Composites: Part B 73 (2015) 72-81

¥

Contents lists available at ScienceDirect composites

Composites: Part B

journal homepage: www.elsevier.com/locate/compositesb e

Vibration analysis of two orthogonal slender single-walled carbon
nanotubes with a new insight into continuum-based modeling of van der

Waals forces

Keivan Kiani *

@ CrossMark

Department of Civil Engineering, K.N. Toosi University of Technology, Valiasr Ave., P.O. Box 15875-4416, Tehran, Iran

ARTICLE INFO

Article history:

Received 23 September 2014

Received in revised form 11 December 2014
Accepted 15 December 2014

Available online 24 December 2014

Keywords:

A. Nano-structures

B. Vibration

C. Computational modeling

Doubly orthogonal single-walled carbon
nanotubes

ABSTRACT

Transverse vibrations of doubly orthogonal slender single-walled carbon nanotubes (SWCNTSs) at the
vicinity of each other are of interest. The van der Waals (vdW) forces play an important role in dynamic
interactions between two adjacent nanotubes. Using Lennard-Jones potential function, such a phenome-
non is appropriately modeled by a newly introduced vdW force density function. By employing Hamil-
ton’s principle, the equations of motion are obtained based on the nonlocal Rayleigh beam theory. In
fact, these are integro-partial differential equations and seeking an exact or even analytical solution to
them is a very difficult job. Therefore, an efficient numerical solution is proposed. The effects of the inter-
tube distance, slenderness ratio, small-scale parameter, aspect ratio, and elastic properties of the sur-
rounding medium on the free vibration of the nanosystem are addressed. The obtained results could
be regarded as a pivotal step for better realizing of dynamic behaviors of more complex systems consist
of multiple orthogonal networks of nanotubes.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Since the past decade, vibrations of carbon nanotubes (CNTs)
have been of focus of attention of the communities of material,
structural, and mechanical engineering [1-9]. It is mainly related
to the excellent physical, chemical, and mechanical properties of
such newly synthesized materials [10-14] in which provide them
for a wide range of applications including sensors (both physical
and chemical) [15-17], resonators [18-20], nanofluids conveyors
[21-23], drug delivery [24-27], and micro-/nano- electromechani-
cal systems (MEMS/NEMS) [28-31]. In all above-mentioned appli-
cations, understanding the true mechanics of dynamical behavior
of CNTs will surely lead to a more efficient and optimal nanosystem.

To date, vibrations of single-walled carbon nanotubes
(SWCNTs) has been broadly examined including free dynamic
response [32-34], excitations due to a moving nanoparticle [35-
37], wave propagation [38-42], vibrations due to inside fluids flow
[43-46], and nonlinear free and forced vibrations [47-49]. Addi-
tionally, transverse vibrations of a system of doubly parallel nano-
beams were investigated [50,51]. In the latter two works, the
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interactional van der Waals (vdW) forces between atoms of the
adjacent nanostructures were simply modeled by a continuous
transverse spring without careful evaluating the spring’s constant.
In a more general framework, vibrations of two- and three-
dimensional ensembles of SWCNTs were also carefully addressed
[52-54]. In all these studies, the straight individual tubes were
placed parallel to each other and at equal distances from each
other. The interactions of adjacent tubes were modeled by appro-
priate springs whose constants were methodically calculated. A
brief review of all above-mentioned works reveals that the vdW
forces between neighboring tubes have been modeled by elastic
layers whose properties were constant and uniform across the
tubes’ lengths. The unit of the spring constants is . It means that
the interactional vdW forces between two neighboring tubes was
considered as a product of the spring constant and the difference
of their transverse displacements. In an attempt for factual
modeling of such forces, the vibration problem of a system of
double-orthogonal-SWCNTs (DOSWCNTSs) is visited in this paper.
The obtained results will display that the vdW forces between
two tubes are incorporated into the model by a so-called vdW force
density function of unit . In contrast to the previous works, the
present work suggests that a more pragmatic version of the vdW
force between two adjacent tubes is an integral of the product of
the vdW force density function and the difference of transverse
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displacements over the tube’s length. Due to this fact, the resulting
equations of motion are coupled integro-partial differential
equations. It is expected that such a newly established model
would lead to a more accurate prediction of free vibrations of
DOSWCNTs as well as other systems composed of SWCNTs.

The classical continuum theory (CCT) cannot capture the realis-
tic vibrations of nanostructures since the inter-atomic bonds are
not introduced to the constitutive relations [55-57]. When the
ratio of the bond’s length to the nanostructure’s length or wave-
length of the propagated wave becomes comparable, the effect of
the inter-atomic bonds becomes significant (i.e., size-dependency).
In such cases, the stress state of each point does not only depend
on the stress of that point, but also to the stress states of its
neighboring points (i.e., nonlocality). To conquer such a shortage
of the CCT, several advanced continuum theories (ACTs) have been
established. One of the most well-known theories is the nonlocal
continuum field theory of Eringen [68-71]. So far, such a theory
has been extensively employed in mechanical modeling of CNTs
[37-41,43,46,49,52-54,58,59]. Another popular ACT is the strain
gradient theory of Aifantis [60,61] which is also implemented in
modeling vibrations of CNTs [62-67].

Since flexural behavior of slender DOSWCNTs is of interest, a
nonlocal model based on the Rayleigh beam theory is developed.
In such nanosystems, the share of shear strain energy in the total
strain energy can be rationally ignored since the ratio of shear
strain energy to the flexural strain energy is fairly negligible. For
dynamic analysis of stocky CNTs, application of shear deformable
beam models would lead to more accurate results [49,53,54,63].

In the present work, using Lennard-Jones potential function, the
vdW force density function is introduced. By employing nonlocal
Rayleigh beam theory, nonlocal-integro-partial differential equa-
tions describe transverse vibrations of the nanosystem are
obtained. Seeking an analytical solution to these coupled equations
is a very difficult task. By using Galerkin approach in conjunction
with assumed mode method, the deflection fields of the nanotubes
are discretized in the dimensionless spatial domains of tubes. Sub-
sequently, the natural frequencies of the nanosystem are numeri-
cally determined. Through various parametric studies, the
influences of the slenderness ratio, intertube distance, aspect ratio,
size-dependency, transverse and rotational stiffness of the sur-
rounding elastic medium on the free vibration behavior are stud-
ied. The undertaken work can be taken into account as a primary
step for better realizing of more complex structures composed of
orthogonal membranes of SWCNTs or even multi-walled carbon
nanotubes.

2. Assessment of vdW forces between two orthogonal SWCNTs

Based on the Lennard-Jones potential function [72], the interac-
tion between two neutral atoms at distance 4 is given by:

o0 -4 (5)" - (5], w

where € is the depth of the potential well, ¢ denotes the distance at
which the potential function becomes zero and is expressed by:
o = ‘¢ where r, is the distance between two atoms at the equilib-
rium state (i.e., the inter-particle potential reaches its absolute min-
imum value). The vdW force between a pair of atoms i and j, fj, is
formulated as follows:

e 2o ) @

where 7 is the vector position of the atom j with respect to the
atom i, and e; denotes the corresponding unit base vector.
According to the Cartesian and cylindrical coordinate systems

pertinent to the orthogonal nanotubes (see Fig. 1(a) and (b)),
the walls’ geometry of these transversely deformed tubes is
described by: (X1,y; =Im, COS ¢1,21 = I'm, SiNP; + Wy (X1,t)) and
(X2,Y5 = Timy COS 3,25 = T, SIN @, + Wo (X5, £)) where d is the inter-
tube distance, 0 < x; <l,, and 0 < ¢; < 27; i=1,2. On the basis
of the Cartesian coordinate system associated with the first
nanotube,

7= (%1 — L — Tm, COS @) €, + (I, COS Py — X + o1 )€y,
+ (Fmy SINQy — I, SinQ, +d — aAW)e,,, (3)

where e,,, e, , and e;, are the unit base vectors associated with the
rectangular coordinate system of the nanotube 1, r,, is the mean
radius of the equivalent continuum structure pertinent to the ith
tube, AW = wy(x5,t) — wq (X1, ), and w;(x;, t) represents the trans-
verse displacement field of the ith SWCNT along the z; axis. The
interactional vdW force per unit square length of tubes due to their
relative transverse motions along the z; axis is described by:

_24eatyy [P [P, 0\* (0N (Tm, SINQ; —Tm, SINQy+
== /0 /0 [2(7> ’(I) ]( deaw )d%d@z,
(4)

where f, = f,(x1,X2,t), Gonr = % denotes the surface density of the
carbon atoms, and a is the length of the carbon-carbon bond. In
order to evaluate the change in vdW force per unit square length
due to the small lateral displacements of the nanotubes, it is only
suffice to approximate Eq. (4) by the Taylor expansion up to the
first-order about the equilibrium state. By doing so, the extra trans-
verse vdW force per unit square length is calculated as:

Afz = CvdW(xl’XZ)AWv (5)
where
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The parameter C,q4y is called the vdW force density function (since
its unit is ). As it is seen in Eq. (6), radii of the nanotubes, the
intertube distance, and the location of the nanotubes’ intersection
are among the crucial factors that influence on this parameter.

To see the variation of C,qy in the spatial coordinates associated
with the nanotubes, let give an example. Consider a system of DOS-
WCNTs whose tubes cross each other at the midspan point. The
geometry of the nanosystem is as: [, =1, =30nm,

Tmy =Tm, =1.50m, d ="y, + Iy, + 2, and L; =k = 1”71 In order
to evaluate the double integral in Eq. (6a), Gauss quadrature
method is exploited. The pyramid of each tube is divided into 10
equal subdomains with 5 Gauss points. The graph of C,q in terms
of dimensionless spatial coordinates of tubes, namely & = ,’;—; and

&= ,’;—? has been demonstrated in Fig. 2. As it is seen, shooting of
the vdW force density function at the midspan point of both tubes
is so obvious. Further studies also reveal that such a fact occurs at
the vicinity of the intersection point of the tubes. As a result, a
more refined mesh should be considered for evaluating integrals
of expressions include C,qy in the regions close to the point of
intersection (see Fig. 2). In all carried out calculations in this paper,
we subdivide the lengths of tubes into N, — 1 intervals such that
about half of them are equally located in a region of length 0.1,
or 0.1l,, around the intersection point. By choosing N, Gaussian
point in each direction (or Ny x N, in each computational cell), a
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Fig. 1. (a) A system of doubly orthogonal SWCNTs at the vicinity of each other. (b) Equivalent continuum-based nanostructures.
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Fig. 2. Plot of the vdW force density function for a system of DOSWCNTs.
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Fig. 3. Convergence check of the numerically evaluated C, = fol f(f Coawdé;dé, as a function of the number of Gaussian points (N;) and the number of grids (N,) in each

direction.

convergence check is performed. Suppose that evaluation of
C,= fol fol Coaw (&1, &) dEdE, is of concern. By following up the
above-mentioned strategy, the predicted results of C, as a function
of N, and Ng have been demonstrated in Fig. 3. This figure displays
that by an increase of Gaussian points as well as subdivisions, the
computed value of C, would converge to a specific value. Based on

this investigation, we use 30 x 30 computational cells with 4 x 4
Gaussian points in each cell for evaluation of double integrals asso-
ciated with C,qw.

The linear elastic energy resulted from the given vdW force
density function for a system of doubly orthogonal SWCNTs is cal-
culated as:
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1 Iy, Iy,

Upaw (t) = 5

— Wz(Xz7 t))z dX1dX2.
2 x1=0 Jx,=0

(7)

In the upcoming part, Eq. (7) is exploited to construct equations of
motion of a double-orthogonal SWCNTs-system by employing
Hamilton’s principle.

Coaw (X1, %2) (W1 (X1, )

3. Free vibration analysis of DOSWCNTs
3.1. Nonlocal governing equations
At each time ¢, the kinetic energy (T) and the nonlocal elastic

strain energy of a system of elastically embedded DOSWCNTs (U)
based on the Rayleigh beam theory are expressed by:

2
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where 4 is the partial symbol, A, and Iy, in order are the cross-sec-
tional area and its moment inertia of the ith tube, w; and MZ: (x;,t) in
order represent the deflection and nonlocal bending moment field
associated with the ith SWCNT, K; and K, denote the constants of
the transverse and rotational continuous springs, respectively.
Based on the elastic properties of the surrounding medium of the
nanosystem, such constants can be readily determined. In a more
realistic model, the continuum of the elastic matrix as well as the
existing atomic-bonds between the neighboring atoms of the
matrix and those of the DOSWCNTs should be taken into account.
However, herein, we mainly focus on the dynamic interactions
between the orthogonal nanotubes and their interactions with the
surrounding elastic media are simply modeled by elastic layers with
the above-mentioned properties.

The nonlocal bending moments within the SWCNTs are related
to their local counterparts by [38,73,74]:

nl

Pw

M} — (eon); 02 —Ep, Iy, 02‘7 (9a)
2 nl 8W

My, = (e0)s 5 = Bl 55" (9b)

where Ey, and (epa); in order are the Young's modulus, and the
small-scale parameter associated with the ith continuum tube.
The work of Duan et al. [75] revealed that the aspect ratio, chirality,
and boundary conditions of a SWCNT are among the crucial param-
eters that affect on the small-scale parameter. Thereby, the values
of this parameter for the constitutive nanotubes of the DOSWCNTs
have been considered to be dissimilar. Generally, the magnitude of
this parameter is determined on the basis of the best fit between
the predicted dispersion curve by the nonlocal model and that of
an appropriate atomic model.

By employing Hamilton’s principle, fttlz (T(t) = U(t))dt = 0, the
nonlocal equations of motion of a system of elastically embedded

DOSWCNTs in terms of the nonlocal forces within the tubes are
obtained as follows:

’w o'w My
p (Abl 8[’21 Ib] at28;2> - by + ’ CydW(W] —Wz)dXz

ox? =0
o*w
o K5 L)} (10a)
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A - 2 Cpaw (w1 —wy)dx
Pb, (b2 o b26t28x§> 2 - vaw (W1 — W) dX,
2
+Ktw2—1(r%:0. (10b)
2

By introducing Eqs. (9a) and (9b) to Egs. (10a) and (10b) through
assuming the following relations:

" d " oIy 11
— Wi — W X ~ X: d
% | oo vaw (W1 — W) dxp /Xz:o v g 4X2; (11a)
82 lbl lbl a Wy
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the nonlocal governing equations of the nanosystem in terms of the
deformation fields are obtained as:
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Egs. (12a) and (12b) furnish us regarding free transverse vibrations
of a double-orthogonal nanotube-system which is elastically
restrained by a matrix. It is emphasized that these equations are
valid for two separate orthogonal SWCNTs at the vicinity of each
other. In the case of doubly connected nanotubes at a point, special
treatments should be taken into account in modeling of the prob-
lem. For example, if transverse vibrations of such a nanosystem is
of concern, the most important condition that should be met is
the equality of the deflection fields of the nanotubes at the intersec-
tion point during the course of contact. Under certain conditions,
the nanosystem may sequentially switch between the in-contact
and not-in-contact states. In another illustration, if both longitudi-
nal and transverse vibrations of the nanotubes are of interest, one
also confronts the sliding problem of the nanotubes and the dynam-
ical contact forces could play a crucial role in vibrations of the nano-
system. To date, the answers to these important issues have not
been replied by the scientific communities. These fascinating prob-
lems could be considered as hot topics for future works.
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In order to study the problem in a more general framework, the
following dimensionless quantities are considered:

= ﬁ = l Ebl]bl t, n = (eoa)i M= lb—l w; = :
lbl 7 lgl pr : 1b1 7 T, 7 lb]

fas

(13)

by introducing Eq. (13) to Egs. (12a) and (12b), the dimensionless-
nonlocal equations of motion of elastically embedded DOSWCNTs

are derived as:
e ow \ | o'w
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Due to the appearance of the coupling terms in Eqs. (14a) and (14b)
(which are specified by the double-underlines), seeking an analyti-
cal solution to these integro-partial differential equations is not an
easy task. In the following section, an efficient numerical scheme is
proposed to find free dynamic response of the nanosystem.

3.2. Application of Galerkin approach to free vibration analysis of
DOSWCNTs

Let premultiply both sides of Eqs. (14a) and (14b) by éw; and
dw,, respectively, then integrate the resulted statements over the
dimensionless spatial domains of the nanotubes, and finally, add
up the resulting expressions. After successful integration by parts,
one can arrive at:
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Using assumed mode method or modal analysis, the unknown fields
of the suggested model are discretized in the spatial domain in

+K; <5W2 — 1B

(16)

terms of the mode shapes as: W;(&;,T) = Y04 ¢} (&)W, (T) and
Wh(&,T) = Zf’:'vl'z 12 (&;)Wh, (T) where NM;, ¢, and W;, in order are
the number of vibration modes, Ith mode shape function, and the
time-dependent parameters pertinent to the Ith mode of the ith
tube. By substituting these statements into Eq. (16), the following
set of second-order ordinary differential equations is obtained:
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For evaluating the flexural frequencies of the nanosystem, the time-
dependent parameters are assumed to be harmonic:
wi(7) = W,«Ue‘m; i =1,2 where Wy, is the amplitude vectors of the
ith tube, and @ represents the dimensionless flexural frequency.
By introducing such a new version of W; to Eq. (17), and by solving
the resulting set of eigenvalue equations for @, the eigenvalues (i.e.,
dimensionless frequencies) and the pertinent eigenvectors (i.e.,
vibration modes) of the DOSWCNTs embedded in an elastic matrix
are easily calculated.

4. Results and discussion

Consider a DOSWCNTs with the following data: E, =1TPa,
vi =02, p, =2300 kg/m?, I, =30 nm, rp, =1.5nm, t,=0.34nm,
d =T, +I'm, + 2t. Free transverse vibration of the nanosystem is
studied under four boundary conditions, namely fully simply sup-
ported ends, fully clamped ends, simple-clamped ends, and
clamped-free ends. These end conditions are, respectively, denoted
by SS, CC, SC, and CF, and identically applied to both nanotubes. In
the Galerkin approach, the mode shapes correspond to these
boundary conditions should at least satisfy the geometrical condi-
tions. For all numerical analysis, NM; = NM, = 13. In view of this
fact, the mode shapes pertinent to the above-mentioned boundary
conditions for thin beams can be used as given in Refs. [76,77]. In
the following parts, the influences of the crucial factors on the nat-
ural frequencies of such a system are going to be investigated.
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4.1. Influence of the slenderness ratio

The effect of the slenderness ratio on the first five natural fre-
quencies of the DOSWCNTs with different boundary conditions is
of interest. In the case of a system of DOSWCNTSs which is free from
its surrounding elastic matrix, the obtained results have been dem-
onstrated in Fig. 4 for three levels of the small-scale parameter (i.e.,
eoa =0, 1, and 2 nm). In all boundary conditions, by an increase of
the slenderness ratio, the natural frequencies would reduce. For
higher levels of the slenderness ratio, the influence of the slender-
ness ratio on the natural frequencies decreases. Additionally, the
variation of the slenderness ratio is more influential on the fre-
quencies of higher vibration modes. The fundamental frequencies
of the nanosystem with SC and CF boundary conditions would
increase as the small-scale parameter increases. In the cases of
SS and CC end conditions, such frequencies would decrease with
the small-scale parameter. The frequencies of higher-order modes
of the nanostructure would generally decrease as the small-scale
parameter magnifies. According to the plotted results in Fig. 4,

the influence of the small-scale parameter on the natural frequen-
cies of the nanosystem with lower slenderness ratio is more
obvious.

4.2. Influence of the aspect ratio

An interesting study is carried out to determine the role of the
aspect ratio (i.e., ::—2) of DOSWCNTs on the natural frequencies. In
Fig. 5, the first five frequencies of the nanosystem with 1; = 30
as a function of the aspect ratio are provided for various boundary
conditions and three levels of the small-scale parameter. For all
boundary conditions, the fundamental flexural frequency reduces
by an increase of the aspect ratio. The effect of the aspect ratio
on the fundamental frequency of the nanosystem increases as
one moves from SS to CF, then SC, and finally CC boundary condi-
tion. For all end conditions, the effect of the aspect ratio on the sec-
ond frequency is less obvious with respect to the fundamental one.
In the cases of the CC and CF boundary conditions, variation of the
aspect ratio has a trivial effect on the variation of the second fre-

n

o (THz)

Fig. 4. Effect of the slenderness ratio on the first five natural frequencies of DOSWCNTs: (a) SS, (b) CC, (c) SC, (d) CF; ((...) eoa=0, (---) epa=1, (=) epa =2 nm; (A) w1, (V) w2,

(8) w3, (o) w4, (O) ws; Ki = Kr = 0).
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quency. The third natural frequency of the DOSWCNTs would
decrease as the aspect ratio increases. The rate of reduction is
almost the same for all boundary conditions. Irrespective of the
considered end conditions, the depicted results also display that
the fourth frequency of the nanosystem slightly magnifies as the
aspect ratio increases. The fifth frequency of the nanosystem
would decrease as the aspect ratio increases. Such a reduction is
roughly very similar for all considered end conditions. A close sur-
vey of the demonstrated results in Fig. 5 displays that the variation
of the aspect ratio has the most influence on the variation of the
fundamental frequency with respect to other frequencies. This fact
holds true for all given boundary conditions. Generally, for a given
aspect ratio, the predicted frequency of the nanosystem would
decrease as the small-scale parameter magnifies.

4.3. Influence of the intertube distance
Another crucial parametric study is performed to investigate

the effect of the intertube distance on the free vibration of DOS-
WCNTs systems. To this end, the predicted first five flexural
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frequencies of the nanosystem in terms of the free distance ratio
of tubes (i.e., ‘ti—l‘j = HL;’”Z“")) have been depicted in Fig. 6. The
results are plotted for three levels of the small-scale parameter
(i.e., epa =0, 1, and 2 nm) and four boundary conditions in the case
of /; = 25. Irrespective of the considered boundary conditions, the
natural frequency of the system of DOSWCNTs commonly
decreases as the intertube distance increases. This is mainly related
to this fact that by an increase of the intertube distance, the influ-
ence of the vdW force of each tube on another one would decrease.
In other words, the interactional effects of the nanotubes or the
share of the transverse stiffness of the vdW force density in the
flexural stiffness of each tube would lessen. Concerning the first
vibration mode, the effect of the intertube distance on the funda-
mental frequency of the nanosystem with a higher small-scale
parameter is more apparent. In the cases of the nanosystem with
SC and CF boundary conditions, the influence of the intertube dis-
tance on the second natural frequencies is so obvious with respect
to other cases. In the case of CF boundary condition, the intertube
distance on the fourth flexural frequency of the nanosystem is
more influential. Additionally, variation of the intertube distance
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has a trivial effect on the variation of the third frequency of the
DOSWCNTSs with SS, CC, and SC boundary conditions. Nevertheless,
the third frequency of the nanosystem with CF condition would
slightly decrease by an increase of the intertube distance.

4.4. Influence of the small-scale parameter

Equally important is to scrutiny the role of the small-scale
parameter on the free dynamic response of the nanostructure. In
Fig. 7, the predicted first five flexural frequencies of the DOSWCNTs
with various boundary conditions have been plotted. The depicted
results are provided for four boundary conditions with three levels
of the aspect ratio (i.e., fz—2= 0.4, 0.7, and 1), and /; = 30. As it is
seen, the fundamental frequency as well as the second frequency
of the DOSWCNTs would slightly decrease as the small-scale
parameter increases. The depicted results show that the influence
of the aspect ratio on the vibration behavior of the nanosystem is
also mode dependent. For instance, for all considered boundary
conditions and small-scale parameters, the second frequency
would reduce as the aspect ratio increases up to 1. However, the
fundamental frequency of the nanosystem with CC end conditions

commonly magnify with the aspect ratio. Additionally, the plotted
results explain that the effect of the aspect ratio on the natural fre-
quencies also relies to the boundary conditions of the nanosystem.
For example, in the cases of CC and SC boundary conditions, the
fundamental frequency magnifies as the aspect ratio increases,
however, the fundamental frequencies of DOSWCNTs with SS and
CF end conditions do not regularly vary in terms of the aspect ratio.
Generally, the flexural frequencies of higher vibration modes are
more influenced by the variation of the small-scale parameter as
well as the aspect ratio. The plotted results in Fig. 7 show that
the trends of the graphs of natural frequencies in terms of the
small-scale parameter are not only affected by the aspect ratio
but also by the mode number.

4.5. Influence of the surrounding elastic medium

A crucial study has been carried out to investigate the roles of
the translational and rotational interactions of the nanosystem
with its surrounding elastic environment. In Figs. 8 and 9, the first
five frequencies of the elastically embedded DOSWCNTs as a func-
tion of transverse and rotational stiffness of the elastic matrix have
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been demonstrated, respectively. The plotted results are given for
DOSWCNTs with tubes of identical length whose slenderness ratios
are 20, 30, and 40. By an increase of both transverse and rotational
stiffness of the surrounding elastic medium, the flexural frequen-
cies of the nanosystem generally magnify. The frequencies of
stockier DOSWCNTs (i.e., those with lower levels of slenderness
ratio) are more influenced by the transverse and rotational stiff-
ness of the elastic matrix. As a general result, variation of the trans-
verse stiffness of the surrounding elastic medium is more
influential on the fundamental frequency of the elastically embed-
ded DOSWCNTSs with respect to the frequencies of higher modes of
vibration. Such an issue does not hold true for the effect of the rota-
tional stiffness. In fact, the flexural frequencies associated with the
higher vibration modes are more influenced by the rotational stiff-
ness. For lower levels of the transverse or rotational stiffness of the
surrounding medium, the influence of the transverse or rotational
stiffness on the flexural frequencies of the nanosystem is more
obvious. In view of the demonstrated results in Fig. 8(a)-(d), the
fundamental frequencies of fully clamped (simply supported) DOS-
WCNTs are more (less) affected by the transverse stiffness of the
surrounding medium. Such a fact also holds true for the effect of
the rotational stiffness of the surrounding elastic matrix on the
natural frequencies of the nanosystem.

5. Conclusions

In an attempt for better realizing the free dynamic response of
elastically embedded DOSWCNTSs, a suitable mathematical model
is developed. By introducing a novel concept of the vdW force den-
sity function, a more rational continuum-based theory is devel-
oped for evaluating such an important interactional force in
these nanosystems. By employing the Rayleigh beam theory in
the context of the nonlocal continuum theory of Eringen, the equa-
tions of motion associated with the transverse vibration of the
nanosystem are obtained. It was displayed that such equations
are coupled integro-partial differential equations, and a special
treatment should be implemented to solve them. Using Galerkin
approach, the nonlocal governing equations are spatially discret-
ized and the flexural frequencies are evaluated. Through various
parametric studies, the effects of the slenderness ratio, intertube
distance, aspect ratio, small-scale parameter, transverse and rota-
tional stiffness of the surrounding elastic matrix on the dominant
frequencies of the nanosystem are examined and discussed in
some detail.

The proposed model in this paper is hoped to open a new hori-
zon for modeling of doubly orthogonal membranes of SWCNTs at
the vicinity of each other. Application of more sophisticated beam
models in dynamic analysis of DOSWCNTs or even doubly orthog-
onal membranes would be beneficial when the length to diameter
of the used SWCNTs is lower than a particular value. Such comple-
mentary studies provide basic steps towards rational modeling of
and understanding the vibration mechanisms of more and more
complex nanosystems such as multi-orthogonal-membranes of
SWCNTs. Surely, these advanced explorations lead to a better real-
ization of the mechanics of jungles of CNTs which are going to be
widely exploited in advanced technologies of MEMS and NEMS in
the near future.
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