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An Introduction to the Mathematics 

of Digital Signal Processing 

Part II: Sampling,Transforms, and Digital Filtering 

F. R. Moore 
Bell Laboratories 

Murray Hill, New Jersey 07974 
? 1978 by F. R. Moore 

INTRODUCTION 

In Part I of this tutorial (Computer Music Journal, 
Vol. 2, No. 1), we discussed some of the basic mathematical 
ideas relevant to the processing of digital signals. Now we turn 
to the application of these and other concepts, operating on 
the assumption that the reader understands everything in 
Part I thoroughly (although some of this second part can be 
understood without following the mathematical arguments). 
Again, it will be impossible to give a detailed account of all 
the techniques of digital signal processing, because there is 
simply too much to cover in an article. Thus, the ideas chosen 
for inclusion here are only the most fundamental, which is to 
say (hopefully) the most important. Armed with the know- 
ledge presented here, the reader should be able to understand 
much of the literature in the field, even though we will 
continue to omit calculus from our mathematical concerns. 
As in many subjects, notations often are used only as a kind of 
shorthand for concepts which can be adequately explained 
without resorting to "higher" mathematics. As we saw in 
Part I, however, the better our mathematical facility, the easier 
it is to solve certain problems which are otherwise difficult, or 
at the very least, tedious. Thus we will continue to use 
extensively the most powerful mathematics at our disposal, 
that of complex exponentials, in our treatment of sampling, 
transforms, and an introduction to the concepts of digital 
filtering. 

Before we delve into these concepts, however, some 
words are in order about the general nature of the subject we 
are studying. Digital signal processing, computer programming, 
and acoustics all relate to computer music in a similar way: 
Unlike typical subfields such as harmony or counterpoint, 

which exist as subdivisions of a global realm of study, digital 
signal processing, computer programming and acoustics are all 
complete fields in themselves, each one replete with its own 
motivations, jargon, and subfields. Perhaps the most fascinat- 
ing aspect of computer music is its attempt to synthesize from 
such a vast array of knowledge the keys to a rich and expres- 
sive sonic art. Since classical times, when mathematics and 
physics were considered to be subfields of music (recall 
Pythagoras' investigations of the pitch of vibrating strings of 
different lengths) music and science have travelled increasingly 
divergent paths in pursuit of ever-elusive truths and beauty, 
which indicates, at the very least, that one great difficulty for 
computer musicians will be to bridge the terminology gaps 
among several fields at once. This means that we must be 
patient and willing to let each field describe itself in its own 
terms first before we can progress to an understanding of how 
to rephrase these statements in musical terms. Therefore we 
cannot initially ask questions such as "How can we make an 
oboe sound like a clarinet?" directly of digital signal proces- 
sing, since the information is not couched in these terms for 
historical reasons. We can, however, keep such questions in 
mind as we study, on the assumption that an accurate under- 
standing of the terminology of the field will allow such ques- 
tions to be rephrased into tractable problems. Often, the 
answer will be that the question asks for unknown or ill- 
understood techniques to be applied, but just as often the 
search will lead us to other revelations: answers to questions 
which are begging to be asked! It will often be a useful exer- 
cise, therefore, to try to imagine what could happen to some 
sound if a particular process were applied to it. Certainly 
much is already known about the musical effects of digital 
signal processing, but at this point much more is to be learned. 
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Also, we must keep in mind that digital signal processing 
is not programming, not acoustics, and hence even a perfect 
understanding of it would not necessarily show us how to 
create satisfying music with a computer. It is, however, a 
powerful way to think about the manipulation and control of 
sounds, and as such it will most likely represent an important 
prerequisite to our understanding of how to create music in 
new and expressive ways. 

SAMPLING AND QUANTIZATION 

What is a sampled signal? When we watch a movie, we 
are looking at a stream of separate, discrete photographs flow- 
ing by at a rate of 24 frames (photographs) per second, but we 
are seeing something quite different. The apparent continuous 
motion on the screen is really the result of sampling the posi- 
tion of the various people and objects on the screen at a 
sufficient rate to ensure that no important detail of the 
motion is lost. Clearly, if the motion were sampled more 
slowly, say, at 5 times per seond, the motion would appear 
jerky and discontinuous, as it does under now-familiar strobe 
lighting at discotheques. We can imagine an experiment that 
must have been executed several times in the history of the 
motion picture industry: We start out filming various moving 
scenes at a slow, "flickery" rate, and then gradually (or in 
steps) increase the frame rate until the motion appears smooth 
and continuous. Of course, we will eventually run into practi- 
cal difficulties, such as the sensitivity of the film to light, since 
an increasing frame rate implies a decreasing exposure time for 
each frame. But hopefully, before such limits are reached, a 
smooth rendering of motion will be achieved, and indeed, the 
movie industry has settled on 24 frames per second as a 
standard which works well enough. But does it work perfectly? 
The answer, as usual, is: of course not, as anyone who has ever 
watched a wagon wheel in a western movie can verify. As the 
wagon starts out from a standing position, the wheels appear 
to turn slowly forward; then as the speed increases, the wheels 
first appear to go faster, then begin to slow down and go back- 
wards, then to stop, then to go forwards again, etc. Of course 
they never appear to stop completely when the wagon is 
moving since their speed blurs their picture, but neither is their 
motion rendered accurately by the film process. If we were to 
increase the frame rate of filming, what would be the effect on 
the image of the turning wheels? Clearly, the wagon could go 
faster before its wheels started to appear slowing down or 
going backwards, but the point is that for any filming speed 
(sampling rate), there is some upper limit on the rapidity with 
which motion can take place and still be rendered accurately 
on the screen. (Obviously, since most motions are slow 
enough, the movie industry deems it unnecessary to increase 
the frame rate for the sake of rendering chase scenes more 
believable.) 

In order to understand an important aspect of the 
sampling process, let us imagine that we are filming a docu- 
mentary on the motion of a one-spoke wagon wheel (see 
Figure 1). Let us arbitrarily say that when the spoke points to 
the right that it is in position zero, and that any other position 
is defined as the angle, measured counterclockwise, from 
position zero. Hence at an angle of nr/2 radians the spoke 
points straight up, at a radians it points to the left, etc. If the 
wheel completes exactly one full counterclockwise revolution 
per second we can describe its rotational velocity by saying 

Wheel 

Spoke 

S-Angle 

of Spoke 

Direction of Motion 

Figure 1. A turning, one-spoke wagon wheel. 

that it is turning at a rate of +27r radians per second (clockwise 
motion would indicate a negative velocity); two counter- 
clockwise revolutions per second would correspond to 47r 
radians per second, and in general, F revolutions per second 
will correspond to 2nrF radians per second. The motion of the 
wheel is clearly periodic with a period of T = 1/F seconds. 
F is the frequency (repetition rate) with which the wheel 
turns, so it can be measured in cycles (or repetitions) per 
second (Hertz, abbreviated Hz.), and the quantity 27rF is called 
the radian frequency at which the wheel rotates (measured in 
radians per second). 

Let us begin filming the rotating wheel at the standard 
rate of 24 frames per second. Assuming that the wheel 
smoothly turns from the starting position zero at a rate of 
F = 1 Hz., successive frames of the movie will be taken at 
0 = 0, 0 = (1/24) * 27rF = rr/12, 0 = rn/6, etc. Since the wheel 
turns only 1/24th of a revolution at each frame, we can expect 
our documentary to represent the facts as they are, a good 
quality for any documentary. (Our camera is of course ideal, 
so it never blurs the picture of the wheel no matter how fast 
the wheel moves. At F = 6 Hz. we would get a series of frames 
such as those shown in Figure 2; the wheel turns 6/24 = 1/4 of 
a turn at each frame. 

At F = 12 Hz., the wheel turns halfway around at each 
frame, and the filmed image of it appears to oscillate back and 
forth with maximum rapidity (under these conditions). Why 
maximum? What larger motion could the spoke make on 
successive frames? If we set F even higher, say, to 18, then the 
wheel makes 3/4 of a complete revolution at each frame, but 
this is also indistinguishable from the wheel turning backwards 
at a rate of -6 Hz., equivalent to running the film in Fig. 2 in 
reverse. To make this clearer, consider the case of F = 23 Hz. 
At each frame, the wheel turns 23/24 of a revolution, almost all 
the way from where it starts. To verify that this will appear as a 
slow backwards motion (-1 Hertz), one only has to go to a 
western movie and watch carefully, taking into account the 
greater number of spokes on most wagon wheels. Finally, at 
F = 24 Hz., the wheel does not appear to move at all! Thus if 
we start at F = 0 Hz. and gradually increase the speed to 
F = 24 Hz., we see the wheel move slowly forward (counter- 
clockwise, iLe., with small positive frequency), go faster to a 
maximum at F = 12 Hz., then slow down while turning in the 
opposite direction (clockwise motion, negative frequency) and 
stop completely at F = 24 Hz. If we further increase F from 24 
to 48 Hz., we see again the same sequence of events. This is 
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0000000 0000000000000000000 

t - t = 0 t = 1/24 t = 2/24 t = 3/24 t = 4/24 
0 = 0 0 = sr/2 0 = n 0 = 31r/2 0 = 2r = 0 

Figure 2. Movie of a one-spoke wagon wheel turning (apparently) at f= 6 Hz., shot at 24 frames per second. 

because all frequencies outside the range 0 to 12 Hz. are 
indistinguishable, except for being positive or negative, from 
frequencies between 0 and 12 Hz. according to the 
relationship 

Fa 
=F- +)R < F < (k+2(1)R 

2 2 2 

where 

Fa is the "apparent" frequency in Hz., 
F is the actual frequency in Hz., 
R is the sampling rate in Hz. (samples/second), and 
k is any odd integer which satisfies the inequality. 

Thus if the wagon-wheel turns at 28 Hz. (=F) and we 
film it at 24 frames per second (=R), we choose k to be an odd 
integer which satisfies 

k_(< )F < 2)R 12k < 28 < 12(k+2) 2 2 

The only odd integer which satisfies this inequality is k = + 1, 
since 

1 .24 -< 28 < 3 24 _ -- <1 2 8 <-,-- 2 2 

Therefore the apparent frequency is 

F=28 
-2.24 

= +4 Hz. =28 2 

The point is that while F may be any frequency whatsoever, 

Fa 
is restricted to a definite range of frequencies which 

depends on the sampling rate. We can see that Fa and F are the 
same only if (k + 1)R/2 is equal to zero, which is true only if 
k =-l1. Then 

R R 
Fa = F-O R' 2 <F-<+ 2 

or simply, Fa = F only if IF I < R/2 (IF I is the "absolute 
value" or "magnitude" of F without regard to its plus or 
minus sign). If IFI > R/2, then Fa #= F, and we say that Fa is 
an alias ofF. This phenomenon of aliasing or foldover is found 
in all sampled systems, whether they are filmed wagon wheels 
or digitized waveforms. Equation (1) is a statement of the 
sampling theorem, which states that any simple harmonic 

variation (i.e., a sinusoidal variation of a one-dimensional 
quantity, a circular motion in a two-dimensional quantity, 
etc.) which occurs at a rate of F Hz. must be sampled at least 
2F times per second in order to avoid aliasing. 

The reader may have already noticed that if the sampling 
rate is exactly twice the frequency being sampled (R = 2F), 
then Equation (1) is ambiguous, since there are two different 
values of k which will satisfy the inequality. We will come 
back to this fine point later on. 

In order to process sounds with a computer, we repre- 
sent their waveforms as sequences of discrete, finite-precision 
numbers. These are the samples of the instantaneous ampli- 
tude of these waveforms taken at brief, regular intervals in 
time. Any musical waveform can be modelled as a sum of sinus- 
oidal vibrations, each with a particular (though possibly time- 
varying) amplitude, frequency, and phase. Thus, in order to 
represent a continuous (analog) waveform accurately with 
discrete (digital) samples, we must ensure that the sampling 
frequency is at least two times greater than that of the highest 
frequency component of the original waveform. The sampling 
theorem (Equation (1)) then assures us of the accuracy of our 
rendition of the waveform if it is bandlimited to the frequency 
region below one -half the sampling rate. 

The sampling process is achieved by using an analog-to- 
digital converter (ADC) which generates a numerical value in 
computer-readable form (typically a binary number of 12 to 
16 binary digits, or bits). The converter's numerical output 
is proportional to the electrical level (either voltage or current) 
at its input, which is sampled at a rate ranging from a few 
Hertz (for signals such as seismic waves) to 50 kiloHertz (for 
high-quality audio signals). The analog waveform is typically 
passed through a low-pass filter to attenuate any components 
at frequencies greater than half the sampling rate (see 
Figure 3), since these are generally impossible to remove from 
the digital signal due to the aliasing effect described above. 
Whether the distortion due to aliasing produces noticeable 
effects in musical sounds depends on the relative strengths of 
the aliased components, but severe aliasing is generally much 
more noticeable and irritating in sounds than it is in movies 
of wagon wheels. 

The analog-to-digital converter produces a B-bit binary 
value to represent the instantaneous amplitude of the analog 
signal at each sample. Since B binary digits may represent at 
most 2B different values, this means that the ADC must choose 
the closest B-bit value available for each sample. Thus, if the 
bandlimited analog signal varies between, say, +10 and -10 
volts, and B = 10 bits, the entire 20 volt (peak - to - peak) range 
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Figure 3. Steps by which a continuous signal is converted into 
a digital signal for subsequent computer processing. 

may be represented to an accuracy of 20/21o .02 volts at 
each sample. In other words, the true voltage amplitude dif- 
fers from its binary representation by at most ?10 millivolts, 
for an accuracy of about ?.05%. Such inaccuracies are often 
significant, since we can view them as equivalent to a small, 
constant amount of random noise being added to an otherwise 
perfectly represented signal. This quantization noise, as it is 
called, is the digital equivalent to tape or amplifier hiss, and it 
is usually characterized by a signal- to-quantization noise ratio 
(SQNR), expressed in dB (decibels): 

SQNR in dB = 20 
loglo 

signal amplitude (2) noise amplitude 

Thus, if a maximum amplitude of 10 volts corresponds to the 
maximum binary value for a 10-bit ADC, the noise amplitude 
will be 2-10 as great as that of the strongest signal, yielding an 
SQNR of 

20 log1o 10 20 logo 210 -20 loglo 1000 = 60 dB 
21go10.-2-i?- ! I 

The reader may wish to verify that under these conditions and 
assumptions, the SQNR of a B-bit ADC is approximately 
6B dB. However, two caveats must be kept in mind: First, we 
are assuming that the quantization error may be treated as a 
random noise independent of the signal, which is certainly 
questionable, especially at low sampling rates or for small 
numbers of bits. Second, if the analog signal amplitude is not 
maximal, it must be remembered that the noise level remains 
the same, rendering the quantizing noise more audible and 
bothersome for very soft sounds than for loud ones. ADC's 
are available with 8 to 16 bits of resolution, and while the 
issue has not quite been resolved, it seems that 12-bit ADC's 
give minimally acceptable sound quality, and that improve- 
ment beyond 16 bits is probably unnecessary, since at that 
accuracy the noise levels of transducers and amplifiers become 
predominant. Special bit-coding techniques may eventually 
reduce the amount of data in a digital signal, but most comput- 
er music programs so far have not dealt with this possibility. 

Producing sounds with a computer is just the reverse of 
the process diagrammed in Figure 3: a digital-to-analog 
converter (DAC) is used to convert binary numbers to voltage 
levels, a low-pass filter "smooths" the waveform by passing 
only those frequencies less than half the sampling rate, and the 
resulting analog signal is then amplified and transduced by a 
loudspeaker or earphones. 

The numerical version of the signal may be stored in 
computer memory and processed in a variety of ways. Two of 
the most important of these processes are transforming the 
digital signal in order to analyze its frequency spectrum, and 
filtering, which alters its frequency spectrum. The information 
gained by analyzing the digital signal may be used to under- 
stand how such signals might be synthesized-a common 
objective in computer music-and filtering is a major tech- 
nique for controlling the quality, or timbre, of sounds 
produced. 

DIGITAL SIGNALS 

A digitized signal is not represented as a function of a 
continuous time variable (t), but rather as a function of dis- 
crete values of time (n). In other words, we can think of a 
digital signal as a sequence of numbers, each representing the 
instantaneous value of a (presumably) continuous time func- 
tion. Furthermore, we will always assume that the samples 
are uniformly spaced in time. Two basic notations for such 
discrete -valued functions are commonly used in the digital 
signal processing literature, either 

x(n), N n < N2 ,nEl 
or 

x(n T), N < n < Nz , nEI 

Both of these notations have the same meaning except that in 
the second one the sampling period, T, is shown explicitly. 
Since it is easy enough to remember that the relation between 
successive integer values of n and time depends on the sam- 
pling rate, we will use the first notation here. For example, a 
one-second sine wave at a frequency of 100 Hz. is represented 
as 

f(t) = sin(wt), 0 < t < 1 
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where Co = 2rrF = 21r X 100. If we sample this waveform at 
500 Hz., the discrete form of this equation will be written 

x (n) = sin (cn) , 0 < n < 499 

again with o = 2rrF, but n and t are not equal to each other. 
Properly speaking, the quantity n T, where T = 1/500 second, 
is equal to discrete values of t for integer values of n. Note also 
that we will generally number N samples from 0 to N - 1. 

Two important special functions which we will need in 
our discussion are the impulse, or unit sample, function and 
the complex exponential function. The digital impulse func- 
tion is defined to be equal to one only if its argument is zero, 
and it has a zero value otherwise, L e. 

I n 0 
u (n) = (3) 

If we want the impulse to occur on some sample no :- O0, it 
follows from the definition that the following equation is 
true: 

1 n =no 
u(n - no) = (4) 

0Figure 4 shows a specific example for n = 4.no 

Figure 4 shows a specific example for no = 4. 

u(n) 1 

-2 -1 0 1 2 3 4 5 6 7 8 9 
n-- 

u(n-4) 1 

-2 -1 0 1 2 3 4 5 6 7 8 9 
n- 

Figure 4. The unit sample (digital impulse) function u(n) and 
the delayed unit sample function u(n -no) for the case no = 4. 

The complex exponential function cannot be graphed 
quite as easily as the unit sample function because it has values 
consisting of both real and imaginary parts: 

eiwn = cos (cn) + j sin (con) (5) 

where i2 = - 1. 

Re[eijon] 
1 

T-1 

Im [e ljn] 
1 

( . (, 

Figure 5. The complex exponential function ejwn, shown as 
graphs of its real and imaginary parts, co = 2r/N, N= 8. 

Figure 5 shows two graphs of this function, one of its 
real part, and the other of its imaginary part. From looking at 
Figure 5, we cannot tell the frequency of the sinusoidal wave- 
forms depicted. But we can see that there appear to be 8 
samples in each period of the sinusoidal waves, and deduce 
that the frequency of these waveforms must therefore be 
one -eighth the sampling rate. Waveforms obtained by sam- 
pling sounds do not have real and imaginary parts, of course; 
we say that such waveforms are pure real, or equivalently, 
that they are complex with a zero imaginary part. 

SPECTRA 

As almost everyone knows, two different musical instru- 
ments playing the same pitch at the same loudness for the 
same duration from the same direction still sound different 
due to what is called their tone color, or timbre. Unfortunate- 
ly, this subtractive definition of timbre only says what it is not: 
timbre is that aspect of a sound which is not its pitch (if it 
has one), loudness, duration, or directionality. What is left is 
just the microstructure of the sound, and in order to examine 
it, we need a way to literally dissect sounds, i.e., to analyze 
them into their constituent parts. Obviously, a complete 
description of all of the constituent parts of a particular sound 
will include information about its pitch, loudness, and so on, 
and in a broad sense we might even include these qualities in 
our definition of timbre. Except on a few electronic instru- 
ments such as Theramins, or electronic organs, the tone color 
does not remain the same when different notes are played, due 
to varying string or tube lengths, lip tension, and so on. Since 
all of these variations in tone quality are quite relevant in 
accounting for the characteristic sounds of musical instru- 
ments, we can see that analysis of the microstructure of a 
sound is likely to yield information only about that particular 
sound. Even two successive notes played on the same instru- 
ment by the same performer in the same manner are likely to 
have strikingly different microstructures. It is the study of this 
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tonal microstructure, and its relationship to what we hear, that 
is one of the deepest problems in computer music research, for 
it is here that the complexities of the physics of the instru- 
ment, of room acoustics, and of the psychology of the listener, 
enter in. 

Our model for describing this microstructure is called 
the spectrum of a sound, by analogy to the spectrum of a 
beam of light that may be obtained by passing the light 
through a prism. The prism has the property that light made 
up of different frequencies, or colors, is refracted by varying 
amounts, the index of refraction depending on the compon- 
ent, or primary, color in question. By observing the intensities 
of the light at these different frequencies, we are able to deter- 
mine the make-up of the original light beam. If the beam is 
"pure white" light, we obtain a "full spectrum," proverbially 
the colors of the rainbow. 

The prism for sounds is Fourier analysis. By applying the 
Fourier transform to the waveform of a sound, we can mathe- 
matically determine just which amounts of which frequencies 
are responsible for that particular waveshape, and we can use 
our analysis as a guide in synthesizing that sound. If the sound 
consists of all audible frequencies in roughly the same amounts, 
we call the result "white sound," by analogy to white 
light. Unfortunately, since a rainbow is considerably more 
appealing than the steady, steam-like hiss of its audible 
counterpart, we usually refer to this sound as white noise. If, 
however, some frequencies are considerably more predominant 
than others, the sound becomes "colored," and if the relation- 
ships among these predominant components become roughly 
harmonic (i.e., the frequencies are integer multiples of a single 
frequency, called the fundamental frequency) the tone will 
acquire a more definite pitch. When the waveform consists 
entirely of harmonically related frequencies, it will be 
periodic, with a period equal to the reciprocal of the funda- 
mental frequency (which need not be present). 

The measurement of sound spectra is complicated by the 
fact that the spectra of almost all sounds change both rapidly 
and drastically as time goes by. This situation is worsened by 
the fact that the accuracy with which we can measure a spec- 
trum inherently decreases as we attempt to measure it over 
smaller and smaller intervals of time. The spectrum of any 
instant during the temporal evolution of a waveform does not 
even exist; for example, we could scarcely tell anything at all 
about the frequency components of a digital signal by examin- 
ing a single sample! We can measure what happens to the spec- 
trum only on the average over a short interval of a sound - 
perhaps a millisecond or so. The longer the interval, the more 
accurate our measurement of the average spectral content 
during that interval, but the less we know of the variations 
that occurred during that interval. Thus the problem of spec- 
tral measurement can be seen to be one of finding the best 
compromise between these opposing goals. Just how much 
accuracy is needed is still an open question in the realm of 
musical psychoacoustics: in some cases our ears seem to be 
much more tolerant of approximations than in others. The 
historical model ofspectra as measured by Hermnnann Helmholtz 
(see References) is clearly inadequate for believable resynthesis 
(Helmholtz was able to determine the average value of spectral 
components over the duration of entire notes played on indi- 
vidual instruments). A more recent model characterizes a note 
by attack steady-state, and decay segments. Such a model is 
certainly an improvement; but it has limitations when applied 

to the problem of producing "connected notes" (Lie., to 
problems of musical phrasing). Besides, the "steady-state" of 
any real tone isn't really "steady" at all. 

This discussion is not intended to imply that the situa- 
tion is hopeless, but only that it is subtle and complex, and 
that it is as important to appreciate the limitations of the 
spectral measurement techniques presented here as it is to 
realize their power. There can be little doubt that these tech- 
niques, and their relatives and extensions, will be the ones 
which will eventually yield the basis for a richly expressive 
computer music. 

THE DISCRETE FOURIER TRANSFORM 

The two most commonly used transforms in digital 
signal processing are the discrete Fourier transform (DFT) and 
the so-called z-transform. The DFT is used to calculate the 
spectrum of a waveform in terms of a set of harmonically 
related sinusoids, each with a particular amplitude and phase. 
It is usually implemented by means of a particularly efficient 
algorithm known as the FFT (for fast Fourier transform), the 
discovery of which has made spectral computation a much 
more practical reality than it would be otherwise. Since the 
DFT is less restrictive (albeit less efficient), and since the FFT 
is well documented for those with a basic understanding of the 
DFT, we will consider only the DFT here. The z- transform, 
unlike the FFT, is not something that is typically calculated 
with a computer, but is rather a mathematical tool used 
primarily in the theory of digital filters. It is in a sense more 
general than the DFT, since it includes the DFT as a special 
case, and it is of considerable interest in the general theory of 
digital signal processing. 

The fundamental operation of the DFT is to decompose 
an arbitrary waveform into its spectrum. The spectrum of a 
waveform is a description of that waveform in terms of a 
number of "basic building blocks" for waveforms, which in 
the case of the DFT are sinusoids with harmonically related 
frequencies. By analogy, if we factor an integer into its prime 
factors, we have in a sense "decomposed" the original number 
into basic numerical "building blocks;" for example, 
340 = 1 X 2 X 2 X 5 X 17. The building blocks themselves 
(the prime numbers) are just those numbers which cannot 
be further decomposed: they can be expressed only as one 
times themselves, hence they are the components of which 
other numbers are formed, and not vice versa. Finally, factor- 
ing any integer into primes yields an answer that is unique: 
there is no other set of prime numbers which, when multiplied 
together, will yield 340 except the set stated above. Perhaps 
we picked the number 340 in the first place, not on the 
basis of its prime factors, but because it was the sum of the 
ages of everyone in a small room: 340 = 10 + 28 + 32 + 40 + 
50 + 50 + 60 + 70. This is clearly another way to decompose 
340, but it is not unique, since an infinite number of 
sequences sum to 340. 

Similarly, the basic building block used by the DFT for 
waveforms is the sinusoid. The DFT works by treating N 
samples of a waveform as if it were one N-sample period of 
an infinitely long waveform composed of a sum of sinusoids 
which are all harmonics of a fundamental frequency corres- 
ponding to the N-sample period. And, like the prime factors 
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discussed above, this set of harmonically related sinusoids, 
each with a particular amplitude and phase, is unique: no 
other set of sinusoids could be summed together to obtain the 
original waveform. Of course there may be other, possibly 
non-unique ways of decomposing a waveform, just as 340 
could be non-uniquely decomposed into non-unique sums of 
ages rather than a unique product of primes. In fact, other 
unique decompositions for waveforms exist besides the sum of 
sinusoids yielded by the DFT, which we won't consider here. 

We should also discuss the concept of energy at a partic- 
ular frequency. A waveform may, in signal processing parlance, 
have energy at, say, 100 Hz., which means that at least one 
sinusoidal component with a frequency of 100 Hz. and a non- 
zero amplitude is present in the vibration pattern. Energy in 
this case designates "that which exists" at 100 Hz. which does 
not exist at, say, 110 Hz. The DFT functions by measuring the 
amplitudes of sinusoidal components at particular frequencies 
in a waveform, and since energy can be shown to be propor- 
tional to the square of amplitude, we can see that this process 
measures the energy at such frequencies. We could imagine 
accomplishing this process in a laboratory with a set of elec- 
trical audio filters, each of which will pass energy only at one 
frequency and block energy at all others. This bank of filters 
could be used to detect energies at a set of frequencies for an 
arbitrary input signal. The DFT accomplishes this mathemat- 
ically in the following way. 

Suppose x (n) is a sequence of numbers representing 
N samples of one period of a waveform with a period of N 
samples. For example, let x (n) = A sin (con), with co = 2nr/N 
and 0 n ?<N- 1. For N = 8 we would have the sequence 

A A A A 
x(n) = 0, - .707A, , A 0, , - 

-A, 

We can measure the energy at frequency o by extracting the 
amplitude, A, of the sinusoid at this frequency. This is 
accomplished in this case by forming the product of x (n) with 
sin (cwn), and adding up the numbers in the resulting sequence, 
since 

N- IA A A A x (n)sin(con) = 0 + + A + A + 0 + + A + 
n=O 

A 
4A =N 

The result is A/2, one-half the amplitude of the sinusoid at 
frequency co, scaled by N, the number of samples under con- 
sideration. We could not simply sum together the numbers in 
the x(n) sequence to obtain the same result, since summing 
over any intergral number of periods of a sinusoid yields a zero 
result. This is due to the symmetry of the sine and cosine func- 
tions above and below the horizontal axis. However, by multi- 
plying x (n) by sin (con), we form the sequence x (n) sin (con) 
= A sin2 (con), and all values of sin2 are non-negative. 

Thus we have "extracted the amplitude" of the sinusoid 
at frequency co in x(n) by purely mathematical means. What 
would happen if we were to "extract the amplitude" of the 

component of x(n) at frequency 2c? With x(n) defined as 
before, we expect that no such component will be detected, 
i.e., that its amplitude will be zero. In order to verify that this 
is so, we form the product sequence x(n) sin (2cn) and add 
up the resulting numbers: 

N-l N-1l 
Z A sin (cn) sin(2con) = L A 

[cos (-con) - cos (3on)] n=0 n=O0 

AN-1 AN-l 
= --- cos (-on) - cos (3cn) = 0 

n=0 n=0 

We have used a trigonometric identity to show that this 
sequence is composed of the sum of two cosine waves, one at 
frequency -co and the other at frequency 3o. Since the 
cosine wave has the same symmetry above and below the hori- 
zontal axis as the sine, both of these components sum to zero 
as well, indicating no energy at frequency 2co. As long as we 
are summing up the values of a sinusoidal waveform over any 
integral numbers of periods, we get zero. The sinusoids which 
have an integral number of periods in a duration of N samples 
are just those corresponding to the harmonics of the frequency 
with a period of N samples. 

So far we haven't considered the phase of the sinusoid at 
frequency w. We recall from Part I of this tutorial that a 
sinusoid with arbitrary phase and amplitude can be represen- 
ted as 

A sin (cn + ) =a cos (cn) + b sin (cn) (7) 

where 

A is the amplitude, 
4 is the phase angle, 
a is equal to A sin j, and 
b is equal to A cos 4. 

Both the amplitude and phase of a sinusoidal component 
at frequency o can then be determined by using our multiply- 
and-sum procedure, first with a cos (cn) multiplier to calcu- 
late the "a" coefficient, then with sin (con) to calculate the 
"b" coefficient. The amplitude and phase of the component 
are then given by the relations 

A = 
a2+b2 and 

=tan-I__b 
(8) 

For example, let the sequence x(n) be defined as follows 

x(n) = A sin (on + q1) + B sin (2on + q2) 

= al cos (on) + bl sin (con) + a2 cos (2con) + bz sin (2con) 

where 

al = A sin 1, bl = A cos 'P, a2 = B sin 52 

and 

b2 = B cos 2 
? 
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We "extract" al via our multiply-and-sum procedure, 
using cos (con) as a multiplier: 

N-1 
E x(n)cosc(wn) 

n=0 

N-1 

= [a cos2 (cn) + b1 sin (cn) cos (cn) n=0 

+ a2 cos (2con) cos (cn) + b2 sin (2cn) cos (con) ] 

N-1 

= a 
[1, 

+? cos(2con)] =N n=0 2 

Similarly, if we were to use sin (con) as a multiplier we 
could extract b,; cos (2cn) as a multiplier would extract a2, 
and so on. Given both a,, and bi, we can then apply 
Equations (8) to obtain A and 0b1 , if desired. This is the princi- 
ple of the DFT: the multiply-and-sum procedure is applied to 
determine the amplitudes and phases of each of the harmonics 
of the waveform. 

How many harmonics might be present? According to 
the sampling theorem, we need at least 2 samples in each 
period in order to avoid aliasing; so if N = 8, and the sampling 
rate R is = 8000 Hz., the only possible frequencies of which 
our periodic function x (n) could be composed are the har- 
monics of 8000/ 8 = 1000 Hz., which "fit", i.e., which have 
frequencies less than or equal to one half the sampling rate. 
However, the sampling theorem is perfectly admissive of 
negative frequencies, so the complete list of integral multi- 
ples of 1000 which have magnitudes < 4000 Hz. is: 

- 4000 Hz. (harmonic "-4") 
- 3000 
- 2000 
- 1000 

0 (harmonic "0") 
+ 1000 (harmonic + 1, or the fundamental 

frequency) 
+ 2000 
+ 3000 
+ 4000 

x (n) is modelled as being composed only of sinusoids at these 
frequencies, ie., 

+N/2 
x (n) = j ak cos(kcn)+ bk sin (kcon) (9) 

k = -N/2 

where co = 2ir/N, 

N- I 
ak = x (n) cos(kon) , and 

N-l 

b = 1 
x (n)sin(kon) 

II=0 

Here the 1/N factor is included to compensate for the fact that 
the latter two sums are scaled by N, as derived earlier. 

Notice that if x (n) = A cos (con), and we "extract the 
amplitude" ofx (n) at frequency c with our multiply-and- 
sum procedure, we find that the answer is A/2: 

1N- 1 
i 

E A cos(con) cos (cn) 

n=0 
n=O 

But notice also that if we "extract the amplitude" of x (n) at 
frequency -co the answer is the same: 

IN- 1 
1 A cos(wn) cos(-cn) 

n=O 

N-1 A ? cos [won -(-con)] +cos [wn+(-con)]j 
n=0 

=A 2 

Before we proceed, let us consider just what is meant by 
a "negative frequency." When we considered wagon wheels, 
we measured angles in a counterclockwise direction from the 
right horizontal axis as positive angles, and clockwise as nega- 
tive angles. Clearly the angle + 2700 describes the same spoke 
position as -900. Similarly, the radian frequency of rotation 
was positive for counterclockwise motion and clockwise 
motion was described as a negative radian frequency. Does it 
matter whether we use a positive or negative description of a 
frequency? Not too surprisingly, the answer is yes and no. 

Certain mathematical functions have the property 
known as evenness, which means that they are left-right sym- 
metrical around zero: 

f(x) = f(-x) = f(x) "even" (10) 

(the symbol =- means "implies that"). Other functions have 
the property of oddness, which means that they are left-right 
antisymmetrical around zero: 

-f(x) = f(-x) j f(x) "odd." (11) 

Some functions are even, some are odd, many are neither, and 
only one is both (it is left as an exercise for the reader to dis- 
cover the only function that is both even and odd). Any func- 
tion may be thought of, however, as composed of the sum of 
an even part and an odd part, either (or both) of which may be 
zero. In other words, any arbitrary function fmay be "broken 
apart." Thus, 

f(x) = fe(X) + 
fo(X) (12) 

where fe (-x) = fe (x) and fo(-x) = -fo(x). 
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Here's the proof that this is so: 

f(x) = fe(X) + fo(X) = f(-X) = fe(-X) + fo(-X) 

But, by the definitions of fe and fo, 

f(-x) = fe(x) - fo (x) 
Therefore we can solve for either fe or fo by adding (or sub- 
tracting) f(x) and f(-x): 

f(x) + f(-x) = [fe (x) + fo (x) + [ (x) - fo (x)] 

fe (x) = 1/2 [f(x) + f(- x)] 
Similarly, 

fo(x) = h [f(x) - f(-x)] 

Clearly, 

fe (-x) = ? [f(-x) + f(x)] = fe(x) and, 

fo (-&x) = 1/2 [f(- X) -f(x)] = -fo (). 

Finally, 

fe(x) + fo(X) = ' [f(x) + f(-x)] + V [f(x) - f(-x)] = f(x). 

We have proved that f(x) can be decomposed into a sum of 
even and odd parts without saying anything else at all about 
f(x), so it is true for all functions! 

Getting back to the question of negative frequencies, it 
is clear that if a function is purely even, such as the cosine 
function, the sign of the frequency doesn't matter at all since 

cos(con) = cos (-con) (13) 

But for a purely odd function, such as sine, it represents a 
negation of amplitude, or equivalently, a 1800 phase shift: 

sin (-con) = -sin (won) = sin (con +n) (14) 

Because A cos (cwn) is an even function, it is generally 
meaningless to distinguish between positive and negative fre- 
quency cosine waveforms. But the spectrum of a cosine wave 
may be considered to contain both positive and negative fre- 
quency components, both of which have a positive amplitude 
equal to A/2. For a sine waveform A sin (con), we obtain also 
positive and negative frequency components, but of opposite 
amplitude due to the oddness of the sine function: If the 
positive frequency component has a positive amplitude, then 
the corresponding negative frequency component will have a 
negative amplitude, and vice versa. The complete DFT yields 
the amplitudes and phases of both the positive and negative 
harmonics. The amplitude is split in half at corresponding 
positive and negative frequencies, with the signs of the ampli- 
tude of the odd parts being opposite: this explains the fact 
that only one-half of the amplitude is measured if we 
consider only positive frequencies. 

One more aspect of cosine and sine waveforms should 

be mentioned before we proceed to define the DFT. A 
component at exactly one-half the sampling rate, i.e., with 
only 2 samples per period, can only be purely even, since the 
samples occur at angles 0 and rr, and both sin (0) and sin (7r) 
are equal to 0. Thus the "bk" coefficients of Equation (9) will 
always be zero whenever k = ?N/2. Similarly, at zero frequen- 
cy (also called "D.C." for direct current by some engineers and 
others who talk to these engineers), the "b," coefficient is 
always zero, again since sin (0) = 0. 

We are now ready to define the DFT of a sequence 
x (n). As mentioned before, we model x (n) as one N-sample 
period of a periodic waveform. The DFT will then yield the 
unique spectrum of x (n) in terms of the amplitudes and 
phases of sinusoidal components, each with periods harmoni- 
cally related to N, the number of samples in the transformed 
signal. While the FFT algorithm generally requires that N be 
a power of 2, the DFT (which yields exactly the same result, 
albeit with less computational efficiency) places no restriction 
on N except, of course, that it be greater than 2 samples. 

Following the usual practice in the literature, we will 
define the DFT in terms of the complex exponential which 
allows us to represent both sine and cosine functions at once. 
A typical definition for the DFT is then 

DFT [x (n)] = X(k) 

N-I 
N- 

x(n)e-iwnk 
0 

< k <N- 1 (15) 
n=0 

where co = 2rr/N and e -jwnk = cos (cnk) - j sin (cnk). 
The inverse DFT is then defined as 

DFT-' [X(k)] =x(n) 

IN-1 
.I-N X (k)e+jwkn 0 n N-l (16) 

k=0 

Thus if X(k) is the DFT of x(n), then x(n) is the inverse DFT 
of X(k). The mathematical oddness of the imaginary part of 
the complex exponential necessitates the use of the minus sign 
in the exponent of the DFT, while the inverse DFT has a posi- 
tive exponent. Also, since the multiply-and-sum procedure 
produces values which are scaled by a factor of N, the 1/N 
factor appears in the inverse DFT in order to make the state- 
ment DFT-' [DFT [x(n)] ] = x (n) exactly true. The values of 
X (k) (the spectrum) are complex, with the real parts corre- 
sponding to the "a" (cosine, even part) coefficients and the 
imaginary parts corresponding to the "b" (sine, odd part) 
coefficients of the spectral components. If we denote X(k) as 
ak +jbk, then 

IX(k)1=/a+b• 
(17) 

is called the magnitude, modulus, or amplitude of X(k), which 
is the same as the amplitude of the corresponding spectral 
component (except for being scaled by N). 
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bk 
arg [X(k)] = pha [X(k)] = 4 X(k) = 

tan-- 

(18) 
ak 

is called the argument, phase, or angle of X(k), which is equal 
to the phase angle of the corresponding spectral component. 

The next question is: How do the values of the index k 
correspond to frequency? In order to understand this corre- 
spondence, it is instructive to take the DFT of a specific 
sequence of numbers and see exactly what we get. 

Let us define x (n) as 8 samples of a periodic waveform 
with a period of 8 samples, sampled at R = 8000 Hz. 
x (n) must be composed of harmonics of 8000/8 = 1000 Hz., 

so 
4 

x(n)= > Am cos (mn + Om) 
m=0 

with o = 2-n/8 = ir/4. 
Values for both the amplitudes and the phase angles for 

each of the five components are given in Table 1. Table 2 
shows actual numerical values for the five components of x (n). 
The sum of these five components, L e., the numerical value of 
the samples of x (n) itself are shown at the end of Table 2. The 
so-called "analytic (cosine and sine) form" of the components 
of x(n) is shown in Table 3. By applying the trigonometric 
identity 

Am cos (mcon + Cm) 

= Am [cos (mcn) cos Om - sin (mcn) sin Om 

= Am [am cos(mcon) - bm sin (mcn)] 

with am and bm defined as in Table 1, we can see that the form 
given in Table 3 yields the same numbers for x(n) as Table 2. 

Figure 6 is a graph of x(n). Only those values from n = 0 
to n = 7 are considered (one period); these are shown as solid 
lines on the graph. x(n) is presumably an 8-sample sequence 
extracted from a longer sequence with a period of 8 samples 
(other values of this longer sequence are shown on dotted 
lines). A glance at Figure 6 confirms that the spectral structure 
of x(n) is not very apparent from observation of its waveform, 

(Correspon- 
ding frequency (phase in 

in Hz.) (amplitude) radians) (Amcos m) (Amsin m) 

m Fm Am Om am bm 

0 0 1/10 0 .100 0 

1 1000 1 0 1.000 0 

2 2000 1/2 7r/3 .250 .433 

3 3000 1/3 7r/4 .236 .236 

4 4000 1/4 r /5 .202 .147 

Table 1. Coefficients representing one period of a sampled 
m=O 

waveform, x(n)= Am cos(mon + '). 
4 

4 
x(n) = > Am cos(m(on+Om) 0On<,7 m=0 

27r nr 
CO 8 4 

Components: 

Am cos (mcon + Om) 

m 1 2 3 4 5 6 7 

0 .100 .100 .100 .100 .100 .100 .100 .100 = .100 cos (0) 

1 1.000 .707 0 -.707 -1.000 -.707 0 .707 = cos (- + 0 

2 .250 -.433 -.250 .433 .250 -.433 -.250 .433 .500 cos (- + 
23j 

3 .236 -.333 .236 0 -.236 .333 -.236 0 = .333 cos (4 + 
-4 

4 .202 -.202 .202 -.202 .202 -.202 .202 -.202 = .250cos rn +I-- 
4 

= 1.788 -.161 .288 -.376 -.684 -.909 -.184 1.038 = x(n) 
m=0 

Table 2. Numerical Values of the Components of x(n) as described in Table 1, and their sum, x(n) itself. 
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yet applying the DFT to x(n) will indeed tell us exactly the 
components of which x(n) is composed. 

In order to calculate the DFT it is useful to make a table 
of values for e-Jwnk such as the one shown in Table 4. We start 
with k = 0: 

7 
X(O) = x(n)e-jo 

n=O 

7 7 

= x(n) cos(0)- i] x(n) sin(O) n=0 n=0 

7 

= x(n) = 1.788 + (-.161) +.288 + (-.376) 
n=0 

+ (-.684) + (-.909) + (-.184) + 1.038 

.8 

The real part of the answer (.8) is supposed to be N times one 
of the "a" coefficients in Table 1, and indeed, it is N- ao. The 
imaginary part of the answer (0) corresponds to bo. So k = 0 
apparently refers to the zero frequency, D.C., Oth harmonic 
component of x(n). For k = 1: 

7 
X(1) = ~. x(n)e-iwn 

n=O 

7 7 
= x(n) cos(2nn/N) - / x(n) sin(27rn/N) 

n=O n=0 

[(1.788)(1) + (-.161) (.707) +... etc.] 

+j [(1.788)(0) +(-.161)(-.707)+... etc.] 

= 4+j0 

which is just N/2 times (al + jbI), the coefficients for the 1st 
harmonic, or fundamental frequency. Table 5 shows a 

4 
x(n) = 

[am 
cos 

(mon)-bm 
sin (mon)] 0n 7 

m=0 
2vr ir 
8 4 

Components: 

am cos (mwn) 
n m 

0 1 2 3 4 5 6 7 

0 .100 .100 .100 .100 .100 .100 .100 .100 = .100 cos (0) 

1 1.000 .707 0 -.707 - 1.000 -.707 0 .707 = cos 
n 

2 .250 0 -.250 0 .250 0 -.250 0 = .250 cos(n-) 

3 .236 -.167 0 .167 -.236 .167 0 -.167 = .236 cos- 

4 .202 -.202 .202 -.202 .202 -.202 .202 -.202 = .202 cos (nir) 

bm sin (mon) 

m 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 = 0 sin (0) 

1 0 0 0 0 0 0 0 0 = 0sin -) 

2 0 .433 0 -.433 0 .433 0 -.433 = .433 sin 

3 0 .167 -.236 .167 0 -.167 .236 -.167 = .236 sin 
(_r) 

4 0 0 0 0 0 0 0 0 = .147 sin (ni) 

Table 3. Alternative Form of the Description of the Components of x(n) as Described in Table 1. 
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x(n) 2 
9 9 

S91 

0I 
0 Q 

0 oo 
0O -1 f 

-2 
n=O 

Figure 6. A graph of x (n) as 
described in Table 1. x (n) is 
periodic with a period of N = 8 
samples. Only the period from 
n = 0 to n = 7 is considered 
(solid lines), but presumably the 
function repeats itself before 
and after this period (dotted 
lines). 

e-jwnk = cos (wnk) -j sin (wnk) 

component values for N = 8, C = 2nr/N 

cos (2rnk/N) 

k n 0 1 2 3 4 5 6 7 

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

1 1.000 .707 0 -.707 -1.000 -.707 0 .707 

2 1.000 0 -1.000 0 1.000 0 -1.000 0 

3 1.000 -.707 0 .707 -1.000 .707 0 -.707 

4 1.000 -1.000 1.000 -1.000 1.000 -1.000 1.000 -1.000 

5 1.000 -.707 0 .707 -1.000 .707 0 -.707 

6 1.000 0 -1.000 0 1.000 0 -1.000 0 

7 1.000 .707 0 -.707 -1.000 -.707 0 .707 

-j sin (27rnk/N) 

(all values below are multiplied by j) 

0 1 2 3 4 5 6 7 1 4 

0 0 0 0 0 0 0 0 0 

1 0 -.707 -1.000 -.707 0 .707 1.000 .707 

2 0 -1.000 0 1.000 0 -1.000 0 1.000 

3 0 -.707 1.000 -.707 0 .707 -1.000 .707 

4 0 0 0 0 0 0 0 0 

5 0 .707 -1.000 .707 0 -.707 1.000 -.707 

6 0 1.000 0 -1.000 0 1.000 0 -1.000 

7 0 .707 1.000 .707 0 -.707 - 1.000 -.707 

Table 4. Values of e-iwnk for c = 2nl/N, N = 8 

F. R. Moore: An Introduction to the Mathematics of Digital Signal Processing, Part II Page 49 

This content downloaded from 165.123.228.54 on Wed, 03 Feb 2016 12:02:37 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


complete table of X(k) for all values of k from 0 to 7. Several 
remarks are in order about X(k). We see that k corresponds to 
the harmonic number for k = 0, 1, 2, and 3. But the D.C. and 
half sampling rate components are scaled by N, while the rest 
are scaled by N/2. For k = 5, 6, and 7, we see that the 
coefficients are the same as k = 3, 2, and 1 respectively, except 
that the sign of the imaginary part is reversed. Since the 
imaginary part corresponds to the sine function component, 
and since sine is an odd function, it is clear that these are the 
spectral values of the negative frequencies. k = 5 corresponds 

Corresponding Corresponding 
k X(k) Spectral Coefficients Frequency (Hz.) 

0 .8 +jO N(ao +jbo) ? 0 

N 
1 4+j0 7 (a +1jb1) + 1000 

N 2 1 +j 1.732 2 (a2 +b2) + 2000 

3 .944 +.944 2 (a3 + jb3) + 3000 

4 1.616 +j0 N (a4+jO) ?1 4000 

5 .944 -j. 944 N (a3 - jb) -3000 

6 1 -j 1.732 2 (a2 - jb2) - 2000 

N 
7 4 -j20 N(a b- 1000 

N-1 
X(k) = DFT[x(n)] = x(n)e-jwnk O<k<N-1 

n=0 

Table 5: The discrete Fourier transform (DFT) of x(n) as 
described in Table 1 (N = 8, R = 8000 Hz.). 

to the -3rd harmonic, k = 6 corresponds to the -2nd har- 
monic and k = 7 to the -1st harmonic. What about k = 4? 
As mentioned above, the sampling process cannot represent an 
amplitude for a sine component at half the sampling rate, 
so the imaginary part is 0, even though we used a non-zero 
value for b4 (b4, in fact, has been ignored by the sampling 
process). Also, the scale factor is N for k = 4 instead of 
N/2. This is because both the D.C. and one-half sampling 
rate components perforce have zero imaginary parts, and 
hence it is impossible to split them into distinguishable posi- 
tive and negative frequencies as can be lone with the other 
components. This says that, when sampling at 8000 Hz., we 
cannot distinguish components at + 0 Hz. from - 0 Hz., nor 
can we distinguish components at +4000 Hz. from 
components at - 4000 Hz. This accounts for the ambiguity in 
Equation (1) when F = ?R/2. It also accounts for the different 
scale factors for X(0) and X(N/2). 

In order to completely check our transform definition 
we should apply the inverse DFT to X(k) and see if x(n) pops 

out again. This procedure will be left to the reader as a 
valuable exercise. Let us proceed by examining some of the 
properties of the DFT and derive some important transforms 
that will be useful later. 

First of all it is important to note that we have defined 
the DFT in such a way that only the principal values of X(k) 
are calculated. A more general definition is 

N-1 
X(k) = E x(n) e-jwnk -oo < k <oo (19) 

n=0 

This definition shows explicitly that the spectrum obtained 
from the DFT is a periodic function of frequency. In other 
words, the principal values of the N-sample DFT of cos (con) 
are just what is shown at the top of Figure 7, but this is really 
only a part of the full picture, shown at the bottom of 
Figure 7. This spectral periodicity is due to the periodicity of 
the complex exponential function itself, and theoretically 
extends over all frequencies for all digital signals. It is 
easy to see from the graph of the full periodic spectrum of 
a sampled signal how no frequencies greater in magnitude 
than R/2 can exist. If Fo in Figure 7 were instead the frequen- 
cy R - Fo, which is greater than R/2, the plots would look 
exactly the same. 

If we (properly) interpret the k index of X(k) = 
DFT [x(n)] as negative frequencies for k > N/2, and normal- 
ize amplitudes that may be scaled by N, we can begin to con- 
struct a useful convention for spectral plots. Only the smooth 

t --N 
Amplitude N/2 

IN/ I 

-R -Fo 0 +Fo +R 
2 2 

Frequency -* 
(Hz.) 

Amplitude 

I ! -- 

- R- Fo -R+Fo -Fo Fo R - Fo R+Fo 
-3R -R -R 0 R R 3R 

2 2 2 2 

Frequency -+ 
(Hz.) 

Figure 7. Spectrum of cosine function at frequency IFo I <R/2. 
At the top we see just the 2 principal components, one at 
+Fo Hz. and the other at -Fo Hz., both with an amplitude of 
N/2. At the bottom we see three periods of the periodic spec- 
trum of the same functions centered around 0 Hz. Normally 
only the top figure is used, but the spectrum of all digital sig- 
nals is actually periodic as shown at the bottom. 
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cosine (real, even) 

sine (imaginary, odd) 

I 

unit sample (impulse) (constant) 

impulse train impulse train 

sin irx 
rectangular pulse sine 

bell-shaped pulse bell-shaped pulse 

Figure 8. Some transform pairs. Each member of a pair transforms into the other (see text). The tick marks on the horizontal 
axes represent unit values of time or frequency; on the vertical axes, they represent unit values of amplitude. After The Fourier 
Transform and Its Applications by Ron Bracewell. Copyright @ 1965 by McGraw-Hill, Inc. Used with permission of 
McGraw-Hill Book Company. 
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curve need be given (rather than a sequence of dots on the 
heads of sticks) for functions like cosine or sine -it is under- 
stood that this curve is sampled at the sampling rate. When 
convenient or appropriate, some functions such as the impulse 
will still be shown with the dot-stick notation. 

Transform pairs for some common functions are shown 
in Figure 8. It should be remembered that the DFT is really a 
two-way process: each member of a transform pair transforms 
into the other member. We see, for example, that the unit 
sample function transforms into a constant spectrum. Or we 
can read this pair in the opposite direction: a constant-valued 
sampled function has energy only at zero Hz. The scale mark- 
ings in Figure 8 correspond to unit values of time or frequency 
on the horizontal axes, and unit values of amplitude on the 
vertical axes. Remember that if one of the members of a pair 
is interpreted as a time function, its amplitude is scaled by 
one, and its corresponding spectral amplitudes will be scaled 
by N. 

CONVOLUTION 

If X, (k) = DFT [xl (n)] and X2 (k) = DFT [x2 (n)], 
then an important property of the DFT known as linearity 
assures us that the following is always true: 

DFT [clxl (n) + c2x2 (n)] = c1X1 (k) + c X2 (k) (20) 

where cl and c2 are arbitrary constants. Does the same hold 
true if we multiply xl (n) and x2 (n)? Unfortunately not, since 
the spectrum of the product function xl (n) x2 (n) is not 
X1 (k) X2 (k). There is a method for obtaining the spectrum of 
the product of two different functions known as convolution, 
which we will treat first in a qualitative way. If we convolve a 

x(n) , u(n) = x(n) 

x(n) * .5u(n) = .5x(n) 

x(n) * u(n-z) = x(n-z) 

_D . 
Figure 9. Examples of convolution of an arbitrary sequence 
x(n) with the unit sample function. 

function x(n) with u(n), the impulse function (third from the 
top in Fig. 8), then the result is just the same as x(n). In other 
words, 

x(n) * u(n) = x(n) (21) 

where the asterisk denotes the convolution operation. Note 
that this is certainly different from multiplying x(n) by u(n), 
which would result in setting all values of x(n) to zero, except 
for x(0), which would remain unchanged. The impulse is said 
to be an identity function with respect to convolution, since 
convolving any function with u(n) leaves that function 
unchanged. If we scale u(n) by a constant ci, the result is 

x(n) * clu(n) = clx(n) 

which is just x(n) again, but scaled by the same constant. If, 
however, we convolve x(n) with cl u(n - no), a shifted, scaled 
impulse function, the result is 

x(n) * clu(n - no) = clx(n - no) 

a shifted, scaled version of x(n) (see Figure 9). 
In order to convolve x(n) with a scaled, delayed impulse 

function, we just scale and delay x(n) by the same amount. 
But we can view any sampled function as a collection, or 
sequence, of scaled, delayed impulse functions! For example, 
suppose x(n) is defined by 

1 n=-l 
x(n)= 2 n = +1 

0 otherwise 

and y (n) is defined as 

S.5 Inl< 2 
y(n) = 

0 otherwise 

In order to convolve x(n) with y(n) (see Figure 10), we can 
think of x(n) as being composed of two impulses: one scaled 
by + 1 and delayed by - 1 samples, the other scaled by +2 and 
delayed by +1 samples. Thus we place a copy of y(n) at 
n = - 1 (i.e., we form the function y(n + 1)), and another 
copy at n = +1, this one scaled by +2. The convolution of 
x(n) and y(n) is just the sum of these two shifted, scaled ver- 
sions of y (n). We could also have treated y (n) as a set of five 
impulses located at n = -2,- 1, 0, 1,2, and scaled by .5 each. 
Placing scaled copies of x(n) at each of these 5 locations and 
adding up the 5 resulting functions (Lie., .5 [x(n + 2) + x(n + 1) 
+x(n)+x(n - 1)+x (n - 2)] ) would have yielded exactly the 
same result. This indicates that the convolution operation is 
commutative, which is to say x(n) ? y(n) =y(n) * x(n). 

The mathematical definition of convolution is as 
follows. Suppose x(n) is a sampled function of duration Nx 
samples, ie., x(n) is non-zero only in the range 0 < n < Nx- 1. 
Let y (n) be a similar function of duration Ny samples. The 
convolution of x(n) with y(n) defines a new function 

n 
z(n) = x(n) *y(n) = > x(m)y(n - m) (22) 

m=0 
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y(n) 
2-- 

0 no 

x(n) 
2 - 

0 n-* 

1 -y(n + 1) 

2- 

+ - 

2 y(n- 1) 
2 0 

n-+ 

0 n- 

Figure 10. An example of the convolution of two func- 
tions, x (n) with y (n). 

As is evident in Figure 10, the convolved sequence is 
generally of a longer duration than either function; the dura- 
tion of z(n) in Equation (22) is in fact 

Nx 
+ Ny - 1 samples. 

When we multiply two waveforms together, their spectra 
are convolved. Similarly, if two spectra are multiplied, their 
corresponding waveforms are convolved, as we shall see later 
when we discuss digital filtering. 

Using convolution we can see what happens to the spec- 
trum when we multiply two sampled waveforms together 
(amplitude modulation). Suppose we have two sampled cosine 
waves, one at frequency F, and the other at frequency F2 (let 
both amplitudes be equal to one for simplicity). The sampling 
rate is R Hz., and is much greater than either F, or F2, so 
foldover is not of concern. If we were to add the waves 
together, their spectra would also simply add, and the result is 
shown at the top of Figure 11. If we multiply the waveforms 

together, however, we must convolve the spectra of the two 
separate cosine waveforms. The result is shown at the bottom 
of Figure 11. We treat the spectrum of frequency F2 as if it 
were two impulses with amplitude = /2. We then make two 
copies of the spectrum of the cosine waveform at frequency 
F1 , center a copy at each of the two locations indicated by the 
F2 impulses, and scale the F1 copies according to the F2 
impulse strengths. We have just demonstrated yet another 
trigonometric identity, 

cos (A) cos (B) = ? [ cos (A - B) + cos (A +B)] 

since the spectrum of the product of our two cosine waves was 
just two more cosine waves, one at the frequency F1 + F2 and 
the other at the frequency F1 - F2, both amplitudes scaled by 
Y1. Notice that it is quite possible to get foldover when multi- 
plying waveforms together, since, in this case for example, 
F, + F2 Hz. might well be greater than R/2 Hz. even though 
neither F1 nor F2 is. The aliased components would have to 
obey Equation (1), just like all the well-behaved components. 

THE Z-TRANSFORM 

The z -transform is widely used in digital signal proces- 
sing theory, and has a very simple definition. However, like the 
oriental game of Go, it is much easier to learn what the 
z-transform is than to master it. We call x(n) a "one-sided" 
sequence if all of its values are zero for n < 0. It is called a 
finite, one-sided sequence if all values of x(n) are also zero for 

-R -F2 -F1 0 +F1 +F2 +R 
2 2 

-1 

-R -(F2+F1) -(F2+F1) 0 F2-F1 F2+F1 +R 
2 2 

Figure 11. The spectrum of the sum (top) and product 
(bottom) of two cosine waveforms, one at frequency F, and 
the other at F2. 
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n > N, for some finite value of N. The z-transform of a one - 
sided sequence x(n) is then defined to be 

oo 

X(z) = j x(n) z-n (23) 
n =-0 

and for a finite, one-sided sequence of length N, it is 

N- 1 
X(z) = x(n) z-n (23) 

n=0 

where z is a complex variable. 
The major difference between the DFT and the 

z-transform is that while in the DFT we multiply and sum the 
samples of a waveform with a particular complex value, 
namely e-W , in the z-transform, the value of z may be set to 
any complex value whatever. Clearly, if we set z to eiw, then 
the z-transform is equivalent to the DFT for finite sequences. 
But the z-transform can also be used to gain an additional 
kind of insight into the nature of digital signals. For example, 
if x(n) is the unit-step function 

1 n >O0 
x(n) = 

0 n<0 

then its one-sided z-transform is just 

X(z)= 
l'z-n 

= z-n 1 
0 n1 - z-1 (25) n=O n=O 

The closed form of Equation (25) is just a statement of 
the result of summing an infinitely long geometric series, such 
as those discussed in Part I of this tutorial. Similarly, we see 
that the z-transform of the complex exponential 

eiwn = cos (on) + / sin (on) 

is just 

X(z)= ejwnz-n = (z-1 eJi)n 
n=0 n=0 

1 

S- z-1 eiw (26) 

We recall that such geometric sums converge (i. e., sum to 
a finite value) only for certain restricted values of z. For exam- 
ple, Equation (25) converges only if Iz- I is less than one since 
otherwise we would be adding together an infinitely long se- 
quence of numbers which do not get smaller as we go along. In 
order for I z" I to be less than one, I zl must be greater than 
one. Since z = a + jb is complex, we can see that I z 

1=J+- will be greater than one only when 
/a2+bi2> 

1. If we make 
a graph of the equation I z l= -a +b2i 

= 1 on the complex 

plane (i.e., graphing the real part along the horizontal axis and 
the imaginary part along the vertical axis), we find that the 

graph is simply a circle of radius one centered at the origin, 
called the unit circle. Since each point on the complex plane 
represents a possible value for z, we see that I z I> 1 specifies 
the set of all points on the complex plane that lie outside of 
the unit circle. Similarly, I z l = 1 specifies all points on the unit 
circle, while I z I < 1 is the set of all points inside it. 

The z -transform of any function has a general form: 

M 
R (l-ziz-1) 
i= 1 

X(z) = A (27) 

- (l-piz-') 
i= 1 

where 

A is an arbitrary constant, 

II is the "product operator," analogous to the "sum op- 
erator" Z except that multiplication rather than addi- 

4 
tion is specified; for example, II c = 1 2 3 - 4 = 24, c=1 

zi are M "zeroes" of X(z) and 

Pi are N "poles" of X(z). 

Both the numerator and denominator of Equation (27) are 
polynomials in the complex variable z, and they are shown 
here in factored form in order to demonstrate that the zi and 

Pi values are really just the roots of the numerator and denom- 
inator polynomials, respectively. These roots may be complex, 
and if they are, we know that as long as the coefficients of the 
numerator and denominator polynomials are real (as they 
must be for a realizable system), then the complex roots will 
always appear in conjugate pairs. We can then represent the 
z - transform of a sequence by writing the transform in the 
form given by Equation (27) and plotting the locations of the 
poles (pi) and zeros (zi) as "X's" and "O's" on the complex 
plane. Such a "pole-zero" plot is just a unique way to 
represent the sequence x(n) on the complex plane. 

For example, Equation (25) is a z-transform with M = 1 
zero equal to 0 and N = 1 pole equal to 1, since 

1 _ (1-0-z-1) 
1-7z-1 ( -1) 

Similarly, Equation (26) has one (complex) zero with a value 
of zero, and one (complex) pole with a value of eiw. We can 
graph these two equations on the complex plane as shown in 
Figure 12. Poles are graphed as X's, and zeros are graphed as 
O's; the unit circle is shown for reference. 

The poles of the bottom graph are "mirror images" of 
each other in relation to the horizontal (real) axis. In other 
words, the two poles differ only in the sign of their imaginary 
part, and thus the poles represent a "conjugate pair." The 
exact location of the eJw pole pair depends on the value of 
o, the frequency of the sinusoid. If co = 0, the pole pair will 
be coincident, i.e., both X's are placed on top of each other at 
z = 1. As the frequency increases to 

_R/2, 
o increases to +rn, 
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imaginary 
complex (z-) plane 

real 
-" 

imaginary 
complex (z-) plane 

real -* 

Figure 12. Pole-zero plots of the z-transform of Equation 
27. Top: M 1, N = 1. Bottom: M= 2, N = 2. 

and at w = ?n, the two poles would be on top of each other at 
z = -1. Intermediate frequencies are represented at inter- 
mediate positions along the circumference of the unit circle. 

The z-transform, like the DFT, also has an inverse, albeit 
a more complicated one than the inverse DFT. The only 
method of performing the inverse z-transform which we will 
consider here is called partial fraction expansion of X(z). 
If, by algebraic manipulation, we change the form of X(z) 
from that of Equation (27) to 

N 

X(z)= 
i (28) 

i= 1 (1 
-piZ) (28) 

where the pi are the poles (roots of the denominator polyno- 
mial) and the ci are constants derived in the algebraic manipula- 
tion, then the inverse z-transform is given by: 

N 

ci(pi)n n > 0 
x(n) = i= 1 

(29) 
0 n<O0 

Other methods exist for the inverse z-transform, but 
unfortunately, none of them is simpler to perform than this 
one. 

The significance of the z -transform is its use in digital 
filter theory. We will not delve very deeply into this topic 
due to its vast complexity (no doubt it has imaginary parts in 
the minds of many theorists), but we can discuss basic 
elements of some aspects of digital filters. 

DIGITAL FILTERING 

The basic purpose of a digital filter is to modify the 
spectrum of digital signals in a desirable way. A digital filter is 
usually pictured as a "black box" with a signal input and a 
signal output. The operation of the box is described by what 
engineers call its transfer function, a mathematical formulation 
of its operation in the transform domain. For example we may 
wish to create a filter which will pass all frequency compo- 
nents lower in frequency than a certain value, Fc, and to 
remove all others. Such a filter would be a low-pass filter 
(LPF), and Fc is its cutofffrequency. We may desire to create 
high pass filters (HPF) or band-pass filters (BPF) to remove or 
attenuate certain frequencies while passing others. An all-pass 
filter may be used to modify only the phase on certain com- 
ponents. In general we would like to be able to specify an 
arbitrary transfer function in terms of a frequency response 
curve, to be multiplied by the frequency spectrum of any 
signal which is treated by it, and possibly also a phase response 
curve, which would modify the phase of an arbitrary signal. 
The transfer function for an ideal LPF is shown in Figure 13. 
From now on, we will use "normalized frequency" in our 
plots, where o = ?ir corresponds to a frequency of ?R/2. 
This allows us to speak of frequencies in a way that is 
independent of any particular sampling rate. 

f 
Amplitude 

- -O +Wc ++C 

Frequency -+ 

Figure 13. Transfer function for an ideal low pass filter with 
(normalized) cutoff frequency c,. 

The filter described in Figure 13 operates by multiplying 
the spectrum shown by the spectrum of the input signal, there- 
by setting to zero any frequency components in the signal that 
are greater than ?+ wc 

If we think of Figure 13 as the spectrum of some signal, 
call it h (n), then we would be able to implement our ideal 
LPF by convolving the input signal with h (n), since multiply- 
ing spectra corresponds to convolution of waveforms, just as 
multiplying waveforms corresponds to convolving their 
spectra. Thus, if x(n) is the input signal and X(z) is its trans- 
form, y(n) is the output signal and Y(z) is its transform, and 
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h(n) is the inverse transform of H(z), then the transfer func- 
tion of our filter, 

y(n) = h(n) * x(n) (30) 

corresponds to 

Y(z) = H(z)X(z) (31) 

The function h(n) is called the impulse response (or unit 
sample response) of the filter, since Y(z) = H(z) only if 
X(z) = 1, which is the transform of the digital impulse 
function. 

We can uniquely describe any filter by its impulse 
response h(n), which is just the (inverse) transform of its 
transfer function H(z). And once we know H(z), which we 
can obtain from any filter by transforming its response to an 
impulse function, we know what the filter will do to any 
input signal, since H(z) defines the frequency and phase 
response of the filter completely. 

We calculate the frequency and phase response of a filter 
with the following steps: 

1. Find the impulse response h(n) of the filter. This can be 
done empirically by exciting the filter with u(n) as an 
input signal; h (n) is then "what comes out." 

2. Calculate the z-transform of the impulse response: 
H(z) = Z h (n)z-n. This sum may be either finite or 

infinite, depending on whether h (n) is of finite duration. 
3. Set z equal to ejw. This makes the transfer function 

H(z) yield the spectrum of the impulse response, 
H(eiw). 

4. The frequency response of the filter is then defined to 
be the magnitude of the spectrum of its impulse 
response: I H(eiw)I. 

5. The phase response is similarly pha [H(eiw) ]. 

Many subtle problems are encountered in digital filter 
design. For example, the ideal LPF described above is an 
example of a filter which is said to be unrealizable. If we 
examine the transform of the "rectangular box" function in 
Figure 8, we see that it looks something like a cosine wave that 
dies down in amplitude on both sides of the origin (this 
function is called the "sinc" function). If the rectangular box 
were a digital waveform (a sort of single half period of a 
square wave), then this says that the spectrum of this signal 
gradually dies away as the magnitude of the frequency 
increases, both in positive and negative directions. But if the 
rectangular box is the spectrum, as for the ideal LPF, this says 
that the impulse response of the filter begins before n = 0, 
the time at which the impulse occurs. In other words, the ideal 
LPF begins to respond to its input before it has occurred. No 
wonder this filter is called unrealizable! It would need some 
sort of "crystal ball" with which it could look into the future, 
see an impulse coming from the distant future, and begin its 
response before its input arrives. The moral is: if anyone offers 
to sell you an ideal LPF, don't buy it (unless you check it very 
carefully)! 

We will end our discussion of digital filters with the 
general formula for all digital filters and two simple examples: 
a first-order realizable (but hardly ideal) LPF, and a second 
order BPF. 

Any digital filter may be described by an equation of the 
form: 

m N 
y(n) = bix(n - i)- aiay (n - i) (32) 

i=0 i=l 

where 

x(n) is an input signal or sequence, 
y(n) is the output signal, 
bi are a set of M coefficients describing how y(n) 

depends on the current input sample and the 
previous M input samples, and 

ai are a set of N coefficients describing how y(n) 
depends on the previous N output samples. 

The bi coefficients of Equation (32) determine the zeros 
of the transfer function, and the ai coefficients determine the 
poles. Some filters have only zeros and no poles (i.e., N = 0), 
and hence their output depends only on the current input 
sample and the past M samples. Such filters are called trans- 
versal, or finite impulse response (FIR) filters, since their 
response to an impulse cannot last any longer than M samples, 
as defined in Equation (32). If a filter contains poles, it is 
called a recursive, or infinite impulse response (IIR) filter. 

Many filters contain both poles and zeroes in their trans- 
fer function, the simplest of which is a first-order LPF, 
defined by the difference equation: 

y(n) = x(n) + Ky(n - 1) (33) 

where K is an arbitrary constant less than one. In terms of 
Equation (32), our first-order filter has bo = 1 and al = K. We 
can find its transfer function by transforming the impulse 
response, h(n); the frequency response will then be I H(eiw)I 
and the phase response will be given by pha [H(eiw)]. If we 
start with the initial condition that y(- 1) = 0, then we can list 
the values of h(n) as follows: 

x(n)= u(n) , y(-1) = 0 

y(n)= u(n)+ Ky(n - 1) 

n x(n) = u(n) y(n) 
0 1 1 + Ky(- 1) = 1 = Ko 
1 0 0 +Ky(0) = K=K' 
2 0 0+Ky(1)= 

K'K=K2 3 0 0+Ky(2)= K.K2=K3 

etc. 

Since h(n) is infinitely long, our filter is of type IIR 
with impulse response 

SKn n > 0 h(n)= 
0 nn<0 
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The one-sided z-transform of h(n) is then 

oo oo H(z) = Z h(n) z-n = Kn zn 
n=0 n=0 

00 

oo(Kz-')n - 
n=O 

Setting z equal to eiw now yields the spectrum for our filter 

1 H(eJw) - 1KeW 

We now have only to find the magnitude and phase of the 
function H(eiw) in order to make the frequency and phase 
responses explicit. A useful property of complex numbers is 
that the product of a complex number with its conjugate is 
equal to the squared magnitude of the complex number; i e., if 
z = a +b, then 

zz * = (a +jb) (a -jb) = aZ + b2 = zl2 

(where z*= the conjugate of z = a - b) It is also easy to 
verify the following relations: 

1 Re z = the real part ofz =(z + z*)= a 

1 
Im z = the imaginary part of z = (z - z*) = b 

Im z z - z* phaz - tan' Inz 
= tan' Re z j(z + z*) 

Thus, in order to find the frequency response we calculate the 
magnitude of H(ei"): 

IH(ejw)I = 
[H(eiW)H(e-iW)]% 1~ I 

1 -Ke-iw 1 -Ke* i 

- 1 - K(eJw + e-w) + K2 

Noting from Euler's relation that eiw + 
e-iJ = 2 cos w, we 

obtain 

[ 
1 

ll(eiw)l= - - 
2K 

cos 
o 

+ K 3 

The phase response is equal to 

I 

- 

I K 
L - 

Ke-J"+ 
I - A'e. w 

(all (* 

=tan- F - Keiw -(1-Ke-iw) 
L( 1 -Keiw + 1 -Ke-iw) 

= tan- ) K(e-iw 
- 

ew) 
S[2 -K(eiw + e-ij)] 

Again we make use of Euler's relation in two forms: 
eiw + e-iw = 2 cos c and eiw - e-Jiw = 2 jsin w. Also, note 
that the inverse tangent is an odd function, i.e., tan' (- 0) 
=-tan-1 (0). 

Stan 

K(e-'w 

- e w) 

-tatann- K2sin 

[ j(2-K2 cos o) 

-n 
K sin w ) = -tan' I -K cos w 

= pha H(eiw) 

We can now make graphs of IH(eiw)I and pha H(eiw) 
from --7r ?< w < +rn to get a complete picture of the transfer 
function as a frequency response and a phase response. Since 
the frequency response of most filters varies over such a great 
numerical range, we typically plot it on a logarithmic vertical 
scale, such as is done in Figure 14. If we plot 20 loglo I H(eiw)l, 
we can even read the vertical scale directly in dB. A value of 
0 dB corresponds to IH(eiw)l = 1, +6 dB corresponds to 
IH(eiw) = 2, -6 dB corresponds to IH(eiw)l= .5, and so on. 

The frequency response curves in Figure 14 indicate 
clearly that our first-order system is a low pass filter, but 
hardly an ideal one. 

A simple second-order filter might have the equation 

y(n) = x(n) + K, y(n - 1) + K2 y(n - 2) (34) 

where K, and K2 are constants. In attempting to derive the 
impulse response of this filter, h(n), we find that the mathe- 
matical tools which we have developed so far are unfortunate- 
ly not adequate to the task. In order to "solve" Equation (34) 
for h(n) we would need to develop the theory of difference 
equations, which are the digital correspondents of differen- 
tial equations in the analog world. If we are given h(n), 
however, we could then carry out the necessary calculations to 
obtain the frequency and phase response. The impulse 
response corresponding to Equation (34) will be given here 
without derivation, since it is possible to make use of this 
filter without being able to solve difference equations. With 
the following gift from difference equation theory, then, we 
can proceed. 

The impulse response of Equation (34) is either the sum 
of two exponentially decaying functions, or a sinusoid whose 
amplitude decays exponentially, depending on the relationship 
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1 
20og/o 1 - 2K cos co + K2 

30- 

20 

..K =.95 

K=.5 
10-- 

-tan-1 
K sin w 

1-K cos C, 

SK = .95 

.K=.5 

- 
- 

I\ 
~I+=r - 

-n 

Figure 14. Frequency and phase response of a first-order 
system (see text) for two values of K (.95 and .5). 
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between the K1 and K2 coefficients. If K1 > - K2 /4, the 
impulse response is of the form 

h(n) = a0 (pl)n + a2(P2)n (35a) 

(sum of exponentials). If K1 < - K22/4, then 

h(n)= al rn sin (bn + O) (35b) 

where 

r = -K2 

K1 
b = cos-1 

0 = b,and 

I 
sin b 

The frequency and phase response of this filter can be 
calculated from the z-transform of Equation (35b), evaluated 
at z = eJw: 

1 
H(ejw) 

= (36) 1 - 2r (cos b) e-jw + r2 e-2(w 

The interested reader will find it an exhilerating exercise to plot 
curves for I H(ejw)I and pha H(eiw) based on Equation (36). 

WHERE TO GO FROM HERE 

We have only scratched the surface of mathematics and 
digital signal processing, but we have scratched it pretty well. 
Many of the concepts we have discussed are subtle and not 
easily understood, and it should come as no surprise if the 
uninitiated reader is a bit confused at this point. Confusion is 
the natural companion of learning. When Jean Baptiste Joseph 
Fourier first established the fact that an arbitrary mathemat- 
ical function could be represented as a sum of sinusoids 
(in 1807), leading mathematicians of the day refused to 
believe it, so new and startling was the idea. No doubt the idea 
confused them, too. People have been confused by this idea 
ever since, of course, but we now know it to be one of the 
most useful basic facts about mathematics, science, engineer- 
ing, and sound, including music. The truth and beauty of the 
idea makes all the initial confusion worthwhile. 

If the confusion persists, however, after a few careful 
readings and problem solutions, the time has come to attack it 
before it turns into frustration. Some recommended references 
for further study are given after the problems, organized by 
topic. An hour or two with a good teacher can be worth 
months of self study in certain cases, but skill always comes 
from practice, and no number of hours watching a teacher 
solve problems will make a student skilled at this. 

Finally, a word about scope. Computer music is a highly 
interdisciplinary field, containing portions of computer 
science, music, science, mnathematics, and engineering. Just 
which parts of all of these fields are part of computer music 
and which are not is unclear at this time, though it is clear that 
no individual is likely to have the utopian qualification of 
expertise in all of these fields at once. Consequently, it is 

likely that computer music will continue to be fruitfully prac- 
ticed by small groups of cooperating individuals rather than by 
single persons working alone. Also, it means that individuals 
must be willing to learn as much as possible, and to rely on 
good sources for that which is unknown. The trick is to be 
able to discern a good source from a not-so-good source. It 
would help a great deal if computer musicians, with their 
various specialities, were able to speak a common language 
whereby their individual specialities could be described. One 
such language exists in the form of computer programming 
principles. It is possible for a composer to explain the rules 
of harmony in computer programming terms to a mathemati- 
cian, and for the mathematician to explain integrations in 
computer programming terms to a composer, if both can 
program. Thus the core of computer music must be in pro- 
gramming and music composition or performance. Beyond 
a good working knowledge of these two fields, mathematics 
seems to be a unifying element for the remaining areas of 
acoustics, psychology and signal processing. An overview of 
each of these areas would be useful for work in computer 
music. Tutorials in the fields of acoustics and psychological 
acoustics similar to this one in mathematics and signal proces- 
sing would provide an even more solid ground for discussion. 
We have covered about as much signal processing as the non- 
specialist practitioner of computer music is likely to need, at 
least in the way of basics. We are now in a position to build 
on this foundation. 

Some More Problems 

1. (Sampling). Non-bandlimited waveforms are characterized 
by large jumps (discontinuities) in their waveforms; such a 
waveform is depicted in analog form in Figure P1. The 
Fourier representation of the sawtooth as it is shown is 

00 

F(t)= 2 (--!)k-1 F(t)= 2 k sin kt 
k=l 

a) Derive an expression for the equivalent waveform 
sampled at R samples per second with a frequency of 
F Hz. 

b) Suppose R = 10 kHz. and F = 440 Hz. What is the lowest 
frequency component of this waveform which will be 
folded (aliased) to an incorrect frequency? What is the 
amplitude of this component? 

c) Suppose we cannot hear components which are 40 dB 
weaker in amplitude than the fundamental of the saw- 
tooth. What is the highest frequency sawtooth which 
will have aliased components 40 dB less strong than the 
fundamental (again, assume R = 10000 Hz.)? 

2. (Sampling). Suppose we program a computer to produce a 
sine wave of constantly increasing frequency according to 
the relation 

Frequency = 1000 (time in seconds). 

The sampling rate of the digital-to-analog converter is set 
to 32 kHz. Make a graph showing the frequency we will 
actually hear coming from the DAC as a function of time 
for t = 0 to t = 60 seconds. 
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-3n / -2r -i 

,0 

2i 3ir t - 

Figure Pl: A non-bandlimited sawtooth waveform. 

3. (DFT). Make a spectral plot for the DFT worked out in 
Tables 1 through 5. Label the horizontal axis with the fre- 
quencies -4000, -3000, -2000, - 1000, 0, 1000, 2000, 
3000, and 4000 Hz. and plot the magnitude of X(k) at 
each of these frequencies on a dB scale. 

4. (Convolution). A square wave is characterized by a 
spectrum containing only odd -numbered multiples of the 
fundamental frequency, with amplitudes equal to one-over- 
the -component-number: 

x(n) = -I sin (kwn), k odd. 
k=l 

Foldover can be avoided by choosing a suitably small value 
for M. Suppose that we produce this waveform at 
F Hz. << R/2 Hz., and that we multiply it by 

y(n) = (1 + cos 2on) 

i.e., a cosine waveform at twice the fundamental frequency 
of the square wave. 

a) What is the spectrum of the resulting waveform? 
b) Is it still a square wave? 

5. (DFT). Suppose x(n) represents 16 samples of a digitized 
sine waveform with a period of 16 samples, i.e. 

x(n) = sin 
(2rn/iN) 

0 < n< N- 1 

withN= 16. 

a) What is the DFT of x(n)? 
b) Suppose we took the DFT of only the first 8 samples of 

x(n) as defined above. Is the DFT the same? Why or 
why not? 

6. (z-transform). Make a pole-zero plot of the z-transform of 
the first-order filter discussed in the text. What happens to 
the location of the pole as K goes from 0 to 1? 

7. (Digital Filters). Make a plot of the frequency response of 
the second order filter (Equation (36)) for r = .95, b = rT/4. 
How does it differ from the frequency response of a first - 
order filter? 
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