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                           ABSTRACT 

 

Objective of the study of electric field calculations by numerical 

techniques is to use different numerical techniques to find electric 

field distributions, which are inevitable tool in various electricity-

concerned technologies, in particular, for analyzing discharge 

phenomenon and designing high voltage equipment. In this thesis, 

two numerical methods are discussed; e.g. finite difference method 

and finite element method. Both methods are used to find two 

dimensional electric field distributions with given boundary 

conditions using MATLAB. Electric field distributions in more 

practical three dimensional cases with non-uniformly distributed 

dielectric of a capacitor in a DC busbar has found using C-

programming. Also, electromagnetic field calculations of electric 

motor have been done in ANSYS.  

 

 

 

 

                                                                       

 

 



7 

 

Chapter 1 

 

                                     Introduction 

 

Calculation of electric fields with the aid of an computer is now a inevitable tool in various 

electricity-concerned technology, in particular, for analyzing discharge phenomenon and 

designing high voltage equipments .Electric and magnetic fields comprises two components dealt 

with in one of the classical physics, electromagnetism. Calculation of electric fields is usually 

considered easier than that of magnetic ones from two reasons. First, the electric field is 

expressed with a scalar potential at least in simple low frequency problems. Secondly, non linear 

characteristics are more often involved in magnetic fields. Compared with magnetic field, 

however, the calculation electric fields generally require higher accuracy, because the highest 

electric field stress on insulator is usually the most important and decisive value in insulation 

design or discharge study. This is one of reason why the boundary-dividing methods are 

preferred to the region-dividing ones, such as finite difference method (FDM) or finite element 

method (FEM). Usually former method does not need numerical differentiation to obtain field 

values. 

A fundamental equation for the electric field is Laplace’s equation or Poisson’s equation; 

perhaps the simplest among many partial differential equations that express physical phenomena 

among various numerical calculation methods, FDM and FEM is very unique as it is applied 

exclusively to electric field calculations. Fundamental difference between FDM and FEM is that, 

FDM can be used for calculation of potential at nodes only but FEM can be used for calculation 

of potential at nodes as well as within the elements. Calculation of electric field in 3D 

arrangement poses no essential problem by of the numerical methods if the field is given by 

Laplace’s equation .The difficulty is that it usually required the tedious work preparing the input 

of a large amount of errorless data associate  with 3D conditions. 

Numerical solution of EM problems started in the mid-1960s with the availability of modern 

high-speed digital computers. Since then, considerable effort has been expended on solving 

practical, complex EM-related problems for which closed form analytic solutions are either 

intractable or do not exist. The numerical approach has the advantage of allowing the actual 

work to be carried out by operates without a knowledge of higher mathematics, with a resulting 

economy of labor on the part of the highly trained personnel. 
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Chapter 2  

 

 

                    THE Finite difference method 

 

2.1 fundamentals of FDM 

The finite difference method is a powerful numerical method for solving partial differential 

equations. In applying the method of finite differences a problem is defined by:  

• A partial differential equation such as Poisson's equation  

• A solution region  

• Boundary and/or initial conditions. 

An FDM method divides the solution domain into finite discrete points and replaces the partial 

differential equations with a set of difference equations. Thus the solutions obtained by FDM are 

not exact but approximate. However, if the discretization is made very fine, the error in the 

solution can be minimized to an acceptable level.  

The Poisson's equation in 3-D is given by  

.........................................................................  (2.1) 

For 2-D case, Poisson's equation simplifies to 

...............................................................  (2.2) 

In applying the methods of finite differences, we define the solution region into a finite number 

of meshes as shown in Fig2.1. 
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Fig2.1: Division of solution region into grid points 

The meshes can be various shapes; we shall only consider the rectangular and square meshes 

only. First we consider a mesh configuration having five nodes and unequal arms as the Fig2.2.  

 

Fig2.2: A mesh with unequal arms  

With reference to Fig2.1, Vo corresponds to the voltage Vij. For the five node mesh configuration 

of Fig2.2, the voltages are defined as:  

............................................................................... (2.3a) 

.....................................................................  (2.3b) 

....................................................................  (2.3c) 

....................................................................  (2.3d) 
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....................................................................  (2.3e) 

Let, P1, P2, P3 andP4 represent the midpoint of the arms as shown in Fig 2.2. In order to replace 

the Poisson equation (2.2) by difference equations, we obtain the approximate first derivatives at 

the points P1 to P2 and use these first derivatives to approximate the second derivative. 

The first derivatives at P1and P2 are  

.................................................................... (2.4a) 

.................................................................... (2.4b) 

............................................ (2.5) 

In the same manner, 

............................................ (2.6) 

The first derivative at P1and P2 is  

.................................................................... (2.7a) 

.................................................................... (2.7b) 

............................................ (2.8a) 

In the same manner, 
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............................................ (2.8b) 

Further, for Laplace equation, ρs and equation (2-8) simplifies to 

..................................................... (2.9) 

Thus we see that voltage at the central node is the mean of the voltages at the other four nodes.  

With reference to Fig2-1, equation (2-8) can be written as  

.................... (2.10) 

Equation (2.8) & equation (2.9) can be used to solve Poisson's and Laplace's equation 

respectively when uniform grids are used. These equations, along with the specified boundary 

conditions can be used to solve a problem. 
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2.2 Two dimensional electric field calculations by finite difference method 

 

The solution region is divided into square meshes. Here boundary is regular. Total 21 nodes has 

unknown potentials. We have marked that and 24 nodes are known potential. Here using 

difference elements we have found the potential at each nodes whose potential are not known, up 

to 17
th

 iteration. 

 

       

                                      Figure (2.3) 

 

 

 

RESULT: -   No. of iteration 



13 

 

 1 2 3 4 5 6 7 8 9 

V1 0 
0 

0 0 0 1.861 3.38 4.51 5.312 

V2 0 0 0 0 3.125 6.645 9 10.6 11.68 

V3 0 0 0 6.25 11.23 14.66 16.86 18.3 19.24 

V4 0 0 12.5 19.14 23.044 25.3487 26.82 27.73 28.34 

V5 0 25 32.81 36.22 38.08 39.1381 39.8 40.21 40.51 

V6 50 56.25 58.2 59.055 59.52 59.79 59.95 60.05 60.127 

V7 0 0 0 0 4.321 6.87 9.063 10.63 11.69 

V8 0 0 0 6.25 13.49 17.95 21.1 23.15 24.64 

 V9 0 0 12.5 22.656 28.96 33.064 35.63 37.625 38.8 

V10 0 25 37.5 44.726 48.655 51.25 52.85 53.92 54.625 

V11 50 0 67.58 70.2365 71.684 72.6 73.1625 73.531 73.784 

V12 0 0 0 11.035 12.1271 14.92 17 18.833 19.164 

V13 0 0 12.5 23.8525 29.3303 33.23 35.72 37.625 38.82 

V14 0 25 40.625 46.39 50.998 53.32 55.97 57.411 58.33 

V15 50 62.5 69.53 72.78 74.9137 76.33 77.205 77.833 78.239 

V16 0 0 12.5 20.3368 23.49 25.565 26.98 27.853 28.43 

V17 0 25 37.5 45.3151 49.05 51.447 53.05 54.058 54.71 

V18 50 62.5 69.535 72.926 75 76.2 77.255 77.867 78.185 

V19 0 25 32.815 36.52 38.27 39.46 40.0325 40.5 40.7 

V20 50 62.5 67.57 70.4587 72 73.3 73.5 73.73 73.85 

V21 50 56.25 58.203 59.13 59.5675 59.85 60 60.125 60.18 

 

 10 11 12 13 14 15 16 17 

V1 5.92 6.22 6.47 6.644 6.76 6.84 6.885 6.91 

V2 12.46 12.94 13.27 13.52 13.7 13.77 13.81 13.9 

V3 19.89 20.33 20.62 20.82 20.97 21.02 21.1 21.13 

V4 28.76 29 29.21 29.357 29.4 29.46 29.5 29.52 

V5 40.72 40.79 40.91 40.94 40.96 40.98 41 41 

V6 60.17 60.2 60.22 60.23 60.24 60.245 60.25 60.25 

V7 12.44 12.95 13.3 13.51 13.65 13.77 13.82 13.88 

V8 25.63 26.3 26.73 27 27.24 27.35 27.43 27.5 

V9 39.62 40.16 40.55 40.8 40.89 41 41.11 41.16 

V10 55.1 55.43 55.7 55.79 55.86 55.92 55.96 56 

V11 73.955 74 74.15 74.2 74.22 74.23 74.23 74.25 

V12 19.94 20.36 20.66 20.82 20.95 21 21.1 21.12 

V13 39.65 40.2 40.56 40.8 40.96 41 41.1 41.16 

V14 58.93 59.42 59.67 59.85 59.9 60 60.05 60.08 

V15 78.6 78.7 78.84 78.91 78.95 78.98 79 79.02 

V16 28.84 29 29.227 29.34 29.42 29.47 29.5 29.523 

V17 55.13 55.44 55.67 55.78 55.87 55.91 55.97 56 

V18 78.51 78.83 78.841 78.91 78.95 79 79 79.02 

V19 40.72 40.81 40.87 40.93 40.96 40.98 41 41 

V20 74 74.06 74.13 74.18 74.2 74.25 74.24 74.25 

V21 60.19 60.2 60.22 60.23 60.24 60.25 60.25 60.25 

 

  MATLAB   PROGRAM: 

APPENDIX A: A.1 MATLAB program for 2D  problems using finite difference method. 
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Result: 

Voltages = 

    x 

 

         0         0         0         0         0         0         0         0   50.0000 

         0    6.9652   13.9304   21.1778   29.5534   41.0167   60.2542  100.0000         0 

         0   13.9304   27.5788   41.2271   56.0194   74.2590  100.0000         0         0 

         0   21.1778   41.2271   60.1326   79.0380  100.0000         0         0         0 

         0   29.5534   56.0194   79.0380  100.0000         0         0         0         0 

         0   41.0167   74.2590  100.0000         0         0         0         0         0 

         0   60.2542  100.0000         0         0         0         0         0         0 

         0  100.0000         0         0         0         0         0         0         0 

   50.0000         0         0         0         0         0         0         0         0 

y  
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Chapter 3 

 

                           The finite element method 

 

3.1 fundamentals of FEM 

 The finite element method has its origin in the field of structural analysis. The method 

was not applied to EM problems until 1968.Like the finite difference method, the finite element 

method is useful in solving differential equations. As finite difference method represents the 

solution region by array of grid points; its application becomes difficult with problems having 

irregularly shaped boundaries .Such problems can be handled more easily by using the finite 

element method. The finite elements analysis of any problem  involves basically four steps: (A) 

discretizing the solution region into a finite number of sub regions or elements ,(B) deriving 

governing equations for a typical element ,(C) assembling all the elements in the solution region, 

and(D) solving the system of equations obtained. 

A. FINITE ELEMENTS DISCRETIZATION 

We divide the solution region into a number of finite elements as illustrated in figure3.1.

 

                      Fig3.1: A typical finite element subdivision of an irregular domain.                                                                                                                          

Where the region is subdivided into four non overlapping elements and seven nodes .We seek an 

approximation for the potential Ve within an element ‘e’ and then interrelate the potential 
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distributions in various elements such that the potential is continuous across inter elements 

boundaries. The approximate solutions for the whole region is 

               V(x, y) =∑ ��(�, �)	�
� …………………………………………… (3.1) 

Where N is the number of triangular elements into which the solution region is divided. 

The most common from of approximation for ��within an element is polynomial approximation, 

namely, 

                           ��(x,y)=a+bx+cy …………….. (3.2) 

For a triangular element and 

                          ��(x,y)=a+bx+cy+dx y…………………. (3.3) 

for a quadrilateral element .The potential �� in general is nonzero within element ‘e” but zero 

outside “e” .It is difficult to approximate the boundary of the solution region with quadrilateral 

elements; such elements are useful for problems whose boundaries are sufficiently regular .As 

assumption of linear variation of potential within the triangular elements is same as assuming 

that the electric field is uniform within the element; that is, 

                                       ��= - V ��=-(bax+cay)…………………. (3.3) 

B. GOVERNING EQUATIONS OF EACH FINITE ELEMENT 

Consider a typical triangular element, as shown in figure 3.2.The potential��
, ��� and ���at 

nodes 1, 2, 3, respectively, are obtained by using eq. (3.3); that is 

 

                          � Ve1Ve2 Ve3 � = �1 x1 y11  x2 y21 x3  y3   � �abc  

The coefficients a, b, c is determined from above equation as  

 

                            �ab! = �1 x1 y11  x2 y21 x3  y3   �
"


 � Ve1Ve2 Ve3 � 
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                  Fig3.2, typical triangular element.                               

 Substituting this into above equation gives 

Ve=  #1 � �$  
�%  �      x2y3 – �3y3 �3y3 – �1y3 �1y3 – �2y3 – y3 �3 − �1 �1 − �2�3 − �2 �1 − �3 �2 − �1 �                 
              Ve =∑ ()(�, �)��)�)

 ………………….…………….. (3.6) 

              

And A is the area of the element “e”; that is, 

                     2A=*1    x1   y11    x2   y2 1    x1   y1*        

The value of A is positive if the nodes are numbered counterclockwise. Above equation gives the 

potential at any point within the element, provided the potentials at the vertices are known. This 

is unlike the in finite difference analysis, where the potential is known at the grid points only. 

Also note that αi are linear interpolation functions, and they have the following properties. 

                          ∑ ()�)

 (�, �)=1 …………………………… (3.7) 
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Then we have to calculate the element coefficient matrix for each node separately, which is 

given below. 

  �  !

�        !
��       !
�� !�
�      !���       !���  !�
�      !���        !��� �= +!,- 
.
= y2-y3,    /
 = x3-x2 

.�= y3-y1,    /� = x1-x3 

.�= y1-y2,    /�= x2-x1 

0)1(�)
 = 


2% (.).1 + /)/1 ) 

A =    
  � (.�/�-.�/�) 

C. ASSEMBLING ALL THE ELEMENTS 

Having considered a typical element, the next step is to assemble all such elements in the 

solution region. The energy associated with the assemblage of all elements in the mesh is 

       W=∑ 4�	�

 =

�ε [V]’[C][V]…………………………………… (3.7) 

Where 

          [V] =  

56
66
67 V1... Vn :;

;;
;<
             

and n is the number of nodes, N is the number of elements, and [C] is called the overall or global 

coefficient matrix, which is the assemblage of individual element coefficient matrices. 

D. SOLVING THE RESULTING EQUATIONS 

BAND MATRIX METHOD:- 

If all free nodes are numbered first and the fixed nodes last, eq. (3.7) can be written such that 

           W=

�ε#�= �>$  ? !== !=>!>= !>>  @  A�=�>B   …………………………………… (3.8) 

Where subscripts f and p, respectively, refer to nodes with free and fixed (or prescribed) 

potentials. Since �> is constant, we differentiate only 
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With respect to �=, yields 

         [ 0==][0>]= -[0=>][�>] …………………………………… (3.9) 

This can be written as  

                [A][V] = [B] 

                [V] = #A$ "
[B] 

Where [V] = [�=$, [A] = [ 0==] and [B] = - [0=>][�>]  

Since [A] is, in general, nonsingular, the potential at the free nodes can be found by using eq. 

(3.9). 
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3.2 Typical two dimensional electric field calculations by finite elements 

method 

Here we have find the potential at the free nodes in the potential system using the finite elements 

method. 

The solution region is divided into 25 three-node triangular elements with the total number of 

nodes being 21, shown in figure 3.3. 

           

                       Figure 3.3, solution region divided into 25 triangular elements. 

SOLUTION: 

Determination of different elements coefficient matrix: 

 

          (0,0.2) (0.2,0.2) 

     7            8 

 

    1           2 

   (0,0)                  (0.2,0) 

                 

 2 

 

  1                      

             

 

3 

1 2 

 3 2 

1 

7 7 8 

2 2 1 
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Node  (x,y)     P1 = (y2-y3), P2= (y3-y1) 

1  (0,0)     P3= (y1-y2) 

2  (0.2,0)     Q1= (x3-x2),Q2 =(x1-x3) 

7  (0,0.2)     Q3 = (x2-x1) 

8  (0.2,0.2)     

For element 1 

1-2-7→1-2-3 

P1 = 0-0.2 = -0.2              Q1 = 0-0.2 = -0.2  

P2 = 0.2-0 = 0.2               Q2 = 0-0 = 0 

P3 = 0-0 = 0   Q3 = 0.2 -0 = 0.2 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(1)

 =� 1 − 0.5 − 0.5−0.5    0.5      0−0.5    0   0.5 �     

For element 2 

2-8-7→1-2-3 

P1 = 0.2-0.2 = 0  Q1 = 0-0.2 = -0.2  

P2 = 0.2-0 = 0.2  Q2 = 0.2-0 = 0.2 

P3 = 0-0 =- 0.2   Q3 = 0.2 -0.2 = 0 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 
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C
(2)

 =� 0.5 − 0.5    0−0.5    1     − 0.50   − 0.5   0.5 �     

For element 3  

2-3-8→1-2-3 

P1 = 0-0.2 = -0.2  Q1 = 0-0.2 = -0.2  

P2 = 0.2-0 = 0.2  Q2 = 0-0 = 0 

P3 = 0-0 = 0   Q3 = 0.2 -0 = 0.2 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(3)

 =� 1 − 0.5 − 0.5−0.5    0.5      0−0.5    0   0.5 �    

For element 4 

3-9-8→1-2-3 

P1 = 0-0.2 = 0  Q1 = 0.2-0.4 = -0.2  

P2 = 0.2-0 = 0.2 Q2 = 0.4-0 .2= 0.2 

P3 = 0-0 = -0.2  Q3 = 0.4 -0.4 = 0 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(4)

 =� 0.5 − 0.5     0−0.5    1     − 0.50   − 0.5     0.5 � 

For element 5 

3-4-9→1-2-3 
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P1 = 0-0.2 = -0.2  Q1 = 0.4-0.6 = -0.2  

P2 = 0.2-0 = 0.2  Q2 = 0.4-0.4 = 0 

P3 = 0-0 = 0   Q3 = 0.6 -0.4 = 0.2 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(5)

 =� 1 − 0.5 − 0.5−0.5    0.5      0−0.5    0   0.5 � 

For element 6 

4-10-9→1-2-3 

P1 = 0.2-0.2 = 0   Q1 = 0.4-0.6 = -0.2  

P2 = 0.2-0 = 0.2   Q2 = 0.6-0.4 = 0.2 

P3 = 0-0.2 = -0.2   Q3 = 0.6 -0.6 = 0 

A = ½ {0.2 x 0 + 0.2x 0.2} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(6)

 =� 0.5 − 0.5      0 −0.5    1     − 0.50  − 0.5      0.5 � 

For element 7 

4-5-10→1-2-3 

P1 = 0-0.2 = -0.2  Q1 = 0.6-0.8 = -0.2  

P2 = 0.2-0 = 0.2  Q2 = 0.6-0.6 = 0 

P3 = 0-0 = 0   Q3 = 0.8 -0.6 = 0.2 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 
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A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(7)

 =� 1 − 0.5 − 0.5−0.5    0.5      0−0.5    0   0.5 � 

For element 8 

5-11-10→1-2-3 

P1 = 0-0 = 0   Q1 = 0.6-0.8 = -0.2  

P2 = 0.2-0 = 0.2  Q2 = 0.8-0.6 = 0.2 

P3 = 0-0.2 = 0.2  Q3 = 0.8 -0.8 = 0 

A = ½ {0.2 x 0.2 + 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(8)

 =� 0.5 − 0.5      0−0.5    1    − 0.50   − 0.5   0.5 � 

For element 9 

5-6-11→1-2-3 

P1 = 0-0.2 = -0.2              Q1 = 0.8-1 = -0.2  

P2 = 0.2-0 = 0.2  Q2 = 0.8-0.8 = 0 

P3 = 0-0 = 0   Q3 = 1 -0.8 = 0.2 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(9)

 =� 1 − 0.5 − 0.5−0.5    0.5      0−0.5    0   0.5 � 
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For element 10 

7-8-12→1-2-3 

P1 = 0.2-0.4 = -0.2  Q1 = 0-0.2 = -0.2  

P2 = 0.4-0.2 = 0.2  Q2 = 0-0 = 0 

P3 = 0.2-0.2 = 0               Q3 = 0.2 -0 = 0.2 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(10)

 =� 1 − 0.5 − 0.5−0.5    0     0.5−0.5    0.5   0 � 

For element 11 

8-13-12→1-2-3 

P1 = 0.4-0.4 = 0  Q1 = 0-0.2 = -0.2  

P2 = 0.4-0.2 = 0.2  Q2 = 0.2-0 = 0.2 

P3 = 0.2-0.4 =- 0.2  Q3 = 0 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(11)

 =� 0.5 − 0.5      0−0.5    0.5      0−0.5    0   0.5 � 

For element 12 

8-9-13→1-2-3 

P1 = 0.2-0.4 = -0.2   Q1 = 0.2-0.4 = -0.2  

P2 = 0.4-0.2 = 0.2   Q2 = 0.2-0.2 = 0 
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P3 = 0.2-0.2 = 0   Q3 = 0.4 -0.2 = 0.2 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(12)

 =� 1 − 0.5 − 0.5−0.5    0.5      0−0.5    0   0.5 � 

For element 13 

9-14-13→1-2-3 

P1 = 0.4-0.4 = 0  Q1 = 0.2-0.4 = -0.2  

P2 = 0.4-0.2 = 0.2  Q2 = 0.4-0.2 = 0.2 

P3 = 0.2-0.4 = 0  Q3 = 0 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(13)

 =� 0.5 − 0.5      0−0.5    1      0.50   − 0.5   0.5 � 

For element 14 

9-10-14→1-2-3 

P1 = 0.2-0.4 = -0.2  Q1 = 0.4-0.6 = -0.2  

P2 = 0.4-0.2 = 0.2  Q2 = 0.4-0.4 = 0 

P3 = 0-0 = 0   Q3 = 0.6 -0.4 = 0.2 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 
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Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(14)

 =� 1 − 0.5 − 0.5−0.5    0.5      0−0.5    0   0.5 � 

For element 15 

10-15-14→1-2-3 

P1 = 0              Q1 = 0-0.2 = -0.2  

P2 = 0.4-0.2 = 0.2        Q2 = 0.6-0.4= 0 

P3 = 0.2-0 .4= -0.2       Q3 = 0.6 -0 .6= 0 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(15)

 =� 0.5 − 0.5      0−0.5     1   − 0.50  − 0.5     0.5 � 

For element 16 

10-11-15→1-2-3 

P1 = 0.2-0.4 = -0.2  Q1 = 0.6-0.8 = -0.2  

P2 = 0.4-0 .2= 0.2  Q2 = 0.6-0.6 = 0 

P3 = 0-0 = 0   Q3 = 0.8 -0.6 = 0.2 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(16)

 =� 1 − 0.5 − 0.5−0.5    0.5      0−0.5    0   0.5 � 

For element 17 
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12-13-16→1-2-3 

P1 = 0.4-0.6 = -0.2   Q1 = 0-0.2 = -0.2  

P2 = 0.6-0.4 = 0.2   Q2 = 0-0 = 0 

P3 = 0-0 = 0                 Q3 = 0.2 -0 = 0.2 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(17)

 =� 1 − 0.5 − 0.5−0.5    0.5      0−0.5    0   0.5 � 

For element 18 

13-17-16→1-2-3 

P1 = 0.6-0.6 = 0  Q1 = 0-0.2 = -0.2  

P2 = 0.6-0.4 = 0.2  Q2 = 0.2-0 = 0.2 

P3 = 0.4-0.6 =- 0.2  Q3 = 0.2 -0.2 = 0 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(18)

 =� 0.5 − 0.5      0−0.5    1      0.5 0  −  0.5   0.5 � 

For element 19 

13-14-17→1-2-3 

P1 = 0.4-0.6 = -0.2  Q1 = 0.2-0.4 = -0.2  

P2 = 0.6-0.4= 0.2  Q2 = 0.2-0.2 = 0 

P3 = 0-0 = 0   Q3 = 0.4 -0.2 = 0.2 
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A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(19)

 =� 1 − 0.5 − 0.5−0.5    0.5      0−0.5    0   0.5 � 

 

For element 20 

14-18-17→1-2-3 

P1 = 0.6-0.6 = 0  Q1 = 0.2-0.4 = -0.2  

P2 = 0.4-0.6 = -0.2  Q2 = 0.4-0.2= 0.2 

P3 = 0.4-0.6 = -0.2  Q3 = 0.4 -0.4 = 0 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(20)

 =� 0.5 − 0.5      0−0.5    1    − 0.50    − 0.5    0.5 � 

 

For element 21 

14-15-18→1-2-3 

P1 = 0.4-0.6 = -0.2  Q1 = 0.4-0.6 = -0.2  

P2 = 0.6-0.4= 0.2  Q2 = 0.4-0.4 = 0 

P3 = 0.4-0.4 = 0  Q3 = 0.2  

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 
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Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(21)

 =� 1 − 0.5 − 0.5−0.5    0.5      0−0.5    0   0.5 � 

For element 22 

16-17-19→1-2-3 

P1 = 0.6-0.8 = -0.2  Q1 = 0-0.2 = -0.2  

P2 = 0.8-0.6 = 0.2  Q2 = 0-0 = 0 

P3 = 0.6-0.6 = 0  Q3 = 0.2 -0 = 0.2 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(22)

 =� 1 − 0.5 − 0.5−0.5    0.5      0−0.5    0   0.5 � 

For element 23 

17-20-19→1-2-3 

P1  = 0   Q1 = 0-0.2 = -0.2  

P2 = 0.8-0.6= 0.2 Q2 = 0-0 = 0 

P3 = 0.6-0.8 =- 0.2 Q3 = 0.2 -0 = 0.2 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(23)

 =� 0.5 − 0.5     0−0.5    1    −  0.50   − 0 .5     0.5 � 

For element 24 
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17-18-20→1-2-3 

P1 = 0.6-0.8 = -0.2                Q1 = 0.2-0.4 = -0.2  

P2 = 0.8-0.6 = 0.2  Q2 = 0.2-0.2 = 0 

P3 =  0                  Q3 = 0.4 -0.2 = 0.2 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(24)

 =� 1 − 0.5 − 0.5−0.5    0.5      0−0.5    0   0.5 � 

For element 25 

19-20-21→1-2-3 

P1 = 0.8-1 = -0.2   Q1 = 0-0.2=- 0.2 

P2 = 1-0.8 = 0.2  Q2 = 0-0 = 0 

P3 = 0-0 = 0   Q3 = 0.2 -0 = 0.2 

A = ½ {0.2 x 0.2 – 0x 0} = 
�.�D
�   = 

�.�2�  = 0.02 

A= 0.02 

Cij
(e)

 = 

2% (PiPj + QiQj) 

C
(25)

 =� 1 − 0.5 − 0.5−0.5    0.5      0−0.5    0   0.5 � 

 

                     ?Cff @   =     
56
66
66
7 C88           C89             C810           C813          C814         C817  C98          C99          C910          C913         C914        C917    C108        C109       C1010         C1013    C1014     C1017C138     C139        C1310            C1313     C1314     C1317 C148          C149      C1410          C1413     C1414     C1417C 178   C 179         C1710         C1713      C1714      C1717   :;

;;
;;
<
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               ?Cff @ = 

56
66
67 4  − 1  0  − 1    0     0−1        4 − 1    0   − 1   00 − 1      4      0      0      01     0     0      − 1     − 10 − 1     0  − 1      4      00     0      0  − 1     0      4 :;

;;
;<
                       

               #B$  =  

56
66
67 00−2000−200−200:;

;;
;<
 

                    

    [V] = #N$"
[B]                              

           #�$O    =      

56
66
6718.181836.363659.090936.363668.181859.0909:;

;;
;<
           (ANSWER)                

MATLAB PROGRAM: 

APPENDIX A: A.2 MATLAB program for 2D problem using finite element method. 
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Result: 

  

  node        X        Y  potential 

    1.0000        0               0         0 

    2.0000    0.2000        0           0 

    3.0000    0.4000        0          0 

    4.0000    0.6000         0         0 

    5.0000    0.8000         0         0 

    6.0000    1.0000         0   50.0000 

    7.0000         0    0.2000         0 

    8.0000    0.2000    0.2000   18.1818 

    9.0000    0.4000    0.2000   36.3636 

   10.0000    0.6000    0.2000   59.0909 

   11.0000    0.8000    0.2000  100.0000 

   12.0000         0    0.4000         0 

   13.0000    0.2000    0.4000   36.3636 

   14.0000    0.4000    0.4000   68.1818 

   15.0000    0.6000    0.4000  100.0000 

   16.0000         0    0.6000         0 

   17.0000    0.2000    0.6000   59.0909 

   18.0000    0.4000    0.6000  100.0000 

   19.0000         0    0.8000         0 

   20.0000    0.2000    0.8000  100.0000 

   21.0000         0    1.0000   50.0000 
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Chapter 4 

 

Three dimensional electric field calculations 

 

 4.1 Three-dimensional Laplace’s equation 

The three –dimensional box is given below. The upper plate is connected to a 10V potential and 

five plates are grounded. We have found the potential and electric field intensity everywhere 

inside box. 

Here finite difference method uses a rectangular grid. A three-dimensional grid, with five 

divisions in each directional is defined over the mesh as shown figure (4.1b).the mesh has total 

of 64 internal nodes which must be evaluated. 

                     

Fig 4.1a, conducting box with given boundary potentials. Fig 4.1b, 5×5×5 finite difference grid 

over the box. 

Program in C: 

APPENDIX B: B.1 C programming for Three-dimensional Laplace’s equation. 

 

 

Results:- 
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Below two contour plots of potential distributions and equipotential lines and 3D potential 

distribution in box are shown. 

 

Figure,(4.2a)contour plot on cross section cut vertically,Fig(4.2b)contour on a cross section cut 

horizontally.both plots are for the 5 × 5 × 5 grids. 

              

Figure(4.2c),  three dimentional plot of the potential distribution in box. 
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4.2 Non-uniformly distributed dielectric of a capacitor 

A parallel plate capacitor is given. The insulator between the plates is mica with relative 

permittivity εr = 4. Because of problems in production, there is a fault in the mica in the form a 

rectangular vein, as shown. The vain may be considered to be air. We have to calculate the 

potential everywhere inside the capacitor if a potential V=100 Volts is connected across the 

plates, the electric field intensity at the centre of the fault for the condition in above and what the 

maximum potential difference allowable with and without fault. 

   

 

Figure (4.3a), shows mica insulated, parallel plate capacitor with a small flaw in the dielectric. 

 

 

Figure (4.3b) shows a finite elements mesh and boundary conditions for the half of the capacitor. 

Program: 

APPENDIX B: B.2 C programming for non-uniformly distributed dielectric of capacitor. 

 

Result: 

    εr = 1 



37 

 

                                                                                                                             

Figure (4.4a), Contours of constant potential in the capacitor. (4.4b) Magnitude of electric field 

intensity in the flaw as a function of applied potential. 

According to the output of program, when the flaw is present, the potential is not uniformly distributed 

and we must calculate the potential difference numerically. However, there is a slight difficulty here: we 

are in effect trying to find the boundary conditions that will provide the maximum electric field intensity 

allowable in the flaw. The finite elements method requires known boundary conditions to calculate the 

field intensity. The way we approach this problems to start with a known potential difference and 

increment the potential on the boundary until the electric field intensity in the flaw will equal the 

breakdown electric field intensity. The potential difference we obtained is the maximum allowable 

potential difference. In other words we run the finite element program with known trial potentials and 

choose the potential which provides the required result. 

Analysis of above problem in ANSYS:- 
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  4.3 Electric fields near a dc busbar 

A busbar used in the distribution of electric power in a distribution box is at potential 220 volts. 

The busbar is a rectangular conductor as shown. The ground and the busbar may be considered 

to be perfect conductors. We have found electric potential everywhere in space and location and 

magnitude of the maximum electric fields intensity. 

Solution: 

We again start by defining the geometry and the boundary conditions. Using a symmetry line 

vertically through the center of the bar, we eliminate half the geometry. Next, we must place 

artificial boundaries at some distant from the bar. By placing these boundaries at reasonable 

distance from the source, the solution can be an accurate while the mesh required is reasonably 

small. In this case, the boundaries are placed at 0.1 m from the symmetry line and 0.12m from 

the ground plane, as shown. A total of 52 elements and 39 nodes are used. The left boundary is 

left unspecified with the exception of the bar which is held at 100volts. 

 

Fig 4.5a busbar at 220 V over conducting ground, fig 4.5b placement of artificial boundary and 

symmetry for geometry in fig. (4.5a), mesh is shown. 

Program in C: 

Program for this problem is same as that of program for flaw in the dielectric of a capacitor; 

because that program is general program for finite elements methods. Only we have changed the 

input data. 

Input data: 

APPENDIX B: B.3 input data for DC busbar. 
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Results: 

 

                     Figure 4.6, shows the Contour plot of the solutions. 

 

Above plot shows the equipotential lines. The magnitude of the electric field intensity is highest 

in element No.11 and equals 4.496× 102 v/m and corresponds to a distance of about 1.7 mm 

below and about 10 mm to the right of the corner of the busbar. That the maximum electric field 

must be around the corner is expected, but the exact location and magnitude depends on the 

dimensions and on the mesh used. 
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    Chapter 5  

 

             Finite Element Analysis using ANSYS                              

                                        

The finite element method has become a staple for predicting and simulating the physical 

behavior of complex engineering systems. The commercial finite element analysis programs 

have gained common acceptance among engineers in industry and researchers at universities and 

governments laboratories. Most widely used commercial finite element analysis program is the 

ANSYS. 

5.1 Fundamental of ANSYS: 

Jobname: a specific name to be used for the files created during an ANSYS session. This name 

can be assigned either before or after starting the ANSYS program. 

Working Directory: a specific folder for ANSYS to store all of the files created during a 

session. It is possible to specify the Working Directory before or after starting ANSYS.  

Interactive Mode: This is the most common mode of interaction between the user and the 

ANSYS program. It involves activation of a platform called Graphical User Interface {GUI), 

which is composed of menus, dialog boxes, push-buttons, and different windows. Interactive 

Mode is the recommended mode for beginner ANSYS users as it provides an excellent platform 

for learning. It is also highly effective for postprocessing.  

Batch Mode: This is a method to use the ANSYS program without activating the GUI It 

involves an Input File written in ANSYS Parametric Design Language {APDL), which allows 

the use of parameters and common programming features such as DO loops and IF statements. 

These capabilities make the Batch Mode a very powerful analysis tool. Another distinct 

advantage of the Batch Mode is realized when there is an error/mistake in the model generation. 

This type of problem can be fixed by modifying a small portion of the Input File and reading it 

again, saving the user a great deal of time.  

Combined Mode: This is a combination of the Interactive and Batch Modes in which the user 

activates the GUI and reads the Input File. Typically, this method allows the user to generate the 

model and obtain the solution using the Input File while reviewing the results using the 

Postprocessor within the GUL This method combines the salient advantages of the Interactive 

and Batch Modes. 
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   Before an ANSYS Session  

The construction of solutions to engineering problems using FEA requires either the 

development of a computer program based on the FEA formulation or the use of a commercially 

available general-purpose FEA program such as ANSYS. The ANSYS program is a powerful, 

multi-purpose analysis tool that can be used in a wide variety of engineering disciplines. Before 

using ANSYS to generate an FEA model of a physical system, the following questions should be 

answered based on engineering judgment and observations: 

• What are the objectives of this analysis?  

• Should the entire physical system be modeled, or just a portion?  

• How much detail should be included in the model?  

• How refined should the finite element mesh be?  

In answering such questions, the computational expense should be balanced against the accuracy 

of the results. Therefore, the ANSYS finite element program can be employed in a correct and 

efficient way after considering the following:  

• Type of problem.  

• Time dependence.  

• Nonlinearity.  

• Modeling idealizations/simplifications.  

Analysis Discipline  

The ANSYS program is capable of simulating problems in a wide range of engineering 

disciplines. Example- structural analysis, thermal analysis, electromagnetic analysis etc. 

Degrees of Freedom  

The ANSYS solution for each of these analysis disciplines provides nodal values of the field 

variable. This primary unknown is called a degree of freedom (DOF). The degrees of freedom 

for these disciplines are presented in Table 5.1. The analysis discipline should be chosen based 

on the quantities of interest.  
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                                                        Table 5.1 

Time Dependence: 

The analysis with ANSYS should be time-dependent if:  

• The solid body is subjected to time varying loads.  

• The solid body has an initially specified temperature distribution.  

• The body changes phase.  

                              

 

                          Fig.5.1 Non-linear material response. 

Nonlinearity:  

Most real-world physical phenomena exhibit nonlinear behavior. There are many situations in 

which assuming a linear behavior for the physical system might provide satisfactory results. On 

the other hand, there are circumstances or phenomena that might require a nonlinear solution. A 

 

 

Electrostatic                electric potential,                                 electric potential 

                                       Charge density 

magnetostatics          magnetic potential,                               magnetic potential 

                                      Magnetic potential 

Discipline                             quantity                                            DOF 
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nonlinear structural behavior may arise because of geometric and material nonlinearities, as well 

as a change in the boundary conditions and structural integrity. These nonlinearities are 

discussed briefly in the following subsections.  

 Geometric Nonlinearity:  

There are two main types of geometric nonlinearity:  

Large deflection and rotation: If the structure undergoes large displacements compared to its 

smallest dimension and rotations to such an extent that it’s original dimensions and position, as 

well as the loading direction, change significantly, the large deflection and rotation analysis 

becomes necessary. For example, a fishing rod with a low lateral stiffness under a lateral load 

experiences large deflections and rotations.  

Stress stiffening: When the stress in one direction affects the stiffness in another direction, stress 

stiffening occurs. Typically, a structure that has little or no stiffness in compression while having 

considerable stiffness in tension exhibits this behavior. Cables, membranes, or spinning 

structures exhibit stress stiffening.  

 Material Nonlinearity:  

A typical nonlinear stress-strain curve is given in Fig. A linear material response is a good 

approximation if the material exhibits a nearly linear stress-strain curve up to a proportional limit 

and the loading is in a manner that does not create stresses higher than the yield stress anywhere 

in the body. 

Nonlinear material behavior in ANSYS is characterized as: 

Plasticity: Permanent, time-independent deformation.  

Creep: Permanent, time-dependent deformation. 

 Nonlinear Elastic: Nonlinear stress-strain curve; upon unloading, the structure returns back to its 

original state—no permanent deformations.  

Viscoelasticity: Time-dependent deformation under constant load. Full recovery upon unloading.  

Hyperelasticity: Rubber-like materials 

 Practical Modeling Considerations  

In order to reduce computational time, minor details that do not influence the results should not 

be included in the FE model. Minor details can also be ignored in order to render the geometry 

symmetric, which leads to a reduced FE model. However, in certain structures, "small'* details 

such as fillets or holes may be the areas of maximum stress, which might prove to be extremely 
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important in the analysis and design. Engineering judgment is essential to balance the possible 

gain in computational cost against the loss of accuracy.  

Mesh Density: 

In general, a large number of elements provide a better approximation of the solution However, 

in some cases, an excessive number of elements may increase the round-off error. Therefore, it is 

important that the mesh is adequately fine or coarse in the appropriate regions. How fine or 

coarse the mesh should be in such regions is another important question. Unfortunately, 

definitive answers to the questions about mesh refinement are not available since it is completely 

dependent on the specific physical system considered. However, there are some techniques that 

might be helpful in answering these questions:  

Adaptive Meshing: The generated mesh is required to meet acceptable energy error estimate 

criteria. The user provides the ''acceptable" error level information. This type of meshing is 

available only for linear static structural analysis and steady-state thermal analysis.  

Mesh Refinement Test Within ANSYS: An analysis with an initial mesh is performed first and 

then reanalyzed by using twice as many elements. The two solutions are compared. If the results 

are close to each other, the initial mesh configuration is considered to be adequate. If there are 

substantial differences between the two, the analysis should continue with a more-refined mesh 

and a subsequent comparison until convergence is established.  

Submodeling: If the mesh refinement test yields nearly identical results for most regions and 

substantial differences in only a portion of the model, the built-in "submodeling" feature of 

ANSYS should be employed for localized mesh refinement. 

 Organization of ANSYS Software  

There are two primary levels in the ANSYS program, as shown in Fig. 

 Begin Level: Gateway into and out of ANSYS and platform to utilize some global controls such 

as changing the jobname, etc.  

Processor Level: This level contains the processors (preprocessor, solution, postprocessor, etc.) 

that are used to conduct finite element analyses. 

The user is in the Begin Level upon entering the ANSYS program. One can proceed to the 

Processor Level by clicking the mouse on one of the processor selections in the ANSYS Main 

Menu. 
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                                              Fig.5.2 Schematic of ANSYS levels 

ANSYS Analysis Approach  

There are three main steps in a typical ANSYS analysis:  

• Model generation:  

     • Simplifications, idealizations.  

     • Define materials/material properties.  

     • Generate finite element model (mesh).  

 • Solution:  

      •Specify boundary conditions.  

      • Obtain the solution. 

 

• Review results:  

    • Plot/list results.  

    •Check for validity.  

Each of these steps corresponds to a specific processor or processors within the Processor Level 

in ANSYS. In particular, model generation is done in the Preprocessor and application of loads 

and the solution is performed in the Solution Processor, Finally, the results are viewed in the 

General Postprocessor and Time History Postprocessor for steady-state (static) and transient 

(time-dependent) problems, respectively. There are several other processors within the ANSYS 

program. These mostly concern optimization- and probabilistic-type problems. The most 

commonly used processors are described in the following subsections. 

ANSYS Preprocessor : 
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Model generation is conducted in this processor, which involves material definition, creation of a 

solid model, and, finally, meshing. Important tasks within this processor are:  

• Specify element type.  

• Define real constants (if required by the element type).  

• Define material properties,  

• Create the model geometry.  

• Generate the mesh.  

Although the boundary conditions can also be specified in this processor, it is usually done in the 

Solution Processor,  

ANSYS Solution Processor:  

This processor is used for obtaining the solution for the finite element model that is generated 

within the Preprocessor, Important tasks within this processor are:  

• Define analysis type and analysis options,  

• Specify boundary conditions.  

• Obtain solution.  

 ANSYS General Postprocessor : 

In this processor, the results at a specific time (if the analysis type is transient) over the entire or 

a portion of the model are reviewed. This includes the plotting of contours, vector displays, 

deformed shapes, and listings of the results in tabular format.  

ANSYS Time History Postprocessor : 

This processor is used to review results at specific points in time (if the analysis type is 

transient). Similar to the General Postprocessor, it provides graphical variations and tabular 

listings of results data as functions of time.  

 ANSYS File Structure  

Several files are created during a typical ANSYS analysis. Some of these files are in ASCII 

format while the others are binary. Brief descriptions of common file types are given below.  

Database File  
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During a typical ANSYS analysis, input and output data reside in memory until they are saved in 

a Database File, which is saved in the Working Directory. The syntax for the name of the 

Database File is jobname, db. This binary file includes the element type, material properties, 

geometry (solid model), mesh (nodal coordinates and element connectivity), and the results if a 

solution is obtained. Once the Database File is saved, the user can resume from this file at any 

time. There are three distinct ways to save and resume the Database File:  

• Use the Utility Menu.  

• Click on SAVE_DB or RESUM_DB button on the ANSYS Toolbar.  

• Issue the command SAVE or RESUME in the Input Field.  

Log File  

The Log File is an ASCII file, which is created (or resumed) immediately upon entering ANSYS. 

Every action taken by the user is stored sequentially in this file in command format (ANSYS 

Parametric Design Language (APDL)). The syntax for the name of the Log File, which is also 

saved in the Working Directory, isjobname.log. If jobname.log already exists in the Working 

Directory, ANSYS appends the newly executed actions instead of overwriting the file. The Log 

File can be utilized to:  

• Understand how an analysis was performed by another user.  

• Learn the command equivalents of the actions taken within ANSYS.  

Error File  

Similar to the Log File, the Error File is an ASCII file, which is created (or resumed) 

immediately upon entering ANSYS. This file captures all warning and error messages issued by 

ANSYS during a session. It is saved in the Working Directory with the following syntax for the 

name: jobname.err. If jobname.err already exists in the Working Directory, ANSYS appends the 

newly issued warning and error messages instead of overwriting the file. This file is particularly 

important when ANSYS issues several warning and error messages too quickly during an 

interactive session. The user can then consult the Error File to discover the exact cause(s) of each 

of the warnings or errors.  

Results Files  

The results of an ANSYS analysis are stored in a separate Results File. This file is a binary file 

and, depending upon the Analysis Type, the file's extension takes a different form. The following 

syntax applies to the Results File name for the selected Analysis Type:  

Structural analysis: jobname.rst  
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Thermal analysis: jobname.rth  

Fluids analysis: jobname,rfl  

 Description of ANSYS Menus and Windows: 

When using the ANSYS program in Interactive Mode, the Graphical User Interface (GUT) is 

activated. The GUI has six distinct components:  

Utility Menu: Contains functions that are available throughout the ANSYS session, such as file 

controls, selecting, graphic controls, and parameters. The ANSYS Help System is also accessible 

through this menu. 

Main Menu: Contains the primary ANSYS functions organized by processors (Preprocessor, 

Solution, General Postprocessor, etc.). 

Toolbar: Contains push-buttons for executing commonly used ANSYS commands and functions. 

Customized buttons can be created.  

Input Field: Displays a text field for typing commands. All previously typed commands are 

stored in a pull-down menu for easy reference and access.  

Graphics Window: Displays the graphical representation of the models/ meshes created within 

ANSYS. Also, the related results are reviewed in this window.  

Output Window: Receives text output from the program. This window is usually positioned 

behind other windows and can be raised to the front when necessary.  

 

 

Figure shows a typical ANSYS GUI with each of the preceding components identified:- 
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                                                     Fig 5.3 ANSYS GUI 

Utility Menu  

The Utility Menu contains utility functions that are independent of ANSYS Levels (i.e., begin 

and processor levels), with some exceptions. The Utility Menu contains ten items, each of which 

brings up a pull-down menu of subitems. Clicking the left mouse button on these subitems will 

result in one of the following:  

• Bring up a submenu, indicated by the icon • .  

• Immediately execute a function.  

• Bring up a dialog box, indicated by the icon... .  

• Bring up a picking menu, indicated by the icon + .  

Brief descriptions of each of the menu items under the Utility Menu are given below.  
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File item under Utility Menu: Contains file- and database-related functions, such as clearing the 

database, reading an input file, saving the database to a file, or resuming a database from a file. 

This menu item can be used to exit the program.  

Select item under Utility Menu: Includes functions that allow the user to select a subset of data 

and to create Components.  

List item under Utility Menu: This menu item allows the user to list any data stored in the 

ANSYS database. Also, status information about different areas of the program and contents of 

files in the system are available.  

Plot item under Utility Menu: This menu item allows the user to plot ANSYS entities such as 

keypoints, lines, areas, volumes, nodes, and elements. If a solution is obtained, results can also 

be plotted through this menu item.  

PlotCtrls item under Utility Menu: Contains functions that control the view, style, and other 

characteristics of graphic displays.  

WorkPlane item under Utility Menu: Use of WorkPlane offers great convenience for Solid 

Model generation. This menu item enables the user to toggle the Working Plane on and off, and 

to move, rotate, and maneuver it. Coordinate system operations are also performed under this 

menu item.  

Parameters item under Utility Menu: Contains functions to define, edit, and delete scalar and 

array parameters.  

Macro item under Utility Menu: This menu item allows the user to execute Macros and data 

blocks. Under this menu item, the user can also manipulate the push-buttons on the Toolbar.  

MenuCtrls item under Utility Menu: Allows the user to format the menus, as well as manipulate 

the Toolbar.  

Help item under Utility Menu: Brings up the ANSYS Help System.  

 Main Menu  

The Main Menu contains main ANSYS functions and processors, such as the preprocessor, 

solution, and postprocessor. It has a tree structure, where menus and submenus can be expanded 

and collapsed. Similar to the Utility Menu, clicking the left mouse button on the Main Menu 

items results in one of the following:  

• Expand or collapse the submenus attached to the menu item, indicated by icons   and  , 

respectively.  

• Bring up a dialog box, indicated by the icon   .  
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• Bring up a picking menu, indicated by the icon   .  

Toolbar  

The Toolbar contains a set of push-buttons that execute frequently used ANSYS functions. When 

the user starts ANSYS, predefined push-buttons such as QUIT, SAVE_DB, and RESUM_DB 

appear in the toolbar. The user can create customized push-buttons and delete or edit the existing 

ones.  

Input Field  

This field allows the user to type in commands directly as opposed to the use of menu items. The 

Input Field consists of two main regions:  

• Command entry box.  

• History buffer.  

Graphics Window  

All ANSYS graphics are displayed in the Graphics Window. Also, the user performs all of the 

graphical "picking" in this window.  

 Output Window  

All of the text output generated as a result of command responses, warnings, and errors appear in 

the Output Window. It is positioned behind the main ANSYS window, but can be raised to the 

front when necessary.  
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5.2MOTOR ANALYSIS USING FINITE ELEMENTS METHODS IN 

ANSYS WORKBENCH: 

 

Figures below show step by step field analysis of electric motor. 
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This figure is showing the electric flux lines in a motor. 
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Conclusion and future work: 

Two numerical methods are discussed; e.g. finite difference method and finite element method. 

Both methods are used to find two dimensional electric field distributions with given boundary 

conditions using MATLAB. Electric field distributions in more practical three dimensional cases 

with non-uniformly distributed dielectric of a capacitor in a DC busbar has found using C-

programming. Also, electromagnetic field calculations of electric motor have been done in 

ANSYS.FEM and ANSYS can be used in order find the field distributions of high voltage 

insulators and cables with or without faults, which I left  as a task for future batches to take over 

and complete the project. 
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APPENDIX A: MATLAB 

A.1 MATLAB program for 2D  problem using finite difference method. 

v1=0.0; 

v2=100.0; 

v3=0.0; 

ni=200; 

nx=9; 

ny=9; 

v=zeros(nx,ny); 

for i=2:8 

    v(i,1)=v1; 

end 

for j=2:8 

    v((10-j),j)=v2; 

end 

for j=2:8 

    v(1,j)=v3; 

end 

v(1,1)=0.5*(v1+v3); 

v(9,1)=0.5*(v1+v2); 

v(1,9)=0.5*(v3+v2); 

for k=1:ni 

    for i=2:8 

        for j=2:8 

            if (i+j)<10 
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            v(i,j)=0.25*(v(i+1,j)+v(i-1,j)+v(i,j+1)+v(i,j-1)); 

            end 

        end 

    end 

end 

v 

A.2 MATLAB program for 2D problem using finite element method. 

NE=25; 

ND=21; 

NP=15; 

NL=[1 2 7 

    2 8 7 

   2 3 8 

   3 9 8 

   3 4 9 

   4 10 9 

   4 5 10 

   5 11 10 

   5 6 11 

   7 8 12 

   8 13 12 

   8 9 13 

   9 14 13 

   9 10 14 

   10 15 14 
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   10 11 15 

   12 13 16 

   13 17 16 

   13 14 17 

   14 18 17 

   14 15 18 

   16 17 19 

   17 20 19 

   17 18 20 

   19 20 21]; 

X=[0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.0 0.2 0.0]; 

Y=[0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.8 0.8 1.0]; 

NDP=[1 2 3 4 5 6 11 15 18 20 21 19 16 12 7]; 

VAL=[0.0 0.0 0.0 0.0 0.0 50.0 100.0 100.0 100.0 100.0 50.0 0.0 0.0 0.0 0.0]; 

B=zeros(ND,1); 

C=zeros(ND,ND); 

for I=1:NE 

    K=NL(I,[1:3]); 

    XL=X(K); 

    YL=Y(K); 

    P=zeros(3,1); 

    Q=zeros(3,1); 

    P(1)=YL(2)-YL(3); 

    P(2)=YL(3)-YL(1); 

    P(3)=YL(1)-YL(2); 
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    Q(1)=XL(3)-XL(2); 

    Q(2)=XL(1)-XL(3); 

    Q(3)=XL(2)-XL(1); 

    AREA =0.5*abs(P(2)*Q(3)-Q(2)*P(3)); 

    CE=(P*P'+Q*Q')/(4.0*(AREA+0.000000000000000000000001)); 

    for J=1:3 

    IR=NL(I,J); 

    IFLAG1=0; 

    for K=1:NP 

    if(IR==NDP(K)) 

        C(IR,IR)=1.0; 

        B(IR)=VAL(K); 

        IFLAG1=1; 

    end 

end 

        if(IFLAG1==0) 

            for L=1:3 

            IC=NL(I,L); 

            IFLAG2=0; 

           for K=1:NP 

               if (IC==NDP(K)), 

                   B(IR)=B(IR)-CE(J,L)*VAL(K); 

            IFLAG2=1; 

               end 

           end 
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           if(IFLAG2==0) 

               C(IR,IC)=C(IR,IC)+CE(J,L); 

           end 

            end 

        end 

    end 

end 

V=inv(C)*B; 

V=V'; 

[ND, NE, NP] 

[ [1:ND]' X' Y' V 

 

 

 

 

 

 

 

 

 

 

APPENDIX B: C programming 

B.1 C programming for Three-dimensional Laplace’s equation. 

/* fdm3d.c 

*/ 

#include "fdm2.dat" 
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/* Table of constant values */ 

static integer c__9 = 9; 

static integer c__1 = 1; 

static integer c__3 = 3; 

static integer c__4 = 4; 

/*     ITERATIVE FINITE DIFFERENCE SOLUTION */ 

/*     THE FOLLOWING DATA ARE USED: */ 

/*     VK = MATRIX OF ALL POTENTIALS */ 

/*     V  = VECTOR OF POTENTIALS AT INTERNAL NODES */ 

/*     N1X= NUMBER OF DIVISIONS IN THE X DIRECTION */ 

/*     N1Y= NUMBER OF DIVISIONS IN THE Y DIRECTION */ 

/*     VX1,VX2, BOUNDARY POTENTIALS ON THE LOWER AND UPPER BOUNDARIES */ 

/*     VY1,VY2, BOUNDARY POTENTIALS ON THE LEFT AND RIGHT BOUNDARIES */ 

/*     EPS, TOLERANCE ERROR PER NODE. */ 

/* Main program */ MAIN__() 

{ 

    /* Format strings */ 

    static char fmt_11[] = "(1x,\002ITERATION NO:\002,i5)"; 

    static char fmt_7011[] = "(i5)"; 

    static char fmt_7010[] = "(3i5,4e10.4)"; 

    static char fmt_1[] = "(1x,\002NUMBER OF ITERATIONS = \002,i5,/)"; 

    static char fmt_2[] = "(3(\002   NODE:\002,i3,\002,  V=\002,f9.4))"; 

    /* System generated locals */ 

    integer i__1, i__2, i__3; 

    real r__1; 

    olist o__1; 

    /* Builtin functions */ 

    integer f_open(), s_wsle(), do_lio(), e_wsle(), s_rsle(), e_rsle(),  
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     s_wsfe(), do_fio(), e_wsfe(); 

    /* Subroutine */ int s_stop(); 

    /* Local variables */ 

    static integer i, j, k, n; 

    static real v[10000], x, y, z; 

    static integer n1, n2, n3, kk; 

    static real dx; 

    static integer nn; 

    static real vk[27000] /* was [30][30][30] */, vv; 

    static integer n1x, n1y, n1z; 

    static real vv1, vx1, vx2, vy1, vy2, vz1, vz2, eps; 

    /* Fortran I/O blocks */ 

    static cilist io___1 = { 0, 6, 0, 0, 0 }; 

    static cilist io___2 = { 0, 5, 0, 0, 0 }; 

    static cilist io___4 = { 0, 6, 0, 0, 0 }; 

    static cilist io___5 = { 0, 5, 0, 0, 0 }; 

    static cilist io___7 = { 0, 6, 0, 0, 0 }; 

    static cilist io___8 = { 0, 5, 0, 0, 0 }; 

    static cilist io___10 = { 0, 6, 0, 0, 0 }; 

    static cilist io___11 = { 0, 5, 0, 0, 0 }; 

    static cilist io___13 = { 0, 6, 0, 0, 0 }; 

    static cilist io___14 = { 0, 5, 0, 0, 0 }; 

    static cilist io___16 = { 0, 6, 0, 0, 0 }; 

    static cilist io___17 = { 0, 5, 0, 0, 0 }; 

    static cilist io___19 = { 0, 6, 0, 0, 0 }; 

    static cilist io___20 = { 0, 5, 0, 0, 0 }; 

    static cilist io___22 = { 0, 6, 0, 0, 0 }; 

    static cilist io___23 = { 0, 5, 0, 0, 0 }; 
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    static cilist io___25 = { 0, 6, 0, 0, 0 }; 

    static cilist io___26 = { 0, 5, 0, 0, 0 }; 

    static cilist io___28 = { 0, 6, 0, 0, 0 }; 

    static cilist io___29 = { 0, 5, 0, 0, 0 }; 

    static cilist io___42 = { 0, 6, 0, fmt_11, 0 }; 

    static cilist io___46 = { 0, 3, 0, fmt_7011, 0 }; 

    static cilist io___50 = { 0, 3, 0, fmt_7010, 0 }; 

    static cilist io___51 = { 0, 1, 0, fmt_1, 0 }; 

    static cilist io___52 = { 0, 1, 0, 0, 0 }; 

    static cilist io___53 = { 0, 1, 0, fmt_2, 0 }; 

/* ***  ENTER DATA */ 

 

    o__1.oerr = 0; 

    o__1.ounit = 1; 

    o__1.ofnmlen = 4; 

    o__1.ofnm = "OUT1"; 

    o__1.orl = 0; 

    o__1.osta = 0; 

    o__1.oacc = 0; 

    o__1.ofm = "FORMATTED"; 

    o__1.oblnk = 0; 

    f_open(&o__1); 

    o__1.oerr = 0; 

    o__1.ounit = 3; 

    o__1.ofnmlen = 4; 

    o__1.ofnm = "out2"; 

    o__1.orl = 0; 

    o__1.osta = 0; 
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    o__1.oacc = 0; 

    o__1.ofm = "formatted"; 

    o__1.oblnk = 0; 

    f_open(&o__1); 

    s_wsle(&io___1); 

    do_lio(&c__9, &c__1, "ENTER NUMBER OF DIVISIONS IN THE X DIRECTION", 44L); 

    e_wsle(); 

    s_rsle(&io___2); 

    do_lio(&c__3, &c__1, (char *)&n1x, (ftnlen)sizeof(integer)); 

    e_rsle(); 

    s_wsle(&io___4); 

    do_lio(&c__9, &c__1, "ENTER NUMBER OF DIVISIONS IN THE Y DIRECTION", 44L); 

    e_wsle(); 

    s_rsle(&io___5); 

    do_lio(&c__3, &c__1, (char *)&n1y, (ftnlen)sizeof(integer)); 

    e_rsle(); 

    s_wsle(&io___7); 

    do_lio(&c__9, &c__1, "ENTER NUMBER OF DIVISIONS IN THE Z DIRECTION", 44L); 

    e_wsle(); 

    s_rsle(&io___8); 

    do_lio(&c__3, &c__1, (char *)&n1z, (ftnlen)sizeof(integer)); 

    e_rsle(); 

    s_wsle(&io___10); 

    do_lio(&c__9, &c__1, "ENTER BOUNDARY CONDITION ON BOTTOM BOUNDARY", 43L); 

    e_wsle(); 

    s_rsle(&io___11); 

    do_lio(&c__4, &c__1, (char *)&vx1, (ftnlen)sizeof(real)); 

    e_rsle(); 
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    s_wsle(&io___13); 

    do_lio(&c__9, &c__1, "ENTER BOUNDARY CONDITION ON TOP BOUNDARY", 40L); 

    e_wsle(); 

    s_rsle(&io___14); 

    do_lio(&c__4, &c__1, (char *)&vx2, (ftnlen)sizeof(real)); 

    e_rsle(); 

    s_wsle(&io___16); 

    do_lio(&c__9, &c__1, "ENTER BOUNDARY CONDITION ON LEFT BOUNDARY", 41L); 

    e_wsle(); 

    s_rsle(&io___17); 

    do_lio(&c__4, &c__1, (char *)&vy1, (ftnlen)sizeof(real)); 

    e_rsle(); 

    s_wsle(&io___19); 

    do_lio(&c__9, &c__1, "ENTER BOUNDARY CONDITION ON RIGHT BOUNDARY", 42L); 

    e_wsle(); 

    s_rsle(&io___20); 

    do_lio(&c__4, &c__1, (char *)&vy2, (ftnlen)sizeof(real)); 

    e_rsle(); 

    s_wsle(&io___22); 

    do_lio(&c__9, &c__1, "ENTER BOUNDARY CONDITION ON FRONT BOUNDARY", 42L); 

    e_wsle(); 

    s_rsle(&io___23); 

    do_lio(&c__4, &c__1, (char *)&vz1, (ftnlen)sizeof(real)); 

    e_rsle(); 

    s_wsle(&io___25); 

    do_lio(&c__9, &c__1, "ENTER BOUNDARY CONDITION ON BACK BOUNDARY", 41L); 

    e_wsle(); 

    s_rsle(&io___26); 
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    do_lio(&c__4, &c__1, (char *)&vz2, (ftnlen)sizeof(real)); 

    e_rsle(); 

    s_wsle(&io___28); 

    do_lio(&c__9, &c__1, "ENTER REQUIRED TOLLERANCE ERROR", 31L); 

    e_wsle(); 

    s_rsle(&io___29); 

    do_lio(&c__4, &c__1, (char *)&eps, (ftnlen)sizeof(real)); 

    e_rsle(); 

 

/* **** START CALCULATION */ 

 

    n1 = n1x + 1; 

    n2 = n1y + 1; 

    n3 = n1z + 1; 

    i__1 = n1; 

    for (i = 1; i <= i__1; ++i) { 

 i__2 = n2; 

 for (j = 1; j <= i__2; ++j) { 

     i__3 = n3; 

     for (k = 1; k <= i__3; ++k) { 

  vk[i + (j + k * 30) * 30 - 931] = (float)0.; 

/* L100: */ 

     } 

 } 

    } 

 

/* **** SET BOUNDARY CONDITIONS ON UPPER, LOWER, LEFT AND RIGHT SURFACES  

*/ 
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    i__3 = n1; 

    for (i = 1; i <= i__3; ++i) { 

 i__2 = n2; 

 for (j = 1; j <= i__2; ++j) { 

     vk[i + (j + 30) * 30 - 931] = vz1; 

     vk[i + (j + n3 * 30) * 30 - 931] = vz2; 

/* L120: */ 

 } 

    } 

    i__2 = n2; 

    for (j = 1; j <= i__2; ++j) { 

 i__3 = n3; 

 for (k = 1; k <= i__3; ++k) { 

     vk[(j + k * 30) * 30 - 930] = vx1; 

     vk[n1 + (j + k * 30) * 30 - 931] = vx2; 

/* L130: */ 

 } 

    } 

    i__3 = n1; 

    for (i = 1; i <= i__3; ++i) { 

 i__2 = n3; 

 for (k = 1; k <= i__2; ++k) { 

     vk[i + (k * 30 + 1) * 30 - 931] = vy1; 

     vk[i + (n2 + k * 30) * 30 - 931] = vy2; 

/* L140: */ 

 } 

    } 
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/* **** START ITERATIONS */ 

 

    n = (n1 - 2) * (n2 - 2) * (n3 - 2); 

    kk = 0; 

    vv = (float)0.; 

L1000: 

    vv1 = vv; 

    i__2 = n1 - 1; 

    for (i = 2; i <= i__2; ++i) { 

 i__3 = n2 - 1; 

 for (j = 2; j <= i__3; ++j) { 

     i__1 = n3 - 1; 

     for (k = 2; k <= i__1; ++k) { 

  vk[i + (j + k * 30) * 30 - 931] = vk[i + (j - 1 + k * 30) *  

   30 - 931] + vk[i + (j + 1 + k * 30) * 30 - 931] + vk[ 

   i - 1 + (j + k * 30) * 30 - 931] + vk[i + 1 + (j + k * 

    30) * 30 - 931] + vk[i + (j + (k - 1) * 30) * 30 -  

   931] + vk[i + (j + (k + 1) * 30) * 30 - 931]; 

  vk[i + (j + k * 30) * 30 - 931] /= (float)6.; 

  vv += (r__1 = vk[i + (j + k * 30) * 30 - 931], dabs(r__1)); 

/* L160: */ 

     } 

 } 

    } 

    vv /= n;    ++kk; 

/*      WRITE(*,*)'ENTER 1 IF YOU WANT DISPLAY OF CURRENT ITERATION' */ 

/*      READ(*,*)II */ 
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/*      IF(II.NE.1) GO TO 111 */ 

/*     N=0 */ 

/*     DO 181 I=2,N1-1 */ 

/*     DO 181 J=2,N2-1 */ 

/*     DO 181 K=2,N3-1 */ 

/*     N=N+1 */ 

/*     V(N)=VK(I,J,K) */ 

/* 181 CONTINUE */ 

/*     WRITE(1,2)(K,V(K),K=1,N) */ 

/* 111 CONTINUE */ 

    s_wsfe(&io___42); 

    do_fio(&c__1, (char *)&kk, (ftnlen)sizeof(integer)); 

    e_wsfe(); 

    if ((r__1 = vv - vv1, dabs(r__1)) > eps) { 

 goto L1000; 

    } 

 

/*     THE ERROR CRITERION HAS BEEN MET. THE CORRECT SOLUTION IS IN VK */ 

/* **** REWRITE THE TWO-DIMENSIONAL VECTOR VK INTO A ONE DIMENSIONA */ 

/*     VECTOR V WHICH CONTAINS ONLY THE INTERIOR NODES. */ 

    n = 0; 

    i__1 = n1 - 1; 

    for (i = 2; i <= i__1; ++i) { 

 i__3 = n2 - 1; 

 for (j = 2; j <= i__3; ++j) { 

     i__2 = n2 - 1; 

     for (k = 2; k <= i__2; ++k) { 

  ++n; 
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  v[n - 1] = vk[i + (j + k * 30) * 30 - 931]; 

/* L180: */ 

     } 

 } 

    } 

/* **** WRITE THE SOLUTION VECTOR */ 

   dx = (float)1.; 

    nn = n1 * n2 * n3; 

    s_wsfe(&io___46); 

    do_fio(&c__1, (char *)&nn, (ftnlen)sizeof(integer)); 

    e_wsfe(); 

    i__2 = n3; 

    for (i = 1; i <= i__2; ++i) { 

 i__3 = n2; 

 for (j = 1; j <= i__3; ++j) { 

     i__1 = n1; 

     for (k = 1; k <= i__1; ++k) { 

  x = dx * (k - 1); 

  y = dx * (j - 1); 

  z = dx * (i - 1); 

  s_wsfe(&io___50); 

  do_fio(&c__1, (char *)&i, (ftnlen)sizeof(integer)); 

  do_fio(&c__1, (char *)&j, (ftnlen)sizeof(integer)); 

  do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); 

  do_fio(&c__1, (char *)&x, (ftnlen)sizeof(real)); 

  do_fio(&c__1, (char *)&y, (ftnlen)sizeof(real)); 

  do_fio(&c__1, (char *)&z, (ftnlen)sizeof(real)); 

  do_fio(&c__1, (char *)&vk[i + (j + k * 30) * 30 - 931], ( 
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   ftnlen)sizeof(real)); 

  e_wsfe(); 

/* L7001: */ 

     } 

 } 

    } 

    s_wsfe(&io___51); 

    do_fio(&c__1, (char *)&kk, (ftnlen)sizeof(integer)); 

    e_wsfe(); 

    s_wsle(&io___52); 

    do_lio(&c__9, &c__1, "SOLUTION:", 9L); 

    e_wsle(); 

    s_wsfe(&io___53); 

    i__1 = n; 

    for (k = 1; k <= i__1; ++k) { 

 do_fio(&c__1, (char *)&k, (ftnlen)sizeof(integer)); 

 do_fio(&c__1, (char *)&v[k - 1], (ftnlen)sizeof(real)); 

    } 

    e_wsfe(); 

    s_stop("", 0L); 

} /* MAIN__ */ 

Input data:- 26 34 2 1 

1 2 7 1 

2 8 7 1 

2 3 8 1 

3 9 8 1 

3 4 9 1 

4 10 9 1 

4 5 10 1 



84 

 

5 11 10 1 

5 6 11 1 

6 12 11 1 

7 8 13 1 

8 14 13 1 

8 9 14 1 

9 15 14 1 

9 10 15 1 

10 16 15 1 

10 11 16 1 

11 17 16 1 

11 12 17 1 

12 18 17 1 

13 14 19 1 

14 20 19 1 

14 22 20 1 

22 21 20 1 

14 15 22 1 

15 24 22 1 

15 16 24 1 

22 24 21 1 

24 23 21 1 

16 17 24 1 

24 17 25 1 

24 25 23 1 

17 26 25 1 

17 18 26 1 

0.0 0.0 

0.2 0.0 

0.4 0.0 

0.6 0.0 

0.8 0.0 
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1.0 0.0 

0.0 0.16 

0.2 0.16 

0.4 0.16 

0.6 0.16 

0.8 0.16 

1.0 0.16 

0.0 0.34 

0.2 0.34 

0.4 0.34 

0.6 0.34 

0.8 0.34 

1.0 0.34 

0.05 0.46 

0.2 0.55 

0.4 0.6 

0.4 0.46 

0.6 0.6 

0.6 0.46 

0.8 0.55 

0.95 0.46 

B.2 C programming for non-uniformly distributed dielectric of capacitor. 

/* fem1.c 

*/ 

#include "fdm3.dat" 

/* Table of constant values */ 

static integer c__3 = 3; 

static integer c__1 = 1; 

static integer c__4 = 4; 

/* ***  FINITE ELEMENT PROGRAM FOR ELECTROSTATIC PROBLEMS */ 
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/* Main program */ MAIN__() 

{ 

    /* Format strings */ 

    static char fmt_31[] = "(2i3)"; 

    static char fmt_171[] = "(i3,5x,e10.4)"; 

    static char fmt_170[] = "(\002 NODE-\002,i3,\002    POTENTIAL=\002,e10.4)" 

            ; 

    static char fmt_191[] = "(i3,3(2x,e10.4))"; 

    static char fmt_190[] = "(\002 ELEMENT-\002,i3,\002  EX=\002,e10.4,\002 \ 

 EY=\002,e10.4,\002  EM=\002,e10.4)"; 

 

    /* System generated locals */ 

    integer i__1, i__2, i__3; 

    olist o__1; 

 

    /* Builtin functions */ 

    integer f_open(), s_rsle(), do_lio(), e_rsle(), s_wsfe(), do_fio(),  

     e_wsfe(); 

    double sqrt(); 

    /* Subroutine */ int s_stop(); 

 

    /* Local variables */ 

    static real fact, emod, emax; 

    static integer ncon, nmat, naux[3]; 

    static real xeps; 

    static integer i, j, k, l, m; 

    static real q[150], coeff, s[9] /* was [3][3] */, x[150], y[150]; 

    static integer nelem, nnode, n1, n2, n3; 



87 

 

    static real q1, q2, q3, r1, r2, r3, coeff1; 

    static integer jj; 

    static real qe[3]; 

    static integer kk, nm, nn; 

    static real ex; 

    static integer np[600] /* was [200][3] */; 

    static real vi[30], ey, ro[10], ss[22500] /* was [150][150] */, vv[150]; 

    static integer nbound[300] /* was [10][30] */; 

    static real det; 

    static integer mat[200]; 

    static real eps[10]; 

    static integer nox; 

    static real sum, xro; 

    static integer max1, max2, max3; 

 

    /* Fortran I/O blocks */ 

    static cilist io___11 = { 0, 1, 0, 0, 0 }; 

    static cilist io___16 = { 0, 3, 0, fmt_31, 0 }; 

    static cilist io___17 = { 0, 1, 0, 0, 0 }; 

    static cilist io___20 = { 0, 1, 0, 0, 0 }; 

    static cilist io___23 = { 0, 1, 0, 0, 0 }; 

    static cilist io___25 = { 0, 1, 0, 0, 0 }; 

    static cilist io___26 = { 0, 1, 0, 0, 0 }; 

    static cilist io___55 = { 0, 3, 0, fmt_171, 0 }; 

    static cilist io___56 = { 0, 2, 0, fmt_170, 0 }; 

    static cilist io___61 = { 0, 3, 0, fmt_191, 0 }; 

    static cilist io___62 = { 0, 2, 0, fmt_190, 0 }; 

/* **** ZERO THE VARIOUS ARRAYS */ 
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    o__1.oerr = 0; 

    o__1.ounit = 1; 

    o__1.ofnmlen = 4; 

    o__1.ofnm = "DAT1"; 

    o__1.orl = 0; 

    o__1.osta = 0; 

    o__1.oacc = 0; 

    o__1.ofm = 0; 

    o__1.oblnk = 0; 

    f_open(&o__1); 

    o__1.oerr = 0; 

    o__1.ounit = 2; 

    o__1.ofnmlen = 4; 

    o__1.ofnm = "OUT2"; 

    o__1.orl = 0; 

    o__1.osta = 0; 

    o__1.oacc = 0; 

    o__1.ofm = "FORMATTED"; 

    o__1.oblnk = 0; 

    f_open(&o__1); 

    o__1.oerr = 0; 

    o__1.ounit = 3; 

    o__1.ofnmlen = 4; 

    o__1.ofnm = "OUT1"; 

    o__1.orl = 0; 

    o__1.osta = 0; 

    o__1.oacc = 0; 

    o__1.ofm = "formatted"; 
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    o__1.oblnk = 0; 

    f_open(&o__1); 

    max1 = 150; 

    max2 = 10; 

    max3 = 30; 

    i__1 = max1; 

    for (i = 1; i <= i__1; ++i) { 

 vv[i - 1] = (float)0.; 

 q[i - 1] = (float)0.; 

 ro[i - 1] = (float)0.; 

 i__2 = max1; 

 for (j = 1; j <= i__2; ++j) { 

/* L10: */ 

     ss[i + j * 150 - 151] = (float)0.; 

 } 

    } 

    i__2 = max2; 

    for (i = 1; i <= i__2; ++i) { 

 i__1 = max2; 

 for (j = 1; j <= i__1; ++j) { 

/* L20: */ 

     nbound[i + j * 10 - 11] = 0; 

 } 

    } 

 

/* **** READ INPUT DATA */ 

 

    s_rsle(&io___11); 
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    do_lio(&c__3, &c__1, (char *)&nnode, (ftnlen)sizeof(integer)); 

    do_lio(&c__3, &c__1, (char *)&nelem, (ftnlen)sizeof(integer)); 

    do_lio(&c__3, &c__1, (char *)&ncon, (ftnlen)sizeof(integer)); 

    do_lio(&c__3, &c__1, (char *)&nmat, (ftnlen)sizeof(integer)); 

    e_rsle(); 

/* ---------------READ THE MESH STRUCTURE */ 

    s_wsfe(&io___16); 

    do_fio(&c__1, (char *)&nnode, (ftnlen)sizeof(integer)); 

    do_fio(&c__1, (char *)&nelem, (ftnlen)sizeof(integer)); 

    e_wsfe(); 

    i__1 = nelem; 

    for (i = 1; i <= i__1; ++i) { 

/*  write(3,31)i,i */ 

/* L30: */ 

 s_rsle(&io___17); 

 do_lio(&c__3, &c__1, (char *)&np[i - 1], (ftnlen)sizeof(integer)); 

 do_lio(&c__3, &c__1, (char *)&np[i + 199], (ftnlen)sizeof(integer)); 

 do_lio(&c__3, &c__1, (char *)&np[i + 399], (ftnlen)sizeof(integer)); 

 do_lio(&c__3, &c__1, (char *)&mat[i - 1], (ftnlen)sizeof(integer)); 

 e_rsle(); 

    } 

/* ---------------READ NODE COORDINATES */ 

    i__1 = nnode; 

    for (i = 1; i <= i__1; ++i) { 

/*  write(3,31)i,i */ 

/* L40: */ 

 s_rsle(&io___20); 

 do_lio(&c__4, &c__1, (char *)&x[i - 1], (ftnlen)sizeof(real)); 
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 do_lio(&c__4, &c__1, (char *)&y[i - 1], (ftnlen)sizeof(real)); 

 e_rsle(); 

    } 

/* -----READ BOUNDARY CONDITIONS */ 

    i__1 = ncon; 

    for (i = 1; i <= i__1; ++i) { 

 s_rsle(&io___23); 

 do_lio(&c__4, &c__1, (char *)&vi[i - 1], (ftnlen)sizeof(real)); 

 e_rsle(); 

 s_rsle(&io___25); 

 for (j = 1; j <= 20; ++j) { 

     do_lio(&c__3, &c__1, (char *)&nbound[i + j * 10 - 11], (ftnlen) 

      sizeof(integer)); 

 } 

 e_rsle(); 

/* L50: */ 

    } 

/* -----READ PERMITTIVITIES OF MATERIALS */ 

    i__1 = nmat; 

    for (i = 1; i <= i__1; ++i) { 

/*   60 READ(1,*)EPS(I), RO(I) */ 

 ro[i - 1] = (float)0.; 

/* L60: */ 

 s_rsle(&io___26); 

 do_lio(&c__4, &c__1, (char *)&eps[i - 1], (ftnlen)sizeof(real)); 

 e_rsle(); 

    } 
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/* **** FORM THE GLOBAL MATRIX SS() */ 

/* ---------------DO FOR NELEM ELEMENTS */ 

    i__1 = nelem; 

    for (i = 1; i <= i__1; ++i) { 

/*  write(3,31)i,i */ 

 n1 = np[i - 1]; 

 n2 = np[i + 199]; 

 n3 = np[i + 399]; 

 nm = mat[i - 1]; 

/* ---------------CALCULATE Qi, Qj, Qk, Ri, Rj, Rk */ 

 q1 = y[n2 - 1] - y[n3 - 1]; 

 q2 = y[n3 - 1] - y[n1 - 1]; 

 q3 = y[n1 - 1] - y[n2 - 1]; 

 r1 = x[n3 - 1] - x[n2 - 1]; 

 r2 = x[n1 - 1] - x[n3 - 1]; 

 r3 = x[n2 - 1] - x[n1 - 1]; 

 xeps = eps[nm - 1] * (float)8.854e-12; 

 xro = ro[nm - 1]; 

/* ---------------CALCULATE DETERMINANT, TWICE THE AREA OF TRIANGLE */ 

 det = x[n2 - 1] * y[n3 - 1] + x[n1 - 1] * y[n2 - 1] + x[n3 - 1] * y[ 

  n1 - 1] - x[n1 - 1] * y[n3 - 1] - x[n3 - 1] * y[n2 - 1] - x[ 

  n2 - 1] * y[n1 - 1]; 

 coeff = xeps / det / (float)2.; 

 coeff1 = xro * det / (float)6.; 

/* ---------------CALCULATE THE TERMS S(3,3) */ 

 s[0] = coeff * (q1 * q1 + r1 * r1); 

 s[3] = coeff * (q1 * q2 + r1 * r2); 

 s[6] = coeff * (q1 * q3 + r1 * r3); 
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 s[1] = s[3]; 

 s[4] = coeff * (q2 * q2 + r2 * r2); 

 s[7] = coeff * (q2 * q3 + r2 * r3); 

 s[2] = s[6]; 

 s[5] = s[7]; 

 s[8] = coeff * (q3 * q3 + r3 * r3); 

 qe[0] = coeff1; 

 qe[1] = coeff1; 

 qe[2] = coeff1; 

/* ---------------ASSEMBLE THE S(3,3) INTO THE MATRIX SS(NNODE,NNODE)  

*/ 

 naux[0] = n1; 

 naux[1] = n2; 

 naux[2] = n3; 

 for (k = 1; k <= 3; ++k) { 

     kk = naux[k - 1]; 

     q[kk - 1] += qe[k - 1]; 

     for (j = 1; j <= 3; ++j) { 

  jj = naux[j - 1]; 

/* L80: */ 

  ss[kk + jj * 150 - 151] += s[k + j * 3 - 4]; 

     } 

 } 

/* L70: */ 

    } 

 

/* **** INSERT BOUNDARY CONDITIONS */ 
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    i__1 = ncon; 

    for (i = 1; i <= i__1; ++i) { 

 for (j = 1; j <= 20; ++j) { 

     nox = nbound[i + j * 10 - 11]; 

     if (nox == 0) { 

  goto L90; 

     } 

/* ---------------ZERO THE COEFFICIENTS IN LINE OF MATRIX SS */ 

     i__2 = nnode; 

     for (l = 1; l <= i__2; ++l) { 

/* L110: */ 

  ss[nox + l * 150 - 151] = (float)0.; 

     } 

/* ---------------SET THE DIAGONAL TO 1. */ 

     ss[nox + nox * 150 - 151] = (float)1.; 

/* ---------------PLACE THE IMPOSED POTENTIAL IN THE RIGHT HAND SI 

DE */ 

     q[nox - 1] = vi[i - 1]; 

/* L100: */ 

 } 

L90: 

 ; 

    }   

/* **** SOLVE THE MATRIX SYSTEM */ 

/* ---------------GAUSSIAN ELIMINATION */ 

 

    nn = nnode - 1; 

    i__1 = nn; 
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    for (i = 1; i <= i__1; ++i) { 

 i__2 = nnode; 

 for (m = i + 1; m <= i__2; ++m) { 

     fact = ss[m + i * 150 - 151] / ss[i + i * 150 - 151]; 

     q[m - 1] -= q[i - 1] * fact; 

     i__3 = nnode; 

     for (j = i + 1; j <= i__3; ++j) { 

/* L130: */ 

  ss[m + j * 150 - 151] -= ss[i + j * 150 - 151] * fact; 

     } 

/* L120: */ 

 } 

    } 

    vv[nnode - 1] = q[nnode - 1] / ss[nnode + nnode * 150 - 151]; 

    for (i = nn; i >= 1; --i) { 

 sum = (float)0.; 

 i__2 = nnode; 

 for (j = i + 1; j <= i__2; ++j) { 

/* L150: */ 

     sum += ss[i + j * 150 - 151] * vv[j - 1]; 

 } 

 vv[i - 1] = (q[i - 1] - sum) / ss[i + i * 150 - 151]; 

/* L140: */ 

    } 

 

/* **** PRINT THE RESULTS */ 

 

    i__2 = nnode; 
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    for (i = 1; i <= i__2; ++i) { 

 s_wsfe(&io___55); 

 do_fio(&c__1, (char *)&i, (ftnlen)sizeof(integer)); 

 do_fio(&c__1, (char *)&vv[i - 1], (ftnlen)sizeof(real)); 

 e_wsfe(); 

/* L160: */ 

 s_wsfe(&io___56); 

 do_fio(&c__1, (char *)&i, (ftnlen)sizeof(integer)); 

 do_fio(&c__1, (char *)&vv[i - 1], (ftnlen)sizeof(real)); 

 e_wsfe(); 

    } 

/* ---------------PRINT THE FIELDS IN THE ELEMENTS */ 

 

 

    emax = (float)0.; 

    i__2 = nelem; 

    for (i = 1; i <= i__2; ++i) { 

 

/* **** CALCULATE THE FIELDS OR GRADIENTS */ 

 

 n1 = np[i - 1]; 

 n2 = np[i + 199]; 

 n3 = np[i + 399]; 

 q1 = y[n2 - 1] - y[n3 - 1]; 

 q2 = y[n3 - 1] - y[n1 - 1]; 

 q3 = y[n1 - 1] - y[n2 - 1]; 

 r1 = x[n3 - 1] - x[n2 - 1]; 

 r2 = x[n1 - 1] - x[n3 - 1]; 
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 r3 = x[n2 - 1] - x[n1 - 1]; 

/* ---------------CALCULATE DETERMINANT, TWICE THE AREA OF TRIANGLE */ 

 det = x[n2 - 1] * y[n3 - 1] + x[n1 - 1] * y[n2 - 1] + x[n3 - 1] * y[ 

  n1 - 1] - x[n1 - 1] * y[n3 - 1] - x[n3 - 1] * y[n2 - 1] - x[ 

  n2 - 1] * y[n1 - 1]; 

 ex = -(doublereal)(q1 * vv[n1 - 1] + q2 * vv[n2 - 1] + q3 * vv[n3 - 1] 

  ) / det; 

 ey = -(doublereal)(r1 * vv[n1 - 1] + r2 * vv[n2 - 1] + r3 * vv[n3 - 1] 

  ) / det; 

 emod = sqrt(ex * ex + ey * ey); 

/*  180 CONTINUE */ 

 s_wsfe(&io___61); 

 do_fio(&c__1, (char *)&i, (ftnlen)sizeof(integer)); 

 do_fio(&c__1, (char *)&ex, (ftnlen)sizeof(real)); 

 do_fio(&c__1, (char *)&ey, (ftnlen)sizeof(real)); 

 do_fio(&c__1, (char *)&emod, (ftnlen)sizeof(real)); 

 e_wsfe(); 

/* L180: */ 

 s_wsfe(&io___62); 

 do_fio(&c__1, (char *)&i, (ftnlen)sizeof(integer)); 

 do_fio(&c__1, (char *)&ex, (ftnlen)sizeof(real)); 

 do_fio(&c__1, (char *)&ey, (ftnlen)sizeof(real)); 

 do_fio(&c__1, (char *)&emod, (ftnlen)sizeof(real)); 

 e_wsfe(); 

    } 

    s_stop("", 0L); 

} /* MAIN__  

Input data: 
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B.3 input data for DC busbar. 

39 52   2 1 1 2    6 12 7 6 1   2 3 7 1   3 8 7 1   3 4 8 1   4 9 8 1   4 5 9 1  5 10 9 1   6 7 11 1 7 12 11 1 

7 8 12 1  8 13 12 1  8 9 13 1  9 14 13 1  9 10 14 1  10 15 14 1  12 13 16 1 13 17 16 1   13 14 17 1 

14 18 17 1  14 15 18 1   15 19 18 1   16 17 21 1   17 22 21 1   17 18 22 1   18 23 22 1     18 19 23 1 
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19 24 23 1  20 21 25 1  21 26 25 1  21 22 26 1  22 27 26 1  22 23 27 1  23 28 27 1  23 24 28 1 

24 29 28 1   25 26 30 1   26 31 30 1   26 27 31 1   27 32 31 1   27 28 32 1   28 33 32 1   28 29 33 1 

29 34 33 1   30 31 35 1   31 36 35 1  31 32 36 1  32 37 36 1  32 33 37 1  33 38 37 1   33 34 38 1 

34 39 38 1  0.0 0.0  0.01 0.0   0.025 0.0  0.05 0.0  0.1 0.0  0.0 0.0025  0.01 0.0025   0.025 0.0025 

0.05 0.0025  0.1 0.0025  0.0 0.005  0.01 0.005  0.025 0.005  0.05 0.005  0.1 0.005   0.01 0.01 

0.025 0.01   0.05 0.01  0.1 0.01  0.0 0.015  0.01 0.015   0.025 0.015  0.05 0.015    0.1 0.015 

0.0 0.035  0.01 0.035   0.025 0.035  0.05 0.035  0.1 0.035  0.0 0.06  0.01 0.06    0.025 0.06 

0.05 0.06   0.1 0.06  0.0 0.12   0.01 0.12   0.025 0.12  0.05 0.12  0.1 0.12  220.0 

11 12 16 21 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0    0.0 

1 2 3 4 5 10 15 19 24 29 34 39 38 37 36 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0   1.0 

                                                

 

                                                                       

 

 

 


