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Abstract. A boomerang attack is a cryptanalysis framework that re-
gards a block cipher E as the composition of two sub-ciphers E1 ◦E0 and
builds a particular characteristic for E with probability p2q2 by combin-
ing differential characteristics for E0 and E1 with probability p and q,
respectively. Crucially the validity of this figure is under the assumption
that the characteristics for E0 and E1 can be chosen independently. In-
deed, Murphy has shown that independently chosen characteristics may
turn out to be incompatible. On the other hand, several researchers ob-
served that the probability can be improved to p or q around the bound-
ary between E0 and E1 by considering a positive dependency of the two
characteristics, e.g. the ladder switch and S-box switch by Biryukov and
Khovratovich. This phenomenon was later formalised by Dunkelman et
al. as a sandwich attack that regards E as E1 ◦Em ◦E0, where Em sat-
isfies some differential propagation among four texts with probability r,
and the entire probability is p2q2r. In this paper, we revisit the issue of
dependency of two characteristics in Em, and propose a new tool called
Boomerang Connectivity Table (BCT), which evaluates r in a system-
atic and easy-to-understand way when Em is composed of a single S-box
layer. With the BCT, previous observations on the S-box including the
incompatibility, the ladder switch and the S-box switch are represented
in a unified manner. Moreover, the BCT can detect a new switching
effect, which shows that the probability around the boundary may be
even higher than p or q. To illustrate the power of the BCT-based anal-
ysis, we improve boomerang attacks against Deoxys-BC, and disclose the
mechanism behind an unsolved probability amplification for generating
a quartet in SKINNY. Lastly, we discuss the issue of searching for S-boxes
having good BCT and extending the analysis to modular addition.

keywords: boomerang attack, S-box, differential distribution table, in-
compatibility, ladder switch, S-box switch, Deoxys, SKINNY.



1 Introduction

Differential cryptanalysis, proposed by Biham and Shamir in the early 1990s
[BS93], remains one of the most fundamental cryptanalytic approaches for as-
sessing the security of block ciphers. For iterated ciphers based on predefined
substitution tables (S-box), resistance against differential cryptanalysis is highly
dependent on the non-linearity features of the S-box.

For an n-bit S-box S : {0, 1}n 7→ {0, 1}n, the properties for differential propa-
gations of S are typically represented in the 2n×2n table T , called the Difference
Distribution Table (DDT). For any pair (∆i, ∆o), the value

#{x ∈ {0, 1}n|S(x)⊕ S(x⊕∆i) = ∆o}

is stored in the corresponding entry T (∆i, ∆o) of the DDT, representing that
the input difference ∆i propagates to the output difference ∆o with probability

T (∆i, ∆o)

2n
. (1)

The maximum entry in the table T (outside the first row and column) is called
the differential uniformity of S.

As an example, the DDT for the 4-bit S-box used in PRESENT [BKL+07]
and LED [GPPR11] is shown in Table 1. We can observe that the differential
uniformity of the S-box is 4.

Table 1. Difference Distribution Table (DDT) of the PRESENT S-box

∆o

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0

2 0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0

3 0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0

4 0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0

5 0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0

6 0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4

∆i 7 0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4

8 0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4

9 0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0

a 0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0

b 0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0

c 0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0

d 0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0

e 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0

f 0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4
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Fig. 1. Boomerang attack

𝛿 

𝛿 

𝛾 

𝛾 

 𝐸0  𝐸0 

 𝐸0 

𝛼 

𝐸0 
𝛽 

𝛼 

 𝐸1  𝐸1 

 𝐸1 

𝑦1 

𝑦2 

𝑦3 

𝑦4 

𝐸1 

𝑥1 

𝑥2 

𝑥3 

𝑥4 
𝐸𝑚 

𝐸𝑚 𝐸𝑚 

𝐸𝑚 
𝛽 

𝐶1 

𝐶2 

𝐶3 

𝐶4 

𝑃1 

𝑃2 

𝑃3 

𝑃4 

Fig. 2. Sandwich attack
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Fig. 3. Computation of r
when Em is an S-box layer

While Equation (1) represents the differential propagation property for a
single S-box, in order to derive the differential properties of the entire cipher,
a trail of high-probability differentials is searched through the cipher iteration,
by assuming that the S-boxes and other operations applied in different rounds
behave independently.

In many cases, it may not be possible to find a high-probability trail for
the entire cipher. In such cases, the Boomerang attack framework, proposed
by Wagner [Wag99], may be applied to exploit the differential properties of
different segments of the cipher. In a boomerang attack, the target cipher E
is regarded as a composition of two sub-ciphers E0 and E1, i.e. E = E1 ◦ E0.
Then suppose that the input difference α is propagated to the difference β by
E0 with probability p, while the difference γ is propagated to δ by E1 with
probability q. The boomerang attack exploits the expected probability of the
following differential (depicted in Figure 1):

Pr
[
E−1

(
E(x)⊕ δ

)
⊕ E−1

(
E(x⊕ α)⊕ δ

)
= α

]
= p2q2. (2)

Then, on making around (pq)−2 adaptive chosen plaintext/ciphertext queries,
E can be distinguished from an ideal cipher.

Variants of the boomerang attack were later proposed: the amplified boomerang
attack (also called ‘the rectangle attack’) works in a chosen-plaintext scenario
and a right quartet is expected to be obtained with probability p2q22−n [KKS00].
Further, it was pointed out in [BDK01,BDK02] that any values of β and γ are al-
lowed as long as β 6= γ. As a result, the probability of the right quartet increases

to 2−np̂2q̂2, where p̂ =
√
ΣiPr2(α −→ βi) and q̂ =

√
ΣjPr2(γj −→ δ).

In boomerang-style attacks, the most important part of the attack is selecting
suitable differential characteristics for E0 and E1. Initially, the standard assump-
tion used in boomerang-style attacks was that two characteristics independently
chosen for E0 and E1 could be used; as a result the typical attacker’s strategy
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was to optimise the best characteristics independently for the sub-ciphers E0 and
E1. However, Murphy [Mur11] pointed out that, for S-box based ciphers, two
independently chosen characteristics can be incompatible, thus the probability
of generating a right quartet can be zero. He also showed that the dependency
between two characteristics could give advantages for the attacker, giving an ex-
ample that the probability of generating a quartet was pq instead of p2q2 when
E0 and E1 are composed of a single S-box. The same phenomenon was observed
by Biryukov et al. as the middle round S-box trick [BCD03].

Another improvement, proposed by Biryukov and Khovratovich [BK09], was
named the boomerang switch. Suppose that the cipher state is composed of sev-
eral words (typically 8 bits or 4 bits) and the round function applies S-boxes
to each word in parallel. The main observation in [BK09] is that the boundary
of E0 and E1 does not need to be defined on a state. Instead, a state can be
further divided into words, and some words can be in E0 and others can be in
E1. Suppose that half of the state is active only in E0 and the other half is active
only in E1. Then, by regarding the former as a part of E1 and the latter as a
part of E0, the probability on all the active S-boxes becomes 1. This technique is
called ladder switch. Another switching technique in [BK09], is the S-box switch.
When both the characteristics for E0 and E1 activate the same S-box with an
identical input difference and an identical output difference, the probability of
this S-box to generate a quartet is p instead of p2.

Those observations were later formalised by Dunkelman et al. as the sandwich
attack [DKS10,DKS14] depicted in Figure 2, that regards E as E1 ◦ Em ◦ E0,
where Em is a relatively short operation satisfying some differential propagation
among four texts with probability r, and the entire probability is p2q2r. Let
(x1, x2, x3, x4) and (y1, y2, y3, y4) be input and output quartet values for Em,
where yi = Em(xi). The differential characteristics for E0 specify the input
differences α to Em, namely x1⊕ x2 = x3⊕ x4 = α, and E1 specifies the output
differences β to each S-box, namely y1⊕y3 = y2⊕y4 = β. Dunkelman et al. define
r as follows [DKS10, Equation (4)].

r = Pr
[
(x3 ⊕ x4) = β|(x1 ⊕ x2 = β) ∧ (y1 ⊕ y3 = γ) ∧ (y2 ⊕ y4 = γ)

]
(3)

Boomerang-style attacks have become an ever more popular cryptanalytic
method for assessing the security of block ciphers. Yet, considering the research
results above, we note the following questions that arise in their context:

• the probability r of the middle part Em is for a quartet. Then, how can we
evaluate r in an efficient and systematic way? The only known approach is
to run experiments as in [DKS10,DKS14,BDK01,KHP+12].
• are there other switching techniques that can be used to improve boomerang-

style attacks? In particular, can we find switching techniques that connect
two characteristics with even higher probability than the S-box switch and
Murphy’s examples?

Answer to these questions would be of course of great interest to researchers
working on block cipher cryptanalysis, but also significant to provide a deeper
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understanding of the subtleties of boomerang-style attacks. Besides, it also con-
tributes to block ciphers designers by taking into account this property as a
criterion to choose a good S-box.

Our Contributions. This paper positively answers the above questions by
proposing a new tool for evaluating the probability that boomerang-style quar-
tets are generated. While we focus mainly on explaining the effects against ci-
phers employing S-boxes, we also present the extension to analyse ciphers based
on modular addition.

Suppose that the middle layer Em of the sandwich attack is composed of a
single S-box layer. Then, for a given pair of (∆i,∇o), the probability that a right
quartet is generated in each S-box in the middle S-box layer is given by:

#{x ∈ {0, 1}n|S−1(S(x)⊕∇o)⊕ S−1(S(x⊕∆i)⊕∇o) = ∆i}
2n

, (4)

where S : {0, 1}n 7→ {0, 1}n is an n-bit to n-bit S-box and S−1 is its inverse.
What Equation (4) evaluates is illustrated in Figure 3, which is exactly r in
Equation(3) when Em is a single S-box layer. Note that the differences for E0 and
E1 are defined between different paired values, thus we use∆ and∇ to denote the
differences of E0 and E1, respectively. We also note that in the figures we mainly
use red and blue colours to describe ∆ and ∇, respectively. The denominator is
2n instead of 22n, which shows the implication of the sandwich attack that the
probability r of generating a right quartet in Em is at least 2−n (if not 0).

Similar to the DDT, we can of course evaluate Equation (4) for all pairs of
(∆i,∇o), storing the results (in fact the numerator) in a table. We call this table
the Boomerang Connectivity Table (BCT). The BCT for the PRESENT S-box
is shown in Table 2.

The BCT represents the observations by [Mur11] and [BK09] in a unified
manner.

Incompatibility. (∆i,∇o) is incompatible when the corresponding entry in the
BCT is 0.

Ladder switch. It corresponds to the first row and the first column of the
BCT, in which either one of the input or output difference is zero, while the
other is non-zero. As suggested by Table 2, equation (4) gives probability 1.

S-box switch. It corresponds to the claim that a DDT entry with non-zero
value v would imply that the corresponding BCT entry is v. While this is
correct in some cases, as it can be observed from the two tables, we show that
the value of the BCT can in fact be larger than v owing to the new switching
effect. However, at least the effect of S-box switch is always guaranteed.

Study of the BCT can also present more advantages to the attacker com-
pared to the previously known switching techniques. With respect to versatility,
the BCT shows that the switching effect can be applied even when ∆i cannot
be propagated to ∆o in the DDT. With respect to strength, the maximum prob-
ability in the BCT is usually higher than that of the DDT. For example, the
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Table 2. Boomerang Connectivity Table (BCT) of the PRESENT S-box

∇o

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

1 16 0 4 4 0 16 4 4 4 4 0 0 4 4 0 0

2 16 0 0 6 0 4 6 0 0 0 2 0 2 2 2 0

3 16 2 0 6 2 4 4 2 0 0 2 2 0 0 0 0

4 16 0 0 0 0 4 2 2 0 6 2 0 6 0 2 0

5 16 2 0 0 2 4 0 0 0 6 2 2 4 2 0 0

6 16 4 2 0 4 0 2 0 2 0 0 4 2 0 4 8

∆i 7 16 4 2 0 4 0 2 0 2 0 0 4 2 0 4 8

8 16 4 0 2 4 0 0 2 0 2 0 4 0 2 4 8

9 16 4 2 0 4 0 2 0 2 0 0 4 2 0 4 8

a 16 0 2 2 0 4 0 0 6 0 2 0 0 6 2 0

b 16 2 0 0 2 4 0 0 4 2 2 2 0 6 0 0

c 16 0 6 0 0 4 0 6 2 2 2 0 0 0 2 0

d 16 2 4 2 2 4 0 6 0 0 2 2 0 0 0 0

e 16 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0

f 16 8 0 0 8 0 0 0 0 0 0 8 0 0 8 16

DDT in Table 1 has entry 0 for (∆i, ∆o) = (1, 5), while the BCT in Table 2 for
(∆i,∇o) = (1, 5) gives us probability 1. As far as the authors are aware, such an
event has never been pointed out in previous works, and we expect that many
existing boomerang attacks can be improved by considering superior switching
effects represented in the BCT. To illustrate this point, we show in this paper
how to improve the boomerang attack against 10-round Deoxys-BC-384 which
was recently presented [CHP+17]. We also use the BCT with related-tweakey
boomerang characteristics of SKINNY-64 and SKINNY-128 presented by [LGL17].
The BCT allows us to accurately evaluate the amplification of the probability
of forming distinguishers. As a result, we detect flaws on the experimentally
evaluated probability in [LGL17], and probabilities for SKINNY-64 are improved.

To better understand the relationship between the DDT and the BCT, we
consider the problem of finding an S-box such that the maximum probability in
the BCT is the same as one in the DDT. We show that while 2-uniform DDT
always derives 2-uniform BCT, finding such an S-box with 4-uniform DDT is
hard especially when the size of the S-box increases. Finally, we discuss the
application of our idea to the modular addition operation. We show that the
ladder switch observed for the S-box based designs can be applied to the modular
addition, while the S-box switch cannot be applied. We also find a new switching
mechanism called MSB-switch for modular addition which generates a right
quartet with probability 1.

Finally, we would like to emphasise that the BCT should not be considered
only from the attackers’ point-of-view. One major feature of our approach is
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that the BCT can (and should) also be considered by designers. A block-cipher
designer need to evaluate many S-box choices according to various criteria. The
simple form of the BCT, which allows one to measure the strength of the S-box
against boomerang-style attacks independently from the other components (not
too dissimilar to the relation between differential cryptanalysis and an S-box
DDT) will be of great benefit to designers as well.

Outline. In Section 2, we give a brief overview of related work. Section 3 intro-
duces the boomerang connectivity table as a new method to evaluate the prob-
ability of two differential characteristics, and explains the mechanisms based on
which our improved switching technique can work. The BCT is applied to Deoxys

and SKINNY in Section 4 and Section 5. We then discuss difficulties in finding
4-uniform BCT and extends the analysis to modular addition in Section 6. We
present our conclusions in Section 7.

2 Previous Work

The boomerang attack, originally proposed by Wagner [Wag99], was extended to
the related-key setting and was formalised in [BDK05] by using four related-key
oracles K1, K2 = K1 ⊕∆K, K3 = K1 ⊕∇K and K4 = K1 ⊕∆K ⊕∇K.

Let EK(P ) and DK(C) denote the encryption of P and the decryption of
C under a key K, respectively. In the framework, a pair (P1, P2) with plaintext
difference ∆i is first queried to EK1 and EK2 to produce (C1, C2). Then (C3, C4)
is computed from (C1, C2) by xoring ∇o, and queried to decryption oracles DK3

and DK4
to produce (P3, P4). With probability p2q2, where p2q2 > 2−n, the

pair (P3, P4) will have difference ∆i, and the cipher may be distinguished. The
pseudo-code of the related-key boomerang attack is given below.

1. κ1 ← random(), κ2 ← κ1 ⊕∆K,κ3 ← κ1 ⊕∇K,κ4 ← κ1 ⊕∆K ⊕∇K.
2. Repeat the following steps N times, where N ≥ (pq)−2.
3. P1 ← random() and P2 ← P1 ⊕∆P .
4. C1 ← Eκ1

(P1) and C2 ← Eκ2
(P2).

5. C3 ← C1 ⊕∇C and C4 ← C2 ⊕∇C .
6. P3 ← Dκ3

(C3) and P4 ← Dκ4
(C4).

7. Check if P3 ⊕ P4 = ∆P .

Boomerang-style attacks have been widely considered in symmetric-key crypt-
analysis, and thus we refrain from providing a complete list of previous works
that apply the technique. A few noticeable examples of boomerang-style attacks
against block ciphers include [BDK05,BK09,LGL17,CHP+17].

3 BCT – Boomerang Connectivity Table

In this section we introduce our novel idea, the Boomerang Connectivity Table
(BCT), which can be used to more accurately evaluate the probability of generat-
ing a right quartet in boomerang-style attacks. As briefly explained in Section 1,
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the BCT is constructed by directly computing the probabilities for generating
boomerang quartets at the local level (Equation 4), and thus provides more use-
ful information for boomerang attacks when compared to the DDT, which was
typically used in previous works.

3.1 Definition of the BCT

As illustrated in Figure 3, we consider the case where the input difference to
the S-box, ∆i, is defined by the sub-cipher E0 and the output difference from
the S-box, ∇o, is defined by E1. The important observation is that when one
of the input values to the S-box is fixed, all the values in the quartet are fixed.
Hence, the generation of the right quartet is a probabilistic event, which we can
compute as:

#{x ∈ {0, 1}n|S−1(S(x)⊕∇o)⊕ S−1(S(x⊕∆i)⊕∇o) = ∆i}
2n

.

The table that stores the results of this equation for all (∆i,∇o) is useful
in the analysis of the target cipher. We call it “Boomerang Connectivity Table
(BCT)”.

Definition 3.1 (Boomerang Connectivity Table). Let S : {0, 1}n → {0, 1}n
be an invertible function, and ∆i,∇o ∈ {0, 1}n. The Boomerang Connectivity Ta-
ble (BCT) of S is given by a 2n×2n table T , in which the entry for the (∆i,∇o)
position is given by

T (∆i,∇o) = #{x ∈ {0, 1}n|S−1(S(x)⊕∇o)⊕ S−1(S(x⊕∆i)⊕∇o) = ∆i}.

The BCT for the PRESENT S-box is shown in Table 2. We note that the com-
plexity for generating the BCT for an n-bit to n-bit S-box is O(23n), which is
higher than O(22n) for the DDT.

The BCT provides a unified representation of existing observations on quar-
tet generation/probabilities for boomerang-style attacks, which can be easily
detected on analysis of the cipher’s S-box BCT.

Incompatibility. In previous works, the compatibility or incompatibility of
(∆i,∇o) noted in [Mur11] would be typically checked experimentally. This
can however be observed directly in the BCT: the difference pair (∆i,∇o) is
incompatible if the corresponding entry of the BCT is 0.

Ladder switch. The value in any entry in the first row and the first column of
the BCT is 2n. This corresponds to the ladder switch proposed in [BK09].
This probability 1 transition can also be explained in the way of Figure 3.
The case with ∆i 6= 0 and ∇o = 0 is illustrated in Figure 4. As we can
observe, for any choice of x1 and x2(= x1⊕∆i), we have their images y1 and
y2 after the S-box application. Now since ∇o = 0, no modification is made
to create y3 and y4, and thus after S−1 is applied, the paired values get back
to (x1, x2) with probability 1, and the second pair will always satisfy ∆i.
The same holds when ∆i = 0 and ∇o 6= 0.
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S-box switch. The S-box switch can be explained in the context of the BCT as
follows: if the DDT entry for (∆i, ∆o) is non-zero, then by setting ∇o = ∆o,
the BCT entry for (∆i,∇o) will take the same value. The mechanism of the
S-box switch is the same as explained in [BK09], but here we explain it in the
way of Figure 3, which will be useful to understand our new switching effects
presented later. As illustrated in Figure 5, suppose that two input values x1

and x2(= x1 ⊕ ∆i) are mapped to y1 and y2 satisfying y1 ⊕ y2 = ∆o with
probability p. By setting ∇o = ∆o, y3 and y4 are computed by y1 ⊕∆o and
y2⊕∆o. This merely switches y1 and y2, and after S−1 is applied, the paired
values become (x2, x1) with probability 1, and thus the second pair always
satisfies ∆i.

The above analysis, especially for the S-box switch, can be summarised as
the following lemma about the relationship between the DDT and the BCT.

Lemma 1 For any choice of (∆i, ∆o), the value in the BCT is greater than or
equal to the one in the DDT.

Proof. The lemma is trivially valid when the value in the DDT is 0, or when
(∆i, ∆o) = (0, 0). For the other non-zero DDT entries, the lemma follows from
the discussion for the S-box switch above. ut

BCT of the AES S-box. Because the PRESENT S-box does not offer the
strongest resistance against maximum differential and linear probabilities, it may
be interesting to study the properties of the BCT of the AES S-box, for example.
The AES S-box is an 8-bit S-box, and thus the size of its DDT is 256×256. The
properties of its DDT are well known: each column and row contain one entry
with ‘4’, 126 entries with ‘2’, and the remaining is ‘0’ (apart from the zero input
and zero output differences). Hence in the entire DDT, the number of entries
with ‘256’, ‘4’, ‘2’ and ‘0’ are 1, 255, 32130 and 33150, respectively.
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In the BCT of the AES S-box, all entries for zero input difference (the first
row) and zero output difference (the first column) are ‘256’ owing to the ladder
switch effect (similar to the BCT for the PRESENT S-box in Table 2). For the
other entries, the maximum value of BCT is ‘6’. The number of entries with
‘256’, ‘6’, ‘4’, ‘2’ and ‘0’ are 511, 510, 255, 31620 and 32640, respectively; these
are summarised in Table 3. We also list the analysis of several other S-boxes
having the same DDT structure in Table 3. Those include S-boxes of Camellia
[AIK+00], TWINE [SMMK12], and Lilliput [BFMT16].

Table 3. Number of entries for each value for the DDT and BCT for the S-boxes in
AES, Camellia, TWINE and Lilliput

Cipher Table 256 6 4 2 0

AES
DDT 1 - 255 32130 33150

BCT 511 510 255 31620 32640

Camellia
DDT 1 - 255 32130 33150

BCT 511 510 255 31620 32640

Cipher Table 16 6 4 2 0

TWINE
DDT 1 - 15 90 150

BCT 31 30 15 60 120

Lilliput
DDT 1 - 15 90 150

BCT 31 30 15 60 120

In Table 3, the following two facts deserve careful attention.

• The maximum non-trivial value in the BCT is ‘6’, which is higher than the
one in DDT. It means that for some ∆i and ∆o = ∇o, generating a right
quartet against an S-box can be easier than satisfying a differential transition
for a pair.

• The number of zero entries in the BCT is smaller than in DDT. This means
that even if DDT for (∆i, ∆o) is 0, by setting ∇o = ∆o, a right quartet can
be generated with (∆i,∇o).

The mechanisms behind these properties will be explained in the next subsection.

3.2 Increased Probability with Generalized Switching Effect

As shown in Lemma 1, each BCT entry may have a higher value than the
corresponding entry in the DDT. This is caused by a new switching effect, but
can be easily detected by considering the BCT.

Let us focus on the DDT entry for (∆i, ∆o) whose value is ‘4,’ namely ∆i

is propagated to ∆o with probability 2−n+2. In this case, there are two paired
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Fig. 6. Generalized switching effect: S-box switch and new switch

values such that the input difference is ∆i and the difference after the S-box is
∆o. This situation is illustrated in Figure 6.

Let XDDT (∆i, ∆o) and YDDT (∆i, ∆o) be a set of paired values satisfying the
differential transition from ∆i to ∆o.

XDDT(∆i, ∆o) , {(a, b) ∈ {0, 1}n × {0, 1}n : S(a)⊕ S(b) = ∆o, a⊕ b = ∆i},
YDDT(∆i, ∆o) , {(S(a), S(b)) ∈ {0, 1}n × {0, 1}n : S(a)⊕ S(b) = ∆o, a⊕ b = ∆i}.

In the example in Figure 6, we have XDDT(∆i, ∆o) = {(x1, x2), (x3, x4)} and
YDDT(∆i, ∆o) = {(y1, y2), (y3, y4)}.

Recall the strategy of the S-box switch, which sets ∇o = ∆o. Then for any
YDDT(∆i, ∆o), YDDT ⊕ ∇o = YDDT. Thus after the application of the inverse
S-box, they will map back to XDDT(∆i, ∆o). The essence of the S-box switch is
finding a ∇o for which YDDT ⊕∇o = YDDT. Our observation of the generalized
switching effect is that from two pairs in YDDT(∆i, ∆o), there are three ways to
define such ∇o:

∇o ∈ {y1 ⊕ y2, y1 ⊕ y3, y1 ⊕ y4}. (5)

While one corresponds to the known S-box switch, the other two are new. Those
choices of ∇o are illustrated in Figure 6.

Thus, one entry of value ‘4’ for ∆i in the DDT will increase the value of two
entries in the BCT, namely (∆i, y1 ⊕ y3) and (∆i, y1 ⊕ y4) by 4. Note that the
BCT entry for (∆i, y1⊕y2) becomes ‘4’, but the DDT of this entry is already ‘4’
and we do not get an increase by 4. Let ynew ∈ {y3, y4} and ` be a non-negative
integer. The generalized switching effect can thus be summarised as follows:

DDT for (∆i, y1 ⊕ ynew) is 2`⇒ BCT for (∆i, y1 ⊕ ynew) is 2`+ 4.

From the above analysis, we obtain the following lemma about the relation-
ship between the DDT and the BCT of an S-box.

Lemma 2 For any fixed ∆i, for each entry with ‘4’ in the DDT, the value of
two positions in the BCT will increase by 4.

11



We omit the proof (it follows from the discussion above). We use instead the
examples below to illustrate the lemma.

Example 1 The row for ∆i = 2 in the DDT in Table 1 contains an entry with
‘4.’ This increases two entries of the BCT for ∆i = 2. In fact, values for ∆o = 3

and ∆o = 6 in the BCT increase by 4 from the DDT, while the other non-trivial
entries for ∆i = 2 are exactly the same between the DDT and the BCT.

Example 2 The row for ∆i = 9 in the DDT in Table 1 contains two entries
with ‘4.’ Values for ∆o = 1 and ∆o = b in the BCT increase by 4 from the DDT.
The value for ∆o = f is affected by both, thus increases by 8 from the DDT. The
other non-trivial entries for ∆i = 9 are exactly the same between the DDT and
BCT.

Note that Lemma 2 is about fixed ∆i, but considering the symmetry, the same
applies to any fixed ∇o. In this paper, we omit lemmas for fixed ∇o.

For 4-bit S-boxes, we propose a sufficient condition such that the S-box is
free (has probability 1) with non-zero input and output differences using BCT.

Lemma 3 For any 4-bit S-box, if the DDT has a row for some input difference
∆i such that there are 4 entries of ‘4’, then there exists an output difference ∇o,
such that (∆i,∇o) has probability 1 in the boomerang switch of this 4-bit S-box.

Proof. Since the DDT has a row with 4 entries of ‘4’ for some input difference ∆i,
we divide the input values into 4 sets Vj = {aj , bj , cj , dj}, s.t. aj⊕bj = cj⊕dj =
∆i and S(aj)⊕ S(bj) = S(cj)⊕ S(dj) for j = 1, 2, 3, 4. Each Vj corresponds to
a boomerang quartet. Let Tj = {xj , yj , zj , wj} for j = 1, 2, 3, 4 be the sets of
output after S-box corresponding to Vj . Then xj ⊕ yj = zj ⊕ wj = ∆o,j holds.
Note that the row for ∆i of DDT will have 4 non-zero entries in the columns for
∆o,j for j = 1, 2, 3, 4. We define the 4 sets Dj = {xj ⊕ yj , xj ⊕ zj , xj ⊕ wj} for
j = 1, 2, 3, 4 to store the XOR difference of Tj . Set ∇o = D1∩D2∩D3∩D4. Then
if ∇o 6= ∅, (∆i,∇o) generates a quartet with probability 1. In fact, for any input
value x ∈ Vj with difference (∆i,∇o), we can verify that the second pair in the
quartet will be exactly Vj . For example, suppose that the input pair (x, x⊕∆i)
is (a1, b1), the output will be (x1, y1). When ∇o is applied, (x1, y1) must be
changed to one of the {(y1, x1), (z1, w1), (w1, z1)}, which will have difference ∆i

after inverse S-box.
Then we only need to prove that ∇o 6= ∅ under the assumption that the DDT

has 4 entries of ‘4’ for ∆i. Here we prove it experimentally as the mathematical
proof is not trivial. While the number of all possible output of 4-bit bijective S-
box is 16!, only those satisfying the condition imposed on Tj need to be checked.
This greatly reduces the search space. We first choose 4 numbers from 0 to 15 as
{x1, y1, z1, w1}. There are Perm(16, 4) = 43680 possible choices. But only 3360
choices satisfy x1⊕ y1 = z1⊕w1, which are the valid choices of T1. Similarly we
can generate Tj for j = 2, 3, 4. The total number of valid (T1, ..., T4) is around
230. Then we can compute Dj for j = 1, 2, 3, 4 and verify if ∇o is empty. It
takes less than 1 hour on a desktop to check all possible valid (T1, ..., T4). The
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result confirms that ∇o is always non-empty. Therefore, we can conclude that
the (∆i,∇o) has probability 1 with the generalized switching effect. ut

Lemma 3 implies that having a row with four entries of ‘4’ in the DDT
may increase the power of the boomerang attack on those designs. This is an
important observation since 4-bit S-boxes are widely used in lightweight designs.

Another observation is that the mechanism of the generalized switching effect
requires the existence of a differential transition through the S-box with proba-
bility 2−n+2 or higher. In other words, the generalized switching effect does not
exist in any 2-uniform DDT, which results in the following lemma.

Lemma 4 For any S-box with 2-uniform DDT, the BCT is the same as the
DDT but for the first row and the first column.

We again omit the proof, and provide several examples.

Example 3 The row for ∆i = e in the DDT in Table 1 does not contain any
entries with ‘4.’ All the non-trivial entries for ∆i = e are exactly the same
between the DDT and BCT.

Example 4 When n is an odd number, n-bit S-boxes achieving 2-uniformity can
be found easily. An example of such a 3-bit S-box is S(3) = [1, 7, 6, 3, 0, 2, 5, 4].
The DDT and the BCT of S(3) are shown in Table 4 and Table 5, respectively,
which clearly shows that besides the ladder switch, no generalized switching effect
is available.

Table 4. 2-uniform DDT of S(3)

∆o

0 1 2 3 4 5 6 7

0 8 0 0 0 0 0 0 0

1 0 2 2 0 0 2 2 0

2 0 0 0 0 2 2 2 2

∆i 3 0 2 2 0 2 0 0 2

4 0 2 0 2 0 2 0 2

5 0 0 2 2 0 0 2 2

6 0 2 0 2 2 0 2 0

7 0 0 2 2 2 2 0 0

Table 5. 2-uniform BCT of S(3)

∇o

0 1 2 3 4 5 6 7

0 8 8 8 8 8 8 8 8

1 8 2 2 0 0 2 2 0

2 8 0 0 0 2 2 2 2

∆i 3 8 2 2 0 2 0 0 2

4 8 2 0 2 0 2 0 2

5 8 0 2 2 0 0 2 2

6 8 2 0 2 2 0 2 0

7 8 0 2 2 2 2 0 0

3.3 Extension of Generalized Switching Effect to General DDT

The analysis in Section 3.2 applies only for the DDT whose maximum value is
‘4.’ Although most of the existing S-boxes used in block ciphers were designed
to satisfy this criterion, there has been a recent trend to weaken this criterion in
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order to achieve higher efficiency. For example, the 4-bit S-box of GIFT [BPP+17]
and the 8-bit S-box of SKINNY [BJK+16] have DDT whose maximum entry is
higher than ‘4.’ Motivated by these designs, we further extend the analysis in
Section 3.2 to any 2`-uniform DDT for a non-negative integer `.

Recall that in the previous section, we explained that from one quartet there
are two new ways to define ∇o such that the BCT entry for (∆i,∇o) is higher
than the corresponding one in the DDT by 4. When the DDT contains an entry of
2`, where ` ≥ 2, there are ` paired values that satisfy the differential propagation.
Then,

(
`
2

)
distinct quartets can be constructed from ` paired values, which is

illustrated in Figure 7 for ` = 3.
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Fig. 7. Generalization of new switching effect. In total
(
3
2

)
= 3 distinct quartets are

defined: y1y2y3y4 in blue, y1y2y5y6 in yellow, and y3y4y5y6 in green. Each quartet
produces two new ways to define ∇o.

Each of the
(
`
2

)
quartets gives two new ways to define ∇o such that the BCT

entry for (∆i,∇o) is higher than the DDT by 4. Thus Lemma 2 is generalised
as follows.

Lemma 5 For any fixed ∆i, for each entry with ‘2`’ in the DDT, the value of
2 ·
(
`
2

)
non-trivial positions in the BCT increase by 4.

Example 5 A single row ∆i = 4 of the DDT and BCT for the GIFT S-box is
shown in Table 6. The DDT contains a single entry of ‘6’ and ‘4’. Lemma 5
can be used to predict the sum of all the entries of the same row in the BCT.
Namely, ‘6’ in the DDT increases the sum in the BCT by 4 · 2 ·

(
3
2

)
= 24 and ‘4’

in the DDT increases the sum in the BCT by 4 ·2 ·
(

2
2

)
= 8. Along with the ladder

switch for the first column, the sum of entries for the BCT should be higher than
the one in the DDT by 48(= 24 + 8 + 16), which matches the actual BCT.

Example 6 Application of Lemma 5 to the 8-bit S-box of SKINNY-128 is dis-
cussed in Appendix A.

14



Table 6. DDT and BCT of the GIFT S-box for ∆i = 4

∆o

0 1 2 3 4 5 6 7 8 9 a b c d e f sum

DDT 0 0 0 2 0 4 0 6 0 2 0 0 0 2 0 0 16

BCT 16 4 4 10 4 8 8 6 0 2 0 0 0 2 0 0 64

Lemma 5 shows that the impact from the DDT entry with ‘x’ to the BCT
is large, on the order of x2. Thus block-cipher designers adopting S-boxes with
weak differential resistance need to be careful about how their choice will impact
the corresponding BCT.

4 Applications to Deoxys-BC

In this section, we apply our BCT-based analysis to improve the recently pro-
posed related-tweakey boomerang attacks against Deoxys-BC [CHP+17]. The
specification of Deoxys-BC is briefly given in Section 4.1. The improved boomerang
distinguishers are presented in Section 4.2, and the results of our experimental
verification are reported in Section 4.3.

4.1 Specification

Deoxys-BC is an AES-based tweakable block cipher [JNPS16], which is based on
the TWEAKEY framework [JNP14]. It is the underlying tweakable block cipher of
the Deoxys authenticated encryption scheme submitted to the CAESAR com-
petition (and one of the 15 candidates still being considered in the competition’s
third round). The Deoxys authenticated encryption scheme makes use of two ver-
sions of the cipher as its internal primitive: Deoxys-BC-256 and Deoxys-BC-384.
Hereafter, we mainly focus on the specification of Deoxys-BC-384, which is a tar-
get in this paper. Deoxys-BC is a dedicated 128-bit tweakable block cipher which
besides the two standard inputs, a plaintext P (or a ciphertext C) and a key K,
also takes an additional input called a tweak T . The concatenation of the key and
tweak states is called the tweakey state. For Deoxys-BC-384 the tweakey size is
384 bits. We assume that the reader is familiar with the AES block cipher [Nat01].

The round function of Deoxys-BC is exactly the same as that of the AES,
except that the operation AddRoundKey is renamed as AddRoundTweakey. The
internal state is viewed as a 4 × 4 matrix of bytes, and is updated by applying
the following round function 14 times and 16 times for Deoxys-BC-256 and
Deoxys-BC-384, respectively.

• AddRoundTweakey – XOR the 128-bit round subtweakey to the state.
• SubBytes – Apply the AES S-box S to each byte of the state.
• ShiftRows – Rotate the 4-byte in the i-th row left by i positions.
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• MixColumns – Multiply the state by the 4× 4 MDS matrix of AES.

After the last round, a final AddRoundTweakey operation is performed to produce
the ciphertext.

Subtweakeys. The size of tweakey for Deoxys-BC-384 is 384 bits. Those are
separated into three 128-bit words, and loaded into the initial tweakey states
TK1

0 , TK2
0 , and TK3

0 . The 128-bit subtweakey used in the AddRoundTweakey
operation is extracted from three tweakey states as STKi = TK1

i ⊕ TK2
i ⊕

TK3
i ⊕ RCi, where RCi is a round constant. Here, we omit the details of RCi.

Please refer to the original design document [JNPS16] for the exact specification.
In each round, the 128-bit words TK1

i , TK
2
i , TK

3
i are updated with the

tweakey schedule algorithm, which is defined as

TK1
i+1 = h(TK1

i ),

TK2
i+1 = h(LFSR2(TK2

i )),

TK3
i+1 = h(LFSR3(TK3

i )),

where the byte permutation h is(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
,

with the 16 bytes numbered by the usual AES byte ordering.
The LFSR2 and LFSR3 functions are simply the application of an LFSR to

each on the 16 bytes of a 128-bit tweakey word. The two LFSRs used are given
in Table 7 (x0 stands for the LSB of the cell).

Table 7. The two LFSRs used in Deoxys-BC tweakey schedule

LFSR2 (x7||x6||x5||x4||x3||x2||x1||x0) → (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)

LFSR3 (x7||x6||x5||x4||x3||x2||x1||x0) → (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

A schematic diagram of the instantiation of the TWEAKEY framework for
Deoxys-BC-384 is shown in Figure 8.

4.2 Improved 10-Round Boomerang Attack

Cid et al. have recently presented in [CHP+17] several boomerang attacks in the
related-tweakey setting, including 8-round, 9-round and 10-round boomerang
distinguishers against Deoxys-BC-384 having probability 2−6, 2−18, and 2−42,
respectively. They proposed an MILP-based automated search method of differ-
ential characteristics that takes into account linear incompatibility in truncated
differentials and the ladder switch effect in the boomerang attack. Among all
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Fig. 8. A schematic diagram of Deoxys-BC-384 with TWEAKEY framework

the possible differential characteristics, the authors chose the ones that exploit
the S-box switch effect. Owing to the very detailed and careful optimisation,
it seemed very unlikely that one could improve their proposed boomerang at-
tacks; in other words, Cid et al. [CHP+17] picked the optimal choice under their
assumptions on the search range.

However, our novel idea to use the BCT in boomerang-style attacks moti-
vated us to improve their attacks by enlarging the search space when taking
into account the generalised switching effect observed in the BCT of the AES
S-box. In particular, their 8-round distinguisher includes only one active S-box
that exploits the S-box switch effect, and hence an improvement by using BCT
should be observed very clearly.

Our Goal. Recall that the maximum differential probability of the AES S-
box is 2−6, which is a reason why the probability of the 8-round distinguisher
in [CHP+17] is 2−6. As shown in Table 3, we observed in the BCT that the
maximum probability of generating a quartet is 6/256 ≈ 2−5.4 for the AES S-
box. Hence, our goal here is to search for differential characteristics that achieve
the probability of 2−5.4 and experimentally verify the correctness of the theory
explained in Section 3.

In our analysis, we noticed that the authors of [CHP+17] interpreted the
byte permutation h in the reverse order, thus their original analysis and results
are in fact for a Deoxys-BC variant. Because our purpose here is demonstrate
the possibility of improving existing attacks by use of the BCT, we analyse the
same Deoxys-BC variant as in [CHP+17].

Searching for Differential Characteristics. We borrow the idea of the dif-
ferential characteristic search proposed in [CHP+17]. Because the main focus of
this paper is the generalised switching effect, we only briefly explain the search
method.

The search in [CHP+17] is a two-stage approach. The first stage is searching
for truncated differentials with the minimum number of active S-boxes using
MILP. At this stage, there is no guarantee that each discovered truncated differ-
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entials can be instantiated with actual differences. Here, the authors in [CHP+17]
introduced two levels of tradeoff between the accuracy of truncated differentials
and the assumption of the search range:

1. It only assumed independence between subtweakeys in different rounds, while
the real different tweakeys are linearly related in the real cipher’s algorithm,
thus the truncated differentials detected in this approach may contain con-
tradiction (often called “linear incompatibility”).

2. Degrees of freedom (the number of differences that can be chosen indepen-
dently of the other part of the trail) and the number of constraints for a
valid trail (e.g. linear relations between subtweakeys mentioned above) were
counted, and it was assumed that truncated differentials could be instan-
tiated only if the degrees of freedom were higher than the degrees of con-
sumption. Instead, truncated differentials that are detected in this way do
not include contradiction about the linear incompatibility.

We refer to [CHP+17] for the exact MILP modelling for searching truncated
differentials.

The second stage is searching for differences satisfying the given active-byte
positions. This is done by listing all linear constraints in the truncated differential
to build a system of linear equations, and by solving the system. We again refer
to [CHP+17] for the exact method for generating the system.

The 10-round boomerang attack against Deoxys-BC-384 uses 5-round differ-
ential characteristics for both E0 and E1. Active byte positions are chosen so
that the ladder switch effect can be optimally exploited in the middle two rounds.
Then the differential value is fixed to one of E0 and E1 and finally the differen-
tial value for the other half is fixed to exploit the S-box switch. The 10-round
distinguisher [CHP+17] is given in Table 8. Cid et al. showed the differential
propagation of E0 in round 6 and of E1 in round 5 to explicitly show that the
ladder switch is applied. Both characteristics activate the S-box at position (1,1)
in round 6 and both characteristics specify the same input and output difference
(from 9e to 68), namely ∆o = ∇o, which is the condition to apply the S-box
switch. The S-box is highlighted in red in Table 8. Note that in the DDT of the
AES S-box, 9e propagates to 68 with the highest probability of 2−6.

We now replace the differential characteristic for the attack. Because of the
optimisations done in [CHP+17], we use exactly the same differential character-
istic for E1, and only replace the difference of E0. The characteristic for E1 fixes
the ∇o of the target S-box to 68. We confirmed that there exist two choices of ∆i

such that the BCT entry for (∆i, 68) is ‘6.’ Those ∆i are 2a and b4. Hence, we
added the linear equation ∆i = 2a or ∆i = b4 to the system of linear equations
and solved the system to obtain the corresponding characteristics. The obtained
differential characteristic for E0 with ∆i = 2a is shown in Table 9.

4.3 Experimental Verification and Summary

As done in [CHP+17], we drop the first round and the last round of the 10-round
boomerang characteristic, which leads to the 8-round boomerang characteristic
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Table 8. 10-round distinguisher of Deoxys-BC-384 [CHP+17]. † denotes the probability
of the rounds that are evaluated for the boomerang switch. The probability is counted
in the other half of the characteristic, thus the probability with † can be ignored.

rounds initial ∆ tweakey ∆ before SB after SR pr

1

00 00 8e 00 00 00 8e 00 00 00 00 00 00 00 00 00

(2−6)2
a3 00 00 10 00 00 00 10 a3 00 00 00 00 00 00 69

9e 00 00 00 9e 00 00 00 00 00 00 00 00 00 00 00

00 8e 00 00 00 8e 00 00 00 00 00 00 00 00 00 00

2

00 00 00 bb 00 00 00 bb 00 00 00 00 00 00 00 00

1
00 00 00 d2 00 00 00 d2 00 00 00 00 00 00 00 00

00 00 00 69 00 00 00 69 00 00 00 00 00 00 00 00

00 00 00 69 00 00 00 69 00 00 00 00 00 00 00 00

3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

4

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5

00 00 00 00 69 00 00 00 69 00 00 00 ** 00 00 00

1
00 00 00 00 00 bb 00 00 00 bb 00 00 ** 00 00 00

00 00 00 00 00 00 d2 00 00 00 d2 00 ** 00 00 00

00 00 00 00 00 00 00 69 00 00 00 69 ** 00 00 00

6

** 00 00 00 00 10 00 00 ** 10 00 00 ** ** 00 00

2−6** 00 00 00 00 9e 00 00 ** 9e 00 00 68 00 00 **

** 00 00 00 00 8e 00 00 ** 8e 00 00 00 00 ** **

** 00 00 00 00 8e 00 00 ** 8e 00 00 00 ** ** 00

5

00 ** ** ** 00 ee 00 00 00 ** ** ** 00 ** ** **

1 †
** 00 ** ** 00 00 00 00 ** 00 ** ** 00 ** ** **

** ** 00 ** 00 00 00 00 ** ** 00 ** 00 ** ** **

** ** ** ** 00 00 00 11 ** ** ** 00 00 ** ** **

6

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

2−6 †00 9e 00 00 00 00 00 00 00 9e 00 00 68 00 00 00

00 0a ab 00 00 0a 00 00 00 00 ab 00 01 00 00 00

00 00 93 7a 00 00 93 00 00 00 00 7a b9 00 00 00

7

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1
6a 00 00 00 6a 00 00 00 00 00 00 00 00 00 00 00

ba 00 00 00 ba 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

8

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

9

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

10

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

(2−12)2
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 6a 00 00 00 6a 00 61 00 00

00 00 00 00 ba 00 00 00 ba 00 00 00 00 97 00 00
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Table 9. Improved differential characteristic for E0 of Deoxys-BC-384.

rounds initial ∆ tweakey ∆ before SB after SR pr

1

00 00 15 00 00 00 15 00 00 00 00 00 00 00 00 00

(2−6)2
b3 00 00 3f 00 00 00 3f b3 00 00 00 00 00 00 0e

2a 00 00 00 2a 00 00 00 00 00 00 00 00 00 00 00

00 15 00 00 00 15 00 00 00 00 00 00 00 00 00 00

2

00 00 00 12 00 00 00 12 00 00 00 00 00 00 00 00

1
00 00 00 1c 00 00 00 1c 00 00 00 00 00 00 00 00

00 00 00 0e 00 00 00 0e 00 00 00 00 00 00 00 00

00 00 00 0e 00 00 00 0e 00 00 00 00 00 00 00 00

3

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

4

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

1
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

5

00 00 00 00 0e 00 00 00 0e 00 00 00 ** 00 00 00

1
00 00 00 00 00 12 00 00 00 12 00 00 ** 00 00 00

00 00 00 00 00 00 1c 00 00 00 1c 00 ** 00 00 00

00 00 00 00 00 00 00 0e 00 00 00 0e ** 00 00 00

6

** 00 00 00 00 3f 00 00 ** 3f 00 00 ** ** 00 00

2−5.4** 00 00 00 00 2a 00 00 ** 2a 00 00 68 00 00 **

** 00 00 00 00 15 00 00 ** 15 00 00 00 00 ** **

** 00 00 00 00 15 00 00 ** 15 00 00 00 ** ** 00

Master tweakey differences (∆K)

00 00 ac 00 00 00 00 f4 58 00 00 00 00 ac 00 00

00 00 66 00 00 00 00 ab cd 00 00 00 00 66 00 00

00 00 df 00 00 00 00 60 bf 00 00 00 00 df 00 00

only with a single active S-box now with the generalised switching effect. Our
experiments clearly verify this effect.

Let κi, where i ∈ {1, 2, 3, 4}, be a 384-bit master tweakey for the first, second,
third, and fourth oracles, respectively. Our experiments follow the pseudo-code
in Section 2. The exact value of the master tweakey difference for E1 denoted
by ∇K is given in [CHP+17, Table 6]. We set N to 215 and the number of
attempts satisfying the last equation is counted. The test was iterated for 1,000
randomly chosen tweakeys; the average number of successes was 763. Hence,
the probability of generating a right quartet is 763/215 ≈ 2−5.42, which closely
matches and confirms the generalised switching effect.

We also derived the differential characteristic for ∆i = b4 and implemented
the 8-round distinguisher for verification. In the experiments, the average number
of successes over 1,000 different choices of keys was 775/215 ≈ 2−5.40, which again
demonstrates the validity of the generalised switching effect.

Thus using the BCT for the AES S-box and the generalised switching effect,
we were able to improve the probability of the boomerang distinguishers against
Deoxys-BC-384 by a factor of 2−0.6; namely to 2−5.4, 2−17.4, and 2−41.4 for 8
rounds, 9 rounds and 10 rounds, respectively. Although the improved factor in
this particular case is small, the relevant point is that the effect of the generalised
switch represented by the BCT could be experimentally verified against the AES
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S-box. This indicates that the probability of boomerang distinguishers presented
in previous works, which did not make use of the BCT, is unlikely to be optimal.

5 Applications to SKINNY

In [LGL17] Liu et al. proposed related-tweakey rectangle attacks against the
SKINNY tweakable block cipher. The attacks evaluated the probability of gener-
ating a right quartet by taking into account the amplified probability, but did
not consider the boomerang switch effect. In this section, we accurately eval-
uate the probability of generating the right quartet by applying the BCT. By
doing so, we detect flaws in the experimentally evaluated probability in [LGL17]
and show that the actual probabilities are higher than reported in [LGL17].
We first briefly review the specification of SKINNY in Section 5.1. The previous
distinguishers and improved probabilities are then presented in Section 5.2 and
Section 5.3, respectively.

5.1 Specification of SKINNY-128

SKINNY [BJK+16] is another family of lightweight tweakable block ciphers, based
on the TWEAKEY framework [JNP14], which was introduced by Beierle et al. at
CRYPTO 2016. The block size can be n ∈ {64, 128} and the tweakey size can be
t ∈ {n, 2n, 3n}. The 64-bit block version adopts a nibble-oriented SPN structure
and is called SKINNY-64, while the 128-bit block version adopts a byte-oriented
SPN structure and is called SKINNY-128.

An n-bit plaintext is loaded into the state represented by a 4× 4-cell array,
and the round function is then applied Nr times, where Nr is 40, 48 and 56 for
n-bit, 2n-bit and 3n-bit tweakeys, respectively.

The round function consists of five operations: SubCells, AddRoundConstant,
AddRoundTweakey, ShiftRowsand MixColumns.

SubCells. A 4-bit (resp. 8-bit) S-box whose maximum differential probability is
2−2 is applied to all cells in SKINNY-64 (resp. SKINNY-128).

AddRoundConstant. A 7-bit constant updated by an LFSR in every round is
added to three cells of the state. Details of the LFSR can be found in [BJK+16].

AddRoundTweakey. A n/2-bit value is extracted from the n, 2n or 3n-bit tweakey
state, and is XORed to the upper half of the state. We omit the details of
the tweakey schedule.

ShiftRows. Each cell in row j is rotated to the right (i.e. opposite to AES) by j
positions.

MixColumns. Four cells in each column are multiplied by a binary matrix M.
When (i0, i1, i2, i3) is the 4-cell value input to M, the output (o0, o1, o2, o3)
is computed by o0 = i0⊕ i2⊕ i3, o1 = i0, o2 = i1⊕ i2, and o3 = i0⊕ i2. This
is illustrated in Figure 9.
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Fig. 9. A schematic representation of MixColumns of SKINNY

5.2 Previous Related-Tweakey Rectangle Attacks

Liu et al. [LGL17], among several cryptanalytic results, proposed 17-round, 18-
round, 22-round and 23-round boomerang distinguishers against SKINNY-64-128,
SKINNY-64-192, SKINNY-128-256, and SKINNY-128-384, respectively. The proba-
bilities of those distinguishers are however too small to practically implement the
verification experiments. Instead, the authors of [LGL17] implemented only the
middle two rounds, the last round of E0 and the first round of E1, to experimen-
tally verify that the proposed characteristics did not contain an incompatibility
as pointed out by Murphy [Mur11]. If only the middle two rounds are evaluated,
the probability including the amplified effect is calculated by 2−8.42, 2−16.30,
2−15.98 and 2−19.04 for the above four targets respectively, while their experi-
mental verification implied that the probability should be 2−4.01, 2−7.53, 2−1.86,
and 2−4.89, respectively. Those probabilities are summarised in Table 10.

Table 10. Previous boomerang distinguishers on SKINNY and our correction

Versions (p̂q̂)2 Probability by Experiment Our Corrected Probability

SKINNY-64-128 2−8.42 2−4.01 2−2

SKINNY-64-192 2−16.30 2−7.53 2−5.31

SKINNY-128-256 2−15.98 2−1.86 2−1.86

SKINNY-128-384 2−19.04 2−4.89 0

Liu et al. mentioned in [LGL17] that one reason why the probabilities ob-
served were higher than expected may be that some active Sboxes can be
“saved”, as the authors of [BK09] explained (the ladder switch and the S-box
switch). They concluded that it is unlikely for the authors to overestimate the
probability of the distinguishers.

This motivates us to apply the generalized switching effect of the BCT to
explain the reasons behind their experimental results, and to improve their p̂2q̂2

probabilities to match the experimentally observed ones. We show that, while
their experimental results cannot be explained only with the ladder switch and
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S-box switch from [BK09], they can be explained rigorously by using the BCT
along with the analysis for dependent S-boxes in [CLN+17].7

5.3 Precise Probability Evaluation of Boomerang Distinguishers

To explain the observed probabilities, we will use the attack against SKINNY-64-
128. The last round (round 8) of E0 and the first round (round 9) of E1 are
shown in Figure 10.

SB SR MC 

1 

1 

1 

𝛽 

𝛽 

𝛽 

c 

𝛽 

𝛽 

𝛽 

c 
𝛽 

𝛽 

𝛽 

𝛽 

c 

𝛽 

𝛽 

𝛽 

SB 

3 𝛾 

Round 8 (𝐸0) Round 9 (𝐸1) 

BCT(𝜷,3) 

DDT(1,𝜷)2 × 3 

Fig. 10. Two rounds of 18-round distinguishers against SKINNY-64-128. Round 8 is
covered by the characteristic in E0 and round 9 is covered by the characteristic in E1.

E0 starts with three active nibbles with difference 1. Those will change into
some difference in {0, 1}4 denoted by β. Then the difference c is introduced from
the subtweakey difference.

In E1, the differential propagation through the linear computations after the
S-box is established with probability 1, thus omitted from Figure 10. In the
end, E1 consists only of a single S-box layer. It specifies that there is only one
active S-box in round 9, with the output difference of the S-box 3 and the input
difference that can be some value in {0, 1}4 denoted by γ.

In the straightforward evaluation with amplified probability, p̂ is computed

as
(
4 · (2−2)2

)3
= 2−6, while q̂ is calculated as 2 · (2−2)2 + 4 · (2−3)2 ≈ 2−2.42.

Thus p̂q̂ ≈ 2−8.42 which matches the evaluation by the authors of [LGL17].
A careful analysis shows that the active S-boxes from E0 in round 9 and

the active S-boxes from E1 in round 9 overlap each other in only one byte. E0

specifies that the input difference ∆i to the active S-box is β, while E1 specifies

7 Our experiments and theoretical explanation discovered different probabilities from
the experiments by Liu et al. [LGL17]. We contacted the authors and confirmed that
our evaluation is correct.
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that the output difference ∇o from the S-box is 3. This is exactly the situation
in which the BCT can be applied to evaluate the probability of the active S-box
and the other active S-boxes can be satisfied with probability 1 thanks to the
ladder switch. Hence, we compute the probability of those two rounds as∑

β∈{0,1}4,β 6=0

(TDDT(1, β)

16

)2

· TBCT(β, 3)

16
, (6)

where TDDT(∆i, ∆o) and TBCT(∆i,∇o) are the values of the DDT and the BCT
for the input difference ∆i and the output difference ∆o or ∇o, respectively.
Those values for SKINNY’s 4-bit S-box are summarised below.

β 1 2 3 4 5 6 7 8 9 a b c d e f

TDDT(1, β) 0 0 0 0 0 0 0 4 4 4 4 0 0 0 0

TBCT(β, 3) 0 8 0 0 0 2 2 4 4 4 4 0 0 2 2

Hence, the probability can be calculated as 4 · (1/4)2 · (1/4) = 2−4.
The above evaluation using the BCT generally derives an approximated value

under the assumption that the DDT and the BCT in consecutive two rounds
can be evaluated independently. Given that the AddRoundTweakey operation
updates only a half of the state, such an independent assumption cannot be
established and the mechanism behind the experimental result is more complex.

Analysis including dependency of consecutive S-box applications. Here,
an analysis involving several dependent S-boxes in [CLN+17] can be applied. By
following [CLN+17] we introduce the notation:

XDDT(∆i, ∆o) , {x : S(x)⊕ S(x⊕∆i) = ∆o},
YDDT(∆i, ∆o) , {S(x) : S(x)⊕ S(x⊕∆i) = ∆o}.

And similarly for the BCT:

XBCT(∆i,∇o) ,{x : S−1(S(x)⊕∇o)⊕ S−1(S(x⊕∇i)⊕∇o) = ∆i},
DXBCT(∆i,∇o) ,{x⊕ S−1(S(x)⊕∇o) :

S−1(S(x)⊕∇o)⊕ S−1(S(x⊕∆i)⊕∇o) = ∆i}.

In the first S-box in round 8, the input difference 1 can change into one of
{8, 9, a, b} with equal probability. We first consider the case for 8.

Case 1: 1→ 8.

YDDT(1, 8) = {5, 7, d, f}, XBCT(8, 3) = {4, 6, c, e}, DXBCT(8, 3) = {2}.
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After the first S-box application in round 8, the paired values can take {5, 7, d, f}.
They change to {4, 6, c, e} with probability 2−2 after AddRoundTweakey and
MixColumns. Here the source of randomness are subtweakey values xored to 8
nibbles of the state and other nibble values during the MixColumns operation.
Then, after going through the propagation of the BCT with probability 1, the
paired values S−1(C3) and S−1(C4) become 2⊕{4, 6, c, e} = {4, 6, c, e}. This is
a heavily S-box-dependent feature that the set of paired values does not change
after the application of BCT.

During the backward computation for the second pair, ∇o only impacts to
one active nibble value, but as explained above, the set of possible values does
not change. Thus during the inverse of MixColumns, the source of randomness
does not change from the first pair. Hence all the values can return to the paired
values with the same difference as the first pair with probability 1. In summary,
in Case 1 a right quartet is generated with probability 2−2.

Other cases. The analysis for the other three cases is similar.

Case 2 : XBCT(9, 3) = {1, 3, 8, a},DXBCT(9, 3) = {b}.
Case 3 : XBCT(a, 3) = {4, 6, c, e},DXBCT(a, 3) = {2}.
Case 4 : XBCT(b, 3) = {1, 3, 8, a},DXBCT(b, 3) = {b}.

Thus, for any β : T (1, β) 6= 0, u ∈ XBCT(β, 3) and v ∈ DXBCT(β, 3), the core
property that u ⊕ v ∈ XBCT(β, 3) is established. Hence after falling into each
case, a right quartet is generated with probability 2−2.

Finally, considering that each case occurs with probability 1
4 , the entire prob-

ability of generating a right quartet is 4 · 1
4 · 2

−2 = 2−2. We implemented those
two rounds and verified that the results match the above theory.

A similar analysis can be applied to other members of the SKINNY family
to verify the experimental results in Table 10. We omit the details of those
evaluation in this paper.

6 Discussion

The paper has so far mainly focused on the use of the BCT to improve previously
proposed boomerang attacks. In this section, we considered further properties
and aspects of the BCT. The hardness of finding S-boxes achieving 4-uniform
BCT is explained in Section 6.1. Moreover, the boomerang switch for modular
addition is discussed in Section 6.2, where we show that the switching effect is
quite different for that operation.

6.1 Difficulties of Achieving 4-Uniform BCT

If the BCT provides the opportunity for attackers to improve their attack, as
shown earlier in this paper, a natural question is therefore whether it is possi-
ble to find an S-box with minimum boomerang switching effect. As discussed
in Example 4, finding such S-boxes for n-bit to n-bit S-box is easy when n is
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odd, while in practice n = 4 and n = 8 are the most popular choices. In par-
ticular, most differentially strong S-boxes are designed to have 4-uniform DDT.
Hence it is interesting to investigate whether 4-uniform DDT and BCT can be
achieved simultaneously. Unfortunately, as we argue below, achieving 4-uniform
BCT appears to be hard, especially as the size of the S-box increases, e.g. 8 bits.

Here, it is assumed that the differential spectrum of an AES-like S-box is
used, i.e. the analysed S-box is an n-bit to n-bit S-box, and for each input and
output difference of its DDT, there exist exactly one entry of ‘4’ and (2n/2)− 2
entries of ‘2.’

As in Lemma 2, each entry of ‘4’ in the DDT increases two positions in the
BCT for the same input or output difference by 4. To generate a 4-uniform
BCT, the increased entries would have to have ‘0’ in the DDT. Assume that the
increased positions are chosen uniformly at random from all but zero. Then, the
probability that the maximum value of the BCT in that row or column is ‘4’ is

2n/2

2n − 1
· 2n/2− 1

2n − 2
=

2n−2

2n − 1
, (7)

where the first term is the probability that the first increased position is chosen
from ‘0’ entries in the DDT, and the second term is for the second increased
position. This must hold for 2n − 1 non-zero input or output differences, thus
the probability is ( 2n−2

2n − 1

)2n−1

. (8)

By setting n = 4 and 8, the probabilities that a randomly chosen S-box with
a 4-uniform DDT simultaneously achieves 4-uniform BCT for 4-bit S-box and
8-bit S-box are (4/15)15 ≈ 2−28.6 and (64/255)255 ≈ 2−508.6, respectively.

For n = 4, if we consider the number of all 4-bit S-boxes with the optimal
differential spectrum like the AES S-box, then it is unlikely that we find one
that also achieves a 4-uniform BCT. Regarding n = 8, such an S-box may exist,
but it is computationally hard to search for it.

6.2 Boomerang switch for modular addition

The early analysis in this paper considers the BCT for S-boxes. A natural exten-
sion is to study how to apply a BCT-type analysis to other non-linear operations.
In this section, we consider the boomerang switch for modular addition.

While an S-box is an n-bit to n-bit mapping, modular addition maps 2n-bit
inputs to n-bit outputs. Thus the previous definition of BCT cannot be directly
applied to modular addition, and we need a different way to define the BCT for
modular addition.

Suppose that the target cipher is divided into E0, a middle modular addition
step, and E1. Let ((x1, x

′
1), (x2, x

′
2), (x3, x

′
3), (x4, x

′
4)) be a quartet of modular

addition inputs, and (y1, y2, y3, y4) be the corresponding output quartet. In order
to make the modular addition invertible, one of the addends needs to be fixed.
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Fig. 11. A valid boomerang quartet for modular addition. Note that x′3 = x′1, x′4 = x′2.

Here we let x′i for i = 1, ..., 4 be the fixed addends of the quartet. Thus x′1 = x′3
and x′2 = x′4. The input difference of modular addition specified by E0 is (∆i, ∆

′
i),

namely x1⊕x2 = x3⊕x4 = ∆i and x′1⊕x′2 = x′3⊕x′4 = ∆′i. The output difference
specified by E1 is ∇o, namely y1 ⊕ y3 = y2 ⊕ y4 = ∇o. Figure 11 shows a valid
boomerang quartet for modular addition.

The BCT for modular addition counts the number of inputs (xi, x
′
i) such

that the corresponding quartet with input difference (∆i, ∆
′
i) and output dif-

ference ∇o is valid. Let ‘�’ denote the modular addition and ‘�’ the modular
subtraction. The BCT for modular addition can then be defined in Equation (9).
Table 11 and Table 12 give an example of the DDT and BCT for 3-bit modular
addition when ∆i is set to 0.

T (∆i, ∆
′
i,∇o) =#

{
(x, x′) ∈

(
{0, 1}n, {0, 1}n

)
|
(
(x� x′)⊕∇o � x′

)
⊕
((

(x⊕∆i)� (x′ ⊕∆′i)⊕∇o
)
� (x′ ⊕∆′i)

)
= ∆i

}
(9)

Like the BCT for an S-box, it is easy to verify that the BCT for modular
addition has a similar property in representing the ladder switch (see the first
row and the first column in Table 12). Moreover, another interesting property,
which we call most significant bit (MSB) switch, can also be observed for modular
addition.

MSB switch. Suppose the output difference ∇o specified by E1 is on the most
significant bit. Then the modular addition, with probability 1, generates
a right boomerang quartet. This property can be derived by replacing the
‘xor’ of ∇o with ‘modular addition’ in Equation (9). It can be observed in
the column ∇o = 4 in Table 12.
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Table 11. DDT of 3-bit modular addition
with ∆i = 0

∆o

0 1 2 3 4 5 6 7

0 64 0 0 0 0 0 0 0

1 0 32 0 16 0 0 0 16

2 0 0 32 0 0 0 32 0

∆′i 3 0 16 0 16 0 16 0 16

4 0 0 0 0 64 0 0 0

5 0 0 0 16 0 32 0 16

6 0 0 32 0 0 0 32 0

7 0 16 0 16 0 16 0 16

Table 12. BCT of 3-bit modular addition
with ∆i = 0

∇o

0 1 2 3 4 5 6 7

0 64 64 64 64 64 64 64 64

1 64 0 32 0 64 0 32 0

2 64 64 0 0 64 64 0 0

∆′i 3 64 0 32 0 64 0 32 0

4 64 64 64 64 64 64 64 64

5 64 0 32 0 64 0 32 0

6 64 64 0 0 64 64 0 0

7 64 0 32 0 64 0 32 0

On the other hand, the S-box switch does not work for modular addition. We
can observe that in Table 11 the entry (1, 1) is 32 while the corresponding entry
in Table 12 is 0, which contradicts the result of S-box switch (Lemma 1).

The reason is that in the S-box switch, when the first pair of values are
(x1, x2), the condition ∇o = ∆o implies the S-box output (y1, y2) are swapped
to (y2, y1). The paired output (y2, y1) are exactly the input of the inverse S-box
to compute the second pair. However, for the modular addition with first pair
of input ((x1, x

′
1), (x2, x

′
2)), although the output of modular addition (y1, y2) are

swapped to (y2, y1) under the condition ∇o = ∆o, the values x′1 and x′2 are
not swapped. Thus, ((y2, x

′
1), (y1, x

′
2)) will be the input of the inverse modular

addition. Since y2 and x′1 are not related, the original input difference is not
guaranteed by the S-box switch.

Applications in Actual Ciphers. The analysis in Figure 11 can be directly
applied to particular differential trails in ARX ciphers. As an example, we show
the application in the SPECK32/64 cipher [BSS+13], in which the internal state
in round i is composed of two 16-bit words li−1 and ri−1 and the round function
updates those values as li ← (li−1 ≫ 7)� ri−1 ⊕ ki and ri ← (ri−1 ≪ 2)⊕ li.
Then, the above BCT corresponds to the probability of the modular addition in
a single round of SPECK with ∆li−1 = 0, ∆ri−1 = ∆′i, and ∆li = ∇o. Note that
the ladder switch can be applied to the right word as long as active bit positions
in ∆ri−1 ≪ 2 and ∆ri ⊕∆li do not overlap.

For example, with ∆ri−1 = 8000 and with any choice of ∆li and ∆ri such
that (∆li⊕∆ri)∧ 0002 = 0, the MSB switch is applied to the modular addition
and the ladder switch is applied to the right word. Hence, the probability r
for one middle round is 1. Similarly, incompatible choices of (∆ri−1, ∆li) with
respect to the modular addition can be easily checked by using the BCT.
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Fig. 12. Application of BCT for SPECK

7 Concluding Remarks

In this paper, we introduced the BCT as a generalised method to analyse the
dependency of two differential characteristics in boomerang distinguishers. The
BCT includes the existing observations of incompatibility between two charac-
teristics, as well as the ladder switch and the S-box switch. Moreover, the BCT
offers stronger switching effect than previous ones, and we analysed the mecha-
nism why such an effect is generated. The larger the bias in the DDT becomes,
the more advantages the BCT provides. Future primitive designers who wish to
adopt differentially weak S-boxes should take into account the impact of their
choices on the BCT.

The effect of the BCT-based analysis was demonstrated by improving the
boomerang attacks against Deoxys-BC and by precisely evaluating the probabil-
ity of previous boomerang distinguishers against SKINNY.

We also discussed the issue of searching for S-boxes having good BCT, and
showed that the S-boxes having 2-uniform DDT always have 2-uniform BCT,
while S-boxes having 4-uniform DDT usually cannot ensure 4-uniform BCT.
Lastly, we extended the analysis to modular addition along with an application
to SPECK, and explained the different behaviours between the BCT for a S-box
and the BCT for the modular addition.
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A Demonstration of Lemma 5 for SKINNY-128

The size of the DDT for the 8-bit S-box of SKINNY-128 is 256× 256. Each entry
can take one of 13 different values but for 0 and 256: 2, 4, 6, 8, 12, 16, 20, 24, 28,
32, 40, 48 and 64. Hence, the impact to the BCT is much bigger than for many
other S-boxes, making it a good target for verifying the correctness of Lemma 5.

Each row of Table 13 shows the number of entries with the designated value
in the DDT. For example, when ∆i = 01, there are 6, 3 and 1 entries that take
16, 32 and 64, respectively. The column of “sum” shows the sum of the values of
the BCT entries that were computed experimentally. The column of “Lem. 5”
shows that value calculated by applying Lemma 5. Due to the limited space we
only list the data for ∆i = 1 to 100.

As in Table 13, for any ∆i, the relationships between the DDT and the BCT
are correctly simulated by Lemma 5.

Table 13. Relationships between the DDT and the BCT simulated by Lemma 5

∆i 2 4 6 8 12 16 20 24 28 32 40 48 64 sum Lem. 5 ∆i 2 4 6 8 12 16 20 24 28 32 40 48 64 sum Lem. 5

01 0 0 0 0 0 6 0 0 0 3 0 0 1 8704 8704 33 0 24 0 14 0 3 0 0 0 0 0 0 0 2048 2048

02 0 0 0 0 0 0 0 0 0 4 0 0 2 12288 12288 34 0 16 0 16 0 4 0 0 0 0 0 0 0 2304 2304

03 0 0 0 18 0 5 0 0 0 1 0 0 0 3456 3456 35 0 0 0 16 0 8 0 0 0 0 0 0 0 3072 3072

04 0 0 0 12 0 2 0 0 0 2 0 0 1 7424 7424 36 0 24 0 14 0 3 0 0 0 0 0 0 0 2048 2048

05 0 0 0 0 0 8 0 0 0 2 0 0 1 8192 8192 37 0 32 0 16 0 0 0 0 0 0 0 0 0 1536 1536

06 0 0 0 6 0 7 0 0 0 3 0 0 0 5248 5248 38 0 12 0 10 0 8 0 0 0 0 0 0 0 2880 2880

07 0 0 0 12 0 6 0 0 0 2 0 0 0 4352 4352 39 0 12 0 10 0 8 0 0 0 0 0 0 0 2880 2880

08 0 0 0 6 0 3 0 0 0 3 0 0 1 8320 8320 3a 0 12 0 16 0 1 0 0 0 2 0 0 0 3520 3520

09 0 0 0 6 0 3 0 0 0 3 0 0 1 8320 8320 3b 0 12 0 14 0 4 0 0 0 1 0 0 0 3136 3136

0a 0 0 0 12 0 2 0 0 0 2 0 0 1 7424 7424 3c 16 16 0 20 0 0 0 0 0 0 0 0 0 1600 1600

0b 0 0 0 6 0 9 0 0 0 2 0 0 0 4736 4736 3d 16 16 0 20 0 0 0 0 0 0 0 0 0 1600 1600

0c 0 12 0 12 0 5 0 0 0 1 0 0 0 3264 3264 3e 16 32 0 4 0 4 0 0 0 0 0 0 0 1856 1856

0d 0 12 0 12 0 5 0 0 0 1 0 0 0 3264 3264 3f 16 32 0 4 0 4 0 0 0 0 0 0 0 1856 1856

0e 0 12 0 12 0 5 0 0 0 1 0 0 0 3264 3264 40 0 0 0 4 0 4 0 0 0 3 0 0 1 8448 8448

0f 0 12 0 12 0 5 0 0 0 1 0 0 0 3264 3264 41 0 8 0 16 0 6 0 0 0 0 0 0 0 2688 2688

10 0 0 0 0 0 4 0 0 0 2 0 0 2 11264 11264 42 0 8 0 8 0 5 0 0 0 1 0 1 0 5248 5248

11 0 0 0 12 0 6 0 0 0 2 0 0 0 4352 4352 43 16 27 0 11 1 1 0 0 0 0 0 0 0 1600 1600

12 0 0 0 16 0 8 0 0 0 0 0 0 0 3072 3072 44 0 27 0 9 1 2 0 0 0 1 0 0 0 2688 2688

13 0 24 0 14 0 3 0 0 0 0 0 0 0 2048 2048 45 0 16 0 16 0 2 0 0 0 1 0 0 0 2816 2816

14 0 16 0 16 0 4 0 0 0 0 0 0 0 2304 2304 46 16 20 0 11 0 2 0 1 0 0 0 0 0 2176 2176

15 0 0 0 16 0 8 0 0 0 0 0 0 0 3072 3072 47 16 23 0 10 1 1 0 1 0 0 0 0 0 2048 2048

16 0 24 0 14 0 3 0 0 0 0 0 0 0 2048 2048 48 8 20 0 14 0 3 0 0 0 0 0 0 0 2016 2016

17 0 32 0 16 0 0 0 0 0 0 0 0 0 1536 1536 49 8 20 0 14 0 3 0 0 0 0 0 0 0 2016 2016

18 0 12 0 14 0 2 0 0 0 2 0 0 0 3648 3648 4a 8 15 0 13 1 4 0 0 0 0 0 0 0 2272 2272

19 0 12 0 14 0 2 0 0 0 2 0 0 0 3648 3648 4b 8 20 0 11 0 1 0 1 0 1 0 0 0 2912 2912

1a 0 12 0 12 0 7 0 0 0 0 0 0 0 2752 2752 4c 35 22 1 8 1 1 0 0 0 0 0 0 0 1440 1440

1b 0 12 0 10 0 8 0 0 0 0 0 0 0 2880 2880 4d 35 22 1 8 1 1 0 0 0 0 0 0 0 1440 1440

1c 16 32 0 4 0 4 0 0 0 0 0 0 0 1856 1856 4e 27 30 1 6 1 1 0 0 0 0 0 0 0 1408 1408

1d 16 32 0 4 0 4 0 0 0 0 0 0 0 1856 1856 4f 27 30 1 6 1 1 0 0 0 0 0 0 0 1408 1408

1e 16 16 0 20 0 0 0 0 0 0 0 0 0 1600 1600 50 0 0 0 4 0 4 0 0 0 3 0 0 1 8448 8448

1f 16 16 0 20 0 0 0 0 0 0 0 0 0 1600 1600 51 0 8 0 16 0 6 0 0 0 0 0 0 0 2688 2688

20 0 0 0 0 0 0 0 0 0 4 0 0 2 12288 12288 52 0 8 0 8 0 5 0 0 0 1 0 1 0 5248 5248

21 0 0 0 0 0 6 0 0 0 3 0 0 1 8704 8704 53 16 27 0 11 1 1 0 0 0 0 0 0 0 1600 1600

22 0 0 0 0 0 16 0 0 0 0 0 0 0 4096 4096 54 0 27 0 9 1 2 0 0 0 1 0 0 0 2688 2688

23 0 0 0 18 0 5 0 0 0 1 0 0 0 3456 3456 55 0 16 0 16 0 2 0 0 0 1 0 0 0 2816 2816

24 0 0 0 12 0 10 0 0 0 0 0 0 0 3328 3328 56 16 20 0 11 0 2 0 1 0 0 0 0 0 2176 2176

25 0 0 0 8 0 10 0 0 0 1 0 0 0 4096 4096 57 16 23 0 10 1 1 0 1 0 0 0 0 0 2048 2048

26 0 0 0 22 0 3 0 0 0 1 0 0 0 3200 3200 58 8 20 0 14 0 3 0 0 0 0 0 0 0 2016 2016

27 0 0 0 28 0 2 0 0 0 0 0 0 0 2304 2304 59 8 20 0 14 0 3 0 0 0 0 0 0 0 2016 2016

28 0 0 0 18 0 5 0 0 0 1 0 0 0 3456 3456 5a 8 15 0 13 1 4 0 0 0 0 0 0 0 2272 2272

29 0 0 0 18 0 5 0 0 0 1 0 0 0 3456 3456 5b 8 20 0 11 0 1 0 1 0 1 0 0 0 2912 2912

2a 0 0 0 24 0 4 0 0 0 0 0 0 0 2560 2560 5c 35 22 1 8 1 1 0 0 0 0 0 0 0 1440 1440

2b 0 0 0 18 0 5 0 0 0 1 0 0 0 3456 3456 5d 35 22 1 8 1 1 0 0 0 0 0 0 0 1440 1440

2c 0 28 0 16 0 1 0 0 0 0 0 0 0 1728 1728 5e 27 30 1 6 1 1 0 0 0 0 0 0 0 1408 1408

2d 0 28 0 16 0 1 0 0 0 0 0 0 0 1728 1728 5f 27 30 1 6 1 1 0 0 0 0 0 0 0 1408 1408

2e 0 28 0 16 0 1 0 0 0 0 0 0 0 1728 1728 60 0 0 0 4 0 8 0 0 0 3 0 0 0 5376 5376

2f 0 28 0 16 0 1 0 0 0 0 0 0 0 1728 1728 61 0 8 0 16 0 6 0 0 0 0 0 0 0 2688 2688

30 0 0 0 0 0 4 0 0 0 2 0 0 2 11264 11264 62 0 8 0 16 0 6 0 0 0 0 0 0 0 2688 2688

31 0 0 0 12 0 6 0 0 0 2 0 0 0 4352 4352 63 16 27 0 11 1 1 0 0 0 0 0 0 0 1600 1600

32 0 0 0 16 0 8 0 0 0 0 0 0 0 3072 3072 64 0 27 0 17 1 0 0 0 0 0 0 0 0 1664 1664
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