
University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

2011

Techniques for Enhancing Reliability in VLSI
Circuits
Ransford Morel Hyman Jr
University of South Florida, rhyman@cse.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons, and the Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Hyman Jr, Ransford Morel, "Techniques for Enhancing Reliability in VLSI Circuits" (2011). Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/3163

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F3163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F3163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F3163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F3163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F3163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F3163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F3163&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.usf.edu%2Fetd%2F3163&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

Techniques for Enhancing Reliability in VLSI Circuits

by

Ransford Hyman Jr.

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
Department of Computer Science and Engineering

College of Engineering
University of South Florida

Major Professor: Nagarajan Ranganathan, Ph.D.
Srinivas Katkoori, Ph.D.

Hao Zheng, Ph.D.
Michael Weng, Ph.D.
Brendan Nagle, Ph.D.

Date of Approval:
October 31, 2011

Keywords: Soft Errors, Power, Variations, Architecture, Clustering

Copyright c© 2011, Ransford Hyman Jr.

DEDICATION

To my family: Parents, Betty and the late Ransford Sr., and sister, Lauranda

ACKNOWLEDGEMENTS

I would like to acknowledge the ultimate creator and supremebeing. To my major

adviser Dr. Ranganathan for his guidance, from both a schooland life’s perspective. To

my committee members Dr. Katkoori, Dr. Zheng, Dr. Weng, Dr. Brendan Nagle for their

assistance throughout my Ph.D. process. To my loving parents Betty and Ransford Sr. I am

forever grateful to you for raising me to be the man that I am today. To my sister Lauranda

and her husband Thaddius along with their family. To my girlfriend Shakira and Denzel for

always giving me encouragement and inspiration to continue. To my mentor Mr. Batson,

Dr. Labrador and Dr. Perez, thank you for introducing me to USF. To Dr. Obeng, Mr.

Douglass, Dr. Thompson, and the late Dr. Nicholson from BCU.To Dr. Morehouse, the

FEF McKnight Doctoral Fellowship Program, National Science Foundation NSF S-STEM

DUE #0807023, the NSF-FGLSAMP Bridge to the Doctorate HRD #021675 , the brothers

of the Omega Psi Phi Fraternity Inc. I would also like to ThankDeaane Tran Vo and Thomas

Bingel along with the East-West Innovation Corporation forallowing me to be a part of

their innovative projects. To my family for their words of encouragement. To my research

colleagues Koustav, Soumyaroop, Himanshu, Mali, Upuvan, Michael, Yue, Saurabh, Matt,

Alfredo, Quenton, Al-Aakhir, Tony, Dorielle, Natasha, Frank, Eric, Brandon, Justin, Luis.

To my dearest friends and family Lebron, John, Aidan, James,Renaldo, Tron, Stephen,

Brian, Torvis, Rien, D’Jara, Sarah, Lamar, Fred, Abram, Markee, Alvin and Yvette.

TABLE OF CONTENTS

LIST OF TABLES iii

LIST OF FIGURES iv

ABSTRACT vii

CHAPTER 1 INTRODUCTION 1
1.1 Motivation 2
1.2 Contributions of This Work 3
1.3 Outline of Dissertation 5

CHAPTER 2 BACKGROUND 6
2.1 Transistor Theory 6
2.2 Soft Errors 7
2.3 Pipeline Design 9
2.4 Processor Core Model 10
2.5 Clocking in Digital Logic Circuits 12
2.6 Power Definitions in CMOS Designs 13
2.7 Power Supply Noise in VLSI Designs 14
2.8 Variations 15
2.9 Related Work on Soft Errors 16
2.10 Related Work on Peak Power 19
2.11 Related Work on Variations 21

CHAPTER 3 REDUNDANCY MINING TECHNIQUES FOR SOFT ERROR
REDUCTION IN MULTI-CORE PROCESSORS 25

3.1 Clustered Multi-Core Architecture for Error Detection 26
3.2 Mining Temporal Redundancy 28

3.2.1 Compiler Directed Slack Computation 29
3.2.2 Dynamic Slack Implementation 31

3.3 Mining Data Value Redundancy 33
3.4 Information Redundancy Based Detection 35
3.5 Proposed Multi-Core Architecture 36
3.6 Experimental Setup 39

i

3.7 Simulation Results 40

CHAPTER 4 PEAK POWER MINIMIZATION USING PATH CLUSTERING 51
4.1 Introduction 51
4.2 Clock Control Strategy 54
4.3 Proposed Peak Power Reduction Technique 58

4.3.1 Graph Generation and Timing Analysis 59
4.3.2 Path Clustering 61
4.3.3 Clustering Algorithm 62

4.4 Experimental Setup 66
4.5 Simulation Results 69

CHAPTER 5 A VARIATION-TOLERANT DESIGN USING DYNAMIC CLOCK
STRETCHING 82

5.1 Introduction 82
5.2 Proposed Methodology 83
5.3 Experimental Evaluation 86
5.4 Simulation Results 89

5.4.1 Simulation Using 45nm Technology Library 93

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 95

LIST OF REFERENCES 98

ABOUT THE AUTHOR End Page

ii

LIST OF TABLES

Table 3.1 Processor Configurations 39

Table 3.2 Comparison with Related Works 45

Table 4.1 Peak Power Reduction (PPR) Percentage in Benchmark Set 66

Table 4.2 Benchmarks’ Functionality, Clock Period and Execution Time 70

Table 4.3 Average Power Overhead Analysis 72

Table 4.4 Area Overhead Analysis 74

Table 4.5 Percentage of RMS Current Reduction in Benchmark Set 81

Table 5.1 Description of Symbols in Simulation Snapshot 87

Table 5.2 Timing Yield Results on Benchmark Circuits at 65nm 91

Table 5.3 Timing Yield Results on Benchmark Circuits under 45nm 92

iii

LIST OF FIGURES

Figure 1.1 List of Research Contributions 4

Figure 2.1 Two Dimensional View of NMOS Transistor 7

Figure 2.2 Effects of an High-Energy Particle Strike 8

Figure 2.3 Pipeline Architecture Design 10

Figure 2.4 Single Core Architecture Model 11

Figure 2.5 Quad-Core Architecture Model 12

Figure 2.6 Power Supply Noise Due to Inductive Coupling 15

Figure 2.7 Taxonomy of Soft Error Research 17

Figure 2.8 Taxonomy on Peak Power Research 18

Figure 2.9 Taxonomy of Research on Variations 22

Figure 3.1 Hardware Architecture for Error Detection in a Clustered Core Pro-
cessor 27

Figure 3.2 Instruction Arbiter for Temporal Redundancy Based Detection 30

Figure 3.3 Slack Predictor Hardware for Dynamic Temporal Redundancy Based
Detection 32

Figure 3.4 Error Detection Using Small Values 34

Figure 3.5 Error Detection Using Residue Code 36

Figure 3.6 Static Slack Breakdown 41

Figure 3.7 Results From Static Temporal Redundancy Technique for SPLASH-
FFT and SPLASH-LU 41

Figure 3.8 Results From Static Temporal Redundancy Technique for SPLASH-
Mp3d, SPLASH-Radix, and SPLASH-Water 42

iv

Figure 3.9 Results From Static Temporal Redundancy Technique for SPLASH-
Quicksort and SPLASH-SOR 43

Figure 3.10 Results From Dynamic Temporal Redundancy Technique for SPLASH-
FFT, SPLASH-LU, and SPLASH-Mp3d 47

Figure 3.11 Results From Dynamic Temporal Redundancy Technique for SPLASH-
Radix, SPLASH-Water, and SPLASH-Quicksort 48

Figure 3.12 Results From Dynamic Temporal Redundancy Technique for SPLASH-
SOR 49

Figure 3.13 Dynamic Prediction Technique 49

Figure 3.14 Power Results 50

Figure 3.15 Performance Overhead for the Proposed Schemes 50

Figure 4.1 Traditional Clocking of Combinational Logic Blocks 55

Figure 4.2 Current Profile for Traditional Clocking 56

Figure 4.3 Phase Shifted Multi-Clocking of Combinational Logic Blocks 58

Figure 4.4 Traditional Clocking and Current Profile 59

Figure 4.5 Proposed Multi-Phase Clocking and Current Profile 59

Figure 4.6 Process Flow for Power Analysis 67

Figure 4.7 Snapshot of Propagation Delay Characteristics of the Nangate Buffer
Cell [82] 73

Figure 4.8 Peak Power and Average Power Values for ISCAS 85 Benchmarks for
c432, c499, and c880 76

Figure 4.9 Peak Power and Average Power Values for ISCAS 85 Benchmarks for
c1355, c1908, and c2670 77

Figure 4.10 Peak Power and Average Power Values for ISCAS 85 Benchmarks for
c3540, c5315, and fpadd 78

Figure 4.11 Peak Power and Average Power Values for ISCAS 85 Benchmarks for
divunit, oc8051alu, and parallelfind 79

Figure 4.12 Peak Power and Average Power Values for ISCAS 85 Benchmarks for
c6288, c7552, and mul32 80

v

Figure 5.1 Dynamic Clock Stretching for Variation Tolerance 84

Figure 5.2 Illustration of Spatial Correlation 85

Figure 5.3 Consecutive Critical Paths Implementation 86

Figure 5.4 Simulation Snapshot of Example Circuit: No Variations; No Clock
Stretching 87

Figure 5.5 Simulation Snapshot of Example Circuit: With Variations; No Clock
Stretching 88

Figure 5.6 Simulation Snapshot of Example Circuit: No Variations; With Clock
Stretching 88

Figure 5.7 Simulation Snapshot of Example Circuit: With Variations; With Clock
Stretching 89

Figure 5.8 Simulation Flow for Timing Yield Estimation 90

Figure 5.9 Clock Stretch Range Vs Timing Yield [37] 91

vi

ABSTRACT

Reliability is an important issue in very large scale integration(VLSI) circuits. In the

absence of a focus on reliability in the design process, a circuit’s functionality can be com-

promised. Since chips are fabricated in bulk, if reliability issues are diagnosed during the

manufacturing of the design, the faulty chips must be tossed, which reduces product yield

and increases cost. Being aware of this situation, chip designers attempt to resolve as many

issues dealing with reliability on the front-end of the design phase (architecture or system-

level modeling) to minimize the cost of errors in the design which increases as the design

phase matures. Chip designers have been known to allocate a large amount of resources to

reliability of a chip to maintain confidence in their productas well as to reduce the cost due

to errors found in the design. The reliability of a design is often degraded by various causes

ranging from soft errors, electro-migration, hot carrier injection, negative bias temperature

instability (NBTI), crosstalk, power supply noise and variations in the physical design.

Given the continuing scaling down of circuit designs achievable by the advancement

in technology, the issues pertaining to reliability have a greater impact within the design.

Given this problem along with the demand for high-performance designs, chip designers

are faced with objective to design reliable circuits, that are high performance and energy-

efficient. This is especially important given the huge growth in mobile battery-operated

electronic devices in the market. In prior research, there has been significant contributions

to increasing the reliability of VLSI designs, however suchtechniques are often computa-

tionally expensive or power intensive.

vii

In this dissertation, we develop a set of new techniques to generate reliable designs by

minimizing soft error, peak power and variation effects. Several techniques at the architec-

tural level to detect soft errors with minimal performance overhead, that make use of data,

information, temporal and spatial redundancy are proposed. The techniques are designed

in such a way that much of their latency overhead can be hiddenby the latency of other

functional operations. It is shown that the proposed methodologies can be implemented

with negligible or minimal performance overhead hidden by critical path operations in the

datapath. In designs with large peak power values, high current spikes cause noise within

the power supply creating timing issues in the circuit whichaffect its functionality. A path

clustering algorithm is proposed which attempts to normalize the current draw in the circuit

over the circuit’s clock period by delaying the start times of certain paths. By reducing the

number of paths starting at a time instance, we reduce the amount of current drawn from

the power supply is reduced. Experimental results indicatea reduction of up to 72% in

peak power values when tested on the ISCAS ’85 and OpenCores benchmarks. Variations

in VLSI designs come from process, voltage supply, and Temperature (PVT). These vari-

ations in the design cause non-ideal behavior at random internal nodes which impacts the

timing of the design. A variation aware circuit level designmethodology is presented in

this dissertation in which the architecture dynamically stretches the clock when the effect

of an variation effects are observed within the circuit during computations. While previous

research efforts found are directed towards reducing variation effects, this technique offers

an alternative approach to adapt dynamically to variation effects. The design technique is

shown to increase in timing yield on ITC ’99 benchmark circuits by an average of 41% with

negligible area overhead.

viii

CHAPTER 1

INTRODUCTION

Reliability is a important issue in digital integrated circuits. Semiconductor corpora-

tions employ engineers to verify and validate the reliability of the design at all levels of

the design phase. According to [51], seventy percent of the efforts in the production of a

design is dedicated to verifying the design’s functionality. Reliability engineers focus on

both correct functionality and the lifetime of the circuit.The lifetime of the circuit can be

hindered by issues such as hot carrier injection, electro-migration, negative bias tempera-

ture instability, and electrostatic discharge. Functionality on the other hand can be affected

by soft errors, power supply noise, and variations.

The trends in technology scaling have led to an exponential growth in the number of on-

chip transistors and significant reductions in the voltage levels of a chip. Due to technology

scaling, with the increase in chip densities and clock frequencies, the demand for the design

of low power integrated circuits has increased. This trend of increasing chip density and

clock frequency has made reliability a major issue for the designers mainly because of

the high on-chip electric fields [71, 75]. Several factors such as the demand of portable

systems, thermal considerations and environmental concerns have further driven the area

of low power design [71]. The power-performance trade-off has only been exacerbated

with the inception of parameter variations in nanometer technology. Variation parameters

comprise of process deviation due to doping concentration,temperature fluctuations, power

supply voltage variations and noise due to coupling.

1

Some major issues in the reliability of a circuit are keepingthe soft error rate (SER)

low, minimizing noise on the power supply, and timing the circuit such that it is variation

tolerant. A majority of transient faults in modern processors is due to radiation induced

soft errors. Soft errors occur when the energetic neutrons coming from space or the alpha

particles arising out of packaging materials hit the transistors. Power supply noise manifests

from the large instantaneous current demand by logic units.This instantaneous demand

causes an IR drop within the power supply and increases the delay at internal nodes which

affects timing of the design. Variations caused by process,voltage supply, and temperature

can cause frequency and power dissipated to vary from the specified target and hence can

result in parametric yield loss.

1.1 Motivation

Soft errors have become a critical issue in nano-scale VLSI circuits. It has been shown

that the growth of the soft error rate(SER) increases as the technology size shrinks. The

authors in [70] state that the SER is predicted to increase bynine orders of magnitude from

1992 to 2011. In earlier technologies, the effects of soft errors in combinational circuits

were too minute to have an effect. As the scaling of transistors progressed, the possibility

of soft errors has increased. Due to the power wall and the demand for high performance,

the era of multi-core designs was born. Multi-core processors are composed of a number of

small processing cores which allow higher throughput through parallelism. Efficient solu-

tions focused on today’s architecture are needed. Solutions have been proposed to mitigate

soft errors in processors but some these techniques either require a lot of resources or are

power intensive. The problem of implementing detection techniques with low overhead is

still open. Solutions that are energy efficient that can detect soft errors with minimal over-

head will be of significant benefit. As the demand for high performance designs continues

2

to grow and the growth in the smartphone and tablet market, power efficient solutions are

needed to prolong the battery life in these devices. There isalso a continuous growth in the

cloud computing arena which requires fast and correct communication between millions of

users. In high performance designs, high current demands from the circuit causes power

supply noise known asPower and Ground Bounce. Given high current density, the effects

of electro-migration, hot carrier injection and electric static discharge are possible which

leads to permanent failure of the design. Since the power supply cannot accommodate the

current demand of the design at the time necessary, an increase in delay is seen which has

an effect on the timing of the circuit. To mitigate this high current demand, designers have

allocated more I/O pins to power and ground rails. There havebeen techniques proposed in

research that have approached this problem by taking advantage of the clock skew between

registers [26, 32, 86], however in this work, the peak power reduction is achieved through

path clustering.

As shown in [28], the manufacturing cost increases as the technology scaling decreases.

With demand for high performance, timing of the circuits should be as aggressive as func-

tionally possible. Many designs are timed conservatively which has an effect on perfor-

mance and energy efficiency. Techniques at the layout level have been proposed but are

complex and can be computationally expensive to generate a solution. There have been

techniques that suggest the use of multi-voltage domains but these can be power hungry.

1.2 Contributions of This Work

• A series of techniques are proposed that detect soft errors in combinational design in

multi-core processors. The technique focuses on combinational logic operations in

the pipeline. Soft errors are detected using data value, information-based, temporal

and spatial redundancy. The multi-core architecture is used to help minimize perfor-

3

Figure 1.1. List of Research Contributions

mance overhead in the spatial redundancy. Other techniquestake advantage of the

resources currently available during computation.

• A path clustering algorithm is proposed to minimize peak power values in combina-

tional circuits. The focus of the peak power reduction methodology is geared towards

combinational logic between registers. The objective is tocluster those paths that

possess slack relative to its path delay and the circuit’s critical path delay. By reduc-

ing the number of paths starting at a time instance, we reducethe amount of current

drawn from the power supply is reduced.

• A variation-tolerant technique is proposed based on using dynamic clock stretch-

ing. A variation aware circuit level design methodology is presented in which the

4

architecture dynamically stretches the clock when the effect of an variation effects

are observed within the circuit during computations. A dynamic clocking strategy

is used to provide additional delay to the wire driving the adjacent register circuit if

conflicting values are seen at thecritical interconnect transitionwhich is discussed

later.

1.3 Outline of Dissertation

In Chapter 2, a discussion on background information and therelated work pertaining

to this research is given. In Chapter 3, redundancy techniques used to detect soft-errors

in multi-core designs are presented. The proposed architecture and algorithm to detect

soft-errors with low performance overhead is illustrated in this chapter. In Chapter 4, a

discussion is given on peak power minimization techniques through the use of path clus-

tering. Circuit-level techniques are implemented on the combinational logic to minimize

the amount of current drawn from the power supply at a given time instance. In Chapter 5,

an architectural-level solution to dynamically perform clock stretching to mitigate the ef-

fects of process variations is shown. By inserting a small block of logic on all near critical

paths, the timing yield can be increased for performance optimized chips that have affected

by variations. In Chapter 6, conclusions are given for the contributions presented in this

dissertation.

5

CHAPTER 2

BACKGROUND

2.1 Transistor Theory

Transistors are the building blocks of digital circuits. There are two types of transistors

that can be created in Complementary Metal Oxide Semiconductor (CMOS) technology.

These types are called p-type and n-type. N-type silicon is created by doping a silicon

body with large concentrations of phosphorus or arsenic such that the majority carriers

are electrons. P-type silicon can be created by doping silicon with large concentrations

of boron such that the majority carriers are holes (places where an electron can reside).

p-type transistors are designed by doping concentrations of p-type silicon within a n-type

substrate. The reverse method generates an n-type transistor. These two devices are called

Metal-Oxide Semiconducting Field-Effect Transistors (MOSFET). An illustration of a n-

type transistor is shown in Figure 2.1 Lead wires are locatedon the gate, source and drain

terminals. The drain of a n-type transistor is connected to ground and the source terminal

is connected to the output node. As the voltage of the gate increases with respect to the

drain terminal(Vgd), an electric field is created between the gate and the majority carriers

are repelled in the substrate which creates an empty region called the depletion region. As

the gate voltage increases and reaches the threshold voltage,Vt, it starts to attract electrons

under the gate. The voltage between the source and the drain terminals(Vds) creates a lateral

electric field which causes conduction of current to flow fromthe source to the drain. The

6

Figure 2.1. Two Dimensional View of NMOS Transistor

same technique applies for the p-type transistor except thecarriers are holes instead of

electrons.

The transistor in CMOS designs acts as a switch to charge or discharge the load capac-

itance on the output node. This capacitive load is made up of the source and drain terminal

capacitors near the output as well as the wire capacitances driving the connecting gates(or

pins). The CMOS transistor design is a widely chosen method due to that it only consumes

power when it switches states (ideally) and it also has largenoise margins which allows for

well defined logic ’1’ and logic ’0’ states.

2.2 Soft Errors

Soft errors were initially discovered within dynamic memories by the authors in [40].

Soft errors are caused by random collisions from alpha-particles found in traces of uranium,

high energy neutron particles, and low-energy cosmic neutron interactions with Boron

which is a doping element used in IC manufacturing. These particles can be found in

large volumes in extra-terrestrial environments and the packaging materials used to en-

close the chip. When these particles strike the active region of a transistor, a group of free

7

Figure 2.2. Effects of an High-Energy Particle Strike

electron-pairs are formed by the collision of particles. Ifthe excess majority carriers of the

transistor are collected into the drain terminal of the transistor this may offset the voltage

reading on the node (called a single-event transient (SET)), causing an incorrect value at

the output. Once this single-event transient gets stored ona memory element, it becomes

a single-event upset (SEU). The critical charge,Qcrit, defines the amount of charge needed

to cause a disturbance in the state of the output. As our devices continue to shrink, this

critical charge decreases making circuits more susceptible to soft errors. There are multiple

metrics used in research to measure soft errors. The Soft Error Rate(SER) calculates the

number soft errors occurring within a time measurement given the density of high-energy

particles. The architectural vulnerability factor(AVF) measures the probability that a soft

error causes an error in the architectural state. Failures in Time(FIT) defines the number of

failures every109 hours. Mean Time Between Failure (MTBF) or Mean Time to Failure

(MTTF) measures the amount of time between consecutive errors on average.

8

2.3 Pipeline Design

A datapath in computer architecture is the process flow of executing instructions. The

main operations that must be performed in any datapath are instruction fetch, instruction

decode, instruction issue, execute, write back, and commit. These operations may be exe-

cuted in a single-cycle, multi-cycle or pipeline implementation. The pipeline implementa-

tion is the most common approach in today’s architectures due to its increase in information

throughput. A pipeline dataflow is shown in Figure 2.3. Instructions are fetched from the

instruction memory cache in the fetch stage. Instructions represented as 32-bits(known as

a word) or 64-bits(double word) are translated so that the architecture knows what actions

are necessary in the decode stage of the pipeline. The decodestage determines the type of

instruction, the location of the registers for the source operands, and what register to store

the result of the instruction. The issue stage sends the source operands to the functional unit

needed to perform the operation. Source operands are sent tofunctional units as soon as the

source operands are ready(all dependencies have been resolved). Depending on the archi-

tecture, this may be done in order or out of order. Out of orderissue makes better utilization

of the issue slots of the functional units and is commonly used in dynamic scheduling tech-

niques as well as Simultaneous Multi-Threading (SMT). The arithmetic operations that are

necessary are performed in the execute stage. Load and storeinstructions use the execute

stage of the pipeline to calculate the memory addresses. Theresults are placed in a re-

order buffer(ROB) where data dependent operands can be updated in the issue slots of the

functional units. The ROB is used in the case where hardware speculation is implemented.

Hardware speculation is defined as predicting a conditionalbranch to enhance the perfor-

mance of the processor. If the branch has been mis-predicted, the ROB is flushed and the

instructions are re-executed with the correct branch value. Upon correct speculation, the

9

values stored in the ROB are written to their respected destination registers. These actions

are performed in the commit stage of the pipeline.

Figure 2.3. Pipeline Architecture Design

2.4 Processor Core Model

Earlier designs of the processor consisted of a large singlecore model. Within this

model, there was a Central Processing Unit (CPU) and the Cache Memory as illustrated in

Figure 2.4. As shown, These two components reside on the samedie package. Performance

optimizations for processors were implemented by increasing the clock of the processor so

that operations could be executed faster. Architectural-level techniques such as instruction-

level parallelism (ILP) and thread-level parallelism (TLP) were also incorporated to opti-

mize performance from the software-level. Threads are processes that maintain their own

instructions, data and stack such that multiple processes may execute in parallel. Threads

allow for multiple processors to share the execution units of the processor so that multiple

processes are able to progress and complete more efficiently. Processors are designed with

the hardware resources to support a defined amount of threadssimultaneously.

10

Increasing clock speed reached a limit when the power consumption of the chip gener-

ated large amounts of heat dissipation. Large cooling costswere incurred since the lifetime

Figure 2.4. Single Core Architecture Model

and performance of the processor are affected by the temperature. This brought about

a new era of processor designs called multi-core processors. Multi-core processors have

multiple smaller CPU cores on a single die which are interconnected through some shared

cache memory. With multiple CPU cores allowed to perform computations simultaneously,

multi-core designs can achieve high performance at lower clock speeds which reduces the

power consumption and heat dissipation. We illustrate a quad-core architecture design in

Figure 2.5 where each processor core maintains private L1 and L2 cache and the L3 cache

is shared amongst all of the cores. In multi-core designs today, a processor may have up to

eight-cores and each core has the ability to execute at leasttwo hardware threads.

11

Figure 2.5. Quad-Core Architecture Model

2.5 Clocking in Digital Logic Circuits

Clocking is done in digital design to synchronize the combinational logic to assure

that stable signals are read/written to sequential(memory) elements. Timing of a circuit

is defined from the transistor level, where the delay of a nodeis defined by the time to

charge/discharge a capacitance load. A clock is used to notate that at the end of its pe-

riod, all outputs values should have been calculated and stable. Clocking is performed on

sequential devices such as latches and flip-flops. A latch is defined to be a sequential struc-

ture that becomes transparent only when the level of the clock transitions. A flip-flop (also

called a register) on the other hand reads values on the edgesof the clock. Due to these

characteristics, latches are commonly called level-sensitive devices and flip-flops are called

edge-triggered devices. Once these structures are in theirnon-transparent mode, the data

value is stored until a new data value has been read. To ensurecorrectness, sequential de-

12

vices have a setup time and hold time constraint. The setup time notates the time the data

signal must be stable before the clock signal transitions. The hold time defines the time

the data signal must be stable after the clock transition hasoccurred. Violation of these

constraints causes these sequential devices to store unpredictable values which in turn has

an effect on the reliability of the design.

2.6 Power Definitions in CMOS Designs

Power consumption in CMOS designs contributes to both the speed and energy con-

sumption of a circuit. Power dissipation is directly proportional to the power supply voltage

and capacitive load of a particular node. Static power consumption correlates to the power

dissipation when no circuit activity is being done. Static power consumption is contributed

to second-order effects such as sub-threshold leakage and tunneling. Dynamic power is the

largest factor of the total power consumption and directly corresponds to the charging and

discharging of capacitors. When a capacitor is being charged, energy is transferred from

the power supply to the capacitor. The dynamic power consumed is given by

Pdynamic = αCLV 2
ddf (2.1)

whereα equals the activity factor,CL equals the load capacitance andf equals the clock

frequency. This short-circuit power comes from the direct path from the power supply (Vdd)

terminal to ground (Vss) terminal. Short circuit power is dependent on the input andoutput

transition times of the gate. If the input transition time islarger than the output transition

time, the short-circuit power is large due to the long periodof time of a direct path fromVdd

to Vss. The Peak power is the maximum amount of power drawn given anytime instance.

13

2.7 Power Supply Noise in VLSI Designs

Power is supplied to VLSI designs by the power supply unit. The power supply is

connected to a chip design through bonding wires connected to the pads on the die. In

synchronized designs, all the combinational begins on the edge transitions of the clock.

This causes a large instantaneous current demand on the power supply. There are two

sources of noise on the power supply:IR noiseandinductive noise. IR noise is caused by

the resistive parasitics within the interconnect wires causing a voltage drop over the signal.

The farther a gate is away from the power source, the more voltage drop can be seen at its

supply terminal. This lower voltage supply causes a delay inthe charging of the capacitors

which decreases the performance of the design. Inductive noise orL× di
dt

noise is caused by

the inductance within the bonding wires used to connect the power supply to the pins on the

chip. When the chip requests a large instantaneous current demand on the power supply,

this sharp change in current (di
dt

) causes a drop in the supply voltage due to the opposing

voltage created by the inductance. Given that there is also capacitance in the wire, this

creates a resonator. If the transfer of voltage between the inductor and capacitor oscillates

at the resonant frequency, this causes a resonance on the voltage supply. This resonant

behavior can be seen in Figure 2.6 where the voltage supply resonates before returning to

the nominal voltage level. These types of supply noise causes functionality problems due to

the reduction in noise margins as well as performance issuesfrom the delay incurred by the

lower voltage supply. Also the large current draw creates a current spike causing large peak

power values. High current demands not only effect timing, but large current densities can

lead to permanent failure due to electro-migration, hot electron injection and electrostatic

discharge(ESD).

14

Figure 2.6. Power Supply Noise Due to Inductive Coupling

2.8 Variations

Variations within a design are caused by the factors imposedby the manufacturing

process, temperature and voltage supply. The variations intransistor length, and doping

concentrations generates variations in timing of the transistors. These variations also have

an effect on the threshold voltage which determines when thetransistor starts conduct-

ing current. These variations due to manufacturing causes issues in the timing the circuit.

Designers account for this when designing the circuit, but too much conservativeness can

cause for the design to be clocked slower than necessary. Temperature has an effect on

the mobility of carriers which causes a delay in overall timing of the design. The voltage

supply varies due to current demand which also has an effect on the timing of the design.

Two types of variations are Die-to-Die(D2D) and Within-Die(WID) variations. Die-

to-Die, or inter-die variations, are the type of variationsthat have an effect on parameters

across die differently, but do not have an effect on the parameters within the die. Within-

Die, or intra-die variations, affect the parameters withinthe die differently. A random WID

15

variation fluctuates randomly and independently from device to device. A systematic WID

parameter variation results from a repeatable and governing principle where the device to

device correlation is empirically determined as a functionof the distance between devices.

Variations are modeled in a probabilistic manner, most often using the Gaussian dis-

tribution. Chips designed today are designed to meet 6σ standards such that 99.99966%

of the yield meets the constraints set by the designers. Chips that do not meet the tim-

ing constraints have to be tossed which incurs a cost in overall yield. Designers perform

strenuous testing in CAD modeling to hopefully account for any issues that may arise in

manufacturing.

2.9 Related Work on Soft Errors

Several techniques have been proposed for reduction of softerror rates in caches. These

include techniques like the use of error correction codes (ECC), parity bits, bit interleaving

and small value duplication [1].

Soft errors can also occur in any internal node of a combinational logic and subse-

quently propagate to and be captured in a latch. Technology trends like smaller feature

sizes, lower voltage levels, higher operating frequency and reduced logic depth, are pro-

jected to increase the soft-error rate (SER) in combinational logic [70]. Thus, the vul-

nerability of both combinational logic structures and latches have made modern processor

pipelines significantly susceptible to soft errors. Soft errors may cause corruption in data

which may lead to incorrect addressing, faulty instructionexecution or generation of false

exceptions. Various memory and latch elements within the processor pipelines, for example

the issue queues in [19], have been individually protected against soft errors. In one of the

earliest works, complete processor pipelines were duplicated [78] for detecting transient

faults. In [88] ”valid but idle” instructions were exploited for soft error reduction. The

16

Figure 2.7. Taxonomy of Soft Error Research

authors in [14] propose the design of a self-stabilizing processor for improving soft error

vulnerability. The core design in [41] usesstate history signatures(SHS) on memory and

functional units for error detection. In [58], the authors have introduced memory based core

design that uses the FRAM technology for immunity to soft errors. However, this architec-

ture has a high memory cost and has limited functionality. In[87], the authors have used

exceptions and incorrect control flow as ”symptoms” for detection. However, since these

symptoms are not known until the execution phase of the pipeline, it allows false positives

to occur which can lead to huge performance costs. In [25], compiler directed instruc-

tion duplication has been proposed. The approach however leads to large increase in code

size and inefficient resource utilization. The high transistor counts afforded by technology

scaling are making chip multi-processors (CMPs)an attractive option to overcome the per-

17

Figure 2.8. Taxonomy on Peak Power Research

formance and power wall provided by superscalar machines. CMPs are building blocks for

server-class machines for which reliability is a key concern. The problem of soft errors

is further exacerbated in a large multiprocessor server which requires even lower failure

rates for the individual microprocessors. The authors in [18, 63] studies the tradeoff of the

soft error rate, power and performance metrics for a reliable multi-processor. A two-way

CMP enables on-chip fault detection using lockstepping in which the same computation is

performed on cycle-by-cycle basis. Error detection and correction has been exploited using

18

simultaneous redundant threads (SRT) of execution, on a SMTprocessor, by using a leading

and trailing thread separated by a slack [59]. The trailing thread uses load memory values

and branch outcomes of the leading thread to avoid memory latencies and mis-predicted

computations. Memory corruption is avoided by only committing stores after comparison

with the trailing threads. Register values may be committedbefore or after comparison

of the trailing threads [84]. The motivation behind scheduling and checking independent

threads as against lockstepping is that lockstepping uses hardware structures less efficiently

than SRT. Both copies of a computation in lockstepping are forced to waste resources on

mis-speculation and cache misses. Chip level redundancy (CRT) applies the SRT scheme

to CMPs for error detection. Unlike SMT processors, reliable multi-core processors are

required to execute redundant threads concurrently ondifferentchips. Error detection is

performed by checking by comparing the results from the two threads. The primary con-

cern for CRT have been reducing the latency associated with checking of the results from

the two threads which is performed using high-speed hardware structures for inter-chip

communication. Although, techniques have been proposed like checking threads at the

tail of dependence chains and judicious chaining of maskinginstructions, the performance

overhead of such schemes is still significant.

2.10 Related Work on Peak Power

Significant amount of research has been reported in the literature on peak current and

peak power reduction as well as clock skew scheduling. In [26, 85], a multi-domain clock

is used where a single clock source is used to create multiplephases of the clock within the

original clock period. In [85], a 0-1 ILP is used to solve the multi-domain clock scheduling

problem. In [26], They attempt to reduce the runtime of the ILP formulation by partitioning

zones for the registers within a bounded constraint and solving each zone using the 0-1 ILP

19

algorithm. In [57], a graph-based algorithm approach is taken such that for a user-specified

amount of clock domains, an optimal phase shift for each clock domain is generated. In

[9,31,32,86], a single clock and edge-triggered flip flops are used to account for the worst-

case scenario. In [86], a genetic algorithm was used to find the optimal clocking schedule

to minimize peak current. In [32], peak current is minimizedby shifting the arrival times

of the flip-flops based on there respected clock skews betweenadjacent flip-flops. [31],

extracts the current profile from the Cell Library and uses simulated annealing algorithm is

used to find the optimal peak current minimization. In [9], the clock signal is inverted on

half of all the flip-flop elements such that half of the flip-flops will become active the falling

edge of the clock and the other half switches on the rising edge. In [89] he issues rising and

falling edges to various IP cores in a SoC-designs.

Several researchers have studied the reduction of average and peak power at the behav-

ioral and logic synthesis levels [44]. The use of multiple supply voltages for power reduc-

tion is well researched and several works have appeared in the literature [7,30,34,38,45,56].

In multiple supply voltage scheme, the functional units canbe operated at different supply

voltages. The energy savings in this scheme is often accompanied by degradation in per-

formance because of the increase in the critical path delay.The degradation in performance

can be compensated using dynamic frequency clocking (DFC) [42, 45], multi-cycling and

chaining [52], and variable latency components [3, 4, 54]. In multi-cycling, an operation is

scheduled for more than a single control step and in addition, each control step is of equal

length. On the other hand, in the case of DFC, an operation is scheduled in one unique

control step, but all the control steps of a schedule may not be of equal length and also, the

clock frequency may be changed on-the-fly.

In the works reported in [39,62], the peak power reduction isachieved through simulta-

neous assignment and scheduling. The authors demonstrate the use of power minimization

at one level to achieve optimization at another level. Specifically, the simultaneous use of

20

SPICE and behavioral synthesis tools is demonstrated. The authors use genetic algorithms

for optimization of average and peak power. In [67], ILP based scheduling and modified

force directed scheduling have been proposed to minimize peak power under latency con-

straints. The ILP formulation considers multi-cycling andpipelining and single supply

voltage. ILP based models to minimize peak power and peak area have been proposed

in [68] for latency constraint scheduling. The authors alsointroduced resource binding to

minimize the amount of switching at the input of functional units. The ILP based scheduler

allows the minimization of multi-cost objectives using theuser defined weighting factors.

In [66,69], a time constrained scheduling algorithm for real time systems using a modified

ILP model that minimizes both peak power and number of resources, is described. The au-

thors in [55] propose the use of data monitor operations for simultaneous peak power reduc-

tion and peak power differential. The authors advocate the need for the careful choice of the

transient power metric for the minimization of area and performance overheads. In [46,47],

a heuristic based scheme is proposed that minimizes peak power, peak power differential,

average power, and energy altogether. In [43, 48], the authors propose ILP based data-

path scheduling schemes for peak power minimization under resource constraints. The

scheduling algorithms handle multiple supply voltages, dynamic frequency clocking and

multi-cycling.

2.11 Related Work on Variations

In this context, several researchers have proposed the use of statistical timing analysis

and statistical optimization mechanism to meet timing in the presence of variations without

significant overhead [10, 11, 23, 35, 36]. The variation aware optimization methodologies

use stochastic or fuzzy methodology to minimize the impact of uncertainty due to process

variations on performance, power and other design overheads. Statistical timing analysis

21

Figure 2.9. Taxonomy of Research on Variations

(SSTA) was investigated in, [10,11], where continuous distributions are propagated instead

of deterministic values to find closed form expressions for performance in presence of varia-

tions. Variation aware solutions have also been developed for circuit optimization problems

like gate sizing, buffer insertion and incremental placement [23,35,36]. The main objective

of these works has been to improve yield, without compromising on performance, power

and area. The variation aware optimization techniques haveshown to improve design over-

heads without loss in parametric yield. However, the statistical optimization methods still

over consume resources irrespective of whether the circuitis affected by variations or not.

Hence, to facilitate more aggressive power-performance-yield tradeoff improvement, dy-

namic schemes to detect and correct the uncertainty due to process variations are becoming

necessary.

22

Further, the authors in [60], proposed a novel design paradigm which achieves robust-

ness with respect to timing failure by using the concept of critical path isolation. The

methodology isolates critical paths by making them predictable and rare under parametric

variations. The top critical paths, which can fail in singlecycle operation, are predicted

ahead of time and are avoided by providing two cycle operations. The methodology which

works well for special circuits with rare critical paths, however has severe timing penalty

on benchmark designs.

One of the popular methods to dynamically combat process variation’s impact on design

has been to use adaptive voltage scaling (AVS) [13, 15, 16]. The voltage scaling systems

track the actual silicon behavior with an on-chip detectioncircuit and scales voltage in small

increments to meet performance without high overheads in the presence of process varia-

tions. In [6,76], the critical path of the system was duplicated to form a ring oscillator and

the actual performance requirement of the circuit is co-related to the speed of the oscillator

and appropriate voltage scaling is performed. However, in the nanometer era, it is not feasi-

ble to use a single reference for a critical path and the variations’ range can make the close

to critical delay paths critical on actual implementation.Recently the authors in [15], pro-

posed an AVS system which can emulate critical paths with different characteristics. With

increasing amount of on-chip variations and spatial correlation the methodology can have

severe discrepancies. In a bid to reduce such margin and remove the dependency of feed-

back mechanism on a single path, a novel on-chip timing checker was proposed in [16] to

test a set of potential critical paths. The method uses a shadow latch with a delayed clock to

capture data in all potential critical paths. An error signal is generated if the value in origi-

nal and shadow latch is different due to a timing violation caused by process variations. The

methodology however aims at correcting (not preventing) errors caused by aggressive dy-

namic voltage scaling. To guarantee high timing yield and low overheads in the presence of

variations, the ultimate solution is to dynamically alter the clock signal frequency. The au-

23

thors in [64,65], proposed a technique to control and adjustclock phase dynamically in the

presence of variations. The methodology focused on the design of a dynamic delay buffer

cell that senses voltage and temperature variations and alters clock phase proportionately.

However, it is not generic to all types of variations and doesnot include spatial correlation

between the delay buffer and the gates in the critical path. Also, the methodology is not

input data dependent and hence changes the clock capture trigger in more than required

number of instances. [8] tries to mitigate variation effects by unbalancing the first stage of

the combinational path to reduce the minimum clock pulse width variation . This technique

was done from the transistor level and could be time consuming when considering Very-

large scale integration. Both [61] and [77] use techniques from the micro-architecture level

to reduce timing effects from process variations. [61] usesdynamic-speed boosting to speed

up computation when necessary to reduce the timing effects of variations. This increase in

speed caused by largerVdd values can cause a large amount of average power overhead.

In [77], clock skew between pipelines are computed and donorstages are inserted where

slack is available so that slower stages and borrow time fromfaster stages. Since the defi-

nition of the clock period is determined by the average stagedelay, the timing of the circuit

may be too slow for certain designer’s specifications.

24

CHAPTER 3

REDUNDANCY MINING TECHNIQUES FOR SOFT ERROR REDUCTION IN

MULTI-CORE PROCESSORS

The trends in technology scaling have led to exponential growth in the number of on-

chip transistors and significant reductions in the voltage levels of a chip. These trends for

improving performance and power have made modern processors increasingly susceptible

to transient faults. A majority of soft errors in modern processors are due to radiation

induced transient faults. Radiation causes ’transient faults’ or ’single-event transients’ to

occur in logic which, once propagated and latched, become full cycle errors or soft errors.

If radiation hits memory elements, this is usually called ’single-event upset’ or ’soft error’

as it can further propagate as a full cycle error. Soft errorscould occur when the energetic

neutrons coming from space or the alpha particles arising out of packaging materials hit

the transistors. With the shrinking of device geometries, the critical charge (Qcrit) required

for the occurrence of soft errors, decreases. However, as the active silicon area of the cells

also decrease due to scaling, the probability of radiation strike also decreases. Thus, the

vulnerability of individual transistors due to cosmic ray strikes remains almost constant

[21]. However, the decreasing voltage levels and the exponentially increasing transistor

counts have caused the overall chip susceptibility to increase significantly.

In this chapter, it is shown that lock stepping can be used quite effectively if sufficient

redundancy can be mined within each core’s boundary. Schemes are presented that uti-

lize the property of temporal, data value, and information redundancies in programs for

25

detection of soft errors. The use of latency slack cycles (LSC) for error detection using

temporal redundancy and the mining of value based redundancy in a processor core by uti-

lizing the small data value width of the operands are introduced in this chapter. Information

redundancy is exploited by encoding the operand values withresidue codes when possible.

Furthermore, it is shown that the latency overhead associated with inter-processor com-

munication can be significantly reduced when a clustered core micro-architecture is used.

Experimental results indicate that the proposed schemes, on the average, can detect and

correct soft errors in multi-core systems with negligible area and performance overheads.

The rest of the chapter is organized as follows: The architecture of a clustered core

multi-processor for soft error detection is described in Section 3.1. In Section 3.2, it is

discussed how temporal redundancy can be exploited for error detection. Static and dy-

namic techniques for exploiting temporal redundancy for soft error detection are presented.

Section 3.3 describes how data value based redundancy can beemployed using small value

replication. Section 3.4 discusses error detection using residue code by utilizing informa-

tion redundancy. The overall architecture for error detection using the proposed approach

in a typical multi-core processor as well the algorithm implementation is shown in Section

3.5. In section 3.6, experimental results are given and finally section 3.7 gives simulation

results and compares the experimented work with prior works.

3.1 Clustered Multi-Core Architecture for Error Detection

In multi-core processors, multiple threads can be mapped tomultiple cores and executed

concurrently to increase the system throughput. These threads can be separate independent

applications or independent pieces of the same thread from agiven application. Redundant

execution of threads and comparing the results of their multiple executions can be effec-

tive towards reduction of soft errors. However, two problems seriously limit this approach.

26

First, the inter-processor communication latency can be significant. The wire delays due

to inter-processor communication can impose significant latency overhead which cannot be

hidden in the typical complete-to-commit times, if all register and memory accesses have

to be checked. Secondly, due to the non-deterministic ordering of communication events,

threaded applications can produce outputs in different orders and of different values when

given the same inputs over consecutive runs [53]. This phenomenon can make error detec-

tion by dedicated execution of the original and the duplicate threads on different processors

in a CMP ineffective or not beneficial. On the other hand, forcing deterministic execution

for replication by lock-stepping will have a high performance cost.

A clustered multiprocessor architecture to reduce the communication latency due to

inter-processor communication is used in this work. Further, it is shown that by mining

of available temporal and data value redundancy and by exploiting the information redun-

dancy, the inter-processor communication required in a fault-tolerant CMP can be brought

down significantly. In this section, a discussion on the clustered core processor architecture

for low overhead error detection in a CMP. The technique to mine available redundancy is

described in the following sections.

Figure 3.1. Hardware Architecture for Error Detection in a Clustered Core Processor

27

The clustered micro-architecture for a large multi-core processor core is divided into

multiple clusters. Each cluster is small so that if the latency overhead for inter-processor

communication can either be hidden completely by complete-to-commit times or is negli-

gible in terms of impacting overall performance. Unlike a regular homogeneous multi-core

processor, this architecture consists of multiple clustered cores rather than monolithic ones

and each core is based on the clustered micro-architecture.Figure 3.1 illustrates the typical

architecture of a multiple clustered core multiprocessor with two homogeneous clustered

cores, each having two identical clusters. Each cluster consists of register files (RF), instruc-

tion scheduling queue (IQ), and functional units (FU), while instruction and data caches,

branch predictor and decoder are shared by all clusters in a core. Each cluster shares an

instruction arbiter for inter-processor communication. The overall architecture of our clus-

tered core processor is shown in Figure 3.1. The detailed architecture of the instruction

arbiter is described in the following section. A multiple clustered core multi-processor with

two cores in each cluster can be effectively used for error detection. Since cores in a cluster

are close in proximity and the latency overhead for inter-processor communication can be

minimal. It is possible to exploit the clustered micro-architecture combined with multi-

core architecture to trade-off between power and performance which is not considered in

this work.

3.2 Mining Temporal Redundancy

It is generally not possible to detect a soft error in the processor pipeline before the in-

struction is executed at least once. Also, to achieve a low latency overhead, error detection

must be done concurrently during execution of each instruction. Concurrent error detection

can be achieved by complete duplication of the processor pipeline and issuing duplicate

copies of each instruction. A soft error is detected when theresult of the instruction and

28

its duplicate instruction do not match. However, such an approach would be prohibitive in

terms of area and power overheads. In this section, we propose a low overhead soft error

detection technique by exploiting temporal redundancy. Temporal redundancy can be ex-

ploited by using compiler hints or by using a specialized predictor hardware. As discussed

later, temporal redundancy in existing programs can be mined with a low overhead.

3.2.1 Compiler Directed Slack Computation

Temporal redundancy can be exploited by duplicating and re-executing instructions in a

different time slot in the same processor.Latency slack cycle(LSC) value of an instruction

is defined as the amount of cycles between the current instruction and the next true data

dependent instruction. The LSC values can be determined statically during code generation

in the compiling phase of a program. Given a fixed threshold (MIN LSC), the compiler

probes the nearest data dependency on any of the source operands and checks to see if the

number of instructions between them is lower than the MINLSC. If this condition is met,

then a special bit called theslack bit is set. This bit can be checked during the issue stage

of the processor pipeline. The value MINLSC should be chosen in a manner such that the

majority of the instructions should be able to make use of.

Given the slack bit, temporal redundancy is exploited for error detection by re-executing

the instruction within MINLSC cycles. Once both instructions have been executed, com-

parison can be done to detect any transient faults that may have occurred. Slack information

encoded in the instruction itself is used to determine if theresult of the instruction are not

immediately needed. The duplicate instruction can be executed following in time using a

temporal redundancy approach.

The use of temporal redundancy for soft error detection is illustrated using Figure 3.2.

A specialbusy bitis used which simply indicates if any of the issue slots are free in the

current cycle. An instruction arbiter, which is a simple state-machine, and a special error

29

Figure 3.2. Instruction Arbiter for Temporal Redundancy Based Detection

detection stage in the processor pipeline between the execute stage and the commit stage,

shown as the boxes with chamfered edges, to indicate the presence of internal buffers for

storage. The sequence of steps for error detection is as follows. The slack bit is checked for

each instruction that is issued. If it is set, the arbiter initializes itself for error detection using

temporal redundancy and guides the multiplexor (MUX) at theinput of the issue stage to

issue the duplicate instruction within MINLSC cycles depending on the status of the busy

bit in the issue stage. Since the arbiter knowsexactlywhen the original and the duplicate

instruction are issued and as the duplicate instruction does not wait in the issue queue due

to data dependency, the arbiter can set the control signals at the appropriate clock cycle to

latch the result from the execution of the original and duplicate instructions and compare

them for error detection.

30

3.2.2 Dynamic Slack Implementation

In the previous subsection, a technique to statically estimate LSC using compile time

analysis was described. The technique thus assumes that compiler performs additional tasks

and encodes slack information in the form of the slack bit in the instruction. This technique

thus can lead to increase in binary code size. Moreover, as the compiler directed technique

only decides slack by analyzing instructions statically within a window, the slack estimate

is not accurate. In this subsection, a technique is presented that exploits the temporal re-

dundancy in a dynamic manner during execution.

A scheme for predicting instruction slack dynamically during execution has been de-

veloped. The technique is based on aslack predictionscheme and is illustrated in Figure

3.3. As shown in the figure, the slack predictor is a simple state based cache structure.

Each entry in the array type structure stores a operation field, a destination register field, a

slot to indicate a execution start time and a user defined number of voter slots. The slots

indicate a vote on various binned predicted slack values. The number of slack slots for each

cache entry depends on the granularity of binning of the predicted slack and its range. For

example, if the instruction slack varies between 2 and 6, with a step size granularity of 2,

there will be three slots for the corresponding cache entry.The three slots correspond to the

slack values of 2, 4 and 6. The vote on each slack value slot indicates a confidence level on

the amount of times the predicted slack was indeed correct.

The hardware architecture for dynamic slack prediction hasbeen illustrated in Figure

3.3. The destination register of an executed instruction isnoted in the destination register

field of a free cache entry. It should be noted that this register number is the register address

after register remapping which is available at the decode stage. When the corresponding

instruction starts execution we also time stamp the execution start time slot. During this

initialization, the votes associated with the cache entry are also set to zero. For each in-

31

Figure 3.3. Slack Predictor Hardware for Dynamic Temporal Redundancy Based Detection

struction, the slack predictor cache is also checked to see if the source registers for that

instruction matches any destination register in the slack predictor for any previous opera-

tion. If such a match occurs, the current time step is again noted and the difference between

the start time stamp is binned and the vote for the corresponding predicted slack slot is

increased by one. Thus, for each instruction, the destination register and the opcode and

the execution start time stamp are noted in an available cache entry, as well as the source

registers are checked to find if they match any previous destination register entries for any

operation. In case of a match, the slack value with maximum votes is selected as the pre-

dicted slack for this instruction. The slack votes are gradually aged to a saturating zero at

regular intervals of time. The LRU replacement policy is used for the individual entries

of the slack predictor. The dynamic slack prediction schemethus mimics a simple vot-

ing scheme. A correct prediction means that the actual slackwill be truly higher than the

32

predicted slack and the duplicated instruction can be executed without any performance

penalty. In this case, the next data dependent instruction still executes at the same time as

that without instruction duplication.

3.3 Mining Data Value Redundancy

It is commonly known that a large percentage of memory valuesare small [5], [24], [33].

Typically, small memory values use at the most half of the bitwidth of the registers. These

small data values can be exploited to increase redundancy and improve the reliability of

the processor pipeline. Small value replication is carriedout for instructions with operand

values that can be represented with half of the bit width size[24]. Small value based error

detection is carried out differently on different operations. For example, if both source

registers meet this requirement then their values are replicated and executed on the same

functional unit. Note that before the execute stage of the pipeline, the data values of the

source operands are already available. Thus, source registers with small data value width

can be locally duplicated and both copies of the small data value can be executed on the

same functional unit and compared for error detection. If the results are correct, the upper

half words are filled with 0s or 1s to obtain the actual results.

Soft errors during execution of arithmetic operations likeaddition and subtraction can

also be detected even if one operand is of small data value, byusing value based redundancy.

For example, consider the case when one operand is small and the arithmetic operation on

the other operand does not generate any carries. In this case, the upper half word of the

other operand can be stored in a register and the small value operand in the lower half word

of the other operand can be locally duplicated as before. Again, both copies of the small

data value operands can be executed on the same functional unit and compared for error

detection. If the results from the upper and lower half wordsagree, the upper half word of

33

the other operand is concatenated with the lower half word ofthe result to form the actual

result. Thus, in the absence of a carry, local duplication can be applied to detect errors in the

execution of arithmetic instructions even involving only one small operand. The same idea

can also be extended for logical operations. For example, for a AND or OR operation if

only one operand is small, local duplication can be applied to perform duplicate execution

of the operation and detection of errors. The upper half wordof the result of the logical

operation can be recovered by filling them with all zeros, allones, or with the upper half

word of the other operand.

Figure 3.4. Error Detection Using Small Values

Figure 3.4 illustrates the hardware architecture for smallvalue detection method. The

source operand values stored in the registers are sent to thesmall value detector(SVD) to

determine whether their data values are small. The SVD circuit is simply a zero detector

for the MSB portion of the data bits. If a small value is detected, the SVD sends the signals

to the multiplexors so that the replicated values are chosen. The two duplicate values are

then sent to the ALU for execution. The results of the ALU operations are compared with a

comparator that is controlled by the SVD circuit. The SVD is checked to see if it indicates

a small value when the MSB and the LSB portion of the result should match. However, if

34

a small value is indicated by the SVD and LSB and MSB portion ofresult does not match

a soft error is detected and recovery by rollback from the previous checkpoint state can be

initiated. Thus, as shown in Figure 3.4, error detection by exploiting small data value size

can be implemented without much latency and area costs.

3.4 Information Redundancy Based Detection

In general, parity codes can be used to detect single bit softerrors in memory, however,

parity check bits are not preserved across arithmetic operations. To maintain check bits

across arithmetic operations, residue codes have been proposed in the literature. Residue

codes have the desirable property that for arithmetic operations the check bits of the result

can be determined directly from the check bits of the operands. Residue code is a systematic

code, i.e., the check bits can be represented separately from the data bits. The residue

check bitsC are represented bylog2N bits , whereN is the total number of bits used for

representation, and can be computed asC = (N)mod(m) wherem is represents the residue

of the code. It can be shown that for a pair of operands, the residue code for the sum (or

product) of the operand is the sum (product) of the residue codes of the operands modulo

m and that if the residuem is odd all single bit errors occurring during any arithmetic

operations can be detected.

As shown in Figure 3.5, error detection using residue code requires only an extra adder

unit. However, as the extra addition operation is off the critical path and since the delay

due to the multiplexors can be neglected, no performance penalty will be incurred. If the

residue check bits of the sum (product) do not match the sum (product) of the check bits

of the operands, a single bit error is detected. Otherwise, no single bit error has occurred

and the result is committed to update the processor state. The determination of the residue

code is dominated by the computation of modulo addition. However, the operation can be

35

Figure 3.5. Error Detection Using Residue Code

simplified if the modulo is of the form2n − 1, as follows,

(x + y)mod(2n − 1) = (x + y + 1)mod(2n) if(x + y + 1) ≥ 2n

= (x + y)mod(2n) otherwise (3.1)

wherex andy represents the source operands andn represents the bit width of the registers

used to store the source operands. In this work, this property can be exploited and the two

most significant bits are used for representation of the residue parameterm.

3.5 Proposed Multi-Core Architecture

In the previous sections, several low overhead soft error detection techniques were de-

scribed which exploit the various types of redundancy that can be mined within the bound-

ary of the single core. Error detection is performed during the issue stage of each core’s

processor pipeline for each instruction. The error detection mechanism, in order to maintain

36

low overheads, makes use of the available functional resources as well as the remaining la-

tency slack cycles (LSC) which is the number of cycles beforethe computed result becomes

the source operand of a subsequent instruction. For instructions with high LSC, the soft er-

rors are detected using temporal redundancy wherein the duplicate instruction is executed at

a later time step and compared with the result of the originalinstruction ensuring that there

is no loss in performance. For instructions with small operand value size, soft errors are

detected by duplicating the operands and executing on the same functional unit, thus using

the available resources to maintain low overhead. For instructions with low LSC and not

having small valued operands, detection is implemented by using the residue code. If none

of these methods are applicable, the duplicate instructionis executed on a nearby idle pro-

cessor core. The overhead associated with inter-processorcommunication is reduced using

a multiple clustered core architecture. Finally, correction is done by recovery and rollback

from the checkpoint states. It should be noted, however, that error correction is required

only when a soft error has actually happened, which is rare, while error detection needs to

be performed during execution of each instruction. Therefore, throughout this chapter, The

focus is on providing techniques for low overhead error detection in multi-core processors.

Previously, it was discussed how the slack bit is used in an instruction arbiter for error

detection using temporal redundancy. In the case when the slack bit is not set, the arbiter

initializes itself for error detection by using spatial redundancy. The arbiter latches the in-

struction and its source operand values from the original core, keeps on polling the busy

bit of the issue stage of the nearby core and once the busy bit is disabled, the duplicate

instruction is issued to the adjacent core. The arbiter thensets the control signals at the

appropriate clock cycles in the error detect stage to latch the results of the execution from

the original core and the results of execution from the nearby core which are then com-

pared for error detection. This is possible as the arbiter knows exactly when issue starts

and execution finishes for the original and duplicate instructions. Many variants of this

37

idea have been proposed [2], [73] in the literature. The experiments with redundancy based

detection technique suggested that the scheme of spatial redundancy incurs a considerable

latency overhead due to the interconnect delay in sending/receiving the instruction to the ar-

biter. In general, using the spatial redundancy based detection can lead to high performance

overhead and about 200% increase in power. However, by mining of various redundancy

schemes and using the clustered core micro-architecture, this scheme is seldom used for er-

ror detection. The overall hardware algorithm for error detection in a CMP processor using

our proposed schemes is shown in Algorithm 1.

Algorithm 1 The algorithm for soft error detection

Compute LSC value for all ALU instructions statically or dynamically
for Each ALU instructiondo

if slack > STh then
Detect soft error using temporal redundancy

end if
if slack < STh AND Both source operands are smallthen

Duplicate data values and execute on the same functional unit
Detect soft error if the LSB and the MSB of the result do not match

end if
if slack < STh AND Both source operands are not small AND Two upper bits of the
source operands are zerothen

Compute residue code for the operands
Replace the top 2 bits of the operand with check bits
Execute the operation and compute modulus m
Compute the check bits of the data without the top two bits
Compare this check code with the top two bit and detect soft error if they do not
match

else
Duplicate the instruction into a nearby idle core
Commit from ROB only when both original and duplicate instruction’s result match

end if
end for

The error recovery mechanism achieves error correction using the traditional rollback

and recovery scheme. Thus, a checkpoint state of the processor after execution of each

instruction is maintained. Such fine-level checkpointing can easily be achieved by using a

38

structure similar to a re-order buffer. Instructions are committed from the re-order buffer

only if no error has been detected. Otherwise, all instructions in the re-order buffer are

flushed and instructions are re-executed from our last checkpoint. Thus, the hardware struc-

tures already present in current processors are leveraged for speculative execution, for error

correction.

3.6 Experimental Setup

Table 3.1. Processor Configurations

Parameter Configuration
Active list 64 instructions

fetch and commit rate 4 per cycle
Functional units 3 ALUs, 2 FPUs, 2 Address gen. units
Branch predictor 2-bit history predictor
Cache Line Size 64 Bytes

L1 Cache 32KB 8-way associative, Write Back
L1 Cache Latency 6 cycles

L2 Cache 64KB 8-way associative
L2 Cache Latency 16 cycles

In this section, the experimental setup used for simulations and the results of the various

schemes proposed in the chapter for improving the reliability against soft errors for multi-

core systems are described. The RSIM multi-multiprocessorsimulator was modified [27]

and used for this study. RSIM is an execution-driven simulator primarily designed to study

shared memory multi-processors and can simulate applications compiled and linked for

SPARC V9/Solaris. The base specifications are given in Table3.1. Each core uses static

scheduling, has a issue width of 4, with 3 integer and 2 FP ALUs, with a active list of 64 en-

tries and used a 2 bit branch predictor. The local L1 cache is 32KB 8-way associative while

the shared L2 cache is 64KB 8-way associative with cache access latencies selected as given

in [29]. The soft-error detection architecture follows theprocedure presented in Algorithm

39

1. Both redundancy based and information dependent methodscan be determined during

run time by checking the source operands during the decode stage of RSIM. The simula-

tion results are stored in a well defined data structure so that they can be examined using

Perl scripts after run-time. The simulations were performed on a subset of the SPLASH

benchmark suite [72] that were ran on a Sun Blade 1500 uniprocessor with 4GB of RAM.

Within a superscalar processor, the performance overhead of temporal redundancy due to

redundant instructions delaying independent instructions is negligible. The performance

overhead of our proposed schemes is calculated as follows

overheadperf = Ispatial × costspatial (3.2)

whereIspatial is the number of instructions that are forced to use the spatial redundancy

technique, andcostspatial is the amount of additional cycles it takes to execute the replicated

instruction in the neighboring core. Power calculations are given for the 16-core processor

using the Nangate FreePDK 45 nm Open Cell Library. Power consumption values for the

various techniques were calculated using the product between the percentage of usage and

the power consumption of the functional units used.

3.7 Simulation Results

Figure 3.6 shows the average slack values in cycles for each benchmark for the imple-

mentation of static temporal redundancy. Since the static temporal redundancy technique

is implemented on the compiler level, we assume single-issue width so that the technique

is architecture independent. From the results given in column avg, it is clear that the ap-

propriate LSC value to use is 5. Note that the MINLSC value may vary from different

applications but the value of 5 suits best for the set of benchmarks. The results from the

static slack implementation oftemporal redundancyare given in Figures 3.7- 3.9. The

40

 0

 5

 10

 15

 20

 25

 30

fft lu m
p3d

radix
water

quicksort

sor
avg

E
st

im
at

ed
 s

la
ck

 v
al

ue
s(

in
 c

yc
le

s)

4core
8core

16core
32core
64core

Figure 3.6. Static Slack Breakdown

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4core
8core

16core

32core

64core

P
er

ce
nt

ag
e

of
 In

st
ru

ct
io

ns
 (

%
)

Technique Usage with Static Temporal Redundancy (FFT)

small_value
residue

temporal
spatial

(a) Static temporal redundancy SPLASH-FFT

 0

 10

 20

 30

 40

 50

 60

 70

 80

4core
8core

16core

32core

64core

P
er

ce
nt

ag
e

of
 In

st
ru

ct
io

ns
 (

%
)

Technique Usage with Static Temporal Redundancy (LU)

small_value
residue

temporal
spatial

(b) Static temporal redundancy SPLASH-LU

Figure 3.7. Results From Static Temporal Redundancy Technique for SPLASH-FFT and
SPLASH-LU

41

 0

 10

 20

 30

 40

 50

 60

 70

4core
8core

16core

32core

64core

P
er

ce
nt

ag
e

of
 In

st
ru

ct
io

ns
 (

%
)

Technique Usage with Static Temporal Redundancy (MP3d)

small_value
residue

temporal
spatial

(a) Static temporal redundancy SPLASH-Mp3d

 0

 10

 20

 30

 40

 50

 60

 70

4core
8core

16core

32core

64core

P
er

ce
nt

ag
e

of
 In

st
ru

ct
io

ns
 (

%
)

Technique Usage with Static Temporal Redundancy (RADIX)

small_value
residue

temporal
spatial

(b) Static temporal redundancy SPLASH-Radix

 0

 10

 20

 30

 40

 50

 60

4core
8core

16core

32core

64core

P
er

ce
nt

ag
e

of
 In

st
ru

ct
io

ns
 (

%
)

Technique Usage with Static Temporal Redundancy (WATER)

small_value
residue

temporal
spatial

(c) Static temporal redundancy SPLASH-Water

Figure 3.8. Results From Static Temporal Redundancy Technique for SPLASH-Mp3d,
SPLASH-Radix, and SPLASH-Water

42

 0

 10

 20

 30

 40

 50

 60

 70

4core
8core

16core

32core

64core

P
er

ce
nt

ag
e

of
 In

st
ru

ct
io

ns
 (

%
)

Technique Usage with Static Temporal Redundancy (QUICKSORT)

small_value
residue

temporal
spatial

(a) Static temporal redundancy SPLASH-Quicksort

 0

 10

 20

 30

 40

 50

 60

 70

 80

4core
8core

16core

32core

64core

P
er

ce
nt

ag
e

of
 In

st
ru

ct
io

ns
 (

%
)

Technique Usage with Static Temporal Redundancy (SOR)

small_value
residue

temporal
spatial

(b) Static temporal redundancy SPLASH-SOR

Figure 3.9. Results From Static Temporal Redundancy Technique for SPLASH-Quicksort
and SPLASH-SOR

43

majority of the benchmarks had less than 30% of their instructions using the spatial redun-

dancy technique. The benchmarks,quicksortandsorwere the most efficient with respect to

the usage of static temporal redundancy technique. The other benchmarks either had high

usage of data-dependent techniques or the MINLSC value may have been too large, thus

giving us a low percentage usage for the static temporal redundancy method. To further

lessen the amount of spatial redundant instructions, in thedynamic slack technique, 1, 2,

and 4 cycles are used as the voting choices for the dynamic slack implementation. The

results with the dynamic slack implementation are given in Figures 3.10-3.12. As illus-

trated in all benchmarks, more instructions are able to implement the temporal redundancy

method, thus lowering spatial redundancy usage as well as the performance overhead.

For the correct dynamic prediction rate and power overhead,only the 16-core configu-

ration was analyzed. Figure 3.13 shows that most predictions were correctly predicted for

our benchmarks. Figure 3.14 shows that the technique generates little power overhead. The

instruction arbiter at the RTL level was designed using Verilog and synthesized it with a

standard cell library of 45nm technology using Design Compiler. The small value based

detection scheme only required small number of MUXes while residue code based detec-

tion required an extra n-bit adder. The calculations indicate that the overall area overhead

for our combined error detection framework was less than 5%.In Figure 3.15, the percent-

age overhead in CPI compared to a multi-processor with no error detection capability for

8, 16, 64 and 128 cores was plotted. As shown, the performanceoverhead was only 8% for

the 8 and 16 core multi-processors while it was 10.5% for the 64 core system and 13% for

128 core multi-processor system. It is noted that the large increase in average CPI is partly

due to the large amount of spatial redundancy instructions in the mp3d benchmark, which

if excluded will lead to a even lower performance overhead.

In Table 3.2, the work presented is compared with some recentworks provided in lit-

erature, using the data provided in the papers and extrapolating according to the experi-

44

Table 3.2. Comparison with Related Works

Approach Error Coverage Latency Overhead
RMT [49] 100% 21%
CRT [20] 100% 15%

Slipstream [74] 74% -7%
This work 100% less than 10%

mental setup. SRT techniques [49] executes redundant threads on a SMT processor for

error detection. The CRT technique extends the same idea on CMP processors. The CRT

approaches [20] achieves considerably low latency overhead compared to instruction lock

stepping in CMP processors. This is due to the fact that the trailing thread can effectively

utilize speculative outcomes for a speedier execution. However, the trailing thread may

read values which can be modified by other instructions in theleading thread and hence

false positives may occur. The problem is circumvented by using additional hardware struc-

tures like the load value queue and by ensuring stores are committed only after the stores

from the leading thread finishes execution, thus not changing memory state before check-

ing. Further, as relative thread execution rates on different processors are non-deterministic,

events among concurrent threads in a program cannot be replicated precisely and efficiently,

leading to spurious divergences [53]. It is shown in this work that by mining and utilizing

various redundancy mechanisms available within a core’s boundary and using a clustered

core architecture, inter-processor communication overhead can be made negligible. Using

the various techniques proposed in this chapter, duplication on a per-instruction basis is

more attractive than duplicating at the thread level. Slipstream processors proposed in [74]

uses a reduced instruction stream in the leading thread to guide the trailing thread. As the

leading thread is reduced in size and as it can provide key speculation outcomes to the trail-

ing thread, this method can actually improve performance than executing the single thread

with speculation. However, compared to this approach and the approaches described in

CRT, the error detection coverage is not high and hence is notviable in server application

45

where reliability can be a key concern. Thus, compared to other works proposed in litera-

ture, this combined framework can achieve complete error coverage at significantly lower

latency overheads with negligible area cost.

46

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

4core
8core

16core

32core

64core

P
er

ce
nt

ag
e

of
 In

st
ru

ct
io

ns
 (

%
)

Technique Usage with Dynamic Temporal Redundancy (FFT)

small_value
residue

temporal
spatial

(a) Dynamic temporal redundancy SPLASH-FFT

 0

 10

 20

 30

 40

 50

 60

 70

 80

4core
8core

16core

32core

64core

P
er

ce
nt

ag
e

of
 In

st
ru

ct
io

ns
 (

%
)

Technique Usage with Dynamic Temporal Redundancy (LU)

small_value
residue

temporal
spatial

(b) Dynamic temporal redundancy SPLASH-LU

 0

 10

 20

 30

 40

 50

 60

 70

4core
8core

16core

32core

64core

P
er

ce
nt

ag
e

of
 In

st
ru

ct
io

ns
 (

%
)

Technique Usage with Dynamic Temporal Redundancy (MP3d)

small_value
residue

temporal
spatial

(c) Dynamic temporal redundancy SPLASH-Mp3d

Figure 3.10. Results From Dynamic Temporal Redundancy Technique for SPLASH-FFT,
SPLASH-LU, and SPLASH-Mp3d

47

 0

 10

 20

 30

 40

 50

 60

 70

4core
8core

16core

32core

64core

P
er

ce
nt

ag
e

of
 In

st
ru

ct
io

ns
 (

%
)

Technique Usage with Dynamic Temporal Redundancy (RADIX)

small_value
residue

temporal
spatial

(a) Dynamic temporal redundancy SPLASH-Radix

 0

 10

 20

 30

 40

 50

 60

4core
8core

16core

32core

64core

P
er

ce
nt

ag
e

of
 In

st
ru

ct
io

ns
 (

%
)

Technique Usage with Dynamic Temporal Redundancy (WATER)

small_value
residue

temporal
spatial

(b) Dynamic temporal redundancy SPLASH-Water

 0

 10

 20

 30

 40

 50

 60

 70

4core
8core

16core

32core

64core

P
er

ce
nt

ag
e

of
 In

st
ru

ct
io

ns
 (

%
)

Technique Usage with Dynamic Temporal Redundancy (QUICKSORT)

small_value
residue

temporal
spatial

(c) Dynamic temporal redundancy SPLASH-Quicksort

Figure 3.11. Results From Dynamic Temporal Redundancy Technique for SPLASH-Radix,
SPLASH-Water, and SPLASH-Quicksort

48

 0

 10

 20

 30

 40

 50

 60

 70

 80

4core
8core

16core

32core

64core

P
er

ce
nt

ag
e

of
 In

st
ru

ct
io

ns
 (

%
)

Technique Usage with Dynamic Temporal Redundancy (SOR)

small_value
residue

temporal
spatial

(a) Dynamic temporal redundancy SPLASH-SOR

Figure 3.12. Results From Dynamic Temporal Redundancy Technique for SPLASH-SOR

 20

 30

 40

 50

 60

 70

 80

 90

 100

fft lu m
p3d

radix
water

quicksort

sor
avg

P
er

ce
nt

ag
e

of
 C

or
re

ct
 P

re
di

ct
io

ns
(%

) average

Figure 3.13. Dynamic Prediction Technique

49

 2.6

 2.8

 3

 3.2

 3.4

fft lu m
p3d

radix
water

quicksort

sor
avg

P
er

ce
nt

ag
e

of
 O

ve
rh

ea
d(

%
)

total

Figure 3.14. Power Results

Figure 3.15. Performance Overhead for the Proposed Schemes

50

CHAPTER 4

PEAK POWER MINIMIZATION USING PATH CLUSTERING

4.1 Introduction

Due to technology scaling, with the increase in chip densities and clock frequencies, the

demand for the design of low power integrated circuits has increased. This trend of increas-

ing chip density and clock frequency has made reliability a major issue for the designers

mainly because of the high on-chip electric fields [71, 75]. Several factors such as the de-

mand of portable systems, thermal considerations and environmental concerns have further

driven the area of low power design [71]. In low power design using deep submicron and

nanometer technologies, both the peak power and the total power are equally critical design

constraints. In this chapter, the focus is on the reduction of peak power through use of a

novel clock management strategy.

Peak power is the maximum power consumption of the integrated circuit (IC) at any

instance during its execution. Peak power can be defined as the maximum power consump-

tion during any clock cycle. The reduction of peak power consumption is essential for

the following reasons : (i) to maintain supply voltage levels and (ii) to increase reliability.

High peak power can affect the supply voltage levels. The large current flow causes high

IR drop in the power line, which leads to the reduction of the supply voltage levels at dif-

ferent parts of the circuit. High current flow can impact reliability because of hot electron

effects and high current density. The hot electrons may leadto runaway current failures and

electrostatic discharge failures. Moreover, high currentdensity can cause electro-migration

51

failure. It is observed that the mean time to failure (MTTF) of a CMOS circuit is inversely

proportional to the current density (or power density).

The reduction of power consumption can be achieved at several levels, such as algo-

rithmic, behavioral, register-transfer level, logic, gate and transistor [62] during the design

flow. Several techniques have been proposed for peak-power reduction at different levels.

At the algorithmic level, choosing a low power algorithm canbe helpful in power reduc-

tion. Techniques, such as, shutting down unused operators and multiple supply voltage

operators are used at behavioral level. At RTL level, properstate assignment is needed

for power reduction. Low power design methods at logic levelincludes, the use of asyn-

chronous circuits, the reduction of number of transitions and the reduction of hazards. The

use of adiabatic systems and static CMOS can lead to low powerconsumption at the gate

level. At the transistor level, smaller device geometry, smaller supply voltage and threshold

voltage are the possible options for power reduction. During low power synthesis at the

behavioral level, several low power subtasks, such as, scheduling, allocation and binding

are performed with the goals of total and/or peak-power reduction.

As the IC processing technology continues to scale down, andthe demand for high

performance IC designs continue to increase, high peak current and peak power pose critical

problems towards achieving higher performance and reliability. The peak current problem

has been addressed in the industry by increasing the size of power and ground lines, and

increasing the number of pin pads on the chip. The problems that are caused by high peak

current values can be seen at all levels of processor designs. On the VLSI level, high

peak current causes IR-drop which generates power supply noise and ground bounce. This

power supply noise causes inconsistent supply voltage values to the transistors which can

be translated to slower circuits and timing violations on the circuit level. Timing violations

in turn translate to logic failures on the architecture level.

52

Synchronous-logic design methods rely on the master clock and/or the clock tree within

clock domains that present drawbacks to the physical operation (as opposed to logic oper-

ation) of the digital-logic integrated circuit. These physical drawbacks are manifested as

large peak (surge) power-bus current, increased RMS current, power and ground bus noise,

ground bounce, simultaneous switching output (SSO) noise,input-threshold margin loss,

timing jitter, and increased propagation delay (due to integrated-circuit power-bus compres-

sion and heating), and system electromagnetic interference. These deleterious effects can

occur in the integrated core logic circuits and within the input/output ring. Thus, the focus

is on a RTL-level method that takes advantage of the logic-path timing slack to re-schedule

circuit activities at optimal intervals within the unaltered clock period. When switching

activities are redistributed more evenly across the clock period, IC supply-current con-

sumption is also spread across a wider range of time within the clock period. This has the

beneficial effect of reducing peak-current draw in additionto reducing RMS power draw

without having to change the operating frequency and without utilizing additional power

supply voltages (as in dual or multi VT approaches). A major goal of this approach is that

the proposed method can be utilized in conjunction with mostpower-reduction methods

such as clock gating, multi- VT, power switching/power shut-off; back-end processes such

as floor-plan and interconnect optimizations, and leakage reduction methods.

In this chapter, an innovative clock control strategy has been proposed and patented

by [79]. A path clustering algorithm is introduced that usesthe delay slack relative to the

maximum delay to cluster the circuit paths together. Using the generated clusters, each

cluster can be attached to a differently phase-shifted clock. This minimizes the number of

simultaneous paths being executed at the same instant whichimplicitly reduces the peak

power. A multiphase clock generator circuit is needed whichwill take the domain clock

and produce the multiphase clocks using a decoder and counter architecture. Considering

the size of the overall circuit, the overhead due to this clock circuitry in terms of area is

53

minimal and it does not increase clock power due to the fact that the load on each phase

clock is significantly smaller than the load on a single domain clock driving the entire cir-

cuit. Based on the experiments with the ISCAS 85 benchmark circuits, OpenCores circuits

and LEON processor multiplier circuit, the proposed technique significantly reduces the

peak power without significantly increasing clock-power orarea overhead as presented in

the experimental section. This work was supported by Florida CONNECT and East-West

Innovation Corporation.

The rest of the chapter is organized as follows. In section 4.2, the problem formulation

and the proposed clock scheduling strategy are discussed. In Section 4.3, a description

of the proposed algorithm including the clustering step which together describe the clock

scheduling algorithm to be incorporated in a design tool flow. The experimental set up and

the design automation flow as well as the results are discussed in Sections 4.4 and 4.5.

4.2 Clock Control Strategy

The peak power of a circuit can be defined as

max

∫

Vddidd(t)dt (4.1)

whereVdd is the supply voltage andidd(t) is the amount of current drawn by the circuit at

time t. Given this equation, minimization of the peak power at a given timet is directly

proportional to the amount of current drawn at timet. Since current is flowing ideally only

when a circuit is active, by minimizing the number of simultaneously active elements, the

spike in current drawn can be reduced from the power supply, thus reducing the IR-voltage

drop. In clocked circuits, all register elements are activeon the rising and falling edges of

the clock causing a large draw in current and thus having the greatest effect on the peak

power of the circuit.

54

Figure 4.1. Traditional Clocking of Combinational Logic Blocks

An example of a traditional synchronous clock tree driving combinational logic blocks

is shown in Figures 4.1 and 4.2. In Figure 4.1, the domain clock is distributed by a clock tree

(CT) using CT buffers: CT1, CT2, through CTn. The individualclock tree drivers strobe

numerous combinational logic blocks (CLB) of varying propagation time. The exact CLB

propagation time depends on the logic block design, the combinational input to the CLB,

and the inherent integrated-circuit speed. The focus herein is an CMOS integrated circuit,

where inherent CMOS speed is a function of process, voltage,and temperature (PVT).

Figure 4.2 exemplifies the contributions of CLB currents to the total current in a CMOS

IC. After a small CT delay, the strobe signals simultaneous CLB activity, with a commen-

surate sharp increase in the supply current. This creates anundesirable abrupt change in

the supply current, di/dt. A large di/dt is difficult for power generation and distribution,

which creates power-bus noise, and causes device voltage starvation (compression) due to

bus inductance multiplied by di/dt (V = L× di/dt). In addition to these problems with the

high transient-current demand, large di/dt is a large current variance, invoking large RMS

55

Figure 4.2. Current Profile for Traditional Clocking

current with increased power losses in the power grid. The idealized traditional current de-

mand is shown in Figure 4.2, where CLB currents are depicted as ideal rectangles of various

time durations and current amplitudes, all summed to form anaggregate power-bus current

shown as a bold black line enveloping the CLBs. In the proposed method, peak power is

reduced by taking advantage of timing slack of individual signal paths within a particular

clock domain. Timing slack data is obtained from the tool-flow path-delay database, and

its query time is only a linear function of IC complexity. It has been well established that

timing slack is abundant in most IC designs which forms the main motivation behind our

method.

The methodology consists of the following key steps listed as follows:

1. Combinatorial Logic Block (CLB) propagation time ranking algorithm is a routine

that calculates the maximum propagation time through the CLB.

2. CLB Grouping/Clustering step in which the CLBs of similarmaximum propagation

time are grouped together to receive the optimal delayed clock to minimize di/dt.

56

3. The result of a di/dt minimization determines phase-shifted clock outputs to be as-

signed to various clustered CLBs.

By taking advantage of the timing slack and judiciously reallocating the activities of the

various combinational logic groups into specified time intervals within a clock period (refer

to Figure 4.3), the total current draw within the clock interval is moderated. The domain

clock illustrated in Figure 4.3 can be viewed as the output driver of an buffer node apart

of a H-tree clock distribution network. Through balancing the number of paths belonging

to each cluster, it is expected that the interconnect delay is equal for the clock domains

Φ1, Φ2 up to Φn. Also since the buffers are inserted at a particular node in the H-tree,

the paths are considered to be in close proximity. Buffer design for generating the buffer

delay can be implemented by adjusting the P/N transistor size ratio to skew the charging

of the load driving the combinational paths. This skew varies from each circuit and is not

considered in this work since our analysis is performed before placement and routing of the

design. A conceptual traditional, zero-skew clocking scheme is depicted in Figure 4.4. On

the left, four CLBs are clocked simultaneously. The additive current of these four CLBs is

shown to the right; where the peak current is 4 A. However, using the new clock control

strategy to schedule the operation of the CLBs as shown in Figure 4.5 (left), produces a

summed current shown on the right side of Figure 4.5. The aggregate current variance

is dramatically reduced with our clock control strategy, asexemplified in Figure 4.5 (the

additive current of all the CLBs is represented as the bold black trace). Time T1, T2, T3,

and T4 are the timing epochs for the respective blocks CLB1, CLB2, CLB3, and CBL4.

Here, power is reduced via several mechanisms. First, by judiciously scheduling tasks

in a synchronous system, peak current and peak-power consumption is reduced. Second,

reducing peak current decreases the RMS current which is consumed in the power and

ground grids. Third, reduced peak current and reduced transient current (di/dt) reduce the

57

Figure 4.3. Phase Shifted Multi-Clocking of CombinationalLogic Blocks

power-grid dynamic voltage drop, thereby allowing reduceddecoupling capacitance, metal,

and even reduced supply voltage.

It will be seen in the results section that the method leads tosignificant peak-power

reduction.

4.3 Proposed Peak Power Reduction Technique

In order to optimize the peak power of a circuit, the number ofcircuit elements that are

simultaneously switching must be reduced. This can be accomplished by identifying which

paths have delay slack among the various paths and then utilize the slack values to reduce

the number of paths that are simultaneously switching. The circuit is modeled as a graph

structure and timing analysis is performed to identify the delay slacks for each primary

input among the combinational paths. With the obtained slack information, the clustering

algorithm is ran to cluster and categorize the primary inputs (combinational paths) with

similar delay slack values.

58

Figure 4.4. Traditional Clocking and Current Profile

Figure 4.5. Proposed Multi-Phase Clocking and Current Profile

4.3.1 Graph Generation and Timing Analysis

The input behavioral circuit descriptions for the ISCAS 85 benchmarks are converted

to the structural netlist by using standard cell libraries using the Nangate standard cell li-

brary based on the FreePDK 45nm technology for technology mapping. A graph is then

generated from the technology mapped netlist. The graph is connected where the nodes are

primary inputs, primary outputs, logic gates and nets as nodes and stems are the edges con-

necting the nodes. Since the experimentation is targeted towards combinational circuits and

thus the logic is non-sequential, the circuits have no feedback logic thus making the graph

acyclic. This technique can be expanded for sequential designs which will be investigated

in future research. After all the nodes and edges that belongto the circuit graph have been

created, the source and sink dummy nodes are added and connected to the primary inputs

and outputs respectively.

59

An acyclic graph is generated so that we are able to traverse the graph in linear fashion

with respect to the number of nodes for timing analysis. Timing analysis needs to be per-

formed on the structural netlist generated after technology mapping. Timing analysis will

identify slacks of various nodes in the circuit and the cumulative slacks on the various cir-

cuit paths. Timing analysis is done outside of the system tools so that their is more freedom

to use a separate technique in the delay annotation of the circuit for further analysis.

Timing analysis is performed by executing the As Soon As Possible (ASAP) and As

Late As Possible (ALAP) scheduling algorithms on the circuit’s graph. Each node structure

holds the instance name given, its node type, its strength, load capacitance, delay, and its

inputs and outputs. The type of a graph node can be primary input, primary output, net,

gate, source or sink. The strength is based on the type designcells used to synthesize

the design while the load capacitance and delay values are all obtained by the technology

library. These attributes make it easier for graph assembly. After generating the graph, each

gate node is notated with its respective delay and load capacitive values. To expedite this

annotation, the input capacitances, load capacitances anddelay values of the combinational

logic cells are extracted from the technology library to a file. The capacitive loads are

annotated for each node and using this load capacitance value, the nearest delay value

associated with the capacitance value is given to that node.

Now the graph has been fully annotated with its delay values,timing analysis can be

performed on the circuit’s graph. Timing analysis is done byperforming the Depth-First-

Search (DFS) algorithm from the source node to obtain the ASAP timing values, and from

the sink node to obtain the ALAP timing values. By taking the difference between these

values, the amount of slack delay that is on each path can be determined. Those paths with

zero slack are those along the critical path.

60

4.3.2 Path Clustering

Algorithm 2 ClusterPaths ()

Define number of nodes as n;
Define number of clusters as k;
balanced= n

k
;

for each primary inputI do
max delay[I] = Delay of longest path connected to inputI ;
while delay[i] >= clustertimes[j] do

Decrement j if j!= 0;
while clustercount> balanced do

if j == 0 then
break out of while loop;

else
Go to previous cluster by decrementing j by 1;

end if
end while
Increment clustercount[j] by 1;

end while
end for

A delay value is associated with each primary input so that our clustering algorithm

only has to operate on the inputs to assign a timing value for all the paths connected to it.

Since the timing for the primary input correlates with all the connected paths, the worst case

timing value will be associated to some primary input. Therefore, all the paths connected

to each primary input are traversed and the maximum delay of the paths connected to the

primary input is calculated. This is accomplished by running a dynamic-programming

scheme that calculates the maximum delay value connected toeach graph node. Once the

maximum delay value has been annotated for all the internal nodes, only the maximum

value delay of all the internal nodes connected to the primary input needs to be associated

with the primary input.

Algorithm 2 illustrates the proposed path clustering procedure. Since all the paths are

connected to some primary input, the path clustering algorithm deals with clustering the

primary inputs based on the maximum delay value associated with them. Each cluster’s

61

delay is mapped to a fraction of the clock period which equalsthe maximum delay of all of

the paths. The primary input are placed into the cluster where the delay of a primary input

is less than the delay of a cluster . For each primary input placed into the cluster, the size of

the cluster is increased. With all of the paths associated with a primary input, the run time

is significantly reduced since the number of primary inputs is usually significantly less than

the number of combinational paths within a circuit. This is the main step of the clustering

algorithm.

4.3.3 Clustering Algorithm

In performing path clustering, the delay values between each pair of graph nodes are

initially calculated. These values are stored in ann x nmatrix wheren equals the total num-

ber of graph nodes. If there is no path between two nodes, their delay values are assigned

-1. Now that we have the data efficiently stored, the maximum delay values connected

to each primary input can be found using a memoized algorithm. After associating these

max delay values with their corresponding primary inputs ina vector array, the clustering

algorithm given in Algorithm 3 is executed.

The clustering algorithm takes the set of delay values associated with the primary inputs

along with the primary inputs, the clock period and the user-defined cluster number value

as inputs. The number of inputs are divided by the number clusters so that the ideal number

of inputs that should be placed in each cluster to make each cluster balanced is defined. The

clusters must be load balanced as much as possible so that thechange in current over time

(di
dt

) is as close to zero as possible. Given the ideal case, where all of the primary inputs

have equal input capacitances, equal logic paths connectedto them, and equal switching

activity, it is shown that all the primary inputs consume thesame amount of power. From

the worst case, where all the primary inputs (the paths) are switching simultaneously, it is

observed that the peak-power value will be minimized given that the clusters are as balanced

62

Algorithm 3 ClusteringAlgorithm (k clusters,n num of PI,CP clock period,P set of PIs,
D set of max delays for each PI)

array[k] = 0;
// Ideally we would like to have a uniform distribution in each cluster
balanced =n

k

tc = critical delay value;
start time forC0 is 0;
//Initial run
for i = 0 to k-1do

Set the start time for clusteri to (i × balanced)*tc;
end for
Cluster paths();
array[i] = # of inputs placed in clusteri
OPT = n;
//Calculate Cluster factor
Clusterfactor for cluster i,Ci = OPT - array[i];
//Calculate Total factor

Total factor for circuit =
k

∑

j=0

Cj

while Total factor> OPTOR loop has not ran forα iterationsOR CF != PF do
Store current total factor intoPF
Choose the largest imbalanced cluster j and change the starttime cj−1+cj

2
.

Re-calculate Total and Cluster Factors;
Store current total factor inCF;
if PF < CF then

Previous configuration was better. Choose the next largest imbalanced cluster and
repeat above.

else
Current configuration is better. RepeatWhile from here

end if
end while
if array[i] == 0 for somei then

Delete clusteri;
end if

63

as possible. The clock period is divided by the number of clusters so that initially, all

clusters have equal sub-intervals for each cluster. The clock arrival times for each cluster

have been divided into percentages of the clock period as well. For example, if there is a

clusternumber = 4, then the clock signal of cluster 1 arrives the sametime as the original

clock period, the clock signal of cluster 2 arrives at time which is equal to 25% of the clock

period after the original, the clock signal of cluster 3 arrives 50% after the original and the

clock signal of cluster 4 arrives after 75% of the original clock period has past. From this

example, one can see that the shorter delayed paths should beplaced in the latter clusters,

and the longer delayed paths should be placed in the beginning clusters.

The algorithm places each primary input in a cluster by comparing the delay widths of

the cluster with the maximum delay associated with the primary input. The comparisons

begin from the last cluster for two reasons: Firstly, in thisoptimized performance era, we

expect that many of the delayed paths are close to the delay ofthe critical path; the second

reason is that it is preferred to place as many primary inputsin the latter clusters as possible

so that if any of the latter clusters become imbalanced, primary inputs can be shifted to an

earlier cluster without generating any timing violations in the circuit. After placing each

primary input into a cluster, we calculate the cluster factor for each cluster which is given by

||clustersize- balancedsize||, whereclustersizeis the number of primary inputs placed

in the cluster andbalancedsizeis the ideal number of evenly distributed primary inputs

over the number of clusters. If each cluster has a factor of zero, then the configuration is

balanced, and the algorithm exits with the current cluster configuration. If all the clusters

have a nonzero cluster factor, then the cluster that has the largest cluster size chosen. If

the cluster is not the first cluster, then we can always try to shift some of its inputs to an

earlier cluster, as long as it does not cause the other clusters to become imbalanced. If this

alternative is not possible, then the start time of the cluster is shifted to the midpoint of the

previous adjacent cluster start time and its original starttime. After adjusting the start time

64

of the cluster, re-clustering of the primary inputs is performed, to see if a more balanced

configuration can be obtained. This process is continued until a balanced configuration is

generated, or a saturation point is reached where no improvement is occurring. To refrain

from the algorithm running for some large finite amount of time, the algorithm stops after

α number of iterations. Thisα constant can be configured to the user specifications.

The objective of the clustering algorithm is to cluster the primary inputs of the circuit

such that the peak power is minimized for the circuit. The run-time of the algorithm is

dominated by graph generation and the clustering algorithm. Given thatN represents the

total number of graph nodes andE represents the total number of edges in the graph, the

graph generation is dominated by generating edges for allN nodes which takes O(NE) time.

The clustering algorithm is dominated by ClusterPaths() function which runs in O(N +E)

time. Thus the clustering algorithm runs in O(α(̇N + E)). This gives a linear runtime as

long asα < N + E.

Peak power usually occurs during the transition period of the clock signal thus it is in-

tuitive to reduce switching activity during this interval.During this transient period, many

of the combinational module inputs are switching causing a large draw in the current from

the power supply at once and then a decrease as the circuit begins to stabilize. The algo-

rithm attacks this problem by balancing the number of inputsbeing executed, which in the

ideal case would balance the current drawn by the power supply. By grouping the primary

inputs in a balanced manner, the different paths of the combinational logic can be executed

throughout the entire clock period rather than at the same time instance. By balancing the

current drawn during the transition time of the clock, the instantaneous power consumed

by the circuit is reduced which reduces the peak power of the circuit.

One benefit of this algorithm is that it gives a time efficient solution to the peak-power

problem. Instead of addressing the problem at the transistor level where power accuracy is

higher, the circuit is optimized at the synthesized-netlist level during the design automation

65

process. Although accuracy may be not be as high at this level, solution time efficiency

is better due to the lower level of complexity. Given that technology mapped netlists are

optimized along with the Synopsys tools, power analysis values are closely relative to the

actual power values of the individual circuits.

Table 4.1. Peak Power Reduction (PPR) Percentage in Benchmark Set

Benchmark 2 clusters 3 clusters 4 clusters 5 clusters 6 clusters
PPR(%) PPR(%) PPR(%) PPR(%) PPR(%)

c432 26.15 47.55 22.78 46.48 49.85
c499 41.21 44.25 49.20 54.83 71.78
c880 6.55 30.25 42.66 30.70 N/A
c1355 40.18 38.40 45.93 49.97 68.99
c1908 14.22 34.54 35.21 46.28 N/A
c2670 -11.64 17.90 28.13 28.33 34.45
c3540 27.23 38.32 33.06 48.68 54.00
c5315 6.70 10.91 34.68 21.02 35.06
c6288 -24.78 -23.33 9.97 14.91 18.01
c7552 -9.02 2.37 -4.08 -1.90 31.72
divunit 2.63 2.10 4.24 18.13 21.31
fpadd 3.23 -8.62 10.08 13.81 4.84
mul32 7.75 -5.35 8.78 1.67 4.96

oc8051alu 12.33 15.31 34.20 35.43 38.42
parallel find 14.27 37.11 37.87 47.95 31.32

average 10.47 18.78 26.18 30.42 36.62

4.4 Experimental Setup

The simulation setup is centered around Synopsys DesignCompiler and Primetime-PX

power extension software suites and simulations are performed on theISCAS 85bench-

marks and a few circuits from OpenCores [83]. The first step isto synthesize each bench-

mark using the technology standard cell library. Technology mapping is carried out using

Synopsys Design Compilerand the 45nm Nangate Open Cell Technology Library. A small

subset of the library’s combinational cells are used to synthesize a simpler design. The

technology mapped netlist is given as input to the proposed path clustering algorithm. The

66

Figure 4.6. Process Flow for Power Analysis

67

clustering algorithm was coded in C/C++ programming language. The generated netlist

is converted into an acyclic graph structure where each noderepresents a combinational

cell module and each edge represents the nets. The graph is annotated with the load ca-

pacitances and cell delays for timing analysis. Path characterization and timing analysis are

performed with the ASAP and ALAP algorithms. Path clustering is then executed to cluster

the paths after which, Verilog source and script files necessary for re-synthesis, simulation

and power analysis are generated.

Resynthesis is carried out usingDesign Compiler. In this stage, flip flop modules are

connected to the primary inputs so that the execution of the test vectors can be synchronized.

The phase-shifted multiple clocks with respect to the domain clock can be generated in

different ways. The generation of the multiple phase-shifted clocks can be done by use

of a counter and decoder logic module based on a clock dividerstrategy. The clock lines

are buffered to drive the clock inputs on the flip flop modules to reduce the amount of

internal short circuit power generated by the cell modules due to large input transition times.

Given the resynthesized designs and the standard delay file (.sdf), the gate-level designs

are simulated. Alternately, the phase-shifted clocks globally can be generated using delay

buffers on the original clock which involves experimentation with the number of buffers,

buffer sizes and the capacitive loads on each clock line. It is observed that in a few cases,

when buffers are inserted at the HDL level, the DesignCompiler tool tends to remove some

of the buffers during the optimization phase of logic synthesis affecting the amount of phase

shifts needed in the clocks for our experiment. These neededto be checked in each case.

The other observation was that the clock-power overhead washigher in the first case which

shall be discussed later in this section. Thus, a second approach to implement the phase-

shifted clock was chosen.

Gate-level simulation is performed for power analysis in the next stage. The gate-level

designs are simulated usingSynopsys Verilog Compiler Simulatorusing some input vectors

68

as given in [80] and generating the other input vectors randomly. Each benchmark was

simulated for a set of 10,000 input vectors. The simulator gives the switching activity in

the form of a vcd file. Bit blasting was performed on the switching activity file so that

each net on the wired bus has its individual switching activity annotation. The bit-blasting

operation is performed for more accurate power analysis. Power analysis was performed

on the designs usingSynopsys Primetime-PX. The resynthesized gate-level netlist and the

generated vcd files are passed into the software to perform the analysis. Power analysis

is performed every 1ps to get maximum accuracy. The experiments were conducted on a

16-core processor server with 98GB of RAM. A 64-bit executable was necessary for some

of our benchmarks due to the growth in size of their graphicalrepresentations. Through

efficient coding optimizations, we were able to optimize ourcode to run most of the bench-

marks on a 32-bit processor with 4GB RAM. The detailed designflow is shown in Figure

4.6. The specifications for the benchmarks tested are listedin Table 4.2. The clock period

was calculated by adding the maximum delay to the maximum clock-to-q and setup time

delay for the Flip-flop cell module in the technology library. The Phase shifting technique

was initially performed using a counter-decoder logic block to perform the phase-shifted

clock arrival times. This method requires the generation ofa faster clock created by a clock

multiplier. The number of clusters used has a direct relationship with the speed of the gen-

erated clock, thus a limit where the speed of our multiplied clock is higher than the flip-flop

cell’s propagation delay was reached, thus precluding counter logic operation. Due to this

limitation, implementation of the phase-shifted clocks were carried out using buffer delays.

4.5 Simulation Results

In this section, the results obtained from the simulations of the ISCAS 85 combinational

benchmark and OpenCores circuits are discussed. Also, a single-clock divider, single-

69

Table 4.2. Benchmarks’ Functionality, Clock Period and Execution Time

Benchmark Functionality Clock Period(ns) Exec. Time(µs)
c432 Controller 0.949 6.89E+05
c499 SEC circuit 0.969 5.04E+05
c880 8-bit ALU 0.879 1.11E+06
c1355 32-bitSEC circuit 0.969 1.12e+06
c1908 16-bitSEC/DED circuit 0.959 7.34e+05
c2670 ALU and controller 1.17 8.02E+05
c3540 8-bit ALU 1.12 9.18E+05
c5315 9-bit ALU 1.18 2.09E+06
c6288 16x16 multiplier 2.31 6.18E+06
c7552 32-bit adder/Comparator 1.13 3.65E+06

div unit Single-Clock Divider 2.07 1.06E+08
fp add Single-Precision FP Adder 1.52 4.49E+07
mul32 32-bit multiplier(LEON) 2.15 9.29E+08

oc8051alu Intel 8051 core ALU 0.435 5.84E+06
parallel find Max/Min Binary Tree finder 1.48 1.44E+08

precision floating-point adder, 32-bit multiplier from theLEON processor [81], Intel 8051

ALU core, and min/max binary tree finder were included to the set. The simulations were

performed for two configurations in the case of each circuit:(i) traditional clock tree driven

circuit (ii) the circuit after clustering being driven by multiple phase-shifted clock lines with

additional buffering as needed. The maximum execution times for each benchmark is given

in Table 4.2. The peak-power reduction due to the proposed clocking scheme are given in

terms of percentage change in Table 4.1. The absolute peak power values for the traditional

(sometimes referred to as original case) and the clustered clocking schemes along with the

absolute values for the power overhead due to the clocking circuits are plotted for each

benchmark circuit in the form of bar graphs in Figures 4.8-4.12. From our results, the

majority of the circuits have a monotonic peak-power reduction with the largest peak-power

reduction at 72%. In general, the amount of peak-power reduction (PPR) increases as the

number of clusters increases. The circuits with the best PPRvalues are the error-correcting

circuits (c1908, c1355, c499) followed by the ALU designs (c2670, c3540, c5315, and

70

c880). The divider and multiplier circuits showed the leastamount of peak power reduction

which is most likely due to that these circuits are tightly interconnected (correlated) which

reduces the amount of slack between the internal combinational paths. Note that some

cluster configurations have negative PPR values which meansthat the peak-power value

increased with respect to the original circuit configuration. There are also some instances

where the benchmark circuits do not exhibit a monotonic or regular pattern in the decrease

in peak power. It was observed that these two issues were caused by the following:

1. The internal circuit path delays were close to the critical path delay which gives very

little slack for clustering

2. The cluster configurations are well balanced, but the switching activity across the

clusters differed drastically causing a sharp change in current demand.

Results were generated for up to six clusters after which timing violations due to the in-

curred buffer delays between the cluster clock time periodsthat extend past the next rising

clock edge of the original clock were observed. In the six cluster configuration, c880 and

c1908 had timing violations.

Given the dynamic power consumption

Pdyn = CLV 2
ddP0→1f

whereCL is the load capacitanceVdd is the supply voltage,P0→1 is the probability that the

clock event changes the output of a gate andf is the frequency, the only factor that varies

in the clustered configuration and the original configuration is P0→1. Contributors to our

power overhead are the buffers inserted as well as the clock power for driving the clusters.

The clock-power overhead depends on the method used for generating the phase-shifted

clocks and is somewhat simulation dependent. Clock-power overhead is considered as the

additional power overhead incurred due to generating the phase-shifted clocks and this was

71

much less for the second approach discussed above with buffers than the decoder-counter

approach.

Table 4.3. Average Power Overhead Analysis

Benchmark # of Buffers Total Power(mW) Power Overhead(%)
c432 3 1.41 2.8
c499 3 1.24 4.7
c880 3 2.74 2.1
c1355 3 1.42 4.1
c1908 3 3.47 1.7
c2670 4 5.05 1.5
c3540 4 6.24 1.2
c5315 4 8.07 1.0
c6288 7 23.5 0.57
c7552 4 13.1 0.6

div unit 7 35.2 0.4
fp add 5 14.8 0.7
mul32 7 118.2 0.11

oc8051alu 2 3.54 1.1
parallel find 7 28.1 0.3
MINIMUM 2 1.24 0.1
AVERAGE 4.4 17.7 1.5

MAXIMUM 7 118.2 4.7

Initially, while performing the simulations, it was observed that the estimated power val-

ues were increasing significantly with the multiphase clocknetwork due to internal power

consumption of the cell modules and the internal power is basically the short circuit power

as described in the manuals for Primetime-PX. This internalpower increase was due to the

large input transition time caused by charging the net capacitance of the clock signal inputs

connected to the flip flop modules. Since the clock signals aregenerated by the phase-

shifting logic, buffers must be inserted on the clock drivers which in turn will minimize

this input transition time. To obtain more accurate power estimation, it was noticed that

the gate-level simulation and switching-activity estimation give significantly more accurate

results than the RTL process for power estimation. In Primetime-PX, power estimation is

72

Figure 4.7. Snapshot of Propagation Delay Characteristicsof the Nangate Buffer Cell [82]

computed by taking the average of the power consumption within a user-defined sampling

interval, but in the RTL process, this sampling interval canonly be defined relative to the

clock period. By performing gate-level simulation, a much smaller sampling interval was

possible (every 1 ps) and it was possible to get significantlymore accurate power-estimation

values. It is also useful to perform bit-blasting on the switching activity file so that each

net within a bus is given its own switching-activity profile.It was also observed that buffer

insertion resulted in a decrease in peak power with a small average-power overhead.

Next, the power overhead in generating the phase-shifted clock using delay buffers was

analyzed. Given the largest clock period from Table 4.2, onecan note that the worst case

where the largest amount of delay needs to be inserted from the chain of buffers. Given

the propagation delay characteristics shown in Figure 4.7,if the buffer was used with the

least amount of propagation delay, it is only necessary to insert seven buffers maximum to

generate the delays necessary for the phase-shifted clocks. The power overhead percentage

is shown in Table 4.3. The total power column represents the amount of power consumption

for each benchmark in its original configuration. From our simulation results, it is worthing

noting that the phase-shifted clock average-power is small, averaging only 1.5% over the

entire suite of benchmark circuits. It is important to note that this is an extreme upper bound

73

for our smaller benchmark and one should expect a much smaller percentage in overhead

in the actual(physical) implementation.

The benchmark-circuit area overhead attributable to the addition of the phase-shifted

clock(buffer chain) is shown in Table 4.4. Area overhead is negligible, averaging only

1.6%, since the area of the BUFX32 buffer in our 45-nm technology library is only 2.394

µm2. Variance in the area overhead is possible due to the technology library, cell selection,

and buffer sizing necessary to generate the delay values, but since the calculated area was

done using the largest cells possible, the area overhead should not increase within this

technology size(45nm).

Table 4.4. Area Overhead Analysis

Benchmark # of Buffers Total Area(µm2) Area Overhead(%)
c432 3 129 3.7
c499 3 289 2.5
c880 3 286 2.5
c1355 3 289 2.5
c1908 3 316 2.3
c2670 4 488 2.0
c3540 4 795 1.2
c5315 4 1160 0.8
c6288 7 1946 0.9
c7552 4 1347 0.7

div unit 7 2359 0.7
fp add 5 416 2.9
mul32 7 5347 0.3

oc8051alu 2 703 0.7
parallel find 7 5001 0.2
MINIMUM 2 129 0.2
AVERAGE 4.4 1391 1.6

MAXIMUM 7 5347 3.7

How the proposed peak power scheme affects the RMS current ofthe benchmark set

was also investigated. To calculate the RMS current for the given power numbers, results

from the fsdb file generated by Synopsys Primetime-Power Extension were extracted and

74

converted into an text file. The generated text file is then passed into a C++ program de-

signed to compute the RMS current values. For computing the RMS current we use the

following formula:

Irms =

√

∫ T

0
I(t)2dt

T
(4.2)

To obtain the current values we divided the calculated powervalues by the nominal

supply voltage which in our case was 1.2V. To calculate the integral function we use the

Riemann Sum equation to get fairly accurate calculations. As you may recall, the integral

of an function can be calculated using the following equation:

∑

∆t→0

f(t)∆t (4.3)

Since the simulation annotates values every 1ns, it is expected to get fairly accurate

numbers. Execution times were calculated using the gettimeofday() function which is part

of the sys.time.h header library. Using this function, the simulation time with accuracy

down to the microsecond is able to be calculated. RMS percentage reduction is shown in

Table 4.5. Results show a monotonous increase in percentagereduction of RMS current

with an average reduction of 49% across the defined cluster configurations. Thus, it is

shown that benchmark circuit paths that have been clusteredusing our technique generates

a lower RMS current demand, which gives a reduction in the peak power draw from the

power supply.

75

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

2_cluster 3_cluster 4_cluster 5_cluster 6_cluster

P
ow

er
(W

)

Peak Power Values for c432 Benchmark

Original
Clustered

(a) c432 Power Results

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

2_cluster 3_cluster 4_cluster 5_cluster 6_cluster

P
ow

er
(W

)

Peak Power Values for c499 Benchmark

Original
Clustered

(b) c499 Power Results

 0

 0.02

 0.04

 0.06

 0.08

 0.1

2_cluster 3_cluster 4_cluster 5_cluster

P
ow

er
(W

)

Peak Power Values for c880 Benchmark

Original
Clustered

(c) c880 Power Results

Figure 4.8. Peak Power and Average Power Values for ISCAS 85 Benchmarks for c432,
c499, and c880

76

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

2_cluster 3_cluster 4_cluster 5_cluster 6_cluster

P
ow

er
(W

)

Peak Power Values for c1355 Benchmark

Original
Clustered

(a) c1355 Power Results

 0

 0.02

 0.04

 0.06

 0.08

 0.1

2_cluster 3_cluster 4_cluster 5_cluster

P
ow

er
(W

)

Peak Power Values for c1908 Benchmark

Original
Clustered

(b) c1908 Power Results

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

2_cluster 3_cluster 4_cluster 5_cluster 6_cluster

P
ow

er
(W

)

Peak Power Values for c2670 Benchmark

Original
Clustered

(c) c2670 Power Results

Figure 4.9. Peak Power and Average Power Values for ISCAS 85 Benchmarks for c1355,
c1908, and c2670

77

 0

 0.05

 0.1

 0.15

 0.2

2_cluster 3_cluster 4_cluster 5_cluster 6_cluster

P
ow

er
(W

)

Peak Power Values for c3540 Benchmark

Original
Clustered

(a) c3540 Power Results

 0

 0.05

 0.1

 0.15

 0.2

2_cluster 3_cluster 4_cluster 5_cluster 6_cluster

P
ow

er
(W

)

Peak Power Values for c5315 Benchmark

Original
Clustered

(b) c5315 Power Results

 0

 0.05

 0.1

 0.15

 0.2

2_cluster 3_cluster 4_cluster 5_cluster 6_cluster

P
ow

er
(W

)

Peak Power Values for fpadd Benchmark

Original
Clustered

(c) fpadd Power Results

Figure 4.10. Peak Power and Average Power Values for ISCAS 85Benchmarks for c3540,
c5315, and fpadd

78

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

2_cluster 3_cluster 4_cluster 5_cluster 6_cluster

P
ow

er
(W

)

Peak Power Values for divunit Benchmark

Original
Clustered

(a) divunit Power Results

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

2_cluster 3_cluster 4_cluster 5_cluster 6_cluster

P
ow

er
(W

)

Peak Power Values for oc8051_alu Benchmark

Original
Clustered

(b) oc8051alu Power Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

2_cluster 3_cluster 4_cluster 5_cluster 6_cluster

P
ow

er
(W

)

Peak Power Values for Binary tree finder (parallel_find)

Original
Clustered

(c) parallelfind Power Results

Figure 4.11. Peak Power and Average Power Values for ISCAS 85Benchmarks for divunit,
oc8051alu, and parallelfind

79

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

2_cluster 3_cluster 4_cluster 5_cluster 6_cluster

P
ow

er
(W

)

Peak Power Values for c6288 Benchmark

Original
Clustered

(a) c6288 Power Results

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

2_cluster 3_cluster 4_cluster 5_cluster 6_cluster

P
ow

er
(W

)

Peak Power Values for c7552 Benchmark

Original
Clustered

(b) c7552 Power Results

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

2_cluster 3_cluster 4_cluster 5_cluster 6_cluster

P
ow

er
(W

)

Peak Power Values for LEON multiplier Benchmark

Original
Clustered

(c) Mul32 Power Results

Figure 4.12. Peak Power and Average Power Values for ISCAS 85Benchmarks for c6288,
c7552, and mul32

80

Table 4.5. Percentage of RMS Current Reduction in BenchmarkSet

Benchmark 2clusters 3clusters 4clusters 5clusters 6clusters
c432 36.12 52.41 65.53 71.44 80.77
c499 32.32 45.07 59.52 69.48 65.56
c880 28.58 42.16 56.48 68.04 N/A
c1355 28.58 42.16 56.48 68.04 64.04
c1908 19.92 46.70 58.42 68.56 N/A
c2670 39.80 47.73 54.68 60.23 65.26
c3540 16.94 23.46 31.84 41.45 45.82
c5315 36.73 49.54 53.05 59.54 63.89
c6288 41.64 51.51 64.79 68.37 77.19
c7552 21.95 25.36 43.50 38.90 59.56
divunit 0.00 -3.34 10.32 13.51 31.64
fpadd 63.51 67.89 73.84 79.33 84.35
mul32 43.89 52.02 56.00 57.77 67.03

oc8051alu 33.16 51.08 56.66 59.03 60.92
parallel find 24.36 21.24 35.23 49.37 53.48

average 31.31 41.19 51.41 57.55 64.06

81

CHAPTER 5

A VARIATION-TOLERANT DESIGN USING DYNAMIC CLOCK STRETCHIN G

5.1 Introduction

Technology scaling into the nanometer dimensions has made the design of high per-

formance and versatile computing systems feasible. Smaller feature sizes in devices has

enabled more integration and performance within the same area. A critical concern how-

ever, has been to provide the desired performance with ever diminishing power budgets.

The power-performance trade-off has only been exacerbatedwith the inception of parame-

ter variations in nanometer technology. Parameter variations defines the amount of process

deviation due to doping concentration, temperature fluctuations, power supply voltage vari-

ations and noise due to coupling. Variations within a designcauses variances in power

dissipation and clock frequency from the specified target and hence can result in parametric

yield loss. Parametric yield is used to define the design’s sensitivity to variations. This

variation sensitivity factor is expected to cause 60-70% ofall yield losses in the impending

technology generations [17]. To ensure that designs are tolerable to all possible variations

(process, voltage and temperature), circuits are often designed with a conservative margin.

These margins are created by increasing the supply voltage and/or by varying the transistor

sizes of device structures to account for the uncertainty due to worst-case combination of

variations. This method of over-design takes into account asituation that rarely occurs thus

the design is not allowed to achieve its most optimal performance.

82

In this chapter, an approach for dynamic clock stretching bydynamically detecting de-

lay incurred by process variations is discussed. The clock edge is delayed to critical path

register cells to accommodate the increased signal propagation delay due to variations. The

clock stretching logic captures the signal transition halfway along the critical path into a

positive level-sensitive latch. If the signal transition on the critical path is delayed due to

process variation, the latch in the detection circuit holdsa different value compared to the

signal line and a delay-flag is set. Given that T is the clock cycle time, the signal transition

is expected to occur before time T/2. The delay-flag, if set, dynamically stretches the clock

at the destination register to accommodate the additional variation-induced propagation de-

lay. Thus the clock stretching methodology avoids a mismatch in the data being captured

and hence prevents a timing error which allows for the designer to clock the circuit at a

faster clocking rate. The detection circuitry needs to be added to the top critical paths and

an error signal from any of these paths can stretch the clock in the appropriate destination

register. The clock is stretched (the capture edge trigger is delayed) considering both spa-

tial correlations between closely spaced critical path gates and an average variation range

as reported, in [12,50]. Experimental results based on Monte-Carlo simulations on ITC’99

benchmark circuits indicate efficient improvement in timing yield with negligible area over-

head. The rest of the paper is organized as follows. In Section 5.2, the construction of the

delay detection circuit for efficient clock stretching is explained. Experimental evaluation

and results for an example circuit and benchmark circuits are presented in Sections 5.3 and

5.4 respectively.

5.2 Proposed Methodology

The objective is to add the clock stretching logic to the top critical paths in the design.

These paths that are chosen are most likely to be affected by the delay effects of variation.

83

Figure 5.1. Dynamic Clock Stretching for Variation Tolerance

The paths with a delay within 15% of the most critical path areselected as the candidates for

dynamic clock stretching [12,16]. Variations have shown toincur up to 10% delay at of the

maximum delay [22]. For the selected critical paths, there must be a critical interconnect

transition before the T/2 time instance. At this transition, the signal’s value is captured into

the latch of our clock stretching logic(CSL) module. To ensure signal integrity, the signal

should remain stable for the setup time of the latch. Thus this gives us

Tcritical trans ≤ TCLK
2

− TLatch setup time (5.1)

Simple circuit sizing, buffer insertion, or other incremental changes can be done to create a

critical interconnect transition, if one does not exist automatically in any of the top critical

paths. Once the transition signal has been captured, the CSLmodule monitors the transition

point for any change in the signal value. If the signal value is different then the value stored

into the latch, this is a notification that a delay has been incurred due to variation effects.

Thus the output of the XOR selects the stretched clocked input which delays the arrival

84

Figure 5.2. Illustration of Spatial Correlation

time of the clock signal to the destination register to accommodate for the delay incurred by

variations. If no delay due to variations has occurred, thenthe path is clocked at the normal

clock frequency. With the use of dynamic clock stretching, it eliminates the need for over

conservative timing margins for rare cases. This can be mostuseful for high performance

designs.

In the case of short paths following critical paths, the effects of dynamic clock-stretching

can be eliminated by gate sizing since the clock is stretchedby at most 10%. With multi-

ple design objectives such as power and performance, the existence of short paths are rare

in current circuit designs. When two consecutive critical paths are connected, the clock

stretching signal should be propagated. This can be taken care of by connecting the previ-

ous output signal from the MUX and the current XOR output to anOR gate as illustrated

in Figure 5.3 The dynamic clock stretching technique incorporates the spatial correlation

85

Figure 5.3. Consecutive Critical Paths Implementation

property which states that if an component is affected by variations, then there is a high

probability that nearby components are affected as well. Thus we assume that if the com-

binational logic after the falling edge of the clock are affected variations, then the logic

before the falling edge is affected as well. The magnitude ofthese variations, will be hard

to predict, and can be different based on their location in the chip layout. However, the

presence or absence of variations can be safely assumed withthe property of spatial corre-

lations. In the case where variation delay is less than the setup time of the latch, there could

be unstable behavior in the CSL module or there could be a small increase in delay on the

path causing incorrect data to get stored in the destinationregister. With variation delay

effects around 5-10% [22], this should be larger than the setup time of the latch within the

CSL module. In an effort to confirm, an example was constructed for a critical path with

20 levels of logic at the 45nm technology node level. Delay information was used from the

45 nm technology library for this experiment. The setup clearly confirms the feasibility of

the proposed transition capture methodology.

5.3 Experimental Evaluation

To evaluate the proposed methodology, an experimental circuit was simulated using

Synopsys Verilog Compiler simulator. The purpose of this simulation is to validate the

functionality of the methodology in the presence of variations within the circuit. The effi-

ciency of the methodology is computed using Monte-Carlo based timing yield simulations.

86

Table 5.1. Description of Symbols in Simulation Snapshot

Clock signals

glb clk Circuit Clock
delayedclk Delayed clock

MUX/Z Output clock from multiplexor
Data signals

in11 Input data value
eco net 14 Critical interconnect transition value

out1 Output data value
Clock stretch signals

d1/q reg/Q Latch output
MUX/S Select line of multiplexor

Figure 5.4. Simulation Snapshot of Example Circuit: No Variations; No Clock Stretching

A chain of inverters in between two registers are chosen as the experimental circuit. The

chain of inverters are chosen since every interconnect makes a transition and hence the in-

terconnect halfway in the path easily becomes the necessarycritical interconnect transition.

The clock cycle time is chosen to be the critical path delay ofthe inverter chain. In ad-

dition to the input, output and clock signals, the critical interconnect that transitions from

0→1 (or 1→0) just before the negative edge of the clock is also displayed in the simulation

snapshots (Figures 5.4 and 5.5). A simulation snapshot of the example circuit with no vari-

ations is shown in Figure 5.4. A brief description of the symbols used in the simulation is

shown in Table 5.1. The signal in11 is the primary input (output from the source flip-flop).

The signal econet 14 is the critical interconnect halfway in the path and out1 is the output

signal connected to the destination flip-flop. It can be seen from Figure 5.4, that a 0→1

87

Figure 5.5. Simulation Snapshot of Example Circuit: With Variations; No Clock Stretching

Figure 5.6. Simulation Snapshot of Example Circuit: No Variations; With Clock Stretching

transition on the input signal (in11), initiates a transition on a5 and is captured on the next

clock cycle in the destination flip-flop (out1). The simulation snapshot for the same circuit

in the presence of delay uncertainty due to process variations is shown in Figure 5.5. In the

presence of variations, the same 1→0 transition on the critical net econet 14, happens after

the negative edge of the clock. The delay due to process variations also caused a timing vi-

olation on the output flip-flop (out1), as the (0→1) transition is captured on the subsequent

clock cycle.

The simulation snapshot for the experimental circuit with the clock stretching logic is

shown in Figures 5.6 and 5.7. The delayed clock (delayedclk) and the multiplexor output

to the destination flop (muxoutclk) is added to the list of clock signals. In addition to the

input and clock signals, the CSL snapshots also show clock-stretched signal d1/qreg/Q and

MUX/S(select signal). It can be clearly seen in Figure 5.7, that the delayed clock is sent

88

Figure 5.7. Simulation Snapshot of Example Circuit: With Variations; With Clock Stretch-
ing

to the MUX/Z pin whenever the transition on the critical interconnect transition happens

after the negative edge of the clock. Further in Figure 5.6, we show that in the absence of

variations the circuit operates normally and clock (glbclk) is used at the source and the

destination flip-flops.

5.4 Simulation Results

In this section, results for the ITC’99 benchmarks using 65nm technology from [37] are

given. The improvements in timing yield for the circuits were estimated using Monte-Carlo

simulations. The simulation flow for the timing yield estimation is shown in Figure 5.8. The

gate and net delay of the circuit elements were assumed to have a variation range of around

20% from the nominal value. In the absence of real statistical data, it has been pointed out

in [50], that it is reasonable to assume a variation parameter value of around 20-25% on

the delay due to process variations. The RTL level VHDL netlists were synthesized using

the Synopsys Design Compiler. The gate-level Verilog netlist is then placed and routed

using Cadence Encounter tool. A timing analysis report (TARPT) file is then generated

89

Figure 5.8. Simulation Flow for Timing Yield Estimation

to identify the critical paths whose delay value is within 15% of the most critical path. A

Monte-Carlo simulation framework is created in a C-programenvironment for the ITC’99

benchmarks with the placed and routed file(DEF), the parasitics file (SPEF), the timing

analysis report (TARPT) and the standard cell delay libraries as input. The Monte-Carlo

simulation creates 20000 instances of the benchmark with varied delay between nominal

and the maximum range to estimate the timing yield. Timing yield in this context, is defined

as the percentage of the circuit instances meeting the timing specification. The circuits are

tested in two configurations, namely (i) original circuit with variations and (ii) the original

90

Figure 5.9. Clock Stretch Range Vs Timing Yield [37]

Table 5.2. Timing Yield Results on Benchmark Circuits at 65nm

ITC’ 99 No. of No. of Near Critical CSL Timing Yield
Benchmark Gates Nets Paths overhead without CSL with CSL

b11 385 322 9 9% 96.5% 99.64%
b12 834 847 16 7.6% 82% 99.65%
b14 4232 4544 65 6.1% 66.2% 99.97%
b15 4585 4716 80 6.9% 48.6% 99.99%
b20 8900 9538 110 4.9% 62.1% 99.95%
b22 12128 13093 118 3.8% 37.0% 99.92%
b17 15524 15911 150 3.8% 56.2% 99.97%
b18 42435 44554 152 1.5% 61.2% 99.99%

Average Percent 5.4% 63.7% 99.9%
Legend: CSL- Clock Stretching Logic
Legend: CSL overhead: Percentage of CSL logic area comparedto total circuit area
Legend: Near Critical Paths: Paths that can violate timing yield with variations

circuit with the CSL module with variations. The timing specification for the original and

the CSL inserted circuit, is assume to be 100% in the absence of variations.

The timing yield results that were presented in [37] are shown in Table 5.2. It can be

seen that the average timing yield of the original circuit with the nominal timing specifica-

tion is approximately 60%. This low timing yield forces circuit designers to add an extra

margin in order to improve timing yield. The extra timing margin increases the overhead

and/or decrease the performance at which the circuit can operate. The proposed methodol-

ogy dynamically detects the delay due to variations and addsthe extra timing margin only

91

Table 5.3. Timing Yield Results on Benchmark Circuits under45nm

ITC’ 99 No. of No. of CSL Timing Yield
Benchmark Gates Nets overhead without CSL with CSL

b11 1484 767 4.5% 44.409% 96.444%
b12 2190 1252 15.7% 33.260% 91.189%
b14 34158 14654 <1% 68.124% 99.999%
b15 20880 8501 2.6% 42.608% 99.680%
b20 70418 30521 <1% 73.468% 99.999%
b22 82371 40791 <1% 87.915% 99.998%
b17 58284 25433 <1% 49.992% 99.999%
b18 200772 85717 1.5% 61.871% 99.334%

Average Percent 3.86% 57.7% 98.3%
Legend: CSL- Clock Stretching Logic
Legend: CSL overhead: Percentage of CSL logic area comparedto total circuit area
Legend: Near Critical Paths: Paths that can violate timing yield with variations

when required. The proposed CSL methodology has increased the average timing yield to

around 99.9%. The clock was stretched to create an extra timing slack of 10% only if the

delay due to process variations are activated in the worst-case critical paths. In the context

of timing failures due to short paths, it is crucial to keep the clock stretching range as short

as possible. Hence, a simple analysis on selected benchmarkcircuits was performed to see

the impact of clock stretch range on timing yield (Figure 5.9). A smaller value for clock

stretch range, for example 5% is shown to impact the timing yield significantly. Thus, the

clock stretch range was chosen to be 10% of the clock period. In addition to the timing

yield improvement results, the benchmark characteristics(number of gates and intercon-

nects), the number of near critical paths and the area overhead due to CSL logic have been

specified in Table 5.2. The proposed CSL methodology also incurs an average area over-

head of 5%. The area overhead can be further reduced, if the critical paths are isolated

using techniques similar to the previous works on dynamic clock stretching [60,65].

92

5.4.1 Simulation Using 45nm Technology Library

The methodology was simulated for the ITC ’99 benchmarks using the Nangate 45nm

Open Cell Library. The circuits were synthesized with Synopsys Design Compiler using

negative unate logic to make it simpler to extract a criticalinterconnect transition. The

Cadence First Encounter tool was used for placement and routing. Encounter generates

the DEF, SPEF and TARPT files needed for further processing. The necessary information

is extracted from the DEF, TARPT, and SPEF using Perl scriptsand is passed into a C++

simulation program. For each gate, the names, types and locations of the gates are extracted

from the DEF file. The SPEF file is used to calculate the lumped RC delays for the inter-

connect nets. For simplicity and better accuracy, the totallumped RC delay value is divided

by the number of fanouts on the net so that the RC delays along single paths can be closer

to their actual values. The paths were created by the timing analysis report (TARPT) which

gives the top worst delay paths in our circuit. The gate information in the TARPT file is

used to create our nodes in the paths and to connect the wires associated with them from

the SPEF file to give us our edges. After path generation, the path delays and maximum

path delay are calculated. Using a correlation matrix, the critical paths that are spatially

correlated with each other are defined. Paths are defined to bespatially correlated if any

of their gates are within 10 units of distance between each other. Distance was calculated

using the place and route information in the DEF file.

A near critical path and a gate along this path are randomly chosen for each instance.

Given a random amount of variation, the delay of all the gatesbefore the chosen gate on

the path are increased by some variable amount. The cell delay values are varied between

0-20% of the critical path delay to simulate the effects of variations. The input slews and

interconnect delays are held constant to avoid re-synthesizing the circuit for each instance.

After varying the cell delay, re-calculation of the path delays is done for the chosen path

93

and all the paths that were spatially correlated to that path. The calculated path delays

are compared with the maximum delay value for our timing yield. In the original case,

the timing yield is defined by those path delays that have met the maximum timing delay

constraint under variations with the implementation of theCSL module. For the 45nm

case, the CSL module stretches the clock signal by 5% beyond the maximum delay. 100K

random instances were performed and the timing yield was calculated which is shown in

Table 5.3. From the analysis a 40% percent increase on average in timing yield with an

average of 3.8% area overhead is shown. The variation in gatecount, net count, and CSL

overhead from the 65nm analysis is due to both the technologysize as well as the cells used

to synthesize the circuit. The benchmark b12 has the largestincrease in timing yield but also

the largest increase in area overhead which is due to the circuit area and the large number of

near critical paths. The circuits which were impacted the most by the CSL insertion were

b11, b15, and b17. These benchmarks incurred less than 5% area overhead and increased

the timing yield of the circuits at least 50%. From the analysis, the benefit of CSL insertion

can be realized and even increased as the scale of the circuits decrease.

94

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this dissertation, multiple ways to enhance the reliability of VLSI circuits has been

illustrated. In Chapter 3, several ways to detect and correct soft errors from the architec-

tural level were investigated. Through the use of redundancy techniques like temporal, data

value and information redundancy, soft error detection with negligible overheads in latency,

area and power were given. Temporal redundancy was exploited statically using compiler

directed slack computation and dynamically using the proposed slack predictor hardware.

Small data value widths were mined to exploit data value redundancy. Information redun-

dancy was supported by using an efficient implementation of residue codes. A cluster core

architecture was proposed to reduce the latency overhead for inter-processor communica-

tion for our spatial redundancy technique where the redundant instruction is sent to the

nearby core for execution. The results indicate that the combined framework can archive

complete error coverage with significantly less overheads than other works existing in lit-

eratures. By incorporating the techniques for soft error detection with other low overhead

methods designed to protect the effects of soft errors in sequential designs, a reliable fault

tolerant design can be generated. To further this research,one could possibly experiment

with a different simulator (such as the M5 simulator) to testthe redundancy techniques as

well as experiment with different architectures and benchmark suites.

In Chapter 4, a new clocking strategy for peak-power reduction was presented as well

as a detailed set of algorithms to implement it at the gate level. A given circuit is considered

95

in terms of its primary inputs and after the available slack values are determined through

timing analysis, the slacks were used to sort the primary inputs into clusters. The clus-

tered circuit paths can be clocked by phase-shifted clocks within the assigned clock periods

where the phase shift is dependent on the slack values. The clustering algorithm determines

the number of clusters and the allocation of paths into clusters in a fashion as to ensure that

the clusters are balanced as much as possible in order to evenly distribute the load on the

phase-shifted clocks. Our path clustering algorithm was computed to have a run-time anal-

ysis of O(α(N + E). Experimental results were carried out on the ISCAS ’85 benchmarks,

along with test circuits from OpenCores and the LEON processor. The results were quite

positive in terms of peak-power reduction. An average peak reduction around 25% was

seen across the defined set cluster configurations. While this work is mainly focused on

combinational circuits to show the proof of concept, further investigation is required to ex-

plore sequential circuits as well as complete processor architectures. The proposed method

is extremely significant, since peak-power reduction is a critical challenge in VLSI circuits.

High power density is recognized by the ITRS, SemiconductorResearch Council (SRC)

and by the VLSI research community as a key issue impeding advances in VLSI CMOS

technology. This problem becomes more critical with the advent and proliferation of high-

speed high-reliability processors and low-power computing devices happening today. The

approach identified in this chapter was intended to reduce power density, peak-current de-

mand and RMS current of high-speed devices. To extend this research, one could combine

the proposed path clustering technique with other clock-skew scheduling techniques to de-

termine whether further peak power minimization is possible. Another direction could be

to utilize some of the industrial tools such as Synopsys ICC Compiler to perform IR noise

analysis from the physical level of the design.

In Chapter 5, a dynamic clock stretching technique was presented to improve the tim-

ing yield of circuits in the presence of uncertainty due to process variations. Statistical

96

optimization based techniques due to their conservative design, consume extra resources

(performance and/or power) even in the absence of variations. The proposed methodology,

on the other hand, adds a timing slack/margin (clock stretching) only in the presence of

variations. Through identification of the critical transition interconnect, the CSL module

was placed on near critical paths which stores the signal value before the falling edge of

the clock arrives. After the falling edge of the clock, if a different value is seen in the CSL

module, this signals the logic that delay due variation has occurred. Thus the CSL mod-

ule stretches the clock signal to accommodate for this delay. The dynamic delay detection

circuitry improves yield by controlling the instance of data captured in the critical path reg-

isters. Experimental results based on Monte-Carlo simulations ran on ITC ’99 benchmarks

indicate a significant improvement in average timing yield with a negligible area overhead.

Experimental results show that reducing the scale can also possibly increase the timing

yield of the circuit with variations. To further this research, one could experiment using the

PrimeTime-VX (Variation Extension) in order to extend the coverage of variation analysis.

One would need to use a complete technology library which includes the FRAM view files

as well as the technology files needed for placement and routing.

97

LIST OF REFERENCES

[1] Hossein Asadi, Vilas Sridharan, M.B. Tahoori, and D. Kaeli. Vulnerability analysis of

l2 cache elements to single event upsets. InDesign, Automation and Test in Europe,

2006. DATE ’06. Proceedings, volume 1, pages 1 –6, march 2006.

[2] Gordon B. Bell and Mikko H. Lipasti. Skewed redundancy. In Proceedings of the

17th international conference on Parallel architectures and compilation techniques,

PACT ’08, pages 62–71, New York, NY, USA, 2008. ACM.

[3] L. Benini, G. De Micheli, A. Lioy, E. Macii, G. Odasso, andM. Poncino. Auto-

matic synthesis of large telescopic units based on near-minimum timed supersetting.

Computers, IEEE Transactions on, 48(8):769 –779, aug 1999.

[4] L. Benini, E. Macii, M. Poncino, and G. De Micheli. Telescopic units: a new paradigm

for performance optimization of vlsi designs.Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 17(3):220 –232, mar 1998.

[5] D. Brooks and M. Martonosi. Dynamically exploiting narrow width operands to im-

prove processor power and performance. InHigh-Performance Computer Architec-

ture, 1999. Proceedings. Fifth International Symposium On, pages 13 –22, jan 1999.

[6] T. Burd, A. Stratakos T. Pering, and R. Brodersen. A dynamic voltage scaled micro-

processor system. InIEEE Solid-State Circuits Conference (ISSCC), pages 294–295,

2000.

98

[7] Jui-Ming Chang and Massoud Pedram. Energy minimizationusing multiple supply

voltages.IEEE Trans. Very Large Scale Integr. Syst., 5:436–443, December 1997.

[8] T. Chawla, S. Marchal, A. Amara, and A. Vladimirescu. Pulse width variation tolerant

clock tree using unbalanced cells for low power design. InCircuits and Systems, 2009.

MWSCAS ’09. 52nd IEEE International Midwest Symposium on, pages 443 –446, aug.

2009.

[9] Po-Yuan Chen, Kuan-Hsien Ho, and TingTing Hwang. Skew aware polarity assign-

ment in clock tree. InComputer-Aided Design, 2007. ICCAD 2007. IEEE/ACM In-

ternational Conference on, pages 376 –379, nov. 2007.

[10] S. Devadas, H. F. Jyu, K. Keutzer, and S. Malik. Statistical Timing Analysis of Com-

binational Circuits. InInternational Conference on Computer Design, pages 38–43,

1992.

[11] A. Devgan and C. Kashyap. Block-based Static Timing Analysis with Uncertainty. In

IEEE trans on CAD, pages 607–614, 2003.

[12] A. Devgan and S. Nassif. Power Variability and its Impact on Design. InProc. of Intl.

Conf. on VLSI Design, pages 679–682, 2005.

[13] S. Dhar, D. Maksirnovi, and B. Kranzen. Closed-loop adaptive voltage scaling con-

troller for standard-cell ASICs. InIEEE symposium on Low Power Electronic Design,

pages 103–107, Aug 2002.

[14] S. Dolev and Y.A. Haviv. Self-stabilizing microprocessor: analyzing and overcoming

soft errors.Computers, IEEE Transactions on, 55(4):385 –399, april 2006.

[15] M. Elgebaly and M. Sachdev. Variation-Aware Adaptive Voltage Scaling System. In

IEEE Trans. on VLSI, pages 15(5) 560–571, May 2007.

99

[16] D. Ernst et al. A low power pipeline based on circuit level timing speculation. In

IEEE/ACM International Symposium on Microarchitecture, pages 7–18, Dec 2003.

[17] S. Borkar et al. Parameter Variations and Impact on Circuit and Microarchitecture. In

DAC, pages 338–342, 2003.

[18] Xin Fu, Tao Li, and J. Fortes. Combined circuit and microarchitecture techniques for

effective soft error robustness in smt processors. InDependable Systems and Networks

With FTCS and DCC, 2008. DSN 2008. IEEE International Conference on, pages 137

–146, june 2008.

[19] Xin Fu, Wangyuan Zhang, Tao Li, and J. Fortes. Optimizing issue queue reliability to

soft errors on simultaneous multithreaded architectures.In Parallel Processing, 2008.

ICPP ’08. 37th International Conference on, pages 190 –197, sept. 2008.

[20] M.A. Gomaa, C. Scarbrough, T.N. Vijaykumar, and I. Pomeranz. Transient-fault re-

covery for chip multiprocessors.Micro, IEEE, 23(6):76 – 83, nov.-dec. 2003.

[21] S. Hareland, J. Maiz, M. Alavi, K. Mistry, S. Walsta, andChanghong Dai. Impact

of cmos process scaling and soi on the soft error rates of logic processes. InVLSI

Technology, 2001. Digest of Technical Papers. 2001 Symposium on, pages 73 –74,

2001.

[22] B. P. Harish, Navakanta Bhat, and Mahesh B. Patil. On a generalized framework for

modeling the effects of process variations on circuit delayperformance using response

surface methodology.Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 26(3):606 –614, march 2007.

100

[23] M. Hashimoto and H. Onodera. A Performance Optimization Method by Gate Sizing

using Statistical Static Timing Analysis. InInternational Symposium on Physical

Design, pages 111–116, 2000.

[24] J. Hu, S. Wang, and S.G. Ziavras. In-register duplication: Exploiting narrow-width

value for improving register file reliability. InDependable Systems and Networks,

2006. DSN 2006. International Conference on, pages 281 –290, june 2006.

[25] J.S. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M.J. Irwin.

Compiler-directed instruction duplication for soft errordetection. InDesign, Au-

tomation and Test in Europe, 2005. Proceedings, pages 1056 – 1057 Vol. 2, march

2005.

[26] Shih-Hsu Huang, Chia-Ming Chang, and Yow-Tyng Nieh. Fast multi-domain clock

skew scheduling for peak current reduction. InProceedings of the 2006 Asia and

South Pacific Design Automation Conference, ASP-DAC ’06, pages 254–259, Piscat-

away, NJ, USA, 2006. IEEE Press.

[27] C.J. Hughes, V.S. Pai, P. Ranganathan, and S.V. Adve. Rsim: simulating shared-

memory multiprocessors with ilp processors.Computer, 35(2):40 –49, feb 2002.

[28] H. Iwai, K. Kakushima, and H. Wong. Challenges for future semiconductor manufac-

turing. Int’l J.High-Speed Electronics and Systems, 16:43–81, 2006.

[29] J. Jaehyuk Huh, C. Changkyu Kim, H. Shafi, L. Lixin Zhang,D. Burger, and S.W.

Keckler. A nuca substrate for flexible cmp cache sharing.Parallel and Distributed

Systems, IEEE Transactions on, 18(8):1028 –1040, aug. 2007.

101

[30] Mark C. Johnson and Kaushik Roy. Datapath scheduling with multiple supply volt-

ages and level converters.ACM Trans. Des. Autom. Electron. Syst., 2:227–248, July

1997.

[31] Yooseong Kim, Sangwoo Han, and Juho Kim. Clock scheduling and cell library in-

formation utilization for power supply noise reduction. InSemiconductor Technology

and Science, 2009. JSTS 2009. Journal of, volume 9, pages 29 –36, 2009.

[32] W.-C.D. Lam, Cheng-Kok Koh, and C.-W.A. Tsao. Power supply noise suppression

via clock skew scheduling. InQuality Electronic Design, 2002. Proceedings. Inter-

national Symposium on, pages 355 – 360, 2002.

[33] H.H.S. Lee, G.S. Tyson, and M.K. Farrens. Eager writeback-a technique for improv-

ing bandwidth utilization. InMicroarchitecture, 2000. MICRO-33. Proceedings. 33rd

Annual IEEE/ACM International Symposium on, pages 11 –21, 2000.

[34] Yann-Rue Lin, Cheng-Tsung Hwang, and Allen C.-H. Wu. Scheduling techniques for

variable voltage low power designs.ACM Trans. Des. Autom. Electron. Syst., 2:81–97,

April 1997.

[35] V. Mahalingam and N. Ranganathan. Variation Aware Timing Based Placement Using

Fuzzy Programming. InIntl. Symposium on Quality Electronic Design, pages 327–

332, 2007.

[36] V. Mahalingam, N. Ranganathan, and J. E. Harlow. A NovelApproach for Variation

Aware Power Minimization during Gate sizing. InIntl. Symposium on Low Power

Electronic Design, pages 174–179, 2006.

102

[37] V. Mahalingam, N. Ranganathan, and R.Hyman Jr. A variation tolerant circuit design

technique using dynamic clock stretching.Emergining Technologies, ACM Journal

of, Sept 2011.

[38] Ali Manzak and Chaitali Chakrabarti. A low power scheduling scheme with resources

operating at multiple voltages.IEEE Trans. Very Large Scale Integr. Syst., 10:6–14,

February 2002.

[39] R.S. Martin and J.P. Knight. Using spice and behavioralsynthesis tools to optimize

asics’ peak power consumption. InCircuits and Systems, 1995., Proceedings., Pro-

ceedings of the 38th Midwest Symposium on, volume 2, pages 1209 –1212 vol.2, aug

1995.

[40] T.C. May and M.H. Woods. Alpha-particle-induced soft errors in dynamic memories.

Electron Devices, IEEE Transactions on, 26(1):2 – 9, jan 1979.

[41] A. Meixner, M.E. Bauer, and D.J. Sorin. Argus: Low-cost, comprehensive error de-

tection in simple cores.Micro, IEEE, 28(1):52 –59, jan.-feb. 2008.

[42] S. P. Mohanty, N. Ranganathan, and V. Krishna. Datapathscheduling using dynamic

frequency clocking. InProceedings of the IEEE Computer Society Annual Symposium

on VLSI, pages 65–, Washington, DC, USA, 2002. IEEE Computer Society.

[43] Saraju P. Mohanty, N. Ranganathan, and Sunil K. Chappidi. Simultaneous peak and

average power minimization during datapath scheduling fordsp processors. InACM

Great Lakes Symposium on VLSI, pages 215–220, 2003.

[44] Saraju P. Mohanty, Nagarajan Ranganathan, Elias Kougianos, and Priyardarsan Patra.

Low-Power High-Level Synthesis for Nanoscale CMOS Circuits. Springer Publishing

Company, Incorporated, 1 edition, 2008.

103

[45] S.P. Mohanty and N. Ranganathan. Energy efficient scheduling for datapath synthesis.

In VLSI Design, 2003. Proceedings. 16th International Conference on, pages 446 –

451, jan. 2003.

[46] S.P. Mohanty and N. Ranganathan. A framework for energyand transient power

reduction during behavioral synthesis. InVLSI Design, 2003. Proceedings. 16th In-

ternational Conference on, pages 539 – 545, jan. 2003.

[47] S.P. Mohanty and N. Ranganathan. A framework for energyand transient power

reduction during behavioral synthesis.Very Large Scale Integration (VLSI) Systems,

IEEE Transactions on, 12(6):562 –572, june 2004.

[48] S.P. Mohanty and N. Ranganathan. Simultaneous peak andaverage power minimiza-

tion during datapath scheduling.Circuits and Systems I: Regular Papers, IEEE Trans-

actions on, 52(6):1157 – 1165, june 2005.

[49] S.S. Mukherjee, M. Kontz, and S.K. Reinhardt. Detaileddesign and evaluation of

redundant multi-threading alternatives. InComputer Architecture, 2002. Proceedings.

29th Annual International Symposium on, pages 99 –110, 2002.

[50] S. R. Nassif. The impact of variability on power. InIntl. Symposium on Low Power

Electronic Design, page 350, 2004.

[51] Fusun Ozguner, Duane Marhefka, Joanne DeGroat, Bruce Wile, Jennifer Stofer, and

Lyle Hanrahan. Teaching future verification engineers: theforgotten side of logic

design. InProceedings of the 38th annual Design Automation Conference, DAC ’01,

pages 253–255, New York, NY, USA, 2001. ACM.

104

[52] Sanghun Park and Kiyoung Choi. Performance-driven high-level synthesis with bit-

level chaining and clock selection.Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 20(2):199 –212, feb 2001.

[53] Jesse Pool, Ian Sin Kwok Wong, and David Lie. Relaxed determinism: making re-

dundant execution on multiprocessors practical. InProceedings of the 11th USENIX

workshop on Hot topics in operating systems, pages 5:1–5:6, Berkeley, CA, USA,

2007. USENIX Association.

[54] V. Raghunathan, S. Ravi, and G. Lakshminarayana. High-level synthesis with

variable-latency components. InVLSI Design, 2000. Thirteenth International Con-

ference on, pages 220 –227, 2000.

[55] V. Raghunathan, S. Ravi, A. Raghunathan, and G. Lakshminarayana. Transient power

management through high level synthesis. InComputer Aided Design, 2001. ICCAD

2001. IEEE/ACM International Conference on, pages 545 –552, 2001.

[56] Salil Raje and Majid Sarrafzadeh. Variable voltage scheduling. InProceedings of the

1995 international symposium on Low power design, ISLPED ’95, pages 9–14, New

York, NY, USA, 1995. ACM.

[57] Kaushik Ravindran, Andreas Kuehlmann, and Ellen Sentovich. Multi-domain clock

skew scheduling. InProceedings of the 2003 IEEE/ACM international conferenceon

Computer-aided design, ICCAD ’03, pages 801–, Washington, DC, USA, 2003. IEEE

Computer Society.

[58] E.L. Rhod, C.A. Lisboa, and L. Carro. A low-ser efficientcore processor architecture

for future technologies. InDesign, Automation Test in Europe Conference Exhibition,

2007. DATE ’07, pages 1 –6, april 2007.

105

[59] E. Rotenberg. Ar-smt: a microarchitectural approach to fault tolerance in micropro-

cessors. InFault-Tolerant Computing, 1999. Digest of Papers. Twenty-Ninth Annual

International Symposium on, pages 84 –91, 1999.

[60] S. Bhunia S. Ghosh and K. Roy. CRISTA: A New Paradigm for Low-Power, Variation-

Tolerant, and Adaptive Circuit Synthesis Using Critical Path Isolation. InIEEE Trans.

on CAD, pages 1947–1956, 26(11), 2007.

[61] R. Samanta, G. Venkataraman, N. Shah, and Jiang Hu. Elastic timing scheme for

energy-efficient and robust performance. InQuality Electronic Design, 2008. ISQED

2008. 9th International Symposium on, pages 537 –542, march 2008.

[62] R. San Martin and J.P. Knight. Optimizing power in asic behavioral synthesis.Design

Test of Computers, IEEE, 13(2):58 –70, summer 1996.

[63] T. Sato and T. Funaki. Power-performance trade-off of adependable multicore pro-

cessor. InDependable Computing, 2007. PRDC 2007. 13th Pacific Rim International

Symposium on, pages 268 –273, dec. 2007.

[64] J. Semiao, J.J. Rodriguez-Andina, M. Santos F. Vargas,I. Teixeira, and P. Teixeira.

Improving the Tolerance of Pipeline Based Circuits to PowerSupply or Temperature

Variations. In Intl. Symposium on Defect and Fault-Tolerance in VLSI Systems, pages

303–311, Sep 2007.

[65] J. Semiao, J.J Rodriguez-Andina, F. Vargas, M. Santos,I. Teixeira, and P. Teix-

eira. Process Tolerant Design Using Thermal and Power-Supply Tolerance in Pipeline

Based Circuits. InIEEE workshop on DDECS, pages 1–4, Apr 2008.

106

[66] W. T. Shiue. Low power vlsi design: Peak power minimization using novel scheduling

algorithim based on an ilp model. InVLSI Design, 2002., Proceedings of the 10th

NASA Symposium on, Mar 2002.

[67] Wen-Tsong Shiue. High level synthesis for peak power minimization using ilp.

In Application-Specific Systems, Architectures, and Processors, 2000. Proceedings.

IEEE International Conference on, pages 103 –112, 2000.

[68] Wen-Tsong Shiue and C. Chakrabarti. Ilp-based scheme for low power scheduling and

resource binding. InCircuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva.

The 2000 IEEE International Symposium on, volume 3, pages 279 –282 vol.3, 2000.

[69] Wen-Tsong Shiue, J. Denison, and A. Horak. A novel scheduler for low power real

time systems. InCircuits and Systems, 2000. Proceedings of the 43rd IEEE Midwest

Symposium on, volume 1, pages 312 –315 vol.1, 2000.

[70] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, andL. Alvisi. Modeling the effect

of technology trends on the soft error rate of combinationallogic. In Dependable

Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on,

pages 389 – 398, 2002.

[71] D. Singh, J.M. Rabaey, M. Pedram, F. Catthoor, S. Rajgopal, N. Sehgal, and T.J.

Mozdzen. Power conscious cad tools and methodologies: a perspective.Proceedings

of the IEEE, 83(4):570 –594, apr 1995.

[72] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. Splash: Stanford paral-

lel applications for shared-memory.SIGARCH Comput. Archit. News, 20:5–44, March

1992.

107

[73] Jared C. Smolens, Brian T. Gold, Babak Falsafi, and JamesC. Hoe. Reunion:

Complexity-effective multicore redundancy. InMicroarchitecture, 2006. MICRO-39.

39th Annual IEEE/ACM International Symposium on, pages 223 –234, dec. 2006.

[74] Karthik Sundaramoorthy, Zach Purser, and Eric Rotenburg. Slipstream processors:

improving both performance and fault tolerance.SIGOPS Oper. Syst. Rev., 34:257–

268, November 2000.

[75] D. Sylvester and H. Kaul. Power-driven challenges in nanometer design.Design Test

of Computers, IEEE, 18(6):12 –21, nov/dec 2001.

[76] T. Kuroda et al. Variable supply-voltage scheme for low-power high-speed CMOS

digital design. InIEEE Journal of Solid-State Circuits, pages 33(3) 454–462, Mar

1993.

[77] Abhishek Tiwari, Smruti R. Sarangi, and Josep Torrellas. Recycle:: pipeline adap-

tation to tolerate process variation. InProceedings of the 34th annual international

symposium on Computer architecture, ISCA ’07, pages 323–334, New York, NY,

USA, 2007. ACM.

[78] E. Touloupis, J.A. Flint, V.A. Chouliaras, and D.D. Ward. Study of the effects of seu-

induced faults on a pipeline protected microprocessor.Computers, IEEE Transactions

on, 56(12):1585 –1596, dec. 2007.

[79] D. Tran Vo and T. Bingel, October 2009. Systems and methods of integrated circuit

clocking, Patent, US 8040155.

[80] http://www.eecs.umich.edu/∼jhayes/iscas. Iscas ’85 benchmarks.

[81] http://www.gaisler.com. Leon 2 processor.

108

[82] http://www.nangate.com. Nangate 45nm freepdk opencelllibrary.

[83] http://www.opencores.org. Opencores.

[84] T.N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-fault recovery using simul-

taneous multithreading. InComputer Architecture, 2002. Proceedings. 29th Annual

International Symposium on, pages 87 –98, 2002.

[85] A. Vittal, H. Ha, F. Brewer, and M. Marek-Sadowska. Clock skew optimization for

ground bounce control. InComputer-Aided Design, 1996. ICCAD-96. Digest of Tech-

nical Papers., 1996 IEEE/ACM International Conference on, pages 395 –399, nov

1996.

[86] P. Vuillod, L. Benini, A. Bogliolo, and G. De Micheli. Clock-skew optimization for

peak current reduction. InLow Power Electronics and Design, 1996., International

Symposium on, pages 265 –270, aug 1996.

[87] N.J. Wang and S.J. Patel. Restore: Symptom-based soft error detection in micropro-

cessors.Dependable and Secure Computing, IEEE Transactions on, 3(3):188 –201,

july-sept. 2006.

[88] C. Weaver, J. Emer, S.S. Mukherjee, and S.K. Reinhardt.Techniques to reduce the

soft error rate of a high-performance microprocessor. InComputer Architecture, 2004.

Proceedings. 31st Annual International Symposium on, pages 264 – 275, june 2004.

[89] Tsung-Yi Wu, Tzi-Wei Kao, Shi-Yi Huang, Tai-Lun Li, andHow-Rern Lin. Combined

use of rising and falling edge triggered clocks for peak current reduction in ip-based

soc designs. InProceedings of the 2010 Asia and South Pacific Design Automation

Conference, ASPDAC ’10, pages 444–449, Piscataway, NJ, USA, 2010. IEEEPress.

109

ABOUT THE AUTHOR

Ransford Hyman Jr. received his Bachelor of Science degree in Mathematics in 2006

from Bethune-Cookman in Daytona Beach, Florida. He received his Master of Science in

Computer Engineering Degree in 2010 from the University of South Florida in Tampa, FL.

He is currently pursuing his Doctoral Degree in Computer andScience and Engineering at

the University of South Florida in Tampa, Florida. He has accepted a Software Engineering

position in the Design and Technology Solutions group at Intel in Folsom, California. His

research interests are Reliability, Design Automation, Computer Architecture and multi-

core processors. He is a National Science Foundation Bridgeto Doctorate fellow as well as

a Florida Education Foundation McKnight Doctoral fellow. He has mentored many students

and has assisted with the recruitment of students in the College of Engineering. He was the

2009-2010 president of the IEEE-Computer Society USF Chapter and was awarded Best

Student Organization at the 2009 USF Engineering Expo. He was awarded the Best Poster

Award at the 2011 Richard Tapia Conference in San Francisco,California. He is a student

member of the IEEE and the IEEE Computer Society.

	University of South Florida
	Scholar Commons
	2011

	Techniques for Enhancing Reliability in VLSI Circuits
	Ransford Morel Hyman Jr
	Scholar Commons Citation

	mul32.eps

