Amazon Athena

User Guide

. __ __|
Amazon Athena: User Guide
Copyright © 2018 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Athena User Guide

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner
that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not
owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by
Amazon.

Amazon Athena User Guide

Table of Contents

What is AMazon Athena? ... et ettt ettt e ete e et ea et en e eneeneneenanns 1
When should | USE ATNENATYceniiii ittt ettt s e et e ee e s e et s e e s eneaaeanes 1
ACCESSING ALNENA «.eiiiieiii ettt ettt ettt ettt et e a et et e e e e e 1
Understanding Tables, Databases, and the Data Catalogcccoveuviiiiiiiiiiiiirie e 2

RELEASE INOLES ...ttt ettt ettt ettt et et et et et ea et eae et ean et essenaennesnesnasennesennanennns 4
FEDIUAY 2, 2078 .oniiiiiiiiei ettt ettt ettt ete et et ea et et et ea et ennesnennarenerenanaennns 4
JANUAIY 19, 2008 ottt et et ettt et et e e e e anen 4
[N Lo3V7<] 0 a1 o 1<) ol I A 0 Lt B P 5
[N Lo3¥7<] 0 a1 o T=] ol RO N 5
(0ot o] o 1= gt 1= T2 0 N 1y TR 5
(0ot o] oY= g T A 0 it By PR 6
Y] o1 =T g o T=T oA T 0 i PP PPNt 6
AUGUSTE T4, 20T 7 ittt ettt ettt et et et e e et e et e a e e et e et et e e enees 6
AUGUSTE 4, 20T 7 ottt et ettt ettt et ettt et e et ettt e e e e 6
NI (I A O i I TR 6
S [T T O X 1 OO 6
)V 0 i b PP PR PRPIRt 6

L] o1 g)=l 1 =] | ST P PSP PP PPN 7
BUG FIXES ettt ettt ettt e e e et aaas 7
LA o5 | R N 0 PP PP 7
FATUIES ...t ettt et 7
L] o1 g)Vl 1 =1 | ST P PP PPN 7
BUG FIXES ettt et ettt ettt et et e et e aas 7
Y T (el s 2 N A 0 B N 8
FRAUIES .ottt ettt et e a e 8
[aa] o] fo)VZ=] 1 a 1= o) K-S PP PPNt 9
BUG FIXES ettt ettt et et e e et aaas 9
FEDIUAIY 20, 2077 oneeieiiieiei ettt ettt ettt et et et et et et et et et et et et et et et et e b et e b ea et eaaeans 9
FRAUIES .ottt ettt et e a e 9
[1p 0] o])VZ=] 1 [=] 0 | K P PP PTOPPPPIRN 11

Y=L [L U o T PP PRTPRPTPPRPIN 12

SIGN UP FOr AWS oottt et et et e et et e et e ee e e e et e et e et e et e et e aaeanseanseansanneanneannenns 12

To create an AWS QCCOUNTuuininii ettt et e et et e et et ensaenaaes 12
Create @n TAM US K ...ttt ettt ettt et st e e et s et e a et e e eneaas 12

To create a group for admiNISTratorscuuviuiiiiiiie e e e et eaeeanas 12

To create an IAM user for yourself, add the user to the administrators group, and create a

(S Vo] e I o] g d s T U LY =] PRt 13
Attach Managed Policies for USiNg AtNENAc.uiiiiiiiniiiii ettt ea e e e e e eaanes 13

(€11 a T (o I] =T {1 I TP TP PTT PR PPPPPPP 14
= = To [BT =T PPN 14
Step T: Create @ Database ...c.iuuiuiiiiiiii et et et e e aaaaan 14
StEP 2: Create @ Table ouiuiniiiiii e ettt et e et e e e aa e 15
SEEP 3 QUENY Data e ettt ettt ns 16

INtegration With AWS GLUEeeeiei ettt ettt eteea et et et eaeebenenennenaens 18
Upgrading to the AWS Glue Data Catalog Step-by-Stepcccevieiiiiiiiiiiiiii e 19

Step 1 - Allow a User to Perform the Upgradecoeuuviiniiiniiiniiiniiiiei et eaines 19
Step 2 - Update Customer-Managed/Inline Policies Associated with Athena Users 19
Step 3 - Choose Upgrade in the Athena Consoleoouviiiiiiiiiiii e 20
FAQ: Upgrading to the AWS Glue Data Catalogc.veunieiiniiiiiiiiiiiieie e e e 21
Why should | upgrade to the AWS Glue Data Catalog?oeuviviiniiniiiiiiieiieie e 21
Are there separate charges for AWS GLUE?c..iiiiiiiiiieiir ettt e e e e e e eanes 22
UPgrade Process FAQ ..ottt ettt ettt et et ettt et et et a e e aas 22
Best Practices When Using Athena with AWS GLUEc.iiniiiiiiiii e 23
Database, Table, and ColumN NAMIESouuiuiiiieiie et e et e et eseaerenenenenens 24

Amazon Athena User Guide

USING AWS GLUE CraWlerseeuiieiie ettt et e et e e et e et e et e et eeneeneeaneans 24
WOrking With CSV FilESuinniiiii it ettt et e e e et et e eb e ebeeaaees 28
Using AWS Glue Jobs for ETL with Athenac.oooniiiiiii e 30
Connecting to Amazon Athena with ODBC and JDBC DFIVEISc..euueunieteiieiieiieetie et et e e eeneeeneeenenns 33
Using Athena With the JDBC DFIVELcuuiuniiieiiei ettt ettt et e e e et e et e eneeneeneannees 33
DoWNLOAd the JDBEC DFIVELeeuetneiieiieeti ettt et et et e et et et et et e et e et e ebeebeeneeeneeeneeaneenns 33
Specify the ConNECtion SErNG ...oeueiin ittt et e e e e eaa e 33
Specify the JDBC Driver Class NAMIEiuuiiuiiniiiiiitieie e te et et e et et et e ee e e ae e eaeaneanaanaes 33
Provide the JDBC Driver Credentialsc.oeuueiuieiiiieieie ettt e e eanees 33
Configure the JDBC Driver OPtiONScuueuueiuneii ettt et et et et e e et eeneeaneeanenns 34
Connecting to Amazon Athena With ODBCcuuiiuiiiiiiiie e e a e e e e ens 35
Amazon Athena ODBC Driver License AQremMENTtc.uveuniiueiueiieei e eieei et eeieeeneeeneeaneenns 35
WINAOWS ..ttt ettt ettt et e et e et e et e et e et e ta et e et e et e eb e ebetneeaneeneenneenns 35
T N 35

(0 1) TP PR UP PP TPTO TP UUPRUPPRPR 36
ODBC Driver CONNECtiON StHNG ..oeuiiniiiiiii ittt ettt ettt e e e e e e enees 36
[DLeTalN 4 g =101 = | Ao o RPN 36
SY=TaT] 11 8 AT PP TP PP PP 37
Setting User and Amazon S3 Bucket PermisSSionsceuuiiuniiuiiiiiiiii ettt 37
IAM POLICIES FOr USEI ACCESS ...eeneiiiteiiei ettt et et e ettt et et et et e eaa e eaeeneeneeneannees 37
AmazonAthenaFullAccess Managed POLICYcuuiuniiiiiiiiieieie e e e e e ees 37
AWSQuicksightAthenaAccess Managed POLICYcc.oiuniiiiiiiii e 39
Access through JDBC CONNECLIONSueeuniiniiieiie ittt ettt et et e e et e et e e eeneeeneens 40
AMAZON S3 PEIMUSSIONS ...cunitniinitniieiei ettt ettt ettt ettt et ettt et et et et et et etaeaaerneaneanenneens 40
Cross-aCCoUNt PeIMISSIONScuuiuniiniiii it ettt et et ettt et e e e e e e e e e e e eenes 40
Configuring ENCryption OPLioNSc..euniiniiie ettt et e et e e et et e e e en e eeneeans 41
Permissions for Encrypting and Decrypting Dataccuveuiiiiiiiiniiniiniinee e e e e e eaenns 42
Creating Tables Based on Encrypted Datasets in AMAazon S3c.ciuviiiiiiiiiiiniiniineineineieeeenennns 42
Encrypting Query Results Stored in AMazon S3iiuiiiiiiiiiie e e 44
Encrypting Query Results stored in Amazon S3 Using the JDBC Driverc.cecuuveuiieiieineennennnes 45
WOPKING WIth SOUICE Data ..uueuniiiiiiiiiiiieie et eie et eeee et e ee et e ettt e ete et e et ate et eneeteeneeneeneatesnsatesnsenenneenns 46
Tables and Databases Creation Process in Athenacouuiiuiiiiiiiiii e 46
Requirements for Tables in Athena and Data in AmMazon S3ccouiiiiiiiiiiiiiiieee e, 46
FUNCEIONS SUPPOITEA ...ceneeiieiie ittt ettt et et et e et e e e e eaeeaeeneanneas 47
CREATE TABLE AS Type Statements Are Not Supportedccouuieiiiiiiiiiiiiiiiiiieeee e, 47
Transactional Data Transformations Are Not Supportedc.oeeuiiiuiiiiiiiiiiiiiiii e 47
Operations That Change Table States Are ACIDccuuiiiiiiiiiiieiee ettt ea e 47

ALl Tables Are EXTERNALuiniii ettt ettt ettt et e e e e et e et e et e et e en et eaneeaaeeeneenneenns 47

UDF and UDAF Are NOt SUPPOItedc.uiiiiiiiiieiie ettt ettt et et e e e e eens 47

To create a table using the AWS Glue Data Catalogcuuveuniiiiiiiiiiiiiiiiieie e, 47

To create a table using the WiIzardooiiiiiiii e 48

To create a database USING HiVE DDLUiuuiiniiiiiiiiii et e e et e e e e e e e e eanas 48

To create a table USING HIVE DDLU ...uuiiniiiiiiiie e e et e e e et e e e e e e e e aeneanaens 49
Names for Tables, Databases, and COLUMNSo.iuiiiiiiiiiiiiiii e eeaeas 50
Table names and table column names in Athena must be lowercasecccceuveeiiieiieenniiniennnenn. 50
Athena table, database, and column names allow only underscore special characters 50
Names that begin with an UNAErscorecooiuiiiiiiiiii e e e 50
Table names that include NUMDErSieiiii e 50
Table Location in AMAzon S3 ...ttt et et e et et et et et et et e e eaeenns 51
PartitionNing Data ..cueeininiii it ettt et e et e a et e et e et et aaeaaanan 51
Scenario 1: Data already partitioned and stored on S3 in hive formatc..ccoeiiiiiiiiiini. 52
Scenario 2: Data is NOt PartitionNedc.viuiiniiiiiii e 53
Converting to ColUMNAr FOMMAS ...vuiiniitiiii ittt ettt e et et et e e et e e et e e eaneaeeneanaanaanns 55
OVEIVIBW ettt et ettt ettt ettt ettt e ebe e e et ea e eaeea e e neea e enea s eneaenenenenenenenaees 55
BefOore YOU DEGIN ... e 14
Example: Converting data to Parquet using an EMR ClUSterccoouviiiiiiiiiiiiiiiiii e 57
Querying Data in AMazon Athena Tablesoiuiiiiiiiiiii e e et e e e e e e e e aeanas 59

Amazon Athena User Guide

QUETY RESULES ..tuiititiii ittt ettt et e et et et et et e e et e e et et e tn e e e e eaneansanesnsaneeneanenns 59
SaVING QUENY RESULLS ..ivniiniiiiiiei et e ettt ettt et et et et et et et et et ssnetneaneenesneensenseneanns 59
VIeWing QUENY HISTOMY ..uuiuiiiniiiiii ittt et e et et et e et e et e e ea et en et e eaa e esaeeneteneanananns 60
VieWing QUENY HISTOMY ..uuiuininiiiie ittt et et et et e et et et e et et et e e eneaeneaenenaanees 60
QUEBTYING AITAYS enenitntnittnet et ettt et ea et eae e en et en et tn et aaentaenstaeneantaetstntsetenstaenenesnssetnenesnenssaenenns 61
CrEATING AT AYS enenitninii ittt ettt ettt ettt e e e et e et e et et ea et eneaan et enestaensteneaaanesaenennenenns 61
CONCAtENATING ATTQYS ..ttt ettt ettt et ettt et e et et et et e et en et e eataessaenetaenesnenennenees 62
ConVverting Array Data TYPES .uueuiueinieii ettt ettt et e et e et e et e et e eneeensaeneaenees 63
FINAING LENGLNS ...oniniii ettt e e et e e e e e e e et e e e et e et et et eaannees 64
AccessSiNg Array ELEMENTSiiniiiiiii e e e e e et e et e e e e aans 64
FLAattening NESTEA ATy ..vuiiniiniiiiiiiie ettt et e e e et et et et et et eaneanaeneaeaneeneenenns 65
Creating Arrays from SUDQUENIESceueiinii e e e 67
1T g Lo I -)PP PP PPNt 68
Yol i a [I 4 - V£ T PP PP PR PPPRPRt 69
Using Aggregation FUNCtions With Arrayscouiiiiiiiiiii e 69
Converting Arrays 0 STFINGS ..c.ueuniriiiiii et e ete e et e e e eaaes 70
Querying Arrays with ROWS and STRUGCTSc.uiiuiiiiiiieiieii ettt ettt e e et et e e eaaeenaees 70
CrEATING @ ROW .ueuiuiinit ittt ettt ettt ettt et et et e et e et e ea et en et aneantnesstenetnenesenenatnessaaeneanenns 70
Changing Field Names in Arrays USING CAST ...c.uiuuiiueiiein ettt eeiaeeie et e et eeeeeaeeneaneeanenns 71
Filtering Arrays Using the . NOtationooouiiiiiiiii e e 71
Filtering Arrays wWith Nested Valuesciuiiiiiiiiiiiiiiii i e e e 72
Filtering Arrays USING UNNESTcuueuuetuneetnetnetneetneetneeneenetueeneeeneteneenneeneenseeneeseenaeenaeennees 73
FINAING KEYWOIAS IN AFTAYS ouuiuiiiiitiei it ie ittt et et et et et et et et et et e e et e e e e saneaneaneeneanennes 73
Ordering ValUES N AITAYS ..cuuiuniiiieieeie ettt eieeieeteeteeueetaeteetetaaeteetestetuastetessseseesseseeessssnssnees 74
QUENYING AIrays WIth MaPS ...cuiuiiiiiiiiiiiie et e et et e e et s e et e e e e s ae e e aeensaneanaanas 75
o L0 1]] (=TT PR TP 61
QUETYING JSON ottt ettt ettt et s et st ta s e ta s e ea e eneta s enerasenenaenas 76
Tips for Parsing Arrays With JSON ...t eaaae 76
Extracting Data from JSON ...ttt ettt e e et et et e e e e e e 78
SEAIChING FOr VAlUES ...ttt e e e s e et e e e e e e e e e aeaaes 80
Obtaining Length and Size of JSON AFTAYSeuuiiiiiieiieeii ettt et et e ee e e e e e e eennees 81
QUErYING GEOSPALIAL DAt ..eviiuitiiiiiiit ettt et et e e e et s e e e e e et e e e e e et e e e aas 83
What is @ GEOSPAtIAl QUEIY? ...uuiiiii ittt et ettt et et et et et et et aaatnaenerneaessnssaesnesnenns 83
Input Data Formats and Geometry Data TYPES ..c..vuiuririiuiiiiieiiiiieeieeieeieeeeieeieeieeneeieeteeneeneeneeneenees 83
INPUL Data FOrmMats ... ettt e e e e e et e e e e e e e anane 83

[CT=To] 1=l YA D | = T Y o 1L TP PP 84

List of Supported Geospatial FUNCLIONSiiuiiniiiiiiiiii e e e e e e ans 84
BEfOrE YOU BOgIN ..iuiiiiiiiiiiii ettt et et et et et ea et e e e e e 84
CONSEIrUCEOr FUNCHIONS ...euiiiiii ittt ettt et et et e e e e s e e eaee 85
Geospatial Relationship FUNCLIONSiiuiiiii et e e e 86
OPEration FUNCLIONS ...uuieiiiii ittt et e et e et et e e e et e et e eaeanensaeneanenes 88
ACCESSOT FUNCLIONS ..euiiiiiiiit ettt ettt ettt et e e e e eneens 89
Examples: GeosPatial QUETIESeuiuiieieiieie ittt et et et et et e et et s e e e s e e e s e e e e aeensaneaneanas 92
QUETYING AWS SEIVICE LOGS ..euiininiiiiiiiii ettt ettt ettt e e et e e et et s et et e en e et e e anaenes 94
QuErYiNg AWS CLOUATIAIL LOGS t.uvuniniiiiiiiiieieie e te et e et e et e e e et e e et s e e e e e e e s e e e e anaaneaneeneanaens 94
Creating the Table for CLoudTrail LOGS ..c.uivniiniiiiiiiiiieiie e e e e et et e et eaeanaes 95

Tips for Querying CloUdTrail LOGS ..vuiuiiuiiiiiiiiirie e e eie e ee e ee e e eie et e eie e eate e eteeneaneeneanns 96
Querying Amazon CLOUAFIONT LOGS ..cuuiuniuiiiiiiieiieeieeteeietteeie et et tteeietneenetneenetnsanesnsanesnsenasnsanesnes 97
Creating the Table for CLOUAFrONt LOGS ...cuuiuniiiiiiiiiiiieiie e e e e eieee et et eae et aananns 97
Example Query for CLOUAFrONt LOGSvuieiiiiiiiiiiie et e e e e e eeeaeeeeaeeteaaeaans 98
Querying Classic Load BalanCer LOGS ...c.uiuuiuriuiiuiieiieeieiieeieeieeieeieeieeieeteeneeteesesieeuessesnsesessessessessnees 98
Creating the Table for Elastic Load Balancing LOGSc.uiuuiiniiniiniiiiieiiiineiieieieeineieeieereennennannas 98
Example Queries for Elastic Load Balancing LOGScuuiuiuiiiiiiiiiiiiiieinireieeeeieeieeieeieeieeneeneennas 99
Querying Application Load BalanCer LOGSiiuiiuiiniiniiiieieie it te et e et e e ae it e aetea et eaneaneanaens 100
Creating the Table FOr ALB LOGS .uiuuiiiiiiiiiie ittt e e e e et e e et e e e e eaneanes 100
Example QUENES TOr ALB LOGS ...cuuiuiuiiiiiiiiieie et iieeieeieeieeeeieeieeteeieeteeteeteateeteateetesneeseenaesnees 101
Querying AmMAazon VPC FLOW LOGS .uuiuiuiiiiiriiiiieiete e te e te e te e e te e eee it sae e eanetnsaneansanaeneenesnen 101

Amazon Athena User Guide

Creating the Table for VPC FLOW LOGS ...uivuiiniiiiiieit ettt e ee e ee e s e e e e ae e 101
Example Queries for AMazon VPC FLOW LOGS .uivuiiuiiniiiiiieiiieieiieiieee e ee e eeeeeaneeneaneennan 102
Monitoring Logs and Troubleshootingcu.iuniiiiiii e et e et e e et e e e aeaneens 103
Logging Amazon Athena API Calls with AWS CloudTrailccuuiiuniiiiiiiiiiieiieii e 103
Athena Information in CloudTrailc..oeeniiiiii e 103
Understanding Athena Log File ENTriescouiiniiiiiiiiii et e e e 104

B Lo]0] o] 1=1 Voo i T« TP PRSPPIt 105
SEIDE REFEIEICE ...ttt et e ettt et et et e et e et e eb e e e e e e e eaneeeaeeaeenns 107
USING @ SEIDE ..ceiniiiiie ettt ettt ettt ettt et et ea e ea e e e eaenas 107
TO USE @ SErDE iN QUEKIES ..uvntiiiiiieee e e e ettt ettt se s s eeeenananenarasarasasasnes 107
Supported SerDes and Data FOrMAtsc..oiuuiiiiiiii ettt et et e ee e e eeanee 108
AVIO SEIDE vt 109
RegexSerDe for Processing Apache Web Server LOgsceuivuuiiiiiiiiiiiiiiieieeie e 111
CLOUATIAIL SEIDE ...ttt ettt et et et et et et e e e e et e et e et een e eanseaneenaens 112
OpenCSVSerDe for Processing CSVcuueeueii ittt et et ettt et et e et e e e e e e eenns 114

GIOK SEIDIE ...ttt ettt ettt et et ettt e et et e e e et et e ta e et e et e eb e eb e eb et e e ean e eaeeanas 115
JSON SEIDE LIDIari@scuneeuiiieieei et ettt et ettt et e et e et e et e et et e e eeneeeneeenas 117
LazySimpleSerDe for CSV, TSV, and Custom-Delimited Filesccceeeuieiiiiiiiiiiiiiiiiieiieeieeanes 120

(0] (YT b L PP TP PPN 125
Parquet SEIDEouiiiiii e 127
COMIPrESSION FOMMIAES .ouiuiiniiiiiie ettt e et e e et et et et et et e et e et e eneenaneananennan 130
(D10 1IN Y o [o ISY @ T I 20 =1 =T o [T 131
(D) = I 1Y/ o 1= S PP PP PPP 131
List of Supported Data Types in Athenacooiiiiiiiii e 131

(D7) = = 1 =T 1 £ N 132
ALTER DATABASE SET DBPROPERTIESccuniiiiiniieiie et e et e e et et e eeeeaeeneeneens 132
ALTER TABLE ADD PARTITION ...ttt ettt et ettt e e e et et e et et et et et e et e eaaeennae 133
ALTER TABLE DROP PARTITION ...ouuiiiiiiiiieiieei ettt et ettt et et et et e et e et e eneebeeneannes 134
ALTER TABLE RENAME PARTITION ...ttt et ettt ettt et et e e e e e eaaeenaeens 134
ALTER TABLE SET LOCATION ...uiiiniiieii ettt ettt ettt et et et et e et e et e ea e et eeneeeneeeneeeneenns 135
ALTER TABLE SET TBLPROPERTIESuuituitinitiiiiei ettt et et e et et e et et een e eeneeneeneenneens 135
CREATE DATABASE ...ttt ettt ettt et et e et e et et eea et e et s et e ebaeebaeeneaneeneetnaeenns 136
CREATE TABLE ..ottt ettt ettt et et et et e et e et e et e eb et et e e eaneeaaeeeaeenneenns 136
DESCRIBE TABLE ...ttt ettt ettt et e e et et e et et et e et e et e eb e et eenean e eeneeaneenns 139
DROP DATABASE ...ttt et et e et e et et et et et e e e et e eaeeneeneeneens 140
DROP TABLE ...oniiiiie ittt ettt ettt et e et e et e et e et e ea et e et e eba e et e eba e et eeneeneeaneeenns 140
MSCK REPAIR TABLEoetitiite ettt et ettt et e e e et et e et e et et e e e ean e eaaeeaneeneenneennenns 141
SHOW COLUMNS ..ottt ettt et et e e et e et e et e eb e eb e ea e e e e e e e eaaeeeaeenneenns 141
SHOW CREATE TABLE ...ttt ettt ettt et e e et e et et et et e e e e e e eaeeaeeneeneans 142
SHOW DATABASES ...ttt ettt et e e e et e et et et e e et et e et e et e ebaeenneenns 142
SHOW PARTITIONS ..ottt ettt et ettt et et e et et e e e et e et e eaa e ebeebeanaeenaeanaeanns 142
SHOW TABLES ...ttt et et et et e et e et e e e e et e eneen et eaaeeaaeeaanes 143
SHOW TBLPROPERTIES ...ttt et et ettt et et e et e et e et e et e et e ebeeneeneeeneeeneennas 143

SQL Queries, FUNCLIONS, AN OPEratorsiuuiueiiiiiieeiiie ettt eie et eie et eteeteeteeteetaeueeraeneesaesassnsenesnees 144
1] =1 = O PP PRSP PR PPTPPPPPRPRRt 144
UNSUPPOTTEA DDLU ..ueiiiieiieii ettt et ettt ettt et et e e e et e et e et e et e ea et ean e ean e eaaeeneeneaneenenns 148
[0 a1} =) o] L PP PTP PP 149
Code Samples and Service LIMITSc.iiuiiniiiiiiie ettt e e e e et s ee e s ee et s ate e e aeeneaneaaeanns 150
€O SAMPLES ...ttt et ettt et ettt ettt e e et et e b et e e et ean e eaaeaaae 150
Create a Client to Access Athenacouuiiiiiiiii et 150
Start QUEIY EXECULION ... ettt ettt et e e e et e et e eae e eneanenns 151

StOP QUENY EXECULION .uiiniiiii ettt ettt e e et e et e et e e et e e eneaeneananenns 154

List QUEIY EXECULIONS «.uenieiiitiiiei ettt ettt et e ettt ea et e et e et e e e e eneaaaneananenanan 155
Create @ NAMEA QUETY ..ouuieiiiie ittt ee e et e e et e eie et e ete et e et et ettt et eaeetaaneaneatessasneannennes 156
Delete @ NAMEA QUEKY ..iuiiniiiiiei ettt et et e et et et et et s e et et et e e et e aaetnsanesneanaanaanns 156

LiSt NAMEA QUEIIES ...vteiiiiiie ettt ettt ettt e e e e eaeaeaeaenenereseaeeerererens 157
SEIVICE LIMITS oenenniniiit ettt ettt et ettt ea e ea e eneea e eneeaseneeaenes 158

Vi

Amazon Athena User Guide
When should | use Athena?

What is Amazon Athena?

Amazon Athena is an interactive query service that makes it easy to analyze data directly in Amazon
Simple Storage Service (Amazon S3) using standard SQL. With a few actions in the AWS Management
Console, you can point Athena at your data stored in Amazon S3 and begin using standard SQL to run
ad-hoc queries and get results in seconds.

Athena is serverless, so there is no infrastructure to set up or manage, and you pay only for the queries
you run. Athena scales automatically—executing queries in parallel—so results are fast, even with large
datasets and complex queries.

When should | use Athena?

Athena helps you analyze unstructured, semi-structured, and structured data stored in Amazon S3.
Examples include CSV, JSON, or columnar data formats such as Apache Parquet and Apache ORC. You
can use Athena to run ad-hoc queries using ANSI SQL, without the need to aggregate or load the data
into Athena.

Athena integrates with the AWS Glue Data Catalog, which offers a persistent metadata store for your
data in Amazon S3. This allows you to create tables and query data in Athena based on a central
metadata store available throughout your AWS account and integrated with the ETL and data discovery
features of AWS Glue. For more information, see Integration with AWS Glue (p. 18) and What is AWS
Glue in the AWS Glue Developer Guide.

Athena integrates with Amazon QuickSight for easy data visualization.

You can use Athena to generate reports or to explore data with business intelligence tools or SQL
clients connected with a JDBC or an ODBC driver. For more information, see What is Amazon QuickSight
in the Amazon QuickSight User Guide and Connecting to Amazon Athena with ODBC and JDBC

Drivers (p. 33).

You can create named queries with AWS CloudFormation and run them in Athena. Named queries
allow you to map a query name to a query and then call the query multiple times referencing it
by its name. For information, see CreateNamedQuery in the Amazon Athena API Reference, and
AWS::Athena::NamedQuery in the AWS CloudFormation User Guide.

Accessing Athena

You can access Athena using the AWS Management Console, through a JDBC connection, using the
Athena API, or using the Athena CLI.

« To get started with the console, see Getting Started (p. 14).
« To learn how to use JDBC, see Connecting to Amazon Athena with JDBC (p. 33).

« To use the Athena API, see the Amazon Athena APl Reference.

« To use the CLI, install the AWS CLI and then type aws athena help from the command line to see
available commands. For information about available commands, see the AWS Athena command line
reference.

http://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
http://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
http://docs.aws.amazon.com/quicksight/latest/user/welcome.html
http://docs.aws.amazon.com/athena/latest/APIReference/API_CreateNamedQuery.html
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-athena-namedquery.html
http://docs.aws.amazon.com/athena/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/reference/athena/
http://docs.aws.amazon.com/cli/latest/reference/athena/

Amazon Athena User Guide
Understanding Tables, Databases, and the Data Catalog

Understanding Tables, Databases, and the Data
Catalog

In Athena, tables and databases are containers for the metadata definitions that define a schema for
underlying source data. For each dataset, a table needs to exist in Athena. The metadata in the table
tells Athena where the data is located in Amazon S3, and specifies the structure of the data, for example,
column names, data types, and the name of the table. Databases are a logical grouping of tables, and
also hold only metadata and schema information for a dataset.

For each dataset that you'd like to query, Athena must have an underlying table it will use for obtaining
and returning query results. Therefore, before querying data, a table must be registered in Athena. The
registration occurs when you either create tables automatically or manually.

Regardless of how the tables are created, the tables creation process registers the dataset with Athena.
This registration occurs either in the AWS Glue Data Catalog, or in the internal Athena data catalog and
enables Athena to run queries on the data.

« To create a table automatically, use an AWS Glue crawler from within Athena. For more information
about AWS Glue and crawlers, see Integration with AWS Glue (p. 18). When AWS Glue creates a
table, it registers it in its own AWS Glue Data Catalog. Athena uses the AWS Glue Data Catalog to store
and retrieve this metadata, using it when you run queries to analyze the underlying dataset.

The AWS Glue Data Catalog is accessible throughout your AWS account. Other AWS services can share
the AWS Glue Data Catalog, so you can see databases and tables created throughout your organization
using Athena and vice versa. In addition, AWS Glue lets you automatically discover data schema and
extract, transform, and load (ETL) data.

Note
You use the internal Athena data catalog in regions where AWS Glue is not available and where
the AWS Glue Data Catalog cannot be used.

« To create a table manually:
« Use the Athena console to run the Create Table Wizard.
« Use the Athena console to write Hive DDL statements in the Query Editor.
» Use the Athena API or CLI to execute a SQL query string with DDL statements.
» Use the Athena JDBC or ODBC driver.

When you create tables and databases manually, Athena uses HiveQL data definition language (DDL)
statements such as CREATE TABLE, CREATE DATABASE, and DROP TABLE under the hood to create
tables and databases in the AWS Glue Data Catalog, or in its internal data catalog in those regions where
AWS Glue is not available.

Note

If you have tables in Athena created before August 14, 2017, they were created in an Athena-
managed data catalog that exists side-by-side with the AWS Glue Data Catalog until you
choose to update. For more information, see Upgrading to the AWS Glue Data Catalog Step-by-
Step (p. 19).

When you query an existing table, under the hood, Amazon Athena uses Presto, a distributed SQL
engine. We have examples with sample data within Athena to show you how to create a table and then
issue a query against it using Athena. Athena also has a tutorial in the console that helps you get started
creating a table based on data that is stored in Amazon S3.

« For a step-by-step tutorial on creating a table and write queries in the Athena Query Editor, see
Getting Started (p. 14).

Amazon Athena User Guide
Understanding Tables, Databases, and the Data Catalog

« Run the Athena tutorial in the console. This launches automatically if you log in to https://
console.aws.amazon.com/athena/ for the first time. You can also choose Tutorial in the console to
launch it.

https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home

Amazon Athena User Guide
February 2, 2018

Release Notes

Describes Amazon Athena features, improvements, and bug fixes by release date.

Contents

« February 2, 2018 (p. 4)

» January 19, 2018 (p. 4)

« November 13, 2017 (p. 5)

« November 1, 2017 (p. 5)

o October 19, 2017 (p. 5)

o October 3, 2017 (p. 6)

o September 25, 2017 (p. 6)

o August 14, 2017 (p. 6)

« August 4, 2017 (p. 6)

e June 22,2017 (p. 6)

e June 8, 2017 (p. 6)

» May 19, 2017 (p. 6)
o Improvements (p. 7)
« Bug Fixes (p. 7)

o April 4, 2017 (p. 7)
« Features (p. 7)
o Improvements (p. 7)
« Bug Fixes (p. 7)

o March 24, 2017 (p. 8)
« Features (p. 8)
» Improvements (p. 9)
» Bug Fixes (p. 9)

« February 20, 2017 (p. 9)
« Features (p. 9)
o Improvements (p. 11)

February 2, 2018

Published on 2018-02-12

Added an ability to securely offload intermediate data to disk for memory-intensive queries that use the
GROUP BY clause. This improves the reliability of such queries, preventing "Query resource exhausted"
errors.

January 19, 2018

Published on 2078-07-19
Athena uses Presto, an open-source distributed query engine, to run queries.

With Athena, there are no versions to manage. We have transparently upgraded the underlying engine in
Athena to a version based on Presto version 0.172. No action is required on your end.

Amazon Athena User Guide
November 13, 2017

With the upgrade, you can now use Presto 0.172 Functions and Operators, including Presto 0.172
Lambda Expressions in Athena.

Major updates for this release, including the community-contributed fixes, include:

« Support for ignoring headers. You can use the skip.header.line.count property when defining
tables, to allow Athena to ignore headers.

« Support for the CHAR(n) data type in STRING functions. The range for CHAR(n) is [1.255], while
the range for VARCHAR(n) is [1,65535].

« Support for correlated subqueries.

+ Support for Presto Lambda expressions and functions.

« Improved performance of the DECIMAL type and operators.

« Support for filtered aggregations, such as SELECT sum(col_name) FILTER, where id > o.
 Push-down predicates for the DECIMAL, TINYINT, SMALLINT, and REAL data types.

« Support for quantified comparison predicates: ALL, ANY, and SOME.

o Added functions: arrays_overlap(), array_except(), levenshtein_distance(),
codepoint(), skewness(), kurtosis(), and typeof().

o Added a variant of the from_unixtime() function that takes a timezone argument.
o Added the bitwise_and_agg() and bitwise_or_agg() aggregation functions.
« Added the xxhashé64() and to_big endian_64() functions.

« Added support for escaping double quotes or backslashes using a backslash with a JSON path
subscript to the json_extract() and json_extract_scalar() functions. This changes the
semantics of any invocation using a backslash, as backslashes were previously treated as normal
characters.

For a complete list of functions and operators, see SQL Queries, Functions, and Operators (p. 144) in
this guide, and Presto 0.172 Functions.

Athena does not support all of Presto's features. For more information, see Limitations (p. 149).

November 13, 2017

Published on 2017-11-13

Added support for connecting Athena to the ODBC Driver. For information, see Connecting to Amazon
Athena with ODBC (p. 35).

November 1, 2017

Published on 20717-17-01

Added support for querying geospatial data, and for Asia Pacific (Seoul), Asia Pacific (Mumbai), and
EU (London) regions. For information, see Querying Geospatial Data (p. 83) and AWS Regions and
Endpoints.

October 19, 2017

Published on 2077-70-19

Added support for EU (Frankfurt). For a list of supported regions, see AWS Regions and Endpoints.

https://prestodb.io/docs/0.172/functions.html
https://prestodb.io/docs/0.172/functions/lambda.html
https://prestodb.io/docs/0.172/functions/lambda.html
https://prestodb.io/docs/0.172/functions/array.html#arrays_overlap
https://prestodb.io/docs/0.172/functions/array.html#array_except
https://prestodb.io/docs/0.172/functions/string.html#levenshtein_distance
https://prestodb.io/docs/0.172/functions/string.html#codepoint
https://prestodb.io/docs/0.172/functions/aggregate.html#skewness
https://prestodb.io/docs/0.172/functions/aggregate.html#kurtosis
https://prestodb.io/docs/0.172/functions/conversion.html#typeof
https://prestodb.io/docs/0.172/functions/datetime.html#from_unixtime
https://prestodb.io/docs/0.172/functions/aggregate.html#bitwise_and_agg
https://prestodb.io/docs/0.172/functions/aggregate.html#bitwise_or_agg
https://prestodb.io/docs/0.172/functions/binary.html#xxhash64
https://prestodb.io/docs/0.172/functions/binary.html#to_big_endian_64
https://prestodb.io/docs/0.172/functions/json.html#json_extract
https://prestodb.io/docs/0.172/functions/json.html#json_extract_scalar
https://prestodb.io/docs/0.172/functions.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#athena
http://docs.aws.amazon.com/general/latest/gr/rande.html#athena
http://docs.aws.amazon.com/general/latest/gr/rande.html#athena

Amazon Athena User Guide
October 3, 2017

October 3, 2017

Published on 2077-10-03

Create named Athena queries with CloudFormation. For more information, see
AWS::Athena::NamedQuery in the AWS CloudFormation User Guide.

September 25, 2017

Published on 2077-09-25
Added support for Asia Pacific (Sydney). For a list of supported regions, see AWS Regions and Endpoints.

August 14, 2017

Published on 20717-08-14

Added integration with the AWS Glue Data Catalog and a migration wizard for updating from the Athena
managed data catalog to the AWS Glue Data Catalog. For more information, see Integration with AWS
Glue (p. 18).

August 4, 2017

Published on 2077-08-04

Added support for Grok SerDe, which provides easier pattern matching for records in unstructured text
files such as logs. For more information, see Grok SerDe (p. 115). Added keyboard shortcuts to scroll
through query history using the console (CTRL + ©#/4 using Windows, CMD + ©/0 using Mac).

June 22, 2017

Published on 2077-06-22

Added support for Asia Pacific (Tokyo) and Asia Pacific (Singapore). For a list of supported regions, see
AWS Regions and Endpoints.

June 8, 2017

Published on 2077-06-08

Added support for EU (Ireland). For more information, see AWS Regions and Endpoints.

May 19, 2017

Published on 20717-05-19

Added an Amazon Athena APl and AWS CLI support for Athena; updated JDBC driver to version 1.1.0;
fixed various issues.

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-athena-namedquery.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#athena
http://docs.aws.amazon.com/general/latest/gr/rande.html#athena
http://docs.aws.amazon.com/general/latest/gr/rande.html#athena

Amazon Athena User Guide
Improvements

« Amazon Athena enables application programming for Athena. For more information, see Amazon
Athena API Reference. The latest AWS SDKs include support for the Athena API. For links to
documentation and downloads, see the SDKs section in Tools for Amazon Web Services.

o The AWS CLI includes new commands for Athena. For more information, see the AWS CLI Reference for
Athena.

« A new JDBC driver 1.1.0 is available, which supports the new Athena API as well as the latest features
and bug fixes. Download the driver at https://s3.amazonaws.com/athena-downloads/drivers/
AthenaJDBC41-1.1.0.jar. We recommend upgrading to the latest Athena JDBC driver; however, you
may still use the earlier driver version. Earlier driver versions do not support the Athena API. For more
information, see Using Athena with the JDBC Driver (p. 33).

« Actions specific to policy statements in earlier versions of Athena have been deprecated. If you
upgrade to JDBC driver version 1.1.0 and have customer-managed or inline IAM policies attached to
JDBC users, you must update the 1AM policies. In contrast, earlier versions of the JDBC driver do not
support the Athena API, so you can specify only deprecated actions in policies attached to earlier
version JDBC users. For this reason, you shouldn't need to update customer-managed or inline IAM
policies.

« These policy-specific actions were used in Athena before the release of the Athena API. Use these
deprecated actions in policies only with JDBC drivers earlier than version 1.1.0. If you are upgrading
the JDBC driver, replace policy statements that allow or deny deprecated actions with the appropriate
API actions as listed or errors will occur:

Deprecated Policy-Specific Action Corresponding Athena API Action
athena:RunQuery athena:StartQueryExecution
athena:CancelQueryExecution athena:StopQueryExecution
athena:GetQueryExecutions athena:ListQueryExecutions

« Increased the query string length limit to 256 KB.

Bug Fixes

« Fixed an issue that caused query results to look malformed when scrolling through results in the
console.

« Fixed an issue where a \u0000 character string in Amazon S3 data files would cause errors.

« Fixed an issue that caused requests to cancel a query made through the JDBC driver to fail.

« Fixed an issue that caused the AWS CloudTrail SerDe to fail with Amazon S3 data in US East (Ohio).
« Fixed an issue that caused DROP TABLE to fail on a partitioned table.

April 4, 2017

Published on 2017-04-04

https://docs.aws.amazon.com/athena/latest/APIReference/
https://docs.aws.amazon.com/athena/latest/APIReference/
https://aws.amazon.com/tools/
http://docs.aws.amazon.com/cli/latest/reference/athena/
http://docs.aws.amazon.com/cli/latest/reference/athena/
https://s3.amazonaws.com/athena-downloads/drivers/AthenaJDBC41-1.1.0.jar
https://s3.amazonaws.com/athena-downloads/drivers/AthenaJDBC41-1.1.0.jar

Amazon Athena User Guide
Features

Added support for Amazon S3 data encryption and released JDBC driver update (version 1.0.1) with
encryption support, improvements, and bug fixes.

Features

« Added the following encryption features:
« Support for querying encrypted data in Amazon S3.
 Support for encrypting Athena query results.
« A new version of the driver supports new encryption features, adds improvements, and fixes issues.

« Added the ability to add, replace, and change columns using ALTER TABLE. For more information, see
Alter Column in the Hive documentation.

« Added support for querying LZO-compressed data.

For more information, see Configuring Encryption Options (p. 41).

Improvements

« Better JDBC query performance with page-size improvements, returning 1,000 rows instead of 100.
« Added ability to cancel a query using the JDBC driver interface.

« Added ability to specify JDBC options in the JDBC connection URL. For more information, see Using
Athena with the JDBC Driver (p. 33).

o Added PROXY setting in the driver, which can now be set using ClientConfiguration in the AWS SDK for
Java.

Bug Fixes

Fixed the following bugs:

« Throttling errors would occur when multiple queries were issued using the JDBC driver interface.
« The JDBC driver would abort when projecting a decimal data type.

« The JDBC driver would return every data type as a string, regardless of how the data type
was defined in the table. For example, selecting a column defined as an INT data type using
resultSet.GetObject() would return a STRING data type instead of INT.

« The JDBC driver would verify credentials at the time a connection was made, rather than at the time a
query would run.

« Queries made through the JDBC driver would fail when a schema was specified along with the URL.

March 24, 2017

Published on 2017-03-24

Added the AWS CloudTrail SerDe, improved performance, fixed partition issues.

Features

« Added the AWS CloudTrail SerDe. For more information, see CloudTrail SerDe (p. 112). For detailed
usage examples, see the AWS Big Data Blog post, Analyze Security, Compliance, and Operational
Activity Using AWS CloudTrail and Amazon Athena.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-AlterColumn
http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/ClientConfiguration.html
http://aws.amazon.com/blogs/big-data/aws-cloudtrail-and-amazon-athena-dive-deep-to-analyze-security-compliance-and-operational-activity/
http://aws.amazon.com/blogs/big-data/aws-cloudtrail-and-amazon-athena-dive-deep-to-analyze-security-compliance-and-operational-activity/

Amazon Athena User Guide
Improvements

Improvements

« Improved performance when scanning a large number of partitions.
« Improved performance on MSCK Repair Table operation.

» Added ability to query Amazon S3 data stored in regions other than your primary region. Standard
inter-region data transfer rates for Amazon S3 apply in addition to standard Athena charges.

Bug Fixes

« Fixed a bug where a "table not found error" might occur if no partitions are loaded.

« Fixed a bug to avoid throwing an exception with ALTER TABLE ADD PARTITION IF NOT EXISTS
queries.

 Fixed a bug in DROP PARTITIONS.

February 20, 2017

Published on 20717-02-20

Added support for AvroSerDe and OpenCSVSerDe, US East (Ohio) region, and bulk editing columns in the
console wizard. Improved performance on large Parquet tables.

Features

« Introduced support for new SerDes:
« Avro SerDe (p. 109)
« OpenCSVSerDe for Processing CSV (p. 114)
« US East (Ohio) region (us-east-2) launch. You can now run queries in this region.

« You can now use the Add Table wizard to define table schema in bulk. Choose Catalog Manager, Add
table, and then choose Bulk add columns as you walk through the steps to define the table.

Amazon Athena User Guide
Features

Athena Query Editor Saved Queries History Catalog Manager

ACTION Databases Add table

© Add table
Step 1: Name & Location Step 2: Data Format Step 3:

Column Name |Column Mame

Column name must be single

Column type string
Type for this column. Certain
not exposed in this interface.

Add a column Bulk add columns

Type name value pairs in the text box and choose Add.

10

Amazon Athena User Guide
Improvements

Bulk add columns

Define columns in name value pairs, using commas to separate definitions (col1_name
data_type, col2_name data_type, ...). Certain advanced data types (namely, structs) are not
supported in this interface, but are supported using DOL statements.

id int, name string

Cancel m

Improvements

« Improved performance on large Parquet tables.

11

Amazon Athena User Guide
Sign Up for AWS

Setting Up

If you've already signed up for Amazon Web Services (AWS), you can start using Amazon Athena
immediately. If you haven't signed up for AWS, or if you need assistance querying data using Athena, first
complete the tasks below:

Sign Up for AWS

When you sign up for AWS, your account is automatically signed up for all services in AWS, including
Athena. You are charged only for the services that you use. When you use Athena, you use Amazon S3 to
store your data. Athena has no AWS Free Tier pricing.

If you have an AWS account already, skip to the next task. If you don't have an AWS account, use the
following procedure to create one.

To create an AWS account

1. Open http://aws.amazon.com/, and then choose Create an AWS Account.

2. Follow the online instructions. Part of the sign-up procedure involves receiving a phone call and
entering a PIN using the phone keypad.

Note your AWS account number, because you need it for the next task.

Create an IAM User

An AWS Identity and Access Management (IAM) user is an account that you create to access services. It is
a different user than your main AWS account. As a security best practice, we recommend that you use the
IAM user's credentials to access AWS services. Create an IAM user, and then add the user to an IAM group
with administrative permissions or and grant this user administrative permissions. You can then access
AWS using a special URL and the credentials for the IAM user.

If you signed up for AWS but have not created an IAM user for yourself, you can create one using the IAM
console. If you aren't familiar with using the console, see Working with the AWS Management Console.

To create a group for administrators

. Sign in to the IAM console at https://console.aws.amazon.com/iam/.
. In the navigation pane, choose Groups, Create New Group.

. For Group Name, type a name for your group, such as Administrators, and choose Next Step.

A NN =

. In the list of policies, select the check box next to the AdministratorAccess policy. You can use the
Filter menu and the Search field to filter the list of policies.

5. Choose Next Step, Create Group. Your new group is listed under Group Name.

12

http://aws.amazon.com/
http://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/getting-started.html
https://console.aws.amazon.com/iam/

Amazon Athena User Guide
To create an IAM user for yourself, add the user to the
administrators group, and create a password for the user

To create an IAM user for yourself, add the user to the
administrators group, and create a password for the
user

. In the navigation pane, choose Users, and then Create New Users.
. For 1, type a user name.
. Clear the check box next to Generate an access key for each user and then Create.

A NN =

. In the list of users, select the name (not the check box) of the user you just created. You can use the
Search field to search for the user name.

. Choose Groups, Add User to Groups.
. Select the check box next to the administrators and choose Add to Groups.
. Choose the Security Credentials tab. Under Sign-In Credentials, choose Manage Password.

0N O wn

. Choose Assign a custom password. Then type a password in the Password and Confirm Password
fields. When you are finished, choose Apply.

9. To sign in as this new IAM user, sign out of the AWS console, then use the following URL, where
your_aws_account_id is your AWS account number without the hyphens (for example, if your AWS
account number is 1234-5678-9012, your AWS account ID is 123456789012):

https://*your_account_alias*.signin.aws.amazon.com/console/

It is also possible the sign-in link will use your account name instead of number. To verify the sign-in
link for IAM users for your account, open the IAM console and check under 1AM users sign-in link on the
dashboard.

Attach Managed Policies for Using Athena

Attach Athena managed policies to the IAM account you use to access Athena. There are two managed
policies for Athena: AmazonAthenaFullAccess and AWSQuicksightAthenaAccess. These policies
grant permissions to Athena to query Amazon S3 as well as write the results of your queries to a
separate bucket on your behalf. For more information and step-by-step instructions, see Attaching
Managed Policies in the AWS Identity and Access Management User Guide. For information about policy
contents, see IAM Policies for User Access (p. 37).

Note

You may need additional permissions to access the underlying dataset in Amazon S3. If

you are not the account owner or otherwise have restricted access to a bucket, contact the
bucket owner to grant access using a resource-based bucket policy, or contact your account
administrator to grant access using an identity-based policy. For more information, see Amazon
S3 Permissions (p. 40). If the dataset or Athena query results are encrypted, you may need
additional permissions. For more information, see Configuring Encryption Options (p. 41).

13

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console

Amazon Athena User Guide
Prerequisites

Getting Started

This tutorial walks you through using Amazon Athena to query data. You'll create a table based on
sample data stored in Amazon Simple Storage Service, query the table, and check the results of the

query.

The tutorial is using live resources, so you are charged for the queries that you run. You aren't charged
for the sample datasets that you use, but if you upload your own data files to Amazon S3, charges do

apply.

Prerequisites

If you have not already done so, sign up for an account in Setting Up (p. 12).

Step 1: Create a Database

You first need to create a database in Athena.

To create a database

Open the Athena console.

2. If this is your first time visiting the Athena console, you'll go to a Getting Started page. Choose Get
Started to open the Query Editor. If it isn't your first time, the Athena Query Editor opens.

3. Inthe Athena Query Editor, you see a query pane with an example query. Start typing your query
anywhere in the query pane.

AWS v Services v Edit v

Athena QueryEditor Saved Queries History Catalog Manager

1 Example: SELECT * FROM tablename, or press CTRL + spacci

| default v«

i STF ST o L R &

4. To create a database named mydatabase, enter the following CREATE DATABASE statement, and
then choose Run Query:

CREATE DATABASE mydatabase

5. Confirm that the catalog display refreshes and mydatabase appears in the DATABASE list in the
Catalog dashboard on the left side.

14

Amazon Athena User Guide
Step 2: Create a Table

(T AWS ~ Services v Edit ~

Athena Query Editor Saved Queries History Catalog Manager (
-0
P —— CREATE DATABASE mydatabase
(mydatabase) v«
e
“.-.L‘.-‘Nu"”—-‘-lL"H'Mh'ﬁ'-H-‘-“"‘.W‘-‘4F"-h‘1*“'h\‘ﬂ"‘-lpuﬁﬁl'-‘hJ

Step 2: Create a Table

Now that you have a database, you're ready to create a table that's based on the sample data file. You
define columns that map to the data, specify how the data is delimited, and provide the location in
Amazon S3 for the file.

To create a table

1. Make sure that mydatabase is selected for DATABASE and then choose New Query.
2. Inthe query pane, enter the following CREATE TABLE statement, and then choose Run Query:

Note

You can query data in regions other than the region where you run Athena. Standard inter-
region data transfer rates for Amazon S3 apply in addition to standard Athena charges. To
reduce data transfer charges, replace myregion in s3://athena-examples-myregion/
path/to/data/ with the region identifier where you run Athena, for example, s3://
athena-examples-us-east-1/path/to/data/.

CREATE EXTERNAL TABLE IF NOT EXISTS cloudfront_logs (

“Date” DATE,

Time STRING,

Location STRING,

Bytes INT,

RequestIP STRING,

Method STRING,

Host STRING,

Uri STRING,

Status INT,

Referrer STRING,

os STRING,

Browser STRING,

BrowserVersion STRING

) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'

WITH SERDEPROPERTIES (

"input.regex" = "A(2!#)([* I+)\\s+([* T+)\\s+([*~ T+)\\s+([*» 1+)\\s+([* 1+)\\s
LA T9N\s+CLA T+\\s+([A T\\s+([* T+N\\s+([* T+\\s+[A\CI+INCICLAN7T+) - *\%20([~
\VAEDIRVAIGLSE B

) LOCATION 's3://athena-examples-myregion/cloudfront/plaintext/"';

The table cloudfront_logs is created and appears in the Catalog dashboard for your database.

15

Amazon Athena User Guide
Step 3: Query Data

Athena QueryEditor Saved Queries Histo

DATABASE - 0
mydatabase v ¢
TABLES
Filter Tables...
Add table...
ER cloudfront_logs b —

Step 3: Query Data

Now that you have the cloudfront_logs table created in Athena based on the data in Amazon S3, you
can run queries on the table and see the results in Athena.

To run a query

1. Choose New Query, enter the following statement anywhere in the query pane, and then choose
Run Query:

SELECT os, COUNT(*) count

FROM cloudfront_logs

WHERE date BETWEEN date '2014-07-05' AND date '2014-08-05"'
GROUP BY os;

Results are returned that look like the following:

16

Amazon Athena User Guide
Step 3: Query Data

Results

}
- os count
1 i0s 794
MacOS 852
08X 799

E N I]

Windows 883

o

Linux 813

6 Android 855

2. Optionally, you can save the results of a query to CSV by choosing the file icon on the Results pane.

You can also view the results of previous queries or queries that may take some time to complete.
Choose History then either search for your query or choose View or Download to view or download the
results of previous completed queries. This also displays the status of queries that are currently running.
Query history is retained for 45 days. For information, see Viewing Query History (p. 60).

Nl AWS - Services -

Athena Query Editor Saved Queries History Catalog Manager

History

Fﬁeard‘ for name, query, etc.

W e W

v Time Name Query
2016/10/06 16:28:48 UTC-7 Unsaved SELECT os, COUNT(*) count FROM cloudfront_logs WHERE date BETWEEN date '2014-87-85' AND date '2014-@...
e I it I i s VS ¥ L S Ry S S Y P

Query results are also stored in Amazon S3 in a bucket called aws-athena-query-
results~FACCOUNTID-REGION. You can change the default location in the console and encryption options
by choosing Settings in the upper right pane. For more information, see Query Results (p. 59).

17

Amazon Athena User Guide

Integration with AWS Glue

AWS Glue is a fully managed ETL (extract, transform, and load) service that can categorize your data,
clean it, enrich it, and move it reliably between various data stores. AWS Glue crawlers automatically
infer database and table schema from your source data, storing the associated metadata in the AWS Glue
Data Catalog. When you create a table in Athena, you can choose to create it using an AWS Glue crawler.

1a. Setup a crawler to run @
periodically, scan your data, 2
and automatically populate s

AMAZON the Glue Data Catalog ~" AMAZON ATHENA *~,
REDSHIET AWS GLUE K
] CRAWLERS . -~

;
: : . .
H ' hO S RIPLY
: o A . v i /I/
o -
AMAZON 53 ? --------------- > |§ - AMAZON ¥ AmazoN
: e REDSHIFT T QUICKSIGHT

(=0

: v Tt SPECTRUM =~
= : AWS GLUE ¥ AWSGLUE N\ b
H QE 1h Manually popuiate =" DATA CATALOG @&
T data properties using by
AMAZONRDS | Glue APLs < ‘é -‘E AMAZON EMR
! 5 N 2. Access the Data Catalog from
E . various services for ETL, querying

and analytics

HIVE DDL "]
| STATEMENTS ﬁ

' 1c Run Hive DDL statements to add
DATABASES E data properties like table definitions, AWS GLUE ETL
RUNNING ON EC2 ! partition details, etc.

In regions where AWS Glue is supported, Athena uses the AWS Glue Data Catalog as a central location
to store and retrieve table metadata throughout an AWS account. The Athena execution engine requires
table metadata that instructs it where to read data, how to read it, and other information necessary to
process the data. The AWS Glue Data Catalog provides a unified metadata repository across a variety

of data sources and data formats, integrating not only with Athena, but with Amazon S3, Amazon RDS,
Amazon Redshift, Amazon Redshift Spectrum, Amazon EMR, and any application compatible with the
Apache Hive metastore.

For more information about the AWS Glue Data Catalog, see Populating the AWS Glue Data Catalog
in the AWS Glue Developer Guide. For a list of regions where AWS Glue is available, see Regions and
Endpoints in the AWS General Reference.

Separate charges apply to AWS Glue. For more information, see AWS Glue Pricing and Are there separate
charges for AWS Glue? (p. 22) For more information about the benefits of using AWS Glue with
Athena, see Why should | upgrade to the AWS Glue Data Catalog? (p. 21)
Topics
« Upgrading to the AWS Glue Data Catalog Step-by-Step (p. 19)
» FAQ: Upgrading to the AWS Glue Data Catalog (p. 21)
» Best Practices When Using Athena with AWS Glue (p. 23)

18

http://docs.aws.amazon.com/glue/latest/dg/what-is-glue.html
http://docs.aws.amazon.com/glue/latest/dg/populate-data-catalog.html
http://docs.aws.amazon.com/general/latest/gr/rande.html#glue_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#glue_region
https://aws.amazon.com/glue/pricing

Amazon Athena User Guide
Upgrading to the AWS Glue Data Catalog Step-by-Step

Upgrading to the AWS Glue Data Catalog Step-by-
Step

Amazon Athena manages its own data catalog until the time that AWS Glue releases in the Athena
region. At that time, if you previously created databases and tables using Athena or Amazon Redshift
Spectrum, you can choose to upgrade Athena to the AWS Glue Data Catalog. If you are new to Athena,
you don't need to make any changes; databases and tables are available to Athena using the AWS Glue
Data Catalog and vice versa. For more information about the benefits of using the AWS Glue Data
Catalog, see FAQ: Upgrading to the AWS Glue Data Catalog (p. 21). For a list of regions where AWS
Glue is available, see Regions and Endpoints in the AWS General Reference.

Until you upgrade, the Athena-managed data catalog continues to store your table and database
metadata, and you see the option to upgrade at the top of the console. The metadata in the Athena-
managed catalog isn't available in the AWS Glue Data Catalog or vice versa. While the catalogs exist side-
by-side, you aren't able to create tables or databases with the same names, and the creation process in
either AWS Glue or Athena fails in this case.

We created a wizard in the Athena console to walk you through the steps of upgrading to the AWS

Glue console. The upgrade takes just a few minutes, and you can pick up where you left off. For more
information about each upgrade step, see the topics in this section. For more information about working
with data and tables in the AWS Glue Data Catalog, see the guidelines in Best Practices When Using
Athena with AWS Glue (p. 23).

Step 1 - Allow a User to Perform the Upgrade

By default, the action that allows a user to perform the upgrade is not allowed in any policy, including
any managed policies. Because the AWS Glue Data Catalog is shared throughout an account, this extra
failsafe prevents someone from accidentally migrating the catalog.

Before the upgrade can be performed, you need to attach a customer-managed IAM policy, with a policy
statement that allows the upgrade action, to the user who performs the migration.

The following is an example policy statement.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"glue:ImportCatalogToGlue "
1,
"Resource": ["*"]
}
1
}

Step 2 - Update Customer-Managed/Inline Policies
Associated with Athena Users

If you have customer-managed or inline IAM policies associated with Athena users, you need to update
the policy or policies to allow actions that AWS Glue requires. If you use the managed policy, they are
automatically updated. The AWS Glue policy actions to allow are listed in the example policy below. For
the full policy statement, see IAM Policies for User Access (p. 37).

19

http://docs.aws.amazon.com/general/latest/gr/rande.html#glue_region

Amazon Athena User Guide
Step 3 - Choose Upgrade in the Athena Console

{

"Effect":"Allow",
"Action":[

"glue:
"glue:
"glue:
:GetDatabases",

"glue

"glue:
"glue:
"glue:
"glue:
"glue:
"glue:
"glue:
"glue:
"glue:
"glue:
"glue:
"glue:
"glue:
"glue:
"glue:

1,

CreateDatabase",
DeleteDatabase",
GetDatabase",

UpdateDatabase",
CreateTable",
DeleteTable",
BatchDeleteTable",
UpdateTable",
GetTable",

GetTables",
BatchCreatePartition",
CreatePartition",
DeletePartition",
BatchDeletePartition",
UpdatePartition",
GetPartition",
GetPartitions",
BatchGetPartition"

"Resource":[

ngn

]
¥

Step 3 - Choose Upgrade in the Athena Console

After you make the required 1AM policy updates, choose Upgrade in the Athena console. Athena moves
your metadata to the AWS Glue Data Catalog. The upgrade takes only a few minutes. After you upgrade,

the Athena console has a link to open the AWS Glue Catalog Manager from within Athena.

LT

Athena

When you create a table using the console, you now have the option to create a table using an AWS Glue

Services Resource Groups - *

Query Editor Saved Queries History

crawler. For more information, see Using AWS Glue Crawlers (p. 24).

AWS Glue Data Catalog ()

20

Amazon Athena User Guide
FAQ: Upgrading to the AWS Glue Data Catalog

g .
[T Services ~ Resource Groups ~ *

Athena QueryEditor Saved Queries History

DATABASE 4
1|-- BRur
darshana E £ - e
TABLES Create Table) P—
Eiltar Takhlac - —— . —-— Hi

Pel e Automatically (AWS Glue crawler) 5

Manually)| —— CRE
0| —— Dat

FAQ: Upgrading to the AWS Glue Data Catalog

If you created databases and tables using Athena in a region before AWS Glue was available in that
region, metadata is stored in an Athena-managed data catalog, which only Athena and Amazon Redshift
Spectrum can access. To use AWS Glue features together with Athena and Redshift Spectrum, you must
upgrade to the AWS Glue Data Catalog. Athena can only be used together with the AWS Glue Data
Catalog in regions where AWS Glue is available. For a list of regions, see Regions and Endpoints in the
AWS General Reference.

Why should | upgrade to the AWS Glue Data Catalog?

AWS Glue is a completely-managed extract, transform, and load (ETL) service. It has three main
components:

« An AWS Glue crawler can automatically scan your data sources, identify data formats, and infer
schema.

« A fully managed ETL service allows you to transform and move data to various destinations.

« The AWS Glue Data Catalog stores metadata information about databases and tables, pointing to a
data store in Amazon S3 or a JDBC-compliant data store.

For more information, see AWS Glue Concepts.

Upgrading to the AWS Glue Data Catalog has the following benefits.

Unified metadata repository

The AWS Glue Data Catalog provides a unified metadata repository across a variety of data sources
and data formats. It provides out-of-the-box integration with Amazon Simple Storage Service (Amazon
S3), Amazon Relational Database Service (Amazon RDS), Amazon Redshift, Amazon Redshift Spectrum,
Athena, Amazon EMR, and any application compatible with the Apache Hive metastore. You can create
your table definitions one time and query across engines.

21

http://docs.aws.amazon.com/general/latest/gr/rande.html#glue_region
http://docs.aws.amazon.com/glue/latest/dg/components-key-concepts.html
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/rds/
https://aws.amazon.com/redshift/
https://aws.amazon.com/redshift/spectrum/
https://aws.amazon.com/emr/

Amazon Athena User Guide
Are there separate charges for AWS Glue?

For more information, see Populating the AWS Glue Data Catalog.

Automatic schema and partition recognition

AWS Glue crawlers automatically crawl your data sources, identify data formats, and suggest schema and
transformations. Crawlers can help automate table creation and automatic loading of partitions that you
can query using Athena, Amazon EMR, and Redshift Spectrum. You can also create tables and partitions
directly using the AWS Glue API, SDKs, and the AWS CLI.

For more information, see Cataloging Tables with a Crawler.
Easy-to-build pipelines

The AWS Glue ETL engine generates Python code that is entirely customizable, reusable, and portable.
You can edit the code using your favorite IDE or notebook and share it with others using GitHub. After
your ETL job is ready, you can schedule it to run on the fully managed, scale-out Spark infrastructure of
AWS Glue. AWS Glue handles provisioning, configuration, and scaling of the resources required to run
your ETL jobs, allowing you to tightly integrate ETL with your workflow.

For more information, see Authoring AWS Glue Jobs in the AWS Glue Developer Guide.

Are there separate charges for AWS Glue?

Yes. With AWS Glue, you pay a monthly rate for storing and accessing the metadata stored in the AWS
Glue Data Catalog, an hourly rate billed per second for AWS Glue ETL jobs and crawler runtime, and an
hourly rate billed per second for each provisioned development endpoint. The AWS Glue Data Catalog
allows you to store up to a million objects at no charge. If you store more than a million objects, you
are charged USD$1 for each 100,000 objects over a million. An object in the AWS Glue Data Catalog is a
table, a partition, or a database. For more information, see AWS Glue Pricing.

Upgrade process FAQ

o Who can perform the upgrade? (p. 22)

o My users use a managed policy with Athena and Redshift Spectrum. What steps do | need to take to
upgrade? (p. 22)

o What happens if | don't upgrade? (p. 23)

o Why do | need to add AWS Glue policies to Athena users? (p. 23)

» What happens if | don't allow AWS Glue policies for Athena users? (p. 23)
o Is there risk of data loss during the upgrade? (p. 23)

« Is my data also moved during this upgrade? (p. 23)

Who can perform the upgrade?

You need to attach a customer-managed IAM policy with a policy statement that allows the upgrade
action to the user who will perform the migration. This extra check prevents someone from accidentally
migrating the catalog for the entire account. For more information, see Step 1 - Allow a User to Perform
the Upgrade (p. 19).

My users use a managed policy with Athena and Redshift
Spectrum. What steps do | need to take to upgrade?

The Athena managed policy has been automatically updated with new policy actions that allow Athena
users to access AWS Glue. However, you still must explicitly allow the upgrade action for the user who
performs the upgrade. To prevent accidental upgrade, the managed policy does not allow this action.

22

http://docs.aws.amazon.com/glue/latest/dg/populate-data-catalog.html
http://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
http://docs.aws.amazon.com/glue/latest/dg/author-job.html
https://aws.amazon.com/glue/pricing

Amazon Athena User Guide
Best Practices When Using Athena with AWS Glue

Best

What happens if | don't upgrade?

If you don't upgrade, you are not able to use AWS Glue features together with the databases and tables
you create in Athena or vice versa. You can use these services independently. During this time, Athena
and AWS Glue both prevent you from creating databases and tables that have the same names in the
other data catalog. This prevents name collisions when you do upgrade.

Why do | need to add AWS Glue policies to Athena users?

Before you upgrade, Athena manages the data catalog, so Athena actions must be allowed for your users
to perform queries. After you upgrade to the AWS Glue Data Catalog, Athena actions no longer apply to
accessing the AWS Glue Data Catalog, so AWS Glue actions must be allowed for your users. Remember,
the managed policy for Athena has already been updated to allow the required AWS Glue actions, so no
action is required if you use the managed policy.

What happens if | don't allow AWS Glue policies for Athena
users?

If you upgrade to the AWS Glue Data Catalog and don't update a user's customer-managed or inline IAM
policies, Athena queries fail because the user won't be allowed to perform actions in AWS Glue. For the
specific actions to allow, see Step 2 - Update Customer-Managed/Inline Policies Associated with Athena
Users (p. 19).

Is there risk of data loss during the upgrade?

No.

Is my data also moved during this upgrade?

No. The migration only affects metadata.

Practices When Using Athena with AWS Glue

When using Athena with the AWS Glue Data Catalog, you can use AWS Glue to create databases and
tables (schema) to be queried in Athena, or you can use Athena to create schema and then use them in
AWS Glue and related services. This topic provides considerations and best practices when using either
method.

Under the hood, Athena uses Presto to execute DML statements and Hive to execute the DDL statements
that create and modify schema. With these technologies, there are a couple conventions to follow so
that Athena and AWS Glue work well together.

In this topic

« Database, Table, and Column Names (p. 24)
« Using AWS Glue Crawlers (p. 24)
 Scheduling a Crawler to Keep the AWS Glue Data Catalog and Amazon S3 in Sync (p. 24)
« Using Multiple Data Sources with Crawlers (p. 25)
« Syncing Partition Schema to Avoid "HIVE_PARTITION_SCHEMA_MISMATCH" (p. 27)
« Updating Table Metadata (p. 27)

23

Amazon Athena User Guide
Database, Table, and Column Names

« Working with CSV Files (p. 28)
o CSV Data Enclosed in Quotes (p. 28)
o CSV Files with Headers (p. 30)
« Using AWS Glue Jobs for ETL with Athena (p. 30)
« Creating Tables Using Athena for AWS Glue ETL Jobs (p. 30)
« Using ETL Jobs to Optimize Query Performance (p. 31)
o Converting SMALLINT and TINYINT Datatypes to INT When Converting to ORC (p. 32)
« Changing Date Data Types to String for Parquet ETL Transformation (p. 32)
o Automating AWS Glue Jobs for ETL (p. 32)

Database, Table, and Column Names

When you create schema in AWS Glue to query in Athena, consider the following:

« A database name cannot be longer than 252 characters.
« A table name cannot be longer than 255 characters.
« A column name cannot be longer than 128 characters.

« The only acceptable characters for database names, table names, and column names are lowercase
letters, numbers, and the underscore character.

You can use the AWS Glue Catalog Manager to rename columns, but at this time table names and
database names cannot be changed using the AWS Glue console. To correct database names, you need to
create a new database and copy tables to it (in other words, copy the metadata to a new entity). You can
follow a similar process for tables. You can use the AWS Glue SDK or AWS CLI to do this.

Using AWS Glue Crawlers

AWS Glue crawlers help discover and register the schema for datasets in the AWS Glue Data Catalog.
The crawlers go through your data, and inspect portions of it to determine the schema. In addition, the
crawler can detect and register partitions. For more information, see Cataloging Data with a Crawler in
the AWS Glue Developer Guide.

Scheduling a Crawler to Keep the AWS Glue Data Catalog and
Amazon S3 in Sync

AWS Glue crawlers can be set up to run on a schedule or on demand. For more information, see Time-
Based Schedules for Jobs and Crawlers in the AWS Glue Developer Guide.

If you have data that arrives for a partitioned table at a fixed time, you can set up an AWS Glue crawler
to run on schedule to detect and update table partitions. This can eliminate the need to run a potentially
long and expensive MSCK REPAIR command or manually execute an ALTER TABLE ADD PARTITION
command. For more information, see Table Partitions in the AWS Glue Developer Guide.

24

http://docs.aws.amazon.com/glue/latest/dg/add-crawler.html
http://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html
http://docs.aws.amazon.com/glue/latest/dg/monitor-data-warehouse-schedule.html
http://docs.aws.amazon.com/glue/latest/dg/tables-described.html#tables-partition

Amazon Athena User Guide
Using AWS Glue Crawlers

e e N 7 f— o Q) > [/

AMAZON S3 AWS GLUE AWS GLUE DATA AMAZON ATHENA AMAZON

CRAWLERS CATALOG QUICKSIGHT
1. Setup a crawler to run periodically, 2 Once your data in the Glue Data Catalog, it is readily
scan your data, and automatically | available for querying in Amazon Athena and Amazon
populate the Glue Data Catalog v Redshift Spectrum - no additional steps required!
AMAZON
REDSHIFT
SPECTRUM

Using Multiple Data Sources with Crawlers

When an AWS Glue crawler scans Amazon S3 and detects multiple directories, it uses a heuristic to
determine where the root for a table is in the directory structure, and which directories are partitions
for the table. In some cases, where the schema detected in two or more directories is similar, the crawler
may treat them as partitions instead of separate tables. One way to help the crawler discover individual
tables is to add each table's root directory as a data store for the crawler.

The following partitions in Amazon S3 are an example:

s3://bucket0l/folderl/tablel/partitionl/file.txt
s3://bucket0l/folderl/tablel/partition2/file.txt
s3://bucket0l/folderl/tablel/partition3/file.txt
s3://bucket0l/folderl/table2/partition4/file.txt
s3://bucket0l/folderl/table2/partition5/file.txt

If the schema for tablel and table2 are similar, and a single data source is set to s3://bucket01/
folder1l/ in AWS Glue, the crawler may create a single table with two partition columns: one partition
column that contains tablel and table2, and a second partition column that contains partitionil
through partitions.

To have the AWS Glue crawler create two separate tables as intended, use the AWS Glue console to set

the crawler to have two data sources, s3://bucket01/folderl/tablel/ and s3://bucket01/
folderl/table2, as shown in the following procedure.

To add another data store to an existing crawler in AWS Glue

1. In the AWS Glue console, choose Crawlers, select your crawler, and then choose Action, Edit crawler.

25

Amazon Athena User Guide
Using AWS Glue Crawlers

g -
[T | Services v Resource Groups v %

Crawlers A crawler connects to a data store, progresses throu

AWS Glue

4
Data catalog Crawler SampleCrawler was created to run on demand. Ru
Databases
Tables Add crawler Run crawler Action
Connections
| crawlers v Name
Classi Duplicate crawler
assifiers
s SampleCrawler
Stop run
ETL Resume schedule
Jobs -
Pause schedule
Triggers
Delete crawler
Dev endpoints
View details

T v amtom |

2. Under Add information about your crawler, choose additional settings as appropriate, and then
choose Next.

3. Under Add a data store, change Include path to the table-level directory. For instance, given the
example above, you would change it from s3://bucket01/folder1 to s3://bucket01/folder1/table1/.
Choose Next.

B Services v Resource Groups ~ %

Add crawler

Add a data store

(@ Crawler info
W o
Data store
QO Data store
S3: s3u//elasticmapr. .. 53 N
@ Schedule Crawl data in
Run on demand -
(@) Specified path
(® Output
Include path
(@ Review all steps s3.//bucket1/foldert/table1/ =
Al folders and filec contained in the inclyde path ar ed Forexample tvpe
s3:/iMyBucket/MyFolder/ to crawl all objects in MyFi rwithin MyBucket

» Exclude paths (optional)
=

4. For Add another data store, choose Yes, Next.

26

Amazon Athena User Guide
Using AWS Glue Crawlers

5. For Include path, enter your other table-level directory (for example, s3://bucket01/folder1/table2/)
and choose Next.

a. Repeat steps 3-5 for any additional table-level directories, and finish the crawler configuration.

The new values for Include locations appear under data stores

Crawler info

Name SampleCrawler
Service role -

Data stores

Data store S3
Include path s3:.//bucketi/folderi/tablel/
Exclude paths

Data store S3
Include path s3://bucketi/folder1/table2/
Exclude paths

Syncing Partition Schema to Avoid
"HIVE_PARTITION_SCHEMA_MISMATCH"

For each table within the AWS Glue Data Catalog that has partition columns, the schema is stored

at the table level and for each individual partition within the table. The schema for partitions are
populated by an AWS Glue crawler based on the sample of data that it reads within the partition. For
more information, see Using Multiple Data Sources with Crawlers (p. 25).

When Athena runs a query, it validates the schema of the table and the schema of any partitions
necessary for the query. The validation compares the column data types in order and makes sure
that they match for the columns that overlap. This prevents unexpected operations such as adding
or removing columns from the middle of a table. If Athena detects that the schema of a partition
differs from the schema of the table, Athena may not be able to process the query and fails with
HIVE PARTITION_ SCHEMA MISMATCH.

There are a few ways to fix this issue. First, if the data was accidentally added, you can remove the data
files that cause the difference in schema, drop the partition, and re-crawl the data. Second, you can drop
the individual partition and then run MSCK REPAIR within Athena to re-create the partition using the
table's schema. This second option works only if you are confident that the schema applied will continue
to read the data correctly.

Updating Table Metadata

After a crawl, the AWS Glue crawler automatically assigns certain table metadata to help make it
compatible with other external technologies like Apache Hive, Presto, and Spark. Occasionally, the
crawler may incorrectly assign metadata properties. Manually correct the properties in AWS Glue before
querying the table using Athena. For more information, see Viewing and Editing Table Details in the AWS
Glue Developer Guide.

AWS Glue may mis-assign metadata when a CSV file has quotes around each data field, getting the
serializationLib property wrong. For more information, see CSV Data Enclosed in quotes (p. 28).

27

http://docs.aws.amazon.com/glue/latest/dg/console-tables.html#console-tables-details

Amazon Athena User Guide
Working with CSV Files

Working with CSV Files

CSV files occasionally have quotes around the data values intended for each column, and there may be
header values included in CSV files, which aren't part of the data to be analyzed. When you use AWS Glue
to create schema from these files, follow the guidance in this section.

CSV Data Enclosed in Quotes

If you run a query in Athena against a table created from a CSV file with quoted data values, update
the table definition in AWS Glue so that it specifies the right SerDe and SerDe properties. This allows
the table definition to use the OpenCSVSerDe. For more information about the OpenCSV SerDe, see
OpenCSVSerDe for Processing CSV (p. 114).

In this case, you need to change the serializationLib property under field in the SerDelnfo field in
the table to org.apache.hadoop.hive.serde2.0penCSVSerde and enter appropriate values for

separatorChar, quoteChar, and escapeChar.

For example, for a CSV file with records such as the following:

"John","Doe","123-555-1231","John said \"hello\""
"Jane","Doe","123-555-9876", "Jane said \"hello\""

The separatorChar™~value is a comma, the ~~quoteChar valueis double quotes, and the

escapeChar value is the backslash.

You can use the AWS Glue console to edit table details as shown in this example:

28

Amazon Athena User Guide
Working with CSV Files

Edit table details

Table name

sample_csv_table

Input format

org.apache.hadoop.mapred. TextinputFormat

Output format

org.apache.hadoop.hive.gl.io.HivelgnoreKeyTextOutputFormat

Serde name

Serde serialization lib

org.apache.hadoop.hive.serde2.0penCSVSerde

Serde parameters

Key

escapeChar

guoteChar

separatorChar

Type key... Type value...

Description

Alternatively, you can update the table definition in AWS Glue to have a SerDelnfo block such as the
following:

"SerDeInfo": {

29

Amazon Athena User Guide
Using AWS Glue Jobs for ETL with Athena

"name": "",
"serializationLib": "org.apache.hadoop.hive.serde2.0penCSVSerde",
"parameters": {
"separatorChar": ","
"quoteChar": """
"escapeChar": "\\"
}
T

For more information, see Viewing and Editing Table Details in the AWS Glue Developer Guide.

CSV Files with Headers

If you are writing CSV files from AWS Glue to query using Athena, you must remove the CSV headers

so that the header information is not included in Athena query results. One way to achieve this is to
use AWS Glue jobs, which perform extract, transform, and load (ETL) work. You can write scripts in AWS
Glue using a language that is an extension of the PySpark Python dialect. For more information, see
Authoring Jobs in Glue in the AWS Glue Developer Guide.

The following example shows a function in an AWS Glue script that writes out a dynamic frame
using from_options, and sets the writeHeader format option to false, which removes the header
information:

glueContext.write_dynamic_frame.from options(frame = applymappingl, connection_type
= "s3", connection options = {"path": "s3://MYBUCKET/MYTABLEDATA/"}, format = "csv",
format_options = {"writeHeader": False}, transformation_ctx = "datasink2")

Using AWS Glue Jobs for ETL with Athena

AWS Glue jobs perform ETL operations. An AWS Glue job runs a script that extracts data from sources,
transforms the data, and loads it into targets. For more information, see Authoring Jobs in Glue in the
AWS Glue Developer Guide.

Creating Tables Using Athena for AWS Glue ETL Jobs

Tables that you create from within Athena must have a table property added to them called a
classification, which identifies the format of the data. This allows AWS Glue to be able to use the
tables for ETL jobs. The classification values can be csv, parquet, orc, avro, or json. An example
create table statement in Athena follows:

CREATE EXTERNAL TABLE sampleTable (
columnl INT,
column2 INT
) STORED AS PARQUET
TBLPROPERTIES (
'classification'='parquet')

If the table property was not added when the table was created, the property can be added using the
AWS Glue console.

30

http://docs.aws.amazon.com/glue/latest/dg/console-tables.html#console-tables-details
http://docs.aws.amazon.com/glue/latest/dg/busisadd-job.html
http://docs.aws.amazon.com/glue/latest/dg/busisadd-job.html

Amazon Athena User Guide
Using AWS Glue Jobs for ETL with Athena

To change the classification property using the console

1. Choose Edit Table.

Tables > clicks

AWS Glue

| |
¢ Edit table Delete table
Data catalog]
Databases
Name roram

Table= Description

Connections Database rrmr_Foakm
Crawlers Classification

2. For Classification, select the file type and choose Apply.

Edit table detalils

compressionType none x

classification

typeCiData file X

For more information, see Working with Tables in the AWS Glue Developer Guide.

Using ETL Jobs to Optimize Query Performance

AWS Glue jobs can help you transform data to a format that optimizes query performance in Athena.
Data formats have a large impact on query performance and query costs in Athena.

We recommend the Parquet and ORC formats. AWS Glue supports writing to both of these data formats,
which can make it easier and faster for you to transform data to an optimal format for Athena. For more
information about these formats and other ways to improve performance, see Top Performance Tuning
tips for Amazon Athena.

31

http://docs.aws.amazon.com/glue/latest/dg/console-tables.html
http://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/
http://aws.amazon.com/blogs/big-data/top-10-performance-tuning-tips-for-amazon-athena/

Amazon Athena User Guide
Using AWS Glue Jobs for ETL with Athena

Converting SMALLINT and TINYINT Datatypes to INT When
Converting to ORC

To reduce the likelihood that Athena is unable to read the SMALLINT and TINYINT data types produced
by an AWS Glue ETL job, convert SMALLINT and TINYINT to INT when using the wizard or writing a
script for an ETL job.

Changing Date Data Types to String for Parquet ETL
Transformation

Athena currently does not support the DATE data type for Parquet files. Convert DATE data types to
STRING when using the wizard or writing a script for an AWS Glue ETL job.

Automating AWS Glue Jobs for ETL

You can configure AWS Glue ETL jobs to run automatically based on triggers. This feature is ideal when
data from outside AWS is being pushed to an S3 bucket in a suboptimal format for querying in Athena.
For more information, see Triggering AWS Glue Jobs in the AWS Glue Developer Guide.

32

http://docs.aws.amazon.com/glue/latest/dg/trigger-job.html

Amazon Athena User Guide
Using Athena with the JDBC Driver

Connecting to Amazon Athena with
ODBC and JDBC Drivers

To explore and visualize your data with business intelligence tools, download, install, and configure an
ODBC (Open Database Connectivity) or JDBC (Java Database Connectivity) driver.

Topics
« Using Athena with the JDBC Driver (p. 33)
» Connecting to Amazon Athena with ODBC (p. 35)

Using Athena with the JDBC Driver

You can use a JDBC connection to connect Athena to business intelligence tools, such as SQL Workbench.
To do this, download, install, and configure the Athena JDBC driver, using the following link on Amazon
S3.

Download the JDBC Driver

1. Download the driver (JDBC 4.1 and Java 8 compatible) from this location in Amazon S3 https://
s3.amazonaws.com/athena-downloads/drivers/AthenaJDBC41-1.1.0.jar.

2. Use the AWS CLI with the following command:

aws s3 cp s3://athena-downloads/drivers/AthenadDBC41-1.1.0.jar [local_directory]

Specify the Connection String

To specify the JDBC driver connection URL in your custom application, use the string in this format:

jdbc:awsathena://athena.{REGION}.amazonaws.com: 443

where {REGION} is a region identifier, such as us-west-2. For information on Athena regions see
Regions.

Specify the JDBC Driver Class Name

To use the driver in custom applications, set up your Java class path to the location of the JAR file

that you downloaded from Amazon S3 https://s3.amazonaws.com/athena-downloads/drivers/
AthenalDBC41-1.1.0.jar in the previous section. This makes the classes within the JAR available for use.
The main JDBC driver class is com.amazonaws . athena.jdbc.AthenaDriver.

Provide the JDBC Driver Credentials

To gain access to AWS services and resources, such as Athena and the Amazon S3 buckets, provide JDBC
driver credentials to your application.

To provide credentials in the Java code for your application:

33

https://s3.amazonaws.com/athena-downloads/drivers/AthenaJDBC41-1.1.0.jar
https://s3.amazonaws.com/athena-downloads/drivers/AthenaJDBC41-1.1.0.jar
http://docs.aws.amazon.com/general/latest/gr/rande.html#athena
https://s3.amazonaws.com/athena-downloads/drivers/AthenaJDBC41-1.1.0.jar
https://s3.amazonaws.com/athena-downloads/drivers/AthenaJDBC41-1.1.0.jar

Amazon Athena User Guide
Configure the JDBC Driver Options

1. Use a class which implements the AWSCredentialsProvider.

2. Set the JDBC property, aws_credentials_provider_class, equal to the class name, and include it
in your classpath.

3. To include constructor parameters, set the JDBC property
aws_credentials_provider arguments as specified in the following section about configuration
options.

Another method to supply credentials to Bl tools, such as SQL Workbench, is to supply the credentials
used for the JDBC as AWS access key and AWS secret key for the JDBC properties for user and password,
respectively.

Users who connect through the JDBC driver and have custom access policies attached to their profiles
need permissions for policy actions in addition to those in the Amazon Athena API Reference.

Policies

You must allow JDBC users to perform a set of policy-specific actions. These actions are not part of the
Athena API. If the following actions are not allowed, users will be unable to see databases and tables:

« athena:GetCatalogs

* athena:GetExecutionEngine
* athena:GetExecutionEngines
» athena:GetNamespace

e athena:GetNamespaces

e athena:GetTable

e athena:GetTables

Configure the JDBC Driver Options

You can configure the following options for the JDBC driver. With this version of the driver, you can also
pass parameters using the standard JDBC URL syntax, for example: jdbc:awsathena://athena.us-
west-1.amazonaws.com:443?max_error_retries=20&connection_timeout=20000.

Options for the JDBC Driver

Property Name Description Default | Is
Value Required

s3_staging dir The S3 location to which your query output is N/A Yes
written, for example s3://query-results-
bucket/folder/, which is established under
Settings in the Athena Console, https://
console.aws.amazon.com/athena/. The JDBC driver
then asks Athena to read the results and provide
rows of data back to the user.

query_results_encrypthiesnopyptiam method to use for the directory N/A No
specified by s3_staging_dir. If not specified, the
location is not encrypted. Valid values are SSE_S3,
SSE_KMS, and CSE_KMS.

query_results_aws_kmEh&&gy ID of the AWS customer master key (CMK) | N/A No
touse if query_results_encryption_ option

34

http://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/athena/latest/APIReference/
https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home

Amazon Athena User Guide
Connecting to Amazon Athena with ODBC

Property Name Description Default Is
Value Required

specifies SSE-KMS or CSE-KMS. For example,
123abcde-4e56-56f7-g890-1234h5678197.

aws_credentials_provideeredeasials provider class name, which N/A No
implements the AWSCredentialsProvider
interface.

aws_credentials_provApmmentsfioetibe credentials provider constructor | N/A No

as comma-separated values.

max_error_retries | The maximum number of retries that the JDBC 10 No
client attempts to make a request to Athena.

connection_timeout & The maximum amount of time, in milliseconds, to 10,000 No
make a successful connection to Athena before an
attempt is terminated.

socket_timeoutt The maximum amount of time, in milliseconds, to 10,000 No
wait for a socket in order to send data to Athena.

retry_base_delay Minimum delay amount, in milliseconds, between 100 No
retrying attempts to connect Athena.

retry_max_backoff_time | Maximum delay amount, in milliseconds, between 1000 No
retrying attempts to connect to Athena.

log_path Local path of the Athena JDBC driver logs. If no log | N/A No
path is provided, then no log files are created.

log_level Log level of the Athena JDBC driver logs. Valid N/A No
values: INFO, DEBUG, WARN, ERROR, ALL, OFF,
FATAL, TRACE.

Connecting to Amazon Athena with ODBC

Download the ODBC driver, the Amazon Athena ODBC driver License Agreement, and the documentation
for the driver using the following links.

Amazon Athena ODBC Driver License Agreement

License Agreement

Windows

« Windows 32 bit ODBC Driver
« Windows 64 bit ODBC Driver

Linux

e Linux 32 bit ODBC Driver
o Linux 64 bit ODBC Driver

35

https://s3.amazonaws.com/athena-downloads/agreement/ODBC/Amazon+Athena+ODBC+Driver+License+Agreement.pdf
https://s3.amazonaws.com/athena-downloads/drivers/ODBC/Windows/Simba+Athena+1.0+32-bit.msi
https://s3.amazonaws.com/athena-downloads/drivers/ODBC/Windows/Simba+Athena+1.0+64-bit.msi
https://s3.amazonaws.com/athena-downloads/drivers/ODBC/Linux/simbaathena-1.0.2.1003-1.i686.rpm
https://s3.amazonaws.com/athena-downloads/drivers/ODBC/Linux/simbaathena-1.0.2.1003-1.x86_64.rpm

Amazon Athena User Guide
0SX

OSX

OSX ODBC Driver

ODBC Driver Connection String

For information about the connection string to use with your application, see ODBC Driver Installation
and Configuration Guide.

Documentation

ODBC Driver Installation and Configuration Guide.

36

https://s3.amazonaws.com/athena-downloads/drivers/ODBC/OSX/Simba+Athena+1.0.dmg
https://s3.amazonaws.com/athena-downloads/drivers/ODBC/Simba+Athena+ODBC+Install+and+Configuration+Guide.pdf
https://s3.amazonaws.com/athena-downloads/drivers/ODBC/Simba+Athena+ODBC+Install+and+Configuration+Guide.pdf
https://s3.amazonaws.com/athena-downloads/drivers/ODBC/Simba+Athena+ODBC+Install+and+Configuration+Guide.pdf

Amazon Athena User Guide
Setting User and Amazon S3 Bucket Permissions

Security

Amazon Athena uses IAM policies to restrict access to Athena operations. Encryption options enable you
to encrypt query result files in Amazon S3 and query data encrypted in Amazon S3. Users must have the
appropriate permissions to access the Amazon S3 locations and decrypt files.

Topics
» Setting User and Amazon S3 Bucket Permissions (p. 37)
« Configuring Encryption Options (p. 41)

Setting User and Amazon S3 Bucket Permissions

To run queries in Athena, you must have the appropriate permissions for:

« The Athena actions.
« The Amazon S3 locations where the underlying data is stored that you are going to query in Athena.

If you are an administrator for other users, make sure that they have appropriate permissions associated
with their user profiles.

IAM Policies for User Access

To allow or deny Athena service actions for yourself or other users, use IAM policies attached to
principals, such as users or groups.

Each IAM policy consists of statements that define the actions that are allowed or denied. For a list of
actions, see the Amazon Athena API Reference.

Managed policies are easy to use and are automatically updated with the required actions as the service
evolves.

The AmazonAthenaFullAccess policy is the managed policy for Athena. Attach this policy to users and
other principals who need full access to Athena. For more information and step-by-step instructions for
attaching a policy to a user, see Attaching Managed Policies in the AWS Identity and Access Management
User Guide.

Customer-managed and inline policies allow you to specify more granular Athena actions within a policy
to fine-tune access. We recommend that you use the AmazonAthenaFullAccess policy as a starting
point and then allow or deny specific actions listed in the Amazon Athena API Reference. For more
information about inline policies, see Managed Policies and Inline Policies in the AWS Identity and Access
Management User Guide.

If you also have principals that connect using JDBC, you must allow additional actions not listed in the
API. For more information, see Service Actions for JDBC Connections (p. 40).

AmazonAthenaFullAccess Managed Policy

Managed policy contents change, so the policy shown here may be out-of-date. Check the IAM console
for the most up-to-date policy.

"Version": "2012-10-17",
"Statement": [

37

http://docs.aws.amazon.com/athena/latest/APIReference/
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console
http://docs.aws.amazon.com/athena/latest/APIReference/
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html

Amazon Athena User Guide
AmazonAthenaFullAccess Managed Policy

"Effect": "Allow",
"Action": [

1,

"athena:*"

"Resource": [

ngn

"Effect": "Allow",
"Action": [

1,

"glue:CreateDatabase",
"glue:DeleteDatabase",
"glue:GetDatabase",
"glue:GetDatabases",
"glue:UpdateDatabase",
"glue:CreateTable",
"glue:DeleteTable",
"glue:BatchDeleteTable",
"glue:UpdateTable",
"glue:GetTable",
"glue:GetTables",
"glue:BatchCreatePartition",
"glue:CreatePartition",
"glue:DeletePartition",
"glue:BatchDeletePartition",
"glue:UpdatePartition",
"glue:GetPartition",
"glue:GetPartitions",
"glue:BatchGetPartition"

"Resource": [

ngn

"Effect": "Allow",
"Action": [

1,

"s3:GetBucketLocation",
"s3:GetObject",

"s3:ListBucket",
"s3:ListBucketMultipartUploads",
"s3:ListMultipartUploadParts",
"s3:AbortMultipartUpload",
"s3:CreateBucket",
"s3:PutObject"

"Resource": [

"arn:aws:s3:::aws-athena-query-results-*"

"Effect": "Allow",
"Action": [

1,

"s3:GetObject"

"Resource": [

"arn:aws:s3:::athena-examples*"

38

Amazon Athena User Guide
AWSQuicksightAthenaAccess Managed Policy

AWSQuicksightAthenaAccess Managed Policy

An additional managed policy, AWSQuicksightAthenaAccess, grants access to actions that Amazon
QuickSight needs to integrate with Athena. This policy includes deprecated actions for Athena that are
not in the API. Attach this policy only to principals who use Amazon QuickSight in conjunction with

Athena.

Managed policy contents change, so the policy shown here may be out-of-date. Check the IAM console

for the most up-to-date policy.

{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"athena:BatchGetQueryExecution",
"athena:CancelQueryExecution",
"athena:GetCatalogs",
"athena:GetExecutionEngine",
"athena:GetExecutionEngines",
"athena:GetNamespace",
"athena:GetNamespaces",
"athena:GetQueryExecution",
"athena:GetQueryExecutions",
"athena:GetQueryResults",
"athena:GetTable",
"athena:GetTables",
"athena:ListQueryExecutions",
"athena:RunQuery",
"athena:StartQueryExecution",
"athena:StopQueryExecution"

1.

"Resource": [
g

"Effect": "Allow",

"Action": [
"glue:CreateDatabase",
"glue:DeleteDatabase",
"glue:GetDatabase",
"glue:GetDatabases",
"glue:UpdateDatabase",
"glue:CreateTable",
"glue:DeleteTable",
"glue:BatchDeleteTable",
"glue:UpdateTable",
"glue:GetTable",
"glue:GetTables",
"glue:BatchCreatePartition",
"glue:CreatePartition",
"glue:DeletePartition",
"glue:BatchDeletePartition",
"glue:UpdatePartition",
"glue:GetPartition",
"glue:GetPartitions",
"glue:BatchGetPartition"

1.

"Resource": [
g

39

Amazon Athena User Guide
Access through JDBC Connections

"Effect": "Allow",

"Action": [
"s3:GetBucketLocation",
"s3:GetObject",
"s3:ListBucket",
"s3:ListBucketMultipartUploads",
"s3:ListMultipartUploadParts",
"s3:AbortMultipartUpload",
"s3:CreateBucket",
"s3:PutObject"

1,

"Resource": [
"arn:aws:s3:::aws-athena-query-results-*"

]

Access through JDBC Connections

To gain access to AWS services and resources, such as Athena and the Amazon S3 buckets, provide JDBC
driver credentials to your application. See Connect with the JDBC Driver (p. 33).

Amazon S3 Permissions

In addition to the allowed actions for Athena that you define in policies, if you or your users need to
create tables and work with underlying data, you must grant appropriate access to the Amazon S3
location of the data.

You can do this using user policies, bucket policies, or both. For detailed information and scenarios about
how to grant Amazon S3 access, see Example Walkthroughs: Managing Access in the Amazon Simple
Storage Service Developer Guide. For more information and an example of which Amazon S3 actions to
allow, see the example bucket policy later in this topic.

Note
Athena does not support restricting or allowing access to Amazon S3 resources based on the
aws : SourceIp condition key.

Cross-account Permissions

A common scenario is granting access to users in an account different from the bucket owner so that
they can perform queries. In this case, use a bucket policy to grant access.

The following example bucket policy, created and applied to bucket s3: //my-athena-data-bucket
by the bucket owner, grants access to all users in account 123456789123, which is a different account.

"Version": "2012-10-17",

"Id": "MyPolicyID",

"Statement": [

{
"Sid": "MyStatementsSid",
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::123456789123:root"

Iy

40

http://docs.aws.amazon.com/AmazonS3/latest/dev/example-walkthroughs-managing-access.html

Amazon Athena User Guide
Configuring Encryption Options

"Action": [
"s3:GetBucketLocation",
"s3:GetObject",
"s3:ListBucket",
"s3:ListBucketMultipartUploads",
"s3:ListMultipartUploadParts",
"s3:AbortMultipartUpload",
"s3:PutObject"

1,

"Resource": [
"arn:aws:s3:::my-athena-data-bucket",
"arn:aws:s3:::my-athena-data-bucket/*"

To grant access to a particular user in an account, replace the Principal key with
a key that specifies the user instead of root. For example, for user profile Dave, use
arn:aws:iam::123456789123:user/Dave.

Configuring Encryption Options

You can use Athena to query encrypted data in Amazon S3 by indicating data encryption when you
create a table. You can also choose to encrypt the results of all queries in Amazon S3, which Athena
stores in a location known as the S3 staging directory. You can encrypt query results stored in Amazon
S3 whether the underlying dataset is encrypted in Amazon S3 or not. You set up query-result encryption
using the Athena console or, if you connect using the JDBC driver, by configuring driver options. You
specify the type of encryption to use and the Amazon S3 staging directory location. Query-result
encryption applies to all queries.

These options encrypt data at rest in Amazon S3. Regardless of whether you use these options, transport
layer security (TLS) encrypts objects in-transit between Athena resources and between Athena and
Amazon S3. Query results stream to JDBC clients as plain text and are encrypted using SSL.

Important

The setup for querying an encrypted dataset in Amazon S3 and the options in Athena to encrypt
query results are independent. Each option is enabled and configured separately. You can use
different encryption methods or keys for each. This means that reading encrypted data in
Amazon S3 doesn't automatically encrypt Athena query results in Amazon S3. The opposite is
also true. Encrypting Athena query results in Amazon S3 doesn't encrypt the underlying dataset
in Amazon S3.

Athena supports the following S3 encryption options, both for encrypted datasets in Amazon S3 and for
encrypted query results:

« Server side encryption with an Amazon S3-managed key (SSE-S3)
« Server-side encryption with a AWS KMS-managed key (SSE-KMS).
Note

With SSE-KMS, Athena does not require you to indicate data is encrypted when creating a
table.

« Client-side encryption with a AWS KMS-managed key (CSE-KMS)

For more information about AWS KMS encryption with Amazon S3, see What is AWS Key Management
Service and How Amazon Simple Storage Service (Amazon S3) Uses AWS KMS in the AWS Key
Management Service Developer Guide.

41

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html#client-side-encryption-kms-managed-master-key-intro
http://docs.aws.amazon.com/kms/latest/developerguide/overview.html
http://docs.aws.amazon.com/kms/latest/developerguide/overview.html
http://docs.aws.amazon.com/kms/latest/developerguide/services-s3.html

Amazon Athena User Guide
Permissions for Encrypting and Decrypting Data

Athena does not support SSE with customer-provided keys (SSE-C), nor does it support client-side
encryption using a client-side master key. To compare Amazon S3 encryption options, see Protecting
Data Using Encryption in the Amazon Simple Storage Service Developer Guide.

Athena does not support running queries from one region on encrypted data stored in Amazon S3 in
another region.

Permissions for Encrypting and Decrypting Data

If you use SSE-S3 for encryption, Athena users require no additional permissions for encryption and
decryption. Having the appropriate Amazon S3 permissions for the appropriate Amazon S3 location
(and for Athena actions) is enough. For more information about policies that allow appropriate
Athena and Amazon S3 permissions, see IAM Policies for User Access (p. 37) and Amazon S3
Permissions (p. 40).

For data that is encrypted using AWS KMS, Athena users must be allowed to perform particular AWS
KMS actions in addition to Athena and S3 permissions. You allow these actions by editing the key policy
for the KMS customer master keys (CMKs) that are used to encrypt data in Amazon S3. The easiest

way to do this is to use the IAM console to add key users to the appropriate KMS key policies. For
information about how to add a user to a KMS key policy, see How to Modify a Key Policy in the AWS Key
Management Service Developer Guide.

Note

Advanced key policy administrators may want to fine-tune key policies. kms : Decrypt is the
minimum allowed action for an Athena user to work with an encrypted dataset. To work with
encrypted query results, the minimum allowed actions are kms : GenerateDataKey and

kms :Decrypt.

When using Athena to query datasets in Amazon S3 with a large number of objects that are encrypted
with AWS KMS, AWS KMS may throttle query results. This is more likely when there are a large number
of small objects. Athena backs off retry requests, but a throttling error might still occur. In this case, visit
the AWS Support Center and create a case to increase your limit. For more information about limits and
AWS KMS throttling, see Limits in the AWS Key Management Service Developer Guide.

Creating Tables Based on Encrypted Datasets in
Amazon S3

You indicate to Athena that a dataset is encrypted in Amazon S3 when you create a table (this is not
required when using SSE-KMS). For both SSE-S3 and KMS encryption, Athena is able to determine the
proper materials to use to decrypt the dataset and create the table, so you don't need to provide key
information.

Users that run queries, including the user who creates the table, must have the appropriate permissions
as described earlier.

Important

If you use Amazon EMR along with EMRFS to upload encrypted Parquet files, you must disable
multipart uploads (set fs.s3n.multipart.uploads.enabled to false); otherwise, Athena
is unable to determine the Parquet file length and a HIVE_CANNOT_OPEN_SPLIT error occurs.
For more information, see Configure Multipart Upload for Amazon S3 in the EMR Management
Guide.

Indicate that the dataset is encrypted in Amazon S3 in one of the following ways. This is not required if
SSE-KMS is used.

o Use the CREATE TABLE (p. 136) statement with a TBLPROPERTIES clause that specifies
'has_encrypted_data'="'true'.

42

http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html
http://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying.html#key-policy-modifying-how-to-console-default-view
https://console.aws.amazon.com/support/home
http://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second
http://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-upload-s3.html#Config_Multipart

Amazon Athena User Guide
Creating Tables Based on Encrypted Datasets in Amazon S3

1] Services v Resource Groups ~

Athena OQuery Editor

L#]

MytncryptedTable

« Use the JDBC driver (p. 33) and set the TBLPROPERTIES value as above when you execute CREATE
TABLE (p. 136) using statement.executeQuery().

« Use the Add table wizard in the Athena console, and then choose Encrypted data set when you
specify a value for Location of input data set.

Catalog Manager

Databases Add table

Step 1: Mame & Locatlon

Extemal

Tables based on encrypted data in Amazon S3 appear in the Database list with an encryption icon.

43

Amazon Athena User Guide
Encrypting Query Results Stored in Amazon S3

I+l Services ~ Resource Groups ~ %

Athena Query Editor Saved Queries His oy

|
[#]

X
:
o
=
o
=
S

Encrypting Query Results Stored in Amazon S3

You use the Athena console or JDBC driver properties to specify that query results, which Athena stores
in the S3 staging directory, are encrypted in Amazon S3. This setting applies to all Athena query results.
You can't configure the setting for individual databases, tables, or queries.

To encrypt query results stored in Amazon S3 using the console

1. In the Athena console, choose Settings.

]‘I Services ~ Resource Groups ~ *

=1 Athena Query Editer Saved Quverles History it :I ubaria

2. For Query result location, enter a custom value or leave the default. This is the Amazon S3 staging
directory where query results are stored.

3. Choose Encrypt query results.
Settings

Query result location &30 wws-athena-guery nesults 852 35196 103%-us-sast-1 L[]
Exampde: 5.3://query-resulis-bucket/folden
Encrypt query results < 0
Encryption type CSE-EMS v 0
Encryption key Enter a KMS key ARN v | B O Create KMS ke

KMS key ARN am;aws kms ys-sast-1- 123456789012 key 1234567 8- 123412341234

4. For Encryption type, choose CSE-KMS, SSE-KMS, or SSE-S3.

If you chose SSE-KMS or CSE-KMS, for Encryption key, specify one of the following:

44

Amazon Athena User Guide
Encrypting Query Results stored in
Amazon S3 Using the JDBC Driver

« If your account has access to an existing KMS CMK, choose its alias, or

e Choose Enter a KMS key ARN and then enter an ARN.

« To create a new KMS key, choose Create KMS key, use the IAM console to create the key, and then
return to specify the key by alias or ARN as described in the previous steps. For more information,
see Creating Keys in the AWS Key Management Service Developer Guide.

5. Choose Save.

Encrypting Query Results stored in Amazon S3 Using
the JDBC Driver

You can configure the JDBC Driver to encrypt your query results using any of the encryption protocols
that Athena supports. For more information, see JDBC Driver Options (p. 34).

45

http://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html

Amazon Athena User Guide
Tables and Databases Creation Process in Athena

Working with Source Data

Topics
« Tables and Databases Creation Process in Athena (p. 46)
« Names for Tables, Databases, and Columns (p. 50)
« Table Location in Amazon S3 (p. 51)
« Partitioning Data (p. 51)
« Converting to Columnar Formats (p. 55)

Tables and Databases Creation Process in Athena

Amazon Athena uses Apache Hive data definition language (DDL) statements to define and query
external tables where data resides on Amazon Simple Storage Service.

You can run DDL statements:

« In the Athena console
« using a JDBC or an ODBC driver
« using the Athena Create Table wizard.

When you create a new table schema in Athena, Athena stores the schema in a data catalog and uses it
when you run queries.

Athena uses an approach known as schema-on-read, which means a schema is projected on to your data
at the time you execute a query. This eliminates the need for data loading or transformation.

Athena does not modify your data in Amazon S3.

Athena uses Apache Hive to define tables and create databases, which are essentially a logical
namespace of tables.

When you create a database and table in Athena, you are simply describing the schema and the location
where the table data are located in Amazon S3 for read-time querying. Database and table, therefore,
have a slightly different meaning than they do for traditional relational database systems because the
data isn't stored along with the schema definition for the database and table.

When you query, you query the table using standard SQL and the data is read at that time. You can find
guidance for how to create databases and tables using Apache Hive documentation, but the following
provides guidance specifically for Athena.

Hive supports multiple data formats through the use of serializer-deserializer (SerDe) libraries. You
can also define complex schemas using regular expressions. For a list of supported SerDe libraries, see
Supported Data Formats, SerDes, and Compression Formats (p. 108).

Requirements for Tables in Athena and Data in
Amazon S3

When you create a table, you specify an Amazon S3 bucket location for the underlying data using the
LOCATION clause. Consider the following:

« You must have the appropriate permissions to work with data in the Amazon S3 location. For more
information, see Setting User and Amazon S3 Bucket Permissions (p. 37).

46

https://hive.apache.org/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL

Amazon Athena User Guide
Functions Supported

« If the data is not encrypted in Amazon S3, it can be stored n a different region from the primary region
where you run Athena. Standard inter-region data transfer rates for Amazon S3 apply in addition to
standard Athena charges.

« If the data is encrypted in Amazon S3, it must be stored in the same region, and the user or principal
who creates the table in Athena must have the appropriate permissions to decrypt the data. For more
information, see Configuring Encryption Options (p. 41).

« Athena does not support different storage classes within the bucket specified by the LOCATION
clause, does not support the GLACIER storage class, and does not support Requester Pays buckets. For
more information, see Storage Classes, Changing the Storage Class of an Object in Amazon S3, and
Requester Pays Buckets in the Amazon Simple Storage Service Developer Guide.

Functions Supported

The functions supported in Athena queries are those found within Presto. For more information, see
Presto 0.172 Functions and Operators in the Presto documentation.

CREATE TABLE AS Type Statements Are Not
Supported

Athena does not support CREATE TABLE AS type statements, for example, CREATE TABLE AS SELECT,
which creates a table from the result of a SELECT query statement.

Transactional Data Transformations Are Not
Supported

Athena does not support transaction-based operations (such as the ones found in Hive or Presto) on
table data. For a full list of keywords not supported, see Unsupported DDL (p. 148).

Operations That Change Table States Are ACID

When you create, update, or delete tables, those operations are guaranteed ACID-compliant. For
example, if multiple users or clients attempt to create or alter an existing table at the same time, only
one will be successful.

All Tables Are EXTERNAL

If you use CREATE TABLE without the EXTERNAL keyword, Athena issues an error; only tables with the
EXTERNAL keyword can be created. We recommend that you always use the EXTERNAL keyword. When
you drop a table in Athena, only the table metadata is removed; the data remains in Amazon S3.

UDF and UDAF Are Not Supported

User-defined functions (UDF or UDAFs) and stored procedures are not supported.

To create a table using the AWS Glue Data Catalog

1. Open the Athena console at https://console.aws.amazon.com/athena/.

2. Choose AWS Glue Data Catalog. You can now create a table with the AWS Glue Crawler. For more
information, see Using AWS Glue Crawlers (p. 24).

47

http://docs.aws.amazon.com/AmazonS3/latest/dev/storage-class-intro.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/ChgStoClsOfObj.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/RequesterPaysBuckets.html
https://prestodb.io/docs/0.172/functions.html
https://console.aws.amazon.com/athena/home

Amazon Athena User Guide
To create a table using the wizard

g .
[T Services ~ Resource Groups ~ *

Athena QueryEditor Saved Queries History

DATABASE =
1|-—— Rur
darshana v 2
< 3| -- RN
TABLES Create Table - —
e _ — N -
Filter Tables Automatically (AWS Glue crawler) GF
Manually)| —— CRE
0| -— Dat

To create a table using the wizard

1. Open the Athena console at https://console.aws.amazon.com/athena/.
2. Under the database display in the Query Editor, choose Add table, which displays a wizard.
3. Follow the steps for creating your table.

To create a database using Hive DDL

A database in Athena is a logical grouping for tables you create in it.

1. Open the Athena console at https://console.aws.amazon.com/athena/.
2. Choose Query Editor.
3. Enter CREATE DATABASE myDataBase and choose Run Query.

48

https://console.aws.amazon.com/athena/home
https://console.aws.amazon.com/athena/home

Amazon Athena User Guide
To create a table using Hive DDL

1 CREATE DATABASE myDataBase
2

Save As orcreatea New Query

Recent Queries Results

The operation has no results.

B I e T P T PP

4. Select your database from the menu. It is likely to be an empty database.

Catalog Sample Queries

DATABASE S 7]
Choose a database... v
Add table..

Mo databases or tables found.

To create a table using Hive DDL

The Athena Query Editor displays the current database. If you create a table and don't specify a
database, the table is created in the database chosen in the Databases section on the Catalog tab.

1. In the database that you created, create a table by entering the following statement and choosing
Run Query:

CREATE EXTERNAL TABLE IF NOT EXISTS cloudfront_logs (
“Date” Date,
Time STRING,
Location STRING,
Bytes INT,
RequestIP STRING,

49

Amazon Athena User Guide
Names for Tables, Databases, and Columns

Method STRING,

Host STRING,

Uri STRING,

Status INT,

Referrer STRING,

0S String,

Browser String,

BrowserVersion String
) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
"input.regex" = "A(2!#)([* TE\\s+([* I+)\\s+([* T+)\\s+([* J+)\\s+([* I+)\\s+([* I+)\\s
+([A I9N\N\s+([A T+9)N\\s+([~ T+ON\\s+([~ T+ON\s+[ANCI+INCICIANG T+) . *\%20([A\/T+)[\/T(.*)s"
) LOCATION 's3://athena-examples/cloudfront/plaintext/';

2. If the table was successfully created, you can then run queries against your data.

Names for Tables, Databases, and Columns

Use these tips for naming items in Athena.

Table names and table column names in Athena must
be lowercase

If you are interacting with Apache Spark, then your table names and table column names must be
lowercase. Athena is case-insensitive and turns table names and column names to lower case, but Spark
requires lowercase table and column names.

Queries with mixedCase column names, such as profileURI, or upper case column names do not work.

Athena table, database, and column names allow
only underscore special characters

Athena table, database, and column names cannot contain special characters, other than underscore
().

Names that begin with an underscore

Use backtics to enclose table or column names that begin with an underscore. For example:

CREATE TABLE ~_myUnderScoreTable™ (
*_id" string,
" _index"string,

Table names that include numbers

Enclose table names that include numbers in quotation marks. For example:

CREATE TABLE "Tablel23"
*_id" string,
~_index"~ string,

50

Amazon Athena User Guide
Table Location in Amazon S3

Table Location in Amazon S3

When you run a CREATE TABLE AS query in Athena, you register your table with the data catalog
that Athena uses. If you migrated to AWS Glue, this is the catalog from AWS Glue. You also specify the
location in Amazon S3 for your table in this format: s3: //bucketname/keyname.

Use these tips and examples when you specify the location in Amazon S3.

« Athena reads all files in an Amazon S3 location you specify in the CREATE TABLE statement, and
cannot ignore any files included in the prefix. When you create tables, include in the Amazon S3 path
only the files you want Athena to read. Use AWS Lambda functions to scan files in the source location,
remove any empty files, and move unneeded files to another location.

« Inthe LOCATION clause, use a trailing slash for your folder or bucket.

Use:

s3://bucketname/keyname/

« Do not use filenames, wildcards, or glob patterns for specifying file locations.

« Do not add the full HTTP notation, such as s3.amazon. com to the Amazon S3 bucket path.

Do not use:

s3://path_to_bucket
s3://path_to_bucket/*
s3://path_to_bucket/mySpecialFile.dat
s3://bucketname/keyname/filename.csv
s3://test-bucket.s3.amazon.com
arn:aws:s3:::bucketname/keyname

Partitioning Data

By partitioning your data, you can restrict the amount of data scanned by each query, thus improving
performance and reducing cost. Athena leverages Hive for partitioning data. You can partition your
data by any key. A common practice is to partition the data based on time, often leading to a multi-
level partitioning scheme. For example, a customer who has data coming in every hour might decide to
partition by year, month, date, and hour. Another customer, who has data coming from many different
sources but loaded one time per day, may partition by a data source identifier and date.

To create a table with partitions, you must define it during the CREATE TABLE statement. Use
PARTITIONED BY to define the keys by which to partition data. There are two scenarios discussed below:

1. Data is already partitioned, stored on Amazon S3, and you need to access the data on Athena.

2. Data is not partitioned.

51

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-AlterPartition

Amazon Athena User Guide
Scenario 1: Data already partitioned
and stored on S3 in hive format

Scenario 1: Data already partitioned and stored on S3
in hive format

Storing Partitioned Data

Partitions are stored in separate folders in Amazon S3. For example, here is the partial listing for sample
ad impressions:

aws s3 1ls s3://elasticmapreduce/samples/hive-ads/tables/impressions/

PRE dt=2009-04-12-13-00/
PRE dt=2009-04-12-13-05/
PRE dt=2009-04-12-13-10/
PRE dt=2009-04-12-13-15/
PRE dt=2009-04-12-13-20/
PRE dt=2009-04-12-14-00/
PRE dt=2009-04-12-14-05/
PRE dt=2009-04-12-14-10/
PRE dt=2009-04-12-14-15/
PRE dt=2009-04-12-14-20/
PRE dt=2009-04-12-15-00/
PRE dt=2009-04-12-15-05/

Here, logs are stored with the column name (dt) set equal to date, hour, and minute increments. When
you give a DDL with the location of the parent folder, the schema, and the name of the partitioned
column, Athena can query data in those subfolders.

Creating a Table

To make a table out of this data, create a partition along 'dt' as in the following Athena DDL statement:

CREATE EXTERNAL TABLE impressions (
requestBeginTime string,
adId string,
impressionId string,
referrer string,
userAgent string,
userCookie string,
ip string,
number string,
processId string,
browserCookie string,
requestEndTime string,
timers struct<modelLookup:string, requestTime:string>,
threadId string,
hostname string,
sessionId string)
PARTITIONED BY (dt string)
ROW FORMAT serde 'org.apache.hive.hcatalog.data.JsonSerDe'
with serdeproperties ('paths'='requestBeginTime, adId, impressionId, referrer,
userAgent, userCookie, ip')
LOCATION 's3://elasticmapreduce/samples/hive-ads/tables/impressions/' ;

This table uses Hive's native JSON serializer-deserializer to read JSON data stored in Amazon S3. For
more information about the formats supported, see Supported Data Formats, SerDes, and Compression
Formats (p. 108).

After you execute this statement in Athena, choose New Query and execute:

52

Amazon Athena User Guide
Scenario 2: Data is not partitioned

MSCK REPAIR TABLE impressions

Athena loads the data in the partitions.

Query the Data

Now, query the data from the impressions table using the partition column. Here's an example:

SELECT dt,impressionid FROM impressions WHERE dt<'2009-04-12-14-00' and
dt>='2009-04-12-13-00"' ORDER BY dt DESC LIMIT 100

This query should show you data similar to the following:

2009-04-12-13-20 ap3HcVKAWEXtgIPu6WpuUfAfLODQEC
2009-04-12-13-20 17uchtodoS9kdeQP1x0XThK15IuRsV
2009-04-12-13-20 JOUf1SCtRwviGw8sVcghgE5hOonkgtp
2009-04-12-13-20 NQ2XP0J0dvVbCXJ0pb4XvqJ5A40xxH
2009-04-12-13-20 fFATItiBMsggro9kRdIwbeX60SROaxr
2009-04-12-13-20 V40g4RO9W6G3QjHHWF7gIlcSqig5D1G
2009-04-12-13-20 hPEPtBwk45msmwiWTxPVVolkVu4vllb
2009-04-12-13-20 v0SkfxegheD90gp31UCr6FplnKpx6i
2009-04-12-13-20 1iD90dVg0Ii4QWkwHMcOhmwTKkWDKE j

2009-04-12-13-20 b31tJiIA25CK8eDHQrHnbcknfSndUuk

Scenario 2: Data is not partitioned

A layout like the following does not, however, work for automatically adding partition data with MSCK
REPAIR TABLE:

aws s3 1ls s3://athena-examples/elb/plaintext/ --recursive

2016-11-23 17:54:46 11789573 elb/plaintext/2015/01/01/part-r-00000-ce65fca5-d6c6-40e6-
b1£9-190cc4£93814.txt

2016-11-23 17:54:46 8776899 elb/plaintext/2015/01/01/part-r-00001-ce65fca5-d6c6-40e6—
b1£f9-190cc4£93814.txt
2016-11-23 17:54:46 9309800 elb/plaintext/2015/01/01/part-r-00002-ce65fca5-d6c6-40e6-
b1£f9-190cc4£93814.txt
2016-11-23 17:54:47 9412570 elb/plaintext/2015/01/01/part-r-00003-ce65fca5-d6c6-40e6-

b1£9-190cc4£93814.txt
2016-11-23 17:54:47 10725938 elb/plaintext/2015/01/01/part-r-00004-ce65fca5-d6c6-40e6-
b1£9-190cc4£93814.txt

2016-11-23 17:54:46 9439710 elb/plaintext/2015/01/01/part-r-00005-ce65fca5-d6c6-40e6-
b1£f9-190cc4£93814.txt

2016-11-23 17:54:47 0 elb/plaintext/2015/01/01_$folder$

2016-11-23 17:54:47 9012723 elb/plaintext/2015/01/02/part-r-00006-ce65fca5-d6c6-40e6-
b1£f9-190cc4£93814.txt

2016-11-23 17:54:47 7571816 elb/plaintext/2015/01/02/part-r-00007-ce65fca5-d6c6-40e6—
b1£f9-190cc4£93814.txt

2016-11-23 17:54:47 9673393 elb/plaintext/2015/01/02/part-r-00008-ce65fca5-d6c6-40e6-

b1£f9-190cc4£93814.txt

2016-11-23 17:54:48 11979218 elb/plaintext/2015/01/02/part-r-00009-ce65fca5-d6c6-40e6-
b1£f9-190cc4£93814.txt

2016-11-23 17:54:48 9546833 elb/plaintext/2015/01/02/part-r-00010-ce65fca5-d6c6-40e6-
b1£f9-190cc4£93814.txt

2016-11-23 17:54:48 10960865 elb/plaintext/2015/01/02/part-r-00011-ce65fca5-d6c6-40e6-
b1£f9-190cc4£93814.txt

2016-11-23 17:54:48 0 elb/plaintext/2015/01/02_$folder$

2016-11-23 17:54:48 11360522 elb/plaintext/2015/01/03/part-r-00012-ce65fca5-d6c6-40e6-
b1£f9-190cc4£93814.txt

53

Amazon Athena User Guide
Scenario 2: Data is not partitioned

2016-11-23 17:54:48
b1£9-190cc4£93814.txt
2016-11-23 17:54:48
b1£9-190cc4£93814.txt
2016-11-23 17:54:49
b1£9-190cc4£93814.txt
2016-11-23 17:54:49
b1£9-190cc4£93814.txt
2016-11-23 17:54:49
b1£9-190cc4£93814.txt
2016-11-23 17:54:49
2016-11-23 17:54:50
b1£9-190cc4£93814.txt
2016-11-23 17:54:50
b1£9-190cc4£93814.txt
2016-11-23 17:54:50
b1£9-190cc4£93814.txt
2016-11-23 17:54:50
b1£9-190cc4£93814.txt
2016-11-23 17:54:50
b1£9-190cc4£93814.txt
2016-11-23 17:54:51
b1£9-190cc4£93814.txt
2016-11-23 17:54:51
2016-11-23 17:54:51
b1£9-190cc4£93814.txt
2016-11-23 17:54:51
b1£9-190cc4£93814.txt
2016-11-23 17:54:51
b1£9-190cc4£93814.txt
2016-11-23 17:54:51
b1£9-190cc4£93814.txt
2016-11-23 17:54:51
b1£9-190cc4£93814.txt
2016-11-23 17:54:51
b1£9-190cc4£93814.txt
2016-11-23 17:54:51
2016-11-23 17:54:51
b1£9-190cc4£93814.txt
2016-11-23 17:54:51
b1£9-190cc4£93814.txt
2016-11-23 17:54:52
b1£9-190cc4£93814.txt
2016-11-23 17:54:52
b1£9-190cc4£93814.txt
2016-11-23 17:54:52
b1£9-190cc4£93814.txt
2016-11-23 17:54:52
b1£9-190cc4£93814.txt
2016-11-23 17:54:52
2016-11-23 17:54:52
b1£9-190cc4£93814.txt
2016-11-23 17:54:52
b1£9-190cc4£93814.txt
2016-11-23 17:54:52
b1£9-190cc4£93814.txt
2016-11-23 17:54:53
b1£9-190cc4£93814.txt
2016-11-23 17:54:53
b1£9-190cc4£93814.txt
2016-11-23 17:54:53
b1£9-190cc4£93814.txt
2016-11-23 17:54:53
2016-11-23 17:54:53
2016-11-23 17:54:53

11211291

8633768

11891626

9173813

11899582

0
8612843

10731284

9984735

9290089

7896339

8321364

0
7641062

10253377

8502765

11518464

7945189

7864475

0
11342140

8063755

9387508

9732343

11510326

9148117

0
8402024

8282860

11575283

8149059

10037269

10019678

o

elb/plaintext/2015/01/03/part-r-00013-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/03/part-r-00014-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/03/part-r-00015-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/03/part-r-00016-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/03/part-r-00017-ce65fca5-d6c6-40e6—

elb/plaintext/2015/01/03_s$folders
elb/plaintext/2015/01/04/part-r-00018-ce65fca5-d6c6-40e6—

elb/plaintext/2015/01/04/part-r-00019-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/04/part-r-00020-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/04/part-r-00021-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/04/part-r-00022-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/04/part-r-00023-ce65fca5-d6c6-40e6—

elb/plaintext/2015/01/04_s$folders
elb/plaintext/2015/01/05/part-r-00024-ce65fca5-d6c6-40e6—

elb/plaintext/2015/01/05/part-r-00025-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/05/part-r-00026-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/05/part-r-00027-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/05/part-r-00028-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/05/part-r-00029-ce65fca5-d6c6-40e6—

elb/plaintext/2015/01/05_s$folders$
elb/plaintext/2015/01/06/part-r-00030-ce65fca5-d6c6-40e6—

elb/plaintext/2015/01/06/part-r-00031-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/06/part-r-00032-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/06/part-r-00033-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/06/part-r-00034-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/06/part-r-00035-ce65fca5-d6c6-40e6—

elb/plaintext/2015/01/06_$folders
elb/plaintext/2015/01/07/part-r-00036-ce65fca5-d6c6-40e6—

elb/plaintext/2015/01/07/part-r-00037-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/07/part-r-00038-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/07/part-r-00039-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/07/part-r-00040-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/07/part-r-00041-ce65fca5-d6c6-40e6—
elb/plaintext/2015/01/07_$folders

elb/plaintext/2015/01_%$folder$
elb/plaintext/2015_s$folders$

54

Amazon Athena User Guide
Converting to Columnar Formats

In this case, you would have to use ALTER TABLE ADD PARTITION to add each partition manually.

For example, to load the data in s3://athena-examples/elb/plaintext/2015/01/01/, you can run the
following:

ALTER TABLE elb_logs_raw _native_part ADD PARTITION (year='2015',month='01',day='01")
location 's3://athena-examples/elb/plaintext/2015/01/01/"'

You can also automate adding partitions by using the JDBC driver (p. 33).

Converting to Columnar Formats

Your Amazon Athena query performance improves if you convert your data into open source columnar
formats, such as Apache Parquet or ORC.

You can do this to existing Amazon S3 data sources by creating a cluster in Amazon EMR and converting
it using Hive. The following example using the AWS CLI shows you how to do this with a script and data
stored in Amazon S3.

Overview

The process for converting to columnar formats using an EMR cluster is as follows:

1. Create an EMR cluster with Hive installed.

2. In the step section of the cluster create statement, specify a script stored in Amazon S3, which points
to your input data and creates output data in the columnar format in an Amazon S3 location. In this
example, the cluster auto-terminates.

The full script is located on Amazon S3 at:

s3://athena-examples/conversion/write-parquet-to-s3.q

Here's an example script beginning with the CREATE TABLE snippet:

ADD JAR /usr/lib/hive-hcatalog/share/hcatalog/hive-hcatalog-core-1.0.0-amzn-5.jar;
CREATE EXTERNAL TABLE impressions (
requestBeginTime string,
adId string,
impressionId string,
referrer string,
userAgent string,
userCookie string,
ip string,
number string,
processId string,
browserCookie string,
requestEndTime string,
timers struct<modelLookup:string, requestTime:string>,
threadId string,
hostname string,
sessionId string)
PARTITIONED BY (dt string)
ROW FORMAT serde 'org.apache.hive.hcatalog.data.JsonSerDe'
with serdeproperties ('paths'='requestBeginTime, adId, impressionId, referrer,
userAgent, userCookie, ip')

55

https://parquet.apache.org
https://orc.apache.org/

Amazon Athena User Guide
Overview

LOCATION 's3://${REGION}.elasticmapreduce/samples/hive-ads/tables/impressions' ;

Note

Replace REGION in the LOCATION clause with the region where you are running queries. For
example, if your console is in us-east-1, REGION is s3://us-east-1.elasticmapreduce/
samples/hive-ads/tables/.

This creates the table in Hive on the cluster which uses samples located in the Amazon EMR samples
bucket.

3. On Amazon EMR release 4.7.0, include the ADD JAR line to find the appropriate JsonSerDe. The
prettified sample data looks like the following:

"number": "977680",
"referrer": "fastcompany.com",
"processId": "1823",
"adId": "TRktxshQXAHWo261jAHubijAoNlAgA",
"browserCookie": "mvlrdwrmef",
"userCookie": "emFlrLGrm5fA2xXLFT5npwbPuG7kf6ex",
"requestEndTime": "1239714001000",
"impressionId": "1I5G20RmOuG2rt7fFGFgsaWk9Xpkfb",
"userAgent": "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1l; .NET CLR
2.0.50727; Media Center PC 5.0; .NET CLR 3.0.04506; InfoPa",
"timers": {
"modelLookup": "0.3292",
"requestTime": "0.6398"
T
"threadId": "99",
"ip": "67.189.155.225",
"modelId": "bxxiuxduad",
"hostname": "ec2-0-51-75-39.amazon.com",
"sessionId": "J9NOccA3dDMF1lixCuSOtl90Bbjs6as",
"requestBeginTime": "1239714000000"

}

4. In Hive, load the data from the partitions, so the script runs the following:

MSCK REPAIR TABLE impressions;

The script then creates a table that stores your data in a Parquet-formatted file on Amazon S3:

CREATE EXTERNAL TABLE parquet_hive (
requestBeginTime string,
adId string,
impressionId string,
referrer string,
userAgent string,
userCookie string,
ip string
) STORED AS PARQUET
LOCATION 's3://myBucket/myParquet/';

The data are inserted from the impressions table into parquet_hive:

INSERT OVERWRITE TABLE parquet_hive
SELECT

requestbegintime,

adid,

impressionid,

referrer,

56

Amazon Athena User Guide
Before you begin

useragent,
usercookie,
ip FROM impressions WHERE dt='2009-04-14-04-05";

The script stores the above impressions table columns from the date, 2009-04-14-04-05, into s3://
myBucket/myParquet/ in a Parquet-formatted file.

5. After your EMR cluster is terminated, create your table in Athena, which uses the data in the format
produced by the cluster.

Before you begin

« You need to create EMR clusters. For more information about Amazon EMR, see the Amazon EMR
Management Guide.

« Follow the instructions found in Setting Up (p. 12).

Example: Converting data to Parquet using an EMR
cluster

1. Use the AWS CLI to create a cluster. If you need to install the AWS CLI, see Installing the AWS
Command Line Interface in the AWS Command Line Interface User Guide.

2. You need roles to use Amazon EMR, so if you haven't used Amazon EMR before, create the default
roles using the following command:

aws emr create-default-roles

3. Create an Amazon EMR cluster using the emr-4.7.0 release to convert the data using the following
AWS CLI emr create-cluster command:

export REGION=us-east-1
export SAMPLEURI=s3://${REGION}.elasticmapreduce/samples/hive-ads/tables/impressions/
export S3BUCKET=myBucketName

aws emr create-cluster

--applications Name=Hadoop Name=Hive Name=HCatalog \
--ec2-attributes KeyName=myKey, InstanceProfile=EMR_EC2_DefaultRole, SubnetId=subnet-
mySubnetId \

--service-role EMR_DefaultRole

--release-label emr-4.7.0

--instance-type \m4.large

--instance-count 1

--steps Type=HIVE,Name="Convert to Parquet",\
ActionOnFailure=CONTINUE,

ActionOnFailure=TERMINATE_CLUSTER,

Args=[-f,
\s3://athena-examples/conversion/write-parquet-to-s3.q,-hiveconf,
INPUT=${SAMPLEURI}, -hiveconf,
OUTPUT=s3://${S3BUCKET}/myParquet, -hiveconf,

REGION=${REGION}

1\

--region ${REGION}

-—-auto-terminate

For more information, see Create and Use IAM Roles for Amazon EMR in the Amazon EMR
Management Guide.

57

http://docs.aws.amazon.com/emr/latest/ManagementGuide/
http://docs.aws.amazon.com/emr/latest/ManagementGuide/
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/cli/latest/userguide/installing.html
http://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-iam-roles-creatingroles.html

Amazon Athena User Guide
Example: Converting data to Parquet using an EMR cluster

A successful request gives you a cluster ID.

. Monitor the progress of your cluster using the AWS Management Console, or using the cluster ID with
the list-steps subcommand in the AWS CLI:

aws emr list-steps --cluster-id myClusterID

Look for the script step status. If it is COMPLETED, then the conversion is done and you are ready to
query the data.

. Create the same table that you created on the EMR cluster.

You can use the same statement as above. Log into Athena and enter the statement in the Query
Editor window:

CREATE EXTERNAL TABLE parquet_hive (
requestBeginTime string,
adId string,
impressionId string,
referrer string,
userAgent string,
userCookie string,
ip string
) STORED AS PARQUET
LOCATION 's3://myBucket/myParquet/';

Choose Run Query.
. Run the following query to show that you can query this data:

SELECT * FROM parquet_hive LIMIT 10;

Alternatively, you can select the view (eye) icon next to the table's name in Catalog:

BH parquet hive # 7

The results should show output similar to this:

Athera
readlts

4 requestbegintime ~ adid impressionid referrer useragent
1 1239682352000 sn07U0dSU2BUek2lkJ1 Dwhs SEM6xQDRXRF 'WIEQ3930q6 cartoennetwork.com Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.1) Gecko/20090715

2 1239682686000 XaiowQgorgbreCpUrgPr0iHt081r27 T/ gl 4inF1 k.com Echoping/6.0.2)
3 1239682753000 c2sNCqusvnv7TRPqCMprOh7jFVVruDw ON&doUquwLE4a1pnVLhLjilHmJBuHk cartoonnetwork.com Echoping/6.0.2

4 1239682506000 4XKt3ErCHRw1sN1rXmMHgard JTlpo 87GLCA447CB8J7sqfCudcCgHgtMTgsA cartoonnetwork.com Moxzilla/5.0 (Macintosh; U; Intel Mac OS X 10_5_8; en-us) AppleWebKit/625.27

5 1239682573000 nAAUKDKRp26pWULS' iiS cg Q91QpDvH.JBesitkaTtvEia cartoonnetwork.com Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_5_8; en-us) AppleWebKit/525.27

6 1 000 gHN pNnxTQgPEHfmrqQAJ SEggB9XEtRmgWNIHRkdPOpLhvpVELx cartoonnetwork.com Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR 1.1..

7 1230682595000

8 1239682537000

couJJDBRLUGOQBHpxg3jVXUXRXof4

10909TUFg8TS0hKaetIXX8xgaN7VF

5f0frAsugNDI685euRaxHM18qCuXRR7

HuB2KiuuSejeSiIWkFrJPDirjgkQGGM

9 1 000

1239682347000

QPO

2RWcfpDa1nXleuUXwKjhaWnogDrbSm

wlWar

tPETVWWWIBfPSSTPgFt7FekLhCClns1

MhTBNAS5QpI3djlUBJWRGIq8whjFvgP

cartoonnetwork.com
cartoonnetwork.com
cartoonnetwork.com

corriere.it

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; 8W1; .NET CLR 1.1.4322)

(

(

Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; NET CLR 1.1.

(

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; NET CLR 1.1.4322; NET
(

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; SLCC1; .NET CLR 2.0.50

N e sl P AAO NNt P AN A O i e s A b B G MNTIALiy lP t pei?™

58

Amazon Athena User Guide
Query Results

Querying Data in Amazon Athena
Tables

Topics

o Query Results (p. 59)

» Viewing Query History (p. 60)

Querying Arrays (p. 61)

Querying Arrays with ROWS and STRUCTS (p. 70)
Querying Arrays with Maps (p. 75)

o Querying JSON (p. 76)

Query Results

Athena stores query results in Amazon S3.

Each query that you run has:

A results file stored automatically in a CSV format (*.csv), and
A metadata file (*.csv.metadata) that includes header information, such as column type.

If necessary, you can access the result files to work with them. Athena stores query results in this Amazon
S3 bucket by default: aws-athena-query-results-<ACCOUNTID>-<REGION>.

To view or change the default location for saving query results, choose Settings in the upper right pane.

Note
You can delete metadata files (* . csv.metadata) without causing errors, but important
information about the query is lost.

Query results are saved in an Amazon S3 location based on the name of the query and the date the
query ran, as follows:

QueryLocation}/{QueryName |Unsaved}/{yyyy}/{mm}/{dd}/{QueryID}/

In this notation:

QueryLocation is the base location for all query results. To view or change this location, choose
Settings. You can enter a new value for Query result location at any time. You can also choose to
encrypt query results in Amazon S3. For more information, see Configuring Encryption Options (p. 41).

QueryName is the name of the query for which the results are saved. If the query wasn't saved,
Unsaved appears. To see a list of queries and examine their SQL statements, choose Saved queries.

yyyy/mm/dd/ is the date the query ran.
Query1ID is the unique ID of the query.

Saving Query Results

After you run the query, the results appear in the Results pane.

59

Amazon Athena User Guide
Viewing Query History

To save the results of the most recent query to CSV, choose the file icon.

To save the results of a query you ran previously, choose History, locate your query, and use Download
Results.

Viewing Query History

To view your recent query history, use History. Athena retains query history for 45 days.
Note
Starting on December 1, 2017, Athena retains query history for 45 days.

To retain query history for a longer period, write a Java program using methods from Athena API and the
AWS CLI to periodically retrieve the query history and save it to a data store:

1. Retrieve the query IDs with ListQueryExecutions.
2. Retrieve information about each query based on its ID with GetQueryExecution.

3. Save the obtained information in a data store, such as Amazon S3, using the put-object AWS CLI
command from the Amazon S3 API.

Viewing Query History

1. To view a query in your history for up to 45 days after it ran, choose History and select a query.

You can also see which queries succeeded and failed, download their results, and view query IDs, by
clicking the status value.

a\"{S Services ~ Resource Groups ~ +* Ia - upport
Athena Query Editor Saved Quenes History y Catalog &] fia)
History
¥ Query submitted time Query Encryption type € State Run time({s) Data scanned Action
2017/0%28 20:52-05 UTC4 1 MA FAILED 12867 41768 Ermor datails
2017/0%28 20:48:47 UTCH4 testl where val NIA SUCCEEDED 1475 317GB Downdoa
201MT/0W28 202846 L

SUCCEEDED 0.8

60

http://docs.aws.amazon.com/athena/latest/APIReference/API_ListQueryExecutions.html
http://docs.aws.amazon.com/athena/latest/APIReference/API_GetQueryExecution.html
http://docs.aws.amazon.com/cli/latest/reference/s3api/put-object.html

Amazon Athena User Guide
Querying Arrays

Querying Arrays

Amazon Athena lets you create arrays, concatenate them, convert them to different data types, and then
filter, flatten, and sort them.

Topics
« Creating Arrays (p. 61)
« Concatenating Arrays (p. 62)
» Converting Array Data Types (p. 63)
« Finding Lengths (p. 64)
o Accessing Array Elements (p. 64)
« Flattening Nested Arrays (p. 65)
« Creating Arrays from Subqueries (p. 67)
« Filtering Arrays (p. 68)
 Sorting Arrays (p. 69)
« Using Aggregation Functions with Arrays (p. 69)
« Converting Arrays to Strings (p. 70)

Creating Arrays

To build an array literal in Athena, use the ARRAY keyword, followed by brackets [], and include the
array elements separated by commas.

Examples

This query creates one array with four elements.

SELECT ARRAY [1,2,3,4] AS items

It returns:

This query creates two arrays.

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]] AS items
It returns:

o ———————— +

| items |

o ———————— +

| [[1, 2], [3, 4]] |

o ——————— +

To create an array from selected columns of compatible types, use a query, as in this example:

61

Amazon Athena User Guide
Concatenating Arrays

WITH
dataset AS (
SELECT 1 AS x, 2 AS y, 3 AS z

)
SELECT ARRAY [Xx,y,z] AS items FROM dataset

This query returns:

Fomm e +
| items |
Fomm e +
| [1,2,3] |
Fomm e +

In the following example, two arrays are selected and returned as a welcome message.

WITH
dataset AS (
SELECT
ARRAY ['hello', 'amazon', 'athena'] AS words,
ARRAY ['hi', 'alexa'] AS alexa
)

SELECT ARRAY[words, alexa] AS welcome_msg
FROM dataset

This query returns:

e +
| welcome_msg |
e +
| [[hello, amazon, athena], [hi, alexa]] |
e +

To create an array of key-value pairs, use the MAP operator that takes an array of keys followed by an
array of values, as in this example:

SELECT ARRAY[
MAP(ARRAY['first', 'last', 'age'],ARRAY['Bob', 'Smith', '40']),
MAP(ARRAY['first', 'last', 'age'],ARRAY['Jane', 'Doe', '30']),
MAP(ARRAY['first', 'last', 'age'],ARRAY['Billy', 'Smith', '8'])
] AS people

This query returns:

| [{last=Smith, first=Bob, age=40}, {last=Doe, first=Jane, age=30}, {last=Smith,
first=Billy, age=8}] |

Concatenating Arrays

To concatenate multiple arrays, use the double pipe | | operator between them.

62

Amazon Athena User Guide
Converting Array Data Types

SELECT ARRAY [4,5] || ARRAY[ARRAY[1,2], ARRAY[3,4]] AS items

This query returns:

e +
| items |
e +
| [[4, 51, [1, 21, [3, 411 |
e +

To combine multiple arrays into a single array, use the concat function.

WITH
dataset AS (
SELECT
ARRAY ['hello', 'amazon', 'athena'] AS words,
ARRAY ['hi', 'alexa'] AS alexa

)

SELECT concat(words, alexa) AS welcome_msg
FROM dataset

This query returns:

o +
| welcome_msg |
o +
| [hello, amazon, athena, hi, alexa] |
o +

Converting Array Data Types

To convert data in arrays to supported data types, use the CAST operator, as CAST(value AS type).
Athena supports all of the native Presto data types.

SELECT
ARRAY [CAST(4 AS VARCHAR), CAST(5 AS VARCHAR)]
AS items

This query returns:

Create two arrays with key-value pair elements, convert them to JSON, and concatenate, as in this
example:

SELECT
ARRAY[CAST(MAP(ARRAY['al', 'a2', 'a3'], ARRAY[1, 2, 3]) AS JSON)] ||
ARRAY[CAST(MAP(ARRAY['b1', 'b2', 'b3'], ARRAY[4, 5, 6]) AS JSON)]
AS items

This query returns:

63

Amazon Athena User Guide
Finding Lengths

o +
| items |
o +
| [{"a1":1,"a2":2,"a3":3}, {"bl":4,"b2":5,"b3":6}] |
o +

Finding Lengths

The cardinality function returns the length of an array, as in this example:

SELECT cardinality(ARRAY[1,2,3,4]) AS item count

This query returns:

Fmm +
| item_count |
Fmm +
| 4 |
Fmmm +

Accessing Array Elements

To access array elements, use the [] operator, with 1 specifying the first element, 2 specifying the
second element, and so on, as in this example:

WITH dataset AS (

SELECT
ARRAY[CAST(MAP(ARRAY['al', 'a2', 'a3'], ARRAY[1, 2, 3]) AS JSON)] ||
ARRAY[CAST(MAP(ARRAY['b1', 'b2', 'b3'], ARRAY[4, 5, 6]) AS JSON)]
AS items)

SELECT items[1] AS item FROM dataset

This query returns:

o +
| item

o +
| {"al":1,"a2":2,"a3":3} |
o +

To access the elements of an array at a given position (known as the index position), use the
element_at() function and specify the array name and the index position:

o If the index is greater than O, element_at () returns the element that you specify, counting from the
beginning to the end of the array. It behaves as the [] operator.

« If the index is less than 0, element_at () returns the element counting from the end to the beginning
of the array.

The following query creates an array words, and selects the first element hello from it as the
first_ word, the second element amazon (counting from the end of the array) as the middle_word,
and the third element athena, as the last_word.

WITH dataset AS (
SELECT ARRAY ['hello', 'amazon',6 'athena'] AS words

64

Amazon Athena User Guide
Flattening Nested Arrays

)
SELECT

element_at(words, 1) AS first_word,

element_at(words, -2) AS middle_word,

element_at(words, cardinality(words)) AS last_word
FROM dataset

This query returns:

- +
| first_word | middle_word | last_word |
- +
| hello | amazon | athena

- +

Flattening Nested Arrays

When working with nested arrays, you often need to expand nested array elements into a single array, or
expand the array into multiple rows.

Examples

To flatten a nested array's elements into a single array of values, use the £1latten function. This query
returns a row for each element in the array.

SELECT flatten(ARRAY[ARRAY[1,2], ARRAY[3,4]]) AS items

This query returns:

Fomm +
| items |
Fommmmmm +
| [1,2,3,4] |
Fomm +

To flatten an array into multiple rows, use CROSS JOIN in conjunction with the UNNEST operator, as in
this example:

WITH dataset AS (

SELECT
'engineering' as department,
ARRAY['Sharon', 'John', 'Bob', 'Sally'] as users

)

SELECT department, names FROM dataset
CROSS JOIN UNNEST(users) as t(names)

This query returns:

65

Amazon Athena User Guide
Flattening Nested Arrays

| engineering | Sally |

To flatten an array of key-value pairs, transpose selected keys into columns, as in this example:

WITH
dataset AS (
SELECT
'engineering' as department,
ARRAY[
MAP(ARRAY['first', 'last', 'age'],ARRAY['Bob', 'Smith', '40']),
MAP(ARRAY['first', 'last', 'age'],ARRAY['Jane', 'Doe', '30']),

MAP(ARRAY['first', 'last', 'age'],ARRAY['Billy', 'Smith', '8'])
] AS people
)
SELECT names['first'] AS
first_name,
names['last'] AS last_name,
department FROM dataset
CROSS JOIN UNNEST(people) AS t(names)

This query returns:

e +
| first_name | last_name | department |
e +
Bob	Smith	engineering
Jane	Doe	engineering
Billy	Smith	engineering
e +

From a list of employees, select the employee with the highest combined scores. UNNEST can be used
in the FROM clause without a preceding CROSS JOIN as it is the default join operator and therefore
implied.

WITH
dataset AS (
SELECT ARRAY[
CAST(ROW('Sally', 'engineering', ARRAY[1,2,3,4]) AS ROW(name VARCHAR, department
VARCHAR, scores ARRAY(INTEGER))),
CAST(ROW('John', 'finance', ARRAY[7,8,9]) AS ROW(name VARCHAR, department VARCHAR,
scores ARRAY(INTEGER))),
CAST(ROW('Amy', 'devops', ARRAY[12,13,14,15]) AS ROW(name VARCHAR, department VARCHAR,
scores ARRAY(INTEGER)))
] AS users
)
users AS (
SELECT person, score
FROM
dataset,
UNNEST(dataset.users) AS t(person),
UNNEST(person.scores) AS t(score)
)
SELECT person.name, person.department, SUM(score) AS total_score FROM users
GROUP BY (person.name, person.department)
ORDER BY (total_score) DESC
LIMIT 1

This query returns:

66

Amazon Athena User Guide
Creating Arrays from Subqueries

| name | department | total_score |

From a list of employees, select the employee with the highest individual score.

WITH
dataset AS (
SELECT ARRAY[
CAST(ROW('Sally', 'engineering', ARRAY[1,2,3,4]) AS ROW(name VARCHAR, department
VARCHAR, scores ARRAY(INTEGER))),
CAST(ROW('John', 'finance', ARRAY[7,8,9]) AS ROW(name VARCHAR, department VARCHAR,
scores ARRAY(INTEGER))),
CAST(ROW('Amy', 'devops', ARRAY[12,13,14,15]) AS ROW(name VARCHAR, department VARCHAR,
scores ARRAY(INTEGER)))
] AS users
)I
users AS (
SELECT person, score
FROM
dataset,
UNNEST(dataset.users) AS t(person),
UNNEST(person.scores) AS t(score)
)
SELECT person.name, score FROM users
ORDER BY (score) DESC
LIMIT 1

This query returns:

Fmmm +
| name | score |
Fmmm e +
| Amy | 15 |
Fmmm +

Creating Arrays from Subqueries

Create an array from a collection of rows.

WITH
dataset AS (

SELECT ARRAY[1,2,3,4,5] AS items
)
SELECT array_agg(i) AS array_items
FROM dataset
CROSS JOIN UNNEST(items) AS t(i)

This query returns:

o +
| array_items |
o +
| [1, 2, 3, 4, 5] |
o +

To create an array of unique values from a set of rows, use the distinct keyword.

67

Amazon Athena User Guide
Filtering Arrays

WITH
dataset AS (
SELECT ARRAY [1,2,2,3,3,4,5] AS items
)
SELECT array_agg(distinct i) AS array_items
FROM dataset
CROSS JOIN UNNEST(items) AS t(i)

This query returns the following result. Note that ordering is not guaranteed.

Fmm +
| array_items |
Fmm +
| [, 2, 3, 4, 5] |
Fmm +

Filtering Arrays

Create an array from a collection of rows if they match the filter criteria.

WITH
dataset AS (

SELECT ARRAY[1,2,3,4,5] AS items
)
SELECT array_agg(i) AS array_items
FROM dataset
CROSS JOIN UNNEST(items) AS t(i)
WHERE i > 3

This query returns:

e ittt +
| array_items |
R ittt +
| [4, 5] I
R ittt +

Filter an array based on whether one of its elements contain a specific value, such as 2, as in this
example:

WITH
dataset AS (
SELECT ARRAY
[
ARRAY[1,2,3,4],
ARRAY[5,6,7,8],
ARRAY[9,0]
] AS items
)
SELECT i AS array_items FROM dataset
CROSS JOIN UNNEST(items) AS t(i)
WHERE contains(i, 2)

This query returns:

| array_items |

68

Amazon Athena User Guide
Sorting Arrays

Sorting Arrays

Create a sorted array of unique values from a set of rows.

WITH
dataset AS (
SELECT ARRAY[3,1,2,5,2,3,6,3,4,5] AS items
)
SELECT array_sort(array_agg(distinct i)) AS array_items
FROM dataset
CROSS JOIN UNNEST(items) AS t(i)

This query returns:

e +
| array_items

e +
| [1, 2, 3, 4, 5, 6] |
e +

Using Aggregation Functions with Arrays

« To add values within an array, use sSuM, as in the following example.

« To aggregate multiple rows within an array, use array_agg. For information, see Creating Arrays from
Subqueries (p. 67).

WITH
dataset AS (
SELECT ARRAY
[
ARRAY[1,2,3,4],
ARRAY[5,6,7,8],
ARRAY[9,0]
] AS items
)l
item AS (
SELECT i AS array_items
FROM dataset, UNNEST(items) AS t(i)
)
SELECT array_items, sum(val) AS total
FROM item, UNNEST(array_items) AS t(val)
GROUP BY array_items

This query returns the following results. The order of returned results is not guaranteed.

69

Amazon Athena User Guide
Converting Arrays to Strings

Converting Arrays to Strings

To convert an array into a single string, use the array_join function.

WITH
dataset AS (
SELECT ARRAY ['hello', 'amazon', 'athena'] AS words
)
SELECT array_join(words, ' ') AS welcome_msg

FROM dataset

This query returns:

o +
| welcome_msg |
o +
| hello amazon athena |
o — +

Querying Arrays with ROWS and STRUCTS

Your source data often contains arrays with complex data types and nested structures. Examples in this
section show how to change element's data type, locate elements within arrays, order values, and find
keywords using Athena queries.

« Creating a ROW (p. 70)

« Changing Field Names in Arrays Using CAST (p. 71)
« Filtering Arrays Using the . Notation (p. 71)

« Filtering Arrays with Nested Values (p. 72)

« Filtering Arrays Using UNNEST (p. 73)

« Finding Keywords in Arrays (p. 73)

« Ordering Values in Arrays (p. 74)

Creating a ROW

Note

The examples in this section use ROW as a means to create sample data to work with. When
you query tables within Athena, you do not need to create ROW data types, as they are already
created from your data source by Presto. When you use CREATE_TABLE, Athena defines a
STRUCT in it, and relies on Presto for populating it with data. In turn, Presto creates the ROW
data type for you, for each row in the dataset. The underlying ROW data type consists of named
fields of any SQL data types supported in Presto.

WITH dataset AS (
SELECT
ROW('Bob', 38) AS users

)
SELECT * FROM dataset

This query returns:

70

Amazon Athena User Guide
Changing Field Names in Arrays Using CAST

| users |

Changing Field Names in Arrays Using CAST

To change the field name in an array that contains ROW values, you can CAST the ROW declaration:

WITH dataset AS (
SELECT
CAST(
ROW('Bob', 38) AS ROW(name VARCHAR, age INTEGER)
) AS users

)
SELECT * FROM dataset

This query returns:

o +

| users |

o +

| {NAME=Bob, AGE=38} |

o +
Note

In the example above, you declare name as a VARCHAR because this is its type in Presto. If you
declare this STRUCT inside a CREATE TABLE statement, use String type because Hive defines
this data type as String.

Filtering Arrays Using the . Notation

In the following example, select the account1d field from the userIdentity column of a AWS
CloudTrail logs table by using the dot . notation. For more information, see Querying AWS CloudTrail
Logs (p. 94).

SELECT

CAST(useridentity.accountid AS bigint) as newid
FROM cloudtrail_logs
LIMIT 2;

This query returns:

To query an array of values, issue this query:

WITH dataset AS (
SELECT ARRAY[

71

Amazon Athena User Guide
Filtering Arrays with Nested Values

CAST(ROW('Bob', 38) AS ROW(name VARCHAR, age INTEGER)),
CAST(ROW('Alice', 35) AS ROW(name VARCHAR, age INTEGER)),
CAST(ROW('Jane', 27) AS ROW(name VARCHAR, age INTEGER))

] AS users

)
SELECT * FROM dataset

It returns this result:

B et ettt +
| users |
B et et et T +
| [{NAME=Bob, AGE=38}, {NAME=Alice, AGE=35}, {NAME=Jane, AGE=27}] |
B et ettt et et e +

Filtering Arrays with Nested Values

Large arrays often contain nested structures, and you need to be able to filter, or search, for values
within them.

To define a dataset for an array of values that includes a nested BOOLEAN value, issue this query:

WITH dataset AS (
SELECT
CAST(
ROW('aws.amazon.com', ROW(true)) AS ROW(hostname VARCHAR, flaggedActivity ROW(isNew
BOOLEAN))
) AS sites

)
SELECT * FROM dataset

It returns this result:

- +
| sites |
- +
| {HOSTNAME=aws.amazon.com, FLAGGEDACTIVITY={ISNEW=true}} |
- +

Next, to filter and access the BOOLEAN value of that element, continue to use the dot . notation.

WITH dataset AS (
SELECT
CAST(
ROW('aws.amazon.com', ROW(true)) AS ROW(hostname VARCHAR, flaggedActivity ROW(isNew
BOOLEAN))
) AS sites
)
SELECT sites.hostname, sites.flaggedactivity.isnew
FROM dataset

This query selects the nested fields and returns this result:

72

Amazon Athena User Guide
Filtering Arrays Using UNNEST

Filtering Arrays Using UNNEST

To filter an array that includes a nested structure by one of its child elements, issue a query with an
UNNEST operator. For more information about UNNEST, see Flattening Nested Arrays (p. 65).

For example, this query finds hostnames of sites in the dataset.

WITH dataset AS (
SELECT ARRAY[
CAST(
ROW('aws.amazon.com', ROW(true)) AS ROW(hostname VARCHAR, flaggedActivity ROW(isNew
BOOLEAN))
) 4
CAST(
ROW('news.cnn.com', ROW(false)) AS ROW(hostname VARCHAR, flaggedActivity ROW(isNew
BOOLEAN))
) 4
CAST(
ROW('netflix.com', ROW(false)) AS ROW(hostname VARCHAR, flaggedActivity ROW(isNew
BOOLEAN))
)
] as items
)
SELECT sites.hostname, sites.flaggedActivity.isNew
FROM dataset, UNNEST(items) t(sites)
WHERE sites.flaggedActivity.isNew = true

It returns:

o +
| hostname | isnew |
o +
| aws.amazon.com | true |
B et +

Finding Keywords in Arrays

To search a dataset for a keyword within an element inside an array, use the regexp_1like function.

Consider an array of sites containing their hostname, and a f1laggedActivity element. This element
includes an ARRAY, containing several MAP elements, each listing different popular keywords and their
popularity count. Assume you want to find a particular keyword inside a MAP in this array.

To search this dataset for sites with a specific keyword, use the regexp_1like function.

Note

Instead of using the SQL LIKE operator, this query uses the regexp_1ike function. This
function takes as an input a regular expression pattern to evaluate, or a list of terms separated
by |, known as an OR operator. Additionally, searching for a large number of keywords is more
efficient with the regexp_1like function, because its performance exceeds that of the SQL
LIKE operator.

WITH dataset AS (
SELECT ARRAY[
CAST(
ROW('aws.amazon.com', ROW(ARRAY[

73

Amazon Athena User Guide
Ordering Values in Arrays

MAP(ARRAY['term', 'count'], ARRAY['bigdata', '10']),
MAP(ARRAY['term', 'count'], ARRAY['serverless', '50']),
MAP(ARRAY['term', 'count'], ARRAY['analytics', '82']),
MAP(ARRAY['term', 'count'], ARRAY['iot', '74'])

D
) AS ROW(hostname VARCHAR, flaggedActivity ROW(flags ARRAY(MAP(VARCHAR, VARCHAR))))
)
CAST(
ROW('news.cnn.com', ROW(ARRAY[
MAP(ARRAY['term', 'count'], ARRAY['politiecs', '241']),
MAP(ARRAY['term', 'count'], ARRAY['technology', '211']),
MAP(ARRAY['term', 'count'], ARRAY['serverless',6 '25']),
MAP(ARRAY['term', 'count'], ARRAY['iot', '170'])
D
) AS ROW(hostname VARCHAR, flaggedActivity ROW(flags ARRAY(MAP(VARCHAR, VARCHAR))))
)
CAST(
ROW('netflix.com', ROW(ARRAY[
MAP(ARRAY['term', 'count'], ARRAY['cartoons', '1020']),

MAP(ARRAY['term', 'count'], ARRAY['house of cards', '112042']),
MAP(ARRAY['term', 'count'], ARRAY['orange is the new black',6 '342']),
MAP(ARRAY['term', 'count'], ARRAY['iot', '4'])
D
) AS ROW(hostname VARCHAR, flaggedActivity ROW(flags ARRAY(MAP(VARCHAR, VARCHAR))))
)
] AS items
)
sites AS (

SELECT sites.hostname, sites.flaggedactivity

FROM dataset, UNNEST(items) t(sites)
)
SELECT hostname
FROM sites, UNNEST(sites.flaggedActivity.flags) t(flags)
WHERE regexp_like(flags['term'], 'politics|bigdata')
GROUP BY (hostname)

This query returns two sites:

Ordering Values in Arrays

To order values in an array, use ORDER BY. The query in the following example adds up the total
popularity scores for the sites matching your search terms with the regexp_1like function, and then
orders them from highest to lowest.

WITH dataset AS (
SELECT ARRAY[

CAST(
ROW('aws.amazon.com', ROW(ARRAY[
MAP(ARRAY['term', 'count'], ARRAY['bigdata', '10']),
MAP(ARRAY['term', 'count'], ARRAY['serverless', '50']),
MAP(ARRAY['term', 'count'], ARRAY['analytics', '82']),
MAP(ARRAY['term', 'count'], ARRAY['iot', '74'])

D
) AS ROW(hostname VARCHAR, flaggedActivity ROW(flags ARRAY(MAP(VARCHAR, VARCHAR))))

74

Amazon Athena User Guide
Querying Arrays with Maps

)
CAST(
ROW('news.cnn.com', ROW(ARRAY[
MAP(ARRAY['term', 'count'], ARRAY['politiecs', '241']),
MAP(ARRAY['term', 'count'], ARRAY['technology', '211']),
MAP(ARRAY['term', 'count'], ARRAY['serverless',6 '25']),
MAP(ARRAY['term', 'count'], ARRAY['iot', '170'])
D
) AS ROW(hostname VARCHAR, flaggedActivity ROW(flags ARRAY(MAP(VARCHAR, VARCHAR))))
)
CAST(
ROW('netflix.com', ROW(ARRAY[
MAP(ARRAY['term', 'count'], ARRAY['cartoons', '1020']),
MAP(ARRAY['term', 'count'], ARRAY['house of cards', '112042']),
MAP(ARRAY['term', 'count'], ARRAY['orange is the new black',6 '342']),
MAP(ARRAY['term', 'count'], ARRAY['iot', '4'])
D
) AS ROW(hostname VARCHAR, flaggedActivity ROW(flags ARRAY(MAP(VARCHAR, VARCHAR))))
)
] AS items
)
sites AS (
SELECT sites.hostname, sites.flaggedactivity
FROM dataset, UNNEST(items) t(sites)
)
SELECT hostname, array_agg(flags['term']) AS terms, SUM(CAST(flags['count'] AS INTEGER)) AS
total
FROM sites, UNNEST(sites.flaggedActivity.flags) t(flags)
WHERE regexp_like(flags['term'], 'politics|bigdata')
GROUP BY (hostname)
ORDER BY total DESC

This query returns this result:

e +
| hostname | terms | total |
e +
| news.cnn.com | [politics,serverless] | 241 |
e +
| aws.amazon.com | [serverless] | 10

o +

Querying Arrays with Maps
Maps are key-value pairs that consist of data types available in Athena.
To create maps, use the MAP operator and pass it two arrays: the first is the column (key) names, and

the second is values. All values in the arrays must be of the same type. If any of the map value array
elements need to be of different types, you can convert them later.

Examples

This example selects a user from a dataset. It uses the MAP operator and passes it two arrays. The first
array includes values for column names, such as "first", "last", and "age". The second array consists of
values for each of these columns, such as "Bob", "Smith", "35".

WITH dataset AS (
SELECT MAP(

75

Amazon Athena User Guide
Querying JSON

ARRAY['first', 'last', 'age'l],
ARRAY['Bob', 'Smith', '35']
) AS user

)
SELECT user FROM dataset

This query returns:

o +
| user |
Bt +
| {last=Smith, first=Bob, age=35} |
B e e e +

You can retrieve Map values by selecting the field name followed by [key_name], as in this example:

WITH dataset AS (
SELECT MAP(
ARRAY['first', 'last', 'age'l],
ARRAY['Bob', 'Smith', '35']
) AS user

)

SELECT user['first'] AS first_name FROM dataset

This query returns:

Fomm +
| first_name |
Fomm e +
| Bob |
Fomm +

Querying JSON

Amazon Athena lets you parse JSON-encoded values, extract data from JSON, search for values, and find
length and size of JSON arrays.

Topics
o Tips for Parsing Arrays with JSON (p. 76)
« Extracting Data from JSON (p. 78)
 Searching for Values (p. 80)
« Obtaining Length and Size of JSON Arrays (p. 81)

Tips for Parsing Arrays with JSON

JavaScript Object Notation (JSON) is a common method for encoding data structures as text. Many
applications and tools output data that is JSON-encoded.

In Amazon Athena, you can create tables from external data and include the JSON-encoded data

in them. For such types of source data, use Athena together with a JSON SerDe Libraries (p. 117)
SerDe. When Athena creates tables backed by JSON data, it parses the data based on the existing and
predefined schema.

76

Amazon Athena User Guide
Tips for Parsing Arrays with JSON

However, not all of your data may have a predefined schema. To simplify schema management in such
cases, it is often useful to convert fields in source data that have an undetermined schema to JSON
strings in Athena, and then use JSON SerDe Libraries (p. 117).

For example, consider an loT application that publishes events with common fields from different
sensors. One of those fields must store a custom payload that is unique to the sensor sending the event.
In this case, since you don't know the schema, we recommend that you store the information as a JSON-
encoded string. To do this, convert data in your Athena table to JSON, as in the following example. You
can also convert JSON-encoded data to Athena data types.

« Converting Athena Data Types to JSON (p. 77)
o Converting JSON to Athena Data Types (p. 77)

Converting Athena Data Types to JSON

To convert Athena data types to JSON, use CAST.

WITH dataset AS (
SELECT
CAST('HELLO ATHENA' AS JSON) AS hello_msg,
CAST(12345 AS JSON) AS some_int,
CAST(MAP(ARRAY['a', 'b'], ARRAY[1,2]) AS JSON) AS some_map
)
SELECT * FROM dataset

This query returns:

o +
| hello_msg | some_int | some_map

B et et +
| "HELLO ATHENA" | 12345 | {"a":1,"b":2} |
o +

Converting JSON to Athena Data Types

To convert JSON data to Athena data types, use CAST.

Note
In this example, to denote strings as JSON-encoded, start with the JSON keyword and use single
quotes, such as JSON '12345"

WITH dataset AS (
SELECT
CAST(JSON '"HELLO ATHENA"' AS VARCHAR) AS hello_msg,
CAST(JSON '12345' AS INTEGER) AS some_int,
CAST(JSON '{"a":1,"b":2}' AS MAP(VARCHAR, INTEGER)) AS some_map

)
SELECT * FROM dataset

This query returns:

| HELLO ATHENA | 12345 | {a:1,b:2} |

77

Amazon Athena User Guide
Extracting Data from JSON

Extracting Data from JSON

You may have source data with containing JSON-encoded strings that you do not necessarily want to
deserialize into a table in Athena. In this case, you can still run SQL operations on this data, using the
JSON functions available in Presto.

Consider this JSON string as an example dataset.

{"name": "Susan Smith",
"org": "engineering",
"projects":

[
{"name":"projectl", "completed":false},
{"name":"project2", "completed":true}

]

Examples: extracting properties

To extract the name and projects properties from the JSON string, use the json_extract function
as in the following example. The json_extract function takes the column containing the JSON string,
and searches it using a JSONPath-like expression with the dot . notation.

Note
JSONPath performs a simple tree traversal. It uses the $ sign to denote the root of the JSON
document, followed by a period and an element nested directly under the root, such as $.name.

WITH dataset AS (

SELECT '{"name": "Susan Smith",
"org": "engineering",
"projects": [{"name":"projectl", "completed":false},
{"name":"project2", "completed":true}]}'
AS blob
)
SELECT

json_extract(blob, '$.name') AS name,
json_extract(blob, '$.projects') AS projects
FROM dataset

The returned value is a JSON-encoded string, and not a native Athena data type.

o _——

o _——

| "Susan Smith" | [{"name":"projectl","completed":false},
{"name":"project2", "completed":true}] |
o I

To extract the scalar value from the JSON string, use the json_extract_scalar function. It is similar
to json_extract, but returns only scalar values (Boolean, number, or string).

Note
Do not use the json_extract_scalar function on arrays, maps, or structs.

78

Amazon Athena User Guide
Extracting Data from JSON

WITH dataset AS (
SELECT '{"name": "Susan Smith",
"org": "engineering",
"projects": [{"name":"projectl", "completed":false},{"name":"project2",
"completed":true}]}'
AS blob
)
SELECT
json_extract_scalar(blob, '$.name') AS name,
json_extract_scalar(blob, '$.projects') AS projects
FROM dataset

This query returns:

e +
| name | projects |
e +
| Susan Smith | |
e +

To obtain the first element of the projects property in the example array, use the json_array_get
function and specify the index position.

WITH dataset AS (
SELECT '{"name": "Bob Smith",
"org": "engineering",
"projects": [{"name":"projectl", "completed":false},{"name":"project2",
"completed":true}]}'
AS blob
)
SELECT json_array get(json_extract(blob, '$.projects'), 0) AS item
FROM dataset

It returns the value at the specified index position in the JSON-encoded array.

o +
| item |
o +
| {"name":"projectl","completed":false} |
o +

To return an Athena string type, use the [] operator inside a JSONPath expression, then Use
the json_extract_scalar function. For more information about [], see Accessing Array
Elements (p. 64).

WITH dataset AS (
SELECT '{"name": "Bob Smith",
"org": "engineering",
"projects": [{"name":"projectl", "completed":false},{"name":"project2",
"completed":true}]}'
AS blob

)

SELECT json_extract_scalar(blob, '$.projects[0].name') AS project_name

FROM dataset

It returns this result:

79

Amazon Athena User Guide
Searching for Values

| project_name |

Searching for Values

To determine if a specific value exists inside a JSON-encoded array, use the json_array_contains
function.

The following query lists the names of the users who are participating in "project2".

WITH dataset AS (
SELECT * FROM (VALUES

(JSON '{"name": "Bob Smith", "org": "legal", "projects": ["projectl"]}'),

(JSON '{"name": "Susan Smith", "org": "engineering", "projects": ["projectl",
"project2", "project3"]}'),

(JSON '{"name": "Jane Smith", "org": "finance", "projects": ["projectl", "project2"]}')

) AS t (users)
)
SELECT json_extract_scalar(users, 's$.name') AS user
FROM dataset
WHERE json_array_contains(json_extract(users, '$.projects'), 'project2')

This query returns a list of users.

Fomm e +
| user |
Fomm e +
| Susan Smith |
Fomm e +
| Jane Smith |
Fomm e +

The following query example lists the names of users who have completed projects along with the total
number of completed projects. It performs these actions:

« Uses nested SELECT statements for clarity.

« Extracts the array of projects.

« Converts the array to a native array of key-value pairs using CAST.
« Extracts each individual array element using the UNNEST operator.
« Filters obtained values by completed projects and counts them.

Note

When using CAST to MAP you can specify the key element as VARCHAR (native String in Presto),
but leave the value as JSON, because the values in the MAP are of different types: String for the
first key-value pair, and Boolean for the second.

WITH dataset AS (
SELECT * FROM (VALUES

(JSON '{"name": "Bob Smith",
"org": "legal",
"projects": [{"name":"projectl", "completed":false}]}'),
(JSON '{"name": "Susan Smith",
"org": "engineering",
"projects": [{"name":"project2", "completed":true},
{"name":"project3", "completed":true}]}'),

80

Amazon Athena User Guide
Obtaining Length and Size of JSON Arrays

(JSON '{"name": "Jane Smith",
"org": "finance",
"projects": [{"name":"project2", "completed":true}]}')

) AS t (users)
)
employees AS (
SELECT users, CAST(json_extract(users, '$.projects') AS
ARRAY(MAP(VARCHAR, JSON))) AS projects_array
FROM dataset
)
names AS (
SELECT json_extract_scalar(users, '$.name') AS name, projects
FROM employees, UNNEST (projects_array) AS t(projects)
)
SELECT name, count(projects) AS completed_projects FROM names
WHERE cast(element_at(projects, 'completed') AS BOOLEAN) = true
GROUP BY name

This query returns the following result:

o +
| name | completed_projects |
o +
| Susan Smith | 2 |
o +
| Jane Smith | 1

o +

Obtaining Length and Size of JSON Arrays

Example: json_array length

To obtain the length of a JSON-encoded array, use the json_array_length function.

WITH dataset AS (
SELECT * FROM (VALUES
(JSON '{"name":
"Bob Smith",

"org":
"legal",
"projects": [{"name":"projectl", "completed":false}]}'),
(JSON '{"name": "Susan Smith",
"org": "engineering",
"projects": [{"name":"project2", "completed":true},
{"name" :"project3", "completed":true}]}'),
(JSON '{"name": "Jane Smith",
"org": "finance",
"projects": [{"name":"project2", "completed":true}]}')
) AS t (users)
)
SELECT

json_extract_scalar(users, '$.name') as name,
json_array_length(json_extract(users, 's$.projects')) as count
FROM dataset
ORDER BY count DESC

This query returns this result:

81

Amazon Athena User Guide
Obtaining Length and Size of JSON Arrays

o +
| Susan Smith | 2 |
o +
| Bob Smith | 1 |
e +
| Jane Smith | 1 |
e +

Example: json_size

To obtain the size of a JSON-encoded array or object, use the json_size function, and specify the
column containing the JSON string and the JSONPath expression to the array or object.

WITH dataset AS (
SELECT * FROM (VALUES

(JSON '{"name": "Bob Smith", "org": "legal", "projects": [{"name":"projectl",
"completed":false}]}'),

(JSON '{"name": "Susan Smith", "org": "engineering", "projects": [{"name":"project2",
"completed":true}, {"name":"project3", "completed":true}]l}'),

(JSON '{"name": "Jane Smith", "org": "finance", "projects": [{"name":"project2",

"completed":true}]}"')
) AS t (users)

)
SELECT

json_extract_scalar(users, '$.name') as name,

json_size(users, '$.projects') as count
FROM dataset
ORDER BY count DESC

This query returns this result:

e +
| name | count |
o +
| Susan Smith | 2 |
e +
| Bob Smith | 1 |
e +
| Jane Smith | 1 |
o +

82

Amazon Athena User Guide
What is a Geospatial Query?

Querying Geospatial Data

Geospatial data contains identifiers that specify a geographic position for an object. Examples of

this type of data include weather reports, map directions, tweets with geographic positions, store
locations, and airline routes. Geospatial data plays an important role in business analytics, reporting, and
forecasting.

Geospatial identifiers, such as latitude and longitude, allow you to convert any mailing address into a set
of geographic coordinates.

Topics
« What is a Geospatial Query? (p. 83)
« Input Data Formats and Geometry Data Types (p. 83)
« List of Supported Geospatial Functions (p. 84)
o Examples: Geospatial Queries (p. 92)

What is a Geospatial Query?

Geospatial queries are specialized types of SQL queries supported in Athena. They differ from non-
spatial SQL queries in the following ways:

« Using the following specialized geometry data types: point, 1ine, multiline, polygon, and
multipolygon.

« Expressing relationships between geometry data types, such as distance, equals, crosses,
touches, overlaps, disjoint, and others.

Using geospatial queries in Athena, you can run these and other similar operations:

« Find the distance between two points.
« Check whether one area (polygon) contains another.
« Check whether one line crosses or touches another line or polygon.

For example, to obtain a pair of double type coordinates from the geographic coordinates of Mount
Rainier in Athena, use the ST_POINT (double, double) ((longitude, latitude) pair)
geospatial function, specifying the latitude and longitude:

ST _POINT(46.8527,-121.7602) ((longitude, latitude) pair)

Input Data Formats and Geometry Data Types

To use geospatial functions in Athena, input your data in the WKT or WKB formats, or use the Hive JSON
SerDe. You can also use the geometry data types supported in Athena.

Input Data Formats

To handle geospatial queries, Athena supports input data in these data formats:

83

Amazon Athena User Guide
Geometry Data Types

o WKT (Well-known Text). In Athena, WKT is represented as a varchar data type.

« WKB (Well-known binary). In Athena, WKB is represented as a varbinary data type with a spatial
reference ID (WKID) 4326. For information about both of these types, see the Wikipedia topic on Well-
known text.

« JSON-encoded geospatial data. To parse JSON files with geospatial data and create tables for them,
Athena uses the Hive JSON SerDe. For more information about using this SerDe in Athena, see JSON
SerDe Libraries (p. 117).

Geometry Data Types

To handle geospatial queries, Athena supports these specialized geometry data types:

e point

e line

e polygon

e multiline

e multipolygon

List of Supported Geospatial Functions

Geospatial functions in Athena have these characteristics:

« The functions follow the general principles of Spatial Query.

« The functions are implemented as a Presto plugin that uses the ESRI Java Geometry Library. This
library has an Apache 2 license.

« The functions rely on the ESRI Geometry API.
« Not all of the ESRI-supported functions are available in Athena. This topic lists only the ESRI

geospatial functions that are supported in Athena.
Athena supports four types of geospatial functions:

« Constructor Functions (p. 85)

« Geospatial Relationship Functions (p. 86)
« Operation Functions (p. 88)

« Accessor Functions (p. 89)

Before You Begin

Create two tables, earthquakes and counties, as follows:

CREATE external TABLE earthquakes
(
earthquake_date STRING,
latitude DOUBLE,
longitude DOUBLE,

depth DOUBLE,

magnitude DOUBLE,
magtype string,
mbstations string,

84

https://en.wikipedia.org/wiki/Well-known_text
https://en.wikipedia.org/wiki/Well-known_text
https://github.com/Esri/spatial-framework-for-hadoop/wiki/Hive-JSON-SerDe
https://en.wikipedia.org/wiki/Spatial_query
https://esri.github.io/geometry-api-java/javadoc/index.html?overview-summary.html

Amazon Athena User Guide
Constructor Functions

gap string,

distance string,

rms string,

source string,

eventid string

)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILE LOCATION 's3://my-query-log/csv'

CREATE external TABLE IF NOT EXISTS counties

(

Name string,

BoundaryShape binary

)
ROW FORMAT SERDE 'com.esri.hadoop.hive.serde.JsonSerde'
STORED AS INPUTFORMAT 'com.esri.json.hadoop.EnclosedJsonInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 's3://my-query-log/json'

Some of the subsequent examples are based on these tables and rely on two sample files stored in the
Amazon S3 location. These files are not inlcuded with Athena and are used for illustration purposes only:

e An earthquakes.csv file, which lists earthquakes that occurred in California. This file has fields that
correspond to the fields in the table earthquakes.

« Acalifornia-counties. json file, which lists JSON-encoded county data in the ESRI-compliant
format, and includes many fields, such as AREA, PERIMETER, STATE, COUNTY, and NAME. The
counties table is based on this file and has two fields only: Name (string), and BoundaryShape
(binary).

Constructor Functions

Use constructor geospatial functions to obtain binary representations of a point, ~1line, or polygon.
You can also convert a particular geometry data type to text, and obtain a binary representation of a
geometry data type from text (WKT).

ST POINT(double, double)

Returns a value in the point data type, which is a binary representation of the geometry data type
point.

Syntax:

SELECT ST_POINT(longitude, latitude)
FROM earthquakes
LIMIT 1;

In the alternative syntax, you can also specify the coordinates as a point data type with two values:

SELECT ST_POINT('point (0 0)')
FROM earthquakes
LIMIT 1;

Example. This example uses specific longitude and latitude coordinates from earthquakes.csv:

SELECT ST_POINT(61.56, -158.54)

85

Amazon Athena User Guide
Geospatial Relationship Functions

FROM earthquakes
LIMIT 1;

It returns this binary representation of a geometry data type point:

00 00 00 00 01 01 00 00 00 48 el 7a 14 ae c7 4e 40 el 7a 14 ae 47 dl 63 cO

ST_LINE(varchar)

Returns a value in the 1ine data type, which is a binary representation of the geometry data type line.
Example:

SELECT ST Line('linestring(1 1, 2 2, 3 3)')

ST POLYGON(varchar)

Returns a value in the polygon data type, which is a binary representation of the geometry data type
polygon. Example:

SELECT ST_Polygon('polygon ((1 1, 4 1, 1 4))"')

ST GEOMETRY TO_TEXT (varbinary)

Converts each of the specified geometry data types to text. Returns a value in a geometry data type,
which is a WKT representation of the geometry data type. Example:

SELECT ST_GEOMETRY_TO_TEXT(ST_POINT(61.56, -158.54))

ST GEOMETRY FROM TEXT (varchar)

Converts text into a geometry data type. Returns a value in a geometry data type, which is a binary
representation of the geometry data type. Example:

SELECT ST_GEOMETRY_FROM_TEXT(ST_GEOMETRY_TO_TEXT(ST_Point(1l, 2)))

Geospatial Relationship Functions

The following functions express relationships between two different geometries that you specify as
input. They return results of type boolean. The order in which you specify the pair of geometries
matters: the first geometry value is called the left geometry, the second geometry value is called the
right geometry.

These functions return:

« TRUE if and only if the relationship described by the function is satisfied.
« FALSE if and only if the relationship described by the function is not satisfied.

ST CONTAINS (geometry, geometry)

Returns TRUE if and only if the left geometry contains the right geometry. Examples:

86

Amazon Athena User Guide
Geospatial Relationship Functions

SELECT ST _CONTAINS('POLYGON((O 2,1 1,0 -1,0 2))', 'POLYGON((-1 3,2 1,0 -3,-1 3))')

SELECT ST _CONTAINS('POLYGON((0 2,1 1,0 -1,0 2))', ST Point(0, 0));

SELECT ST_CONTAINS(ST_GEOMETRY_FROM_TEXT('POLYGON((0 2,1 1,0 -1,0 2))'),
ST_GEOMETRY_FROM_TEXT('POLYGON((-1 3,2 1,0 -3,-1 3))'))

ST CROSSES (geometry, geometry)

Returns TRUE if and only if the left geometry crosses the right geometry. Example:

SELECT ST_CROSSES(ST_LINE('linestring(l 1, 2 2)'), ST_LINE('linestring(0 1, 2 2)'))

ST_DISJOINT (geometry, geometry)

Returns TRUE if and only if the intersection of the left geometry and the right geometry is empty.
Example:

SELECT ST _DISJOINT(ST_LINE('linestring(0 0, 0 1)'), ST LINE('linestring(l 1, 1 0)'))

ST EQUALS (geometry, geometry)

Returns TRUE if and only if the left geometry equals the right geometry. Example:

SELECT ST EQUALS(ST LINE('linestring(0 0, 1 1)'), ST LINE('linestring(l 3, 2 2)'))

ST _INTERSECTS (geometry, geometry)

Returns TRUE if and only if the left geometry intersects the right geometry. Example:

SELECT ST_INTERSECTS(ST_LINE('linestring(8 7, 7 8)'), ST POLYGON('polygon((1l 1, 4 1, 4 4, 1
4))'))

ST_OVERLAPS (geometry, geometry)

Returns TRUE if and only if the left geometry overlaps the right geometry. Example:

SELECT ST OVERLAPS(ST_ POLYGON('polygon((2 0, 2 1, 3 1))'), ST POLYGON('polygon((1 1, 1 4, 4
4, 41))")

ST _RELATE (geometry, geometry)

Returns TRUE if and only if the left geometry has the specified Dimensionally Extended nine-Intersection
Model (DE-9IM) relationship with the right geometry. For more information, see the Wikipedia topic
DE-9IM. Example:

SELECT ST_RELATE(ST_LINE('linestring(0 0, 3 3)'), ST LINE('linestring(l 1, 4 4)'),
'T********’)

87

https://en.wikipedia.org/wiki/DE-9IM

Amazon Athena User Guide
Operation Functions

ST_TOUCHES (geometry, geometry)

Returns TRUE if and only if the left geometry touches the right geometry.

Example:

SELECT ST _TOUCHES(ST POINT(8, 8), ST_POLYGON('polygon((1l 1, 1 4, 4 4, 4 1))'))

ST WITHIN (geometry, geometry)

Returns TRUE if and only if the left geometry is within the right geometry.

Example:

SELECT ST WITHIN(ST_POINT(8, 8), ST POLYGON('polygon((1l 1, 1 4, 4 4, 4 1))'))

Operation Functions

Use operation functions to perform operations on geometry data type values. For example, you can
obtain the boundaries of a single geometry data type; intersections between two geometry data types;
difference between left and right geometries, where each is of the same geometry data type; or an
exterior buffer or ring around a particular geometry data type.

All operation functions take as an input one of the geometry data types and return their binary
representations.

ST BOUNDARY (geometry)

Takes as an input one of the geometry data types, and returns a binary representation of the boundary
geometry data type.

Examples:

SELECT ST_BOUNDARY (ST LINE('linestring(0 1, 1 0)')))

SELECT ST BOUNDARY(ST POLYGON('polygon((l1 1, 1 4, 4 4, 4 1))'))

ST BUFFER (geometry, double)

Takes as an input a geometry data type and a distance (as type double). Returns a binary representation
of the geometry data type buffered by the specified distance.

Example:

SELECT ST BUFFER(ST Point(1l, 2), 2.0)

ST DIFFERENCE (geometry, geometry)

Returns a binary representation of a difference between the left geometry and right geometry. Example:

SELECT ST_GEOMETRY_TO_TEXT(ST_DIFFERENCE(ST POLYGON('polygon((0 0, 0 10, 10 10, 10 0))'),
ST_POLYGON('polygon((0 0, 0 5, 5 5, 5 0))')))

88

Amazon Athena User Guide
Accessor Functions

ST_ENVELOPE (geometry)

Takes as an input one of the geometry data types and returns a binary representation of an envelope,
where an envelope is a rectangle around the specified geometry data type. Examples:

SELECT ST ENVELOPE(ST_ LINE('linestring(0 1, 1 0)'))

SELECT ST_ENVELOPE(ST_POLYGON('polygon((l1 1, 1 4, 4 4, 4 1))'))

ST_EXTERIOR_RING (geometry)

Returns a binary representation of the exterior ring of the input type polygon. Examples:

SELECT ST EXTERIOR RING(ST_POLYGON(1,1, 1,4, 4,1))

SELECT ST _EXTERIOR_RING(ST_POLYGON('polygon ((0 0, 8 0, 0 8, 0 0), (11, 15, 51, 1 1))'))

ST_INTERSECTION (geometry, geometry)

Returns a binary representation of the intersection of the left geometry and right geometry. Examples:

SELECT ST INTERSECTION(ST POINT(1,1), ST POINT(1,1))

SELECT ST_INTERSECTION(ST_LINE('linestring(0 1, 1 0)'), ST_POLYGON('polygon((l1 1, 1 4, 4
4, 4 1))

SELECT ST_GEOMETRY_TO_TEXT(ST_INTERSECTION(ST POLYGON('polygon((2 0, 2 3, 3 0))'),
ST_POLYGON('polygon((1 1, 4 1, 4 4, 1 4))')))

ST _SYMMETRIC_DIFFERENCE (geometry, geometry)

Returns a binary representation of the geometrically symmetric difference between left geometry and
right geometry. Example:

SELECT ST_GEOMETRY_TO_TEXT(ST_SYMMETRIC_DIFFERENCE(ST_LINE('linestring(0 2, 2 2)'),
ST_LINE('linestring(1l 2, 3 2)')))

Accessor Functions

Accessor functions are useful to obtain values in types varchar, bigint, or double from different
geometry data types, where geometry is any of the geometry data types supported in Athena: point,
line, polygon, multiline, and multipolygon. For example, you can obtain an area of a polygon
geometry data type, maximum and minimum X and Y values for a specified geometry data type, obtain
the length of a 1ine, or receive the number of points in a specified geometry data type.

ST AREA (geometry)

Takes as an input a geometry data type polygon and returns an area in type double. Example:

89

Amazon Athena User Guide
Accessor Functions

SELECT ST AREA(ST_POLYGON('polygon((1l 1, 4 1, 4 4, 1 4))'))

ST_CENTROID (geometry)

Takes as an input a geometry data type polygon, and returns a point that is the center of the polygon's
envelope in type varchar. Example:

SELECT ST_CENTROID(ST_GEOMETRY_FROM_TEXT('polygon ((0 0, 3 6, 6 0, 0 0))'))

ST COORDINATE DIMENSION (geometry)

Takes as input one of the supported geometry types, and returns the count of coordinate components in
type bigint. Example:

SELECT ST COORDINATE_DIMENSION(ST POINT(1.5,2.5))

ST_DIMENSION (geometry)

Takes as an input one of the supported geometry types, and returns the spatial dimension of a geometry
in type bigint. Example:

SELECT ST _DIMENSION(ST_POLYGON('polygon((l 1, 4 1, 4 4, 1 4))'))

ST DISTANCE (geometry, geometry)

Returns the distance in type double between the left geometry and the right geometry. Example:

SELECT ST DISTANCE(ST_POINT(0.0,0.0), ST POINT(3.0,4.0))

ST _IS_CLOSED (geometry)

Returns TRUE (type boolean) if and only if the line is closed. Example:

SELECT ST _IS_CLOSED(ST LINE('linestring(0 2, 2 2)'))

ST _IS_EMPTY (geometry)

Returns TRUE (type boolean) if and only if the specified geometry is empty. Example:

SELECT ST_IS_EMPTY(ST_POINT(1.5, 2.5))

ST IS RING (geometry)

Returns TRUE (type boolean) if and only if the 1ine type is closed and simple. Example:

SELECT ST _IS_RING(ST_LINE('linestring(0 2, 2 2)'))

ST _LENGTH (geometry)

Returns the length of 1ine in type double. Example:

90

Amazon Athena User Guide
Accessor Functions

SELECT ST LENGTH(ST LINE('linestring(0 2, 2 2)'))

ST MAX X (geometry)

Returns the maximum X coordinate of a geometry in type double. Example:

SELECT ST MAX X(ST LINE('linestring(0 2, 2 2)'))

ST MAX Y (geometry)

Returns the maximum Y coordinate of a geometry in type double. Example:

SELECT ST_MAX Y(ST_LINE('linestring(0 2, 2 2)'))

ST _MIN_X (geometry)

Returns the minimum X coordinate of a geometry in type double. Example:

SELECT ST _MIN_X(ST_LINE('linestring(0 2, 2 2)'))

ST _MIN_Y (geometry)

Returns the minimum Y coordinate of a geometry in type double. Example:

SELECT ST _MAX_Y(ST_LINE('linestring(0 2, 2 2)'))

ST_START POINT (geometry)

Returns the first point of a 1ine geometry data type in type point. Example:

SELECT ST START POINT(ST LINE('linestring(0 2, 2 2)'))

ST END POINT (geometry)

Returns the last point of a 1ine geometry data type in type point. Example:

SELECT ST_END_POINT(ST_LINE('linestring(0 2, 2 2)'))

ST X (point)

Returns the X coordinate of a point in type double. Example:

SELECT ST _X(ST_POINT(1.5, 2.5))

ST Y (point)

Returns the Y coordinate of a point in type double. Example:

SELECT ST_Y(ST_POINT(1.5, 2.5))

91

Amazon Athena User Guide
Examples: Geospatial Queries

ST_POINT NUMBER (geometry)

Returns the number of points in the geometry in type bigint. Example:

SELECT ST POINT NUMBER(ST POINT(1.5, 2.5))

ST INTERIOR RING NUMBER (geometry)

Returns the number of interior rings in the polygon geometry in type bigint. Example:

SELECT ST_INTERIOR_RING_NUMBER(ST_POLYGON('polygon ((0 O, 8 0, 0 8, 0 0), (11, 15, 51,
1))')

1

Examples: Geospatial Queries

The following examples create two tables and issue a query against them.
These examples rely on two files stored in an Amazon S3 location:

o An earthquakes.csv sample file, which lists earthquakes that occurred in California. This file has
fields that correspond to the fields in the table earthquakes in the following example.

« Acalifornia-counties. json file, which lists JSON-encoded county data in the ESRI-compliant
format, and includes many fields, such as AREA, PERIMETER, STATE, COUNTY, and NAME. The
following example shows the counties table from this file with two fields only: Name (string), and
BoundaryShape (binary).

Note
These files contain sample data and are not guaranteed to be accurate. They are used in the
documentation for illustration purposes only and are not included with the product.

The following code example creates a table called earthquakes:

CREATE external TABLE earthquakes

(

earthquake_date STRING,

latitude DOUBLE,

longitude DOUBLE,

depth DOUBLE,

magnitude DOUBLE,

magtype string,

mbstations string,

gap string,

distance string,

rms string,

source string,

eventid string

)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
STORED AS TEXTFILE LOCATION 's3://my-query-log/csv'

The following code example creates a table called counties:

CREATE external TABLE IF NOT EXISTS counties
(

92

Amazon Athena User Guide
Examples: Geospatial Queries

Name string,

BoundaryShape binary

)
ROW FORMAT SERDE 'com.esri.hadoop.hive.serde.JsonSerde'
STORED AS INPUTFORMAT 'com.esri.json.hadoop.EnclosedJsonInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 's3://my-query-log/json'

The following code example uses the CROSS JOIN function for the two tables created earlier.
Additionally, for both tables, it uses ST_CONTAINS and asks for counties whose boundaries include a
geographical location of the earthquakes, specified with ST_POINT. It then groups such counties by
name, orders them by count, and returns them.

SELECT counties.name,
COUNT(*) cnt
FROM counties
CROSS JOIN earthquakes
WHERE ST_CONTAINS (counties.boundaryshape, ST _POINT(earthquakes.longitude,
earthquakes.latitude))
GROUP BY counties.name
ORDER BY c¢nt DESC

This query returns:

e +
| name | cnt |
o +
| Kern | 36 |
e +
| San Bernardino | 35 |
o +
| Imperial | 28 |
o +
| Inyo | 20 |
e +
| Los Angeles | 18 |
o +
| Riverside | 14 |
o +
| Monterey | 14 |
o +
| Santa Clara | 12 |
o +
| San Benito | 11 |
e +
| Fresno | 11 |
o +
| San Diego | 7

o +
| Santa Cruz | 5 |
e +
| Ventura | 3 |
o +
| San Luis Obispo | 3 |
o +
| Orange | 2 |
o +
| San Mateo | 1

o +

93

Amazon Athena User Guide
Querying AWS CloudTrail Logs

Querying AWS Service Logs

This section includes several procedures for using Amazon Athena to query popular datasets, such as
AWS CloudTrail logs, Amazon CloudFront logs, Classic Load Balancer logs, Application Load Balancer
logs, and Amazon VPC flow logs.

The tasks in this section use the Athena console, but you can also use other tools that connect via JDBC.
For more information, see Accessing Amazon Athena with JDBC, the AWS CLI, or the Amazon Athena API
Reference.

The topics in this section assume that you have set up both an IAM user with appropriate permissions to
access Athena and the Amazon S3 bucket where the data to query should reside. For more information,
see Setting Up (p. 12) and Getting Started (p. 14).
Topics

» Querying AWS CloudTrail Logs (p. 94)

» Querying Amazon CloudFront Logs (p. 97)

» Querying Classic Load Balancer Logs (p. 98)

» Querying Application Load Balancer Logs (p. 100)

« Querying Amazon VPC Flow Logs (p. 101)

Querying AWS CloudTrail Logs

AWS CloudTrail logs include details about any API calls made to your AWS services, including the console.

AWS CloudTrail is a service that records AWS API calls and events for AWS accounts. CloudTrail logs
include details about any API calls made to your AWS services, including the console. CloudTrail
generates encrypted log files and stores them in Amazon S3. You can use Athena to query these log
files directly from Amazon S3, specifying the LOCATION of log files. For more information, see the AWS
CloudTrail User Guide.

Using Athena with CloudTrail logs is a powerful way to enhance your analysis of AWS service activity, for
example you can use queries to identify trends and further isolate activity by attribute, such as source IP
address or user.

A common application is to use CloudTrail logs to analyze operational activity for security and
compliance. For a detailed example, see the AWS Big Data Blog post, Analyze Security, Compliance, and
Operational Activity Using AWS CloudTrail and Amazon Athena.

CloudTrail saves logs as JSON text files in compressed gzip format (*.json.gzip). The location of log files
depends on how you set up trails, the region or regions you are logging, and other factors.

For more information about where logs are stored, the JSON structure, and the record file contents, see
the following topics in the AWS CloudTrail User Guide:

« Finding Your CloudTrail Log Files
e CloudTrail Log File Examples

94

http://docs.aws.amazon.com/athena/latest/ug/connect-with-jdbc.html
http://docs.aws.amazon.com/cli/latest/reference/athena/
http://docs.aws.amazon.com/athena/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/athena/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
http://aws.amazon.com/blogs/big-data/aws-cloudtrail-and-amazon-athena-dive-deep-to-analyze-security-compliance-and-operational-activity/
http://aws.amazon.com/blogs/big-data/aws-cloudtrail-and-amazon-athena-dive-deep-to-analyze-security-compliance-and-operational-activity/
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-find-log-files.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-log-file-examples.html

Amazon Athena User Guide
Creating the Table for CloudTrail Logs

e CloudTrail Record Contents

o CloudTrail Event Reference

To collect logs and save them to Amazon S3, enable CloudTrail for the console. For more information,
see Creating a Trail in the AWS CloudTrail User Guide.

Note the destination Amazon S3 bucket where you save the logs, as you need it in the next section.

Replace the LOCATION clause with the path to the CloudTrail log location and set of objects with which
to work. The example uses a LOCATION value of logs for a particular account, but you can use the degree
of specificity that suits your application.

For example:

« To analyze data from multiple accounts, you can roll back the LOCATION specifier to indicate all
AWSLogs by using LOCATION 's3://MyLogFiles/AWSLogs/.

« To analyze data from a specific date, account, and region, use LOCATION “s3://
MyLogFiles/123456789012/CloudTrail/us-east-1/2016/03/14/".

Using the highest level in the object hierarchy gives you the greatest flexibility when you query using
Athena.

To query the CloudTrail logs, you use the CloudTrail SerDe (p. 112).

» Creating the Table for CloudTrail Logs (p. 95)
o Tips for Querying CloudTrail Logs (p. 96)

Creating the Table for CloudTrail Logs
To create the CloudTrail table

1. Copy and paste the following DDL statement into the Athena console.

2. Modify the s3://cloudtrail_ bucket_name/AWSLogs/bucket_ID/ to point to the S3 bucket
that contains your logs data.

Verify that fields are listed correctly. For a full list of fields in a CloudTrail record, see CloudTrail Record
Contents.

In this example, the fields requestParameters, responseElements, and additionalEventData
are included as part of STRUCT data type used in JSON. To get data out of these fields, use
JSON_EXTRACT functions. For more information, see Extracting Data From JSON (p. 78).

CREATE EXTERNAL TABLE cloudtrail_logs (

eventversion STRING,

userIdentity STRUCT<
type:STRING,
principalid:STRING,
arn:STRING,
accountid:STRING,
invokedby:STRING,
accesskeyid:STRING,
userName:STRING,

sessioncontext:STRUCT<

attributes:STRUCT<
mfaauthenticated:STRING,

95

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-record-contents.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-record-contents.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-record-contents.html

Amazon Athena User Guide
Tips for Querying CloudTrail Logs

creationdate:STRING>,
sessionIssuer:STRUCT<
type:STRING,
principalId:STRING,
arn:STRING,
accountId:STRING,
userName : STRING>>>,
eventTime STRING,
eventSource STRING,
eventName STRING,
awsRegion STRING,
sourcelpAddress STRING,
userAgent STRING,
errorCode STRING,
errorMessage STRING,
requestParameters STRING,
responseElements STRING,
additionalEventData STRING,
requestId STRING,
eventId STRING,
resources ARRAY<STRUCT<
ARN:STRING,
accountId:STRING,
type:STRING>>,
eventType STRING,
apiversion STRING,
readOnly STRING,
recipientAccountId STRING,
serviceEventDetails STRING,
sharedEventID STRING,
vpcEndpointId STRING
)
ROW FORMAT SERDE 'com.amazon.emr.hive.serde.CloudTrailSerde'
STORED AS INPUTFORMAT 'com.amazon.emr.cloudtrail.CloudTrailInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 's3://cloudtrail_bucket_name/AWSLogs/bucket_ID/';

3. Run the query in Athena console. After the query completes, Athena registers cloudtrail_logs,
making the data in it ready for you to issue queries.

Tips for Querying CloudTrail Logs

To explore the CloudTrail logs data, use these tips:

« Before querying the logs, verify that your logs table looks the same as the one in Creating the
Table for CloudTrail Logs (p. 95). If it isn't the first table, delete the existing table: DROP TABLE
cloudtrail_logs;.

» Recreate the table. For more information, see Creating the Table for CloudTrail Logs (p. 95).

Verify that fields in your Athena query are listed correctly. For a full list of fields in a CloudTrail record,
see CloudTrail Record Contents.

If your query includes fields in JSON formats, such as STRUCT, extract data from JSON. See Extracting
Data From JSON (p. 78).

Now you are ready to issue queries against your CloudTrail table.
« Start by looking at which IAM users called which APl operations and from which source IP addresses.
« Use the following basic SQL query as your template. Paste the query to the Athena console and run it.

SELECT

96

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-record-contents.html

Amazon Athena User Guide
Querying Amazon CloudFront Logs

useridentity.arn,
eventname,
sourceipaddress,
eventtime
FROM cloudtrail_logs
LIMIT 100;

« Modify this query further to explore your data.

« To improve performance and prevent long-running queries, include the LIMIT clause to return a
specified subset of rows.

For more information, see the AWS Big Data blog post Analyze Security, Compliance, and Operational
Activity Using AWS CloudTrail and Amazon Athena.

Querying Amazon CloudFront Logs

You can configure Amazon CloudFront CDN to export Web distribution access logs to Amazon Simple
Storage Service. Use these logs to explore users’ surfing patterns across your web properties served by
CloudFront.

Before you begin querying the logs, enable Web distributions access log on your preferred CloudFront
distribution. For information, see Access Logs in the Amazon CloudFront Developer Guide.

Make a note of the Amazon S3 bucket to which to save these logs.

Note
This procedure works for the Web distribution access logs in CloudFront. It does not apply to
streaming logs from RTMP distributions.

« Creating the Table for CloudFront Logs (p. 97)
« Example Query for CloudFront logs (p. 98)

Creating the Table for CloudFront Logs
To create the CloudFront table

1. Copy and paste the following DDL statement into the Athena console. Modify the LOCATION for the
S3 bucket that stores your logs.

This query uses the LazySimpleSerDe (p. 120) by default and it is omitted.

CREATE EXTERNAL TABLE IF NOT EXISTS default.cloudfront_logs (
“date™ DATE,
time STRING,
location STRING,
bytes BIGINT,
requestip STRING,
method STRING,
host STRING,
uri STRING,
status INT,
referrer STRING,
useragent STRING,
querystring STRING,
cookie STRING,

97

http://aws.amazon.com/blogs/big-data/aws-cloudtrail-and-amazon-athena-dive-deep-to-analyze-security-compliance-and-operational-activity/
http://aws.amazon.com/blogs/big-data/aws-cloudtrail-and-amazon-athena-dive-deep-to-analyze-security-compliance-and-operational-activity/
http://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/AccessLogs.html

Amazon Athena User Guide
Example Query for CloudFront logs

resulttype STRING,
requestid STRING,
hostheader STRING,
requestprotocol STRING,
requestbytes BIGINT,
timetaken FLOAT,
xforwardedfor STRING,
sslprotocol STRING,
sslcipher STRING,
responseresulttype STRING,
httpversion STRING,
filestatus STRING,
encryptedfields INT
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
LOCATION 's3://your_log_bucket/prefix/"'
TBLPROPERTIES ('skip.header.line.count'='2"')

2. Run the query in Athena console. After the query completes, Athena registers the cloudfront_logs
table, making the data in it ready for you to issue queries.

Example Query for CloudFront logs

The following query adds up the number of bytes served by CloudFront between June 9 and June 11,
2017. Surround the date column name with double quotes because it is a reserved word.

SELECT SUM(bytes) AS total_bytes

FROM cloudfront_logs

WHERE "date" BETWEEN DATE '2017-06-09' AND DATE '2017-06-11"'
LIMIT 100;

In some cases, you need to eliminate empty values from the results of CREATE TABLE query for
CloudFront. To do so, run SELECT DISTINCT * FROM cloudfront_logs LIMIT 10;

For more information, see the AWS Big Data Blog post Build a Serverless Architecture to Analyze Amazon
CloudFront Access Logs Using AWS Lambda, Amazon Athena, and Amazon Kinesis Analytics.

Querying Classic Load Balancer Logs

Use Classic Load Balancer logs to analyze and understand traffic patterns to and from Elastic Load
Balancing instances and backend applications. You can see the source of traffic, latency, and bytes
transferred.

Before you begin to analyze the Elastic Load Balancing logs, configure them for saving in the destination
Amazon S3 bucket. For more information, see Enable Access Logs for Your Classic Load Balancer.

« Creating the Table for ELB Logs (p. 98)
o Example Queries for ELB Logs (p. 99)

Creating the Table for Elastic Load Balancing Logs

Create the table that you can later query. This table must include the exact location of your Elastic Load
Balancing logs in Amazon S3.

98

http://aws.amazon.com/blogs/big-data/build-a-serverless-architecture-to-analyze-amazon-cloudfront-access-logs-using-aws-lambda-amazon-athena-and-amazon-kinesis-analytics/
http://aws.amazon.com/blogs/big-data/build-a-serverless-architecture-to-analyze-amazon-cloudfront-access-logs-using-aws-lambda-amazon-athena-and-amazon-kinesis-analytics/
http://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-access-logs.html

Amazon Athena User Guide
Example Queries for Elastic Load Balancing Logs

To create the Elastic Load Balancing table

1. Copy and paste the following DDL statement into the Athena console.
2. Modify the LOCATION S3 bucket to specify the destination of your Elastic Load Balancing logs.

CREATE EXTERNAL TABLE IF NOT EXISTS elb_logs (

request_timestamp string,

elb_name string,

request_ip string,

request_port int,

backend_ip string,

backend_port int,

request_processing_time double,

backend_processing_time double,

client_response_time double,

elb_response_code string,

backend_response_code string,

received_bytes bigint,

sent_bytes bigint,

request_verb string,

url string,

protocol string,

user_agent string,

ssl_cipher string,

ssl_protocol string

)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES (

'serialization.format' = '1',

'input.regex' = '([* 1*) ([~ 1*) ([~ 1*):([0-91*) ([* 1*)[:\-1([0-91*) ([-.0-9]%)
([-.0-97*) ([-.0-91*) (I[-0-9]%) (~|[-0-9]*) ([-0-91*) ([-0-91*) \\\"([* 1*) ([~ I*) (-
(DA TOONNN" (N"IA\"T*\") ([A-20-9-]+) ([A-Za-z0-9.-]1*)%')
LOCATION 's3://your_ log_bucket/prefix/AWSLogs/AWS_account_ID/elasticloadbalancing/"';

3. Run the query in the Athena console. After the query completes, Athena registers the elb_logs
table, making the data in it ready for queries.

Example Queries for Elastic Load Balancing Logs

Use a query similar to this example. It lists the backend application servers that returned a 4XX or 5XX
error response code. Use the LIMIT operator to limit the number of logs to query at a time.

SELECT

request_timestamp,

elb_name,

backend_ip,

backend_response_code

FROM elb_logs
WHERE backend_response_code LIKE '4%' OR

backend_response_code LIKE '5%'

LIMIT 100;

Use a subsequent query to sum up the response time of all the transactions grouped by the backend IP
address and Elastic Load Balancing instance name.

SELECT sum(backend_processing time) AS
total_ms,

elb_name,

backend_ip

99

Amazon Athena User Guide
Querying Application Load Balancer Logs

FROM elb_logs WHERE backend_ip <> ''
GROUP BY backend_ip, elb_name
LIMIT 100;

For more information, see Analyzing Data in S3 using Athena.

Querying Application Load Balancer Logs

An Application Load Balancer is a load balancing option for Elastic Load Balancing that enables traffic
distribution in a microservices deployment using containers. Querying Application Load Balancer logs
allows you to see the source of traffic, latency, and bytes transferred to and from Elastic Load Balancing
instances and backend applications.

Before you begin, enable access logging for Application Load Balancer logs to be saved to your Amazon
S3 bucket.

« Creating the Table for ALB Logs (p. 100)
« Example Queries for ALB logs (p. 101)

Creating the Table for ALB Logs

1. Copy and paste the following DDL statement into the Athena console, and modify values in LOCATION
's3://your_log bucket/prefix/AWSLogs/your_ ID/elasticloadbalancing/'. For a full list
of fields present in the ALB logs, see Access Log Entries.

Create the alb_logs table as follows.

CREATE EXTERNAL TABLE IF NOT EXISTS alb_logs (
type string,
time string,
elb string,
client_ip string,
client_port int,
target_ip string,
target_port int,
request_processing_time double,
target_processing time double,
response_processing time double,
elb_status_code string,
target_status_code string,
received_bytes bigint,
sent_bytes bigint,
request_verb string,
request_url string,
request_proto string,
user_agent string,
ssl_cipher string,
ssl_protocol string,
target_group_arn string,
trace_id string,
domain_name string,
chosen_cert_arn string
)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
'serialization.format' = '1',

100

http://aws.amazon.com/blogs/big-data/analyzing-data-in-s3-using-amazon-athena/
http://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html#enable-access-logging
http://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html#access-log-entry-format

Amazon Athena User Guide
Example Queries for ALB logs

"input.regex' = '([* 1*) ([~ I*) ([~ 1*) ([~ 1*):([0-91*) ([~ 1*)[:\-1([0-91*) ([-.0-91%)
([-.0-91*) ([-.0-91*) (I[-0-91*) (~-|[-0-91*) ([-0-9]1%) ([-0-91*) \"([~ 1*) ([* I*) (- |
[~ 1N" (\"[AM\"I*\") ([A-Z0-9-]+) ([A-Za-20-9.-1%) ([* I*) (.*) (.*) (.*)')

LOCATION 's3://your-alb-logs-directory/AWSLogs/elasticloadbalancing/"';

2. Run the query in the Athena console. After the query completes, Athena registers the alb_logs
table, making the data in it ready for you to issue queries.

Example Queries for ALB logs

The following query counts the number of HTTP GET requests received by the load balancer grouped by
the client IP address.

SELECT COUNT(request_verb) AS
count,
request_verb,
client_ip
FROM alb_logs
GROUP BY request_verb, client_ip
LIMIT 100;

Another query shows the URLs visited by Safari browser users.

SELECT request_url

FROM alb_logs

WHERE user_agent LIKE '%Safari%'
LIMIT 10;

Querying Amazon VPC Flow Logs

Amazon Virtual Private Cloud flow logs capture information about the IP traffic going to and from
network interfaces in a VPC. Use the logs to investigate network traffic patterns and identify threats and
risks across your VPC network.

Before you begin querying the logs in Athena, enable VPC flow logs and export log data to Amazon S3.
After you create the logs, let them run for a few minutes to collect some data.

« Creating the Table for VPC Flow Logs (p. 101)
» Example Queries for Amazon VPC Flow Logs (p. 102)

Creating the Table for VPC Flow Logs
To create the Amazon VPC table

1. Copy and paste the following DDL statement into the Athena console.

2. Modify the LOCATION 's3://your_log bucket/prefix/' to point to the S3 bucket that contains
your log data.

CREATE EXTERNAL TABLE IF NOT EXISTS vpc_flow_logs (
ts string,
version int,
account string,
interfaceid string,

101

http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/flow-logs.html
http://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/S3ExportTasksConsole.html

Amazon Athena User Guide
Example Queries for Amazon VPC Flow Logs

sourceaddress string,

destinationaddress string,

sourceport int,

destinationport int,

protocol int,

numpackets int,

numbytes int,

starttime string,

endtime string,

action string,

logstatus string
)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES

("input.regex" = "A([A J+)\\s+([0-9]+)\\s+([* T+)\\s+([* T+)\\s+([* T+)\\s+([* 1+)\
\s+([0-9]+)\\s+([0-9]+)\\s+([0-9]+)\\s+([0-9]+)\\s+([0-9]+)\\s+([0-9]+)\\s+([0-9]+)\\s
+([~ T\\s+([* 1+)$")
LOCATION 's3://your_log_bucket/prefix/";

3. Run the query in Athena console. After the query completes, Athena registers the vpc_flow_logs
table, making the data in it ready for you to issue queries.

Example Queries for Amazon VPC Flow Logs

The following query lists all of the rejected TCP connections. The query uses a datetime function to
convert the timestamp field ts, and extracts only the day of the week for which these events occurred.

SELECT day_of_week(from_iso8601_timestamp(ts)) AS
day,
interfaceid,
sourceaddress,
action,
protocol
FROM vpc_flow_logs
WHERE action = 'REJECT' AND protocol = 6
LIMIT 100;

To see which one of your servers is receiving the highest number of HTTPS requests, use this query. It
counts the number of packets received on HTTPS port 443, groups them by destination IP address, and
returns the top 10.

SELECT SUM(numpackets) AS
packetcount,
destinationaddress

FROM vpc_flow_logs

WHERE destinationport = 443

GROUP BY destinationaddress

ORDER BY packetcount DESC

LIMIT 10;

For more information, see the AWS Big Data blog post Analyzing VPC Flow Logs with Amazon Kinesis
Firehose, Athena, and Amazon QuickSight.

102

http://aws.amazon.com/blogs/big-data/analyzing-vpc-flow-logs-with-amazon-kinesis-firehose-amazon-athena-and-amazon-quicksight/
http://aws.amazon.com/blogs/big-data/analyzing-vpc-flow-logs-with-amazon-kinesis-firehose-amazon-athena-and-amazon-quicksight/

Amazon Athena User Guide
Logging Amazon Athena API Calls with AWS CloudTrail

Monitoring Logs and
Troubleshooting

Topics
» Logging Amazon Athena API Calls with AWS CloudTrail (p. 103)
» Troubleshooting (p. 105)

Logging Amazon Athena API Calls with AWS
CloudTrail

Athena is integrated with CloudTrail, a service that captures all of the Athena API calls and delivers the
log files to an Amazon S3 bucket that you specify. CloudTrail captures API calls from the Athena console
or from your code to the Athena API operations. Using the information collected by CloudTrail, you

can determine the request that was made to Athena, the source IP address from which the request was
made, who made the request, when it was made, and so on.

You can also use Athena to query CloudTrail log files for insight. For more information, see CloudTrail
SerDe (p. 112). To learn more about CloudTrail, including how to configure and enable it, see the AWS
CloudTrail User Guide.

Athena Information in CloudTrail

When CloudTrail logging is enabled in your AWS account, API calls made to Athena actions are tracked in
CloudTrail log files, where they are written with other AWS service records. CloudTrail determines when
to create and write to a new file based on a time period and file size.

All Athena actions are logged by CloudTrail and are documented in the Amazon Athena API Reference.
For example, calls to the StartQueryExecution and GetQueryResults actions generate entries in the
CloudTrail log files.

Every log entry contains information about who generated the request. The user identity information in
the log entry helps you determine the following:

« Whether the request was made with root or IAM user credentials
o Whether the request was made with temporary security credentials for a role or federated user
« Whether the request was made by another AWS service

For more information, see CloudTrail userldentity Element in the AWS CloudTrail User Guide.

You can store your log files in your S3 bucket for as long as you want, but you can also define Amazon
S3 lifecycle rules to archive or delete log files automatically. By default, your log files are encrypted with
Amazon S3 server-side encryption (SSE).

To be notified upon log file delivery, you can configure CloudTrail to publish Amazon SNS notifications
when new log files are delivered. For more information, see Configuring Amazon SNS Notifications for
CloudTrail.

You can also aggregate Athena log files from multiple AWS regions and multiple AWS accounts into a
single S3 bucket.

103

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
http://docs.aws.amazon.com/athena/latest/APIReference/Welcome.html
http://docs.aws.amazon.com/athena/latest/APIReference/API_StartQueryExecution.html
http://docs.aws.amazon.com/athena/latest/APIReference/API_StartQueryExecution.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html

Amazon Athena User Guide
Understanding Athena Log File Entries

For more information, see Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail
Log Files from Multiple Accounts.

Understanding Athena Log File Entries

CloudTrail log files can contain one or more log entries. Each entry lists multiple JSON-formatted events.
A log entry represents a single request from any source and includes information about the requested
action, the date and time of the action, request parameters, and so on. Log entries are not an ordered
stack trace of the public API calls, so they do not appear in any specific order.

The following examples demonstrate CloudTrail log entries for:

 StartQueryExecution (Successful) (p. 104)
» StartQueryExecution (Failed) (p. 104)
» CreateNamedQuery (p. 105)

StartQueryExecution (Successful)

"eventVersion":"1.05",

"userIdentity":{
"type":"IAMUser",
"principalId":"EXAMPLE_ PRINCIPAL_ID",
"arn":"arn:aws:iam::123456789012:user/johndoe",
"accountId":"123456789012",
"accessKeyId":"EXAMPLE_KEY_ ID",
"userName": "johndoe"

}

"eventTime":"2017-05-04T00:23:552",

"eventSource":"athena.amazonaws.com",

"eventName":"StartQueryExecution",

"awsRegion":"us-east-1",

"sourceIPAddress":"77.88.999.69",

"userAgent":"aws-internal/3",

"requestParameters":{
"clientRequestToken":"16bc6e70-£972-4260-b18a-db1lb623cb35¢c",
"resultConfiguration":{

"outputLocation":"s3://athena-johndoe-test/test/"
I
"query":"Select 10"

}

"responseElements": {
"queryExecutionId":"b621c254-74e0-48e3-9630-78ed857782£f9"

}

"requestID":"f5039b01-305f-11e7-bl46-c3fc56a7dc7a",

"eventID":"c97cf8c8-6112-467a-8777-53bb38£83£fd5",

"eventType":"AwsApiCall",

"recipientAccountId":"123456789012"

StartQueryExecution (Failed)

{

"eventVersion":"1.05",

"userIdentity":{
"type":"IAMUser",
"principalId":"EXAMPLE_PRINCIPAL_ID",
"arn":"arn:aws:iam::123456789012:user/johndoe",

104

http://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
http://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html

Amazon Athena User Guide
Troubleshooting

"accountId":"123456789012",
"accessKeyId":"EXAMPLE_KEY_ ID",
"userName": " johndoe"

Iy

"eventTime":"2017-05-04T00:21:57Z",

"eventSource":"athena.amazonaws.com",

"eventName":"StartQueryExecution",

"awsRegion":"us-east-1",

"sourceIPAddress":"77.88.999.69",

"userAgent":"aws-internal/3",

"errorCode":"InvalidRequestException",

"errorMessage":"Invalid result configuration. Should specify either output location or

result configuration",

"requestParameters":{
"clientRequestToken":"ca0e965f-d6d8-4277-8257-814a57£57446",
"query":"Select 10"

Iy

"responseElements":null,

"requestID":"aefbc057-305f-11e7-9£39-bbc56d5d161le",

"eventID":"6elfc69b-d076-477e-8dec-024ee51488c4",

"eventType":"AwsApiCall",

"recipientAccountId":"123456789012"

}
CreateNamedQuery
{
"eventVersion":"1.05",
"userIdentity":{
"type":"IAMUser",
"principalId":"EXAMPLE PRINCIPAL_ID",
"arn":"arn:aws:iam::123456789012:user/johndoe",
"accountId":"123456789012",
"accessKeyId":"EXAMPLE_KEY_ ID",
"userName" : " johndoe"
}l
"eventTime":"2017-05-16T22:00:582",
"eventSource":"athena.amazonaws.com",
"eventName":"CreateNamedQuery",
"awsRegion":"us-west-2",
"sourceIPAddress":"77.88.999.69",
"userAgent":"aws-cli/1.11.85 Python/2.7.10 Darwin/16.6.0 botocore/1.5.48",
"requestParameters":{
"name" :"johndoetest",
"queryString":"select 10",
"database":"default",
"clientRequestToken":"fclad880-69ee-4df0-bb0£f-1770d9a539b1"
}!
"responseElements": {
"namedQueryId":"cdd0fe29-4787-4263-9188-a9c8db29f2d6"
}!
"requestID":"2487dd96-3a83-11e7-8f67-c9debac76512",
"eventID":"15e3d3b5-6c3b-4c7c-bc0b-36a8dd95227b",
"eventType":"AwsApiCall",
"recipientAccountId":"123456789012"
}l

Troubleshooting

Use these resources to troubleshoot problems with Amazon Athena.

105

Amazon Athena User Guide
Troubleshooting

Service Limits (p. 158)

Athena topics in the AWS Knowledge Center
Athena discussion forum

Athena posts in the AWS Big Data Blog

106

https://aws.amazon.com/premiumsupport/knowledge-center/#athena
https://forums.aws.amazon.com/forum.jspa?forumID=242
http://aws.amazon.com/blogs/big-data/tag/amazon-athena/

Amazon Athena User Guide
Using a SerDe

SerDe Reference

Athena supports several SerDe libraries for parsing data from different data formats, such as CSV, JSON,
Parquet, and ORC. Athena does not support custom SerDes.

Topics
« Using a SerDe (p. 107)
o Supported SerDes and Data Formats (p. 108)

o Compression Formats (p. 130)

Using a SerDe

A SerDe (Serializer/Deserializer) is a way in which Athena interacts with data in various formats.

It is the SerDe you specify, and not the DDL, that defines the table schema. In other words, the SerDe can
override the DDL configuration that you specify in Athena when you create your table.

To Use a SerDe in Queries

To use a SerDe when creating a table in Athena, use one of the following methods:

« Use DDL statements to describe how to read and write data to the table and do not specify a ROW

FORMAT, as in this example. This omits listing the actual SerDe type and the native LazySimpleSerDe
is used by default.

In general, Athena uses the LazySimpleSerDe if you do not specify a ROW FORMAT, or if you specify
ROW FORMAT DELIMITED

ROW FORMAT

DELIMITED FIELDS TERMINATED BY ','
ESCAPED BY '\\'

COLLECTION ITEMS TERMINATED BY '|'
MAP KEYS TERMINATED BY ':'

« Explicitly specify the type of SerDe Athena should use when it reads and writes data to the table. Also,
specify additional properties in SERDEPROPERTIES, as in this example.

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'
WITH SERDEPROPERTIES (

'serialization.format' = ',"',

'field.delim' = ', "',

'colelction.delim' = '|"',

'mapkey.delim’ vot

'escape.delim’ "\\"'

)

107

Amazon Athena User Guide

Supported SerDes and Data Formats

Supported SerDes and Data Formats

Athena supports creating tables and querying data from files in CSV, TSV, custom-delimited, and JSON
formats; files from Hadoop-related formats: ORC, Apache Avro and Parquet; log files from Logstash, AWS
CloudTrail logs, and Apache WebServer logs.

To create tables and query data from files in these formats in Athena, specify a serializer-deserializer
class (SerDe) so that Athena knows which format is used and how to parse the data.

This table lists the data formats supported in Athena and their corresponding SerDe libraries.

A SerDe is a custom library that tells the data catalog used by Athena how to handle the data. You
specify a SerDe type by listing it explicitly in the ROw FORMAT part of your CREATE TABLE statement in
Athena. In some cases, you can omit the SerDe name because Athena uses some SerDe types by default

for certain types of file formats.

Supported Data Formats and SerDes

Data Format

CSV (Comma-Separated Values)

TSV (Tab-Separated Values)

Custom-Delimited files

JSON (JavaScript Object
Notation)

Apache Avro

ORC (Optimized Row Columnar)

Description

In a CSV file, each line
represents a data record, and
each record consists of one
or more fields, separated by
commas.

In a TSV file, each line represents
a data record, and each record
consists of one or more fields,
separated by tabs.

In a file in this format, each line
represents a data record, and
records are separated by custom
delimiters.

In a JSON file, each line
represents a data record,

and each record consists of
attribute-value pairs and arrays,
separated by commas.

A format for storing data in
Hadoop that uses JSON-based
schemas for record values.

A format for optimized
columnar storage of Hive data.

SerDe types supported in
Athena

e Use the LazySimpleSerDe
for CSV, TSV, and Custom-
Delimited Files (p. 120) if
your data does not include
values enclosed in quotes.

« Use the OpenCSVSerDe for
Processing CSV (p. 114)
when your data includes
quotes in values, or different
separator or escape
characters.

Use the LazySimpleSerDe for
CSV, TSV, and Custom-Delimited
Files (p. 120) and specify the
separator character as FIELDS
TERMINATED BY '\t'.

Use the LazySimpleSerDe for
CSV, TSV, and Custom-Delimited
Files (p. 120) and specify
custom delimiters.

¢ Use the Hive JSON
SerDe (p. 118).

e Use the OpenX JSON
SerDe (p. 118).

Use the Avro SerDe (p. 109).

Use the ORC SerDe (p. 125)
and ZLIB compression.

108

Amazon Athena User Guide

Avro SerDe

Data Format

Apache Parquet

Logstash log files

Apache WebServer log files

CloudTrail log files

Topics

Avro SerDe (p. 109)

Description

A format for columnar storage
of data in Hadoop.

A format for storing log files in
Logstash.

A format for storing log files in
Apache WebServer.

A format for storing log files in
CloudTrail.

RegexSerDe for Processing Apache Web Server Logs (p. 111)

CloudTrail SerDe (p. 112)

OpenCSVSerDe for Processing CSV (p. 114)

Grok SerDe (p. 115)

JSON SerDe Libraries (p. 117)
LazySimpleSerDe for CSV, TSV, and Custom-Delimited Files (p. 120)

ORC SerDe (p. 125)
Parquet SerDe (p. 127)

Avro SerDe

SerDe Name

Avro SerDe

Library Name

org.apache.hadoop.hive.serde2.avro.AvroSerDe

Examples

SerDe types supported in
Athena

Use the Parquet SerDe (p. 127)
and SNAPPY compression.

Use the Grok SerDe (p. 115).

Use the RegexSerDe for
Processing Apache Web Server
Logs (p. 111).

e Use the CloudTrail
SerDe (p. 112) to query most
fields in CloudTrail logs.

o Use the OpenX JSON
SerDe (p. 118) for a few
fields where their format
depends on the service.
For more information, see
CloudTrail SerDe (p. 112).

Athena does not support using avro.schema.url to specify table schema for security reasons. Use
avro.schema.literal. To extract schema from an Avro file, you can use the Apache avro-tools-
<version>. jar with the getschema parameter. This returns a schema that you can use in your WITH
SERDEPROPERTIES statement. For example:

java -jar avro-tools-1.8.2.jar getschema my_data.avro

109

https://cwiki.apache.org/confluence/display/Hive/AvroSerDe
https://cwiki.apache.org/confluence/display/Hive/AvroSerDe

Amazon Athena User Guide
Avro SerDe

The avro-tools-<version>. jar file is located in the java subdirectory of your installed Avro
release. To download Avro, see Apache Avro Releases. To download Apache Avro Tools directly, see the
Apache Avro Tools Maven Repository.

After you obtain the schema, use a CREATE TABLE statement to create an Athena table based on
underlying Avro data stored in Amazon S3. In ROW FORMAT, specify the Avro SerDe as follows: ROW
FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe' In SERDEPROPERTIES,
specify the schema, as shown in this example.

Note

You can query data in regions other than the region where you run Athena. Standard inter-
region data transfer rates for Amazon S3 apply in addition to standard Athena charges. To
reduce data transfer charges, replace myregion in s3://athena-examples-myregion/
path/to/data/ with the region identifier where you run Athena, for example, s3://athena-
examples-us-east-1/path/to/data/.

CREATE EXTERNAL TABLE flights_avro_example (
yr INT,
flightdate STRING,
uniquecarrier STRING,
airlineid INT,
carrier STRING,
flightnum STRING,
origin STRING,
dest STRING,
depdelay INT,
carrierdelay INT,
weatherdelay INT
)
PARTITIONED BY (year STRING)
ROW FORMAT
SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
WITH SERDEPROPERTIES ('avro.schema.literal'='

{

"type" : "record",

"name" : "flights_avro_subset",

"namespace" : "default",

"fields" : [{
"name" : "yr",
"type" : ["null", "int" 1],
"default" : null

oA
"name" : "flightdate",
"type" : ["null", "string"],
"default" : null

oA
"name" : "uniquecarrier",
"type" : ["null", "string"],
"default" : null

oA
"name" : "airlineid",
"type" : ["null", "int" 1],
"default" : null

oA
"name" : "carrier",
"type" : ["null", "string"],
"default" : null

oA
"name" : "flightnum",
"type" : ["null", "string"],
"default" : null

oA
"name" : "origin",
"type" : ["null", "string"],

110

http://avro.apache.org/releases.html#Download
https://mvnrepository.com/artifact/org.apache.avro/avro-tools

Amazon Athena User Guide
RegexSerDe for Processing Apache Web Server Logs

"default" : null

oA
"name" : "dest",
"type" : ["null", "string"],
"default" : null

oA
"name" : "depdelay",
"type" : ["null", "int" 1],
"default" : null

oA
"name" : "carrierdelay",
"type" : ["null", "int" 1],
"default" : null

oA
"name" : "weatherdelay",
"type" : ["null", "int" 1],
"default" : null

]

}

")

STORED AS AVRO

LOCATION 's3://athena-examples-myregion/flight/avro/';

Run the MSCK REPAIR TABLE statement on the table to refresh partition metadata.

MSCK REPAIR TABLE flights_avro_example;

Query the top 10 departure cities by number of total departures.

SELECT origin, count(*) AS total_departures
FROM flights_avro_example

WHERE year >= '2000'

GROUP BY origin

ORDER BY total_departures DESC

LIMIT 10;

Note
The flight table data comes from Flights provided by US Department of Transportation, Bureau
of Transportation Statistics. Desaturated from original.

RegexSerDe for Processing Apache Web Server Logs

SerDe Name

RegexSerDe

Library Name

RegexSerDe

Examples

The following example creates a table from CloudFront logs using the RegExSerDe from the Getting
Started tutorial.

Note
You can query data in regions other than the region where you run Athena. Standard inter-
region data transfer rates for Amazon S3 apply in addition to standard Athena charges. To

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/
http://www.transtats.bts.gov/
https://hive.apache.org/javadocs/r1.2.2/api/org/apache/hadoop/hive/serde2/RegexSerDe.html

Amazon Athena User Guide
CloudTrail SerDe

reduce data transfer charges, replace myregion in s3://athena-examples-myregion/
path/to/data/ with the region identifier where you run Athena, for example, s3://athena-
examples-us-east-1/path/to/data/.

CREATE EXTERNAL TABLE IF NOT EXISTS cloudfront_logs (
“Date” DATE,
Time STRING,
Location STRING,
Bytes INT,
RequestIP STRING,
Method STRING,
Host STRING,
Uri STRING,
Status INT,
Referrer STRING,
os STRING,
Browser STRING,
BrowserVersion STRING
) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
"input.regex" = "A(2!#)([* TH)\\s+([* T+)\\s+([*» T+)\\s+([*» T+)\\s+([* T+)\\s+([* 1+)\\s
+(LA TONNs+(LA T9ON\s+([A T+)\\s+([A TE\\s+[ANCI+INCICOANG T+) « *\%20([A\/1+)[\/TC.*)s"
) LOCATION 's3://athena-examples-myregion/cloudfront/plaintext/';

CloudTrail SerDe

AWS CloudTrail is a service that records AWS API calls and events for AWS accounts. CloudTrail generates
encrypted log files and stores them in Amazon S3. You can use Athena to query these log files directly
from Amazon S3, specifying the LOCATION of log files.

To query CloudTrail logs in Athena, create table from the log files and use the CloudTrail SerDe to
deserialize the logs data.

In addition to using the CloudTrail SerDe, instances exist where you need to use a different SerDe or to
extract data from JSON. Certain fields in CloudTrail logs are STRING values that may have a variable
data format, which depends on the service. As a result, the CloudTrail SerDe is unable to predictably
deserialize them. To query the following fields, identify the data pattern and then use a different
SerDe, such as the OpenX JSON SerDe (p. 118). Alternatively, to get data out of these fields, use
JSON_EXTRACT functions. For more information, see Extracting Data From JSON (p. 78).

e requestParameters
e responseElements
e additionalEventData

e serviceEventDetails

SerDe Name

CloudTrail SerDe
Library Name
com.amazon.emr.hive.serde.CloudTrailSerde

Examples

The following example uses the CloudTrail SerDe on a fictional set of log files to create a table based on
them.

112

Amazon Athena User Guide
CloudTrail SerDe

In this example, the fields requestParameters, responseElements, and additionalEventData
are included as part of STRUCT data type used in JSON. To get data out of these fields, use
JSON_EXTRACT functions. For more information, see Extracting Data From JSON (p. 78).

CREATE EXTERNAL TABLE cloudtrail logs (

eventversion STRING,

userIdentity STRUCT<
type:STRING,
principalid:STRING,
arn:STRING,
accountid:STRING,
invokedby:STRING,
accesskeyid:STRING,
userName:STRING,

sessioncontext:STRUCT<

attributes:STRUCT<
mfaauthenticated:STRING,
creationdate:STRING>,

sessionIssuer:STRUCT<
type:STRING,
principalId:STRING,
arn:STRING,
accountId:STRING,
userName : STRING>>>,

eventTime STRING,

eventSource STRING,

eventName STRING,

awsRegion STRING,

sourcelpAddress STRING,

userAgent STRING,

errorCode STRING,

errorMessage STRING,

requestParameters STRING,

responseElements STRING,

additionalEventData STRING,

requestId STRING,

eventId STRING,

resources ARRAY<STRUCT<
ARN:STRING,
accountId:STRING,
type:STRING>>,

eventType STRING,

apivVersion STRING,

readOnly STRING,

recipientAccountId STRING,

serviceEventDetails STRING,

sharedEventID STRING,

vpcEndpointId STRING

)

ROW FORMAT SERDE 'com.amazon.emr.hive.serde.CloudTrailSerde'

STORED AS INPUTFORMAT 'com.amazon.emr.cloudtrail.CloudTrailInputFormat'

OUTPUTFORMAT 'org.apache.hadoop.hive.gl.io.HiveIgnoreKeyTextOutputFormat'

LOCATION 's3://cloudtrail_bucket_name/AWSLogs/bucket_ID/';

The following query returns the logins that occurred over a 24-hour period.

SELECT
useridentity.username,
sourceipaddress,
eventtime,
additionaleventdata
FROM default.cloudtrail_logs
WHERE eventname = 'ConsoleLogin'
AND eventtime >= '2017-02-17T00:00:00Z"'

113

Amazon Athena User Guide
OpenCSVSerDe for Processing CSV

AND eventtime < '2017-02-18T00:00:00Z';

For more information, see Querying AWS CloudTrail Logs (p. 94).

OpenCSVSerDe for Processing CSV

When you create a table from a CSV file in Athena, determine what types of values it contains:

« If the file contains values enclosed in quotes, use the OpenCSV SerDe to deserialize the values in
Athena.

« If the file does not contain values enclosed in quotes, you can omit specifying any SerDe. In this case,
Athena uses the default LazySimpleSerDe. For information, see LazySimpleSerDe for CSV, TSV, and
Custom-Delimited Files (p. 120).

CSV SerDe (OpenCSVSerde)

The OpenCSV SerDe behaves as follows:

« Allows you to specify separator, quote, and escape characters, such as: WITH SERDEPROPERTIES
("separatorChar" = ",", "quoteChar" = """, "escapeChar" = "\\")

« Does not support embedded line breaks in CSV files.
« Converts all column type values to STRING.

« To recognize data types other than STRING, relies on the Presto parser and converts the values from
STRING into those data types if it can recognize them.

In particular, for data types other than STRING this SerDe behaves as follows:

« Recognizes BOOLEAN, BIGINT, INT, and DOUBLE data types and parses them without changes.

« Recognizes the TIMESTAMP type if it is specified in the UNIX format, such as yyyy-mm-dd
hh:mm:ss[.f...], as the type LONG.

« Does not support TIMESTAMP in the JDBC-compliant java.sqgl.Timestamp format, such as "YYyy-
MM-DD HH:MM:SS.fffffff££f" (9 decimal place precision). If you are processing CSV files from Hive,
use the UNIX format for TIMESTAMP.

« Recognizes the DATE type if it is specified in the UNIX format, such as YYYY-MM-DD, as the type LONG.
« Does not support DATE in another format. If you are processing CSV files from Hive, use the UNIX

format for DATE.
SerDe Name
CSV SerDe
Library Name

To use this SerDe, specify its fully qualified class name in ROW FORMAT, also specify the delimiters inside
SERDEPROPERTIES, as follows:

ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.0penCSVSerde'
WITH SERDEPROPERTIES (

"separatorChar" = ",",
"quoteChar" =",
"escapeChar" = "\\"

)

114

https://cwiki.apache.org/confluence/display/Hive/CSV+Serde
https://cwiki.apache.org/confluence/display/Hive/CSV+Serde
https://cwiki.apache.org/confluence/display/Hive/CSV+Serde

Amazon Athena User Guide
Grok SerDe

Example

This example presumes a source CSV file saved in s3: //mybucket /mycsv/ with the following data
contents:

"al","a2","a3","a4"
nqw mgn, "abc", ndef"
"a","al", "abc3", "ab4"

Use a CREATE TABLE statement to create an Athena table based on this CSV file and reference the
OpenCSVSerDe class in ROW FORMAT, also specifying SerDe properties for character separator, quote
character, and escape character.

CREATE EXTERNAL TABLE myopencsvtable (
coll string,
col2 string,
col3 string,
col4 string
)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.0penCSVSerde'
WITH SERDEPROPERTIES (
'separatorChar' = ',"',
'quoteChar' = '\"',
'escapeChar' = "\\'
)
STORED AS TEXTFILE
LOCATION 's3://location/of/csv/';

Query all values in the table.

SELECT * FROM myopencsvtable;

The query returns the following values.

coll col2 col3 col4
al a2 a3 a4
1 2 abc def
al abe3 ab4
Note

The flight table data comes from Flights provided by US Department of Transportation, Bureau
of Transportation Statistics. Desaturated from original.

Grok SerDe

The Logstash Grok SerDe is a library with a set of specialized patterns for deserialization of unstructured
text files, usually logs. Each Grok pattern is a named regular expression. You can identify and re-use
these deserialization patterns as needed. This makes it easier to use Grok compared with using regular
expressions. Grok provides a set of pre-defined patterns. You can also create custom patterns.

To specify the Grok SerDe when creating a table in Athena, use the ROW FORMAT SERDE
'com.amazonaws.glue.serde.GrokSerDe' clause, followed by the WITH SERDEPROPERTIES clause
that specifies the patterns to match in your data, where:

o The input.format expression defines the patterns to match in the data file. It is required.

o The input.grokCustomPatterns expression defines a named custom pattern, which you can
subsequently use within the input.format expression. It is optional.

115

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/
http://www.transtats.bts.gov/
https://github.com/elastic/logstash/blob/v1.4.2/patterns/grok-patterns

Amazon Athena User Guide
Grok SerDe

o The STORED AS INPUTFORMAT and OUTPUTFORMAT clauses are required.

« The LOCATION clause specifies an Amazon S3 bucket, which can contain multiple source data files. All
files in the bucket are deserialized to create the table.

Examples
These examples rely on the list of predefined Grok patterns. See pre-defined patterns.
Example 1

This example uses a single fictional text file saved in s3: //mybucket/groksample with the following
data, which represents Postfix maillog entries.

Feb 9 07:15:00 m4eastmail postfix/smtpd[19305]: B88C4120838: connect from
unknown[192.168.55.4]

Feb 9 07:15:00 m4eastmail postfix/smtpd[20444]: B58C4330038: client=unknown[192.168.55.4]
Feb 9 07:15:03 m4eastmail postfix/cleanup[22835]: BDC22A77854: message-
1d=<31221401257553.5004389LCBF@m4eastmail .example.com>

The following statement creates a table in Athena called mygroktable from the source data file, using a
custom pattern and the predefined patterns that you specify.

CREATE EXTERNAL TABLE “mygroktable~ (
'SYSLOGBASE' string,
'queue_id' string,
'syslog_message' string
)
ROW FORMAT SERDE
'com.amazonaws.glue.serde.GrokSerDe'
WITH SERDEPROPERTIES (
'input.grokCustomPatterns' = 'POSTFIX_QUEUEID [0-9A-F]{7,12}',
'input.format'="'%{SYSLOGBASE} %{POSTFIX_QUEUEID:queue_id}: %{GREEDYDATA:syslog_message}'
)
STORED AS INPUTFORMAT
'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.qgl.io.HiveIgnoreKeyTextOutputFormat'
LOCATION
's3://mybucket/groksample’;

Start with something simple like %{NOTSPACE: column} to get the columns mapped first and then
specialize the columns if you want to.

Example 2

In the following example, you create a query for Log4j logs. The example log file has the entries in this
format:

2017-09-12 12:10:34,972 INFO - processType=AZ, processId=ABCDEFG614B6F5E49, status=RUN,

threadId=123:amqListenerContainerPool23[P:AJ|ABCDE9614B6F5E49 | |
2017-09-12T12:10:11.172-07001],

executionTime=7290, tenantId=12456, userId=123123f8535£f8d76015374e7a1d87c3c,
shard=testappl,

jobId=12312345e5e7df0015e777£fb2e03£f3¢c, messageType=REAL_TIME_SYNC,

action=receive, hostname=1.abc.def.com

To query this log file:

116

https://github.com/elastic/logstash/blob/v1.4.2/patterns/grok-patterns

Amazon Athena User Guide
JSON SerDe Libraries

o Add the Grok pattern to the input. format for each column. For example, for timestamp, add
%{TIMESTAMP ISO8601:timestamp}. For loglevel, add %{LOGLEVEL:loglevel}.

« Make sure the pattern in input. format matches the format of the log exactly, by mapping the
dashes (-) and the commas that separate the entries in the log format.

CREATE EXTERNAL TABLE bltest (
timestamp STRING,
loglevel STRING,
processtype STRING,
processid STRING,
status STRING,
threadid STRING,
executiontime INT,
tenantid INT,
userid STRING,
shard STRING,
jobid STRING,
messagetype STRING,
action STRING,
hostname STRING
)
ROW FORMAT SERDE 'com.amazonaws.glue.serde.GrokSerDe'
WITH SERDEPROPERTIES (
"input.grokCustomPatterns" = 'C_ACTION receive|send',
"input.format" = "%{TIMESTAMP_IS08601:timestamp}, %{LOGLEVEL:loglevel} - processType=
%{NOTSPACE:processtype}, processId=%{NOTSPACE:processid}, status=%{NOTSPACE:status},
threadId=%{NOTSPACE:threadid}, executionTime=%{POSINT:executiontime}, tenantId=
%{POSINT:tenantid}, userId=%{NOTSPACE:userid}, shard=%{NOTSPACE:shard}, jobId=
%{NOTSPACE: jobid}, messageType=%{NOTSPACE:messagetype}, action=%{C_ACTION:action},
hostname=%{HOST:hostname}"
) STORED AS INPUTFORMAT 'org.apache.hadoop.mapred.TextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.qgl.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 's3://mybucket /samples/';

JSON SerDe Libraries

In Athena, you can use two SerDe libraries for processing JSON files:

« The native Hive JSON SerDe (p. 118)
o The OpenX JSON SerDe (p. 118)

This SerDe is used to process JSON documents, most commonly events. These events are represented
as blocks of JSON-encoded text separated by a new line. The JsonSerDe is also capable of parsing more
complex JSON documents with nested structures. However this requires a matching DDL representing
the complex data types. There are only two properties for the JsonSerDe: ignore.malformed. json,
which is self-explanatory, and dots.in.keys, which can be set to true or false and determines if there
are dots in the name of the keys that will be replaced with underscores by the SerDe.

SerDe Names

Hive-JsonSerDe

Openx-JsonSerDe

Library Names

Use one of the following:

117

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-JSON
https://github.com/rcongiu/Hive-JSON-Serde

Amazon Athena User Guide
JSON SerDe Libraries

org.apache.hive.hcatalog.data.JsonSerDe

org.openx.data.jsonserde.JsonSerDe

Hive JSON SerDe

The Hive JSON SerDe is used to process JSON documents, most commonly events. These events are
represented as blocks of JSON-encoded text separated by a new line.

You can also use the Hive JSONSerDe to parse more complex JSON documents with nested structures.
See Example: Deserializing Nested JSON (p. 119)

This SerDe has two useful optional properties you can specify when creating tables in Athena, to help
deal with inconsistencies in the data:

o 'ignore.malformed. json' if set to TRUE, lets you skip malformed JSON syntax.

« 'dots.in.keys' if set to TRUE, specifies that the names of the keys include dots and replaces them
with underscores.

Note

You can query data in regions other than the region where you run Athena. Standard inter-
region data transfer rates for Amazon S3 apply in addition to standard Athena charges. To
reduce data transfer charges, replace myregion in s3://athena-examples-myregion/
path/to/data/ with the region identifier where you run Athena, for example, s3://athena-
examples-us-east-1/path/to/data/.

The following DDL statement uses the Hive JsonSerDe:

CREATE EXTERNAL TABLE impressions (
requestBeginTime string,
adId string,
impressionId string,
referrer string,
userAgent string,
userCookie string,
ip string,
number string,
processId string,
browserCookie string,
requestEndTime string,
timers struct<modelLookup:string, requestTime:string>,
threadId string, hostname string,
sessionId string
) PARTITIONED BY (dt string)
ROW FORMAT serde 'org.apache.hive.hcatalog.data.JsonSerDe'
with serdeproperties ('paths'='requestBeginTime, adId, impressionId, referrer, userAgent,
userCookie, ip')
LOCATION 's3://myregion.elasticmapreduce/samples/hive-ads/tables/impressions’;

OpenX JSON SerDe

The following DDL statement uses the OpenX SerDe:

CREATE EXTERNAL TABLE impressions (
requestBeginTime string,
adId string,
impressionId string,
referrer string,
userAgent string,
userCookie string,

118

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-JSON
https://github.com/rcongiu/Hive-JSON-Serde

Amazon Athena User Guide
JSON SerDe Libraries

ip string,
number string,
processId string,
browserCookie string,
requestEndTime string,
timers struct<modelLookup:string, requestTime:string>,
threadId string, hostname string,
sessionId string
) PARTITIONED BY (dt string)
ROW FORMAT serde 'org.openx.data.jsonserde.JsonSerDe'
with serdeproperties ('paths'='requestBeginTime, adId, impressionId, referrer, userAgent,
userCookie, ip')
LOCATION 's3://myregion.elasticmapreduce/samples/hive-ads/tables/impressions’';

Example: Deserializing Nested JSON

JSON data can be challenging to deserialize when creating a table in Athena. When dealing with complex
nested JSON, there are common issues you may encounter. For more information about these issues and

troubleshooting practices, see the AWS Knowledge Center Article | receive errors when | try to read JSON
data in Amazon Athena. For more information about common scenarios and query tips, see Create Tables
in Amazon Athena from Nested JSON and Mappings Using JSONSerDe.

The following example demonstrates a simple approach to creating an Athena table from a nested JSON
file. This example presumes a JSON file with the following structure:

"DocId": "AWS",
"User": {
"Id": 1234,
"Username": "bobl234",
"Name": "Bob",
"ShippingAddress": {
"Address1": "123 Main St.",
"Address2": null,
"City": "Seattle",
"State": "WA"
}I
"Orders": [
{
"ItemId": 6789,
"OrderDate": "11/11/2017"

"ItemId": 4352,
"OrderDate": "12/12/2017"

The following CREATE TABLE command uses the Openx-JsonSerDe with collection data types like
struct and array to establish groups of objects.

CREATE external TABLE complex_json (
DocId string,
“USER™ struct<Id:INT,
Username:string,
Name:string,
ShippingAddress:struct<Addressl:string,
Address2:string,
City:string,
State:string>,

119

https://aws.amazon.com/premiumsupport/knowledge-center/error-json-athena/
https://aws.amazon.com/premiumsupport/knowledge-center/error-json-athena/
http://aws.amazon.com/blogs/big-data/create-tables-in-amazon-athena-from-nested-json-and-mappings-using-jsonserde/
http://aws.amazon.com/blogs/big-data/create-tables-in-amazon-athena-from-nested-json-and-mappings-using-jsonserde/
https://github.com/rcongiu/Hive-JSON-Serde

Amazon Athena User Guide
LazySimpleSerDe for CSV, TSV, and Custom-Delimited Files

Orders:array<struct<ItemId:INT,
OrderDate:string>>>
)
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
LOCATION 's3://mybucket/myjsondata/’';

LazySimpleSerDe for CSV, TSV, and Custom-
Delimited Files

Specifying this SerDe is optional. This is the SerDe for files in CSV, TSV, and custom-delimited formats
that Athena uses by default. This SerDe is used if you don't specify any SerDe and only specify Row
FORMAT DELIMITED. Use this SerDe if your data does not have values enclosed in quotes.

Library Name

The Class library name for the LazySimpleSerDe is
org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe. For more information, see
LazySimpleSerDe

Examples

The following examples show how to create tables in Athena from CSV and TSV, using the
LazySimpleSerDe. To deserialize custom-delimited file using this SerDe, specify the delimiters similar
to the following examples.

o CSV Example (p. 120)
« TSV Example (p. 122)

Note

You can query data in regions other than the region where you run Athena. Standard inter-
region data transfer rates for Amazon S3 apply in addition to standard Athena charges. To
reduce data transfer charges, replace myregion in s3: //athena-examples-myregion/
path/to/data/ with the region identifier where you run Athena, for example, s3://athena-
examples-us-east-1/path/to/data/.

Note
The flight table data comes from Flights provided by US Department of Transportation, Bureau
of Transportation Statistics. Desaturated from original.

CSV Example

Use the CREATE TABLE statement to create an Athena table from the underlying CSV file stored in
Amazon S3.

CREATE EXTERNAL TABLE flight_delays_csv (
yr INT,
quarter INT,
month INT,
dayofmonth INT,
dayofweek INT,
flightdate STRING,
uniquecarrier STRING,
airlineid INT,
carrier STRING,
tailnum STRING,
flightnum STRING,
originairportid INT,

120

https://hive.apache.org/javadocs/r2.1.1/api/org/apache/hadoop/hive/serde2/lazy/LazySimpleSerDe.html
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/
http://www.transtats.bts.gov/

Amazon Athena User Guide
LazySimpleSerDe for CSV, TSV, and Custom-Delimited Files

originairportseqid INT,
origincitymarketid INT,
origin STRING,
origincityname STRING,
originstate STRING,
originstatefips STRING,
originstatename STRING,
originwac INT,
destairportid INT,
destairportseqid INT,
destcitymarketid INT,
dest STRING,
destcityname STRING,
deststate STRING,
deststatefips STRING,
deststatename STRING,
destwac INT,

crsdeptime STRING,
deptime STRING,
depdelay INT,
depdelayminutes INT,
depdell5 INT,
departuredelaygroups INT,
deptimeblk STRING,
taxiout INT,

wheelsoff STRING,
wheelson STRING,

taxiin INT,

crsarrtime INT,

arrtime STRING,
arrdelay INT,
arrdelayminutes INT,
arrdell5 INT,
arrivaldelaygroups INT,
arrtimeblk STRING,
cancelled INT,
cancellationcode STRING,
diverted INT,
crselapsedtime INT,
actualelapsedtime INT,
airtime INT,

flights INT,

distance INT,
distancegroup INT,
carrierdelay INT,
weatherdelay INT,
nasdelay INT,
securitydelay INT,
lateaircraftdelay INT,
firstdeptime STRING,
totaladdgtime INT,
longestaddgtime INT,
divairportlandings INT,
divreacheddest INT,
divactualelapsedtime INT,
divarrdelay INT,
divdistance INT,
divlairport STRING,
divlairportid INT,
divlairportseqid INT,
diviwheelson STRING,
divltotalgtime INT,
divllongestgtime INT,
diviwheelsoff STRING,
divlitailnum STRING,
div2airport STRING,

121

Amazon Athena User Guide
LazySimpleSerDe for CSV, TSV, and Custom-Delimited Files

div2airportid INT,
div2airportseqid INT,
div2wheelson STRING,
div2totalgtime INT,
div2longestgtime INT,
div2wheelsoff STRING,
div2tailnum STRING,
div3airport STRING,
div3airportid INT,
div3airportseqid INT,
div3wheelson STRING,
div3totalgtime INT,
div3longestgtime INT,
div3wheelsoff STRING,
div3tailnum STRING,
div4airport STRING,
div4airportid INT,
div4airportseqid INT,
div4wheelson STRING,
div4totalgtime INT,
div4longestgtime INT,
div4wheelsoff STRING,
div4tailnum STRING,
div5airport STRING,
div5airportid INT,
div5airportseqid INT,
div5wheelson STRING,
div5totalgtime INT,
div5longestgtime INT,
divswheelsoff STRING,
div5tailnum STRING

PARTITIONED BY (year STRING)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
ESCAPED BY '\\'
LINES TERMINATED BY '\n'
LOCATION 's3://athena-examples-myregion/flight/csv/';

Run MSCK REPAIR TABLE to refresh partition metadata each time a new partition is added to this table.

MSCK REPAIR TABLE flight_delays_csv;

Query the top 10 routes delayed by more than 1 hour.

SELECT origin, dest, count(*) as delays
FROM flight_delays_csv

WHERE depdelayminutes > 60

GROUP BY origin, dest

ORDER BY 3 DESC

LIMIT 10;

TSV Example
This example presumes a source TSV file saved in s3://mybucket/mytsv/.

Use a CREATE TABLE statement to create an Athena table from the TSV file stored in Amazon S3.
Notice that this example does not reference any SerDe class in ROW FORMAT because it uses the
LazySimpleSerDe, and it can be omitted. The example specifies SerDe properties for character and line
separators, and an escape character:

CREATE EXTERNAL TABLE flight_delays_tsv (

122

Amazon Athena User Guide
LazySimpleSerDe for CSV, TSV, and Custom-Delimited Files

yr INT,
quarter INT,

month INT,

dayofmonth INT,
dayofweek INT,
flightdate STRING,
uniquecarrier STRING,
airlineid INT,

carrier STRING,

tailnum STRING,
flightnum STRING,
originairportid INT,
originairportseqid INT,
origincitymarketid INT,
origin STRING,
origincityname STRING,
originstate STRING,
originstatefips STRING,
originstatename STRING,
originwac INT,
destairportid INT,
destairportseqid INT,
destcitymarketid INT,
dest STRING,
destcityname STRING,
deststate STRING,
deststatefips STRING,
deststatename STRING,
destwac INT,

crsdeptime STRING,
deptime STRING,
depdelay INT,
depdelayminutes INT,
depdell5 INT,
departuredelaygroups INT,
deptimeblk STRING,
taxiout INT,

wheelsoff STRING,
wheelson STRING,

taxiin INT,

crsarrtime INT,

arrtime STRING,
arrdelay INT,
arrdelayminutes INT,
arrdell5 INT,
arrivaldelaygroups INT,
arrtimeblk STRING,
cancelled INT,
cancellationcode STRING,
diverted INT,
crselapsedtime INT,
actualelapsedtime INT,
airtime INT,

flights INT,

distance INT,
distancegroup INT,
carrierdelay INT,
weatherdelay INT,
nasdelay INT,
securitydelay INT,
lateaircraftdelay INT,
firstdeptime STRING,
totaladdgtime INT,
longestaddgtime INT,
divairportlandings INT,
divreacheddest INT,

123

Amazon Athena User Guide
LazySimpleSerDe for CSV, TSV, and Custom-Delimited Files

divactualelapsedtime INT,
divarrdelay INT,
divdistance INT,
divlairport STRING,
divlairportid INT,
divlairportseqid INT,
diviwheelson STRING,
divlitotalgtime INT,
divllongestgtime INT,
diviwheelsoff STRING,
divlitailnum STRING,
div2airport STRING,
div2airportid INT,
div2airportseqid INT,
div2wheelson STRING,
div2totalgtime INT,
div2longestgtime INT,
div2wheelsoff STRING,
div2tailnum STRING,
div3airport STRING,
div3airportid INT,
div3airportseqid INT,
div3wheelson STRING,
div3totalgtime INT,
div3longestgtime INT,
div3wheelsoff STRING,
div3tailnum STRING,
div4airport STRING,
div4airportid INT,
div4airportseqid INT,
div4wheelson STRING,
div4totalgtime INT,
div4longestgtime INT,
div4wheelsoff STRING,
div4tailnum STRING,
div5airport STRING,
div5airportid INT,
div5airportseqid INT,
div5wheelson STRING,
div5totalgtime INT,
div5longestgtime INT,
divswheelsoff STRING,
div5tailnum STRING
)

PARTITIONED BY (year STRING)
ROW FORMAT DELIMITED

FIELDS TERMINATED BY '\t'

ESCAPED BY '\\'

LINES TERMINATED BY '\n'
LOCATION 's3://athena-examples-myregion/flight/tsv/';

Run MSCK REPAIR TABLE to refresh partition metadata each time a new partition is added to this table.

MSCK REPAIR TABLE flight delays_tsv;

Query the top 10 routes delayed by more than 1 hour.

SELECT origin, dest, count(*) as delays
FROM flight_delays_tsv

WHERE depdelayminutes > 60

GROUP BY origin, dest

ORDER BY 3 DESC

LIMIT 10;

124

Amazon Athena User Guide
ORC SerDe

Note
The flight table data comes from Flights provided by US Department of Transportation, Bureau
of Transportation Statistics. Desaturated from original.

ORC SerDe

SerDe Name

OrcSerDe

Library Name

This is the SerDe class for ORC files. It passes the object from the ORC file to the reader and from the
ORC file to the writer: OrcSerDe

Examples

Note

You can query data in regions other than the region where you run Athena. Standard inter-
region data transfer rates for Amazon S3 apply in addition to standard Athena charges. To
reduce data transfer charges, replace myregion in s3://athena-examples-myregion/
path/to/data/ with the region identifier where you run Athena, for example, s3://athena-
examples-us-east-1/path/to/data/.

The following example creates a table for the flight delays data in ORC. The table includes partitions:

DROP TABLE flight_delays_orc;

CREATE EXTERNAL TABLE flight_delays_orc (
yr INT,
quarter INT,
month INT,
dayofmonth INT,
dayofweek INT,
flightdate STRING,
uniquecarrier STRING,
airlineid INT,
carrier STRING,
tailnum STRING,
flightnum STRING,
originairportid INT,
originairportseqid INT,
origincitymarketid INT,
origin STRING,
origincityname STRING,
originstate STRING,
originstatefips STRING,
originstatename STRING,
originwac INT,
destairportid INT,
destairportseqid INT,
destcitymarketid INT,
dest STRING,
destcityname STRING,
deststate STRING,
deststatefips STRING,
deststatename STRING,
destwac INT,
crsdeptime STRING,
deptime STRING,
depdelay INT,

125

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/
http://www.transtats.bts.gov/
https://hive.apache.org/javadocs/r1.2.2/api/org/apache/hadoop/hive/ql/io/orc/OrcSerde.html
https://hive.apache.org/javadocs/r1.2.2/api/org/apache/hadoop/hive/ql/io/orc/OrcSerde.html

Amazon Athena User Guide
ORC SerDe

depdelayminutes INT,
depdell5 INT,
departuredelaygroups INT,
deptimeblk STRING,
taxiout INT,

wheelsoff STRING,
wheelson STRING,
taxiin INT,

crsarrtime INT,
arrtime STRING,
arrdelay INT,
arrdelayminutes INT,
arrdell5 INT,
arrivaldelaygroups INT,
arrtimeblk STRING,
cancelled INT,
cancellationcode STRING,
diverted INT,
crselapsedtime INT,
actualelapsedtime INT,
airtime INT,

flights INT,

distance INT,
distancegroup INT,
carrierdelay INT,
weatherdelay INT,
nasdelay INT,
securitydelay INT,
lateaircraftdelay INT,
firstdeptime STRING,
totaladdgtime INT,
longestaddgtime INT,
divairportlandings INT,
divreacheddest INT,
divactualelapsedtime INT,
divarrdelay INT,
divdistance INT,
divlairport STRING,
divlairportid INT,
divlairportseqid INT,
diviwheelson STRING,
divlitotalgtime INT,
divllongestgtime INT,
diviwheelsoff STRING,
divlitailnum STRING,
div2airport STRING,
div2airportid INT,
div2airportseqid INT,
div2wheelson STRING,
div2totalgtime INT,
div2longestgtime INT,
div2wheelsoff STRING,
div2tailnum STRING,
div3airport STRING,
div3airportid INT,
div3airportseqid INT,
div3wheelson STRING,
div3totalgtime INT,
div3longestgtime INT,
div3wheelsoff STRING,
div3tailnum STRING,
div4airport STRING,
div4airportid INT,
div4airportseqid INT,
div4wheelson STRING,
div4totalgtime INT,

126

Amazon Athena User Guide
Parquet SerDe

div4longestgtime INT,
div4wheelsoff STRING,
div4tailnum STRING,
div5airport STRING,
div5airportid INT,
div5airportseqid INT,
div5wheelson STRING,
div5totalgtime INT,
div5longestgtime INT,
divswheelsoff STRING,
div5tailnum STRING
)
PARTITIONED BY (year String)
STORED AS ORC
LOCATION 's3://athena-examples-myregion/flight/orc/’'
tblproperties ("orc.compress"="ZLIB");

Run the MSCK REPAIR TABLE statement on the table to refresh partition metadata.

MSCK REPAIR TABLE flight_ delays_orc;

Use this query to obtain the top 10 routes delayed by more than 1 hour:

SELECT origin, dest, count(*) as delays
FROM flight_delays_pq

WHERE depdelayminutes > 60

GROUP BY origin, dest

ORDER BY 3 DESC

LIMIT 10;

Parquet SerDe

SerDe Name

ParquetHiveSerDe is used for files stored in Parquet. For more information, see Parquet Format.

Library Name

Athena uses this class when it needs to deserialize files stored in Parquet:
org.apache.hadoop.hive.gl.io.parquet.serde.ParquetHiveSerDe

Example: Querying a File Stored in Parquet

Note

You can query data in regions other than the region where you run Athena. Standard inter-
region data transfer rates for Amazon S3 apply in addition to standard Athena charges. To
reduce data transfer charges, replace myregion in s3://athena-examples-myregion/
path/to/data/ with the region identifier where you run Athena, for example, s3://athena-
examples-us-east-1/path/to/data/.

Use the CREATE TABLE statement to create an Athena table from the underlying CSV file stored in
Amazon S3 in Parquet.

CREATE EXTERNAL TABLE flight_delays_pq (
yr INT,
quarter INT,
month INT,

127

https://cwiki.apache.org/confluence/display/Hive/Parquet
https://hive.apache.org/javadocs/r1.2.2/api/org/apache/hadoop/hive/ql/io/parquet/serde/ParquetHiveSerDe.html

Amazon Athena User Guide
Parquet SerDe

dayofmonth INT,
dayofweek INT,
flightdate STRING,
uniquecarrier STRING,
airlineid INT,

carrier STRING,

tailnum STRING,
flightnum STRING,
originairportid INT,
originairportseqid INT,
origincitymarketid INT,
origin STRING,
origincityname STRING,
originstate STRING,
originstatefips STRING,
originstatename STRING,
originwac INT,
destairportid INT,
destairportseqid INT,
destcitymarketid INT,
dest STRING,
destcityname STRING,
deststate STRING,
deststatefips STRING,
deststatename STRING,
destwac INT,

crsdeptime STRING,
deptime STRING,
depdelay INT,
depdelayminutes INT,
depdell5 INT,
departuredelaygroups INT,
deptimeblk STRING,
taxiout INT,

wheelsoff STRING,
wheelson STRING,

taxiin INT,

crsarrtime INT,

arrtime STRING,
arrdelay INT,
arrdelayminutes INT,
arrdell5 INT,
arrivaldelaygroups INT,
arrtimeblk STRING,
cancelled INT,
cancellationcode STRING,
diverted INT,
crselapsedtime INT,
actualelapsedtime INT,
airtime INT,

flights INT,

distance INT,
distancegroup INT,
carrierdelay INT,
weatherdelay INT,
nasdelay INT,
securitydelay INT,
lateaircraftdelay INT,
firstdeptime STRING,
totaladdgtime INT,
longestaddgtime INT,
divairportlandings INT,
divreacheddest INT,
divactualelapsedtime INT,
divarrdelay INT,
divdistance INT,

128

Amazon Athena User Guide
Parquet SerDe

divlairport STRING,
divlairportid INT,
divlairportseqid INT,
diviwheelson STRING,
divltotalgtime INT,
divllongestgtime INT,
diviwheelsoff STRING,
divlitailnum STRING,
div2airport STRING,
div2airportid INT,
div2airportseqid INT,
div2wheelson STRING,
div2totalgtime INT,
div2longestgtime INT,
div2wheelsoff STRING,
div2tailnum STRING,
div3airport STRING,
div3airportid INT,
div3airportseqid INT,
div3wheelson STRING,
div3totalgtime INT,
div3longestgtime INT,
div3wheelsoff STRING,
div3tailnum STRING,
div4airport STRING,
div4airportid INT,
div4airportseqid INT,
div4wheelson STRING,
div4totalgtime INT,
div4longestgtime INT,
div4wheelsoff STRING,
div4tailnum STRING,
div5airport STRING,
div5airportid INT,
div5airportseqid INT,
div5wheelson STRING,
div5totalgtime INT,
div5longestgtime INT,
divswheelsoff STRING,
div5tailnum STRING

)

PARTITIONED BY (year STRING)

STORED AS PARQUET

LOCATION 's3://athena-examples-myregion/flight/parquet/’'

tblproperties ("parquet.compress"="SNAPPY");

Run the MSCK REPAIR TABLE statement on the table to refresh partition metadata.

MSCK REPAIR TABLE flight_delays_pq;

Query the top 10 routes delayed by more than 1 hour.

SELECT origin, dest, count(*) as delays
FROM flight_delays_pq

WHERE depdelayminutes > 60

GROUP BY origin, dest

ORDER BY 3 DESC

LIMIT 10;

Note
The flight table data comes from Flights provided by US Department of Transportation, Bureau
of Transportation Statistics. Desaturated from original.

129

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time
http://www.transtats.bts.gov/
http://www.transtats.bts.gov/

Amazon Athena User Guide
Compression Formats

Compression Formats

Athena supports the following compression formats:

« SNAPPY. This is the default compression format for files in the Parquet format. For Amazon Kinesis
Firehose logs, SNAPPY compression is not supported. Use GZIP instead.

« ZLIB. This is the default compression format for files in the ORC format.
« GZIP
. LZO

130

Amazon Athena User Guide
Data Types

DDL and SQL Reference

Athena supports a subset of DDL statements and ANSI SQL functions and operators.

Topics
« Data Types (p. 131)
o DDL Statements (p. 132)
« SQL Queries, Functions, and Operators (p. 144)
« Unsupported DDL (p. 148)
« Limitations (p. 149)

Data Types

When you run CREATE TABLE, you must specify column names and their data types. For a complete
syntax of this command, see CREATE TABLE (p. 136).

The field col_name specifies the name for each column in the table Athena creates, along with the
column's data type. If col_name begins with an underscore, enclose it in backticks, for example
S _mycolumn”.

List of Supported Data Types in Athena

The data_type value in the col_name field of CREATE TABLE can be any of the following:

« primitive_type
o TINYINT
e SMALLINT
o INT
« BIGINT
« BOOLEAN
« DOUBLE
o FLOAT
e STRING
o TIMESTAMP
« DECIMAL [(precision, scale)]
o DATE (not supported for PARQUET file_format)

» CHAR. Fixed length character data, with a specified length between 1 and 255, such as
char(10). For more information, see CHAR Hive Data Type.

o VARCHAR. Variable length character data, with a specified length between 1 and 65535, such as
varchar (10). For more information, see VARCHAR Hive Data Type.

« array_type
« ARRAY < data_type >
« map_type
« MAP < primitive_type, data_type >

131

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types#LanguageManualTypes-char
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types#LanguageManualTypes-varchar

Amazon Athena User Guide
DDL Statements

« struct_type
o STRUCT < col_name : data_type [COMMENT col_comment] [, ...] >

DDL Statements

Use the following DDL statements directly in Athena.
Athena query engine is based on Hive DDL.
Athena does not support all DDL statements. For information, see Unsupported DDL (p. 148).

Topics
o ALTER DATABASE SET DBPROPERTIES (p. 132)
« ALTER TABLE ADD PARTITION (p. 133)
o ALTER TABLE DROP PARTITION (p. 134)
o ALTER TABLE RENAME PARTITION (p. 134)
o ALTER TABLE SET LOCATION (p. 135)
o ALTER TABLE SET TBLPROPERTIES (p. 135)
« CREATE DATABASE (p. 136)
o CREATE TABLE (p. 136)
« DESCRIBE TABLE (p. 139)
« DROP DATABASE (p. 140)
« DROP TABLE (p. 140)
o MSCK REPAIR TABLE (p. 141)
+ SHOW COLUMNS (p. 141)
« SHOW CREATE TABLE (p. 142)
« SHOW DATABASES (p. 142)
o SHOW PARTITIONS (p. 142)
o SHOW TABLES (p. 143)
o SHOW TBLPROPERTIES (p. 143)

ALTER DATABASE SET DBPROPERTIES

Creates one or more properties for a database. The use of DATABASE and SCHEMA are interchangeable;
they mean the same thing.

Synopsis

ALTER (DATABASE|SCHEMA) database_name
SET DBPROPERTIES ('property_name'='property value' [, ...])

Parameters

SET DBPROPERTIES ('property_name'='property_value' [, ...]

Specifies a property or properties for the database named property_name and establishes the
value for each of the properties respectively as property_value. If property_name already exists,
the old value is overwritten with property_value.

132

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL

Amazon Athena User Guide
ALTER TABLE ADD PARTITION

Examples

ALTER DATABASE jd_datasets
SET DBPROPERTIES ('creator'='John Doe', 'department'='applied mathematics');

ALTER SCHEMA jd_datasets
SET DBPROPERTIES ('creator'='Jane Doe');

ALTER TABLE ADD PARTITION

Creates one or more partition columns for the table. Each partition consists of one or more distinct
column name/value combinations. A separate data directory is created for each specified combination,
which can improve query performance in some circumstances. Partitioned columns don't exist within the
table data itself, so if you use a column name that has the same name as a column in the table itself, you
get an error. For more information, see Partitioning Data (p. 51).

Synopsis

ALTER TABLE table_name ADD [IF NOT EXISTS]
PARTITION
(partition_coll_name = partition_coll_value
[,partition _col2 name = partition_col2_ value]
L,eeeD)
[LOCATION 'locationl']
[PARTITION
(partition_colA name = partition_colA_value
[,partition colB_name = partition_colB_value
[,e- D]
[LOCATION 'location2']
[,...]

Parameters
[IF NOT EXISTS]

Causes the error to be suppressed if a partition with the same definition already exists.

PARTITION (partition_col_name = partition_col_value [,...])

Creates a partition with the column name/value combinations that you specify. Enclose
partition_col_value in string characters only if the data type of the column is a string.

[LOCATION 'location’]

Specifies the directory in which to store the partitions defined by the preceding statement.

Examples

ALTER TABLE orders ADD
PARTITION (dt = '2016-05-14', country = 'IN');

ALTER TABLE orders ADD
PARTITION (dt = '2016-05-14', country = 'IN')

133

Amazon Athena User Guide
ALTER TABLE DROP PARTITION

PARTITION (dt = '2016-05-15', country = 'IN');

ALTER TABLE orders ADD

PARTITION (dt = '2016-05-14', country = 'IN') LOCATION 's3://mystorage/path/to/
INDIA 14 May 2016
PARTITION (dt = '2016-05-15', country = 'IN') LOCATION 's3://mystorage/path/to/

INDIA_15_May 2016';

ALTER TABLE DROP PARTITION

Drops one or more specified partitions for the named table.

Synopsis

ALTER TABLE table_name DROP [IF EXISTS] PARTITION (partition_spec) [, PARTITION
(partition_spec)]

Parameters
[IF EXISTS]

Suppresses the error message if the partition specified does not exist.
PARTITION (partition_spec)

Each partition_spec specifies a column name/value combination in the form

partition_col_name = partition_col_value [,...].
Examples
ALTER TABLE orders DROP PARTITION (dt = '2014-05-14', country = 'IN');
ALTER TABLE orders DROP PARTITION (dt = '2014-05-14', country = 'IN'), PARTITION (dt =
'2014-05-15', country = 'IN');

ALTER TABLE RENAME PARTITION

Renames a partition column, partition_spec, for the table named table_name, to
new_partition_spec.

Synopsis

ALTER TABLE table_name PARTITION (partition_spec) RENAME TO PARTITION (new_partition_spec)

Parameters

PARTITION (partition_spec)

Each partition_spec specifies a column name/value combination in the form
partition _col name = partition col value [,...].

134

Amazon Athena User Guide

ALTER TABLE SET LOCATION
Examples
ALTER TABLE orders PARTITION (dt = '2014-05-14', country = 'IN') RENAME TO PARTITION (dt =
'2014-05-15', country = 'IN');

ALTER TABLE SET LOCATION

Changes the location for the table named table_name, and optionally a partition with
partition_spec.

Synopsis

ALTER TABLE table_name [PARTITION (partition_spec)] SET LOCATION 'new location’'

Parameters

PARTITION (partition_spec)

Specifies the partition with parameters partition_spec whose location you want to change. The
partition_spec specifies a column name/value combination in the form partition_col name
= partition_col_value.

SET LOCATION 'new location'

Specifies the new location, which must be an Amazon S3 location.

Examples

ALTER TABLE customers PARTITION (zip='98040', state='WA') SET LOCATION 's3://mystorage/
custdata"';

ALTER TABLE SET TBLPROPERTIES

Adds custom metadata properties to a table sets their assigned values.

Managed tables are not supported, so setting 'EXTERNAL'='FALSE' has no effect.

Synopsis

ALTER TABLE table_name SET TBLPROPERTIES ('property name' = 'property value' [, ...])

Parameters

SET TBLPROPERTIES ('property_name' = 'property_value'[, ...])

Specifies the metadata properties to add as property_name and the value for each as property
value. If property_name already exists, its value is reset to property_value.

Examples

ALTER TABLE orders SET TBLPROPERTIES ('notes'="Please don't drop this table.");

135

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-ManagedandExternalTables

Amazon Athena User Guide
CREATE DATABASE

CREATE DATABASE

Creates a database. The use of DATABASE and SCHEMA is interchangeable. They mean the same thing.

Synopsis

CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name
[COMMENT 'database_comment']
[LOCATION 'S3_loc']
[WITH DBPROPERTIES ('property_name' = 'property_value') [, ...]]

Parameters
[IF NOT EXISTS]

Causes the error to be suppressed if a database named database_name already exists.
[COMMENT database_comment]

Establishes the metadata value for the built-in metadata property named comment and the value
you provide for database_comment.

[LOCATION S3_loc]

Specifies the location where database files and metastore will exist as S3_1oc. The location must be
an Amazon S3 location.

[WITH DBPROPERTIES ('property_name' = 'property_value') [, ...]]

Allows you to specify custom metadata properties for the database definition.

Examples

CREATE DATABASE clickstreams;

CREATE DATABASE IF NOT EXISTS clickstreams
COMMENT 'Site Foo clickstream data aggregates'
LOCATION 's3://myS3location/clickstreams’
WITH DBPROPERTIES ('creator'='Jane D.', 'Dept.'='Marketing analytics');

CREATE TABLE

Creates a table with the name and the parameters that you specify.

Synopsis

CREATE [EXTERNAL] TABLE [IF NOT EXISTS]

[db_name.]Jtable_name [(col_name data_type [COMMENT col_comment] [, ...])]
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]

[ROW FORMAT row_format]
[STORED AS file_format] [WITH SERDEPROPERTIES (...)]]
[LOCATION 's3_loc']

136

Amazon Athena User Guide
CREATE TABLE

[TBLPROPERTIES (['has_encrypted_data'='true | false',]
['classification'='aws_glue_classification',] property_name=property_value [, ...])]

Parameters
[EXTERNAL]

Specifies that the table is based on an underlying data file that exists in Amazon S3, in the
LOCATION that you specify. When you create an external table, the data referenced must comply
with the default format or the format that you specify with the ROW FORMAT, STORED AS, and WITH
SERDEPROPERTIES clauses.

[IF NOT EXISTS]

Causes the error message to be suppressed if a table named table_name already exists.
[db_name.]table_name

Specifies a name for the table to be created. The optional db_name parameter specifies the
database where the table exists. If omitted, the current database is assumed. If the table name
includes numbers, enclose table_name in quotation marks, for example "table123". If
table_name begins with an underscore, use backticks, for example, *_mytable". Special
characters (other than underscore) are not supported.

Athena table names are case-insensitive; however, if you work with Apache Spark, Spark requires
lowercase table names.

[(col_name data_type [COMMENT col_comment] [, ...])]

Specifies the name for each column to be created, along with the column's data type. Column names
do not allow special characters other than underscore (_). If col_name begins with an underscore,
enclose the column name in backticks, for example ~_mycolumn™. The data_type value can be any
of the following:

« primitive_type
o TINYINT
e SMALLINT
o INT
o BIGINT
« BOOLEAN
« DOUBLE
« FLOAT
« STRING
o TIMESTAMP
o DECIMAL [(precision, scale)]
o DATE (not supported for PARQUET file_format)

» CHAR. Fixed length character data, with a specified length between 1 and 255, such as
char (10). For more information, see CHAR Hive Data Type.

o VARCHAR. Variable length character data, with a specified length between 1 and 65535,
such as varchar (10). For more information, see VARCHAR Hive Data Type.

« array_type
o ARRAY < data_type >
* map_type
o MAP < primitive_type, data_type >

137

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types#LanguageManualTypes-char
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types#LanguageManualTypes-varchar

Amazon Athena User Guide
CREATE TABLE

« struct_type
e STRUCT < col_name : data_type [COMMENT col_comment] [, ...] >
[COMMENT table_comment]

Creates the comment table property and populates it with the table_comment you specify.
[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]

Creates a partitioned table with one or more partition columns that have the col_name,
data_type and col_comment specified. A table can have one or more partitions, which consist of a
distinct column name and value combination. A separate data directory is created for each specified
combination, which can improve query performance in some circumstances. Partitioned columns
don't exist within the table data itself. If you use a value for col_name that is the same as a table
column, you get an error. For more information, see Partitioning Data (p. 51).

Note

After you create a table with partitions, run a subsequent query that consists of the MSCK
REPAIR TABLE (p. 141) clause to refresh partition metadata, for example, MSCK REPAIR
TABLE cloudfront_logs;.

[ROW FORMAT row_format]

Specifies the row format of the table and its underlying source data if applicable. For row_format,
you can specify one or more delimiters with the DELIMITED clause or, alternatively, use the SERDE
clause as described below. If ROW FORMAT is omitted or ROW FORMAT DELIMITED is specified, a
native SerDe is used.

o [DELIMITED FIELDS TERMINATED BY char [ESCAPED BY char]]

o [DELIMITED COLLECTION ITEMS TERMINATED BY char]

o [MAP KEYS TERMINATED BY char]

o [LINES TERMINATED BY char]

o [NULL DEFINED AS char] -- (Note: Available in Hive 0.13 and later)

--OR--

« SERDE 'serde_name' [WITH SERDEPROPERTIES ("property_name" = "property_value",
"property_name" = "property_value" [, ...])]

The serde_name indicates the SerDe to use. The WITH SERDEPROPERTIES clause allows you to
provide one or more custom properties allowed by the SerDe.

[STORED AS file_format]

Specifies the file format for table data. If omitted, TEXTFILE is the default. Options for
file format are:

o SEQUENCEFILE

o TEXTFILE

« RCFILE

« ORC

o PARQUET

« AVRO

o INPUTFORMAT input_format_classname OUTPUTFORMAT output_format_classname
[LOCATION 'S3_loc']

Specifies the location of the underlying data in Amazon S3 from which the table is created, for
example, “s3://mystorage/". For more information about considerations such as data format
and permissions, see Requirements for Tables in Athena and Data in Amazon S3 (p. 46).

138

Amazon Athena User Guide
DESCRIBE TABLE

Use a trailing slash for your folder or bucket. Do not use file names or glob characters.
Use: s3://mybucket/myfolder/

Don't use: s3://path_to_bucket s3://path_to_bucket/* s3://path_to-bucket/
mydatafile.dat

[TBLPROPERTIES (['has_encrypted_data'="true | false'] ['classification'="aws_glue_classification',]
property_name=property_value [, ...])]

Specifies custom metadata key-value pairs for the table definition in addition to predefined table
properties, such as "comment".

Athena has a built-in property, has_encrypted_data. Set this property to true to indicate

that the underlying dataset specified by LOCATION is encrypted. If omitted, false is assumed. If
omitted or set to false when underlying data is encrypted, the query results in an error. For more
information, see Configuring Encryption Options (p. 41).

To run ETL jobs, AWS Glue requires that you create a table with the classification property
to indicate the data type for AWS Glue as csv, parquet, orc, avro, or json. For example,
'classification'="'csv'. ETL jobs will fail if you do not specify this property. You can
subsequently specify it using the AWS Glue console, API, or CLI. For more information, see Using
AWS Glue Jobs for ETL with Athena (p. 30) and Authoring Jobs in Glue in the AWS Glue Developer
Guide.

Examples

CREATE EXTERNAL TABLE IF NOT EXISTS mydatabase.cloudfront_logs (
Date DATE,
Time STRING,
Location STRING,
Bytes INT,
RequestIP STRING,
Method STRING,
Host STRING,
Uri STRING,
Status INT,
Referrer STRING,
os STRING,
Browser STRING,
BrowserVersion STRING
) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
"input.regex" = "A(2!#)([A J+)\\s+([A T+)\\s+([» T+)\\s+([* 1+)\\s+([*]+)\\s
FCIA TONNSHCLA TONSH(LA T9NSH([A THANS*H([A THNNSHLANCT+INCICIAN; 1+) - $\%20([A\/]+)
[\/1C.*)%"
) LOCATION 's3://athena-examples/cloudfront/plaintext/"';

DESCRIBE TABLE

Shows the list of columns, including partition columns, for the named column. This allows you to
examine the attributes of a complex column.

Synopsis

DESCRIBE [EXTENDED | FORMATTED] [db_name.]table_name [PARTITION partition_spec] [col_name
([.field_name] | [.'$elem$'] | [.'key'] | [.'$values$'])]

139

http://docs.aws.amazon.com/glue/latest/dg/busisadd-job.html

Amazon Athena User Guide
DROP DATABASE

Parameters

[EXTENDED | FORMATTED]

Determines the format of the output. If you specify EXTENDED, all metadata for the table is
output in Thrift serialized form. This is useful primarily for debugging and not for general use. Use
FORMATTED or omit the clause to show the metadata in tabular format.

[PARTITION partition_spec]

Lists the metadata for the partition with partition_spec if included.
[col_name ([.field_name] | [.'$elem$'] | [.'key'] | [.'$value$'])*]

Specifies the column and attributes to examine. You can specify . field_name for an element of a
struct, '$elems$ ' for array element, 'key' for a map key, and '$value$ ' for map value. You can
specify this recursively to further explore the complex column.

Examples

DESCRIBE orders;

DROP DATABASE

Removes the named database from the catalog. If the database contains tables, you must either drop the
tables before executing DROP DATABASE or use the CASCADE clause. The use of DATABASE and SCHEMA
are interchangeable. They mean the same thing.

Synopsis

DROP {DATABASE | SCHEMA} [IF EXISTS] database_name [RESTRICT | CASCADE]

Parameters

[IF EXISTS]

Causes the error to be suppressed if database_name doesn't exist.
[RESTRICT|CASCADE]

Determines how tables within database_name are regarded during the DROP operation. If you
specify RESTRICT, the database is not dropped if it contains tables. This is the default behavior.
Specifying CASCADE causes the database and all its tables to be dropped.

Examples

DROP DATABASE clickstreams;

DROP SCHEMA IF EXISTS clickstreams CASCADE;

DROP TABLE

Removes the metadata table definition for the table named table_name. When you drop an external
table, the underlying data remains intact because all tables in Athena are EXTERNAL.

140

Amazon Athena User Guide
MSCK REPAIR TABLE

Synopsis

DROP TABLE [IF EXISTS] table_name [PURGE]

Parameters

[IF EXISTS]

Causes the error to be suppressed if table_name doesn't exist.
[PURGE]

Applies to managed tables. Ignored for external tables. Specifies that data should be removed
permanently rather than being moved to the . Trash/Current directory.

Examples

DROP TABLE fulfilled_orders;

DROP TABLE IF EXISTS fulfilled_orders PURGE;

MSCK REPAIR TABLE

Recovers partitions and data associated with partitions. Use this statement when you add partitions
to the catalog. It is possible it will take some time to add all partitions. If this operation times out, it
will be in an incomplete state where only a few partitions are added to the catalog. You should run
the statement on the same table until all partitions are added. For more information, see Partitioning
Data (p. 51).

Synopsis

MSCK REPAIR TABLE table_name

Examples

MSCK REPAIR TABLE orders;

SHOW COLUMNS

Lists the columns in the table schema.

Synopsis

SHOW COLUMNS IN table_name

Examples

SHOW COLUMNS IN clicks;

141

Amazon Athena User Guide
SHOW CREATE TABLE

SHOW CREATE TABLE

Analyzes an existing table named table_name to generate the query that created it.

Synopsis

SHOW CREATE TABLE [db_name.]table_name

Parameters
TABLE [db_name.]table_name

The db_name parameter is optional. If omitted, the context defaults to the current database.

Examples

SHOW CREATE TABLE orderclickstoday;

SHOW CREATE TABLE salesdata.orderclickstoday;

SHOW DATABASES

Lists all databases defined in the metastore. You can use DATABASES or SCHEMAS. They mean the same
thing.

Synopsis

SHOW {DATABASES | SCHEMAS} [LIKE 'regular_expression']

Parameters
[LIKE 'regular_expression']

Filters the list of databases to those that match the regular_expression you specify. Wildcards
can only be *, which indicates any character, or |, which indicates a choice between characters.

Examples

SHOW SCHEMAS;

SHOW DATABASES LIKE '*analytics';

SHOW PARTITIONS

Lists all the partitions in a table.

142

Amazon Athena User Guide
SHOW TABLES

Synopsis

SHOW PARTITIONS table_name

Examples

SHOW PARTITIONS clicks;

SHOW TABLES

Lists all the base tables and views in a database.

Synopsis

SHOW TABLES [IN database_name] ['regular_expression']

Parameters

[IN database_name]

Specifies the database_name from which tables will be listed. If omitted, the database from the
current context is assumed.

['regular_expression']
Filters the list of tables to those that match the regular_expression you specify. Only the

wildcards *, which indicates any character, or |, which indicates a choice between characters, can be
used.

Examples

SHOW TABLES;

SHOW TABLES IN marketing_analytics 'orders*';

SHOW TBLPROPERTIES

Lists table properties for the named table.

Synopsis

SHOW TBLPROPERTIES table_name [('property name')]

Parameters
[('property_name')]

If included, only the value of the property named property_name is listed.

143

Amazon Athena User Guide
SQL Queries, Functions, and Operators

Examples

SHOW TBLPROPERTIES orders;

SHOW TBLPROPERTIES orders('comment');

SQL Queries, Functions, and Operators

Use the following functions directly in Athena.

Amazon Athena query engine is based on Presto 0.172. For more information about these functions, see
Presto 0.172 Functions and Operators.

Athena does not support all of Presto's features. For information, see Limitations (p. 149).

o SELECT (p. 144)

« Logical Operators

o Comparison Functions and Operators
» Conditional Expressions

» Conversion Functions

« Mathematical Functions and Operators
 Bitwise Functions

« Decimal Functions and Operators

« String Functions and Operators

« Binary Functions

« Date and Time Functions and Operators
« Regular Expression Functions

« JSON Functions and Operators

« URL Functions

» Aggregate Functions

» Window Functions

« Color Functions

« Array Functions and Operators

« Map Functions and Operators

» Lambda Expressions and Functions

» Teradata Functions

SELECT

Retrieves rows from zero or more tables.

Synopsis

[WITH with_query [, ...]]
SELECT [ALL | DISTINCT] select_expression [, ...]
[FROM from item [, ...]]

144

https://prestodb.io/docs/0.172/index.html
https://prestodb.io/docs/0.172/functions.html
https://prestodb.io/docs/0.172/functions/logical.html
https://prestodb.io/docs/0.172/functions/comparison.html
https://prestodb.io/docs/0.172/functions/conditional.html
https://prestodb.io/docs/0.172/functions/conversion.html
https://prestodb.io/docs/0.172/functions/math.html
https://prestodb.io/docs/0.172/functions/bitwise.html
https://prestodb.io/docs/0.172/functions/decimal.html
https://prestodb.io/docs/0.172/functions/string.html
https://prestodb.io/docs/0.172/functions/binary.html
https://prestodb.io/docs/0.172/functions/datetime.html
https://prestodb.io/docs/0.172/functions/regexp.html
https://prestodb.io/docs/0.172/functions/json.html
https://prestodb.io/docs/0.172/functions/url.html
https://prestodb.io/docs/0.172/functions/aggregate.html
https://prestodb.io/docs/0.172/functions/window.html
https://prestodb.io/docs/0.172/functions/color.html
https://prestodb.io/docs/0.172/functions/array.html
https://prestodb.io/docs/0.172/functions/map.html
https://prestodb.io/docs/0.172/functions/lambda.html
https://prestodb.io/docs/0.172/functions/teradata.html

Amazon Athena User Guide
SELECT

[N R M N W |

WHERE condition]

GROUP BY [ALL | DISTINCT] grouping_element [, ...]]

HAVING condition]

UNION [ALL | DISTINCT] union_query]

ORDER BY expression [ASC | DESC] [NULLS FIRST | NULLS LAST] [, ...]]
LIMIT [count | ALL]]

Parameters

[WITH with_query [,]11]

You can use WITH to flatten nested queries, or to simplify subqueries.

Using the WITH clause to create recursive queries is not supported.

The WITH clause precedes the SELECT list in a query and defines one or more subqueries for use
within the SELECT query.

Each subquery defines a temporary table, similar to a view definition, which you can reference in the

FROM clause. The tables are used only when the query runs.

with_query syntaxis:

subquery_table_name [(column _name [, ...])] AS (subquery)

Where:

» subquery_table_name is a unique name for a temporary table that defines the results of the
WITH clause subquery. Each subquery must have a table name that can be referenced in the
FROM clause.

e column_name [, ...]isan optionallist of output column names. The number of column
names must be equal to or less than the number of columns defined by subquery.

« subquery is any query statement.

[ALL | DISTINCT] select_expr

select_expr determines the rows to be selected.

ALL is the default. Using ALL is treated the same as if it were omitted; all rows for all columns are
selected and duplicates are kept.

Use DISTINCT to return only distinct values when a column contains duplicate values.

FROM from_item [, ...]

Indicates the input to the query, where from_item can be a view, a join construct, or a subquery as
described below.

The from_item can be either:
e table _name [[AS] alias [(column_alias [, ...])]]

Where table_name is the name of the target table from which to select rows, alias is the name
to give the output of the SELECT statement, and column_alias defines the columns for the
alias specified.

-OR-
e join_type from item [ON join condition | USING (join column [, ...])]

Where join_type is one of:
« [INNER] JOIN

145

Amazon Athena User Guide
SELECT

e« LEFT [OUTER] JOIN
« RIGHT [OUTER] JOIN
e FULL [OUTER] JOIN
e CROSS JOIN

e ON join condition | USING (join column [, ...]) Whereusing join_condition
allows you to specify column names for join keys in multiple tables, and using join_column
requires join_column to exist in both tables.

[WHERE condition]

Filters results according to the condition you specify.
[GROUP BY [ALL | DISTINCT] grouping_expressions [, ...]]

Divides the output of the SELECT statement into rows with matching values.

ALL and DISTINCT determine whether duplicate grouping sets each produce distinct output rows. If
omitted, ALL is assumed.

grouping_ expressions allow you to perform complex grouping operations.

The grouping_expressions element can be any function, such as SUM, AVG, or COUNT, performed
on input columns, or be an ordinal number that selects an output column by position, starting at
one.

GROUP BY expressions can group output by input column names that don't appear in the output of
the SELECT statement.

All output expressions must be either aggregate functions or columns present in the GROUP BY
clause.

You can use a single query to perform analysis that requires aggregating multiple column sets.

These complex grouping operations don't support expressions comprising input columns. Only
column names or ordinals are allowed.

You can often use UNION ALL to achieve the same results as these GROUP BY operations, but
queries that use GROUP BY have the advantage of reading the data one time, whereas UNION ALL
reads the underlying data three times and may produce inconsistent results when the data source is
subject to change.

GROUP BY CUBE generates all possible grouping sets for a given set of columns. GROUP BY
ROLLUP generates all possible subtotals for a given set of columns.

[HAVING condition]

Used with aggregate functions and the GROUP BY clause. Controls which groups are selected,
eliminating groups that don't satisfy condition. This filtering occurs after groups and aggregates
are computed.

[UNION [ALL | DISTINCT] union_query]]

Combines the results of more than one SELECT statement into a single query. ALL or DISTINCT
control which rows are included in the final result set.

ALL causes all rows to be included, even if the rows are identical.

DISTINCT causes only unique rows to be included in the combined result set. DISTINCT is the
default.

Multiple UNION clauses are processed left to right unless you use parentheses to explicitly define the
order of processing.

146

Amazon Athena User Guide
SELECT

[ORDER BY expression [ASC | DESC] [NULLS FIRST | NULLS LAST] [, ...]1]
Sorts a result set by one or more output expression.

When the clause contains multiple expressions, the result set is sorted according to the first
expression. Then the second expression is applied to rows that have matching values from the
first expression, and so on.

Each expression may specify output columns from SELECT or an ordinal number for an output
column by position, starting at one.

ORDER BY is evaluated as the last step after any GROUP BY or HAVING clause. ASC and DESC
determine whether results are sorted in ascending or descending order.

The default null ordering is NULLS LAST, regardless of ascending or descending sort order.
LIMIT [count | ALL]

Restricts the number of rows in the result set to count. LIMIT ALL is the same as omitting the
LIMIT clause. If the query has no ORDER BY clause, the results are arbitrary.

TABLESAMPLE BERNOULLI | SYSTEM (percentage)
Optional operator to select rows from a table based on a sampling method.

BERNOULLI selects each row to be in the table sample with a probability of percentage. All
physical blocks of the table are scanned, and certain rows are skipped based on a comparison
between the sample percentage and a random value calculated at runtime.

With SYSTEM, the table is divided into logical segments of data, and the table is sampled at this
granularity.

Either all rows from a particular segment are selected, or the segment is skipped based on a
comparison between the sample percentage and a random value calculated at runtime. SYTSTEM
sampling is dependent on the connector. This method does not guarantee independent sampling
probabilities.

[UNNEST (array_or_map) [WITH ORDINALITY]]

Expands an array or map into a relation. Arrays are expanded into a single column. Maps are
expanded into two columns (key, value).

You can use UNNEST with multiple arguments, which are expanded into multiple columns with as
many rows as the highest cardinality argument.

Other columns are padded with nulls.
The WITH ORDINALITY clause adds an ordinality column to the end.

UNNEST is usually used with a JOIN and can reference columns from relations on the left side of the
JOIN.

Examples

SELECT * FROM table;

SELECT os, COUNT(*) count FROM cloudfront_logs WHERE date BETWEEN date '2014-07-05' AND
date '2014-08-05' GROUP BY os;

For more examples, see Querying Data in Amazon Athena Tables (p. 59).

147

Amazon Athena User Guide
Unsupported DDL

The following native Hive DDLs are not supported by Athena:

« ALTER INDEX

o ALTER TABLE table_name ARCHIVE PARTITION

o ALTER TABLE table_name CLUSTERED BY

o ALTER TABLE table_name EXCHANGE PARTITION

o ALTER TABLE table_name NOT CLUSTERED

o ALTER TABLE table_name NOT SKEWED

o ALTER TABLE table_name NOT SORTED

o ALTER TABLE table_name NOT STORED AS DIRECTORIES
o ALTER TABLE table_name partitionSpec ADD COLUMNS
o ALTER TABLE table_name partitionSpec CHANGE COLUMNS
o ALTER TABLE table_name partitionSpec COMPACT

o ALTER TABLE table_name partitionSpec CONCATENATE
o ALTER TABLE table_name partitionSpec REPLACE COLUMNS
o ALTER TABLE table_name partitionSpec SET FILEFORMAT
o ALTER TABLE table_name RENAME TO

o ALTER TABLE table_name SET SKEWED LOCATION

o ALTER TABLE table_name SKEWED BY

o ALTER TABLE table_name TOUCH

o ALTER TABLE table_name UNARCHIVE PARTITION

« COMMIT

« CREATE INDEX

« CREATE ROLE

o CREATE TABLE table_name LIKE existing_table_name
o CREATE TEMPORARY MACRO

« CREATE VIEW

o DELETE FROM

« DESCRIBE DATABASE

« DFS

« DROP INDEX

« DROP ROLE

« DROP TEMPORARY MACRO

« EXPORT TABLE

« GRANT ROLE

« IMPORT TABLE

« INSERT INTO

« LOCK DATABASE

« LOCK TABLE

« REVOKE ROLE

« ROLLBACK

« SHOW COMPACTIONS

« SHOW CURRENT ROLES

« SHOW GRANT

148

Amazon Athena User Guide
Limitations

« SHOW INDEXES

« SHOW LOCKS

« SHOW PRINCIPALS

« SHOW ROLE GRANT

» SHOW ROLES

« SHOW TRANSACTIONS
« START TRANSACTION
« UNLOCK DATABASE

+ UNLOCK TABLE

Limitations

Athena does not support the following features, which are supported by an open source Presto version
0.172.

« User-defined functions (UDFs or UDAFs).

« Stored procedures.

« A particular subset of data types is supported. For more information, see Data Types (p. 131).
o CREATE TABLE AS SELECT statements.

o INSERT INTO statements.

« Prepared statements. You cannot run EXECUTE with USING.

o CREATE TABLE LIKE.

« DESCRIBE INPUT and DESCRIBE OUTPUT.

o EXPLAIN statements.

« Federated connectors. For more information, see Connectors.

149

https://prestodb.io/docs/0.172/connector.html

Amazon Athena User Guide
Code Samples

Code Samples and Service Limits

Topics
o Code Samples (p. 150)
« Service Limits (p. 158)

Code Samples

Use examples in this topic as a starting point for writing Athena applications using the AWS SDK for Java.

« Java Code Samples
 Create a Client to Access Athena (p. 150)
» Working with Query Executions
« Start Query Execution (p. 151)
« Stop Query Execution (p. 154)
« List Query Executions (p. 155)
« Working with Named Queries
« Create a Named Query (p. 156)
« Delete a Named Query (p. 156)
« List Query Executions (p. 155)

Note

These samples use constants (for example, ATHENA_SAMPLE_QUERY) for strings, which are
defined in an ExampleConstants class declaration not shown in this topic. Replace these
constants with your own strings or defined constants.

Create a Client to Access Athena

package com.amazonaws.services.athena.sdksamples;

import com.amazonaws.ClientConfiguration;

import com.amazonaws.auth.InstanceProfileCredentialsProvider;
import com.amazonaws.regions.Regions;

import com.amazonaws.services.athena.AmazonAthena;

import com.amazonaws.services.athena.AmazonAthenaClientBuilder;

/**
* AthenaClientFactory

* This code shows how to create and configure an Amazon Athena client.
*/
public class AthenaClientFactory
{
/**
* AmazonAthenaClientBuilder to build Athena with the following properties:
* - Set the region of the client
* - Use the instance profile from the EC2 instance as the credentials provider
* - Configure the client to increase the execution timeout.
*/
private final AmazonAthenaClientBuilder builder = AmazonAthenaClientBuilder.standard()

150

Amazon Athena User Guide
Start Query Execution

.withRegion(Regions.US_EAST 1)

.withCredentials(InstanceProfileCredentialsProvider.getInstance())

.withClientConfiguration(new
ClientConfiguration().withClientExecutionTimeout(ExampleConstants.CLIENT EXECUTION_TIMEOUT)

public AmazonAthena createClient()

{
return builder.build();

Start Query Execution

package com.amazonaws.services.athena.sdksamples;

import com.amazonaws.services.athena.AmazonAthena;

import com.amazonaws.services.athena.model.ColumnInfo;

import com.amazonaws.services.athena.model.GetQueryExecutionRequest;
import com.amazonaws.services.athena.model.GetQueryExecutionResult;
import com.amazonaws.services.athena.model.GetQueryResultsRequest;
import com.amazonaws.services.athena.model.GetQueryResultsResult;
import com.amazonaws.services.athena.model.QueryExecutionContext;
import com.amazonaws.services.athena.model.QueryExecutionState;
import com.amazonaws.services.athena.model.ResultConfiguration;
import com.amazonaws.services.athena.model.Row;

import com.amazonaws.services.athena.model.StartQueryExecutionRequest;
import com.amazonaws.services.athena.model.StartQueryExecutionResult;

import java.util.List;

/**
* StartQueryExample

* This code shows how to submit a query to Athena for execution, wait till results
* are available, and then process the results.

*/
public class StartQueryExample
{
public static void main(String[] args) throws InterruptedException
{
// Build an AmazonAthena client
AthenaClientFactory factory = new AthenaClientFactory();
AmazonAthena client = factory.createClient();
String queryExecutionId = submitAthenaQuery(client);
waitForQueryToComplete(client, queryExecutionId);
processResultRows(client, queryExecutionId);
}
/**

* Submits a sample query to Athena and returns the execution ID of the query.
*/
private static String submitAthenaQuery(AmazonAthena client)
{
// The QueryExecutionContext allows us to set the Database.
QueryExecutionContext queryExecutionContext = new
QueryExecutionContext().withDatabase(ExampleConstants.ATHENA DEFAULT_DATABASE);

// The result configuration specifies where the results of the query should go in S3
and encryption options
ResultConfiguration resultConfiguration = new ResultConfiguration()

151

Amazon Athena User Guide
Start Query Execution

// You can provide encryption options for the output that is written.
// .withEncryptionConfiguration(encryptionConfiguration)
.withOutputLocation(ExampleConstants.ATHENA_OUTPUT_BUCKET);

// Create the StartQueryExecutionRequest to send to Athena which will start the
query.
StartQueryExecutionRequest startQueryExecutionRequest = new
StartQueryExecutionRequest()
.withQueryString(ExampleConstants.ATHENA_ SAMPLE_QUERY)
.withQueryExecutionContext(queryExecutionContext)
.withResultConfiguration(resultConfiguration);

StartQueryExecutionResult startQueryExecutionResult =
client.startQueryExecution(startQueryExecutionRequest);
return startQueryExecutionResult.getQueryExecutionId();

}

/**
* Wait for an Athena query to complete, fail or to be cancelled. This is done by polling
Athena over an
* interval of time. If a query fails or is cancelled, then it will throw an exception.

*/

private static void waitForQueryToComplete(AmazonAthena client, String
queryExecutionId) throws InterruptedException

{

GetQueryExecutionRequest getQueryExecutionRequest = new GetQueryExecutionRequest()
.withQueryExecutionId(queryExecutionId);

GetQueryExecutionResult getQueryExecutionResult = null;
boolean isQueryStillRunning = true;
while (isQueryStillRunning) {
getQueryExecutionResult = client.getQueryExecution(getQueryExecutionRequest);
String queryState =
getQueryExecutionResult.getQueryExecution().getStatus().getState();
if (queryState.equals(QueryExecutionState.FAILED).toString()) {
throw new RuntimeException("Query Failed to run with Error Message: " +
getQueryExecutionResult.getQueryExecution().getStatus().getStateChangeReason());
}
else if (queryState.equals(QueryExecutionState.CANCELLED.toString())) {
throw new RuntimeException("Query was cancelled.");
}
else if (queryState.equals(QueryExecutionState.SUCCEEDED.toString())) {
isQueryStillRunning = false;

}
else {
// Sleep an amount of time before retrying again.
Thread.sleep(ExampleConstants.SLEEP_AMOUNT_IN_MS);
}
System.out.println("Current Status is: " + queryState);
}
}
/**

* This code calls Athena and retrieves the results of a query.
* The query must be in a completed state before the results can be retrieved and
* paginated. The first row of results are the column headers.
*/
private static void processResultRows(AmazonAthena client, String queryExecutionId)
{
GetQueryResultsRequest getQueryResultsRequest = new GetQueryResultsRequest()
// Max Results can be set but if its not set,
// it will choose the maximum page size
// As of the writing of this code, the maximum value is 1000
// .withMaxResults(1000)
.withQueryExecutionId(queryExecutionId);

152

Amazon Athena User Guide
Start Query Execution

GetQueryResultsResult getQueryResultsResult =
client.getQueryResults(getQueryResultsRequest);

List<ColumnInfo> columnInfoList =
getQueryResultsResult.getResultSet().getResultSetMetadata().getColumnInfo();

while (true) {
List<Row> results = getQueryResultsResult.getResultSet().getRows();
for (Row row : results) {
// Process the row. The first row of the first page holds the column names.
processRow(row, columnInfolList);

}
// If nextToken is null, there are no more pages to read. Break out of the loop.
if (getQueryResultsResult.getNextToken() == null) {
break;
}

getQueryResultsResult = client.getQueryResults(

getQueryResultsRequest.withNextToken(getQueryResultsResult.getNextToken()));

}
¥

private static void processRow(Row row, List<ColumnInfo> columnInfoList)
{
for (int i = 0; i < columnInfolList.size(); ++i) {
switch (columnInfoList.get(i).getType()) {
case "varchar":
// Convert and Process as String
break;
case "tinyint":
// Convert and Process as tinyint
break;
case "smallint":
// Convert and Process as smallint
break;
case "integer":
// Convert and Process as integer
break;
case "bigint":
// Convert and Process as bigint
break;
case "double":
// Convert and Process as double
break;
case "boolean":
// Convert and Process as boolean
break;
case "date":
// Convert and Process as date
break;
case "timestamp":
// Convert and Process as timestamp
break;
default:
throw new RuntimeException("Unexpected Type is not expected" +
columnInfoList.get(i).getType());
}
}

153

Amazon Athena User Guide
Stop Query Execution

Stop Query Execution

package com.amazonaws.services.athena.sdksamples;

import com.amazonaws.services.athena.AmazonAthena;

import com.amazonaws.services.athena.model.GetQueryExecutionRequest;
import com.amazonaws.services.athena.model.GetQueryExecutionResult;
import com.amazonaws.services.athena.model.QueryExecutionContext;
import com.amazonaws.services.athena.model.ResultConfiguration;

import com.amazonaws.services.athena.model.StartQueryExecutionRequest;
import com.amazonaws.services.athena.model.StartQueryExecutionResult;
import com.amazonaws.services.athena.model.StopQueryExecutionRequest;
import com.amazonaws.services.athena.model.StopQueryExecutionResult;

/**
* StopQueryExecutionExample

* This code runs an example query, immediately stops the query, and checks the status of
the query to
* ensure that it was cancelled.
*/
public class StopQueryExecutionExample
{
public static void main(String[] args) throws Exception
{
// Build an Athena client
AthenaClientFactory factory = new AthenaClientFactory();
AmazonAthena client = factory.createClient();

String sampleQueryExecutionId = getExecutionId(client);

// Submit the stop query Request
StopQueryExecutionRequest stopQueryExecutionRequest = new StopQueryExecutionRequest()
.withQueryExecutionId(sampleQueryExecutionId);

StopQueryExecutionResult stopQueryExecutionResult =
client.stopQueryExecution(stopQueryExecutionRequest);

// Ensure that the query was stopped
GetQueryExecutionRequest getQueryExecutionRequest = new GetQueryExecutionRequest()
.withQueryExecutionId(sampleQueryExecutionId);

GetQueryExecutionResult getQueryExecutionResult =
client.getQueryExecution(getQueryExecutionRequest);
if
(getQueryExecutionResult.getQueryExecution().getStatus().getState().equals(ExampleConstants
{
// Query was cancelled.
System.out.println("Query has been cancelled");

/**
* Submits an example query and returns a query execution ID of a running query to stop.
*/

public static String getExecutionId(AmazonAthena client)

{

QueryExecutionContext queryExecutionContext = new
QueryExecutionContext().withDatabase(ExampleConstants.ATHENA DEFAULT_DATABASE);

ResultConfiguration resultConfiguration = new ResultConfiguration()
.withOutputLocation(ExampleConstants.ATHENA_ OUTPUT_ BUCKET);

154

.QUERY_STAIT

Amazon Athena User Guide
List Query Executions

StartQueryExecutionRequest startQueryExecutionRequest = new
StartQueryExecutionRequest()
.withQueryString(ExampleConstants.ATHENA_ SAMPLE_QUERY)
.withQueryExecutionContext(queryExecutionContext)
.withResultConfiguration(resultConfiguration);

StartQueryExecutionResult startQueryExecutionResult =
client.startQueryExecution(startQueryExecutionRequest);

return startQueryExecutionResult.getQueryExecutionId();

List Query Executions

package com.amazonaws.services.athena.sdksamples;

import com.amazonaws.services.athena.AmazonAthena;
import com.amazonaws.services.athena.model.ListQueryExecutionsRequest;
import com.amazonaws.services.athena.model.ListQueryExecutionsResult;

import java.util.List;

/**
* ListQueryExecutionsExample

* This code shows how to obtain a list of query execution IDs.
*/
public class ListQueryExecutionsExample
{
public static void main(String[] args) throws Exception
{
// Build an Athena client
AthenaClientFactory factory = new AthenaClientFactory();
AmazonAthena client = factory.createClient();

// Build the request
ListQueryExecutionsRequest listQueryExecutionsRequest = new
ListQueryExecutionsRequest();

// Get the list results.
ListQueryExecutionsResult listQueryExecutionsResult =
client.listQueryExecutions(listQueryExecutionsRequest);

// Process the results.
boolean hasMoreResults = true;
while (hasMoreResults) {
List<String> queryExecutionIds =
listQueryExecutionsResult.getQueryExecutionIds();
// process queryExecutionIds.

//If nextToken is not null, then there are more results. Get the next page of
results.
if (listQueryExecutionsResult.getNextToken() != null) {
listQueryExecutionsResult = client.listQueryExecutions(

listQueryExecutionsRequest.withNextToken(listQueryExecutionsResult.getNextToken()));

}
else {

hasMoreResults = false;
}

155

Amazon Athena User Guide
Create a Named Query

‘ }

Create a Named Query

package com.amazonaws.services.athena.sdksamples;

import com.amazonaws.services.athena.AmazonAthena;
import com.amazonaws.services.athena.model.CreateNamedQueryRequest;
import com.amazonaws.services.athena.model.CreateNamedQueryResult;

/**
* CreateNamedQueryExample

* This code shows how to create a named query.
*/
public class CreateNamedQueryExample
{
public static void main(String[] args) throws Exception
{
// Build an Athena client
AthenaClientFactory factory = new AthenaClientFactory();
AmazonAthena client = factory.createClient();

// Create the named query request.

CreateNamedQueryRequest createNamedQueryRequest = new CreateNamedQueryRequest()
.withDatabase(ExampleConstants.ATHENA_DEFAULT_DATABASE)
.withQueryString(ExampleConstants.ATHENA_ SAMPLE_QUERY)
.withDescription("Sample Description")

.withName("SampleQuery");

// Call Athena to create the named query. If it fails, an exception is thrown.
CreateNamedQueryResult createNamedQueryResult =
client.createNamedQuery(createNamedQueryRequest);
}
}

Delete a Named Query

package com.amazonaws.services.athena.sdksamples;

import com.amazonaws.services.athena.AmazonAthena;

import com.amazonaws.services.athena.model.CreateNamedQueryRequest;
import com.amazonaws.services.athena.model.CreateNamedQueryResult;
import com.amazonaws.services.athena.model.DeleteNamedQueryRequest;
import com.amazonaws.services.athena.model.DeleteNamedQueryResult;

/**
* DeleteNamedQueryExample

* This code shows how to delete a named query by using the named query ID.
*/
public class DeleteNamedQueryExample
{
private static String getNamedQueryId(AmazonAthena athenaClient)
{

// Create the NameQuery Request.

CreateNamedQueryRequest createNamedQueryRequest = new CreateNamedQueryRequest()
.withDatabase(ExampleConstants.ATHENA_DEFAULT_DATABASE)
.withQueryString(ExampleConstants.ATHENA_ SAMPLE_QUERY)
.withName("SampleQueryName")

.withDescription("Sample Description");

156

Amazon Athena User Guide
List Named Queries

// Create the named query. If it fails, an exception is thrown.

CreateNamedQueryResult createNamedQueryResult =
athenaClient.createNamedQuery(createNamedQueryRequest);

return createNamedQueryResult.getNamedQueryId();

}

public static void main(String[] args) throws Exception

{
// Build an Athena client
AthenaClientFactory factory = new AthenaClientFactory();
AmazonAthena client = factory.createClient();

String sampleNamedQueryId = getNamedQueryId(client);

// Create the delete named query request
DeleteNamedQueryRequest deleteNamedQueryRequest = new DeleteNamedQueryRequest()
.withNamedQueryId(sampleNamedQueryId);

// Delete the named query
DeleteNamedQueryResult deleteNamedQueryResult =
client.deleteNamedQuery(deleteNamedQueryRequest);

}

List Named Queries

package com.amazonaws.services.athena.sdksamples;

import com.amazonaws.services.athena.AmazonAthena;
import com.amazonaws.services.athena.model.ListNamedQueriesRequest;
import com.amazonaws.services.athena.model.ListNamedQueriesResult;

import java.util.List;

/**
* ListNamedQueryExample

* This code shows how to obtain a list of named query IDs.
*/
public class ListNamedQueryExample
{
public static void main(String[] args) throws Exception
{
// Build an Athena client
AthenaClientFactory factory = new AthenaClientFactory();
AmazonAthena client = factory.createClient();

// Build the request
ListNamedQueriesRequest listNamedQueriesRequest = new ListNamedQueriesRequest();

// Get the list results.
ListNamedQueriesResult listNamedQueriesResult =
client.listNamedQueries(listNamedQueriesRequest);

// Process the results.
boolean hasMoreResults = true;

while (hasMoreResults) {
List<String> namedQueryIds = listNamedQueriesResult.getNamedQueryIds();
// process named query IDs

157

Amazon Athena User Guide
Service Limits

// If nextToken is not null, there are more results. Get the next page of
results.
if (listNamedQueriesResult.getNextToken() != null) {
listNamedQueriesResult = client.listNamedQueries(

listNamedQueriesRequest.withNextToken(listNamedQueriesResult.getNextToken()));

}
else {

hasMoreResults = false;
}

Service Limits

Note
You can contact AWS Support to request a limit increase for the limits listed here.

« By default, concurrency limits on your account allow you to submit five concurrent DDL queries (used
for creating tables and adding partitions) and five concurrent SELECT queries at a time. This is a soft
limit and you can request a limit increase for concurrent queries.

« If you use Athena in regions where AWS Glue is available, migrate to AWS Glue Catalog. See Upgrading
to the AWS Glue Data Catalog Step-by-Step (p. 19). If you have migrated to AWS Glue, for service
limits on tables, databases, and partitions in Athena, see AWS Glue Limits.

« If you have not migrated to AWS Glue Catalog, you can request a limit increase.

« You may encounter a limit for Amazon S3 buckets per account, which is 100. Athena also needs a
separate bucket to log results.

« Query timeout: 30 minutes

158

http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
http://docs.aws.amazon.com/glue/latest/dg/troubleshooting-service-limits.html
http://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

	Amazon Athena
	Table of Contents
	What is Amazon Athena?
	When should I use Athena?
	Accessing Athena
	Understanding Tables, Databases, and the Data Catalog

	Release Notes
	February 2, 2018
	January 19, 2018
	November 13, 2017
	November 1, 2017
	October 19, 2017
	October 3, 2017
	September 25, 2017
	August 14, 2017
	August 4, 2017
	June 22, 2017
	June 8, 2017
	May 19, 2017
	Improvements
	Bug Fixes

	April 4, 2017
	Features
	Improvements
	Bug Fixes

	March 24, 2017
	Features
	Improvements
	Bug Fixes

	February 20, 2017
	Features
	Improvements

	Setting Up
	Sign Up for AWS
	To create an AWS account

	Create an IAM User
	To create a group for administrators
	To create an IAM user for yourself, add the user to the administrators group, and create a password for the user

	Attach Managed Policies for Using Athena

	Getting Started
	Prerequisites
	Step 1: Create a Database
	Step 2: Create a Table
	Step 3: Query Data

	Integration with AWS Glue
	Upgrading to the AWS Glue Data Catalog Step-by-Step
	Step 1 - Allow a User to Perform the Upgrade
	Step 2 - Update Customer-Managed/Inline Policies Associated with Athena Users
	Step 3 - Choose Upgrade in the Athena Console

	FAQ: Upgrading to the AWS Glue Data Catalog
	Why should I upgrade to the AWS Glue Data Catalog?
	Unified metadata repository
	Automatic schema and partition recognition
	Easy-to-build pipelines

	Are there separate charges for AWS Glue?
	Upgrade process FAQ
	Who can perform the upgrade?
	My users use a managed policy with Athena and Redshift Spectrum. What steps do I need to take to upgrade?
	What happens if I don’t upgrade?
	Why do I need to add AWS Glue policies to Athena users?
	What happens if I don’t allow AWS Glue policies for Athena users?
	Is there risk of data loss during the upgrade?
	Is my data also moved during this upgrade?

	Best Practices When Using Athena with AWS Glue
	Database, Table, and Column Names
	Using AWS Glue Crawlers
	Scheduling a Crawler to Keep the AWS Glue Data Catalog and Amazon S3 in Sync
	Using Multiple Data Sources with Crawlers
	To add another data store to an existing crawler in AWS Glue
	Syncing Partition Schema to Avoid "HIVE_PARTITION_SCHEMA_MISMATCH"
	Updating Table Metadata

	Working with CSV Files
	CSV Data Enclosed in Quotes
	CSV Files with Headers

	Using AWS Glue Jobs for ETL with Athena
	Creating Tables Using Athena for AWS Glue ETL Jobs
	To change the classification property using the console
	Using ETL Jobs to Optimize Query Performance
	Converting SMALLINT and TINYINT Datatypes to INT When Converting to ORC
	Changing Date Data Types to String for Parquet ETL Transformation
	Automating AWS Glue Jobs for ETL

	Connecting to Amazon Athena with ODBC and JDBC Drivers
	Using Athena with the JDBC Driver
	Download the JDBC Driver
	Specify the Connection String
	Specify the JDBC Driver Class Name
	Provide the JDBC Driver Credentials
	Policies

	Configure the JDBC Driver Options

	Connecting to Amazon Athena with ODBC
	Amazon Athena ODBC Driver License Agreement
	Windows
	Linux
	OSX
	ODBC Driver Connection String
	Documentation

	Security
	Setting User and Amazon S3 Bucket Permissions
	IAM Policies for User Access
	AmazonAthenaFullAccess Managed Policy
	AWSQuicksightAthenaAccess Managed Policy
	Access through JDBC Connections
	Amazon S3 Permissions
	Cross-account Permissions

	Configuring Encryption Options
	Permissions for Encrypting and Decrypting Data
	Creating Tables Based on Encrypted Datasets in Amazon S3
	Encrypting Query Results Stored in Amazon S3
	Encrypting Query Results stored in Amazon S3 Using the JDBC Driver

	Working with Source Data
	Tables and Databases Creation Process in Athena
	Requirements for Tables in Athena and Data in Amazon S3
	Functions Supported
	CREATE TABLE AS Type Statements Are Not Supported
	Transactional Data Transformations Are Not Supported
	Operations That Change Table States Are ACID
	All Tables Are EXTERNAL
	UDF and UDAF Are Not Supported
	To create a table using the AWS Glue Data Catalog
	To create a table using the wizard
	To create a database using Hive DDL
	To create a table using Hive DDL

	Names for Tables, Databases, and Columns
	Table names and table column names in Athena must be lowercase
	Athena table, database, and column names allow only underscore special characters
	Names that begin with an underscore
	Table names that include numbers

	Table Location in Amazon S3
	Partitioning Data
	Scenario 1: Data already partitioned and stored on S3 in hive format
	Storing Partitioned Data
	Creating a Table
	Query the Data

	Scenario 2: Data is not partitioned

	Converting to Columnar Formats
	Overview
	Before you begin
	Example: Converting data to Parquet using an EMR cluster

	Querying Data in Amazon Athena Tables
	Query Results
	Saving Query Results

	Viewing Query History
	Viewing Query History

	Querying Arrays
	Creating Arrays
	Examples

	Concatenating Arrays
	Converting Array Data Types
	Finding Lengths
	Accessing Array Elements
	Flattening Nested Arrays
	Examples

	Creating Arrays from Subqueries
	Filtering Arrays
	Sorting Arrays
	Using Aggregation Functions with Arrays
	Converting Arrays to Strings

	Querying Arrays with ROWS and STRUCTS
	Creating a ROW
	Changing Field Names in Arrays Using CAST
	Filtering Arrays Using the . Notation
	Filtering Arrays with Nested Values
	Filtering Arrays Using UNNEST
	Finding Keywords in Arrays
	Ordering Values in Arrays

	Querying Arrays with Maps
	Examples

	Querying JSON
	Tips for Parsing Arrays with JSON
	Converting Athena Data Types to JSON
	Converting JSON to Athena Data Types

	Extracting Data from JSON
	Examples: extracting properties

	Searching for Values
	Obtaining Length and Size of JSON Arrays
	Example: json_array_length
	Example: json_size

	Querying Geospatial Data
	What is a Geospatial Query?
	Input Data Formats and Geometry Data Types
	Input Data Formats
	Geometry Data Types

	List of Supported Geospatial Functions
	Before You Begin
	Constructor Functions
	ST_POINT(double, double)
	ST_LINE(varchar)
	ST_POLYGON(varchar)
	ST_GEOMETRY_TO_TEXT (varbinary)
	ST_GEOMETRY_FROM_TEXT (varchar)

	Geospatial Relationship Functions
	ST_CONTAINS (geometry, geometry)
	ST_CROSSES (geometry, geometry)
	ST_DISJOINT (geometry, geometry)
	ST_EQUALS (geometry, geometry)
	ST_INTERSECTS (geometry, geometry)
	ST_OVERLAPS (geometry, geometry)
	ST_RELATE (geometry, geometry)
	ST_TOUCHES (geometry, geometry)
	ST_WITHIN (geometry, geometry)

	Operation Functions
	ST_BOUNDARY (geometry)
	ST_BUFFER (geometry, double)
	ST_DIFFERENCE (geometry, geometry)
	ST_ENVELOPE (geometry)
	ST_EXTERIOR_RING (geometry)
	ST_INTERSECTION (geometry, geometry)
	ST_SYMMETRIC_DIFFERENCE (geometry, geometry)

	Accessor Functions
	ST_AREA (geometry)
	ST_CENTROID (geometry)
	ST_COORDINATE_DIMENSION (geometry)
	ST_DIMENSION (geometry)
	ST_DISTANCE (geometry, geometry)
	ST_IS_CLOSED (geometry)
	ST_IS_EMPTY (geometry)
	ST_IS_RING (geometry)
	ST_LENGTH (geometry)
	ST_MAX_X (geometry)
	ST_MAX_Y (geometry)
	ST_MIN_X (geometry)
	ST_MIN_Y (geometry)
	ST_START_POINT (geometry)
	ST_END_POINT (geometry)
	ST_X (point)
	ST_Y (point)
	ST_POINT_NUMBER (geometry)
	ST_INTERIOR_RING_NUMBER (geometry)

	Examples: Geospatial Queries

	Querying AWS Service Logs
	Querying AWS CloudTrail Logs
	Creating the Table for CloudTrail Logs
	To create the CloudTrail table

	Tips for Querying CloudTrail Logs

	Querying Amazon CloudFront Logs
	Creating the Table for CloudFront Logs
	To create the CloudFront table

	Example Query for CloudFront logs

	Querying Classic Load Balancer Logs
	Creating the Table for Elastic Load Balancing Logs
	To create the Elastic Load Balancing table

	Example Queries for Elastic Load Balancing Logs

	Querying Application Load Balancer Logs
	Creating the Table for ALB Logs
	Example Queries for ALB logs

	Querying Amazon VPC Flow Logs
	Creating the Table for VPC Flow Logs
	To create the Amazon VPC table

	Example Queries for Amazon VPC Flow Logs

	Monitoring Logs and Troubleshooting
	Logging Amazon Athena API Calls with AWS CloudTrail
	Athena Information in CloudTrail
	Understanding Athena Log File Entries
	StartQueryExecution (Successful)
	StartQueryExecution (Failed)
	CreateNamedQuery

	Troubleshooting

	SerDe Reference
	Using a SerDe
	To Use a SerDe in Queries

	Supported SerDes and Data Formats
	Avro SerDe
	SerDe Name
	Library Name
	Examples

	RegexSerDe for Processing Apache Web Server Logs
	SerDe Name
	Library Name
	Examples

	CloudTrail SerDe
	SerDe Name
	Library Name
	Examples

	OpenCSVSerDe for Processing CSV
	CSV SerDe (OpenCSVSerde)
	SerDe Name
	Library Name
	Example

	Grok SerDe
	Examples
	Example 1
	Example 2

	JSON SerDe Libraries
	SerDe Names
	Library Names
	Hive JSON SerDe
	OpenX JSON SerDe
	Example: Deserializing Nested JSON

	LazySimpleSerDe for CSV, TSV, and Custom-Delimited Files
	Library Name
	Examples
	CSV Example
	TSV Example

	ORC SerDe
	SerDe Name
	Library Name
	Examples

	Parquet SerDe
	SerDe Name
	Library Name
	Example: Querying a File Stored in Parquet

	Compression Formats

	DDL and SQL Reference
	Data Types
	List of Supported Data Types in Athena

	DDL Statements
	ALTER DATABASE SET DBPROPERTIES
	Synopsis
	Parameters
	Examples

	ALTER TABLE ADD PARTITION
	Synopsis
	Parameters
	Examples

	ALTER TABLE DROP PARTITION
	Synopsis
	Parameters
	Examples

	ALTER TABLE RENAME PARTITION
	Synopsis
	Parameters
	Examples

	ALTER TABLE SET LOCATION
	Synopsis
	Parameters
	Examples

	ALTER TABLE SET TBLPROPERTIES
	Synopsis
	Parameters
	Examples

	CREATE DATABASE
	Synopsis
	Parameters
	Examples

	CREATE TABLE
	Synopsis
	Parameters
	Examples

	DESCRIBE TABLE
	Synopsis
	Parameters
	Examples

	DROP DATABASE
	Synopsis
	Parameters
	Examples

	DROP TABLE
	Synopsis
	Parameters
	Examples

	MSCK REPAIR TABLE
	Synopsis
	Examples

	SHOW COLUMNS
	Synopsis
	Examples

	SHOW CREATE TABLE
	Synopsis
	Parameters
	Examples

	SHOW DATABASES
	Synopsis
	Parameters
	Examples

	SHOW PARTITIONS
	Synopsis
	Examples

	SHOW TABLES
	Synopsis
	Parameters
	Examples

	SHOW TBLPROPERTIES
	Synopsis
	Parameters
	Examples

	SQL Queries, Functions, and Operators
	SELECT
	Synopsis
	Parameters
	Examples

	Unsupported DDL
	Limitations

	Code Samples and Service Limits
	Code Samples
	Create a Client to Access Athena
	Start Query Execution
	Stop Query Execution
	List Query Executions
	Create a Named Query
	Delete a Named Query
	List Named Queries

	Service Limits

