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Generalized Additive Models (GAM)

I A GAM has a form something like:

g{E(yi)} = ηi = X∗i β
∗ + f1(x1i) + f2(x2i , x3i) + f3(x4i) + · · ·

I g is a known link function.
I yi independent with some exponential family distribution.

Crucially this ⇒ var(yi) = V (E(yi))φ, where V is a
distribution dependent known function.

I fj are smooth unknown functions (subject to centering
conditions).

I X∗β∗ is parametric bit.

I i.e. a GAM is a GLM where the linear predictor depends on
smooth functions of covariates.



GAM Representation and estimation

I Originally GAMs were estimated by backfitting, with any
scatterplot smoother used to estimate the fj .

I . . . but it was difficult to estimate the degree of smoothness.
I Now the tendency is to represent the fj using basis

expansions of moderate size, and to apply tuneable
quadratic penalties to the model likelihood, to avoid overfit.

I . . . this makes it easier to estimate degree of smoothness,
by estimating the tuning parameters/ smoothing
parameters.



Example basis-penalty: P-splines
I Eilers and Marx have popularized the use of B-spline

bases with discrete penalties.
I If bk (x) is a B-spline and βk an unknown coefficient, then

f (x) =
K∑

k

βk bk (x).

I Wiggliness can be penalized by e.g.

P =
K−1∑

k=2

(βj−1 − 2βj + βj+1)
2 = βTSβ.
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Other reduced rank splines

I Reduced rank versions of splines with derivative based
penalties often have slightly better MSE performance.

I e.g. Choose a set of knots, x∗k spread nicely in the range of
the covariate, x , and obtain the cubic spline basis based
on the x∗k . i.e. the basis that arises by minimizing, e.g.

∑

k

{y∗k − f (x∗k )}2 + λ

∫
f ′′(x)2dx w.r.t. f .

I Choosing the knot locations for any penalized spline type
smoother is rather arbitrary. It can be avoided by taking a
reduced rank eigen approximation to a full spline, (actually
get an optimal low rank basis this way).



Rank 15 Eigen Approx to 2D TPS
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Other basis penalty smoothers

I Many other basis-penalty smoothers are possible.
I Tensor product smooths are basis-penalty smooths of

several covariates, constructed (automatically) from
smooths of single covariates.

I Tensor product smooths are immune to covariate
rescaling, provided that they are multiply penalized.

I Finite area smoothing is also possible (look out for Soap
film smoothing).



Estimation

I Whatever the basis, the GAM becomes g{E(yi)} = Xiβ, a
richly parameterized GLM.

I To avoid overfit, estimate β to minimize

D(β) +
∑

j

λjβ
TSjβ

— the penalized deviance. λj control fit-smoothness
(variance-bias) tradeoff.

I Can get this objective ‘directly’ or by putting a prior on
function wiggliness ∝ exp(−∑

λjβ
TSjβ/2).

I So GAM is also a GLMM and λj are variance parameters.
I Given λj actual β fitting is by a Penalized version of IRLS

(Fisher scoring or full Newton), or by MCMC.



Smoothness selection

I Various criteria can be minimized for λ selection/estimation
I Cross validation leads to a GCV criterion

Vg = D(β̂)/ {n − tr(A)}2

I AIC or Mallows’ Cp leads to Va = D(β̂) + 2tr(A)φ.
I Taking the Bayesian/mixed model approach seriously, a

REML based criteria is

Vr = D(β̂)/φ + β̂TSβ/φ + log |XTWX + S| − log |S|+ − 2ls

I . . . W is the diagonal matrix of IRLS weights, S =
∑

j λjSj ,
A = X(XTWX + S)−1XTW, the trace of which is the model
EDF and ls is the saturated log likelihood.



Numerical Methods for optimizing λ

I All criteria can reliably be optimized by Newton’s method
(outer to PIRLS β estimation).

I Need derivatives of V wrt log(λj)for this. . .
1. Get derivatives of β̂ w.r.t. log(λj) by differentiating PIRLS or

by Implicit Function Theorem approach.
2. Given these we can get the derivatives of W and hence

tr(A) w.r.t. the log(λj) as well as the derivatives of D.
I Derivatives of GCV, AIC and REML have very similar

ingredients.
I Some care is needed to ensure maximum efficiency and

stability.
I MCMC and boosting offer alternatives for ‘estimating’ λ, β.



Why worry about stability? A simple example

The x,y, data on the left were modelled using the cubic spline
on the right (full TPS basis, λ chosen by GCV).
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The next slide compares GCV calculation based on the naı̈ve
‘normal equations’ calculation β̂ = (XTX + λS)−1XTy with a
stable QR based alternative. . .



Stability matters for λ selection!
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. . . automatic minimization of the red or green versions of GCV
is not a good idea.



GAM inference

I The best calibrated inference, in a frequentist sense,
seems to arise by taking a Bayesian approach.

I Recall the prior on function wiggliness

∝ exp
(
−1

2

∑
λjβ

TSjβ

)

— an improper Gaussian on β.
I Bayes’ rule and some asymptotics then ⇒

β|y ∼ N(β̂, (XTWX +
∑

λjSj)
−1φ)

I Posterior ⇒ e.g. CIs for fj , but can also simulate from
posterior very cheaply, to make inferences about anything
the GAM predicts.



GAM inference II

I The Bayesian CIs have good across the function
frequentist coverage probabilities, provided the smoothing
bias is somewhat less than the variance.

I Neglect of smoothing parameter uncertainty is not very
important here.

I An extension of Nychka (1988; JASA) is the key to
understanding these results.

I P-values for testing model components for equality to zero
are also possible, by ‘inverting’ Bayesian CI for the
component. P-value properties are less good than CIs.



Example: retinopathy data
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Retinopathy models?

I Question: How is development of retinopathy in diabetics
related to duration of disease at baseline, body mass
index (bmi) and percentage glycosylated haemoglobin?

I A possible model is

logit{E(ret)} = f1(dur) + f2(bmi) + f3(gly)

+ f1(dur,bmi) + f2(dur,gly) + f3(gly,bmi)

where ret ∼ Bernoulli.
I In R, model is fit with something like

gam(ret ∼ te(dur)+te(gly)+te(bmi)+
te(dur,gly)+te(dur,bmi)+te(gly,bmi),
family=binomial)



Retinopathy Estimated effects
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Retinopathy GLY-BMI interaction
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GAM ‘extensions’

I To obtain a satisfactory framework for generalized additive
modelling has required solving a rather more general
estimation problem . . .

I GAM framework can cope with any quadratically penalized
GLM where smoothing parameters enter the objective
linearly. Consequently the following examples extensions
can all be used without new theory. . .

I Varying coefficient models, where a coefficient in a GLM is
allowed to vary smoothly with another covariate.

I Model terms involving any linear functional of a smooth
function, for example functional GLMs.

I Simple random effects, since a random effect can be
treated as a smooth.

I Adaptive smooths can be constructed by using multiple
penalties for a smooth.



Example: functional covariates
I Consider data on 150 functions, xi(t), (each observed at

tT = (t1, . . . , t200)), with corresponding noisy univariate
response, yi .

I First 9 (xi(t), yi) pairs are . . .
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F-GLM

I An appropriate model might be the functional GLM

g{E(yi)} =

∫
f (t)xi(t)dt

where predictor xi is a known function and f (t) is an
unknown smooth regression coefficient function.

I Typically f and xi are discretized so that g{E(yi)} = fTxi
where fT = [f (t1), f (t2) . . .] and xT

i = [xi(t1), xi(t2) . . .].
I Generically this is an example of dependence on a linear

functional of a smooth.
I R package mgcv has a simple ‘summation convention’

mechanism to handle such terms. . .



FGLM fitting

I Want to estimate smooth, f , in model yi =
∫

f (t)xi(t)dt + εi .
I gam(y∼s(T,by=X)) will do this, if T and X are matrices.
I i th row of X is the observed (discretized) function xi(t).

Each row of T is a replicate of the observation time vector t.
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Adaptive smoothing
I Perhaps I don’t like this P-spline smooth of ‘the’ motorcycle

crash data. . .
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I Should I really use adaptive smoothing?



Adaptive smoothing 2

I P-splines and the preceding GAM framework make it very
easy to do adaptive smoothing.

I Use a B-spline basis f (x) =
∑

βjbj(x), with an adaptive
penalty P =

∑K−1
k=2 ck (βk−1 − 2βk + βk+1)

2, where ck
varies smoothly with k and hence x .

I Defining dk = βk−1 − 2βk + βk+1, and D to be the matrix
such that d = Dβ, we have P = βTDTdiag(c)Dβ.

I Now use a (B-spline) basis expansion for c so that c = Cλ.
I Then P =

∑
j λjβ

TDTdiag(C·j)Dβ.
I i.e. the adaptive P-spline is just a P-spline with multiple

penalties.



Adaptive smoothing 3

I R package mgcv has an adaptive P-spline class. Using it
does give some improvement . . .
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Conclusions

I Penalized regression splines are the starting point for a
fairly complete framework for Generalized Additive
Modelling.

I The numerical methods and theory developed for this
framework are applicable to any quadratically penalized
GLM, so many extensions of ‘standard’ GAMs are possible.

I The R package mgcv tries to exploit the generality of the
framework, so that almost any quadratically penalized
GLM can readily be used.
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