a transfer of the parameters from thick to
thin-walled structures close to plane-stress conditions, however.

9.3 Applications

The phenomenological model of a cohesive zone is widely spread and has found
diverse applications for different kind of materials and loading cases. Different from
fracture mechanics but like damage models, it is not dependent on some assumed or
existent initial crack. Its advantages compared to continuum damage models are the
less number of model parameters and the numerical stability even for large crack
extension. The two parameters of cohesive strength, rc, and separation energy, Cc,
permit a physically plausible interpretation of fracture toughness with reference to
micromechanical mechanisms of ductile damage [9, 51, 52].

The cohesive model is versatile and shows great promise for practical applica-
tions [19, 20, 47, 49]. It also allows for numerous advancements, a few of which
will be addressed in Sect. 9.4.

Cohesive elements can be used in 3D, axisymmetric and 2D FE models, the
latter in both plane strain and plane stress or in combination with shell elements.
Mode I ductile crack extension perpendicular to the external loading in thick
fracture specimens or plane components can be approximately simulated by
plane-strain models. Figure 8.9 has demonstrated that both the Gurson model and
the cohesive model can capture the geometry dependence of JR-curves by dis-
cerning local dissipation due to material separation from overall plasticity according
to Eq. (5.76). The respective simulations were performed under plane strain con-
ditions and refer to side-grooved fracture specimens. Any dependence of cohesive
parameters on triaxiality (Sect. 9.2.6) has been neglected.
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9.3.1 Crack Extension in Thin Panels and Shells

Whereas the void-growth models of Gurson or Rousselier are not or less suited for
low constraint conditions close to plane stress, the cohesive model fits also well for
predicting crack growth in metal sheets, provided that the lateral reduction of
thickness is taken into account. Otherwise, plastic collapse of the adjacent con-
tinuum elements according to Dugdale’s model, Fig. 4.6b, might occur. The
information on thickness reduction which is commonly not available in plane-stress
or shell elements is calculated from the adjacent continuum elements and trans-
mitted to the cohesive elements [46].

Transmitting the information on thickness reduction is one of two necessary
provisions for the simulations. The second special effect of crack extension in metal
sheets is the occurrence of slant fracture [8], i.e. tilting of the fracture surface out of
the normal x, z-plane into a 45° orientation with respect to the loading, Fig. 9.7. The
local mechanism is hence a mixed mode I and III separation. For predicting the
crack extension in the ligament (x-direction) and the residual stiffness of the
structure, a 2D model in plane stress will suffice. The respective cohesive param-
eters represent “effective” values, however, of a process which is a mixed-mode
situation in reality.

With a thus modified cohesive zone model numerically stable simulations can be
performed for large crack extensions. Validations can be found in Scheider et al.
[48] who present simulations of crack extension based on CTOA and the cohesive
model in various specimens made of aluminium sheet metal of 3 mm thickness and
study the predictive capabilities. Cohesive parameters were determined from a C(T)
specimen of width W = 50 mm and transferred to simulations of larger C(T) and M
(T) specimens as well as a biaxially loaded centre cracked panel. Good coincidence
between test data and simulations was found in all cases.

Figure 9.8 shows results obtained by students in a course at Politecnico di
Milano [10] for a M(T) specimen of width W = 150 mm. The simulations were

Fig. 9.7 Slant fracture of a
thin panel
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performed applying Scheider’s model, Eq. (9.9), implemented as a user element in
Abaqus [1]. The experimental data are taken from Scheider et al. [48].

Cornec et al. [20] present an analysis of the residual strength of a large scale
fuselage structure with a two-bay crack, demonstrating the significance for safety
assessments in the aircraft industry.

9.3.2 Crack Path Branching

A drawback of the cohesive model is that crack extension can only occur along
element boundaries which are prescribed by the FE mesh. The analysis of cup-cone
fracture presented in Fig. 9.4 demonstrated the high efforts to model crack paths, at
least approximately, which are not known in advance. Extremely refined triangular
meshes with interface elements have to be used in 2D models or tetrahedrons in 3D
for simulations of slant fracture. Simulations for heterogeneous and quasi-brittle
materials with arbitrary crack path evolution have been presented by Tijssens et al.
[57], which allowed for the development of crack patterns with several short sec-
ondary cracks besides the main cracks. Comparably complex and elaborate simu-
lations of crack path deviation at a material interface in a laser weld were performed
by Nègre et al. [36]. Constitutive models of continuum damage are more advan-
tageous for these kinds of problems as they do not have any preferable orientation
of potential crack path bifurcation [8].

There is a number of practical problems, however, where the application of
cohesive elements is convenient, because crack path branching is not completely
arbitrary and only a limited number of possible crack paths exists. A matrix crack in
a reinforced composite which approaches a fibre can continue in its original
direction and break the fibre or it can change its path along the fibre direction
causing decohesion of the fibre. A macroscopic correspondent is crack extension in
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Fig. 9.8 Simulation of crack extension in a M(T) specimen of width W = 150 mm made of
aluminium sheet metal, thickness 3 mm [10]: a CTOD R-curves, b JR-curves
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a structure encountering a stiffener like a stringer in an airplane fuselage. The
practical relevance of this problem became evident in an accident of a Boeing 737
during the Aloha Airline flight 243 in 1988 when parts of the upper shell were
completely ripped off in flight, an event which had far-reaching effects on aviation
safety policies and procedures. Brocks and Scheider [13] investigated a model of
this configuration, Fig. 9.9, in a parametric study. The stiffened cylindrical shell
under internal pressure contained an axial one-bay axial crack between two strin-
gers. The crack was allowed to extend either in its original axial direction and cut
the stringer or it could deviate in circumferential direction along the stringer.
Cohesive elements were placed accordingly in axial direction in the skin, in the
stringer and in circumferential direction between skin and stringer. In fact, the crack
path changed in dependence on the stringer thickness. Beyond a certain thickness,
the crack did not cut the stringer any more but deviated in circumferential direction
as it had happened in the airplane accident mentioned above.

The change of the fracture mechanism affects the residual strength of the
structure. Crack branching, which occurred in dependence in the stringer thickness
in this example, will also occur due to potential variations of the bonding strength
of welds. Respective effects that stringers peeled off the skin have been observed in
tests. The cohesive model provides a convenient tool to describe respective phe-
nomena and predict implications to the residual strength in this and comparable
components [47].

9.4 Advancements

Publications on cohesive models for various kinds of materials, separation mech-
anisms and applications flood the market, and it is impossible to give any repre-
sentative overview. Beside developments which extend the spectrum of

Fig. 9.9 One-bay crack in
the model of an airplane
fuselage under internal
pressure, Brocks and Scheider
[13]
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applications, considerations on fundamental physical principles [37] or damage
based approaches boom. Whether the latter represent actual advancements remains
questionable.

The present chapter on cohesive models has focussed on quasistatic separation
processes, so far, described by equations of the type r(d). The cohesive parameters
have been taken as material constants, mostly, but they may depend on external
field variables. Providing the TSL with information on thickness reduction of the
continuum elements in the crack ligament has proven as vital for simulations
applying plane-stress and shell elements [46], and the dependence of cohesive
parameters on the local stress triaxiality has been discussed in Sect. 9.2.6. Anvari
et al. [3] studied dynamic ductile fracture of aluminium bars applying the cohesive
model and had to consider strain rate effects. Based on unit cell calculations, the
authors implemented the rate and triaxiality dependence of cohesive strength and
separation energy.

Likewise, temperature or any other physical field variable can affect the cohesive
properties and can be taken for modifying the parameters, provided the respective
variable is available in the FE code and the effect can be quantified. An ambitious
modelling of this kind has been presented by Falkenberg et al. [24] who investi-
gated the effect of hydrogen embrittlement on ductile tearing resistance of steels
with cohesive elements. It required to implement hydrogen diffusion into the FE
code and to consider the effect of hydrogen concentration on both yield strength and
cohesive strength. The author was able to capture the strong decrease of the crack
growth resistance under hydrogen charging conditions at low displacement rates,
which was observed in the respective tests.

Rate- and time-dependent fracture phenomena are of great interest for the fracture
behaviour of polymers [64] and the simulation of adhesives. For metals, rate effects
are relevant at high-temperature conditions or dynamic crack growth [63]. They can
be captured implicitly by rate dependent parameters [3] or by specific cohesive laws,

r d; _d
� �

, which explicitly include the separation rate [18, 21, 54].
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Fig. 9.10 Schematic of ratcheting effect due to cyclic plasticity: a varying slopes for unloading
and reloading; b shape change of monotonic TSL

9.4 Advancements 167



Applications of the cohesive model to crack extension under cyclic plastic
deformations have become topical, recently. They require major modifications of
the cohesive law. The monotonic TSL is a unique curve, unloading and reloading
follow the same straight (elastic) line, Fig. 9.5, and do not result in any degradation
or damage. Cyclic loading has to affect either the slope of reloading [50],
Fig. 9.10a, or the shape of the monotonic TSL [27, 40], Fig. 9.10b. The latter may
be described by a damage variable, rc ¼ r0c 1� Dð Þ. Different from approaches like
Eq. (9.21), D has a physical significance here describing the reduction of cohesive
strength due to alternating plastic deformation. Evolution laws for D or the changes
of the unloading/reloading slopes are required, which represent the actual challenge
of modelling. Due to numerical time and effort cohesive models are less suited for
large numbers of cycles.

References

1. Abaqus (2014) User’s Manual, Version 6.12. Dassault Systèmes Simulia Corp, Providence,
RI, USA

2. Allix O, Ladevéze P, Corigliano A (1995) Damage analysis of interlaminar fracture
specimens. Compos Struct 31:61–74

3. Anvari M, Liu J, Thaulow C (2007) Dynamic ductile fracture in aluminum round bars:
experiments and simulations. Int J Fract 143:317–332

4. Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture: general ideas
and hypothesis, axially symmetric cracks. Appl Math Mech 23:623–636

5. Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv
Appl Mech 7:55–129

6. Bažant ZP (1993) Current status and advances in the theory of creep and interaction with
fracture. In: Bažant ZP, Carol I (eds) Proc. 5th Int. RILEM Symp on Creep and Shrinkage of
Concrete, E & FN Spon, London and New York, pp 291–307

7. Bažant ZP (2003) Concrete fracture models: testing and practice. Eng Fract Mech 69:165–205
8. Besson J, Steglich D, Brocks W (2001) Modeling of crack growth in round bars and plane

strain specimens. Int J Solids Struct 38:8259–8284
9. Brocks W (2005) Cohesive strength and separation energy as characteristic parameters of

fracture toughness and their relation to micromechanics. Struct Integr Durab 1:233–243
10. Brocks W, Rabbolini S (2015) Computational fracture mechanics. Report Students Project,

Dipartimento di Meccanica, Politecnico di Milano
11. Brocks W, Anuschewski A, Scheider I (2010) Ductile tearing resistance of metal sheets. Eng

Fail Anal 17:607–616
12. Brocks W, Cornec A, Scheider I (2003) Computational aspects of nonlinear fracture

mechanics. In: Milne I, Ritchie RO, Karihaloo B (eds) Comprehensive structural integrity,
Vol. 3, Elsevier, pp 127–209

13. Brocks W, Scheider I (2008) Prediction of crack path bifurcation under quasi-static loading by
the cohesive model. Struct Durab Health Monit 70:1–11

14. Brocks W, Scheider I (2010) Identification of material parameters for structural analyses.
Struct Durab Health Monit 161:1–24

15. Brocks, W, Steglich, D (2007) Hybrid methods. In: Milne I, Ritchie RO, Karihaloo B
(eds) Comprehensive structural integrity, Online Update Vol. 11, Elsevier, pp 107–136

16. Camacho GT, Ortiz M (1996) Computational modelling of impact damage in brittle materials.
Int J Solids Struct 33:2899–2938

168 9 The Cohesive Model



17. Camanho PP, Davila CG, de Moura MF (2003) Numerical simulation of mixed-mode
progressive delamination in composite materials. J Compos Mater 37:1415–1438

18. Corigliano A, Ricci M (2001) Rate-dependent interface models: formulation and numerical
applications. Int J Solids Struct 38:547–576

19. Cornec A, Scheider I, Schwalbe KH (2003) On the practical application of the cohesive
model. Eng Fract Mech 70:1963–1987

20. Cornec A, Schönfeld W, Schwalbe KH, Scheider I (2009) Application of the cohesive model
for predicting the residual strength of a large scale fuselage structure with a two-bay crack.
Eng Fail Anal 16:2541–2558

21. Costanzo F, Walton JR (1997) A study of dynamic crack growth in elastic materials using a
cohesive zone model. Int J Eng Sci 35:1085–1114

22. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104
23. Elices M, Guinea GV, Gómez J, Planas J (2002) The cohesive zone model: advantages,

limitations and challenges. Eng Fract Mech 69:137–163
24. Falkenberg R, Brocks W, Dietzel W, Scheider I (2010) Modelling the effect of hydrogen on

ductile tearing resistance of steels. Int J Mat Res 101:989–996
25. Griffith AA (1920) The phenomena of rupture and flow in solids. Philos Trans R Soc London

A211:163–198
26. Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth

in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–778
27. Jha D, Banerjee A (2012) A cohesive model for fatigue failure in complex stress-states. Int J

Fatigue 36:155–162
28. Koplik J, Needleman A (1988) Void growth and coalescence in porous plastic solids. Int J

Solids Struct 24:835–853
29. Krull H, Yuan H (2011) Suggestions to the cohesive traction–separation law from atomistic

simulations. Eng Fract Mech 78:525–533
30. Lin G, Cornec A, Schwalbe K-H (1998) Three-dimensional finite element simulation of crack

extension in aluminium alloy 2024 FC. Fatigue Fract Eng Mater Struct 21:1159–1173
31. Maier G, Bocciarelli M, Bolzon G, Fedele R (2006) Inverse analyses in fracture mechanics.

Int J Fract 138:47–73
32. McClintock FA (1968) A criterion for ductile fracture by the growth of holes. Trans ASME, J

Appl Mech 35:363–371
33. Mosler J, Scheider I (2011) A thermodynamically and variationally consistent class of

damage-type cohesive models. J Mech Phys Solids 59:1647–1668
34. Needleman (1987) A continuum model for void nucleation by inclusion debonding. J Appl

Mech 54:525–531
35. Needleman A (1990) An analysis of decohesion along an imperfect interface. Int J Fract

42:21–40
36. Nègre P, Steglich D, Brocks W (2005) Crack extension at an interface: prediction of fracture

toughness and simulation of crack path deviation. Int J Fract 134:209–229
37. Ottosen NS, Ristinmaa M, Mosler J (2015) Fundamental physical principles and cohesive zone

models at finite displacements—limitations and possibilities. Int J Solids Struct 53:70–79
38. Park K, Paulino GH, Roesler JR (2009) A unified potential-based cohesive model of

mixed-mode fracture. J Mech Phys Solids 57:891–908
39. Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields.

J Mech Phys Solids 17:201–217
40. Roe RL, Siegmund T (2003) An irreversible cohesive zone model for interface fatigue crack

growth simulation. Eng Fract Mech 70:209–232
41. Rose J, Ferrante J, Smith J (1981) Universal binding energy curves for metals and bimetallic

interfaces. Phys Rev Lett 75:675–678
42. Scheider I (2001) Bruchmechanische Bewertung von Laserschweißverbindungen durch

numerische Rißfortschrittsanalysen mit dem Kohäsivzonenmodell. Ph.D. thesis, Technical
University Hamburg-Harburg, Report GKSS 2001/3, GKSS-Research Centre, Geesthacht,
Germany

References 169



43. Scheider I (2009) Derivation of separation laws for cohesive models in the course of ductile
fracture. Eng Fract Mech 76:1450–1459

44. Scheider I, Brocks W (2003) Simulation of cup-cone fracture using the cohesive model. Eng
Fract Mech 70:1943–1961

45. Scheider I, Brocks W (2003) The effect of the traction separation law on the results of
cohesive zone crack propagation analyses. Key Eng Mater 251–252:313–318

46. Scheider I, Brocks W (2003) Cohesive elements for thin-walled structures. Comput Mater Sci
37:101–109

47. Scheider I, Brocks W (2008) Residual strength prediction of a complex structure using crack
extension analyses. Eng Fract Mech 75:4001–4017

48. Scheider I, Schödel M, Brocks W, Schönfeld W (2006) Crack propagation analysis with
CTOA and cohesive model: Comparison and experimental validation. Eng Fract Mech
73:252–263

49. Schwalbe KH, Scheider I, Cornec A (2009): SIAM CM09 – The SIAM method for applying
cohesive models to the damage behaviour of engineering materials and structures.
Report GKSS 2009/1, GKSS-Reseach Centre, Geesthacht, Germany

50. Serebrinsky S, Ortiz M (2005) A hysteretic cohesive-law model of fatigue-crack nucleation.
Scripta Mater 53:1193–1196

51. Siegmund T, Brocks W (1999) Prediction of the work of separation and implications to
modeling. Int J Fract 99:97–116

52. Siegmund T, Brocks W (2000) The role of cohesive strength and separation energy for
modeling of ductile fracture. In: Jerina KL, Paris PC (eds) Fatigue Fracture Mechanics, vol
30. ASTM STP 1360. American Society for Testing and Materials, Philadelphia, pp 139–151

53. Siegmund T, Brocks W, Heerens J, Tempus G, Zink W (1999) Modeling of crack growth in
thin sheet aluminium. In: ASME Int. Mechanical Engineering Congress and Exposition:
Recent Advances in Solids and Structures, ASME PVP 398, Nashville, pp 15–22

54. Siegmund T, Needleman A (1997) A numerical study of dynamic crack growth in elastic–
viscoplastic solids. Int J Solids Struct 34:769–787

55. Song SH, Paulino Glaucio H, Buttlar GH (2006) A bilinear cohesive zone model tailored
for fracture of asphalt concrete considering viscoelastic bulk material. Eng Fract Mech 73:
2829–2848

56. Su C, Wei YJ, Anand L (2004) An elastic-plastic interface constitutive model: Application to
adhesive joints. Int J Plasticity 20:2063–2081

57. Tijssens A, van der Giessen E, Sluys LJ (2001) Modeling quasi-static fracture of heterogeneous
materials with the cohesive surface methodology. In: Bathe KJ (ed) Computational Fluid and
Solid Mechanics (1st MIT Conf), vol 1. Elsevier, Amsterdam and London, pp 509–512

58. Tvergaard V (1990) Effect of fibre debonding in a whisker-reinforced metal. Mater Sci Eng, A
190:203–213

59. Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and
fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40:1377–1397

60. Tvergaard V, Hutchinson JW (1993) The influence of plasticity on mixed mode interface
toughness. J Mech Phys Solids 41:1119–1135

61. Xu Q, Lu Z (2013) An elastic–plastic cohesive zone model for metal–ceramic interfaces at
finite deformations. Int J Plasticity 41:147–164

62. Xu X, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids.
J Mech Phys Solids 42:1397–1434

63. Xu XP, Needleman A (1996) Numerical simulations of dynamic crack growth along an
interface. Int J Fract 74:289–324

64. Xu DB, Hui CY, Kramer EJ, Creton C (1991) A micromechanical model of crack growth
along polymer interfaces. Mech Mater 11:257–268

170 9 The Cohesive Model



Index

A
Airy’s stress function, 65
ASME Boiler and Pressure Vessel Code, 19
Associated flow rule, 26
ASTM E1820, 63
ASTM E1823, 119
ASTM E2472, 76, 124
ASTM E399, 121
ASTM E561, 62, 123

B
Back stress tensor, 28
Balance equations, 51
Barenblatt model, 45
Biaxiality factor, 8
Brittle fracture, 11

C
Centre cracked panel, 47
Characteristic volume, 132
Cleavage, 128
Coalescence of voids, 134
Cohesive law, 152
Cohesive model, 129, 149
Cohesive strength, 151
Cohesive stress, 150
Collapsed element, 111
Compact specimen (C(T)), 56
Compliance, 124
Computational cell, 136
Continuum Damage Mechanics (CDM), 143
Contour integral, 50
Convexity, 26
Crack driving force, 53
Cracked cylinders, 15
Crack Tip Opening Angle (CTOA), 77
Crack Tip Opening Displacement (CTOD), 42

Cup-cone fracture, 155
Cyclic J-integral, 74
Cyclic stress intensity factor, 12

D
Damage, 127
Deformation theory, 35
Deviatoric strains, 25
Deviatoric stresses, 29
Dislocations, 128
Dissipation potential, 145
Dissipation rate, 72
Dissipation rate densitiy, 27
Dog-bone model, 43
Domain integral, 56
Drucker, 86
Dugdale model, 45

E
Effective SIF, 39
Effective stress, 144
Elastic limit pressure, 33
Elastic-Plastic Fracture Mechanics (EPFM), 49
Elliptical integral, 18
Energy approach, 7
Energy momentum tensor, 50
Energy release rate, 9
Engineering treatment model, 79
Equivalent elastic crack, 39
Equivalent stress, 32

F
Failure assessment diagram, 78
Failure probability, 131
FE meshes, 110
Flow cylinder, 26
Folias factor, 16

© Springer International Publishing AG 2018
W. Brocks, Plasticity and Fracture, Solid Mechanics and Its Applications 244,
DOI 10.1007/978-3-319-62752-6

171



Fracture strain, 135
Fracture toughness, 119

G
Geometry dependence, 64
Geometry function, 14
Griffith, 7
GTN model, 140
Gurson model, 138

H
Hardening law, 28
Higher-order approaches, 12
Homogenisation, 136
HRR field, 68
Hyper-elastic material, 51

I
Interaction integral, 114
Inverse problem, 147
Irwin, 9
Isotropic hardening, 28

J
J-dominance, 72
J-integral, 49
J-vector, 52

K
Kinematically possible, 90
Kinematic hardening, 28
K-R curve, 123

L
Lamé’s equations, 16
Length scale, 143
Limit load factor, 35
Limit load theorem, 86
Linear-Elastic Fracture Mechanics (LEFM), 5
Loading criterion, 25
Local approach, 132
Localisation, 143
Low-cycle fatigue, 74

M
M(T), 47
Meso-scale, 136
Mesoscopic stress, 137
Micro-cracks, 128
Micro-voids, 128
Mixed mode, 11
Modes of crack displacements, 6
Mohr’s circle, 97

N
Nucleation of voids, 134

P
Parameter identification, 147
Paris-equation, 12
Path independence, 50
Perfectly plastic, 88
Plane strain, 6
Plane-strain fracture toughness, 121
Plane stress, 6
Plastic collapse, 86
Plastic constraint, 93
Plastic limit pressure, 34
Plastic multiplier, 27
Plastic potential, 27
Plastic strains, 25
Plastic zone, 39
Porous metal plasticity, 138
Pressure vessel, 33
Process zone, 129

Q
Q-stress, 72

R
R6 procedure, 78
Railway axle, 114
Ramberg and Osgood, 36
R-curve, 61
Reference volume, 132
Representative volume element, 136
Resistance curve, 61
RKR model, 133
Rousselier model, 142

S
SE(B), 121
Semi-elliptical surface crack, 17
Separation, 149
Separation energy, 9, 151
Singular stress field, 10
Slip lines, 101
Slip-line theory, 92
Small-scale yielding, 13, 124
Stability postulate, 86
Statically admissible, 90
Static theorem, 90
Stochastic approach, 130
Strain energy density, 51
Stress Intensity Factor (SIF), 10
Stress triaxiality, 59
Strip yield model, 46

172 Index



T
Tearing modulus, 64
Tensile test, 24
Traction, 150
Traction-Separation Law (TSL), 152
Transgranular fracture, 130
Tresca, 30
T-stress, 12
Two-criteria approach, 78
Two-parameter concept, 43

U
Unit cell, 135

V
Virtual Crack Extension (VCE), 56

Void growth, 134
Void-volume fraction, 138
Volume dilatation, 25
Von Mises, 32

W
Weakest link, 131
Weibull distribution, 132
Weibull exponent, 133
Weibull stress, 132
Work of separation, 9

Y
Yield condition, 24
Yield function, 26
Yield strength, 24

Index 173


	Preface
	Contents
	Nomenclature
	1 Introduction
	Abstract
	References

	2 Concepts of Fracture Mechanics
	Abstract
	2.1 The Energy Approach of Griffith
	2.2 The Stress-Intensity Approach of Irwin
	2.3 Determination of SIFs
	2.3.1 Cracked Cylinders
	2.3.2 Semi-elliptical Surface Crack

	References

	3 Phenomenological Theory of Time- and Rate-Independent Plasticity
	Abstract
	3.1 Uniaxial Tensile Test
	3.2 Generalisation to Triaxial Stress States
	3.3 Isotropic Yielding
	3.3.1 The Yield Condition of Tresca
	3.3.2 The Theory of Von Mises, Prandtl and Reuß
	3.3.3 Example: Pressure Vessel

	3.4 Deformation Theory of Plasticity
	References

	4 Extension of LEFM for Small-Scale Yielding
	Abstract
	4.1 The Equivalent Elastic Crack (Mode I)
	4.2 Crack Tip Opening Displacement (CTOD)
	4.3 Shape of the Plastic Zone
	4.4 The Models of Barenblatt and Dugdale
	References

	5 Elastic-Plastic Fracture Mechanics
	Abstract
	5.1 The J-Integral
	5.1.1 Definition and Path Independence
	5.1.2 J as Energy Release Rate
	5.1.3 The Three-Dimensional J
	5.1.4 Extensions for Multi-phase Materials, Body Forces, Surface Tractions and Thermal Loading
	5.1.5 Resistance Curves Against Ductile Crack Extension
	5.1.6 Application and Validity of Resistance Curves

	5.2 Asymptotic Solution of Stress and Strain Fields in Mode I
	5.2.1 The Boundary Value Problem
	5.2.2 Singular Crack Tip Fields
	5.2.3 J-Integral as Crack-Tip Intensity
	5.2.4 Crack Tip Opening Displacement
	5.2.5 Validity of the HRR Solution

	5.3 Extended and Alternative Concepts
	5.3.1 Dissipation Rate
	5.3.2 J-Integral for Cyclic Plasticity
	5.3.3 CTOD and CTOA
	5.3.4 Assessment Procedures

	References

	6 Solutions for Fully Plastic Conditions
	Abstract
	6.1 Plastic Collapse and Limit Load Theorems
	6.1.1 Drucker’s Postulates of Stability
	6.1.2 Plastic Limit State (Collapse): Definitions and Theorems

	6.2 Example of a Statically Admissible Stress Field
	6.3 Slip Line Theory
	6.3.1 Basic Equations for Plane-Strain Conditions
	6.3.2 Cauchy’s Initial Value Problem
	6.3.3 The Characteristics of Plane Strain Flow
	6.3.4 Generation of Slip-Line Fields—Boundary Conditions
	6.3.5 Examples of Notched Structures

	References

	7 Determination of Fracture Parameters
	Abstract
	7.1 Numerical Methods: Crack Driving Forces
	7.1.1 FE Meshes for Structures with Cracks
	7.1.2 Energy Release Rate and J-Integral
	7.1.3 Stress Intensity Factors
	7.1.4 Path (Domain) Dependence of J in Incremental Plasticity

	7.2 Test Methods and Standards: Material Resistance
	7.2.1 Standard Terminology
	7.2.2 Linear-Elastic Plane-Strain Fracture Toughness
	7.2.3 Measurement of Fracture Toughness in EPFM
	7.2.4 Crack Extension in Thin Structures

	References

	8 Damage and Fracture
	Abstract
	8.1 Phenomena and Models
	8.2 Local and Micromechanical Approaches
	8.2.1 Brittle Fracture and Cleavage
	8.2.2 Ductile Damage und Fracture
	8.2.3 The Concept of Representative Volume Elements

	8.3 Porous Metal Plasticity
	8.3.1 Gurson Model
	8.3.2 Rousselier Model
	8.3.3 Length Scales and Local Instability

	8.4 Continuum Damage Mechanics
	8.5 Parameter Identification
	References

	9 The Cohesive Model
	Abstract
	9.1 The Cohesive Zone
	9.2 Cohesive Laws
	9.2.1 Shapes of Traction-Separation Laws
	9.2.2 Significance of Initial Compliance
	9.2.3 Unloading and Reloading
	9.2.4 Mixed Mode
	9.2.5 Cohesive Laws and Damage
	9.2.6 Triaxiality Dependence of Cohesive Parameters

	9.3 Applications
	9.3.1 Crack Extension in Thin Panels and Shells
	9.3.2 Crack Path Branching

	9.4 Advancements
	References

	Index
	www.ebookcenter.ir,  phone:  66403879  مرکز کتب ديجيتال



