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Four-parameter Beta. Compound Binomial 

Abstract

This paper presents a detailed derivation of method of moments estimates for the four- 

parameter beta compound binomial strong true score model. A procedure is presented to 

deal with the case in which the usual method of moments estimates do not exist or result 

in invalid parameter estimates. The results presented regarding the method of moments 

estimates are used to derive formulas for computing classification consistency indices under 

the four-paxameter beta compound binomial model.

Acknowledgement. The author thanks Robert L. Brennan for carefully reading an earlier 
version of this paper and offering helpful suggestions and comments.





The first part of this paper discusses estimation of the four-parameter beta compound 

binomial model by the method of moments. Most of the material in the first part of 

this paper is a restatement of material presented in Lord (1964, 1965) with some added 

details. The second part of this paper uses the results presented in the first part to obtain 

formulas for computing the classification consistency indexes described by Hanson and 

Brennan (1990).

The purpose of this paper is to provide a detailed description of the procedures used in 

computer programs written by the author which compute estimates for the four-parameter 

beta compound binomial model and indexes of classification consistency based on the four- 

parameter beta compound binomial model.

Estimation of the Four-parameter Beta Compound Binomial Model

It is assumed that the test score to be modeled is the sum of K  dichotomously scored 

test items (this score is referred to as the raw or observed test score). The probability 

that the raw score random variable X  in the population of interest equals i (i =  0 , . . . ,  K ), 

under the four-parameter beta compound binomial model is given by

=  i^~  J  ? r ( X  =  i\T,k)g(r\a, (3 , l ,u)dT,  (1)

where r is the proportion correct true score. (For simplicity of notation the dependence 

of the marginal test score distribution [Pr(X =  i)] on the parameters k, a, /?, /, and u 

is not denoted.) The true score distribution [<7( 7* | o',/?, l,u)\ is assumed to belong to the 

four-parameter beta family of distributions. The four-parameter beta distribution is a 

generalization of the usual beta distribution that in addition to the two shape parameters 

(a  > 0  and /5 > 0 ) has parameters for the lower (/) and upper (u) limits of the distribution 

( 0 < Z < U < 1 ) .  The four-parameter beta density function [defined on the interval (f,u)]
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where B(a,f3)  is the beta function, which is related to the gamma function [r(x)j by

n , n ^  =  n « ) m
-^(^5  p )  - p /  . Q\ 'T(a +  P)

The conditional error distribution [Pr(J\T =  i | r, k)] is assumed to be Lord’s (1965) 

two term approximation to the compound binomial distribution. The probability density 

function of the two-term approximation to the compound binomial distribution is (Lord, 

1965, Equation 5)

Pr(X  =  i | r, k) =  p(i \ K , r)

— fcr(l — t)[p(z | K  — 2, r) — 2p(i — 1 | A” — 2, r) +  p(i — 2 | K  — 2, r)] , (3)

where p(i \ n, r) =  Pr(^ =  i \ n, r) where the distribution of Z is binomial with parameters

n (the number of binomial events) and r (the binomial probability).

The two-term approximation to the compound binomial distribution given by Equa­

tion 3 involves the parameter k (note that this is distinct from upper case I\ which is 

used in this paper to donate the number of items on the test), in addition to the binomial 

parameter. When k =  0 the conditional distribution of X  given r is binomial. Lord (1965) 

gives a method of estimating k by setting the theoretical value of the average error variance 

(or reliability) under the two term approximation of the compound binomial distribution 

(which is a function of k) equal to an estimate of the average error variance (or reliabil­

ity). The number-correct true score variance, assuming the conditional error distribution 

is Lord’s two-term approximation to the compound binomial distribution, is (Lord, 1965, 

Equation 39)
K 2 a l - ( K - 2 k ) ^ x ( K - ^ x)

K ( I < - l )  +  2k ’ 1 ’

where fix and g\ are the raw score mean and variance. Subtracting Equation 4 from a\

gives the average error variance (denoted under the two term approximation of the

compound binomial distribution

_2 a2x [K(K - l )  +  2 k - K 2} + ( K - 2 k ) ftl( K -  ,ix) 
a‘ K { K  - l )  +  2k '
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Solving Equation 5 for k gives

. K [ { K  -  \){cl -  o p  -  Ko\ +  Hx(K -  „ , ) ]
2 [/ii( K  -  p z ) -  -  o*)]

Given an estimate of the average error variance, o \, and estimates of jix and cr\ in Equation

6 , an estimate of k can be calculated. The value of k as a function of the reliability (/?), raw

score mean, and raw score variance is given by substituting 0 ^ ( 1  — p) for in Equation

6.

The conditional error distribution given by Equation 3 may not be a probability 

distribution since for some values of r  and i it is possible that Pr(X  =  i \ r, k) < 0. Lord 

(1965) states that for usual values of K  and k negative probabilities are typically negligible 

for .01 < r <  .99 so that for practical purposes it is appropriate to treat Pr(X  =  i j r, k) 

given in Equation 3 as a probability distribution.

After a value of k has been determined there are two steps involved in the estimation of 

the observed score distribution under the four-parameter beta compound binomial model 

using the method of moments. First, the parameters of the four-parameter beta true score 

distribution are estimated, and second these parameter estimates are used to produce the 

estimated observed score distribution.

Estimation of True Score Distribution

Under the assumption that the conditional error distribution is given by the two term 

approximation to the compound binomial distribution, Lord (1965) produces a formula 

which gives the non-central moments (moments about zero) of the proportion correct true 

score distribution in terms of the factorial moments of the observed score distribution. The 

first moment of the proportion correct true score distribution can be written as

VlT = ^ /‘[1]Z - (7)

where fiiT is the z-th central moment of the proportion correct true score distribution and 

is the i-th factorial moment of the number correct observed score distribution (the

Four-parameter Beta Compound Binomial
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z-th factorial moment of a random variable X  is defined as £ ’[JV(J\T -f- 1 ) . . .  (X  -f- i — 1)]). 

The z-th (i > 2) non-central moment of the proportion correct true score distribution ( ^ r ) 

is (Lord, 1965, Equation 37)

_  (K- 2̂ - n  +  kl 
P,r K ( K  - 1 ) +  ki[2] ’ w

where for integers j  and /. jw  =  j ( j  — 1 ) . . .  (j — / +  1). Given estimates of the first four

factorial moments of the observed score distribution (these can be obtained from the central

or non-central observed score moments, see Kendall & Stuart, 1977, page 6 6 ), estimates of

the mean and second through fourth non-central moments of the proportion correct true

score distribution can be obtained from Equations 7 and 8 .

The estimates of the first four true score moments are used to produce method of

moments estimates of the parameters of the four-parameter beta true score distribution.

The four parameters to be estimated are the two shape parameters (a  and /?), the lower

limit of the distribution (/) and the upper limit of the distribution (u). If the proportion

correct true score distribution is a member of the four-parameter beta family then its

mean, variance, skewness and kurtosis are given by (Johnson Sz Kotz, 1970, pages 40-44)

M2 r = {U-1)  ----— 2----------------

Four-parameter Beta Compound Binomial

(a -f- f3) (a  +  /3 +  1)
— ^3r o / n \ y/a +  ft + 1  ̂73 =  ---------rr =  2(/3 -  Of)

{y/U27) 3 ( «  +  /? +  2 )%/a/7

7 =  J ^ ==3 ( a  +  ig + l ) 2(a +  /?) + ^ ( ^  +  / 9 - 6 )
7 4 “ ^ r2 ( ’  a/3(a +  (3 +  2 ) ( a +  p +  Z) ’

where fiir is the z-th central moment (moment about the mean) of the proportion correct 

true score distribution. The central moments of Equation 9 can be written in terms of the 

non-central moments of Equation 8  (see Kendall &; Stuart, 1977, page 58).



Substituting the values for j 3 and j 4 given in Equation 9 into Equation 10 and simplifying 

gives r =  a +  ft. Substituting r for a -j- ft in the expression for 7 4 given in Equation 9 and 

solving for aft gives

a o =  ____________6 r2(r +  l)____________ M n
(r +  2) (r +  3) 74 -  3 (r — 6) (r +  1)

Solving for a  using the expressions a +  ft =  r and Equation 11 gives the two solutions

Four-parameter Beta Compound Binomial

r I 24 (r +  1) \
a = 2 \  ±  Y ( r + 2 ) ( r  +  3 ) 7 4 - 3 ( r - 6 ) ( r  +  l )  J ' (12)

If the solutions given in Equation 12 are real then one of these solutions will be the value 

of a and the other solution will be the value of ft. If the skewness (7 3 ) is positive then the 

larger solution will be the value of ft, otherwise the larger solution will be the value of a.

Substituting estimated moments for population moments in Equation 12 gives method 

of moments estimates of the parameters a and ft. Solving the expressions for /x'lr and fi2T 

in Equation 9 for I and u gives

, _  j  a \f ̂ 2r (Of +  /? +  1)
— t—15

____ 'H E .______  ( 1 3 )
1 , Py/M2t (a  +  & +  1)

W =  Plr +  ------------ ---------------- •y/aft

Substituting estimates of / / l r , fi2r and the method of moments estimates of a  and ft from 

Equation 12 in Equation 13 gives method of moments estimates of / and u.

The method of moments estimates of the four parameters do not exist when the 

solutions for a and ft given in Equation 12 are not real. Even if solutions exist the estimates 

of some parameters may not be valid (i.e., u >  1, / < 0, a <  0, ft <  0). When the method 

of moments solution using the first four moments does not exist or one or more of the 

estimated parameters is invalid it is suggested an estimation procedure be used in which 

the first three moments are fit to determine three of the four parameters (a, ft and u) and 

the remaining parameter (/) is chosen such that the kurtosis of the fitted distribution is as
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near as possible to kurtosis as calculated directly from the observed score moments (using 

Equation 8 ). To implement this procedure, method of moments estimates of a, (3 and u 

(given a specified value of I) based on the first three moments of the proportion correct 

true score distribution are needed.

To derive method of moments estimates of a, f3 and u (given a specified value of /) 

the following definitions are made

e, =  t =  1,2,3.  (14)
a  +  p  - f i — 1

Using Equation 14, £3 can be written as a function of £1 and £2 :

& £1 — 2 £2 +  fi £2

6 = ' 2 6 - 6 - 1  ■ ( 1 5 )

The first two non-central moments of the proportion correct true score distribution can be 

written as
Mir = * + (u — 0 f i

fi2r — I + 2 1 (u ~ I) + (ll —  / )  £2 •

Solving Equation 16 for £1 and £2 gives

t A t - 1
1 U — I

/ t ; r  ~  2  I  ( n [ T  —  I )  —  I 2  ( 1 0

^  (/i'Ir - / ) ( « - / )  ■

Substituting the expressions for £1 and £2 given in Equation 17 into the expression for £3 

given in Equation 15 and simplifying yields

(u -  0 6  =
~/3 -1- 3 fi[Tl2 - {p'2r -f 2 [̂ir]2) / + Mir̂2r + (W _ 0 ([Mir!2 — 2̂2r + 2 (-L\r̂ ~ ̂ )

Four-parameter Beta Compound Binomial

P -  2p>lr l +  2(//lr )2 -  p'2r +  ( « - / ) ( / -  ^ lr )

The third non-central moment of the proportion correct true score distribution is

.(18)

V-zt — +  3l2(u — 0 6  +  3l(u — I)2 £i£2 +  (m — 0 3 6  £ 2 6  • (19)
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Substituting the expressions for £1 and £ 2 from Equation 17 into Equation 19 and simpli- 

fying produces

/4 r =  l3 +  3i V i r  -  /) +  3 /[^ r -  I2 -  2/(M'lr -  0] +  [^2r -  I2 -  2 V i r  -  0] (u -  0 6  • (20)

The only expression involving u in Equation 20 is (u — /)£3. Substituting the right hand 

side of Equation IS for (u — /)£* in Equation 20, solving for u and simplifying gives

_  KWlr]2 V2T ~ 2[^2 r]2 +  1*1 rMSr) +  ~ ^(f^lr)2
1 (2[m'i r]3 -  V lr /4 r  + ^3r) + 2 (^ r )2 ~ (M r)2^2r “  /''lr/^r

Substituting estimated moments in Equation 21 in place of the population moments gives 

a method of moments estimate of u (/ is assumed to be specified).

Let r* be a transformation of the proportion correct true score given by

t  — I

Four-parameter Beta Compound Binomial

T =
~  I

(22)

Since r has a four-parameter beta distribution, r* has a two-parameter beta distribution 

with parameter a and (3. The parameters a and /? are given in terms of the non-central 

moments of the distribution of r* as

„  f-hr* (/^lr* ~~
r* — (/^lr* )2 /^o\

g =  ~  Mir* ) (Mlt* ~ ^2t-* )
^ r . - 0 4 r . ) 2

Given values of u and /, the non-central moments of the distribution of r* can be obtained 

from the non-central moments of the distribution of r. Substituting estimated moments 

of the distribution of r* in Equation 23 in place of the population moments gives method 

of moments estimates of a and /?.

Given a value of /, Equations 2 1  and 23 can be used to obtain method of moments 

estimates of u, cv, and p. If the method of moments estimates of /, u, a and ft given by 

Equations 12 and 13 do not exist or are not valid, then a solution is selected such that 

the first three moments are fit (which determines tz, cv, and (3) and / is chosen such that
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the fitted true score kurtosis is as close as possible to the true score kurtosis as calculated 

directly from the observed score moments (using Equation 8 ).

The expressions for a and ft given in Equation 23 can be written in terms of I and the 

first three non-central moments of the proportion correct true score distribution /^r

and ^3r)* These values of a  and ft can be used in the expression for the kurtosis given in 

Equation 9 to compute the fitted true score kurtosis as a function of /. The function of I 

given by the squared difference of fitted true score kurtosis (a function of /) and the true 

score kurtosis calculated directly from the observed score moments (using Equation 8 ) is 

to be minimized. The minimization is constrained to be over those values of I for which 

valid method of moments estimates of u, a and ft using Equations 21 and 23 exist.

A method of finding the value of I that solves this constrained optimization problem is 

to first compute the two solutions in which I and u are on the boundary of the parameter 

space (the solution for which I =  0 and the solution for which u =  1 ). Either or both of 

these solutions may not be a valid solution. The solution for which I =  0 can be computed 

using Equations 21 and 23 . The solution for u — 1 can be computed by solving Equation 

2 1  for I giving

, _  “  ( [ /4 r ]V ir  ~ 2[/4r]2 +  +  V-'l M r f  ~ 2(^1 r f
u ( 2 [ M i r l 3 - 3 ^ i r ^ 2 r  + A 13 r )  +  2 ( / i 2 r ) 2 -  ( ^ ' l r ) 2 ^ 2 r  “ M i r / ' S r

Substituting u — 1 in Equation 24 gives a method of moments estimate of /. This estimate 

of I along with u ~  1 are used in Equation 23 to give estimates of a  and ft. For each 

of these two solutions (the solution for which / =  0  and the solution for which u =  1 ) 

the fitted kurtosis is calculated (assuming the solutions are valid). The solution with the 

smallest squared difference in the fitted kurtosis and the kurtosis calculated using Equation 

8  (this squared difference will be referred to as the squared kurtosis difference) is used as 

the initial solution. A grid search (Thisted, 1988, page 200) is then used for values of / > 0 

to search for a solution with a smaller squared kurtosis difference than the initial solution. 

For almost all the situations that have been encountered in practice either the solution

Four-parameter Beta Compound Binomial
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for which I — 0  or the solution for which u =  1 produces the smallest squared kurtosis 

difference. There are examples, though, in which a solution with I > 0 and u <  1 can 

give a smaller squared kurtosis difference than either the solution for which / =  0  or the 

solution for which u =  1 .

Estimation of Observed Score Distribution

This section discusses estimation of the observed score distribution under the four- 

parameter beta compound binomial model assuming a value of k has been determined and 

estimates of a, (3, /, and u have been calculated. The derivations presented in this section 

closely follow those presented in Lord (1964) with some added details. These derivations 

and the resulting formula for computing the observed score probabilities are not presented 

in Lord (1965).

Case 1 : k =  0 . The case is first considered in which the conditional error distribution 

[Pr(-Y =  i | r, &)] in Equation 3 is binomial (k =  0). In this case the observed score 

distribution is

Four-parameter Beta Compound Binomial

Pr{X  =  i) =  j '  ( ^ ) r ‘ ( 1 - r ) * - 4
( —/ +  r ) “ 1 (it — t)P 1

_  l\a+0-1(u -  /)
dr ( 2 5 )

Let t* be defined as in Equation 22 so that r =  (u — l)r* +  / and dr =  (u — l)dr*. Making 

the change of variable from r to t* in Equation 25 gives 

rK

Pr(*  = l) = [  [(u -  0 r * + ']"[1 “  “  0  r * “  ^ K~i

[ ( u - / ) r * ] “  1  [ ( u - / ) ( l - r * ) ] / 9  1 1

(u -  /)“ +/*-! (it — I) dr* . ( 2 6 )

Simplifying the expression of the true score density times u — / in Equation 26 and substi­

tuting ( 1  — u) +  (u — I) ( 1  — t*) for 1 — (u — I) r* — I gives 

(?)Pr(.Y =  i) =
B(a,  /?)

f  [(u -  1)t* +  /]'[(]. -  u) +  (u -  0 ( 1  - t * ) ] *
Jo

■ ( r ' y - 1 (I -  T ' f - 1 dr’ . (27)

9
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Using the binomial theorem gives the following two equations

[(u -  /) r* +  l] 1 =  ^  ^  [(w -  /) r 1*]r ll~r , (28)
r=0

and
K - i

[( 1 — u) +  (u — /) (1 — r*)] K~' =  E  ( A . *) K" -  0  (1 -  O ]  ‘  (1 -  ■ (29)
9 =  0 '  '

Substituting Equations 28 and 29 into Equation 27 gives

• ( A “  *) [(u - 0 ( 1 -  o r  (1 -  u)K-i~‘ [(r*)0- 1 (1 -  r*)'J" 1] dr*

■  S S C) (*<~ ’) '>**’
• j  ( T , ) r + Q _ 1  (1 -  r * ) ^ " 1 d r '  . (30)

Jo

Using the definition of the Beta function, the integral in Equation 30 can be written as 

f  (1  -  r ' y + S - l  dT* =  S (Q +  r j  +  s ) =  r (a  +  r)T{f) +  a)
Jo r(a + /3 + r + 5)

Consequently, Equation 30 can be written as

p =  n  =  V  V  r (a +  P) r ( o  +  r)r(/? +  s)
1 ; f r i f r i  r(a)r(/3) r(« + /3 + r + ,)

f )  0  0 7  0 r ~r(1 -  u)K~ " s{u - iy+r  ■ (31)

(32)

The gamma functions on the right side of Equation 31 can be written as

T(a +  /3) T(a +  r )T(p +  s) (a ) r (/3)s
r ( a )  r(/3) r (a  +  0 +  r +  3 ) (a +  0 ) r+s ’

where (x)j  =  x(x  +  1 ) . . .  (z +  j  — 1 ) and (x)0 =  1. Substituting Equation 32 in Equation 

31 gives

-  •>- (K) i |  (:) ( * ,-  •) ™
r=0 3=0

10



Let r' =  i — r and s' =  K  — i — s. Changing the index of the first summation in 

Equation 33 from r to r' and the index of the second summation from s to s' produces

fK

Four-parameter Beta Compound Binomial

Pr(X  =  i) =
r' =U s' —

i K - i

=  ( - - o A' E E
r '=  0 s' =  0

K  — i

(® )»  — r' ($') K  — i — s1 I
T

1----------------------------------------------------------------------------------------------------------------------

11—
1

1

( a  +  i 3 ) x - 3> - r> u — I u — I
(34)

The terms in Equation 34 involving combinations can be written as

K\ t! ( K  -  i)\KX K - i
i\ (A  — i)! r'\ (i — r')! s'! (A” — i — s')!

A ! _________ 1_________
r'\ s1! (e — r')! (AT — i — 5')!
(I\ — r ')! (AT — 5 ')! K\ A! 1

A ! r'! ( K  -  r')! 5 '! (A  -  5 ')! (i -  r')! ( K  -  1 -  s')\
( K - r ’ y . ( K - s ’ )\ fK\ (I<\ 1

A ! \r ' /  \sf J (i — r')l ( A  — i — s')!

Substituting Equation 35 into 34 and rearranging the terms gives

i K  — i

P r (x  =  i) =  («! -  0 *  E  E

1
\I

1______

1 1 *

(i — r')! IT 1

1__
__

__
__

__
__

__
__

r '= 0  a' =  0

(Â  — r')! (A  — 5 ')! 1 — u 
u — I

(36)
K \  ( a  +  ( 3 ) K - r ' - a

Lord (1964) suggests using Equation 36 to calculate the observed score distribution when 

k — 0. Equation 36 can be calculated as the diagonal terms of a matrix product of five 

( K  +  1) x (AT +  1) matrices (Mi,  M 2 , . . .  , M 5) with the matrices based on the bracketed 

terms in Equation 36. The lower triangular matrix M\ is given by
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T h e  d i a g o n a l  m a t r i x  M 2 i s  g i v e n  b y

/ ( o ) ( ^ ) °
0 0

0 0

II

£

0 0

\  0 0 0

T h e  m a t r i x  M 3 i s g i v e n  b y

/  K \ K \ K \ { K ~ 2 ) \

K ' . ( q + 0 ) k a + p ) x - \  
( K - l ) l ( K - 1 ) !

K \ ( q  +  0 ) k - 7  
( A '  — 1 ) ! (  A '  — 2 )

A ' ! ( » + / 3 ) j f  _  1 A ' ! ( a + £ ) j < _ 2 K \ ( o  +  P ) k - 3

11£

2 \K\ 2!  ( /C  — )! to

..
1 to

K \ ( a + 0 h
W K \

A ' K o r + ^ h
0>AT!

^  K \ ( a +  0 ) q

K \ ( < * + 0 h
V . ( K - \ ) \  

K \ ( a + { 3 )  0 

0

A  ! ( t * + / ? ) o  

0 
0

T h e  d i a g o n a l  m a t r i x  M 4 i s  g i v e n  b y

/ ( £ ) ( £ t ) ° 0 0
0 ( f K i s r ) 1 0

II 0 0

\  0 0 0

The matrix M 5 is given by

M , =

/ i&K
1 K\

( P ) k - I  ( 0 ) k - 2
(A' — 1)! (A' —2)!

V

( 0 ) k - i ( P ) k - 3
( K - l ) \ ( K - 2 ) l ( K - z y .

Wh (Al
1!

0 ? ) o
0 !

(0)o

W i
1! 0

W o .  
f\ 1 0 0

0 

0 

0

KW \ 
A ' ! ( « + / ? ) 0 \

0

0 

0

0 )

0 \
0

0

(£)(b )K)

(0)0 \ 
0! '
0

0 

0

0 )

The elements of each of the matrices M, can be computed by first calculating an easily 

computed initial element and computing the other elements as a simple factor times an 

adjacent element. In addition, not all elements of the matrices need to be separately 

calculated. For example, for matrix M\ only the first column needs to be computed

12



because the numbers in the other columns are a subset of the numbers in the first column. 

The fitted probability for raw score z is the (z +  l)-th diagonal element of the matrix 

product M 1M 2 M 3 M 4 M 5 times (it — l)K.

Case 2 : k > O.When k > 0, substituting the conditional error distribution given in Equa­

tion 3 into Equation 1 gives the observed score distribution as

Pr(Jf =  i) — po(0 — J  k t (  1 — t )  [ p ( z  | K  — 2, r) — 2p(i — 1 | I\ — 2, r)

+p(i  -  2 | K  -  2, r)] g(r \ a , /?, u)dr , (37)

where po(i) is the probability given in Equation 25 of raw score i when the conditional 

error distribution is binomial, p(i | n, r )  is a binomial probability as defined in Equation 

3, and g(r | a, /?, I, u) is the four-parameter beta true score distribution given by Equation 

2 . The terms r ( l  — r)p( j  | K  — 2 , r)  in Equation 37 can be written as

Four-parameter Beta Compound Binomial

r(l -  r)p(j  | K  -  2,r) =  ^  rJ+1(l -  r)K 1 3

( K  2)! + j ^  K - i - j
j\(Ii — 2 — j)! V 1 

= ( j +  ! ) ( * • - l - j )  K\ ^ +1(1 _
K ( K - l )  (j +  l)!(/v -  1 — j)!

-  K( K — 1) P0' +  1 | A > )  08)

Substituting the result in Equation 38 into 37 produces

Pr(X =  i) = p 0(i) -  ^  J{ [(* +  1) ( A" “  1 ”  ®)p(* +  1 I K >r )

~2i(I\ — i)p(i  | A', r) -J- (z — 1) (A" +  1 — i)p(i  — 1 | AT, r)] g(r \ a , /?, /, it) dr. (39)

Define Po(i ) as

• PoU) = j { K - j ) P o ( j ) -  (40)

Using Equation 40, Equation 39 can be written as

Pr(.Y =  i ) =  p0(i) -  -  * _  [pj(i -  1) -  2p j(i)  +  pj(t" +  1)] . (41)

13



The procedure for calculating the observed score distribution for a value of k >  0, 

say ko, is to first calculate the observed score distribution assuming k =  0 using Equation 

36 (producing po(0>* — 0, . . .  , K )  and then to use Equation 41 to calculate the observed 

score distribution for k =  ko.

When k > 0 some of the probabilities computed using Equation 41 may be negative. 

When negative values are computed they are usually very small in magnitude.

Classification Consistency Indexes

In this section the results presented previously will be used to obtain formulas for 

computing the classification consistency indexes described by Hanson and Brennan (1990) 

assuming the four-parameter beta compound binomial model holds for the test score in 

question. The two types of classification consistency indexes discussed by Hanson and 

Brennan (1990) are considered separately. First, the calculation of the probability of a 

consistent decision (coefficient p) and coefficient k is discussed. Next, the calculation of 

the false negative and false positive error rates is discussed.

Probability of a Consistent Decision and Coefficient Kappa

The probability of a consistent decision (coefficient p ) is defined in terms of the bivari- 

ate distribution of scores on two independent administrations of a test. Assuming the test 

score random variables on two independent administrations of a test (denoted Xi  and X 2) 

follow the four-parameter beta compound binomial model the probability of a randomly 

chosen examinee obtaining raw scores i and j  on the two test administrations is (using the 

notation of Equation 1)

Pr(A^ =  * , X 2 =  j )  =  ? r (Xi  — i | r, k) Pr(AT2 - j  | r, k) g(r \ a,/3J,u)dr . (42)

The classification consistency index p is defined as

x o — l x 0 — 1 K K
p = Y ^  E  Pr( * i = i > * 2 = j ) +  E  ' Z , p < x 1 = i , x 2 = j ) ,  (43)

!~ 0  j  =  0 ! —IQ j  — X0

Four-parameter Beta Compound Binomial
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where xq is the raw score cut point. 

Coefficient k is defined as
_  P - P c  , 4Â

K =  — c ' (44)

where pc is the probability of consistent classification by chance given by 
x q —1 x o —1 K  K

p«=EE P t (x ' =  *)Pr(x2 = j) + E E Pr(x> = i '>p r(x ? = j ) ■
2 =  0 j = 0 i=x  o j = x o

The bivariate distribution of scores on two independent administrations of a test given 

by Equation 42 can be computed based on the conditional error and true score distributions 

estimated from a single test administration. Thus, the first step in computing the bivariate 

distribution given in Equation 42 is to estimate the parameters of the four-parameter beta 

true score distribution using data from a single test administration as previously described. 

After the parameters of the true score distribution have been estimated, the bivariate 

distribution given in Equation 42 can be computed.

Case 1: k =  0. For computing the integral in Equation 42 the case is first considered in 

which the conditional error distributions [Pr(X\ =  i | r, k) and P r ( X 2 =  j  | r, k)] are 

binomial (k — 0). In this case Equation 42 can be written as

Pr(X] =  i , X 2 =  j )  =  J  Pr(Xj — i \ r, k =  0) 'Pv(X2 =  j  \ r, k =  0) g(r \ a, ft, /, u) dr

=  j “ Tj (l -  t ) * - '  ( J )  t> (1 -  r)K~i g(r \ a ,0 ,l ,u)dr

= /  CO C O T>+1 c1 ~ 1 aiP’ i’u)dT

The integral on the last line of Equation 45 is the probability of a test score of i+ j  on a test 

with 2K  items where the test score distribution is assumed to follow the four-parameter 

beta binomial model with the same true score distribution as the test scores X\ and X 2. 

This integral can be calculated using Equation 36 (using the estimated parameters of the 

true score distribution computed from a single test administration).

15



Case 2: k > 0. When k > 0, substituting the conditional error distribution given in Equa­

tion 3 into Equation 42 gives the bivariate distribution of scores on two independent 

administrations of a test as

Pr(X! = i , X 2 = j )  = J ' { p ( i  I K , t)

~k  t(1 — t )  [p(i | K  — 2, r) — 2p(i — 1 | I\ — 2, r) 4- p(i — 2 | I\ — 2, r)] j  

• [p ( j  I K , r ) - k  r( 1 -  r ) [p(j | K  -  2, r) -  2p(j -  1 | 7\ -  2, r)  +  p (j -  2 | A" -  2, r)] }

-^(r | a,/3J,u)dr,  (46)

where p(i | n, r) is a binomial probability as defined in Equation 3. Using the equality

t(1  -  r )p( j  | K  -  2 ,t )  =  ^  _  i)  ^  +  1 I K ’ t

from Equation 38 and expanding the terms in Equation 46 gives

PrC*! =  i , X 2 =  j )  =  j f  jp(i | A » p O  | A »

f- ( i  +  \) {K  -  i -  l )p( i  +  1 | K , r ) p ( j  \ K , t)

Four-parameter Beta Compound Binomial

K(I< -  1)

~(i  -  1) ( K  -  i +  1 )p(i -  1 | K , r ) p ( j  | I\,r) 

- ( j  +  1) ( K  -  j  -  l )p( i  | AT, r ) p( j  +  1 | A", r) 

- ( i  -  1)(AT -  j  +  l)p(* I K i t) pU ~  1 I K : r ) 

+2 [(AT -  i) i +  (A" -  j ) j ]  p(i | K,  r) p(j | AT, r)

p
'(* +  !)  ( j +  1) (AT - 7 - 1 )  ( K  -  j  -  l )p( j  +  1 I A', t ) p(j +  1 I A', r)K 2( K  — l ) 2

+ (2* “  1) 0  +  1) “  « +  1) (A" -  j  -  l )p( i  -  1 I AT, r)  p (j 1 I AT, r)

+(* +  ! )  (i ~ ! )  (■K’ “  * ~ 1) ( K  ~ j  +  l)p(* +  1 I -K, 0  P(i “  1 I r)

+(* “  1) U ~  x) (K  -  * +  1) ( R  ~ j  +  l)p(* “  1 I A", r ) p ( j  -  1 | K, r)

- 2  i (j +  1) ( K  -  i) (I\ -  j  -  1 )p(i  | A", r )p ( j  +  1 | A’ . r)

—2i (i -  1) (AT -  z) (J\ -  j  +  l)p(z I AT, r )p( j  -  1 | K, r)
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Four-parameter Beta Compound Binomial 

- 2  (i +  l ) j  (I\ -  i -  1) (I\ - j ) p ( i  -+ 1 | K, r )p ( j  | I\, t)

- 2  (i -  1 ) j  ( K  - i  +  1 ) ( K  -  j ) p ( i  -  1 | K , r ) p ( j  | K , r )

+4 i j  (I\ -  i) (IC -  j  ) p(i | A , r )p( j  | K,  r) X g(r | a, /3, /, u) dr , (47)

Using Equation 45, the integral in Equation 47 can be evaluated to give

Pr(Xi =  i , X 2 = j )  = p o ( i , j )  
k f k

K ( K  -  1) { K ( K - l )

+ (i -  1) ( K  -  2 + 1) 

k

[(* -  !) ( ;  -  1)(/1T -  i +  1 ) ( K  -  j  +  1)] po(> ~  1 , j ~  1) 

- 2k
j (K  — j) — 1 Po(« -  1, j){ K - \ ) K

[(* “  ! ) 0  + ! ) ( ^  “  » + ! ) ( #  ~ j  ~  !)] Po(« -  1,J +  1) 

—2k
K ( K  -  1)

+{j  - l ) ( K - j  +  1) -  1 Po(i,j -  1).(A '- l )A '

+  { 2 [(A' -  i) i +  ( K  -  j ) j ]  +  ^  [Hj ( K  ~ i ) ( K - j ) ]  }  po(i, j )

- 2 k
-  i (A  — i) — 1 Po(hJ +  1)

* K ( K  -  1) ^  +  ^  ^  ~~ 1'> ~ 1 ~  1'1 ~  ̂ +  ^  P°^  +  1,J* ~ ^

+ (i +  1) (A" — z — 1) - 2 f c
- j ( A - j ) - l Po(i +  l 5j )L ( A - 1 ) A

+  A^(A^~ 1 )^ +  ^  ^  +  ^  ^  “  * ~~ ! ) (A" ~~ J ~~ +  1,7 +  X) }  5 ^

where po(i , j )  is the probability of scores i and j  on two independent administrations of 

the test when the conditional error distribution is binomial (given by Equation 45).

When k >  0 Equation 45 is used to first calculate the values of po(i, j ) ,  i , j  =  0 , . . . ,  K  

which are used in Equation 48 to calculate the bivariate distribution of scores on two 

independent administrations of the test from which coefficient p and coefficient k can be 

computed.
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False Positive and False Negative Error Rates

The false positive error rate is given by 

K /-To

T  /  P r(X  =  i \r , k )  g{r | cv, /?, /, u) dr , (49)
i=*o Jl

where Tq is the true score cutoff. The false negative error rate is given by

Case 1: k =  0. The case is first considered in which the conditional error distribution is

(50)

binomial (k =  0). Based on a series of steps analogous to those which produced Equation 

30 from Equation 25 each term in the sum given in Equation 49 can be written as

r = 0  5 = 0

where r* is defined as in Equation 22 and rj1 =  (to — l)/(u — I). Using the definition of the 

incomplete beta function [Ja;(a,6)]

Equation 51 can be written as (analogous to Equation 31)

•*r0-(a  +  r,/J +  i ) ( * ) ( ‘ )  ( K s * ) /■ ' - ' ( I - « ) * - ' - \ u - i y + \  (52)K  —  1 —  3

In a manner analogous to that by which Equation 36 was obtained from Equation 31, 

Equation 52 can be rewritten as



K) (—r' )  \ u — I

Four-parameter Beta Compound Binomial 

( I < - r f) l ( K  -  s')!
Ir~{a +  i -  r ',0  +  K  — i — s')

f K \ f ' ~ u Y  1 { f t ) K - i - s '

c e 1

---------------------------------------------------------------------------------------------------------------------------------------------------1

1■ «1

i

(53)

Equation 53 can be used to calculate the terms in the sum of Equation 49 to give the false 

positive rate when k =  0.

Case 2: k >  0. When k >  0 an adjustment formula analogous to Equation 41 can be used. 

If Z{ is the value of the integral in Equation 53 when k =  0 then the value of the integral 

when k > 0 is

k
(:i -  1) (I\ -  i +  1) Zi-i -  2i(K  — i) Z{ +  (i +  1) (I< -  i -  1) Zi+i ■ (54)K( K -  1) L'

The false negative error rate can be calculated using the values given by Equation 53 

(or when k > 0 Equation 54) since

J  Pr(X  =  i | r, k) g(r  | a, /?, /, u) dr =

/ Pr(X =  i | r,k)  g{r \ a, ft, /, u) dr +  I Pr(X  =  i \ r, k) g(r \ a, ft, /, u) dr , 
Jl J  To

SO that

[ U  [ T 0

I Pr(X  =  i | r, k) g{r | cv, ft, /, u) dr =  1 — I Pr(X  =  i | r, k) g(r  | a, ft, I, u) dr . (55)
J t0 Jl

Values of the false positive and false negative error rates are computed based on the 

values from Equation 53 (or Equation 54 when k > 0) and 55, respectively.

Computer Programs

A set of functions written in the C language implementing the procedures presented 

in this paper for producing method of moments estimates of the true score distribution 

and observed score distribution under the four-parameter beta compound binomial model 

and computing classification consistency indexes are available from the author. These 

functions can be compiled on any computer with an ANSI C compiler.
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Macintosh programs which use these routines are also available from the author. One 

program calculates the method of moments estimates of the four-parameter beta compound 

binomial model, displays the results in a text window and produces graphic displays of the 

fitted distributions. This program also computes fitted raw score distributions based on a 

log-linear model (Holland and Thayer, 1987). Another Macintosh program computes and 

displays the classification consistency indexes described for three models: the beta bino­

mial, the four-parameter beta binomial, and the four-parameter beta compound binomial. 

This program also displays the fitted models graphically.

Four-parameter Beta Compound Binomial
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