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ABSTRACT: Humans appear to be able to learn new 
concepts without needing to be programmed explicitly in 
any conventional sense. In this paper we regard learning as 
the phenomenon of knowledge acquisition in the absence of 
explicit programming. We give a precise methodology for 
studying this phenomenon from a computational viewpoint. 
It consists of choosing an appropriate information gathering 
mechanism, the learning protocol, and exploring the class of 
concepts that can be learned using it in a reasonable 
(polynomial) number of steps. Although inherent algorithmic 
complexity appears to set serious limits to the range of 
concepts that can be learned, we show that there are some 
important nontrivial classes of propositional concepts that 
can be learned in a realistic sense. 

1. INTRODUCTION 
Computability theory became possible once precise 
models became available for modeling the common- 
place phenomenon of mechanical calculation. The the- 
ory that evolved has been used to explain human expe- 
rience and to suggest how artificial computing devices 
should be built. It is also worth studying for its own 
sake. 

The commonplace phenomenon of learning surely 
merits similar attention. The problem is to discover 
good models that are interesting to study for their own 
sake and that promise to be relevant both to explaining 
human experience and to building devices that can 
learn. The models should also shed light on the limits 
of what can be learned, just as computability does on 
what can be computed. 

In this paper we shall say that a program for perform- 
ing a task has been acquired by learning if it has been 
acquired by any means other than explicit program- 
ming. Among human skills some clearly appear to have 
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a genetically preprogrammed element, whereas some 
others consist of executing an explicit sequence of in- 
structions that has been memorized. There remains a 
large area of skill acquisition where no such explicit 
programming is identifiable. It is this area that we de- 
scribe here as learning. The recognition of familiar ob- 
jects, such as tables, provides such examples. These 
skills often have the additional property that, although 
we have learned them, we find it difficult to articulate 
what algorithm we are really using. In these cases it 
would be especially significant if machines could be 
made to acquire them by learning. 

This paper is concerned with precise computational 
models of the learning phenomenon. We shall restrict 
ourselves to skills that consist of recognizing whether a 
concept (or predicate) is true or not for given data. We 
shall say that a concept Q has been learned if a pro- 
gram for recognizing it has been deduced (i.e., by some 
method other than the acquisition from the outside of 
the explicit program). 

The main contribution of this paper is that it shows 
that it is possible to design learning machines that have 
all three of the following properties: 

1. The machines can provably learn whole classes of 
concepts. Furthermore, these classes can be charac- 
terized. 

2. The classes of concepts are appropriate and nontri- 
vial for general-purpose knowledge. 

3. The computational process by which the machines 
deduce the desired programs requires a feasible 
(i.e., polynomial) number of steps. 

A learning machine consists of a learning protocol to- 
gether with a deduction procedure. The former specifies 
the manner in which information is obtained from the 
outside. The latter is the mechanism by which a correct 
recognition algorithm for the concept to be learned is 
deduced. At the broadest level, the suggested methodol- 
ogy for studying learning is the following: Define a plau- 
sible learning protocol, and investigate the class of con- 
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cepts for which recognition programs can be deduced 
in polynomial time using the protocol. 

The specific protocols considered in this paper allow 
for two kinds of information supply. First the learner 
has access to a supply of typical data that positively 
exemplify the concept. More precisely, it is assumed 
that these positive examples have a probabilistic distri- 
bution determined arbitrarily by nature. A call of a 
routine EXAMPLES produces one such positive exam- 
ple. The relative probability of producing different ex- 
amples is determined by the distribution. The second 
source of information that may be available is a routine 
ORACLE. In its most basic version, when presented 
with data, it will tell the learner whether or not the 
data positively exemplify the concept. 

The major remaining design choice that has to be 
made is that of knowledge representation. Since our 
declared aim is to represent general knowledge, it 
seems almost unavoidable that we use some kind of 
logic rather than, for example, formal grammars or geo- 
metrical constructs. In this paper we shall represent 
concepts as Boolean functions of a set of propositional 
variables. The recognition algorithms that we attempt 
to deduce will be therefore Boolean circuits or expres- 
sions. 

The adequacy of the propositional calculus for repre- 
senting knowledge in practical learning systems is 
clearly a crucial and controversial question. Few would 
argue that this much power is not necessary. The ques- 
tion is whether it is enough. There are several argu- 
ments suggesting that such a system would, at least, be 
a very good start. First, when one examines the most 
famous examples of systems that embody prepro- 
grammed knowledge, namely, expert systems such as 
DENDRAL and MYC!N, essentially no logical notation 
beyond the propositional calculus is used. Surely it 
would be overambitious to try to base learning systems 
on representations that are more powerful than those 
that have been successfully managed in programmed 
systems. Second, the results in this paper can be nega- 
tively interpreted to suggest that the class of learnable 
concepts even within the propositional calculus is se- 
verely circumscribed. This suggests that the search for 
extensions to the propositional calculus that have sub- 
stantially larger learnable classes may be a difficult 
one. 

The positive conclusions of this paper are that there 
are specific classes of concepts that are learnable in 
polynomial time using learning protocols of the kind 
described. These classes can all be characterized by 
defining the class of programs that recognize them. In 
each case the programs are special kinds of Boolean 
expressions. The three classes are (l) conjunctive nor- 
mal form expressions with a bounded number of liter- 
als in each clause, (2) monotone disjunctive normal 
form expressions, and (3) arbitrary expressions in 
which each variable occurs just once. In the first of 
these, no calls of the oracle are necessary. In the last, 
no access to typical examples is necessary but the ora- 
cles need to be more powerful than the one described 
above. 

The deduction procedure will in each case output an 
expression that with high likelihood closely approxi- 
mates the expression to be learned. Such an approxi- 
mate expression never says yes when it should not but 
may say no on a small fraction of the probability space 
of positive examples. This fraction can be made arbi- 
trarily small by increasing the runtime of the deduction 
procedure. Perhaps the main technical discovery con- 
tained in the paper is that with this probabilistic notion 
of learning highly convergent learning is possible for 
whole classes of Boolean functions. This appears to dis- 
tinguish this approach from more traditional ones 
where learning is seen as a process of "inducing" some 
general rule from information that is insufficient for a 
reliable deduction to be made. The power of this proba- 
bi!istic viewpoint is illustrated, for example, by the fact 
that an arbitrary set of polynomially many positive ex- 
amples cannot be relied on to determine expressions 
consisting even of only a single monomial in any relia- 
ble way. A more detailed description of this methodo- 
logical problem can be found in [9]. 

There is another aspect of our formulation that is 
worth emphasizing. In a learning system that is about 
to learn a new concept, there may be an enormous 
number of propositional variables available. These may 
be primitive inputs, the values of preprogrammed con- 
cepts, or the values of concepts that have been lcarned 
previously. We want the complexity of learning the 
new concept to be related only to the number of vari- 
ables that may be set in natural examples of it, and not 
on the cardinality of the universe of available variables. 
Hence, the questions asked of ORACLE and the values 
given by EXAMPLES will not be truth assignments to 
all the variables. In the archetypal case, they will spec- 
ify an assignment to a subset of the variables that is still 
sufficient to guarantee the truth of the function. 

Whether the classes of learnable Boolean concepts 
can be extended significantly beyond the three classes 
given is an interesting question. There is circumstantial 
evidence from cryptography, however, that the whole 
class of functions computable by polynomial size cir- 
cuits is not learnable. Consider a cryptographic scheme 
that encodes messages by evaluating the function Ek 
where k specifies the key. Suppose that this scheme is 
immune to chosen plaintext attack in the sense that, 
even if the values of Ek are known for polynomially 
many dynamically chosen inputs, it is computationally 
infeasible to deduce an algorithm for Ek or for an ap- 
proximation to it. This is equivalent to saying, however, 
that Ek is not learnable. The conjectured existence of 
good cryptographic functions that are easy to compute 
therefore implies that some easy-to-compute functions 
are not learnable. 

If the class of learnable concepts is as severely lim- 
ited as suggested by our results, then it would follow 
that the only way of teaching more complicated con- 
cepts is to build them up from such simple ones. Thus, 
a good teacher would have to identify, name, and se- 
quence these intermediate concepts in the manner of a 
programmer. The results of learnability theory would 
then indicate the maximum granularity of the single 
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concepts that can be acquired without programming. 
In summary,  this paper attempts to explore the limits 

of what  is learnable as allowed by algorithmic complex- 
ity. The results are distinguishable from the diverse 
body of previous work on learning because they at- 
tempt to reconcile the three properties ((1)-(3)) men- 
tioned earlier. Closest in rigor to our approach is the 
inductive inference l i terature (see Angluin and Smith 
[1] for a survey) that deals with inducing such things as 
recursive functions or formal grammars (but not Boo- 
lean functions) from examples. There is a large body of 
work on pattern recognition and classification, using 
statistical and other tools (e.g., [4]), but the question of 
general knowledge representat ion is not addressed 
there directly. Learning, in various less formal senses, 
has been studied widely as a branch of artificial intelli- 
gence. A survey and bibliography can be found in 
[2, 7]. In their  terminology the subject of this paper is 
concept learning. 

In previous work on learning, much emphasis  is 
placed on the diversity of methods that humans appear 
to be using. These include learning by example,  learn- 
ing by analogy, and learning by being told. This paper 
emphasizes the polarity between learning by being pro- 
grammed and learning in the absence of any program- 
ming element. Many of the conventionally accepted 
modes of learning can be regarded as being hybrids of 
these two extremes. 

2. A LEARNING PROTOCOL 
FOR BOOLEAN FUNCTIONS 
We consider t Boolean variables pl . . . . .  pt, each of 
which can take the value 1 or 0 to indicate whether  the 
associated proposition is true or false. There is no as- 
sumption about the independence of the variables. In- 
deed, they may be functions of each other. 

A vector is an assignment to each of the t variables of 
a value from {0, 1, *}. The symbol * denotes that a 
variable is undetermined. A vector is total if every vari- 
able is determined (i.e., is assigned a value from {0, 1}). 
For example,  the assignment pl = p3 = 1, p4 = 0, and 
p2 = * is a vector that is not total. 

A Boolean function F is a mapping from the set of 2 t 
total vectors to {0, 1}. A Boolean function F becomes a 
concept F if its domain is extended to the set of all 
vectors as follows: For a vector v, F(v) = 1 if and only if 
F(w) = 1 for all total vectors w that agree with v on all 
variables for which v is determined.  The purpose of 
this extension is that it permits us not to ment ion the 
variables on which F does not depend. 

Given a concept F, we consider an arbitrary probabil-  
ity distribution D over the set of all vectors v such that 
F(v) = 1. In other words, for each v such that F(v) = 1, it 
is the case that D(v} _> O. Also ~ D(v) = 1 when summa- 
tion is over this set of vectors. There are no other as- 
sumed restrictions on D, which is in tended to describe 
the relative frequency with which the positive exam- 
ples of F occur in nature. 

What are reasonable learning protocols to consider? 
First we must avoid giving the teacher too much power, 
namely, the power to communicate  a program instruc- 

tion by instruction. For example,  if a premedi ta ted se- 
quence of vectors with repetitions could be communi-  
cated, then this could be used to encode the description 
of the program even if just two such vectors were used 
for binary notation. Second we must  avoid giving the 
teacher what  is evidently too little power. In particular,  
the protocol must provide some typical examples of 
vectors for which F is true, for otherwise, if F is true for 
just one vector that is total, only an exponential  search 
or more powerful oracles would be able to find it. 

Such considerations led us to consider the following 
learning protocol as a reasonable one. It gives the 
learner access to the following two routines: 

1. EXAMPLES: This has no input. It gives as output a 
vector v such that F(v) = 1. For each such v, the 
probabili ty that v is output on any single call is 
D(v). 

2. ORACLE( ): On vector v, as input  it outputs 1 or 0 
according to whether  F(v) = 1 or 0. 

The first of these gives randomly chosen positive ex- 
amples of the concept being learned. The second pro- 
vides a test for whether  a vector, which the deduct ion 
procedure considers to be critical, is an example of the 
concept or not. In a real system, the oracle may be a 
human expert, a database of past observations, some 
deduction system, or a combinat ion of these. 

Finally we observe that our part icular  choice of 
learning protocol was strongly influenced by the earl ier  
decision to deal with concepts rather  than raw Boolean 
functions. If we were to deal with the latter, then many 
other alternatives are equally natural.  For example,  
given a vector v, instead of asking, as we do, whether  
all completions of it make the function true, we could 
ask whether  there exist any completions that make it 
true. This suggests natural  al ternative semantics for 
EXAMPLES and ORACLE. In Section 7 we shall use 
such more elaborate oracles. 

3. LEARNABILITY 
We shall consider various classes of programs having 
pl . . . . .  pt as inputs and show that in each case any 
program in the class can be deduced,  with only small 
probabili ty of error, in polynomial  t ime using the proto- 
col previously described. We assume that programs can 
take the values 1, 0, and undetermined.  

More precisely we say that a class X of programs is 
learnable with respect to a given learning protocol if and 
only if there exists an algorithm A {the deduct ion pro- 
cedure} invoking the protocol with the following prop- 
erties: 

1. The algorithm runs in time polynomial  in an ad- 
justable parameter  h, in the various parameters  that 
quantify the size of the program to be learned, and 
in the number  of variables t. 

2. For all programs f E X and all distr ibutions D over 
vectors v on which f outputs 1, the algorithm will 
deduce with probabil i ty at least (1 - h -1} a program 
g ~ X that never  outputs one when it should not 
but outputs one almost always when it should. In 
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particular, {i) for all vectors v, g(v) = i implies 
f(v) = 1, and (ii} the sum of D(v) over all v such that 
f(v) = 1, but g(v) ~ 1 is at most h-1. 

In our definition we have disallowed positive an- 
swers from g to be wrong, only because the particular 
classes X in this paper do not require it. This we call 
one-sided error learning, in other circumstances it may 
be efficacious to allow two-sided errors. In that more 
general case, we would need to put a probability distri- 
bution D on the set of vectors such that f(v} ~ 1. Condi- 
tion (i) i n (2} is then replaced by ~ D{v} over all v such 
that f(v) ~ 1, but g{v) = 1 is at most h-1. 

A second aspect of our definition is that the parame- 
ter h is used in two independent probabilistic bounds. 
This simplifies the statement of the results. It would be 
more precise, however, to work explicitly with two in- 
dependent parameters hi and h2. 

Third we should note that programs that compute 
concepts should be distinguished from those that com- 
pute merely the Boolean function. This distinction has 
little consequence for the three classes of expressions 
that we consider, since in these cases programs for the 
concepts follow directly from the specification of the 
expressions. For the sake of generality, our definitions 
do allow the value of a program to be undefined, since 
a nontotal vector will not, in general, determine the 
value of an expression as 0 or 1. 

It would be interesting to obtain negative results, 
other than the informal cryptographic evidence men- 
tioned in the introduction, indicating that the class of 
unrestricted Boolean circuits is not learnable. A recent 
result [6] in this direction does establish this, under the 
hypothesis that integer factorization is intractable. 
Their result applies to the learning protocol consisting 
of EXAMPLES and ORACLE, when the latter is re- 
stricted to total vectors. It may also be interesting to go 
in the opposite direction and determine, for example, 
whether the hypothesis that P equals NP would imply 
that all interesting classes are learnable. 

4. A COMBINATORIAL BOUND 
The probabilistic analysis needed for our later results 
can be abstracted into a single lemma. The proof of the 
lemma is independent of the rest of the paper. 

We define the function L(h,s) for any real number h 
greater than one and any positive integer S as follows: 
Let L(h,S) be the smallest integer such that in L(h,S) 
independent Bernoulli trials each with probability at 
least h-1 of success, the probability of having fewer 
than S successes is less than h -1. 

The relevance of the function L(h,S) to learning can 
be illustrated as follows: Consider an urn U containing 
a very large number of marbles possibly of many differ- 
ent types. Suppose we wish to "learn" what kinds of 
marbles U contains by taking a small random sample X. 
If all the marbles in U are of distinct types, then it is 
clearly impossible to deduce much information about 
them. Suppose, however, that we know that there are 
only S types of marbles and that we wish to choose X so 
that it contains representatives of all but 1 percent of 

the marbles in U. Whatever the respective frequencies 
of the S types may be, the definition of L(h,S} implies 
that if iX[ = L(100,S) then with probability greater than 
99 percent we will have succeeded. To see why this 
implication holds, suppose that after L(100,S} successive 
choices marble types representing between them at 
least 1 percent of the urn remain unchosen. In that case 
we have made L[100,S) Bernoulli trials each with prob- 
ability at least 1 percent of success 0.e., of choosing a 
previously unchosen type} and have succeeded fewer 
than S times (since some type remains unchosen}. Note 
that what constitutes a success here will depend on 
previous choices. The probability of success, however, 
will always be at least 1 percent, independent of pre- 
vious choices, and this is sufficient for our argument. 

The following simple upper bound holds for the 
whole range of values of S and h and shows that L(h,S) 
is essentially linear both in h and in S. 

PROPOSITION: For all integers S >_ 1 and all real 
h > l .  

L(h,S) _< 2h(S + log~h). 

Proof: We use the following three well-known ine- 
qualities of which the last is due to Chernoff (see [6] 
page 18). 

1. For a l l x >  0, (1 + x-l} x < e .  

2. For a l l x > 0 , ( 1 - x - 1 }  x < e  -I. 

3. In m independent trials, each with probability at 
least p of success, the probability that there are at 
most k success, where k < mp, is at most 

m - 

The first factor in the expression in (a) above can be 
rewritten as 

1 mp - -  k~ ((m-k)/(mp-k}}{mp-k} 

F/ 
Using (2) with x = (m - k) / (mp - k}, we can upper 
bound the product by 

e-mp+k(mp / k )  k. 

Substituting m = 2h(S + log~h), p = h -1, and k = S and 
using logarithms to the base e gives the bound 

e-2S-21og h+S. [2(1 + (tog h)/S)] (s/l°g h)log h. 

Rewriting this using (1} with x = (log~h}/S gives 

e-S-21og h. 2 s. elOg h _< (2/e)S. e-log h < h-1. 

As an illustration of an application, suppose that we 
hare access to EXAMPLES, a source of natural positive 
examples of vectors for concept F. Suppose that we 
want to find an approximation to the subset P of vari- 
ables that are determined in at least one natural exam- 
ple of F. Consider the following procedure: Pick the first 
L(h, IPI} vectors provided by EXAMPLES, and let P '  be 
the union of the sets of variables determined by these 
vectors. The definition then implies that with probabil- 
ity at least 1 - h -1 the set P '  will have the following 
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property: If a vector is chosen with probability distribu- 
tion D, then the probability that it determines a vari- 
able in P - P '  is less than h-1. The argument used 
above for the urn model establishes this as follows: If P '  
does not have the claimed property, then the following 
has happened: L(h, [P[) trials have been made (i.e., calls 
of EXAMPLES) each with probability greater than h-1 
of success (i.e., finding a vector that determines a vari- 
able in P - P' ,  but there have been fewer than [P] 
successes (i.e., discoveries of new additions to P'). The 
probability of such a happening is less than h -1 by the 
definition of L. 

The above application shows that the set of variables 
that are determined in natural examples of F can be 
approximated by a procedure whose runtime is inde- 
pendent of t, the total number of variables. It follows 
that in the definition Of learnability the dependence on 
t in part (1} can be relaxed to a dependence on the 
number of variables that are ever defined in positive 
examples. 

5. BOUNDED CNF EXPRESSIONS 
A conjunctive normal form (CNF) expression is any prod- 
uct c~c2 • • • Cr of clauses where each clause ci is a sum 
q~ + q2 + • • • + qi, of literals. A literal q is either a 
variable p or the negation p of a variable. For example, 
(p~ + #2)(p~ + fi2 + pa) is a CNF expression. For a 
positive integer k, a k-CNF expression is a CNF expres- 
sion where each clause is the sum of at most k literals. 

For CNF expressions in general, we do not know of 
any polynomial time deduction procedure with respect 
to our learning protocol. The question of whether one 
exists is tantalizing because of its apparent simplicity. 

In this section we shall prove that for any fixed inte- 
ger k the class of k-CNF expressions is learnable. In fact 
it is learnable easily in the sense that calls of EXAM- 
PLES suffice and no calls Of ORACLE are required. 

In this and subsequent sections, we shall use the re- 
lation ~ on concepts as follows: F ~ G means that for 
all vectors v whenever F(v) = 1 it is also the case that 
G(v} = i. (N.B. This is equivalent to the relation F ~ G 
when F, G are regarded as functions.) For brevity we 
shall often denote both expressions and even vectors by 
the concepts they represent. Thus the concept repre- 
sented by vector w is true for exactly those vectors that 
agree with w on all variables on which w is determined. 
The concept represented by expression f is obtained by 
considering the Boolean function computed by f and 
extending its domain to become a concept. In this sec- 
tion we regard a clause cl to be a special kind of expres- 
sion. In Sections 7 and 8, we consider monomials m, 
simple products of literals, as special forms of expres- 
sions. In all cases statements of the form f ~ g, v ~ ci, 
v ~ m, or m ~ f can be understood by interpreting the 
two sides as concepts or functions in the obvious way. 

THEOREM A: For any positive integer k, the class of 
k-CNF expressions is learnable via an algorithm A that uses 
L = L(h, (2t) k÷l) calls of EXAMPLES and no calls of ORA- 
CLE, where t is the number of variables. 

Proof: The algorithm is initialized with formula g as 

the product of all possible clauses of up to k literals 
from { pl, pl, p2,/~2 . . . . .  pt, #t}. Clearly the number of 
ways of choosing a clause of exactly k literals is at most 
(2t} k, and hence the number of ways of choosing a 
clause with up to k literals is less than 2t + (2t) 2 + • • • 
+ (2t) k < {2t} k+l. This bounds the initial number of 
clauses in g. 

The algorithm then calls EXAMPLES L times to give 
positive examples of the concept represented by k-CNF 
formula f. For each vector v so obtained, it deletes all of 
the remaining clauses in g that do not contain a literal 
that is determined to be true in v (i.e., in the clauses 
deleted, each literal is either not determined or is ne- 
gated in v}. More precisely the following is repeated L 
times: 

begin v := EXAMPLES 

for each ci in g delete ci if v ~ cl. 

end 

The claim is that with high probability the value of g 
after the Lth execution of this block will be the desired 
approximation to the formula f that is being learned. 

Initially the set of vectors Iv[ v ~ g} is clearly empty. 
We first claim that as the algorithm proceeds the set 
[v[v ~ g }  will always be a subset of {v Iv ~ f } .  To 
prove this it is clearly sufficient to prove the same 
statement when both sets are restricted to only total 
vectors. Let B be the product of all the clauses c con- 
taining up to k literals with the property that "Vv if 
v ~ f then v ~ c." It is clear that in the course of the 
algorithm no clause in B can ever be deleted. Hence it 
is certainly true that {v [ v ~ g} C {v[v ~ B}. To estab- 
lish the claim, it remains only to prove that B computes 
the same Boolean function as f. (In fact B will be the 
maximal k-CNF formula equivalent to f.) it is easy to 
see that f ~  B, since by the definition of B, for every c 
in B it is the case that "for all v if v ~ f then v ~ c." To 
verify the converse, that B ~ f, we first note that, by 
definition, f is a k-CNF formula. If some clause in f did 
not occur in B, then this clause c '  would have the 
property that "3v such that v ~ f b u t  v ~ c ' ."  But this 
is impossible since if c '  is a clause of f and if v ~-~ c' 
then v ~ f. We conclude that every k-CNF representa- 
tion of the function that f represents consists of a set of 
clauses that is a subset of the clauses in B. Hence B ~ f. 

Let X = ~ D(v) with summation over all (not neces- 
sarily total) vectors v such that v ~ f but v ~ g. This 
quantity is defined for each intermediate value of g in 
the course of the algorithm and, as is easily verified, it 
is monotone decreasing with time. Now clauses will be 
removed from g whenever EXAMPLES outputs a vector 
v such that v ~ g. The probability of this happening at 
any moment is exactly the current value of X. Also, the 
process of running the algorithm to completion can 
have one of just two possible outcomes: (1) At some 
point X becomes less than h -I, in which case the g 
found will approximate to f exactly as required by the 
definition of learnability. (2) The value of X never goes 
below h -1, and hence g is not an acceptable approxima- 
tion. The probability of the latter eventuality is, how- 
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ever, at most h-1 since it corresponds to the situation of 
performing L(h, (2t) k+l) Bernoulli experiments  (i.e., calls 
of EXAMPLES) each with probabili ty greater than h -1 
of success (i.e., finding a v such that v ~ g) and obtain- 
ing fewer than (2t) k+l successes (a success being mani- 
fested by the removal of at least one clause 
from g). [] 

In conclusion we observe that a CNF expression g 
immediately yields a program for computing the associ- 
ated concept. Given a vector v, we substitute the deter- 
mined truth values in g. The concept will be true for v 
if and only if all the clauses are made true by the 
substitution. 

6. DNF EXPRESSIONS 
A disjunctive normal form (DNF) expression is any sum 
ml + m2 + • • • + mr of monomials where each monom- 
ial mi is a product of literals. For example, pl/~2 + plp3p4 
is a DNF expression. Such expressions appear particu- 
larly easy for humans to comprehend. Hence we expect 
that any practical learning system would have to allow 
for them. 

An expression is monotone if no variable is negated in 
it. We shall show that for monotone DNF expressions 
there exists a simple deduction procedure that uses 
both EXAMPLES and ORACLE. For unrestricted DNF a 
similar result can be proved with respect to a different 
size measure. In the unrestricted case, there is the addi- 
tional difficulty that we can guarantee to deduce a pro- 
gram only for the function and not for the concept. This 
difficulty does not arise in the monotone case where 
given an expression we can always compute the value 
of the associated concept.for a vector v by making the 
substitution and asking whether  the resulting expres- 
sion is identically true. 

A monomial  m is a prime implicant of a function F (or 
of an expression representing the function) if m ~ F 
and if m '  ~,~ F for any m'  obtained by deleting one 
literal from m. A DNF expression is prime if it consists 
of the sum of prime implicants none of which is redun- 
dant in the sense of being implied by the sum of the 
others. There is always a unique prime DNF expression 
in the monotone case, but not in general. We therefore 
define the degree of a DNF expression to be the largest 
number  of monomials that a prime DNF expression 
equivalent to it can have. The unique prime DNF 
expression in the monotone case is simply the sum of 
all the prime implicants. 

THEOREM B: The class of monotone DNF expressions is 
learnable via an algorithm B that uses L = L(h,d) calls of 
EXAMPLES and dt calls of ORACLE, where d is the degree 
of the DNF expression f to be learned and t the number of 
variables. 

Proof: The algorithm is init ialized with formula g 
identically equal to the constant zero. The algorithm 
then calls EXAMPLES L times to produce positive ex- 
amples of f. Each time a vector v is produced such that 
v ~ g, a new monomial  m is added to g. The monomial  
m is the product of those literals determined in v that 
are essential to make v ~,~ f. More precisely, the loop 

that is executed L times is the following: 

begin v := EXAMPLES 
if v ~ g then 
begin for i := 1 to t do 

if pi is determined in v then 
begin set ~ equal to v but  with pi := *; 

if ORACLE(W) = 1 then v := 
end 
set m equal to the product of all literals q 

such that v ~ q; 
g : = g + m  

end 
end 

The test v ~ g amounts to asking whether  none of 
the monomials of g are made true by the values deter- 
mined to be true in v. Every time EXAMPLES produces 
a value v such that v ~ g, the inner  loop of the algo- 
ri thm will find a prime implicant  m to add to g. Each 
such m is different from any previously added (since 
the contrary would have implied that v ~ g). It follows 
that such a v will be found at most d times, and hence 
ORACLE will he called at most dt times. 

Let X = ~ D(w) with summation over all (not neces- 
sarily total) vectors w such that w ~ f but w ~ g. This 
quanti ty is defined for each intermediate  value of g in 
the course of the algorithm, is init ially unity, and de- 
creases monotonically with time. Now a monomial  will 
be added to g each time EXAMPLES outputs a vector v 
such that v ~-~ g. The probabili ty of this occurring at 
any call of EXAMPLES is exactly X. The process of 
running the algorithm to completion can have just two 
possible outcomes: (1) At some time X has become less 
than h -1, in which case the final expression g found 
will approximate to f as required by the definition of 
learnability; and (2) the value of X never goes below 
h -1, and hence g is not an acceptable approximation.  
The probabili ty of this second eventual i ty  is, however,  
at most h -1, since it corresponds to the situation of 
performing L(h,d) Bernoulli experiments  (i.e., calls of 
EXAMPLES} each with probabil i ty greater than h-1 of 
success (i.e., of finding a v such that v ~ f but v ~ g) 
and obtaining fewer than d successes (each manifested 
by the addition of a new monomial). [] 

For unrestricted DNF expressions, several problems 
arise. The main source of difficulty is the fact that the 
problem of determining whether  a nontotal vector im- 
plies the function specified by a DNF formula is NP- 
hard. This is simply because the problem of determin- 
ing whether  the nowhere determined vector implies 
the function is the tautology question of Cook [3]. An 
immediate consequence of this is that it is unreasona- 
ble to assume that the program being learned computes 
concepts rather than functions. Another  consequence 
is that in any algorithm akin to Algorithm B the test 
v ~ g may not be feasible if v is not total. Algorithm B 
is sufficient, however, to establish the following: 

THEOREM B': Suppose the notion of learnability is re- 
stricted to distributions D such that D(v) = 0 whenever v is 
not total. Then the class of DNF expressions is learnable, in 
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the sense that programs for the functions (but not necessar- 
ily the concepts) can be deduced in L(h,d) calls of EXAM- 
PLES and dt calls of ORACLE where d is the degree of the 
DNF expression to be learned. 

The reader should note that here there is the addi- 
tional philosophical difficulty that availabili ty of the 
expression does not in itself imply a polynomial  t ime 
algorithm for ORACLE. On the other hand, the theorem 
does say that if an agent has some, maybe ad hoc, black 
box for ORACLE whose workings are unknown to him 
or her, it can be used to teach someone else a DNF 
expression that approximates the function. 

Finally, it may be worth emphasizing that the mono- 
tone case is nonproblematic and the deduction proce- 
dure for it very simpleminded.  It may be interesting to 
pursue more sophisticated deduction procedures for it 
if contexts can be found in which they can be proved 
advantageous. The question as to whether  monotone 
DNF expressions can be learned from EXAMPLES alone 
is open. A positive answer would be especially signifi- 
cant. A partial result in this direction can be obtained 
by dualizing Theorem A: For any k the class of DNF 
expressions having a bound k on the length of each 
disjunct can be learned in polynomial  t ime from nega- 
tive examples alone (i.e., from a source of vectors v 
such that/3(v) # 0). 

7. a-EXPRESSIONS 
We have already seen a class of expressions, namely 
the k-CNF expressions, that can be learned from posi- 
tive examples alone. Here we shall consider the other 
extreme, a class that can be learned using oracles 
alone. 

Deducing expressions on which there are less severe 
structural  restrictions than DNF or CNF appears much 
more difficult. The aim of this section is to give a para- 
digmatic example of how far one can go in that direc- 
tion if one is will ing to pay the price of oracles that are 
more sophisticated than the one previously described. 

A general expression over variable s e t  {pl  . . . . .  pt} is 
defined recursively as follows: 

1. For each i (1 _< i _< t) "pl" and "Pi" are expressions; 

2. iff~ . . . . .  fr are expressions, then "(fl + f2 + .-" + 
fr)" is an expression (called a plus expression); 

3. if fl . . . . .  fi are expressions, then "(fl x f2 x . . .  x 
fr)" is an expression (called a times expression). 

A a-expression is an expression in which each vari- 
able appears at most once. We can assume that a r -  
expression is monotone, since we can always relabel 
negated variables with new names that denote their  
negation. In the recursive definition of any ju- 
expression, there are clearly at most 2t - 1 intermedi-  
ate expressions of which at most t are of type (1) and at 
most t - 1 of types (2) or (3). Without  loss of generality, 
we shall assume that in the definition of a t -express ion  
rules (2) and (3) alternate. We shall regard two/z- 
expressions as identical if their definitions can be made 
formally the same by reordering sums and products and 
relabeling as necessary. 

For learning a-expressions, we shall employ more 
powerful oracles. The boundary between reasonable 
and unreasonable oracles does not appear sharp. We 
make no claims about the reasonableness of these new 
oracles except that they may serve as vehicles for un- 
derstanding learnability. 

The definitions refer to the Boolean function F (not 
regarded as a concept here). The oracle of Section 2 will 
be renamed N-ORACLE, since it is one of necessity: N- 
ORACLE(v) = 1 if and only if for all total vectors w 
such that w ~ v it is the case that F(w) = 1. The dual of 
this would be a possibility oracle: P-ORACLE(v) = 1 if 
and only if there exists a total vector w such that w ~ v 
and F(w} = 1. For brevity we shall also define the prime 
implicant oracle: Pl(v) = 1 if and only if N-ORACLE(v) = 
1, but N-ORACLE(w) = 0 for any w obtained from v by 
making one variable determined in v undetermined.  

Finally we define two further oracles, ones of relevant 
possibility RP and of relevant accompaniment RA. For con- 
venience we define the first by how it behaves on vec- 
tors represented as monomials: RP(m) = 1 iff from some 
monomial  m' ram' is a prime implicant off. For sets 
V, W of variables, we define RA(V, W) = 1 iff every 
prime implicant o f f  that contains a variable from V also 
contains a variable from W. 

THEOREM C: The class of in-expressions in learnable via 
a deduction procedure C that uses O(t 3) calls of N-ORACLE 
RP and RA altogether, where t is the number of variables 
(and no calls of EXAMPLES). The procedure always deduces 
exactly the correct expression. 

Proof: Let ~ be the monomial  that is the product of no 
literals. The algorithm will first compute RP{pj) for each 
pj to determine which of the variables occur in the 
prime implicants of the function that the expression f to 
be learned represents. Let gl . . . . .  gr be distinct single 
variable expressions, one for each pj for which RP(p/) = 
1. Note that these are exactly the variables that occur 
in f, since f is monotone. 

With each gi we associate two monomials  mi and rhi. 
The former will be the single variable pj that gi repre- 
sents. The latter is defined as any monomial  rh having 
no variable in common with m~ such that m~rh is a 
prime implicant  off. The algorithm will construct each 
such rhi as the final value of m in the following proce- 
dure: Set m = ~; while PI(mmi) = 0 find a p~ not in mini 
such that RP(pkmmi) = 1 and set m := pkm. Hence in at 
most t 2 calls of PI (i.e., t 3 calls of N-ORACLE) and t 2 

calls of RP values for every rhi will be found. 
Once init ialized the algorithm proceeds by alter- 

nately executing a plus-phase and a times-phase. At the 
start of each phase, we have a set of expressions gl . . . . .  
gr where each gi is associated with two monomials  mi 
and rhi (having no variables in common) where  mi is a 
prime implicant ofgi and mirhi is a pr ime implicant  off. 
We distinguish the gs as plus or times expressions accord- 
ing to whether  the outermost construction rule was 
addition or multiplication. A plus-phase will first com- 
pute an equivalence relation S on the subset of {gi} that 
are times expressions. For each equivalence class G 
such that no gi E G already occurs as a summand in a 
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sum, we construct a new expression that is the sum of 
the members of G and call this sum gk where k is a 
previously unused index. If some members of G already 
occur in a sum, say gj (N.B. they are never distributed 
in more than one sum), then we modify the sum 
expression & to equal the sum of every expression in G. 
A times-phase is exactly analogous except that it com- 
putes a different equivalence relation T, now on plus 
expressions, and will form new, or extend old, times 
expressions. In the above context, single variable 
expressions will be regarded as both times and plus 
expressions. Also, it is immaterial which of the two 
kinds of phase is used to start the algorithm. 

The intention of the algorithm is best expressed by 
the claim to follow, which will be verified later. Sup- 
pose that the expressions occurring in the definition o f f  
are f~ . . . . .  fq (where q _< 2t - 1}. We shall say that g _< fi 
iff the set of prime implicants of g is a subset of the set 
of prime implicants of fi where (1) iffi  is a plus expres- 
sion then fi = fi and (2) iffi is a times expression then f~ 
is the product of some subset of the multiplicands off~. 

Claim 1: After every phase of the algorithm for every 
g~ that has been constructed, there is exactly one 
expression fi such that (1) gi -< fi and (2) fi is of the same 
kind (i.e., plus or times) as gi. 

The procedure builds up the rooted tree of the 
expression as rooted subtrees starting from the leaves. 
One evident difficulty is that there is no a priori knowl- 
edge available about the shape of the tree. Hence in the 
grafting process a subtree may become attached to an- 
other at just about any node. 

Whenever a plus or times expression gi is created or 
enlarged, its associated mi and thi are updated as fol- 
lows. If gi is a sum, then we let mi = mj and rhi = ~j for 
any & that is a summand in g~. Ifg~ is a product, then m~ 
will be the product of all the mjs that correspond to 
multiplicands in gi. Finally rhi will be generated as the 
final value of m in the following procedure: Set m := ~; 
while Pl(mmi) = 0 find a pk not in mini such that 
RP(pkmmi) = 1 and set m := pkm. Since such an rhi has to 
be found at most t times in the overall algorithm, the 
total cost is at most t 2 calls of PI (i.e., t 3 calls of N- 
ORACLE) and t 2 calls of RP. 

In order to complete the description of the algorithm, 
it remains only to define the equivalence relations S 
and T. 

Definition: giS& if and only if 

1. PI(rnirhj) = PI(mjrhi) = 1 and 

2. mi, ~j contain disjoint sets of variables, as do mj, mi. 

For defining T we shall denote by Vi the set of vari- 
ables that occur in the expression gi. 

Definition: giTgj if and only if RA(Vi, Vj) = RA(V# Vi) 

First we shall verify that S and T are indeed equiva- 
lence relations under the assumption that Claim 1 
holds at the beginning of each phase. Clearly S and T 

are defined to be both reflexive and symmetric. To 
verify that T is transitive, suppose that giTgj and &Tgk. 
The former implies that every prime implicant of f con- 
taining some variable from gi also contains some vari- 
able from &. The latter implies that every prime impli- 
cant o f f  containing some variable from & also contains 
a variable from gk. Hence giTgk follows. In order to ver- 
ify the transitivity of S, we shall make a more general 
observation about any subexpression off. 

Claim 2: If mi, mj are prime implicants of distinct 
times subexpressions fi, fj of f  and if for some m, with no 
variable in common with either mi or mj, both mira and 
mjm are prime implicants off, then fi, fj must occur as 
summands in the same plus expression off. 

Proof: Most easily verified by representing expression 
f as a directed graph (e.g., [8]) with edges labeled by the 
Boolean variables. The sets of labels along directed 
paths between a distinguished source node and a dis- 
tinguished sink node correspond exactly to prime im- 
plicants in the case of # expressions where all edges 
will have different labels. 

Now to verify that S is transitive, suppose that g~S& 
and gjSgk where, by Claim 1, gi -< fi, & -< f# and gk ~ fk 
for appropriate times expressions fi, fj, fk. Then it fol- 
lows that mini, mjrhj, and mkrhj are all prime implicants 
o f f  where mi, m# mk have no variable in common with 
rhj. It follows from Claim 2 that fi, fj, and fk are addends 
in the same sum expression. Hence giSgk follows. 

Claim 3: Suppose that after some phase of the algo- 
rithm Claim 1 holds and times expressions g~, gj have 
been formed where gi -< fi, & -< ~, and fi, fj are times 
expressions. Then gi and & will be placed in the same 
sum expression at the next plus-phase if and only iffi  = 
fi, fj = )~, and ffi, fj are addends in the same sum expres- 
sion in f. 

Proof: (~) If gi -< fi = fi, & <- fj -- )~j, and fi, fj are in the 
same sum, then mi, mj will be prime implicants off,,  ~. 
Also rnithj and mjrhi will be prime implicants off, and 
the variables in mi will be disjoint from those in rhj as 
will be those in mj from those in rhi. Hence giSgj will 
hold and gi,gj will he in the same plus expression after 
the next plus-phase. 

(~) Suppose that gi -< fi, gj -~ fj, and giSgj holds. Then 
mi, rnj will be prime implicants of gi, &, respectively, 
m~rhj, rnffhj will both be prime implicants off, and the 
variables in rhj will be disjoint from those of both mi 
and mj. It follows from Claim 2 that fi = 1~ and fj = )~j 
must occur as summands in the same plus expression 
off. [N.B. Here we are using the fact that Claim 2 
remains true if we allow a "times subexpression" to be 
the product of any subset of the multiplicands in a 
times expression in f.] 

Claim 4: Suppose that after some phase of the algo- 
rithm, Claim 1 holds and some plus expressions gi -< f~ 
and gj _< fj ~fi, fj plus expressions) have been found. (1) If 
gi = fi, & = ~, and fi, fi are multiplicands in the same 
times expression in f, then &, & will be placed in the 
same times expression after the next times phase. (2} If 
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gi, g] are placed in the same times expression at any 
subsequent phase, then fi, ~ are in the same product in 

f. 
Proof: (1) If the conditions of (1) above hold, then giT& 
will be discovered at the next times-phase and the 
claim follows. (2) Iff i ,  J~ are not in the same product in f, 
then f contains some prime implicant containing vari- 
ables from one of gi, & and not from the other. Hence 
giTgj will never hold. 

P r o o f  o f  C la im 1: By induction on the number  of 
phases on Claims 1, 3, and 4 simultaneously. 

We define the depth of a formula fi to be the maxi- 
mum number  of alternations of sum and product re- 
quired in its definition. 

Cla im 5: I f f i  is an expression of depth k in f, then after 
k phases a gi identical to fi will have been constructed 
by the algorithm. 

Proof: By induction on Claims 3 and 4. 

To conclude the proof of the theorem, it remains to 
analyze the runtime. This is dominated by the cost of 
computing mi and rhi, for which we have already ac- 
counted, plus the cost of computing the equivalence 
relations S and T. We first note that fewer than 2t 
expression names gi are used in the course of the algo- 
rithm. When an expression is grafted into another at a 
point deep in the latter, then the semantics of all the 
subexpressions above will change. By Claims 3 and 4 
such grafting can occur when a gi is added to a sum 
expression but not when added to a times expression. 
Hence the values mi and rhi do not need to be changed 
for any expression when such grafting occurs. It follows 
that for computing S only 2t values of m~, rh~ need to be 
considered. Hence 0(t 2) calls of PI or 0(t a) calls of N- 
ORACLE suffice overall. For computing T grafting may 
cause a ripple effect. On each occasion the value of Vj 
may have to be updated for up to t such sets, and hence 
t 2 calls of RA will suffice. Hence 0(t a) calls of RA in the 
overall algorithm will be enough. [] 

8. R E M A R K S  
In this paper we have considered learning as the proc- 
ess of deducing a program for performing a task, from 
information that does not provide an explicit descrip- 
tion of such a program. We have given precise meaning 
to this notion of learning and have shown that in some 
restricted but nontrivial contexts it is computationally 
feasible. 

Consider a world containing robots and elephants. 
Suppose that one of the robots has discovered a recog- 
nition algorithm for elephants that can be meaningfully 
expressed in k-conjunctive normal form. Our Theorem 
A implies that this robot can communicate its algo- 
rithm to the rest of the robot population by simply 
exclaiming "elephant" whenever one appears. 

An important aspect of our approach, if cast in its 
greatest generality, is that we require the recognition 
algorithms of the teacher and learner to agree on an 
overwhelming fraction of only the natural inputs. Their 

behavior on unnatural  inputs is irrelevant, and hence 
descriptions of all possible worlds are not necessary. If 
followed to its conclusion, this idea has considerable 
philosophical implications: A learnable concept is noth- 
ing more than a short program that distinguishes some 
natural inputs from some others. If such a concept is 
passed on among a population in a distributed manner,  
substantial variations in meaning may arise. More im- 
portantly, what consensus there is will only be 
meaningful for natural inputs. The behavior of an indi- 
vidual's program for unnatural  inputs has no relevance. 
Hence thought experiments and logical arguments in- 
volving unnatural  hypothetical situations may be 
meaningless activities. 

The second important aspect of the formulation is 
that the notion of oracles makes it possible to discuss a 
whole range of teacher-learner interactions beyond the 
mere identification of examples. This is significant in 
the context of artificial intelligence where humans  may 
be willing to go to great lengths to convey their skills to 
machines but are frustrated by their inability to articu- 
late the algorithms they themselves use in the practice 
of the skills. We expect that some explicit programming 
does become essential for transmitting skills that are 
beyond certain limits of difficulty. The identification of 
these limits is a major goal of the line of work proposed 
in this paper. 
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