
Fundamentals of Robotic
Mechanical Systems:
Theory, Methods, and 

Algorithms,
Second Edition

Jorge Angeles

Springer

TLFeBOOK



Mechanical Engineering Series

Frederick F. Ling
Series Editor

Springer
New York
Berlin
Heidelberg
Hong Kong
London
Milan
Paris
Tokyo

TLFeBOOK



Mechanical Engineering Series

J. Angeles, Fundamentals of Robotic Mechanical Systems:
Theory, Methods, and Algorithms, 2nd ed.

P. Basu, C. Kefa, and L. Jestin, Boilers and Burners: Design and Theory

J.M. Berthelot, Composite Materials:
Mechanical Behavior and Structural Analysis

I.J. Busch-Vishniac, Electromechanical Sensors and Actuators

J. Chakrabarty, Applied Plasticity

G. Chryssolouris, Laser Machining: Theory and Practice

V.N. Constantinescu, Laminar Viscous Flow

G.A. Costello, Theory of Wire Rope, 2nd ed.

K. Czolczynski, Rotordynamics of Gas-Lubricated Journal Bearing Systems

M.S. Darlow, Balancing of High-Speed Machinery

J.F. Doyle, Nonlinear Analysis of Thin-Walled Structures: Statics,
Dynamics, and Stability

J.F. Doyle, Wave Propagation in Structures:
Spectral Analysis Using Fast Discrete Fourier Transforms, 2nd ed.

P.A. Engel, Structural Analysis of Printed Circuit Board Systems

A.C. Fischer-Cripps, Introduction to Contact Mechanics

A.C. Fischer-Cripps, Nanoindentation

J. García de Jalón and E. Bayo, Kinematic and Dynamic Simulation of
Multibody Systems: The Real-Time Challenge

W.K. Gawronski, Dynamics and Control of Structures: A Modal Approach

K.C. Gupta, Mechanics and Control of Robots

J. Ida and J.P.A. Bastos, Electromagnetics and Calculations of Fields

M. Kaviany, Principles of Convective Heat Transfer, 2nd ed.

M. Kaviany, Principles of Heat Transfer in Porous Media, 2nd ed.

E.N. Kuznetsov, Underconstrained Structural Systems

                                                                                                                  (continued after index)

TLFeBOOK



Mechanical Engineering Series (continued from page ii)

P. Ladevèze, Nonlinear Computational Structural Mechanics:
New Approaches and Non-Incremental Methods of Calculation

A. Lawrence, Modern Inertial Technology: Navigation, Guidance, and
Control, 2nd ed.

R.A. Layton, Principles of Analytical System Dynamics

F.F. Ling, W.M. Lai, D.A. Lucca, Fundamentals of Surface Mechanics With
Applications, 2nd ed.

C.V. Madhusudana, Thermal Contact Conductance

D.P. Miannay, Fracture Mechanics

D.P. Miannay, Time-Dependent Fracture Mechanics

D.K. Miu, Mechatronics: Electromechanics and Contromechanics

D. Post, B. Han, and P. Ifju, High Sensitivity Moiré:
Experimental Analysis for Mechanics and Materials

F.P. Rimrott, Introductory Attitude Dynamics

S.S. Sadhal, P.S. Ayyaswamy, and J.N. Chung, Transport Phenomena
with Drops and Bubbles 

A.A. Shabana, Theory of Vibration: An Introduction, 2nd ed.

A.A. Shabana, Theory of Vibration: Discrete and Continuous Systems,
2nd ed.

TLFeBOOK



Jorge Angeles

Fundamentals of Robotic
Mechanical Systems
Theory, Methods, and Algorithms

Second Edition

123
TLFeBOOK



Jorge Angeles
Department of Mechanical Engineering

and Centre for Intelligent Machines
McGill University
817 Sherbrooke Street
Montreal, Quebec H3A 2K6, Canada
angeles@cim.mcgill.ca

Series Editor
Frederick F. Ling
Ernest F. Gloyna Regents Chair in Engineering
Department of Mechanical Engineering
The University of Texas at Austin
Austin, TX 78712-1063, USA

and
William Howard Hart Professor Emeritus
Department of Mechanical Engineering,

Aeronautical Engineering and Mechanics
Rensselaer Polytechnic Institute
Troy, NY 12180-3590, USA

Library of Congress Cataloging-in-Publication Data
Angeles, Jorge, 1943–

Fundamentals of robotic mechanical systems : theory, methods, and algorithms / Jorge
Angeles.—2nd ed.

p. cm.—(Mechanical engineering series)
Includes bibliographical references and index.
ISBN 0-387-95368-X (alk. paper)
1. Robotics. I. Title. II. Mechanical engineering series (Berlin, Germany)

TJ211 .A545 2002
629.8'92—dc21 2001054911

ISBN 0-387-95368-X Printed on acid-free paper.

© 2003 Springer-Verlag New York, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY
10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in con-
nection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed in the United States of America.  

9 8 7 6 5 4 3 2 1  SPIN 10853235    

Typesetting: Pages created by the author using a Springer TeX macro package.                         

www.springer-ny.com

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science+Business Media GmbH

TLFeBOOK



To Anne-Marie, who has given me
not only her love, but also her precious time,

without which this book would not have been possible.

TLFeBOOK



Mechanical Engineering Series

Frederick F. Ling
Series Editor

Advisory Board

Applied Mechanics F.A. Leckie
University of California,
Santa Barbara

Biomechanics V.C. Mow
Columbia University

Computational Mechanics H.T. Yang
University of California,
Santa Barbara

Dynamical Systems and Control K.M. Marshek
University of Texas, Austin

Energetics J.R. Welty
University of Oregon, Eugene

Mechanics of Materials I. Finnie
University of California, Berkeley

Processing K.K. Wang
Cornell University

Production Systems G.-A. Klutke
Texas A&M University

Thermal Science A.E. Bergles
Rensselaer Polyechnic Institute

Tribology W.O. Winer
Georgia Institute of Technology

TLFeBOOK



Series Preface

Mechanical engineering, an engineering discipline borne of the needs of the
industrial revolution, is once again asked to do its substantial share in the
call for industrial renewal. The general call is urgent as we face profound is-
sues of productivity and competitiveness that require engineering solutions,
among others. The Mechanical Engineering Series features graduate texts
and research monographs intended to address the need for information in
contemporary areas of mechanical engineering.

The series is conceived as a comprehensive one that covers a broad range
of concentrations important to mechanical engineering graduate education
and research. We are fortunate to have a distinguished roster of consult-
ing editors on the advisory board, each an expert in one of the areas of
concentration. The names of the consulting editors are listed on the facing
page of this volume. The areas of concentration are: applied mechanics;
biomechanics; computational mechanics; dynamic systems and control; en-
ergetics; mechanics of materials; processing; production systems; thermal
science; and tribology.

Austin, Texas Frederick F. Ling
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Preface to the Second Edition

The theory, methods and algorithms behind the development of robotic
mechanical systems continue developing at a rate faster than they can be
recorded. The second edition of Fundamentals of Robotic Mechanical Sys-
tems does not claim a comprehensive account of developments up-to-date.
Nevertheless, an attempt has been made to update the most impacting
developments in these activities. Since the appearance of the first edition,
many milestones can be cited. Advances in a host of applications areas can
be mentioned, e.g., laparoscopy, haptics, and manufacturing, to mention a
representative sample.

Perhaps the most impressive achievements to be cited lie in the realm of
space exploration. Indeed, in the period of interest we have seen the suc-
cessful landing of the Sojourner on Mars, with the wheeled robot Pathfinder
roaming on the Martian landscape in 1997. Along the same lines, the in-
frastructure of the International Space Station was set in orbit in 2000,
with the installation of Canadarm2, the successor of Canadarm, following
suit in 2001. Not less impressive are the achievements recorded on the the-
oretical side of the areas of interest, although these have received much less
media attention. To cite just one such accomplishment, one open question
mentioned in the first edition was definitely closed in 1998 with a paper pre-
sented at the International Workshop on Advances in Robot Kinematics.
This question pertains to the 40th-degree polynomial derived by Husty—
as reported in 1996 in a paper in Mechanism and Machine Theory—and
allowing the computation of all forward-kinematics solutions of a general
Stewart-Gough platform. Dietmaier reported an algorithm in that work-
shop that is capable of generating a set of geometric parameters of the

TLFeBOOK



x Preface to the Second Edition

platform that indeed lead to 40 real solutions. The conclusion then is that
Husty’s polynomial is indeed minimal.

In producing the Second Edition, we took the opportunity to clear the
manuscript of errors and inaccuracies. An in-depth revision was conducted
in-between. Special thanks go to Dr. Kourosh Etemadi Zanganeh, Can-
met (Nepean, Ontario, Canada), for his invaluable help in the rewrit-
ing of Chapter 8. Profs. Carlos López-Cajún, Universidad Autónoma de
Querétaro (Mexico), and J. Jesús Cervantes-Sánchez, Universidad de Gua-
najuato (Mexico) pointed out many inconsistencies in the first edition.
Moreover, Dr. Zheng Liu, Canadian Space Agency, St.-Hubert (Quebec,
Canada), who is teaching a course based on the first six chapters of the
book at McGill University, pointed out mistakes and gave valuable sugges-
tions for improving the readability of the book. All these suggestions were
incorporated in the Second Edition as suggested, except for one: While
Dr. Liu suggested to expand on the use of Euler angles in Chapter 2, be-
cause of their appeal to robotics engineers in industry, we decided to add,
instead, a couple of exercises to the list corresponding to this chapter. The
reason is that, in the author’s personal opinion, Euler angles are a neces-
sary evil. Not being frame-invariant, their manipulation tends to become
extremely cumbersome, as illustrated with those examples. Euler angles
may be good for visualizing rigid-body rotations, but they are very bad
at solving problems associated with these rotations using a computer or
simple longhand calculations. Needless to say, the feedback received from
students throughout over 15 years of using this material in the classroom,
is highly acknowledged.

One word of caution is in order: RVS, the software system used to vi-
sualize robot motions and highlighted in the first edition, has not received
either maintenance or updating. It still runs on SGI machines, but we have
no plans for its porting into Windows.

Since there is always room for improvement, we welcome suggestions from
our readership. Please address these to the author, to the e-mail address
included below. Updates on the book will be posted at

www.cim.mcgill.ca/~rmsl

The Solutions Manual has been expanded, to include more solutions of
sampled problems. By the same token, the number of exercises at the end of
the book has been expanded. The manual is typeset in LATEX with Autocad
drawings; it is available upon request from the publisher.

Last, but by no means least, thanks are due to Dr. Svetlana Ostrovskaya,
a Postdoctoral Fellow at McGill University, for her help with Chapter 10
and the editing of the Second Edition.

Montreal, January 2002 Jorge Angeles
angeles@cim.mcgill.ca

TLFeBOOK



Preface to the First Edition

No todos los pensamientos son algoŕıtmicos.

—Mario Bunge1

The beginnings of modern robotics can be traced back to the late sixties
with the advent of the microprocessor, which made possible the computer
control of a multiaxial manipulator. Since those days, robotics has evolved
from a technology developed around this class of manipulators for the re-
playing of a preprogrammed task to a multidiscipline encompassing many
branches of science and engineering. Research areas such as computer vi-
sion, artificial intelligence, and speech recognition play key roles in the
development and implementation of robotics; these are, in turn, multidis-
ciplines supported by computer science, electronics, and control, at their
very foundations. Thus we see that robotics covers a rather broad spec-
trum of knowledge, the scope of this book being only a narrow band of this
spectrum, as outlined below.

Contemporary robotics aims at the design, control, and implementation

1Not all thinking processes are algorithmic—translation of the author—
personal communication during the Symposium on the Brain-Mind Problem. A
Tribute to Professor Mario Bunge on His 75th Birthday, Montreal, September
30, 1994.
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xii Preface to the First Edition

of systems capable of performing a task defined at a high level, in a lan-
guage resembling those used by humans to communicate among themselves.
Moreover, robotic systems can take on forms of all kinds, ranging from the
most intangible, such as interpreting images collected by a space sound, to
the most concrete, such as cutting tissue in a surgical operation. We can,
therefore, notice that motion is not essential to a robotic system, for this
system is meant to replace humans in many of their activities, moving being
but one of them. However, since robots evolved from early programmable
manipulators, one tends to identify robots with motion and manipulation.
Certainly, robots may rely on a mechanical system to perform their in-
tended tasks. When this is the case, we can speak of robotic mechanical
systems, which are the subject of this book. These tasks, in turn, can be
of a most varied nature, mainly involving motions such as manipulation,
but they can also involve locomotion. Moreover, manipulation can be as
simple as displacing objects from a belt conveyor to a magazine. On the
other hand, manipulation can also be as complex as displacing these objects
while observing constraints on both motion and force, e.g., when cutting
live tissue of vital organs. We can, thus, distinguish between plain manipu-
lation and dextrous manipulation. Furthermore, manipulation can involve
locomotion as well.

The task of a robotic mechanical system is, hence, intimately related
to motion control, which warrants a detailed study of mechanical systems
as elements of a robotic system. The aim of this book can, therefore, be
stated as establishing the foundations on which the design, control, and
implementation of robotic mechanical systems are based.

The book evolved from sets of lecture notes developed at McGill Uni-
versity over the last twelve years, while I was teaching a two-semester se-
quence of courses on robotic mechanical systems. For this reason, the book
comprises two parts—an introductory and an intermediate part on robotic
mechanical systems. Advanced topics, such as redundant manipulators, ma-
nipulators with flexible links and joints, and force control, are omitted. The
feedback control of robotic mechanical systems is also omitted, although
the book refers the reader, when appropriate, to the specialized literature.
An aim of the book is to serve as a textbook in a one-year robotics course;
another aim is to serve as a reference to the practicing engineer.

The book assumes some familiarity with the mathematics taught in any
engineering or science curriculum in the first two years of college. Familiar-
ity with elementary mechanics is helpful, but not essential, for the elements
of this science needed to understand the mechanics of robotic systems are
covered in the first three chapters, thereby making the book self-contained.
These three chapters, moreover, are meant to introduce the reader to the
notation and the basics of mathematics and rigid-body mechanics needed
in the study of the systems at hand. The material covered in the same
chapters can thus serve as reading material for a course on the mathemat-
ics of robotics, intended for sophomore students of science and engineering,
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Preface to the First Edition xiii

prior to a more formal course on robotics.
The first chapter is intended to give the reader an overview of the subject

matter and to highlight the major issues in the realm of robotic mechanical
systems. Chapter 2 is devoted to notation, nomenclature, and the basics of
linear transformations to understand best the essence of rigid-body kine-
matics, an area that is covered in great detail throughout the book. A
unique feature of this chapter is the discussion of the hand-eye calibration
problem: Many a paper has been written in an attempt to solve this fun-
damental problem, always leading to a cumbersome solution that invokes
nonlinear-equation solving, a task that invariably calls for an iterative pro-
cedure; moreover, within each iteration, a singular-value decomposition,
itself iterative as well, is required. In Chapter 2, a novel approach is in-
troduced, which resorts to invariant properties of rotations and leads to a
direct solution, involving straightforward matrix and vector multiplications.
Chapter 3 reviews, in turn, the basic theorems of rigid-body kinetostatics
and dynamics. The viewpoint here represents a major departure from most
existing books on robotic manipulators: proper orthogonal matrices can be
regarded as coordinate transformations indeed, but they can also be re-
garded as representations, once a coordinate frame has been selected, of
rigid-body rotations. I adopt the latter viewpoint, and hence, fundamental
concepts are explained in terms of their invariant properties, i.e., proper-
ties that are independent of the coordinate frame adopted. Hence, matrices
are used first and foremost to represent the physical motions undergone by
rigid bodies and systems thereof; they are to be interpreted as such when
studying the basics of rigid-body mechanics in this chapter. Chapter 4 is
the first chapter entirely devoted to robotic mechanical systems, properly
speaking. This chapter covers extensively the kinematics of robotic ma-
nipulators of the serial type. However, as far as displacement analysis is
concerned, the chapter limits itself to the simplest robotic manipulators,
namely, those with a decoupled architecture, i.e., those that can be decom-
posed into a regional architecture for the positioning of one point of their
end-effector (EE), and a local architecture for the orientation of their EE.
In this chapter, the notation of Denavit and Hartenberg is introduced and
applied consistently throughout the book. Jacobian matrices, workspaces,
singularities, and kinetostatic performance indices are concepts studied in
this chapter. A novel algorithm is included for the determination of the
workspace boundary of positioning manipulators. Furthermore, Chapter 5
is devoted to the topic of trajectory planning, while limiting its scope to
problems suitable to a first course on robotics; this chapter thus focuses on
pick-and-place operations. Chapter 6, moreover, introduces the dynamics
of robotic manipulators of the serial type, while discussing extensively the
recursive Newton-Euler algorithm and laying the foundations of multibody
dynamics, with an introduction to the Euler-Lagrange formulation. The
latter is used to derive the general algebraic structure of the mathematical
models of the systems under study, thus completing the introductory part
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xiv Preface to the First Edition

of the book.
The intermediate part comprises four chapters. Chapter 7 is devoted to

the increasingly important problem of determining the angular velocity and
the angular acceleration of a rigid body, when the velocity and acceleration
of a set of its points are known. Moreover, given the intermediate level of
the chapter, only the theoretical aspects of the problem are studied, and
hence, perfect measurements of point position, velocity, and acceleration
are assumed, thereby laying the foundations for the study of the same
problems in the presence of noisy measurements. This problem is finding
applications in the control of parallel manipulators, which is the reason
why it is included here. If time constraints so dictate, this chapter can be
omitted, for it is not needed in the balance of the book.

The formulation of the inverse kinematics of the most general robotic ma-
nipulator of the serial type, leading to a univariate polynomial of the 16th
degree, not discussed in previous books on robotics, is included in Chap-
ter 8. Likewise, the direct kinematics of the platform manipulator popularly
known as the Stewart platform, a.k.a. the Stewart-Gough platform, leading
to a 16th-degree monovariate polynomial, is also given due attention in this
chapter. Moreover, an alternative approach to the monovariate-polynomial
solution of the two foregoing problems, that is aimed at solving them semi-
graphically, is introduced in this chapter. With this approach, the under-
lying multivariate algebraic system of equations is reduced to a system of
two nonlinear bivariate equations that are trigonometric rather than poly-
nomial. Each of these two equations, then, leads to a contour in the plane
of the two variables, the desired solutions being found as the coordinates
of the intersections of the two contours.

Discussed in Chapter 9 is the problem of trajectory planning as per-
taining to continuous paths, which calls for some concepts of differential
geometry, namely, the Frenet-Serret equations relating the tangent, nor-
mal, and binormal vectors of a smooth curve to their rates of change with
respect to the arc length. The chapter relies on cubic parametric splines
for the synthesis of the generated trajectories in joint space, starting from
their descriptions in Cartesian space. Finally, Chapter 10 completes the
discussion initiated in Chapter 6, with an outline of the dynamics of paral-
lel manipulators and rolling robots. Here, a multibody dynamics approach
is introduced, as in the foregoing chapter, that eases the formulation of the
underlying mathematical models.

Two appendices are included: Appendix A summarizes a series of facts
from the kinematics of rotations, that are available elsewhere, with the
purpose of rendering the book self-contained; Appendix B is devoted to the
numerical solution of over- and underdetermined linear algebraic systems,
its purpose being to guide the reader to the existing robust techniques for
the computation of least-square and minimum-norm solutions. The book
concludes with a set of problems, along with a list of references, for all ten
chapters.
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On Notation

The important issue of notation is given due attention. In figuring out the
notation, I have adopted what I call the C3 norm. Under this norm, the
notation should be

1. Comprehensive,

2. Concise, and

3. Consistent.

Within this norm, I have used boldface fonts to indicate vectors and
matrices, with uppercases reserved for matrices and lowercases for vectors.
In compliance with the invariant approach adopted at the outset, I do not
regard vectors solely as arrays, but as geometric or mechanical objects.
Regarding such objects as arrays is necessary only when it is required to
perform operations with them for a specific purpose. An essential feature
of vectors in a discussion is their dimension, which is indicated with a
single number, as opposed to the convention whereby vectors are regarded
as matrix arrays of numbers; in this convention, the dimension has to be
indicated with two numbers, one for the number of columns, and one for the
number of rows; in the case of vectors, the latter is always one, and hence,
need not be mentioned. Additionally, calligraphic literals are reserved for
sets of points or of other objects. Since variables are defined every time that
they are introduced, and the same variable is used in the book to denote
different concepts in different contexts, a list of symbols is not included.

How to Use the Book

The book can be used as a reference or as a text for the teaching of the
mechanics of robots to an audience that ranges from junior undergraduates
to doctoral students. In an introductory course, the instructor may have
to make choices regarding what material to skip, given that the duration
of a regular semester does not allow to cover all that is included in the
first six chapters. Topics that can be skipped, if time so dictates, are the
discussions, in Chapter 4, of workspaces and performance indices, and the
section on simulation in Chapter 6. Under strict time constraints, the whole
Chapter 5 can be skipped, but then, the instructor will have to refrain
from assigning problems or projects that include calculating the inverse
dynamics of a robot performing pick-and-place operations. None of these
has been included in Section 6 of the Exercises.

If sections of Chapters 4 and 5 have been omitted in a first course, it is
highly advisable to include them in a second course, prior to discussing the
chapters included in the intermediate part of the book.
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1
An Overview of Robotic Mechanical
Systems

1.1 Introduction

In defining the scope of our subject, we have to establish the genealogy of
robotic mechanical systems. These are, obviously, a subclass of the much
broader class of mechanical systems. Mechanical systems, in turn, consti-
tute a subset of the more general concept of dynamic systems. Therefore,
in the final analysis, we must have an idea of what, in general, a system is.

The Concise Oxford Dictionary defines system as a “complex whole, set
of connected things or parts, organized body of material or immaterial
things,” whereas the Random House College Dictionary defines the same
as “an assemblage or combination of things or parts forming a complex
or unitary whole.” Le Petit Robert , in turn, defines system as “Ensem-
ble possédant une structure, constituant un tout organique,” which can
be loosely translated as “A structured assemblage constituting an organic
whole.” In the foregoing definitions, we note that the underlying idea is
that of a set of elements interacting as a whole.

On the other hand, a dynamic system is a subset of the set of systems.
For our purposes, we can dispense with a rigorous definition of this concept.
Suffice it to say that a dynamic system is a system in which one can distin-
guish three elements, namely, a state, an input, and an output, in addition
to a rule of transition from one current state to a future one. Moreover,
the state is a functional of the input and a function of a previous state. In
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2 1. An Overview of Robotic Mechanical Systems

this concept, then, the idea of order is important, and can be taken into
account by properly associating each state value with time. The state at
every instant is a functional, as opposed to a function, of the input, which is
characteristic of dynamic systems. This means that the state of a dynamic
system at a certain instant is determined not only by the value of the input
at that instant, but also by the past history of that input. By virtue of this
property, dynamic systems are said to have memory.

On the contrary, systems whose state at a given instant is only a function
of the input at the current time are static and are said to have no memory.
Additionally, since the state of a dynamic system is a result of all the past
history of the input, the future values of this having no influence on the
state, dynamic systems are said to be nonanticipative or causal. By the
same token, systems whose state is the result of future values of the input
are said to be anticipative or noncausal. In fact, we will not need to worry
about the latter, and hence, all systems we will study can be assumed to
be causal.

Obviously, a mechanical system is a system composed of mechanical ele-
ments. If this system complies with the definition of dynamic system, then
we end up with a dynamic mechanical system. For brevity, we will refer to
such systems as mechanical systems, the dynamic property being taken for
granted throughout the book. Mechanical systems of this type are those
that occur whenever the inertia of their elements is accounted for. Static
mechanical systems are those in which inertia is neglected. Moreover, the
elements constituting a mechanical system are rigid and deformable solids,
compressible and incompressible fluids, and inviscid and viscous fluids.

From the foregoing discussion, then, it is apparent that mechanical sys-
tems can be constituted either by lumped-parameter or by distributed-
parameter elements. The former reduce to particles; rigid bodies; massless,
conservative springs; and massless, nonconservative dashpots. The latter
appear whenever bodies are modeled as continuous media. In this book, we
will focus on lumped-parameter mechanical systems.

Furthermore, a mechanical system can be either natural or man-made,
the latter being the subject of our study. Man-made mechanical systems
can be either controlled or uncontrolled. Most engineering systems are con-
trolled mechanical systems, and hence, we will focus on these. Moreover,
a controlled mechanical system may be robotic or nonrobotic. The lat-
ter are systems supplied with primitive controllers, mostly analog, such
as thermostats, servovalves, etc. Robotic mechanical systems, in turn, can
be programmable, such as most current industrial robots, or intelligent,
as discussed below. Programmable mechanical systems obey motion com-
mands either stored in a memory device or generated on-line. In either
case, they need primitive sensors, such as joint encoders, accelerometers,
and dynamometers.

Intelligent robots or, more broadly speaking, intelligent machines, are
yet to be demonstrated, but have become the focus of intensive research.
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1.2 The General Structure of Robotic Mechanical Systems 3

If intelligent machines are ever feasible, they will depend highly on a so-
phisticated sensory system and the associated hardware and software for
the processing of the information supplied by the sensors. The processed
information would then be supplied to the actuators in charge of producing
the desired motion of the robot. Contrary to programmable robots, whose
operation is limited to structured environments, intelligent machines should
be capable of reacting to unpredictable changes in an unstructured environ-
ment. Thus, intelligent machines should be supplied with decision-making
capabilities aimed at mimicking the natural decision-making process of liv-
ing organisms. This is the reason why such systems are termed intelligent
in the first place. Thus, intelligent machines are expected to perceive their
environment and draw conclusions based on this perception. What is sup-
posed to make these systems intelligent is their capability of perceiving,
which involves a certain element of subjectivity. By far, the most complex
of perception tasks, both in humans and machines, is visual (Levine, 1985;
Horn, 1986).

In summary, then, an intelligent machine is expected to (i) perceive the
environment; (ii) reason about the perceived information; (iii) make deci-
sions based on this perception; and (iv) act according to a plan specified at
a very high level. What the latter means is that the motions undergone by
the machine are decided upon based on instructions similar to those given
to a human being, like bring me a glass of water without spilling the water.

Whether intelligent machines with all the above features will be one day
possible or not is still a subject of discussion, sometimes at a philosophical
level. Penrose (1994) wrote a detailed discussion refuting the claim that
intelligent machines are possible.

A genealogy of mechanical systems, including robotic ones, is given in
Fig. 1.1. In that figure, we have drawn a dashed line between mechanical
systems and other systems, both man-made and natural, in order to em-
phasize the interaction of mechanical systems with electrical, thermal, and
other systems, including the human system, which is present in telemanip-
ulators, to be discussed below.

1.2 The General Structure of Robotic Mechanical
Systems

From Section 1.1, then, a robotic mechanical system is composed of a few
subsystems, namely, (i) a mechanical subsystem composed in turn of both
rigid and deformable bodies, although the systems we will study here are
composed only of the former; (ii) a sensing subsystem; (iii) an actuation
subsystem; (iv) a controller; and (v) an information-processing subsystem.
Additionally, these subsystems communicate among themselves via inter-
faces, whose function consists basically of decoding the transmitted infor-
mation from one medium to another. Figure 1.2 shows a block diagram
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4 1. An Overview of Robotic Mechanical Systems

FIGURE 1.1. A genealogy of robotic mechanical systems.

representation of a typical robotic mechanical system. Its input is a pre-
scribed task, which is defined either on the spot or off-line. The former case
is essential for a machine to be called intelligent, while the latter is present
in programmable machines. Thus, tasks would be described to intelligent
machines by a software system based on techniques of artificial intelligence
(AI). This system would replace the human being in the decision-making
process. Programmable robots require human intervention either for the
coding of preprogrammed tasks at a very low level or for telemanipulation.
A very low level of programming means that the motions of the machine are
specified as a sequence of either joint motions or Cartesian coordinates as-
sociated with landmark points of that specific body performing the task at
hand. The output of a robotic mechanical system is the actual task, which
is monitored by the sensors. The sensors, in turn, transmit task information
in the form of feedback signals, to be compared with the prescribed task.
The errors between the prescribed and the actual task are then fed back
into the controller, which then synthesizes the necessary corrective signals.
These are, in turn, fed back into the actuators, which then drive the me-
chanical system through the required task, thereby closing the loop. The
problem of robot control has received extensive attention in the literature,
and will not be pursued here. The interested reader is referred to the ex-
cellent works on the subject, e.g., those of Samson, Le Borgne, and Espiau
(1991) and, at a more introductory level, of Spong and Vidyasagar (1989).
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1.2 The General Structure of Robotic Mechanical Systems 5

FIGURE 1.2. Block diagram of a general robotic mechanical system.

Of special relevance to robot control is the subject of nonlinear control at
large, a pioneer here being Isidori (1989).

Robotic mechanical systems with a human being in their control loop
are called telemanipulators. Thus, a telemanipulator is a robotic mechan-
ical system in which the task is controlled by a human, possibly aided
by sophisticated sensors and display units. The human operator is then a
central element in the block diagram loop of Fig. 1.2. Based on the infor-
mation displayed, the operator makes decisions about corrections in order
to accomplish the prescribed task. Shown in Fig. 1.3 is a telemanipula-
tor to be used in space applications, namely, the Canadarm2, along with
the Special-Purpose Dextrous Manipulator (SPDM), both mounted on the
Mobile Servicing System (MSS). Moreover, a detailed view of the Special-
Purpose Dextrous Manipulator is shown in Fig. 1.4. In the manipulators
of these two figures, the human operator is an astronaut who commands
and monitors the motions of the robot from inside the EVA (extravehicular
activity) workstation. The number of controlled axes of each of these ma-
nipulators being larger than six, both are termed redundant. The challenge
here is that the mapping from task coordinates to joint motions is not
unique, and hence, among the infinitely many joint trajectories that the
operator has at his or her disposal for a given task, an on-board processor
must evaluate the best one according to a performance criterion.

While the manipulators of Figs. 1.3 and 1.4 are still at the development
stage, examples of robotic mechanical systems in operation are the well-
known six-axis industrial manipulators, six-degree-of-freedom flight simu-
lators, walking machines, mechanical hands, and rolling robots. We outline
the various features of these systems below.
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6 1. An Overview of Robotic Mechanical Systems

FIGURE 1.3. Canadarm2 and Special-Purpose Dextrous Manipulator (courtesy
of the Canadian Space Agency.)

1.3 Serial Manipulators

Among all robotic mechanical systems mentioned above, robotic manipu-
lators deserve special attention, for various reasons. One is their relevance
in industry. Another is that they constitute the simplest of all robotic me-
chanical systems, and hence, appear as constituents of other, more complex
robotic mechanical systems, as will become apparent in later chapters. A
manipulator, in general, is a mechanical system aimed at manipulating ob-
jects. Manipulating, in turn, means to move something with one’s hands,
as it derives from the Latin manus, meaning hand. The basic idea behind
the foregoing concept is that hands are among the organs that the human
brain can control mechanically with the highest accuracy, as the work of
an artist like Picasso, of an accomplished guitar player, or of a surgeon can
attest.

Hence, a manipulator is any device that helps man perform a manip-
ulating task. Although manipulators have existed ever since man created
the first tool, only very recently, namely, by the end of World War II, have
manipulators developed to the extent that they are now capable of actu-
ally mimicking motions of the human arm. In fact, during WWII, the need
arose for manipulating probe tubes containing radioactive substances. This
led to the first six-degree-of-freedom (DOF) manipulators.

Shortly thereafter, the need for manufacturing workpieces with high ac-
curacy arose in the aircraft industry, which led to the first numerically-
controlled (NC) machine tools. The synthesis of the six-DOF manipulator

TLFeBOOK



1.3 Serial Manipulators 7

FIGURE 1.4. Special-Purpose Dextrous Manipulator (courtesy of the Canadian
Space Agency.)

and the NC machine tool produced what became the robotic manipula-
tor. Thus, the essential difference between the early manipulator and the
evolved robotic manipulator is the term robotic, which has only recently,
as of the late sixties, come into the picture. A robotic manipulator is to
be distinguished from the early manipulator by its capability of lending
itself to computer control. Whereas the early manipulator needed the pres-
ence of a manned master manipulator, the robotic manipulator can be pro-
grammed once and for all to repeat the same task forever. Programmable
manipulators have existed for about 30 years, namely, since the advent of
microprocessors, which allowed a human master to teach the manipulator
by actually driving the manipulator itself, or a replica thereof, through a
desired task, while recording all motions undergone by the master. Thus,
the manipulator would later repeat the identical task by mere playback.
However, the capabilities of industrial robots are fully exploited only if the
manipulator is programmed with software, rather than actually driving it
through its task trajectory, which many a time, e.g., in car-body spot-
welding, requires separating the robot from the production line for more
than a week. One of the objectives of this book is to develop tools for the
programming of robotic manipulators.

However, the capabilities offered by robotic mechanical systems go well
beyond the mere playback of preprogrammed tasks. Current research aims
at providing robotic systems with software and hardware that will allow
them to make decisions on the spot and learn while performing a task. The
implementation of such systems calls for task-planning techniques that fall
beyond the scope of this book and, hence, will not be treated here. For a
glimpse of such techniques, the reader is referred to the work of Latombe
(1991) and the references therein.
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8 1. An Overview of Robotic Mechanical Systems

FIGURE 1.5. A six-degree-of-freedom flight simulator (courtesy of CAE Elec-
tronics Ltd.)

1.4 Parallel Manipulators

Robotic manipulators first appeared as mechanical systems constituted by
a structure consisting of very robust links coupled by either rotational or
translating joints, the former being called revolutes, the latter prismatic
joints. Moreover, these structures are a concatenation of links, thereby
forming an open kinematic chain, with each link coupled to a predeces-
sor and a successor, except for the two end links, which are coupled only
to either a predecessor or to a successor, but not to both. Because of the
serial nature of the coupling of links in this type of manipulator, even
though they are supplied with structurally robust links, their load-carrying
capacity and their stiffness is too low when compared with the same prop-
erties in other multiaxis machines, such as NC machine tools. Obviously, a
low stiffness implies a low positioning accuracy. In order to remedy these
drawbacks, parallel manipulators have been proposed to withstand higher
payloads with lighter links. In a parallel manipulator, we distinguish one
base platform, one moving platform, and various legs. Each leg is, in turn,
a kinematic chain of the serial type, whose end links are the two platforms.
Contrary to serial manipulators, all of whose joints are actuated, parallel
manipulators contain unactuated joints, which brings about a substantial
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1.4 Parallel Manipulators 9

difference between the two types. The presence of unactuated joints makes
the analysis of parallel manipulators, in general, more complex than that
of their serial counterparts.

A paradigm of parallel manipulators is the flight simulator, consisting of
six legs actuated by hydraulic pistons, as displayed in Fig. 1.5. Recently, an
explosion of novel designs of parallel manipulators has occurred aimed at
fast assembly operations, namely, the Delta robot (Clavel, 1988), developed
at the Lausanne Federal Polytechnic Institute, shown in Fig. 1.6; the Hexa
robot (Pierrot et al., 1991), developed at the University of Montpellier;
and the Star robot (Hervé and Sparacino, 1992), developed at the Ecole
Centrale of Paris. One more example of parallel manipulator is the Truss-
arm, developed at the University of Toronto Institute of Aerospace Studies
(UTIAS), shown in Fig. 1.7a (Hughes et al., 1991). Merlet (2000), of the
Institut National de Recherche en Informatique et en Automatique, Sophia-
Antipolis, France, developed a six-axis parallel robot, called in French a
main gauche, or left hand, shown in Fig. 1.7b, to be used as an aid to an-
other robot, possibly of the serial type, to enhance its dexterity. Hayward,
of McGill University, designed and constructed a parallel manipulator to
be used as a shoulder module for orientation tasks (Hayward, 1994); the
module is meant for three-degree-of-freedom motions, but is provided with
four hydraulic actuators, which gives it redundant actuation—Fig. 1.7c.

FIGURE 1.6. The Clavel Delta robot.
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10 1. An Overview of Robotic Mechanical Systems

(a) (b)

(c)

FIGURE 1.7. A sample of parallel manipulators: (a) The UTIAS Trussarm (cour-
tesy of Prof. P. C. Hughes); (b) the Merlet left hand (courtesy of Dr. J.-P. Merlet);
and (c) the Hayward shoulder module (courtesy of Prof. V. Hayward.)
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1.5 Robotic Hands

As stated above, the hand can be regarded as the most complex mechanical
subsystem of the human manipulation system. Other mechanical subsys-
tems constituting this system are the arm and the forearm. Moreover, the
shoulder, coupling the arm with the torso, can be regarded as a spherical
joint, i.e., the concatenation of three revolute joints with intersecting axes.
Furthermore, the arm and the forearm are coupled via the elbow, with the
forearm and the hand finally being coupled by the wrist. Frequently, the
wrist is modeled as a spherical join as well, while the elbow is modeled as a
simple revolute joint. Robotic mechanical systems mimicking the motions
of the arm and the forearm constitute the manipulators discussed in the
previous section. Here we outline more sophisticated manipulation systems
that aim at producing the motions of the human hand, i.e., robotic me-
chanical hands. These robotic systems are meant to perform manipulation
tasks, a distinction being made between simple manipulation and dextrous
manipulation. What the former means is the simplest form, in which the
fingers play a minor role, namely, by serving as simple static structures that
keep an object rigidly attached with respect to the palm of the hand—when
the palm is regarded as a rigid body. As opposed to simple manipulation,
dextrous manipulation involves a controlled motion of the grasped object
with respect to the palm. Simple manipulation can be achieved with the
aid of a manipulator and a gripper, and need not be further discussed here.
The discussion here is about dextrous manipulation.

In dextrous manipulation, the grasped object is required to move with re-
spect to the palm of the grasping hand. This kind of manipulation appears
in performing tasks that require high levels of accuracy, like handwriting
or cutting tissue with a scalpel. Usually, grasping hands are multifingered,
although some grasping devices exist that are constituted by a simple,
open, highly redundant kinematic chain (Pettinato and Stephanou, 1989).
The kinematics of grasping is discussed in Chapter 4. The basic kinematic
structure of a multifingered hand consists of a palm, which plays the role
of the base of a simple manipulator, and a set of fingers. Thus, kinemat-
ically speaking, a multifingered hand has a tree topology, i.e., it entails a
common rigid body, the palm, and a set of jointed bodies emanating from
the palm. Upon grasping an object with all the fingers, the chain becomes
closed with multiple loops. Moreover, the architecture of the fingers is that
of a simple manipulator. It consists of a number—two to four—of revolute-
coupled links playing the role of phalanges. However, unlike manipulators
of the serial type, whose joints are all independently actuated, those of a
mechanical finger are not and, in many instances, are driven by one single
master actuator, the remaining joints acting as slaves. Many versions of
multifingered hands exist: Stanford/JPL; Utah/MIT; TU Munich; Karls-
ruhe; Bologna; Leuven; Milan; Belgrade; and University of Toronto, among

TLFeBOOK



12 1. An Overview of Robotic Mechanical Systems

FIGURE 1.8. The four-fingered hydraulically actuated TU Munich Hand (cour-
tesy of Prof. F. Pfeiffer.)

others. Of these, the Utah/MIT Hand (Jacobsen et al., 1984; 1986) is com-
mercially available. It consists of four fingers, one of which is opposed to
the other three and hence, plays the role of the human thumb. Each finger
consists, in turn, of four phalanges coupled by revolute joints; each of these
is driven by two tendons that can deliver force only when in tension, each
being actuated independently. The TU Munich Hand, shown in Fig. 1.8,
is designed with four identical fingers laid out symmetrically on a hand
palm. This hand is hydraulically actuated, and provided with a very high
payload-to-weight ratio. Indeed, each finger weighs only 1.470 N, but can
exert a force of up to 30 N.

We outline below some problems and research trends in the area of dex-
trous hands. A key issue here is the programming of the motions of the
fingers, which is a much more complicated task than the programming
of a six-axis manipulator. In this regard, Liu et al. (1989) introduced a
task-analysis approach meant to program robotic hand motions at a higher
level. They use a heuristic, knowledge-based approach. From an analysis
of the various modes of grasping, they conclude that the requirements for
grasping tasks are (i) stability, (ii) manipulability, (iii) torquability, and
(iv) radial rotatability. Stability is defined as a measure of the tendency
of an object to return to its original position after disturbances. Manipu-
lability, as understood in this context, is the ability to impart motion to
the object while keeping the fingers in contact with the object. Torquabi-
lity, or tangential rotatability, is the ability to rotate the long axis of an
object—here the authors must assume that the manipulated objects are
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1.6 Walking Machines 13

convex and can be approximated by three-axis ellipsoids, thereby distin-
guishing between a longest and a shortest axis—with a minimum force, for
a prescribed amount of torque. Finally, radial rotatability is the ability to
rotate the grasped object about its long axis with minimum torque about
the axis.

Furthermore, Allen et al. (1989) introduced an integrated system of both
hardware and software for dextrous manipulation. The system consists
of a Sun-3 workstation controlling a Puma 500 arm with VAL-II. The
Utah/MIT hand is mounted on the end-effector of the arm. The system in-
tegrates force and position sensors with control commands for both the arm
and the hand. To demonstrate the effectiveness of their system, the authors
implemented a task consisting of removing a light bulb from its socket. Fi-
nally, Rus (1992) reports a paradigm allowing the high-level, task-oriented
manipulation control of planar hands. Whereas technological aspects of
dextrous manipulation are highly advanced, theoretical aspects are still
under research in this area. An extensive literature survey, with 405 refer-
ences on the subject of manipulation, is given by Reynaerts (1995).

1.6 Walking Machines

We focus here on multilegged walking devices, i.e., machines with more
than two legs. In walking machines, stability is the main issue. One distin-
guishes between two types of stability, static and dynamic. Static stability
refers to the ability of sustaining a configuration from reaction forces only,
unlike dynamic stability, which refers to that ability from both reaction and
inertia forces. Intuitively, it is apparent that static stability requires more
contact points and, hence, more legs, than dynamic stability. Hopping de-
vices (Raibert, 1986) and bipeds (Vukobratovic and Stepanenko, 1972) are
examples of walking machines whose motions aredependent upon dynamic
stability. For static balance, a walking machine requires a kinematic struc-
ture capable of providing the ground reaction forces needed to balance the
weight of the machine. A biped is not capable of static equilibrium because
during the swing phase of one leg, the body is supported by a single con-
tact point, which is incapable of producing the necessary balancing forces
to keep it in equilibrium. For motion on a horizontal surface, a minimum
of three legs is required to produce static stability. Indeed, with three legs,
one of these can undergo swing while the remaining two legs are in contact
with the ground, and hence, two contact points are present to provide the
necessary balancing forces from the ground reactions.

By the same token, the minimum number of legs required to sustain static
stability in general is four, although a very common architecture of walking
machines is the hexapod, examples of which are the Ohio State University
(OSU) Hexapod (Klein et al., 1983) and the OSU Adaptive Suspension
Vehicle (ASV) (Song and Waldron, 1989), shown in Fig. 1.10. A six-legged
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FIGURE 1.9. A prototype of the TU Munich Hexapod (Courtesy of Prof. F. Pfeif-
fer. Reproduced with permission of TSI Enterprises, Inc.)

walking machine with a design that mimics the locomotion system of the
Carausius morosus (Graham, 1972), also known as the walking stick, has
been developed at the Technical University of Munich (Pfeiffer et al., 1995).
A prototype of this machine, known as the TUM Hexapod, is included in
Fig. 1.9. The legs of the TUM Hexapod are operated under neural-network
control, which gives them a reflexlike response when encountering obstacles.
Upon sensing an obstacle, the leg bounces back and tries again to move
forward, but raising the foot to a higher level.

Other machines that are worth mentioning are the Sutherland, Sprout
and Associates Hexapod (Sutherland and Ullner, 1984), the Titan series of
quadrupeds (Hirose et al., 1985) and the Odetics series of axially symmetric
hexapods (Russell, 1983).

A survey of walking machines, of a rather historical interest by now,
is given in (Todd, 1985), while a more recent comprehensive account of
walking machines is available in a special issue of The International Journal
of Robotics Research (Volume 9, No. 2).

Walking machines appear as the sole means of providing locomotion in
highly unstructured environments. In fact, the unique adaptive suspension
provided by these machines allows them to navigate on uneven terrain.
However, walking machines cannot navigate on every type of uneven ter-
rain, for they are of limited dimensions. Hence, if terrain irregularities such
as a crevasse wider than the maximum horizontal leg reach or a cliff of
depth greater than the maximum vertical leg reach are present, then the
machine is prevented from making any progress. This limitation, however,
can be overcome by providing the machine with the capability of attaching
its feet to the terrain in the same way as a mountain climber goes up a cliff.
Moreover, machine functionality is limited not only by the topography of
the terrain, but also by its constitution. Whereas hard rock poses no serious
problem to a walking machine, muddy terrain can hamper its operation to
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1.7 Rolling Robots 15

FIGURE 1.10. The OSU ASV. An example of a six-legged walking machine
(courtesy of Prof. K. Waldron. Reproduced with permission of The MIT Press.)

the point that it may jam the machine. Still, under such adverse conditions,
walking machines offer a better maneuverability than other vehicles. Some
walking machines have been developed and are operational, but their op-
eration is often limited to slow motions. It can be said, however, that like
research on multifingered hands, the pace of theoretical research on walking
machines has been much slower than that of their technological develop-
ments. The above-mentioned OSU ASV and the TU Munich Hexapod are
among the most technologically developed walking machines.

1.7 Rolling Robots

While parallel manipulators indeed solve many inherent problems of serial
manipulators, their workspaces are more limited than those of the latter. As
a matter of fact, even serial manipulators have limited workspaces due to
the finite lengths of their links. Manipulators with limited workspaces can
be enhanced by mounting them on rolling robots. These are systems evolved
from earlier systems called automatic guided vehicles, or AGVs for short.
AGVs in their most primitive versions are four-wheeled electrically powered
vehicles that perform moving tasks with a certain degree of autonomy.
However, these vehicles are usually limited to motions along predefined
tracks that are either railways or magnetic strips glued to the ground.

The most common rolling robots use conventional wheels, i.e., wheels
consisting basically of a pneumatic tire mounted on a hub that rotates
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16 1. An Overview of Robotic Mechanical Systems

about an axle fixed to the platform of the robot. Thus, the operation of
these machines does not differ much from that of conventional terrestrial
vehicles. An essential difference between rolling robots and other robotic
mechanical systems is the kinematic constraints between wheel and ground
in the former. These constraints are of a type known as nonholonomic, as
discussed in detail in Chapter 6. Nonholonomic constraints are kinematic
relations between point velocities and angular velocities that cannot be
integrated in the form of algebraic relations between translational and ro-
tational displacement variables. The outcome of this lack of integrability
leads to a lack of a one-to-one relationship between Cartesian variables and
joint variables. In fact, while angular displacements read by joint encoders
of serial manipulators determine uniquely the position and orientation of
their end-effector, the angular displacement of the wheels of rolling ma-
chines do not determine the position and orientation of the vehicle body.
As a matter of fact, the control of rolling robots bears common features
with that of the redundancy resolution of manipulators of the serial type at
the joint-rate level. In these manipulators, the number of actuated joints
is greater than the dimension of the task space. As a consequence, the
task velocity does not determine the joint rates. Not surprisingly, the two
types of problems are being currently solved using the same tools, namely,
differential geometry and Lie algebra (De Luca and Oriolo, 1995).

As a means to supply rolling robots with 3-dof capabilities, omnidirec-
tional wheels (ODW) have been proposed. An example of ODWs are those
that bear the name of Mekanum wheels, consisting of a hub with rollers
on its periphery that roll freely about their axes, the latter being oriented
at a constant angle with respect to the hub axle. In Fig. 1.11, a Mekanum
wheel is shown, along with a rolling robot supplied with this type of wheels.
Rolling robots with ODWs are, thus, 3-dof vehicles, and hence, can trans-
late freely in two horizontal directions and rotate independently about a
vertical axis. However, like their 2-dof counterparts, 3-dof rolling robots
are also nonholonomic devices, and thus, pose the same problems for their
control as the former.

(a) (b)

FIGURE 1.11. (a) A Mekanum wheel; (b) rolling robot supplied with Mekanum
wheels.
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1.7 Rolling Robots 17

Recent developments in the technology of rolling robots have been re-
ported that incorporate alternative types of ODWs. For example, Killough
and Pin (1992) developed a rolling robot with what they call orthogonal
ball wheels, consisting basically of spherical wheels that can rotate about
two mutually orthogonal axes. West and Asada (1995), in turn, designed a
rolling robot with ball wheels, i.e., balls that act as omnidirectional wheels;
each ball being mounted on a set of rollers, one of which is actuated; hence,
three such wheels are necessary to fully control the vehicle. The unactu-
ated rollers serve two purposes, i.e., to provide stability to the wheels and
the vehicle, and to measure the rotation of the ball, thereby detecting slip.
Furthermore, Borenstein (1993) proposed a mobile robot with four degrees
of freedom; these were achieved with two chassis coupled by an extensible
link, each chassis being driven by two actuated conventional wheels.
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2
Mathematical Background

2.1 Preamble

First and foremost, the study of motions undergone by robotic mechani-
cal systems or, for that matter, by mechanical systems at large, requires
a suitable motion representation. Now, the motion of mechanical systems
involves the motion of the particular links comprising those systems, which
in this book are supposed to be rigid. The assumption of rigidity, although
limited in scope, still covers a wide spectrum of applications, while pro-
viding insight into the motion of more complicated systems, such as those
involving deformable bodies.

The most general kind of rigid-body motion consists of both transla-
tion and rotation. While the study of the former is covered in elementary
mechanics courses and is reduced to the mechanics of particles, the latter
is more challenging. Indeed, point translation can be studied simply with
the aid of 3-dimensional vector calculus, while rigid-body rotations require
the introduction of tensors, i.e., entities mapping vector spaces into vector
spaces.

Emphasis is placed on invariant concepts, i.e., items that do not change
upon a change of coordinate frame. Examples of invariant concepts are ge-
ometric quantities such as distances and angles between lines. Although we
may resort to a coordinate frame and vector algebra to compute distances
and angles and represent vectors in that frame, the final result will be inde-
pendent of how we choose that frame. The same applies to quantities whose
evaluation calls for the introduction of tensors. Here, we must distinguish
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20 2. Mathematical Background

between the physical quantity represented by a vector or a tensor and the
representation of that quantity in a coordinate frame using a 1-dimensional
array of components in the case of vectors, or a 2-dimensional array in the
case of tensors. It is unfortunate that the same word is used in English to
denote a vector and its array representation in a given coordinate frame.
Regarding tensors, the associated arrays are called matrices. By abuse of
terminology, we will refer to both tensors and their arrays as matrices,
although keeping in mind the essential conceptual differences involved.

2.2 Linear Transformations

The physical 3-dimensional space is a particular case of a vector space. A
vector space is a set of objects, called vectors, that follow certain algebraic
rules. Throughout the book, vectors will be denoted by boldface lower-
case characters, whereas tensors and their matrix representations will be
denoted by boldface uppercase characters. Let v, v1, v2, v3, and w be ele-
ments of a given vector space V , which is defined over the real field, and let
α and β be two elements of this field, i.e., α and β are two real numbers.
Below we summarize the aforementioned rules:

(i) The sum of v1 and v2, denoted by v1 + v2, is itself an element of V
and is commutative, i.e., v1 + v2 = v2 + v1;

(ii) V contains an element 0, called the zero vector of V , which, when
added to any other element v of V , leaves it unchanged, i.e., v+0 = v;

(iii) The sum defined in (i) is associative, i.e., v1 +(v2 +v3) = (v1 +v2)+
v3;

(iv) For every element v of V , there exists a corresponding element, w,
also of V , which, when added to v, produces the zero vector, i.e.,
v + w = 0. Moreover, w is represented as −v;

(v) The product αv, or vα, is also an element of V , for every v of V and
every real α. This product is associative, i.e., α(βv) = (αβ)v;

(vi) If α is the real unity, then αv is identically v;

(vii) The product defined in (v) is distributive in the sense that (a) (α +
β)v = αv + βv and (b) α(v1 + v2) = αv1 + αv2.

Although vector spaces can be defined over other fields, we will deal with
vector spaces over the real field unless explicit reference to another field is
made. Moreover, vector spaces can be either finite- or infinite-dimensional,
but we will not need the latter. In geometry and elementary mechanics, the
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2.2 Linear Transformations 21

dimension of the vector spaces needed is usually three, but when studying
multibody systems, an arbitrary finite dimension will be required. The
concept of dimension of a vector space is discussed in more detail later.

A linear transformation, represented as an operator L, of a vector space
U into a vector space V , is a rule that assigns to every vector u of U at
least one vector v of V , represented as v = Lu, with L endowed with two
properties:

(i) homogeneity: L(αu) = αv; and

(ii) additivity: L(u1 + u2) = v1 + v2.

Note that, in the foregoing definitions, no mention has been made of
components, and hence, vectors and their transformations should not be
confused with their array representations.

Particular types of linear transformations of the 3-dimensional Euclidean
space that will be encountered frequently in this context are projections,
reflections, and rotations. One further type of transformation, which is not
linear, but nevertheless appears frequently in kinematics, is the one known
as affine transformation. The foregoing transformations are defined below.
It is necessary, however, to introduce additional concepts pertaining to
general linear transformations before expanding into these definitions.

The range of a linear transformation L of U into V is the set of vectors
v of V into which some vector u of U is mapped, i.e., the range of L is
defined as the set of v = Lu, for every vector u of U . The kernel of L
is the set of vectors uN of U that are mapped by L into the zero vector
0 ∈ V . It can be readily proven (see Exercises 2.1–2.3) that the kernel and
the range of a linear transformation are both vector subspaces of U and
V , respectively, i.e., they are themselves vector spaces, but of a dimension
smaller than or equal to that of their associated vector spaces. Moreover,
the kernel of a linear transformation is often called the nullspace of the said
transformation.

Henceforth, the 3-dimensional Euclidean space is denoted by E3. Having
chosen an origin O for this space, its geometry can be studied in the context
of general vector spaces. Hence, points of E3 will be identified with vectors
of the associated 3-dimensional vector space. Moreover, lines and planes
passing through the origin are subspaces of dimensions 1 and 2, respectively,
of E3. Clearly, lines and planes not passing through the origin of E3 are not
subspaces but can be handled with the algebra of vector spaces, as will be
shown here.

An orthogonal projection P of E3 onto itself is a linear transformation of
the said space onto a plane Π passing through the origin and having a unit
normal n, with the properties:

P2 = P, Pn = 0 (2.1a)

Any matrix with the first property above is termed idempotent. For n × n
matrices, it is sometimes necessary to indicate the lowest integer l for which
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an analogous relation follows, i.e., for which Pl = P. In this case, the matrix
is said to be idempotent of degree l.

Clearly, the projection of a position vector p, denoted by p′, onto a plane
Π of unit normal n, is p itself minus the component of p along n, i.e.,

p′ = p− n(nTp) (2.1b)

where the superscript T denotes either vector or matrix transposition and
nTp is equivalent to the usual dot product n · p.

Now, the identity matrix 1 is defined as the mapping of a vector space
V into itself leaving every vector v of V unchanged, i.e.,

1v = v (2.2)

Thus, p′, as given by eq.(2.1b), can be rewritten as

p′ = 1p − nnTp ≡ (1− nnT )p (2.3)

and hence, the orthogonal projection P onto Π can be represented as

P = 1− nnT (2.4)

where the product nnT amounts to a 3 × 3 matrix.
Now we turn to reflections. Here we have to take into account that re-

flections occur frequently accompanied by rotations, as yet to be studied.
Since reflections are simpler to represent, we first discuss these, rotations
being discussed in full detail in Section 2.3. What we shall discuss in this
section is pure reflections, i.e., those occurring without any concomitant
rotation. Thus, all reflections studied in this section are pure reflections,
but for the sake of brevity, they will be referred to simply as reflections.

A reflection R of E3 onto a plane Π passing through the origin and
having a unit normal n is a linear transformation of the said space into
itself such that a position vector p is mapped by R into a vector p′ given
by

p′ = p− 2nnTp ≡ (1− 2nnT )p

Thus, the reflection R can be expressed as

R = 1 − 2nnT (2.5)

From eq.(2.5) it is then apparent that a pure reflection is represented by a
linear transformation that is symmetric and whose square equals the iden-
tity matrix, i.e., R2 = 1. Indeed, symmetry is apparent from the equation
above; the second property is readily proven below:

R2 = (1− 2nnT )(1 − 2nnT )
= 1− 2nnT − 2nnT + 4(nnT )(nnT ) = 1− 4nnT + 4n(nT n)nT
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which apparently reduces to 1 because n is a unit vector. Note that from
the second property above, we find that pure reflections observe a further
interesting property, namely,

R−1 = R

i.e., every pure reflection equals its inverse. This result can be understood
intuitively by noticing that, upon doubly reflecting an image using two
mirrors, the original image is recovered. Any square matrix which equals
its inverse will be termed self-inverse henceforth.

Further, we take to deriving the orthogonal decomposition of a given
vector v into two components, one along and one normal to a unit vector
e. The component of v along e, termed here the axial component, v‖—read
v-par—is simply given as

v‖ ≡ eeTv (2.6a)

while the corresponding normal component, v⊥—read v-perp—is simply
the difference v − v‖, i.e.,

v⊥ ≡ v − v‖ ≡ (1 − eeT )v (2.6b)

the matrix in parentheses in the foregoing equation being rather frequent
in kinematics. This matrix will appear when studying rotations.

Further concepts are now recalled: The basis of a vector space V is a set
of linearly independent vectors of V , {vi}n

1 , in terms of which any vector v
of V can be expressed as

v = α1v1 + α2v2 + · · · + αnvn, (2.7)

where the elements of the set {αi}n
1 are all elements of the field over which

V is defined, i.e., they are real numbers in the case at hand. The number
n of elements in the set B = {vi}n

1 is called the dimension of V . Note that
any set of n linearly independent vectors of V can play the role of a basis of
this space, but once this basis is defined, the set of real coefficients {αi}n

1

for expressing a given vector v is unique.
Let U and V be two vector spaces of dimensions m and n, respectively,

and L a linear transformation of U into V , and define bases BU and BV for
U and V as

BU = {uj}m
1 , BV = {vi}n

1 (2.8)

Since each Luj is an element of V , it can be represented uniquely in terms
of the vectors of BV , namely, as

Luj = l1jv1 + l2jv2 + · · · + lnjvn, j = 1, . . . , m (2.9)

Consequently, in order to represent the images of the m vectors of BU ,
namely, the set {Luj}m

1 , n × m real numbers lij , for i = 1, . . . , n and
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j = 1, . . . , m, are necessary. These real numbers are now arranged in the
n × m array [L ]BV

BU
defined below:

[L ]BV

BU
≡




l11 l12 · · · l1m

l21 l22 · · · l2m
...

...
. . .

...
ln1 ln2 · · · lnm


 (2.10)

The foregoing array is thus called the matrix representation of L with
respect to BU and BV . We thus have an important definition, namely,

Definition 2.2.1 The jth column of the matrix representation of L with
respect to the bases BU and BV is composed of the n real coefficients lij of
the representation of the image of the jth vector of BU in terms of BV .

The notation introduced in eq.(2.10) is rather cumbersome, for it involves
one subscript and one superscript. Moreover, each of these is subscripted.
In practice, the bases involved are self-evident, which makes an explicit
mention of these unnecessary. In particular, when the mapping L is a map-
ping of U onto itself, then a single basis suffices to represent L in matrix
form. In this case, its bracket will bear only a subscript, and no superscript,
namely, [L ]B. Moreover, we will use, henceforth, the concept of basis and
coordinate frame interchangeably, since one implies the other.

Two different bases are unavoidable when the two spaces under study
are physically distinct, which is the case in velocity analyses of manipu-
lators. As we will see in Chapter 4, in these analyses we distinguish be-
tween the velocity of the manipulator in Cartesian space and that in the
joint-rate space. While the Cartesian-space velocity—or Cartesian veloc-
ity, for brevity—consists, in general, of a 6-dimensional vector containing
the 3-dimensional angular velocity of the end-effector and the translational
velocity of one of its points, the latter is an n-dimensional vector. More-
over, if the manipulator is coupled by revolute joints only, the units of the
joint-rate vector are all s−1, whereas the Cartesian velocity contains some
components with units of s−1 and others with units of ms−1.

Further definitions are now recalled. Given a mapping L of an n-di-
mensional vector space U into the n-dimensional vector space V , a nonzero
vector e that is mapped by L into a multiple of itself, λe, is called an eigen-
vector of L, the scalar λ being called an eigenvalue of L. The eigenvalues
of L are determined by the equation

det(λ1 − L) = 0 (2.11)

Note that the matrix λ1 − L is linear in λ, and since the determinant of
an n × n matrix is a homogeneous nth-order function of its entries, the
left-hand side of eq.(2.11) is an nth-degree polynomial in λ. The foregoing
polynomial is termed the characteristic polynomial of L. Hence, every n×n
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matrix L has n complex eigenvalues, even if L is defined over the real field.
If it is, then its complex eigenvalues appear in conjugate pairs. Clearly,
the eigenvalues of L are the roots of its characteristic polynomial, while
eq.(2.11) is called the characteristic equation of L.

Example 2.2.1 What is the representation of the reflection R of E3 into
itself, with respect to the x-y plane, in terms of unit vectors parallel to the
X, Y, Z axes that form a coordinate frame F?

Solution: Note that in this case, U = V = E3 and, hence, it is not necessary
to use two different bases for U and V . Now, let i, j, k, be unit vectors
parallel to the X, Y, and Z axes of a frame F . Clearly,

Ri = i
Rj = j

Rk = −k

Thus, the representations of the images of i, j and k under R, in F , are

[Ri ]F =




1
0
0


 , [Rj ]F =




0
1
0


 , [Rk ]F =




0
0
−1




where subscripted brackets are used to indicate the representation frame.
Hence, the matrix representation of R in F , denoted by [R ]F , is

[R ]F =




1 0 0
0 1 0
0 0 −1




2.3 Rigid-Body Rotations

A linear isomorphism, i.e., a one-to-one linear transformation mapping a
space V onto itself, is called an isometry if it preserves distances between
any two points of V . If u and v are regarded as the position vectors of two
such points, then the distance d between these two points is defined as

d ≡
√

(u − v)T (u − v) (2.12)

The volume V of the tetrahedron defined by the origin and three points
of the 3-dimensional Euclidean space of position vectors u, v, and w is
obtained as one-sixth of the absolute value of the double mixed product of
these three vectors,

V ≡ 1
6
|u × v · w| =

1
6
|det [u v w ]| (2.13)
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i.e., if a 3×3 array [A] is defined in terms of the components of u, v, and
w, in a given basis, then the first column of [A] is given by the three
components of u, the second and third columns being defined analogously.

Now, let Q be an isometry mapping the triad {u, v, w} into {u′, v′, w′}.
Moreover, the distance from the origin to the points of position vectors u,
v, and w is given simply as ‖u‖, ‖v‖, and ‖w‖, which are defined as

‖u‖ ≡
√

uT u, ‖v‖ ≡
√

vT v, ‖w‖ ≡
√

wT w (2.14)

Clearly,
‖u′‖ = ‖u‖, ‖v′‖ = ‖v‖, ‖w′‖ = ‖w‖ (2.15a)

and
det [u′ v′ w′ ] = ±det [u v w ] (2.15b)

If, in the foregoing relations, the sign of the determinant is preserved, the
isometry represents a rotation; otherwise, it represents a reflection. Now,
let p be the position vector of any point of E3, its image under a rotation
Q being p′. Hence, distance preservation requires that

pTp = p′Tp′ (2.16)

where
p′ = Qp (2.17)

condition (2.16) thus leading to

QTQ = 1 (2.18)

where 1 was defined in Section 2.2 as the identity 3× 3 matrix, and hence,
eq.(2.18) states that Q is an orthogonal matrix. Moreover, let T and T′

denote the two matrices defined below:

T = [u v w ] , T′ = [u′ v′ w′ ] (2.19)

from which it is clear that
T′ = QT (2.20)

Now, for a rigid-body rotation, eq.(2.15b) should hold with the positive
sign, and hence,

det(T) = det(T′) (2.21a)

and, by virtue of eq.(2.20), we conclude that

det(Q) = +1 (2.21b)

Therefore, Q is a proper orthogonal matrix, i.e., it is a proper isometry.
Now we have

Theorem 2.3.1 The eigenvalues of a proper orthogonal matrix Q lie on
the unit circle centered at the origin of the complex plane.
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Proof: Let λ be one of the eigenvalues of Q and e the corresponding eigen-
vector, so that

Qe = λe (2.22)

In general, Q is not expected to be symmetric, and hence, λ is not neces-
sarily real. Thus, λ is considered complex, in general. In this light, when
transposing both sides of the foregoing equation, we will need to take the
complex conjugates as well. Henceforth, the complex conjugate of a vector
or a matrix will be indicated with an asterisk as a superscript. As well, the
conjugate of a complex variable will be indicated with a bar over the said
variable. Thus, the transpose conjugate of the latter equation takes on the
form

e∗Q∗ = λe∗ (2.23)

Multiplying the corresponding sides of the two previous equations yields

e∗Q∗Qe = λλe∗e (2.24)

However, Q has been assumed real, and hence, Q∗ reduces to QT , the
foregoing equation thus reducing to

e∗QTQe = λλe∗e (2.25)

But Q is orthogonal by assumption, and hence, it obeys eq.(2.18), which
means that eq.(2.25) reduces to

e∗e = |λ|2e∗e (2.26)

where | · | denotes the modulus of the complex variable within it. Thus, the
foregoing equation leads to

|λ|2 = 1 (2.27)

thereby completing the intended proof. As a direct consequence of Theo-
rem 2.3.1, we have

Corollary 2.3.1 A proper orthogonal 3× 3 matrix has at least one eigen-
value that is +1.

Now, let e be the eigenvector of Q associated with the eigenvalue +1.
Thus,

Qe = e (2.28)

What eq.(2.28) states is summarized as a theorem below:

Theorem 2.3.2 (Euler, 1776) A rigid-body motion about a point O leaves
fixed a set of points lying on a line L that passes through O and is parallel
to the eigenvector e of Q associated with the eigenvalue +1.

A further result, that finds many applications in robotics and, in general,
in system theory, is given below:
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Theorem 2.3.3 (Cayley-Hamilton) Let P (λ) be the characteristic poly-
nomial of an n × n matrix A, i.e.,

P (λ) = det(λ1 − A) = λn + an−1λ
n−1 + · · · + a1λ + a0 (2.29)

Then A satisfies its characteristic equation, i.e.,

An + an−1An−1 + · · · + a1A + a01 = O (2.30)

where O is the n × n zero matrix.

Proof: See (Kaye and Wilson, 1998).

What the Cayley-Hamilton Theorem states is that any power p ≥ n of
the n× n matrix A can be expressed as a linear combination of the first n
powers of A—the 0th power of A is, of course, the n × n identity matrix
1. An important consequence of this result is that any analytic matrix
function of A can be expressed not as an infinite series, but as a sum,
namely, a linear combination of the first n powers of A: 1, A, . . . , An−1. An
analytic function f(x) of a real variable x is, in turn, a function with a series
expansion. Moreover, an analytic matrix function of a matrix argument A
is defined likewise, an example of which is the exponential function. From
the previous discussion, then, the exponential of A can be written as a
linear combination of the first n powers of A. It will be shown later that
any proper orthogonal matrix Q can be represented as the exponential of a
skew-symmetric matrix derived from the unit vector e of Q, of eigenvalue
+1, and the associated angle of rotation, as yet to be defined.

2.3.1 The Cross-Product Matrix

Prior to introducing the matrix representation of a rotation, we will need a
few definitions. We will start by defining the partial derivative of a vector
with respect to another vector. This is a matrix, as described below: In
general, let u and v be vectors of spaces U and V , of dimensions m and
n, respectively. Furthermore, let t be a real variable and f be real-valued
function of t, u = u(t) and v = v(u(t)) being m- and n-dimensional vector
functions of t as well, with f = f(u,v). The derivative of u with respect
to t, denoted by u̇(t), is an m-dimensional vector whose ith component is
the derivative of the ith component of u in a given basis, ui, with respect
to t. A similar definition follows for v̇(t). The partial derivative of f with
respect to u is an m-dimensional vector whose ith component is the partial
derivative of f with respect to ui, with a corresponding definition for the
partial derivative of f with respect to v. The foregoing derivatives, as all
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other vectors, will be assumed, henceforth, to be column arrays. Thus,

∂f

∂u
≡




∂f/∂u1

∂f/∂u2

...
∂f/∂um


 ,

∂f

∂v
≡




∂f/∂v1

∂f/∂v2

...
∂f/∂vn


 (2.31)

Furthermore, the partial derivative of v with respect to u is an n × m
array whose (i, j) entry is defined as ∂vi/∂uj, i.e.,

∂v
∂u

≡




∂v1/∂u1 ∂v1/∂u2 · · · ∂v1/∂um

∂v2/∂u1 ∂v2/∂u2 · · · ∂v2/∂um

...
...

. . .
...

∂vn/∂u1 ∂vn/∂u2 · · · ∂vn/∂um


 (2.32)

Hence, the total derivative of f with respect to u can be written as

df

du
=

∂f

∂u
+
(

∂v
∂u

)T
∂f

∂v
(2.33)

If, moreover, f is an explicit function of t, i.e., if f = f(u, v, t) and
v = v(u, t), then, one can write the total derivative of f with respect to t
as

df

dt
=

∂f

∂t
+
(

∂f

∂u

)T
du
dt

+
(

∂f

∂v

)T
∂v
∂t

+
(

∂f

∂v

)T
∂v
∂u

du
dt

(2.34)

The total derivative of v with respect to t can be written, likewise, as

dv
dt

=
∂v
∂t

+
∂v
∂u

du
dt

(2.35)

Example 2.3.1 Let the components of v and x in a certain reference
frame F be given as

[v ]F =




v1

v2

v3


 , [x ]F =




x1

x2

x3


 (2.36a)

Then

[v × x ]F =




v2x3 − v3x2

v3x1 − v1x3

v1x2 − v2x1


 (2.36b)

Hence,
[

∂(v × x)
∂x

]

F
=




0 −v3 v2

v3 0 −v1

−v2 v1 0


 (2.36c)
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Henceforth, the partial derivative of the cross product of any 3-dimen-
sional vectors v and x will be denoted by the 3 × 3 matrix V. For obvious
reasons, V is termed the cross-product matrix of vector v. Sometimes the
cross-product matrix of a vector v is represented as ṽ, but we do not follow
this notation for the sake of consistency, since we decided at the outset
to represent matrices with boldface uppercase letters. Thus, the foregoing
cross product admits the alternative representations

v × x = Vx (2.37)

Now, the following is apparent:

Theorem 2.3.4 The cross-product matrix A of any 3-dimensional vector
a is skew-symmetric, i.e.,

AT = −A

and, as a consequence,
a × (a × b) = A2b (2.38)

where A2 can be readily proven to be

A2 = −‖a‖21 + aaT (2.39)

with ‖ · ‖ denoting the Euclidean norm of the vector inside it.

Note that given any 3-dimensional vector a, its cross-product matrix A
is uniquely defined. Moreover, this matrix is skew-symmetric. The converse
also holds, i.e., given any 3 × 3 skew-symmetric matrix A, its associated
vector is uniquely defined as well. This result is made apparent from Ex-
ample 2.3.1 and will be discussed further when we define the axial vector
of an arbitrary 3 × 3 matrix below.

2.3.2 The Rotation Matrix

In deriving the matrix representation of a rotation, we should recall The-
orem 2.3.2, which suggests that an explicit representation of Q in terms
of its eigenvector e is possible. Moreover, this representation must contain
information on the amount of the rotation under study, which is nothing
but the angle of rotation. Furthermore, line L, mentioned in Euler’s The-
orem, is termed the axis of rotation of the motion of interest. In order to
derive the aforementioned representation, consider the rotation depicted in
Fig. 2.1 of angle φ about line L.

From Fig. 2.1(a), clearly, one can write

p′ =
−−→
OQ +

−−→
QP ′ (2.40)

where
−−→
OQ is the axial component of p along vector e, which is derived as

in eq.(2.6a), namely, −−→
OQ= eeTp (2.41)
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FIGURE 2.1. Rotation of a rigid body about a line.

Furthermore, from Fig. 2.1b,
−−→
QP ′= (cos φ)

−−→
QP +(sinφ)

−−−→
QP ′′ (2.42)

with
−−→
QP being nothing but the normal component of p with respect to e,

as introduced in eq.(2.6b), i.e.,

−−→
QP = (1− eeT )p (2.43)

and
−−→
QP ′′ given as −−−→

QP ′′= e× p ≡ Ep (2.44)

Substitution of eqs.(2.44) and (2.43) into eq.(2.42) leads to

−−→
QP ′= cosφ(1 − eeT )p + sinφEp (2.45)

If now eqs.(2.41) and (2.45) are substituted into eq.(2.40), one obtains

p′ = eeTp + cosφ(1 − eeT )p + sinφEp (2.46)

Thus, eq.(2.40) reduces to

p′ = [eeT + cosφ(1 − eeT ) + sinφE]p (2.47)

From eq.(2.47) it is apparent that p′ is a linear transformation of p, the
said transformation being given by the matrix inside the brackets, which
is the rotation matrix Q sought, i.e.,

Q = eeT + cosφ(1 − eeT ) + sinφE (2.48)
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A special case arises when φ = π,

Q = −1 + 2eeT , for φ = π (2.49)

whence it is apparent that Q is symmetric if φ = π. Of course, Q becomes
symmetric also when φ = 0, but this is a rather obvious case, leading to
Q = 1. Except for these two cases, the rotation matrix is not symmetric.
However, under no circumstance does the rotation matrix become skew-
symmetric, for a 3×3 skew-symmetric matrix is by necessity singular, which
contradicts the property of proper orthogonal matrices of eq.(2.21b).

Now one more representation of Q in terms of e and φ is given. For a
fixed axis of rotation, i.e., for a fixed value of e, the rotation matrix Q is
a function of the angle of rotation φ, only. Thus, the series expansion of Q
in terms of φ is

Q(φ) = Q(0) + Q′(0)φ +
1
2!

Q′′(0)φ2 + · · · + 1
k!

Q(k)(0)φk + · · · (2.50)

where the superscript (k) stands for the kth derivative of Q with respect to
φ. Now, from the definition of E, one can readily prove the relations below:

E(2k+1) = (−1)kE, E2k = (−1)k(1 − eeT ) (2.51)

Furthermore, using eqs.(2.48) and (2.51), one can readily show that

Q(k)(0) = Ek (2.52)

with E defined already as the cross-product matrix of e. Moreover, from
eqs.(2.50) and (2.52), Q(φ) can be expressed as

Q(φ) = 1 + Eφ +
1
2!

E2φ2 + · · · + 1
k!

Ekφk + · · ·

whose right-hand side is nothing but the exponential of Eφ, i.e.,

Q(φ) = eEφ (2.53)

Equation (2.53) is the exponential representation of the rotation matrix
in terms of its natural invariants, e and φ. The foregoing parameters are
termed invariants because they are clearly independent of the coordinate
axes chosen to represent the rotation under study. The adjective natural is
necessary to distinguish them from other invariants that will be introduced
presently. This adjective seems suitable because the said invariants stem
naturally from Euler’s Theorem.

Now, in view of eqs.(2.51), the above series can be written as

Q(φ) = 1 +
[
− 1

2!
φ2 +

1
4!

φ4 − · · · + 1
(2k)!

(−1)kφ2k + · · ·
]

(1− eeT )

+
[
φ − 1

3!
φ3 + · · · + 1

(2k + 1)!
(−1)kφ2k+1 + · · ·

]
E
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The series inside the first brackets is apparently cosφ − 1, while that in
the second is sin φ. We have, therefore, an alternative representation of Q,
namely,

Q = 1 + sin φE + (1 − cosφ)E2 (2.54)

which is an expected result in view of the Cayley-Hamilton Theorem.

The Canonical Forms of the Rotation Matrix

The rotation matrix takes on an especially simple form if the axis of rotation
coincides with one of the coordinate axes. For example, if the X axis is
parallel to the axis of rotation, i.e., parallel to vector e, in a frame that we
will label X , then, we will have

[ e ]X =




1
0
0


 , [E ]X =




0 0 0
0 0 −1
0 1 0


 , [E2 ]X =




0 0 0
0 −1 0
0 0 −1




In the X -frame, then,

[Q ]X =




1 0 0
0 cosφ − sinφ
0 sin φ cosφ


 (2.55a)

Likewise, if we define the coordinate frames Y and Z so that their Y and
Z axes, respectively, coincide with the axis of rotation, then

[Q ]Y =




cosφ 0 sin φ
0 1 0

− sinφ 0 cosφ


 (2.55b)

and

[Q ]Z =




cosφ − sin φ 0
sin φ cosφ 0

0 0 1


 (2.55c)

The representations of eqs.(2.55a–c) can be called the X-, Y -, and Z-
canonical forms of the rotation matrix. In many instances, a rotation matrix
cannot be derived directly from information on the original and the final
orientations of a rigid body, but the overall motion can be readily decom-
posed into a sequence of simple rotations taking the above canonical forms.
An application of canonical forms lies in the parameterization of rotations
by means of Euler angles, consisting of three successive rotations, φ, θ
and ψ, about one axis of a coordinate frame. Euler angles are introduced
in Exercise 2.18, and applications thereof in Exercises 2.35, 2.36, 3.9, and
3.10.
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2.3.3 The Linear Invariants of a 3 × 3 Matrix

Now we introduce two linear invariants of 3× 3 matrices. Given any 3× 3
matrix A, its Cartesian decomposition, the counterpart of the Cartesian
representation of complex numbers, consists of the sum of its symmetric
part, AS , and its skew-symmetric part, ASS , defined as

AS ≡ 1
2
(A + AT ), ASS ≡ 1

2
(A − AT ) (2.56)

The axial vector or for brevity, the vector of A, is the vector a with the
property

a× v ≡ ASSv (2.57)

for any 3-dimensional vector v. The trace of A is the sum of the eigenvalues
of AS , which are real. Since no coordinate frame is involved in the above
definitions, these are invariant. When calculating these invariants, of course,
a particular coordinate frame must be used. Let us assume that the entries
of matrix A in a certain coordinate frame are given by the array of real
numbers aij , for i, j = 1, 2, 3. Moreover, let a have components ai, for i =
1, 2, 3, in the same frame. The above-defined invariants are thus calculated
as

vect(A) ≡ a ≡ 1
2




a32 − a23

a13 − a31

a21 − a12


 , tr(A) ≡ a11 + a22 + a33 (2.58)

From the foregoing definitions, the following is now apparent:

Theorem 2.3.5 The vector of a 3 × 3 matrix vanishes if and only if it is
symmetric, whereas the trace of an n × n matrix vanishes if the matrix is
skew symmetric.

Other useful relations are given below. For any 3-dimensional vectors a
and b,

vect(abT ) = −1
2
a× b (2.59)

and
tr(abT ) = aTb (2.60)

The second relation is quite straightforward, but the first one is less so; a
proof of the first relation is given below: Let w denote vect(abT ). From
Definition (2.57), for any 3-dimensional vector v,

w × v = Wv (2.61)

where W is the skew-symmetric component of abT , namely,

W ≡ 1
2
(abT − baT ) (2.62)
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and hence,

Wv = w × v =
1
2
[(bTv)a − (aT v)b] (2.63)

Now, let us compare the last expression with the double cross product
(b × a) × v, namely,

(b × a) × v = (bT v)a − (aT v)b (2.64)

from which it becomes apparent that

w =
1
2
b× a (2.65)

and the aforementioned relation readily follows.
Note that Theorem 2.3.5 states a necessary and sufficient condition for

the vanishing of the vector of a 3×3 matrix, but only a sufficient condition
for the vanishing of the trace of an n×n matrix. What this implies is that
the trace of an n×n matrix can vanish without the matrix being necessar-
ily skew symmetric, but the trace of a skew-symmetric matrix necessarily
vanishes. Also note that whereas the vector of a matrix is defined only for
3 × 3 matrices, the trace can be defined more generally for n×n matrices.

2.3.4 The Linear Invariants of a Rotation

From the invariant representations of the rotation matrix, eqs.(2.48) and
(2.54), it is clear that the first two terms of Q, eeT and cosφ(1 − eeT ), are
symmetric, whereas the third one, sin φE, is skew-symmetric. Hence,

vect(Q) = vect(sin φE) = sinφ e (2.66)

whereas

tr(Q) = tr[eeT + cosφ(1− eeT )] ≡ eTe + cosφ(3 − eTe) = 1 + 2 cosφ
(2.67)

from which one can readily solve for cosφ, namely,

cosφ =
tr(Q) − 1

2
(2.68)

Henceforth, the vector of Q will be denoted by q and its components in a
given coordinate frame by q1, q2, and q3. Moreover, rather than using tr(Q)
as the other linear invariant, q0 ≡ cosφ will be introduced to refer to the
linear invariants of the rotation matrix. Hence, the rotation matrix is fully
defined by four scalar parameters, namely {qi}3

0, which will be conveniently
stored in the 4-dimensional array λ, defined as

λ ≡ [q1, q2, q3, q0]T (2.69)
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Note, however, that the four components of λ are not independent, for
they obey the relation

‖q‖2 + q2
0 ≡ sin2 φ + cos2 φ = 1 (2.70)

Thus, eq.(2.70) can be written in a more compact form as

‖λ‖2 ≡ q2
1 + q2

2 + q2
3 + q2

0 = 1 (2.71)

What eq.(2.70) states has a straightforward geometric interpretation: As
a body rotates about a fixed point, its motion can be described in a 4-
dimensional space by the motion of a point of position vector λ that moves
on the surface of the unit sphere centered at the origin of the said space.
Alternatively, one can conclude that, as a rigid body rotates about a fixed
point, its motion can be described in a 3-dimensional space by the motion
of position vector q, which moves within the unit solid sphere centered at
the origin of the said space. Given the dependence of the four components
of vector λ, one might be tempted to solve for, say, q0 from eq.(2.70) in
terms of the remaining components, namely, as

q0 = ±
√

1 − (q2
1 + q2

2 + q2
3) (2.72)

This, however, is not a good idea because the sign ambiguity of eq.(2.72)
leaves angle φ undefined, for q0 is nothing but cosφ. Moreover, the three
components of vector q alone, i.e., sinφ e, do not suffice to define the ro-
tation represented by Q. Indeed, from the definition of q, one has

sin φ = ±‖q‖, e = q/ sin φ (2.73)

from which it is clear that q alone does not suffice to define the rotation
under study, since it leaves angle φ undefined. Indeed, the vector of the
rotation matrix provides no information about cosφ. Yet another repre-
sentation of the rotation matrix is displayed below, in terms of its linear
invariants, that is readily derived from representations (2.48) and (2.54),
namely,

Q =
qqT

‖q‖2
+ q0

(
1− qqT

‖q‖2

)
+ Q (2.74a)

in which Q is the cross-product matrix of vector q, i.e.,

Q ≡ ∂(q × x)
∂x

for any vector x.
Note that by virtue of eq.(2.70), the representation of Q given in eq.(2.74a)

can be expressed alternatively as

Q = q01 + Q +
qqT

1 + q0
(2.74b)
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From either eq.(2.74a) or eq.(2.74b) it is apparent that linear invariants
are not suitable to represent a rotation when the associated angle is either
π or close to it. Note that a rotation through an angle φ about an axis
given by vector e is identical to a rotation through an angle −φ about an
axis given by vector −e. Hence, changing the sign of e does not change the
rotation matrix, provided that the sign of φ is also changed. Henceforth,
we will choose the sign of the components of e so that sinφ ≥ 0, which is
equivalent to assuming that 0 ≤ φ ≤ π. Thus, sinφ is calculated as ‖q‖,
while cosφ as indicated in eq.(2.68). Obviously, e is simply q normalized,
i.e., q divided by its Euclidean norm.

2.3.5 Examples

The examples below are meant to stress the foregoing ideas on rotation
invariants.

Example 2.3.2 If [e]F = [
√

3/3, −√
3/3,

√
3/3 ]T in a given coordinate

frame F and φ = 120◦, what is Q in F?

Solution: From the data,

cosφ = −1
2
, sinφ =

√
3

2

Moreover, in the F frame,

[ eeT ]F =
1
3




1
−1
1


 [ 1 −1 1 ] =

1
3




1 −1 1
−1 1 −1
1 −1 1




and hence,

[1 − eeT ]F =
1
3




2 1 −1
1 2 1
−1 1 2


 , [E ]F ≡

√
3

3




0 −1 −1
1 0 −1
1 1 0




Thus, from eq.(2.48),

[Q]F =
1
3




1 −1 1
−1 1 −1
1 −1 1


− 1

6




2 1 −1
1 2 1
−1 1 2


+

3
6




0 −1 −1
1 0 −1
1 1 0




i.e.,

[Q]F =




0 −1 0
0 0 −1
1 0 0



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Example 2.3.3 The matrix representation of a linear transformation Q
in a certain reference frame F is given below. Find out whether the said
transformation is a rigid-body rotation. If it is, find its natural invariants.

[Q ]F =




0 1 0
0 0 1
1 0 0




Solution: First the given array is tested for orthogonality:

[Q ]F [QT ]F =




0 1 0
0 0 1
1 0 0






0 0 1
1 0 0
0 1 0


 =




1 0 0
0 1 0
0 0 1




thereby showing that the said array is indeed orthogonal. Thus, the linear
transformation could represent a reflection or a rotation. In order to de-
cide which one this represents, the determinant of the foregoing array is
computed:

det(Q ) = +1

which makes apparent that Q indeed represents a rigid-body rotation. Now,
its natural invariants are computed. The unit vector e can be computed
as the eigenvector of Q associated with the eigenvalue +1. This requires,
however, finding a nontrivial solution of a homogeneous linear system of
three equations in three unknowns. This is not difficult to do, but it is
cumbersome and is not necessary. In order to find e and φ, it is recalled
that vect(Q) = sinφ e, which is readily computed with differences only, as
indicated in eq.(2.58), namely,

[q ]F ≡ sin φ [e]F = −1
2




1
1
1




Under the assumption that sinφ ≥ 0, then,

sin φ ≡ ‖q‖ =
√

3
2

and hence,

[e]F =
[q]F
‖q‖ = −

√
3

3




1
1
1




and
φ = 60◦ or 120◦

The foregoing ambiguity is resolved by the trace of Q, which yields

1 + 2 cosφ ≡ tr(Q) = 0, cosφ = −1
2
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The negative sign of cosφ indicates that φ lies in the second quadrant—it
cannot lie in the third quadrant because of our assumption about the sign
of sinφ—and hence

φ = 120◦

Example 2.3.4 A coordinate frame X1, Y1, Z1 is rotated into a configu-
ration X2, Y2, Z2 in such a way that

X2 = −Y1, Y2 = Z1, Z2 = −X1

Find the matrix representation of the rotation in X1, Y1, Z1 coordinates.
From this representation, compute the direction of the axis and the angle
of rotation.

Solution: Let i1, j1, k1 be unit vectors parallel to X1, Y1, Z1, respectively,
i2, j2, k2 being defined correspondingly. One has

i2 = −j1, j2 = k1, k2 = −i1

and hence, from Definition 2.2.1, the matrix representation [Q ]1 of the
rotation under study in the X1, Y1, Z1 coordinate frame is readily derived:

[Q ]1 =




0 0 −1
−1 0 0
0 1 0




from which the linear invariants follow, namely,

[q]1 ≡ [ vect(Q) ]1 = sinφ [ e ]1 =
1
2




1
−1
−1


 , cosφ =

1
2
[ tr(Q) − 1 ] = −1

2

Under our assumption that sinφ ≥ 0, we obtain

sin φ = ‖q‖ =
√

3
2

, [ e ]1 =
[q]1
sin φ

=
√

3
3




1
−1
−1




From the foregoing values for sin φ and cosφ, angle φ is computed uniquely
as

φ = 120◦

Example 2.3.5 Show that the matrix P given in eq.(2.4) satisfies proper-
ties (2.1a).

Solution: First, we prove idempotency, i.e.,

P2 = (1 − nnT )(1 − nnT )
= 1− 2nnT + nnTnnT = 1− nnT = P
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thereby showing that P is, indeed, idempotent. Now we prove that n is an
eigenvector of P with eigenvalue, 0 and hence, n spans the nullspace of P.
In fact,

Pn = (1− nnT )n = n− nnT n = n− n = 0

thereby completing the proof.

Example 2.3.6 The representations of three linear transformations in a
given coordinate frame F are given below:

[A ]F =
1
3




2 1 2
−2 2 1
−1 −2 2




[B ]F =
1
3




2 1 1
1 2 −1
1 −1 2




[C ]F =
1
3




1 2 2
2 1 −2
2 −2 1




One of the foregoing matrices is an orthogonal projection, one is a reflec-
tion, and one is a rotation. Identify each of these and give its invariants.

Solution: From representations (2.48) and (2.54), it is clear that a rotation
matrix is symmetric if and only if sinφ = 0. This means that a rotation
matrix cannot be symmetric unless its angle of rotation is either 0 or π,
i.e., unless its trace is either 3 or −1. Since [B ]F and [C ]F are symmetric,
they cannot be rotations, unless their traces take on the foregoing values.
Their traces are thus evaluated below:

tr(B) = 2, tr(C) = 1

which thus rules out the foregoing matrices as suitable candidates for ro-
tations. Thus, A is the only candidate left for proper orthogonality, its
suitability being tested below:

[AAT ]F =
1
9




9 0 0
0 9 0
0 0 9


 , det(A) = +1

and hence, A indeed represents a rotation. Its natural invariants are next
computed:

sin φ [e]F = [vect(A)]F =
1
2



−1
1
−1


 , cosφ =

1
2
[tr(A)−1] =

1
2
(2−1) =

1
2
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We assume, as usual, that sin φ ≥ 0. Then,

sin φ = ‖vect(A)‖ =
√

3
2

, i.e., φ = 60◦

Moreover,

[e]F =
[vect(A)]F
‖vect(A)‖ =

√
3

3



−1
1
−1




Now, one matrix of B and C is an orthogonal projection and the other is
a reflection. To be a reflection, a matrix has to be orthogonal. Hence, each
matrix is tested for orthogonality:

[BBT ]F =
1
9




6 3 3
3 6 −3
3 −3 6


 = [B2 ]F = [B ]F , [CCT ]F =

1
9




9 0 0
0 9 0
0 0 9




thereby showing that C is orthogonal and B is not. Furthermore, det(C) =
−1, which confirms that C is a reflection. Now, if B is a projection, it is
bound to be singular and idempotent. From the orthogonality test it is clear
that it is idempotent. Moreover, one can readily verify that det(B) = 0,
and hence B is singular. The unit vector [n ]F = [ n1, n2, n3 ]T spanning
its nullspace is determined from the general form of projections, eq.(2.1a),
whence it is apparent that

nnT = 1− B

Therefore, if a solution n has been found, then −n is also a solution, i.e., the
problem admits two solutions, one being the negative of the other. These two
solutions are found below, by first rewriting the above system of equations
in component form:




n2
1 n1n2 n1n3

n1n2 n2
2 n2n3

n1n3 n2n3 n2
3


 =

1
3




1 −1 −1
−1 1 1
−1 1 1




Now, from the diagonal entries of the above matrices, it is apparent that the
three components of n have identical absolute values, i.e.,

√
3/3. Moreover,

from the off-diagonal entries of the same matrices, the second and third
components of n bear equal signs, but we cannot tell whether positive or
negative, because of the quadratic nature of the problem at hand. The two
solutions are thus obtained as

n = ±
√

3
3




1
−1
−1




which is the only invariant of B.
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We now look at C, which is a reflection, and hence, bears the form

C = 1− 2nnT

In order to determine n, note that

nnT =
1
2
(1− C)

or in component form,



n2
1 n1n2 n1n3

n1n2 n2
2 n2n3

n1n3 n2n3 n2
3


 =

1
3




1 −1 −1
−1 1 1
−1 1 1




which is identical to the matrix equation derived in the case of matrix B.
Hence, the solution is the same, i.e.,

n = ±
√

3
3




1
−1
−1




thereby finding the invariant sought.

Example 2.3.7 The vector and the trace of a rotation matrix Q, in a
certain reference frame F , are given as

[vect(Q)]F =
1
2



−1
1
−1


 , tr(Q) = 2

Find the matrix representation of Q in the given coordinate frame and in
a frame having its Z-axis parallel to vect(Q).

Solution: We shall resort to eq.(2.74a) to determine the rotation matrix
Q. The quantities involved in the aforementioned representation of Q are
readily computed, as shown below:

[qqT ]F =
1
4




1 −1 1
−1 1 −1
1 −1 1


 , ‖q‖2 =

3
4
, [Q ]F =

1
2




0 1 1
−1 0 1
−1 −1 0




from which Q follows:

[Q ]F =
1
3




2 1 2
−2 2 1
−1 −2 2




in the given coordinate frame. Now, let Z denote a coordinate frame whose
Z-axis is parallel to q. Hence,

[q ]Z =
√

3
2




0
0
1


 , [qqT ]Z =

3
4




0 0 0
0 0 0
0 0 1


 , [Q ]Z =

√
3

2




0 −1 0
1 0 0
0 0 0



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which readily leads to

[Q ]Z =




1/2 −√
3/2 0√

3/2 1/2 0
0 0 1




and is in the Z-canonical form.

Example 2.3.8 A procedure for trajectory planning produced a matrix rep-
resenting a rotation for a certain pick-and-place operation, as shown below:

[Q ] =




0.433 −0.500 z
x 0.866 −0.433

0.866 y 0.500




where x, y, and z are entries that are unrecognizable due to failures in the
printing hardware. Knowing that Q is in fact a rotation matrix, find the
missing entries.

Solution: Since Q is a rotation matrix, the product P ≡ QTQ should equal
the 3 × 3 identity matrix, and det(Q) should be +1. The foregoing product
is computed first:

[P ]F =




0.437 + z2 0.433(x− z − 1) 0.5(−y + z) + 0.375
∗ 0.937 + x2 0.866(x + y) − 0.216
∗ ∗ 1 + y2




where the entries below the diagonal have not been printed because the
matrix is symmetric. Upon equating the diagonal entries of the foregoing
array to unity, we obtain

x = ±0.250, y = 0, z = ±0.750

while the vanishing of the off-diagonal entries leads to

x = 0.250, y = 0, z = −0.750

which can be readily verified to produce det(Q) = +1.

2.3.6 The Euler-Rodrigues Parameters

The invariants defined so far, namely, the natural and the linear invariants
of a rotation matrix, are not the only ones that are used in kinematics.
Additionally, one has the Euler parameters, or Euler-Rodrigues parameters,
as Cheng and Gupta (1989) propose that they should be called, represented
here as r and r0. The Euler-Rodrigues parameters are defined as

r ≡ sin
(

φ

2

)
e, r0 = cos

(
φ

2

)
(2.75)
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One can readily show that Q takes on a quite simple form in terms of
the Euler-Rodrigues parameters, namely,

Q = (r0
2 − r · r)1 + 2rrT + 2r0R (2.76)

in which R is the cross-product matrix of r, i.e.,

R ≡ ∂(r× x)
∂x

for arbitrary x.
Note that the Euler-Rodrigues parameters appear quadratically in the

rotation matrix. Hence, these parameters cannot be computed with sim-
ple sums and differences. A closer inspection of eq.(2.74b) reveals that the
linear invariants appear almost linearly in the rotation matrix. This means
that the rotation matrix, as given by eq.(2.74b), is composed of two types
of terms, namely, linear and rational. Moreover, the rational term is com-
posed of a quadratic expression in the numerator and a linear expression
in the denominator, the ratio thus being linear, which explains why the
linear invariants can be obtained by sums and differences from the rotation
matrix.

The relationship between the linear invariants and the Euler-Rodrigues
parameters can be readily derived, namely,

r0 = ±
√

1 + q0

2
, r =

q
2r0

, φ 	= π (2.77)

Furthermore, note that, if φ = π, then r0 = 0, and formulae (2.77) fail
to produce r. However, from eq.(2.75),

For φ = π: r = e, r0 = 0 (2.78)

We now derive invariant relations between the rotation matrix and the
Euler-Rodrigues parameters. To do this, we resort to the concept of ma-
trix square root. As a matter of fact, the square root of a square matrix is
nothing but a particular case of an analytic function of a square matrix,
discussed in connection with Theorem 2.3.3 and the exponential represen-
tation of the rotation matrix. Indeed, the square root of a square matrix is
an analytic function of that matrix, and hence, admits a series expansion in
powers of the matrix. Moreover, by virtue of the Cayley-Hamilton Theorem
(Theorem 2.3.3) the said square root should be, for a 3× 3 matrix, a linear
combination of the identity matrix 1, the matrix itself, and its square, the
coefficients being found using the eigenvalues of the matrix.

Furthermore, from the geometric meaning of a rotation through the angle
φ about an axis parallel to the unit vector e, it is apparent that the square
of the matrix representing the foregoing rotation is itself a rotation about
the same axis, but through the angle 2φ. By the same token, the square
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root of the same matrix is again a rotation matrix about the same axis,
but through an angle φ/2. Now, while the square of a matrix is unique, its
square root is not. This fact is apparent for diagonalizable matrices, whose
diagonal entries are their eigenvalues. Each eigenvalue, whether positive
or negative, admits two square roots, and hence, a diagonalizable n × n
matrix admits as many square roots as there are combinations of the two
possible roots of individual eigenvalues, disregarding rearrangements of the
latter. Such a number is 2n, and hence, a 3× 3 matrix admits eight square
roots. For example, the eight square roots of the identity 3 × 3 matrix are
displayed below:



1 0 0
0 1 0
0 0 1


 ,




1 0 0
0 1 0
0 0 −1


 ,




1 0 0
0 −1 0
0 0 1


 ,



−1 0 0
0 1 0
0 0 1


 ,




1 0 0
0 −1 0
0 0 −1


 ,



−1 0 0
0 1 0
0 0 −1


 ,



−1 0 0
0 −1 0
0 0 1


 ,



−1 0 0
0 −1 0
0 0 −1




In fact, the foregoing result can be extended to orthogonal matrices as
well and, for that matter, to any square matrix with n linearly indepen-
dent eigenvectors. That is, an n × n orthogonal matrix admits 2n square
roots. However, not all eight square roots of a 3× 3 orthogonal matrix are
orthogonal. In fact, not all eight square roots of a 3× 3 proper orthogonal
matrix are proper orthogonal either. Of these square roots, nevertheless,
there is one that is proper orthogonal, the one representing a rotation of
φ/2. We will denote this particular square root of Q by

√
Q. The Euler-

Rodrigues parameters of Q can thus be expressed as the linear invariants
of

√
Q, namely,

r = vect(
√

Q), r0 =
tr(

√
Q) − 1
2

(2.79)

It is important to recognize the basic differences between the linear in-
variants and the Euler-Rodrigues parameters. Whereas the former can be
readily derived from the matrix representation of the rotation involved by
simple additions and subtractions, the latter require square roots and en-
tail sign ambiguities. However, the former fail to produce information on
the axis of rotation whenever the angle of rotation is π, whereas the latter
produce that information for any value of the angle of rotation.

The Euler-Rodrigues parameters are nothing but the quaternions in-
vented by Sir William Rowan Hamilton (1844) in an extraordinary moment
of creativity on Monday, October 16, 1843, as “Hamilton, accompanied by
Lady Hamilton, was walking along the Royal Canal in Dublin towards the
Royal Irish Academy, where Hamilton was to preside a meeting.” (Altmann,
1989).
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Moreover, the Euler-Rodrigues parameters should not be confused with
the Euler angles, which are not invariant and hence, admit multiple defi-
nitions. The foregoing means that no single set of Euler angles exists for
a given rotation matrix, the said angles depending on how the rotation is
decomposed into three simpler rotations. For this reason, Euler angles will
not be stressed here. The reader is referred to Exercise 18 for a short dis-
cussion of Euler angles; Synge (1960) includes a classical treatment, while
Kane, Likins and Levinson provide an extensive discussion of the same.

Example 2.3.9 Find the Euler-Rodrigues parameters of the proper orthog-
onal matrix Q given as

Q =
1
3



−1 2 2
2 −1 2
2 2 −1




Solution: Since the given matrix is symmetric, its angle of rotation is π
and its vector linear invariant vanishes, which prevents us from finding
the direction of the axis of rotation from the linear invariants; moreover,
expressions (2.77) do not apply. However, we can use eq.(2.49) to find the
unit vector e parallel to the axis of rotation, i.e.,

eeT =
1
2
(1 + Q)

or in component form,




e2
1 e1e2 e1e3

e1e2 e2
2 e2e3

e1e3 e2e3 e2
3


 =

1
3




1 1 1
1 1 1
1 1 1




A simple inspection of the components of the two sides of the above equa-
tion reveals that all three components of e are identical and moreover, of
the same sign, but we cannot tell which sign this is. Therefore,

e = ±
√

3
3




1
1
1




Moreover, from the symmetry of Q, we know that φ = π, and hence,

r = e sin
(

φ

2

)
= ±

√
3

3




1
1
1


 , r0 = cos

(
φ

2

)
= 0
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2.4 Composition of Reflections and Rotations

As pointed out in Section 2.2, reflections occur often accompanied by ro-
tations. The effect of this combination is that the rotation destroys the
two properties of pure reflections, symmetry and self-inversion, as defined
in Section 2.2. Indeed, let R be a pure reflection, taking on the form ap-
pearing in eq.(2.5), and Q an arbitrary rotation, taking on the form of
eq.(2.48). The product of these two transformations, QR, denoted by T,
is apparently neither symmetric nor self-inverse, as the reader can readily
verify. Likewise, the product of these two transformations in the reverse
order is neither symmetric nor self-inverse.

As a consequence of the foregoing discussion, an improper orthogonal
transformation that is not symmetric can always be decomposed into the
product of a rotation and a pure reflection, the latter being symmetric
and self-inverse. Moreover, this decomposition can take on the form of
any of the two possible orderings of the rotation and the reflection. Note,
however, that once the order has been selected, the decomposition is not
unique. Indeed, if we want to decompose T in the above paragraph into
the product QR, then we can freely choose the unit normal n of the plane
of reflection and write

R ≡ 1− 2nnT

vector n then being found from

nnT =
1
2
(1− R)

Hence, the factor Q of that decomposition is obtained as

Q = TR−1 ≡ TR = T − 2(Tn)nT

where use has been made of the self-inverse property of R. Any other
selection of vector n will lead to a different decomposition of T.

Example 2.4.1 Join the palms of your two hands in the position adopted
by swimmers when preparing for plunging, while holding a sheet of paper
between them. The sheet defines a plane in each hand that we will call the
hand plane, its unit normal, pointing outside of the hand, being called the
hand normal and represented as vectors nR and nL for the right and left
hand, respectively. Moreover, let oR and oL denote unit vectors pointing
in the direction of the finger axes of each of the two hands. Thus, in the
swimmer position described above, nL = −nR and oL = oR. Now, without
moving your right hand, let the left hand attain a position whereby the
left-hand normal lies at right angles with the right-hand normal, the palm
pointing downwards and the finger axes of the two hands remaining parallel.
Find the representation of the transformation carrying the right hand to the
final configuration of the left hand, in terms of the unit vectors nR and oR.

TLFeBOOK



48 2. Mathematical Background

Solution: Let us regard the desired transformation T as the product of a
rotation Q by a pure reflection R, in the form T = QR. Thus, the trans-
formation occurs so that the reflection takes place first, then the rotation.
The reflection is simply that mapping the right hand into the left hand,
and hence, the reflection plane is simply the hand plane, i.e.,

R = 1− 2nRnT
R

Moreover, the left hand rotates from the swimmer position about an axis
parallel to the finger axes through an angle of 90◦ clockwise from your
viewpoint, i.e., in the positive direction of vector oR. Hence, the form of
the rotation involved can be derived readily from eq.(2.48) and the above
information, namely,

Q = oRoT
R + OR

where OR is the cross-product matrix of oR. Hence, upon performing the
product QR, we have

T = oRoT
R + 2OR − 2(oR × nR)nT

R

which is the transformation sought.

2.5 Coordinate Transformations and Homogeneous
Coordinates

Crucial to robotics is the unambiguous description of the geometrical re-
lations among the various bodies in the environment surrounding a robot.
These relations are established by means of coordinate frames, or frames,
for brevity, attached to each rigid body in the scene, including the robot
links. The origins of these frames, moreover, are set at landmark points
and orientations defined by key geometric entities like lines and planes. For
example, in Chapter 4 we attach two frames to every moving link of a serial
robot, with origin at a point on each of the axis of the two joints coupling
this link with its two neighbors. Moreover, the Z-axis of each frame is de-
fined, according to the Denavit-Hartenberg notation, introduced in that
chapter, along each joint axis, while the X-axis of the frame closer to the
base—termed the fore frame—is defined along the common perpendicular
to the two joint axes. The origin of the same frame is thus defined as the in-
tersection of the fore axis with the common perpendicular to the two axes.
This section is devoted to the study of the coordinate transformations of
vectors when these are represented in various frames.
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2.5.1 Coordinate Transformations Between Frames
with a Common Origin

We will refer to two coordinate frames in this section, namely, A = {X, Y, Z}
and B = {X , Y, Z}. Moreover, let Q be the rotation carrying A into B,
i.e.,

Q: A → B (2.80)

The purpose of this subsection is to establish the relation between the
representations of the position vector of a point P in A and B, denoted by
[p ]A and [p ]B, respectively. Let

[p ]A =




x
y
z


 (2.81)

We want to find [p ]B in terms of [p ]A and Q, when the latter is represented
in either frame. The coordinate transformation can best be understood if
we regard point P as attached to frame A, as if it were a point of a box
with sides of lengths x, y, and z, as indicated in Fig. 2.2a. Now, frame A
undergoes a rotation Q about its origin that carries it into a new attitude,
that of frame B, as illustrated in Fig. 2.2b. Point P in its rotated position
is labeled Π , of position vector π, i.e.,

π = Qp (2.82)

It is apparent that the relative position of point P with respect to its box
does not change under the foregoing rotation, and hence,

[ π ]B =




x
y
z


 (2.83)

Moreover, let

[ π ]A =




ξ
η
ζ


 (2.84)

The relation between the two representations of the position vector of any
point of the 3-dimensional Euclidean space is given by

Theorem 2.5.1 The representations of the position vector π of any point
in two frames A and B, denoted by [ π ]A and [ π ]B, respectively, are related
by

[ π ]A = [Q ]A[ π ]B (2.85)
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FIGURE 2.2. Coordinate transformation: (a) coordinates of point P in the
A-frame; and (b) relative orientation of frame B with respect to A.

Proof: Let us write eq.(2.82) in A:

[ π ]A = [Q ]A[p ]A (2.86)

Now, from Fig. 2.2b and eqs.(2.81) and (2.83) it is apparent that

[ π ]B = [p ]A (2.87)

Upon substituting eq.(2.87) into eq.(2.86), we obtain

[ π ]A = [Q ]A[ π ]B (2.88)

q.e.d. Moreover, we have

Theorem 2.5.2 The representations of Q carrying A into B in these two
frames are identical, i.e.,

[Q ]A = [Q ]B (2.89)

Proof: Upon substitution of eq.(2.82) into eq.(2.85), we obtain

[Qp ]A = [Q ]A[Qp ]B

or
[Q ]A[p ]A = [Q ]A[Qp ]B

Now, since Q is orthogonal, it is nonsingular, and hence, [Q ]A can be
deleted from the foregoing equation, thus leading to

[p ]A = [Q ]B[p ]B (2.90)

However, by virtue of Theorem 2.5.1, the two representations of p observe
the relation

[p ]A = [Q ]A[p ]B (2.91)
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the theorem being proved upon equating the right-hand sides of eqs.(2.90)
and (2.91).

Note that the foregoing theorem states a relation valid only for the con-
ditions stated therein. The reader should not conclude from this result that
rotation matrices have the same representations in every frame. This point
is stressed in Example 2.5.1. Furthermore, we have

Theorem 2.5.3 The inverse relation of Theorem 2.5.1 is given by

[ π ]B = [QT ]B[ π ]A (2.92)

Proof: This is straightforward in light of the two foregoing theorems, and
is left to the reader as an exercise.

Example 2.5.1 Coordinate frames A and B are shown in Fig. 2.3. Find
the representations of Q rotating A into B in these two frames and show
that they are identical. Moreover, if [p ]A = [ 1, 1, 1 ]T , find [p ]B.

Solution: Let i, j, and k be unit vectors in the directions of the X-, Y -,
and Z-axes, respectively; unit vectors ι, γ, and κ are defined likewise as
parallel to the X -, Y-, and Z-axes of Fig. 2.3. Therefore,

Qi ≡ ι = −k, Qj ≡ γ = −i, Qk ≡ κ = j

Therefore, using Definition 2.2.1, the matrix representation of Q carrying
A into B, in A, is given by

[Q ]A =




0 −1 0
0 0 1
−1 0 0




FIGURE 2.3. Coordinate frames A and B with a common origin.
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Now, in order to find [Q ]B, we apply Q to the three unit vectors of B, ι,
γ, and κ. Thus, for ι, we have

Qι =




0 −1 0
0 0 1
−1 0 0






0
0
−1


 =




0
−1
0


 = −j = −κ

Likewise,
Qγ = −ι, Qκ = γ

again, from Definition 2.2.1, we have

[Q ]B =




0 −1 0
0 0 1
−1 0 0


 = [Q ]A

thereby confirming Theorem 2.5.2. Note that the representation of this
matrix in any other coordinate frame would be different. For example, if
we represent this matrix in a frame whose X-axis is directed along the axis
of rotation of Q, then we end up with the X-canonical representation of
Q, namely,

[Q ]X =




1 0 0
0 cosφ − sinφ
0 sin φ cosφ




with the angle of rotation φ being readily computed as φ = 120◦, which
thus yields

[Q ]X =




1 0 0
0 −1/2 −√

3/2
0

√
3/2 −1/2




which apparently has different entries from those of [Q ]A and [Q ]B found
above.

Now, from eq.(2.92),

[p ]B =




0 0 −1
−1 0 0
0 1 0






1
1
1


 =



−1
−1
1




a result that can be readily verified by inspection.

2.5.2 Coordinate Transformation with Origin Shift

Now, if the coordinate origins do not coincide, let b be the position vector
of O, the origin of B, from O, the origin of A, as shown in Fig. 2.4. The
corresponding coordinate transformation from A to B, the counterpart of
Theorem 2.5.1, is given below.
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Theorem 2.5.4 The representations of the position vector p of a point P
of the Euclidean 3-dimensional space in two frames A and B are related by

[p ]A = [b ]A + [Q ]A[ π ]B (2.93a)
[ π ]B = [QT ]B([−b ]A + [p ]A) (2.93b)

with b defined as the vector directed from the origin of A to that of B, and
π the vector directed from the origin of B to P , as depicted in Fig. 2.4.

Proof: We have, from Fig. 2.4,

p = b + π (2.94)

If we express the above equation in the A-frame, we obtain

[p ]A = [b ]A + [ π ]A

where π is assumed to be readily available in B, and so the foregoing
equation must be expressed as

[p ]A = [b ]A + [Q ]A[ π ]B

which thus proves eq.(2.93a). To prove eq.(2.93b), we simply solve eq.(2.94)
for π and apply eq.(2.92) to the equation thus resulting, which readily leads
to the desired relation.

Example 2.5.2 If [b ]A = [−1,−1, −1 ]T and A and B have the relative
orientations given in Example 2.5.1, find the position vector, in B, of a
point P of position vector [p ]A given as in the same example.

Solution: What we obviously need is [π ]B, which is given in eq.(2.93b). We
thus compute first the sum inside the parentheses of that equation, i.e.,

[−b ]A + [p ]A =




2
2
2




FIGURE 2.4. Coordinate frames with different origins.
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We need further [QT ]B, which can be readily derived from [Q ]B. We do
not have as yet this matrix, but we have [QT ]A, which is identical to
[QT ]B by virtue of Theorem 2.5.2. Therefore,

[ π ]B =




0 0 −1
−1 0 0
0 1 0






2
2
2


 =



−2
−2
2




a result that the reader is invited to verify by inspection.

2.5.3 Homogeneous Coordinates

The general coordinate transformation, involving a shift of the origin, is not
linear, in general, as can be readily realized by virtue of the nonhomoge-
neous term involved, i.e., the first term of the right-hand side of eq.(2.93a),
which is independent of p. Such a transformation, nevertheless, can be rep-
resented in homogeneous form if homogeneous coordinates are introduced.
These are defined below: Let [p ]M be the coordinate array of a finite point
P in reference frame M. What we mean by a finite point is one whose co-
ordinates are all finite. We are thus assuming that the point P at hand is
not at infinity, points at infinity being dealt with later. The homogeneous
coordinates of P are those in the 4-dimensional array {p}M, defined as

{p}M ≡
[

[p ]M
1

]
(2.95)

The affine transformation of eq.(2.93a) can now be rewritten in homo-
geneous-coordinate form as

{p}A = {T}A{π}B (2.96)

where {T}A is defined as a 4 × 4 array, i.e.,

{T}A ≡
[

[Q ]A [b ]A
[0T ]A 1

]
(2.97)

The inverse transformation of that defined in eq.(2.97) is derived from
eq.(2.93a & b), i.e.,

{T−1 }B =
[

[QT ]B [−b ]B
[0T ]B 1

]
(2.98)

Furthermore, homogeneous transformations can be concatenated. In-
deed, let Fk, for k = i − 1, i, i + 1, denote three coordinate frames, with
origins at Ok. Moreover, let Qi−1 be the rotation carrying Fi−1 into an ori-
entation coinciding with that of Fi. If a similar definition for Qi is adopted,
then Qi denotes the rotation carrying Fi into an orientation coinciding with
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that of Fi+1. First, the case in which all three origins coincide is considered.
Clearly,

[p ]i = [QT
i−1 ]i−1[p ]i−1 (2.99)

[p ]i+1 = [QT
i ]i[p ]i = [QT

i ]i[QT
i−1 ]i−1[p ]i−1 (2.100)

the inverse relation of that appearing in eq.(2.100) being

[p ]i−1 = [Qi−1 ]i−1[Qi ]i[p ]i+1 (2.101)

If now the origins do not coincide, let ai−1 and ai denote the vectors−−−−→
Oi−1Oi and −−−−→

OiOi+1, respectively. The homogeneous-coordinate transfor-
mations {Ti−1}i−1 and {Ti}i thus arising are obviously

{Ti−1}i−1 =
[

[Qi−1 ]i−1 [ ai−1 ]i−1

[0T ]i−1 1

]
, {Ti}i =

[
[Qi ]i [ ai ]i
[0T ]i 1

]

(2.102)
whereas their inverse transformations are

{T−1
i−1}i =

[
[QT

i−1 ]i [QT
i−1 ]i[−ai−1 ]i−1

[0T ]i 1

]
(2.103)

{T−1
i }i+1 =

[
[QT

i ]i+1 [QT
i ]i+1[−ai ]i

[0T ]i+1 1

]
(2.104)

Hence, the coordinate transformations involved are

{p}i−1 = {Ti−1}i−1{p}i (2.105)
{p}i−1 = {Ti−1}i−1{Ti}i{p}i+1 (2.106)

the corresponding inverse transformations being

{p }i = {T−1
i−1}i{p }i−1 (2.107)

{p }i+1 = {T−1
i }i+1{p }i = {T−1

i }i+1{T−1
i−1}i{p }i−1 (2.108)

Now, if P lies at infinity, we can express its homogeneous coordinates in
a simpler form. To this end, we rewrite expression (2.95) in the form

{p}M ≡ ‖p‖
[

[ e ]M
1/‖p‖

]

and hence,

lim
‖p‖→∞

{p}M =
(

lim
‖p‖→∞

‖p‖
)(

lim
‖p‖→∞

[
[ e ]M
1/‖p‖

])

or

lim
‖p‖→∞

{p}M =
(

lim
‖p‖→∞

‖p‖
)[

[ e ]M
0

]
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We now define the homogeneous coordinates of a point P lying at infinity
as the 4-dimensional array appearing in the foregoing expression, i.e.,

{p∞ }M ≡
[

[ e ]M
0

]
(2.109)

which means that a point at infinity, in homogeneous coordinates, has only
a direction, given by the unit vector e, but an undefined location. When
working with objects within the atmosphere of the earth, for example, stars
can be regarded as lying at infinity, and hence, their location is completely
specified simply by their longitude and latitude, which suffice to define the
direction cosines of a unit vector in spherical coordinates.

On the other hand, a rotation matrix can be regarded as composed of
three columns, each representing a unit vector, e.g.,

Q = [e1 e2 e3 ]

where the triad { ek }3
1 is orthonormal. We can thus represent {T }A of

eq.(2.97) in the form

{T }A =
[
e1 e2 e3 b
0 0 0 1

]
(2.110)

thereby concluding that the columns of the 4 × 4 matrix T represent the
homogeneous coordinates of a set of corresponding points, the first three
of which are at infinity.

Example 2.5.3 An ellipsoid is centered at a point OB of position vector
b, its three axes X , Y, and Z defining a coordinate frame B. Moreover, its
semiaxes have lengths a = 1, b = 2, and c = 3, the coordinates of OB in
a coordinate frame A being [b ]A = [ 1, 2, 3 ]T . Additionally, the direction
cosines of X are (0.933, 0.067, −0.354), whereas Y is perpendicular to b
and to the unit vector u that is parallel to the X -axis. Find the equation of
the ellipsoid in A. (This example has relevance in collision-avoidance algo-
rithms, some of which approximate manipulator links as ellipsoids, thereby
easing tremendously the computational requirements.)

Solution: Let u, v, and w be unit vectors parallel to the X -, Y-, and Z-axes,
respectively. Then,

[u ]A =




0.933
0.067
−0.354


 , v =

u × b
‖u× b‖ , w = u× v

and hence,

[v ]A =




0.243
−0.843
0.481


 , [w ]A =



−0.266
−0.535
−0.803



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from which the rotation matrix Q, rotating the axes of A into orientations
coinciding with those of B, can be readily represented in A, or in B for that
matter, as

[Q ]A = [u, v, w ]A =




0.933 0.243 −0.266
0.067 −0.843 −0.535
−0.354 0.481 −0.803




On the other hand, if the coordinates of a point P in A and B are [p ]A =
[ p1, p2, p3 ]T and [ π ]B = [ π1, π2, π3 ]T , respectively, then the equation of
the ellipsoid in B is clearly

B:
π2

1

12
+

π2
2

22
+

π2
3

32
= 1

Now, what is needed in order to derive the equation of the ellipsoid in A is
simply a relation between the coordinates of P in B and those in A. These
coordinates are related by eq.(2.93b), which requires [QT ]B, while we have
[Q ]A. Nevertheless, by virtue of Theorem 2.5.2

[QT ]B = [QT ]A =




0.933 0.067 −0.354
0.243 −0.843 0.481
−0.266 −0.535 −0.803




Hence,

[ π ]B =




0.933 0.067 −0.354
0.243 −0.843 0.481
−0.266 −0.535 −0.803







−1
−2
−3


+




p1

p2

p3






Therefore,

π1 = 0.933p1 + 0.067p2 − 0.354p3 − 0.005
π2 = 0.243p1 − 0.843p2 + 0.481p3

π3 = −0.266p1 − 0.535p2 − 0.803p3 + 3.745

Substitution of the foregoing relations into the ellipsoid equation in B leads
to

A: 32.1521p1
2 + 7.70235p2

2 + 9.17286p3
2 − 8.30524p1 − 16.0527p2

−23.9304p3 + 9.32655p1p2 + 9.02784p2p3 − 19.9676p1p3 + 20.101 = 0

which is the equation sought, as obtained using computer algebra.
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2.6 Similarity Transformations

Transformations of the position vector of points under a change of coor-
dinate frame involving both a translation of the origin and a rotation of
the coordinate axes was the main subject of Section 2.5. In this section, we
study the transformations of components of vectors other than the position
vector, while extending the concept to the transformation of matrix entries.
How these transformations take place is the subject of this section.

What is involved in the present discussion is a change of basis of the
associated vector spaces, and hence, this is not limited to 3-dimensional
vector spaces. That is, n-dimensional vector spaces will be studied in this
section. Moreover, only isomorphisms, i.e., transformations L of the n-di-
mensional vector space V onto itself will be considered. Let A = {ai}n

1 and
B = {bi}n

1 be two different bases of the same space V . Hence, any vector
v of V can be expressed in either of two ways, namely,

v = α1a1 + α2a2 + · · · + αnan (2.111)
v = β1b1 + β2b2 + · · · + βnbn (2.112)

from which two representations of v are readily derived, namely,

[v ]A =




α1

α2
...

αn


 , [v ]B =




β1

β2
...

βn


 (2.113)

Furthermore, let the two foregoing bases be related by

bj = a1ja1 + a2ja2 + · · · + anjan, j = 1, . . . , n (2.114)

Now, in order to find the relationship between the two representations
of eq.(2.113), eq.(2.114) is substituted into eq.(2.112), which yields

v = β1(a11a1 + a21a2 + · · · + an1an)
+ β2(a12a1 + a22a2 + · · · + an2an)

...
+ βn(a1na1 + a2na2 + · · · + annan) (2.115)

This can be rearranged to yield

v = (a11β1 + a12β2 + · · · + a1nβn)a1

+ (a21β1 + a22β2 + · · · + a2nβn)a2

...
+ (an1β1 + an2β2 + · · · + annβn)an (2.116)
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Comparing eq.(2.116) with eq.(2.111), one readily derives

[v ]A = [A ]A[v ]B (2.117)

where

[A ]A ≡




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 (2.118)

which are the relations sought. Clearly, the inverse relationship of eq.(2.117)
is

[v ]B = [A−1 ]A[v ]A (2.119)

Next, let L have the representation in A given below:

[L ]A =




l11 l12 · · · l1n

l21 l22 · · · l2n
...

...
. . .

...
ln1 ln2 · · · lnn


 (2.120)

Now we aim at finding the relationship between [L ]A and [L ]B. To this
end, let w be the image of v under L, i.e.,

Lv = w (2.121)

which can be expressed in terms of either A or B as

[L ]A[v ]A = [w ]A (2.122)
[L ]B[v ]B = [w ]B (2.123)

Now we assume that the image vector w of the transformation of eq.(2.121)
is identical to that of vector v in the range of L, which is not always the
case. Our assumption is, then, that similar to eq.(2.117),

[w ]A = [A ]A[w ]B (2.124)

Now, substitution of eq.(2.124) into eq.(2.122) yields

[A ]A[w ]B = [L ]A[A ]A[v ]B (2.125)

which can be readily rearranged in the form

[w ]B = [A−1 ]A[L ]A[A ]A[v ]B (2.126)

Comparing eq.(2.123) with eq.(2.126) readily leads to

[L ]B = [A−1 ]A[L ]A[A ]A (2.127)
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which upon rearrangement, becomes

[L ]A = [A]A[L ]B[A−1 ]A (2.128)

Relations (2.117), (2.119), (2.127), and (2.128) constitute what are called
similarity transformations. These are important because they preserve in-
variant quantities such as the eigenvalues and eigenvectors of matrices, the
magnitudes of vectors, the angles between vectors, and so on. Indeed, one
has the following:

Theorem 2.6.1 The characteristic polynomial of a given n×n matrix re-
mains unchanged under a similarity transformation. Moreover, the eigen-
values of two matrix representations of the same n×n linear transformation
are identical, and if [ e ]B is an eigenvector of [L ]B, then under the sim-
ilarity transformation (2.128), the corresponding eigenvector of [L ]A is
[ e ]A = [A ]A[ e ]B.

Proof: From eq.(2.11), the characteristic polynomial of [L ]B is

P (λ) = det(λ[1 ]B − [L ]B) (2.129)

which can be rewritten as

P (λ) ≡ det(λ[A−1 ]A[1 ]A[A ]A − [A−1 ]A[L ]A[A ]A)
= det([A−1 ]A(λ[1 ]A − [L ]A)[A ]A)
= det([A−1 ]A)det(λ[1 ]A − [L ]A)det([A ]A)

But
det([A−1 ]A)det([A ]A) = 1

and hence, the characteristic polynomial of [L ]A is identical to that of
[L ]B. Since both representations have the same characteristic polynomial,
they have the same eigenvalues. Now, if [ e ]B is an eigenvector of [L ]B
associated with the eigenvalue λ, then

[L ]B[ e ]B = λ[ e ]B

Next, eq.(2.127) is substituted into the foregoing equation, which thus leads
to

[A−1 ]A[L ]A[A ]A[ e ]B = λ[ e ]B

Upon rearrangement, this equation becomes

[L ]A[A ]A[ e ]B = λ[A ]A[ e ]B (2.130)

whence it is apparent that [A ]A[ e ]B is an eigenvector of [L ]A associated
with the eigenvalue λ, q.e.d.
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Theorem 2.6.2 If [L ]A and [L ]B are related by the similarity transfor-
mation (2.127), then

[Lk ]B = [A−1 ]A[Lk ]A[A ]A (2.131)

for any integer k.

Proof: This is done by induction. For k = 2, one has

[L2 ]B ≡ [A−1 ]A[L ]A[A ]A[A−1 ]A[L ]A[A ]A
= [A−1 ]A[L2 ]A[A ]A

Now, assume that the proposed relation holds for k = n. Then,

[Ln+1 ]B ≡ [A−1 ]A[Ln ]A[A ]A[A−1 ]A[L ]A[A ]A
= [A−1 ]A[Ln+1 ]A[A ]A

i.e., the relation also holds for k = n + 1, thereby completing the proof.

Theorem 2.6.3 The trace of an n × n matrix does not change under a
similarity transformation.

Proof: A preliminary relation will be needed: Let [A ], [B ] and [C ] be
three different n × n matrix arrays, in a given reference frame, that need
not be indicated with any subscript. Moreover, let aij , bij , and cij be the
components of the said arrays, with indices ranging from 1 to n. Hence,
using standard index notation,

tr([A ] [B ] [C ]) ≡ aijbjkcki = bjkckiaij ≡ tr([B ] [C ] [A ]) (2.132)

Taking the trace of both sides of eq.(2.127) and applying the foregoing
result produces

tr([L ]B) = tr([A−1 ]A[L ]A[A ]A) = tr([A ]A[A−1 ]A[L ]A) = tr([L ]A)
(2.133)

thereby proving that the trace remains unchanged under a similarity trans-
formation.

Example 2.6.1 We consider the equilateral triangle sketched in Fig. 2.5,
of side length equal to 2, with vertices P1, P2, and P3, and coordinate
frames A and B of axes X, Y and X ′, Y ′, respectively, both with origin at
the centroid of the triangle. Let P be a 2 × 2 matrix defined by

P = [p1 p2 ]

with pi denoting the position vector of Pi in a given coordinate frame. Show
that matrix P does not obey a similarity transformation upon a change of
frame, and compute its trace in frames A and B to make it apparent that
this matrix does not comply with the conditions of Theorem 2.6.3.
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FIGURE 2.5. Two coordinate frames used to represent the position vectors of
the corners of an equilateral triangle.

Solution: From the figure it is apparent that

[P ]A =
[

1 0
−√

3/3 2
√

3/3

]
, [P ]B =

[
0 1

−2
√

3/3
√

3/3

]

Apparently,

tr([P ]A) = 1 +
2
√

3
3

	= tr([P ]B) =
√

3
3

The reason why the trace of this matrix did not remain unchanged under
a coordinate transformation is that the matrix does not obey a similarity
transformation under a change of coordinates. Indeed, vectors pi change
as

[pi ]A = [Q ]A[pi ]B
under a change of coordinates from B to A, with Q denoting the rotation
carrying A into B. Hence,

[P ]A = [Q ]A[P ]B

which is different from the similarity transformation of eq.(2.128). However,
if we now define

R ≡ PPT

then

[R ]A =
[

1 −√
3/3

−√
3/3 5/3

]
, [R ]B =

[
1

√
3/3√

3/3 5/3

]

and hence,

tr([R ]B) =
8
3

thereby showing that R does comply with the conditions of Theorem 2.6.3.
Indeed, under a change of frame, matrix R changes as

[R ]A = [PPT ]A = [Q ]A[P ]B([Q ]A[P ]B)T = [Q ]A[PP ]TB [QT ]A

which is indeed a similarity transformation.
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2.7 Invariance Concepts

From Example 2.6.1 it is apparent that certain properties, like the trace
of certain square matrices do not change under a coordinate transforma-
tion. For this reason, a matrix like R of that example is said to be frame-
invariant, or simply invariant, whereas matrix P of the same example is
not. In this section, we formally define the concept of invariance and high-
light its applications and its role in robotics. Let a scalar, a vector, and
a matrix function of the position vector p be denoted by f(p), f(p) and
F(p), respectively. The representations of f(p) in two different coordinate
frames, labelled A and B, will be indicated as [f(p)]A and [f(p)]B, respec-
tively, with a similar notation for the representations of F(p). Moreover,
let the two frames differ both in the location of their origins and in their
orientations. Additionally, let the proper orthogonal matrix [Q]A denote
the rotation of coordinate frame A into B. Then, the scalar function f(p)
is said to be frame invariant, or invariant for brevity, if

f([p]B) = f([p]A) (2.134)

Moreover, the vector quantity f is said to be invariant if

[f ]A = [Q]A[f ]B (2.135)

and finally, the matrix quantity F is said to be invariant if

[F]A = [Q]A[F]B[QT ]A (2.136)

Thus, the difference in origin location becomes irrelevant in this context,
and hence, will no longer be considered. From the foregoing discussion, it
is clear that the same vector quantity has different components in differ-
ent coordinate frames; moreover, the same matrix quantity has different
entries in different coordinate frames. However, certain scalar quantities
associated with vectors, e.g., the inner product, and matrices, e.g., the ma-
trix moments, to be defined presently, remain unchanged under a change
of frame. Additionally, such vector operations as the cross product of two
vectors are invariant. In fact, the scalar product of two vectors a and b
remains unchanged under a change of frame, i.e.,

[ a ]TA [b ]A = [ a ]TB [b ]B (2.137)

Additionally,
[ a × b ]A = [Q ]A [ a × b ]B (2.138)

The kth moment of an n × n matrix T, denoted by Ik, is defined as
(Leigh, 1968)

Ik ≡ tr(Tk), k = 0, 1, . . . (2.139)

where I0 = tr(1) = n. Now we have
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Theorem 2.7.1 If the trace of an n × n matrix T is invariant, then so
are its moments.

Proof: This is straightforward. Indeed, from Theorem 2.6.2, we have

[Tk ]B = [A−1 ]A[Tk ]A[A ]A (2.140)

Now, let [ Ik ]A and [ Ik ]B denote the kth moment of [T ]A and [T ]B,
respectively. Thus,

[ Ik ]B = tr(
[
A−1

]
A
[
Tk
]
A [A ]A) ≡ tr([A ]A

[
A−1

]
A
[
Tk
]
A)

= tr(
[
Tk
]
A) ≡ [ Ik ]A

thereby completing the proof.
Furthermore,

Theorem 2.7.2 An n×n matrix has only n linearly independent moments.

Proof: Let the characteristic polynomial of T be

P (λ) = a0 + a1λ + · · · + an−1λ
n−1 + λn = 0 (2.141)

Upon application of the Cayley-Hamilton Theorem, eq.(2.141) leads to

a01 + a1T + · · · + an−1Tn−1 + Tn = 0 (2.142)

where 1 denotes the n × n identity matrix.
Now, if we take the trace of both sides of eq.(2.142), and Definition (2.139)

is recalled, one has

a0I0 + a1I1 + · · · + an−1In−1 + In = 0

from which it is apparent that In can be expressed as a linear combination
of the first n moments of T, { Ik }n−1

0 . By simple induction, one can likewise
prove that the mth moment is dependent upon the first n moments if
m ≥ n, thereby completing the proof.

The vector invariants of an n × n matrix are its eigenvectors, which
have a direct physical significance in the case of symmetric matrices. The
eigenvalues of these matrices are all real, its eigenvectors being also real and
mutually orthogonal. Skew-symmetric matrices, in general, need not have
either real eigenvalues or real eigenvectors. However, if we limit ourselves
to 3× 3 skew-symmetric matrices, exactly one of their eigenvalues, and its
associated eigenvector, are both real. The eigenvalue of interest is 0, and
the associated vector is the axial vector of the matrix under study.

It is now apparent that two n×n matrices related by a similarity trans-
formation have the same set of moments. Now, by virtue of Theorem 2.7.2,
one may be tempted to think that if two n × n symmetric matrices share
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their first n moments { Ik }n−1
0 , then the two matrices are related by a

similarity transformation. A simple example will show that this is not true.
Consider the two matrices A and B given below:

A =
[

1 0
0 1

]
, B =

[
1 2
2 1

]

The two foregoing matrices cannot possibly be related by a similarity trans-
formation, for the first one is the identity matrix, while the second is not.
However, the two matrices share the two moments I0 = 2 and I1 = 2. Let
us now compute the second moments of these matrices:

tr(A2) = 2, tr(B2) = tr
[

5 4
4 5

]
= 10

which are indeed different. Therefore, to test whether two different matri-
ces represent the same linear transformation, and hence, are related by a
similarity transformation, we must verify that they share the same set of
n + 1 moments { Ik }n

0 . In fact, since all n × n matrices share the same
zeroth moment I0 = n, only the n moments { Ik }n

1 need be tested for a
similarity verification. That is, if two n× n matrices share the same n mo-
ments { Ik }n

1 , then they represent the same linear transformation, albeit
in different coordinate frames.

The foregoing discussion does not apply, in general, to nonsymmetric
matrices, for these matrices are not fully characterized by their eigenvalues.
For example, consider the matrix

A =
[

1 1
0 1

]

Its two first moments are I0 = 2, I1 = tr(A) = 2, which happen to be the
first two moments of the 2 × 2 identity matrix as well. However, while the
identity matrix leaves all 2-dimensional vectors unchanged, matrix A does
not.

Now, if two symmetric matrices, say A and B, represent the same trans-
formation, they are related by a similarity transformation, i.e., a nonsin-
gular matrix T exists such that

B = T−1AT

Given A and T, then, finding B is trivial, a similar statement holding
if B and T are given; however, if A and B are given, finding T is more
difficult. The latter problem occurs sometimes in robotics in the context of
calibration, to be discussed in Subsection 2.7.1.

Example 2.7.1 Two symmetric matrices are displayed below. Find out
whether they are related by a similarity transformation.

A =




1 0 1
0 1 0
1 0 2


 , B =




1 0 0
0 2 −1
0 −1 1



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Solution: The traces of the two matrices are apparently identical, namely,
4. Now we have to verify whether their second and third moments are also
identical. To do this, we need the square and the cube of the two matrices,
from which we then compute their traces. Thus, from

A2 =




2 0 3
0 1 0
3 0 5


 , B2 =




1 0 0
0 5 −3
0 −3 2




we readily obtain
tr(A2) = tr(B2) = 8

Moreover,

A3 =




5 0 8
0 1 0
8 0 13


 , B3 =




1 0 0
0 13 −8
0 −8 5




whence
tr(A3) = tr(B3) = 19

Therefore, the two matrices are related by a similarity transformation.
Hence, they represent the same linear transformation.

Example 2.7.2 Same as Example 2.7.1, for the two matrices displayed
below:

A =




1 0 2
0 1 0
2 0 0


 , B =




1 1 1
1 1 0
1 0 0




Solution: As in the previous example, the traces of these matrices are iden-
tical, i.e., 2. However, tr(A2) = 10, while tr(B2) = 6. We thus conclude
that the two matrices cannot be related by a similarity transformation.

2.7.1 Applications to Redundant Sensing

A sensor, such as a camera or a range finder, is often mounted on a robotic
end-effector to determine the pose—i.e., the position and orientation, as
defined in Subsection 3.2.3—of an object. If redundant sensors are intro-
duced, and we attach frames A and B to each of these, then each sensor
can be used to determine the orientation of the end-effector with respect to
a reference configuration. This is a simple task, for all that is needed is to
measure the rotation R that each of the foregoing frames underwent from
the reference configuration, in which these frames are denoted by A0 and
B0, respectively. Let us assume that these measurements produce the or-
thogonal matrices A and B, representing R in A and B, respectively. With

TLFeBOOK



2.7 Invariance Concepts 67

this information we would like to determine the relative orientation Q of
frame B with respect to frame A, a problem that is called here instrument
calibration.

We thus have A ≡ [R ]A and B ≡ [R ]B, and hence, the algebraic
problem at hand consists in determining [Q ]A or equivalently, [Q ]B. The
former can be obtained from the similarity transformation of eq.(2.136),
which leads to

A = [Q ]A B[QT ]A

or
A [Q ]A = [Q ]A B

This problem could be solved if we had three invariant vectors associated
with each of the two matrices A and B. Then, each corresponding pair of
vectors of these triads would be related by eq.(2.135), thereby obtaining
three such vector equations that should be sufficient to compute the nine
components of the matrix Q rotating frame A into B. However, since A
and B are orthogonal matrices, they admit only one real invariant vector,
namely, their axial vector, and we are short of two vector equations. We
thus need two more invariant vectors, represented in both A and B, to
determine Q. The obvious way of obtaining one additional vector in each
frame is to take not one, but two measurements of the orientation of A0

and B0 with respect to A and B, respectively. Let the matrices representing
these orientations be given, in each of the two coordinate frames, by Ai

and Bi, for i = 1, 2. Moreover, let ai and bi, for i = 1, 2, be the axial
vectors of matrices Ai and Bi, respectively.

Now we have two possibilities: (i) neither of a1 and a2 and, consequently,
neither of b1 and b2, is zero; and (ii) at least one of a1 and a2, and
consequently, the corresponding vector of the {b1, b2 } pair, vanishes. In
the first case, nothing prevents us from computing a third vector of each
set, namely,

a3 = a1 × a2, b3 = b1 × b2 (2.143)

In the second case, however, we have two more possibilities, i.e., the angle
of rotation of that orthogonal matrix, A1 or A2, whose axial vector vanishes
is either 0 or π. If the foregoing angle vanishes, then A underwent a pure
translation from A0, the same holding, of course, for B and B0. This means
that the corresponding measurement becomes useless for our purposes, and
a new measurement is needed, involving a rotation. If, on the other hand,
the same angle is π, then the associated rotation is symmetric and the unit
vector e parallel to its axis can be determined from eq.(2.49) in both A
and B. This unit vector, then, would play the role of the vanishing axial
vector, and we would thus end up, in any event, with two pairs of nonzero
vectors, {ai }2

1 and {bi }2
1. As a consequence, we can always find two triads

of nonzero vectors, { ai }3
1 and {bi }3

1, that are related by

ai = [Q ]A bi, for i = 1, 2, 3 (2.144)

TLFeBOOK



68 2. Mathematical Background

The problem at hand now reduces to computing [Q ]A from eq.(2.144). In
order to perform this computation, we write the three foregoing equations
in matrix form, namely,

E = [Q ]A F (2.145)
with E and F defined as

E ≡ [ a1 a2 a3 ] , F ≡ [b1 b2 b3 ] (2.146)

Now, by virtue of the form in which the two vector triads were defined,
none of the two above matrices is singular, and hence, we have

[Q ]A = EF−1 (2.147)

Moreover, note that the inverse of F can be expressed in terms of its
columns explicitly, without introducing components, if the concept of re-
ciprocal bases is recalled (Brand, 1965). Thus,

F−1 =
1
∆




(b2 × b3)T

(b3 × b1)T

(b1 × b2)T


 , ∆ ≡ b1 × b2 · b3 (2.148)

Therefore,

[Q ]A =
1
∆

[a1(b2 × b3)T + a2(b3 × b1)T + a3(b1 × b2)T ] (2.149)

thereby completing the computation of [Q ]A directly and with simple vec-
tor operations.

Example 2.7.3 (Hand-Eye Calibration) Determine the relative orien-
tation of a frame B attached to a camera mounted on a robot end-effector,
with respect to a frame A fixed to the latter, as shown in Fig. 2.6. It is as-
sumed that two measurements of the orientation of the two frames with re-
spect to frames A0 and B0 in the reference configuration of the end-effector
are available. These measurements produce the orientation matrices Ai of
the frame fixed to the camera and Bi of the frame fixed to the end-effector,
for i = 1, 2. The numerical data of this example are given below:

A1 =



−0.92592593 −0.37037037 −0.07407407
0.28148148 −0.80740741 0.51851852
−0.25185185 0.45925926 0.85185185




A2 =



−0.83134406 0.02335236 −0.55526725
−0.52153607 0.31240270 0.79398028
0.19200830 0.94969269 −0.24753503




B1 =



−0.90268482 0.10343126 −0.41768659
0.38511568 0.62720266 −0.67698060
0.19195318 −0.77195777 −0.60599932




B2 =



−0.73851280 −0.54317226 0.39945305
−0.45524951 0.83872293 0.29881721
−0.49733966 0.03882952 −0.86668653



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FIGURE 2.6. Measuring the orientation of a camera-fixed coordinate frame with
respect to a frame fixed to a robotic end-effector.

Solution: Shiu and Ahmad (1987) formulated this problem in the form
of a matrix linear homogeneous equation, while Chou and Kamel (1988)
solved the same problem using quaternions and very cumbersome numeri-
cal methods that involve singular-value computations. The latter require an
iterative procedure within a Newton-Raphson method, itself iterative, for
nonlinear-equation solving. Other attempts to solve the same problem have
been reported in the literature, but these also resorted to extremely com-
plicated numerical procedures for nonlinear-equation solving (Chou and
Kamel, 1991). More recently, Horaud and Dornaika (1995) proposed a more
concise method based on quaternions, a.k.a. Euler-Rodrigues parameters,
that nevertheless is computationally costlier than the method we use here.
The approach outlined in this subsection is essentially the same as that
proposed earlier (Angeles, 1989), although here we have adopted a simpler
procedure than that of the foregoing reference.

First, the vector of matrix Ai, represented by ai, and the vector of matrix
Bi, represented by bi, for i = 1, 2, are computed from simple differences of
the off-diagonal entries of the foregoing matrices, followed by a division by
2 of all the entries thus resulting, which yields

a1 =



−0.02962963
0.08888889
0.32592593


 , a2 =




0.07784121
−0.37363778
−0.27244422



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b1 =



−0.04748859
−0.30481989
0.14084221


 , b2 =



−0.12999385
0.44869636
0.04396138




In the calculations below, 16 digits were used, but only eight are dis-
played. Furthermore, with the foregoing vectors, we compute a3 and b3

from cross products, thus obtaining

a3 =



0.09756097
0.01730293
0.00415020




b3 =



−0.07655343
−0.01622096
−0.06091842




Furthermore, ∆ is obtained as

∆ = 0.00983460

while the individual rank-one matrices inside the brackets of eq.(2.149) are
calculated as

a1(b2 × b3)T =




0.00078822 0.00033435 −0.00107955
−0.00236467 −0.00100306 0.00323866
−0.00867044 −0.00367788 0.01187508




a2(b3 × b1)T =



−0.00162359 0.00106467 0.00175680
0.00779175 −0.00510945 −0.00843102
0.00568148 −0.00372564 −0.00614762




a3(b1 × b2)T =



−0.00746863 −0.00158253 −0.00594326
−0.00132460 −0.00028067 −0.00105407
−0.00031771 −0.00006732 −0.00025282




whence Q in the A frame is readily obtained as

[Q ]A =



−0.84436553 −0.01865909 −0.53545750
0.41714750 −0.65007032 −0.63514856
−0.33622873 −0.75964911 0.55667078




thereby completing the desired computation.
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3
Fundamentals of Rigid-Body
Mechanics

3.1 Introduction

The purpose of this chapter is to lay down the foundations of the kineto-
statics and dynamics of rigid bodies, as needed in the study of multibody
mechanical systems. With this background, we study the kinetostatics and
dynamics of robotic manipulators of the serial type in Chapters 4 and 6,
respectively, while devoting Chapter 5 to the study of trajectory planning.
The latter requires, additionally, the background of Chapter 4. A special
feature of this chapter is the study of the relations between the angular
velocity of a rigid body and the time-rates of change of the various sets
of rotation invariants introduced in Chapter 2. Similar relations between
the angular acceleration and the second time-derivatives of the rotation
invariants are also recalled, the corresponding derivations being outlined in
Appendix A.

Furthermore, an introduction to the very useful analysis tool known as
screw theory (Roth, 1984) is included. In this context, the concepts of twist
and wrench are introduced, which prove in subsequent chapters to be ex-
tremely useful in deriving the kinematic and static, i.e., the kinetostatic,
relations among the various bodies of multibody mechanical systems.
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3.2 General Rigid-Body Motion and Its Associated
Screw

In this section, we analyze the general motion of a rigid body. Thus, let A
and P be two points of the same rigid body B, the former being a particular
reference point, whereas the latter is an arbitrary point of B. Moreover, the
position vector of point A in the original configuration is a, and the position
vector of the same point in the displaced configuration, denoted by A′, is
a′. Similarly, the position vector of point P in the original configuration is
p, while in the displaced configuration, denoted by P ′, its position vector is
p′. Furthermore, p′ is to be determined, while a, a′, and p are given, along
with the rotation matrix Q. Vector p − a can be considered to undergo a
rotation Q about point A throughout the motion taking the body from the
original to the final configuration. Since vector p−a is mapped into p′−a′

under the above rotation, one can write

p′ − a′ = Q(p − a) (3.1)

and hence
p′ = a′ + Q(p − a) (3.2)

which is the relationship sought. Moreover, let dA and dP denote the dis-
placements of A and P , respectively, i.e.,

dA ≡ a′ − a, dP ≡ p′ − p (3.3)

From eqs.(3.2) and (3.3) one can readily obtain an expression for dP ,
namely,

dP = a′ − p + Q(p− a)
= a′ − a − p + Q(p− a) + a (3.4)
= dA + (Q− 1)(p − a) (3.5)

What eq.(3.5) states is that the displacement of an arbitrary point P of
a rigid body whose position vector in an original configuration is p is de-
termined by the displacement of one certain point A and the concomitant
rotation Q. Clearly, once the displacement of P is known, its position vec-
tor p′ can be readily determined. An interesting result in connection with
the foregoing discussion is summarized below:

Theorem 3.2.1 The component of the displacements of all the points of
a rigid body undergoing a general motion along the axis of the underlying
rotation is a constant.

Proof: Multiply both sides of eq.(3.5) by eT , the unit vector parallel to the
axis of the rotation represented by Q, thereby obtaining

eTdP = eT dA + eT (Q − 1)(p− a)
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Now, the second term of the right-hand side of the above equation vanishes
because Qe = e, and hence, QTe = e, by hypothesis, the said equation
thus leading to

eTdP = eTdA ≡ d0 (3.6)

thereby showing that the displacements of all points of the body have the
same projection d0 onto the axis of rotation, q.e.d.

As a consequence of the foregoing result, we have the classical Mozzi-
Chasles Theorem (Mozzi, 1763; Chasles, 1830; Ceccarelli, 1995), namely,

Theorem 3.2.2 (Mozzi, 1763; Chasles, 1830) Given a rigid body un-
dergoing a general motion, a set of its points located on a line L undergo
identical displacements of minimum magnitude. Moreover, line L and the
minimum-magnitude displacement are parallel to the axis of the rotation
involved.

Proof: The proof is straightforward in light of Theorem 3.2.1, which al-
lows us to express the displacement of an arbitrary point P as the sum of
two orthogonal components, namely, one parallel to the axis of rotation,
independent of P and denoted by d‖, and one perpendicular to this axis,
denoted by d⊥, i.e.,

dP = d‖ + d⊥ (3.7a)

where
d‖ = eeTdP = d0e, d⊥ = (1− eeT )dP (3.7b)

and clearly, d0 is a constant that is defined as in eq.(3.6), while d‖ and d⊥
are mutually orthogonal. Indeed,

d‖ · d⊥ = d0eT (1− eeT )dP = d0(eT − eT )dP = 0

Now, by virtue of the orthogonality of the two components of dP , it is
apparent that

‖dP ‖2 = ‖d‖‖2 + ‖d⊥‖2 = d2
0 + ‖d⊥‖2

for the displacement dP of any point of the body. Now, in order to minimize
‖dP ‖ we have to make ‖d⊥‖, and hence, d⊥ itself, equal to zero, i.e., we
must have dP parallel to e:

dP = αe

for a certain scalar α. That is, the displacements of minimum magnitude
of the body under study are parallel to the axis of Q, thereby proving the
first part of the Mozzi-Chasles Theorem. The second part is also readily
proven by noticing that if P ∗ is a point of minimum magnitude of position
vector p∗, its component perpendicular to the axis of rotation must vanish,
and hence,

d∗
⊥ ≡ (1 − eeT )dP∗

= (1 − eeT )dA + (1− eeT )(Q − 1)(p∗ − a) = 0
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Upon expansion of the above expression for d∗
⊥, the foregoing equation

leads to
(1− eeT )dA + (Q− 1)(p∗ − a) = 0

Now it is apparent that if we define a line L passing through P ∗ and parallel
to e, then the position vector p∗ + λe of any of its points P satisfies the
foregoing equation. As a consequence, all points of minimum magnitude lie
in a line parallel to the axis of rotation of Q, q.e.d.

An important implication of the foregoing theorem is that a rigid body
can attain an arbitrary configuration from a given original one, following a
screw-like motion of axis L and pitch p, the latter being defined presently.
Thus, it seems appropriate to call L the screw axis of the rigid-body motion.

Note that d0, as defined in eq.(3.6), is an invariant of the motion at hand.
Thus, associated with a rigid-body motion, one can then define a screw of
axis L and pitch p. Of course, the pitch is defined as

p ≡ d0

φ
=

dT
Pe
φ

or p ≡ 2πd0

φ
(3.8)

which has units of m/rad or, correspondingly, of m/turn. Moreover, the
angle φ of the rotation involved can be regarded as one more feature of this
motion. This angle is, in fact, the amplitude associated with the said motion.
We will come across screws in discussing velocities and forces acting on rigid
bodies, along with their pitches and amplitudes. Thus, it is convenient to
introduce this concept at this stage.

3.2.1 The Screw of a Rigid-Body Motion

The screw axis L is totally specified by a given point P0 of L that can be
defined, for example, as that lying closest to the origin, and a unit vector
e defining its direction. Expressions for the position vector of P0, p0, in
terms of a, a′ and Q, are derived below:

If P0 is defined as above, i.e., as the point of L lying closest to the origin,
then, obviously, p0 is perpendicular to e, i.e.,

eT p0 = 0 (3.9)

Moreover, the displacement d0 of P0 is parallel to the vector of Q, and
hence, is identical to d‖ defined in eq.(3.7b), i.e., it satisfies

(Q− 1)d0 = 0

where d0 is given as in eq.(3.5), namely, as

d0 = dA + (Q − 1)(p0 − a) (3.10a)

Now, since d0 is identical to d‖, we have, from eq.(3.7b),

dA + (Q− 1)(p0 − a) = d‖ ≡ eeTd0
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But from Theorem 3.2.1,
eTd0 = eTdA

and so
dA + (Q− 1)(p0 − a) = eeTdA

or after rearranging terms,

(Q− 1)p0 = (Q − 1)a − (1− eeT )dA (3.10b)

Furthermore, in order to find an expression for p0, eq.(3.9) is adjoined to
eq.(3.10b), thereby obtaining

Ap0 = b (3.11)

where A is a 4 × 3 matrix and b is a 4-dimensional vector, being given by

A ≡
[
Q− 1
eT

]
, b ≡

[
(Q− 1)a − (1− eeT )dA

0

]
(3.12)

Equation (3.11) cannot be solved for p0 directly, because A is not a square
matrix. In fact, that equation represents an overdetermined system of four
equations and three unknowns. Thus, in general, that system does not
admit a solution. However, the four equations are compatible, and hence
in this particular case, a solution of that equation, which turns out to be
unique, can be determined. In fact, if both sides of eq.(3.11) are multiplied
from the left by AT , we have

ATAp0 = AT b (3.13)

Moreover, if the product AT A, which is a 3 × 3 matrix, is invertible, then
p0 can be computed from eq.(3.13). In fact, the said product is not only
invertible, but also admits an inverse that is rather simple to derive, as
shown below. Now the rotation matrix Q is recalled in terms of its natural
invariants, namely, the unit vector e parallel to its axis of rotation and the
angle of rotation φ about this axis, as given in eq.(2.48), reproduced below
for quick reference:

Q = eeT + cosφ(1 − eeT ) + sinφE

where 1 represents the 3 × 3 identity matrix and E the cross-product ma-
trix of e, as introduced in eq.(2.37). Further, eq.(2.48) is substituted into
eq.(3.12), which yields

ATA = 2(1 − cosφ)1 − (1 − 2 cosφ)eeT (3.14)

It is now apparent that the foregoing product is a linear combination of 1
and eeT . This suggests that its inverse is very likely to be a linear com-
bination of these two matrices as well. If this is in fact true, then one can
write

(AT A)−1 = α1 + βeeT (3.15)
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coefficients α and β being determined from the condition that the product
of AT A by its inverse should be 1, which yields

α =
1

2(1 − cosφ)
, β =

1 − 2 cosφ

2(1 − cosφ)
(3.16)

and hence,

(AT A)−1 =
1

2(1 − cosφ)
1 +

1 − 2 cosφ

2(1 − cosφ)
eeT (3.17)

On the other hand,

AT b = (Q− 1)T [(Q − 1)a − dA] (3.18)

Upon solving eq.(3.13) for p0 and substituting relations (3.17) and (3.18)
into the expression thus resulting, one finally obtains

p0 =
(Q − 1)T (Qa − a′)

2(1 − cosφ)
, for φ 	= 0 (3.19)

We have thus defined a line L of the rigid body under study that is
completely defined by its point P0 of position vector p0 and a unit vector
e determining its direction. Moreover, we have already defined the pitch of
the associated motion, eq.(3.8). The line thus defined, along with the pitch,
determines the screw of the motion under study.

3.2.2 The Plücker Coordinates of a Line

Alternatively, the screw axis, and any line for that matter, can be defined
more conveniently by its Plücker coordinates. In motivating this concept,
we recall the equation of a line L passing through two points P1 and P2 of
position vectors p1 and p2, as shown in Fig. 3.1.

If point P lies in L, then, it must be collinear with P1 and P2, a property
that is expressed as

(p2 − p1) × (p − p1) = 0

FIGURE 3.1. A line L passing through two points.
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or upon expansion,

(p2 − p1) × p + p1 × (p2 − p1) = 0 (3.20)

If we now introduce the cross-product matrices P1 and P2 of vectors p1

and p2 in the above equation, we have an alternative expression for the
equation of the line, namely,

(P2 − P1)p + p1 × (p2 − p1) = 0

The above equation can be regarded as a linear equation in the homoge-
neous coordinates of point P , namely,

[P2 − P1 p1 × (p2 − p1) ]
[
p
1

]
= 0 (3.21)

It is now apparent that the line is defined completely by two vectors, the
difference p2 − p1, or its cross-product matrix for that matter, and the
cross product p1 × (p2 −p1). We will thus define a 6-dimensional array γL
containing these two vectors, namely,

γL ≡
[

p2 − p1

p1 × (p2 − p1)

]
(3.22)

whose six scalar entries are the Plücker coordinates of L. Moreover, if we
let

e ≡ p2 − p1

‖p2 − p1‖ , n ≡ p1 × e (3.23)

then we can write

γL = ‖p2 − p1‖
[
e
n

]

The six scalar entries of the above array are the normalized Plücker coor-
dinates of L. Vector e determines the direction of L, while n determines
its location; n can be interpreted as the moment of a unit force parallel to
e and of line of action L. Hence, n is called the moment of L. Henceforth,
only the normalized Plücker coordinates of lines will be used. For brevity,
we will refer to these simply as the Plücker coordinates of the line under
study. The Plücker coordinates thus defined will be thus stored in a Plücker
array κL in the form

κ =
[
e
n

]
(3.24)

where for conciseness, we have dropped the subscript L, while assuming
that the line under discussion is self-evident.

Note, however, that the six components of the Plücker array, i.e., the
Plücker coordinates of line L, are not independent, for they obey

e · e = 1, n · e = 0 (3.25)
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and hence, any line L has only four independent Plücker coordinates. In the
foregoing paragraphs, we have talked about the Plücker array of a line, and
not about the Plücker vector; the reason for this distinction is given below.
The set of Plücker arrays is a clear example of an array of real numbers
not constituting a vector space. What disables Plücker arrays from being
vectors are the two constraints that their components must satisfy, namely,
(i) the sum of the squares of the first three components of a Plücker array
is unity, and (ii) the unit vector of a line is normal to the moment of the
line. Nevertheless, we can perform with Plücker arrays certain operations
that pertain to vectors, as long as we keep in mind the essential differences.
For example, we can multiply Plücker arrays by matrices of the suitable
dimension, with entries having appropriate units, as we will show presently.

It must be pointed out that a Plücker array is dependent upon the loca-
tion of the point with respect to which the moment of the line is measured.
Indeed, let κA and κB denote the Plücker arrays of the same line L when
its moment is measured at points A and B, respectively. Moreover, this
line passes through a point P of position vector p for a particular origin
O. Now, let the moment of L with respect to A and B be denoted by nA

and nB, respectively, i.e.,

nA ≡ (p − a) × e, nB ≡ (p − b) × e (3.26)

and hence,

κA ≡
[

e
nA

]
, κB ≡

[
e

nB

]
(3.27)

Obviously,
nB − nA = (a − b) × e (3.28)

i.e.,

κB =
[

e
nA + (a − b) × e

]
(3.29)

which can be rewritten as
κB = UκA (3.30)

with the 6 × 6 matrix U defined as

U ≡
[

1 O
A− B 1

]
(3.31)

while A and B are, respectively, the cross-product matrices of vectors a
and b, and O denotes the 3 × 3 zero matrix. Given the lower-triangular
structure of matrix U, its determinant is simply the product of its diagonal
entries, which are all unity. Hence,

det(U) = 1 (3.32)
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3.2 General Rigid-Body Motion and Its Associated Screw 79

U thus belonging to the unimodular group of 6×6 matrices. These matrices
are rather simple to invert. In fact, as one can readily prove,

U−1 =
[

1 O
B− A 1

]
(3.33)

Relation (3.30) can then be called the Plücker-coordinate transfer formula.
Note that upon multiplication of both sides of eq.(3.28) by (a − b),

(a − b)TnB = (a − b)T nA (3.34)

and hence, the moments of the same line L with respect to two points are
not independent, for they have the same component along the line joining
the two points.

A special case of a line, of interest in kinematics, is a line at infinity.
This is a line with undefined orientation, but with a defined direction of its
moment; this moment is, moreover, independent of the point with respect
to which it is measured. Very informally, the Plücker coordinates of a line at
infinity can be derived from the general expression, eq.(3.24), if we rewrite
it in the form

κ = ‖n‖
[
e/‖n‖
n/‖n‖

]

where clearly n/‖n‖ is a unit vector; henceforth, this vector will be denoted
by f. Now let us take the limit of the above expression as P goes to infinity,
i.e., when ‖p‖ → ∞, and consequently, as ‖n‖ → ∞. Thus,

lim
‖n‖→∞

κ =
(

lim
‖n‖→∞

‖n‖
)(

lim
‖n‖→∞

[
e/‖n‖

f

])

whence

lim
‖n‖→∞

κ =
(

lim
‖n‖→∞

‖n‖
)[

0
f

]

The 6-dimensional array appearing in the above equation is defined as the
Plücker array of a line at infinity, κ∞, namely,

κ∞ =
[
0
f

]
(3.35)

Note that a line at infinity of unit moment f can be thought of as being
a line lying in a plane perpendicular to the unit vector f, but otherwise
with an indefinite location in the plane, except that it is an infinitely large
distance from the origin. Thus, lines at infinity vary only in the orientation
of the plane in which they lie.
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3.2.3 The Pose of a Rigid Body

A possible form of describing a general rigid-body motion, then, is through
a set of eight real numbers, namely, the six Plücker coordinates of its screw
axis, its pitch, and its amplitude, i.e., its angle. Hence, a rigid-body mo-
tion is fully described by six independent parameters. Moreover, the pitch
can attain values from −∞ to +∞. Alternatively, a rigid-body motion can
be described by seven dependent parameters as follows: four invariants of
the concomitant rotation—the linear invariants, the natural invariants, or
the Euler–Rodrigues parameters, introduced in Section 2.3—and the three
components of the displacement of an arbitrary point. Since those invari-
ants are not independent, but subject to one constraint, this description
consistently involves six independent parameters. Thus, let a rigid body
undergo a general motion of rotation Q and displacement d from a refer-
ence configuration C0. If in the new configuration C a landmark point A of
the body has a position vector a, then the pose array, or simply the pose,
s of the body, is defined as a 7-dimensional array, namely,

s ≡



q
q0

dA


 (3.36)

where the 3-dimensional vector q and the scalar q0 are any four invariants
of Q. For example, if these are the Euler-Rodrigues parameters, then

q ≡ sin(
φ

2
)e, q0 ≡ cos(

φ

2
)

If alternatively, we work with the linear invariants, then

q ≡ (sin φ)e, q0 ≡ cosφ

and, of course, if we work instead with the natural invariants, then

q ≡ e, q0 ≡ φ

In the first two cases, the constraint mentioned above is

‖q‖2 + q2
0 = 1 (3.37)

In the last case, the constraint is simply

‖e‖2 = 1 (3.38)

An important problem in kinematics is the computation of the screw pa-
rameters, i.e., the components of s, as given in eq.(3.36), from coordinate
measurements over a certain finite set of points. From the foregoing discus-
sion, it is clear that the computation of the attitude of a rigid body, given
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by matrix Q or its invariants, is crucial in solving this problem. Moreover,
besides its theoretical importance, this problem, known as pose estimation,
has also practical relevance. Shown in Fig. 3.2 is the helmet-mounted dis-
play system used in flight simulators. The helmet is supplied with a set of
LEDs (light-emitting diodes) that emit infrared light signals at different
frequencies each. These signals are then picked up by two cameras, from
whose images the Cartesian coordinates of the LEDs centers are inferred.
With these coordinates and knowledge of the LED pattern, the attitude
of the pilot’s head is determined from the rotation matrix Q. Moreover,
with this information and that provided via sensors mounted on the lenses,
the position of the center of the pupil of the pilot’s eyes is then estimated.
This position, then, indicates on which part of his or her visual field the
pilot’s eyes are focusing. In this way, a high-resolution graphics monitor
synthesizes the image that the pilot would be viewing with a high level of
detail. The rest of the visual field is rendered as a rather blurred image, in
order to allocate computer resources where it really matters.

A straightforward method of computing the screw parameters consists
of regarding the motion as follows: Choose a certain point A of the body,

FIGURE 3.2. Helmet-mounted display system (courtesy of CAE Electronics Ltd.,
St.-Laurent, Quebec, Canada.)
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FIGURE 3.3. Decomposition of the displacement of a rigid body.

of position vector a, and track it as the body moves to a displaced config-
uration, at which point A moves to A′, of position vector a′. Assume that
the body reaches the displaced configuration B′, passing through an inter-
mediate one B′′, which is attained by pure translation. Next, configuration
B′ is reached by rotating the body about point A′, as indicated in Fig. 3.3.

Matrix Q can now be readily determined. To do this, define three points
of the body, P1, P2, and P3, in such a way that the three vectors defined
below are orthonormal and form a right-hand system:

e1 ≡ −−→
AP1, e2 ≡ −−→

AP2, e3 ≡ −−→
AP3 (3.39)

ei · ej = δij , i, j = 1, 2, 3, e3 = e1 × e2 (3.40)

where δij is the Kronecker delta, defined as 1 if i = j and 0 otherwise. Now,
let the set {ei}3

1 be labelled {e′i}3
1 and {e′′i }3

1 in configurations B′ and B′′,
respectively. Moreover, let qij denote the entries of the matrix representa-
tion of the rotation Q in a frame X, Y, Z with origin at A and such that
the foregoing axes are parallel to vectors e1, e2, and e3, respectively. It is
clear, from Definition 2.2.1, that

qij = ei · e′j (3.41)

i.e.,

[Q ] =




e1 · e′1 e1 · e′2 e1 · e′3
e2 · e′1 e2 · e′2 e2 · e′3
e3 · e′1 e3 · e′2 e3 · e′3


 (3.42)

Note that all ei and e′i appearing in eq.(3.42) must be represented in the
same coordinate frame. Once Q is determined, computing the remaining
screw parameters is straightforward. One can use, for example, eq.(3.19) to
determine the point of the screw axis that lies closest to the origin, which
would thus allow one to compute the Plücker coordinates of the screw axis.
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3.3 Rotation of a Rigid Body About a Fixed Point

In this section, the motion of a rigid body having a point fixed is analyzed.
This motion is fully described by a rotation matrix Q that is proper or-
thogonal. Now, Q will be assumed to be a smooth function of time, and
hence, the position vector of a point P in an original configuration, denoted
here by p0, is mapped smoothly into a new vector p(t), namely,

p(t) = Q(t)p0 (3.43)

The velocity of P is computed by differentiating both sides of eq.(3.43)
with respect to time, thus obtaining

ṗ(t) = Q̇(t)p0 (3.44)

which is not a very useful expression, because it requires knowledge of the
original position of P . A more useful expression can be derived if eq.(3.43) is
solved for p0 and the expression thus resulting is substituted into eq.(3.44),
which yields

ṗ = Q̇QTp (3.45)

where the argument t has been dropped because all quantities are now
time-varying, and hence, this argument is self-evident. The product Q̇QT

is known as the angular-velocity matrix of the rigid-body motion and is
denoted by Ω, i.e.,

Ω ≡ Q̇QT (3.46)

As a consequence of the orthogonality of Q, one has a basic result,
namely,

Theorem 3.3.1 The angular-velocity matrix is skew symmetric.

In order to derive the angular-velocity vector of a rigid-body motion,
we recall the concept of axial vector, or simply vector, of a 3 × 3 matrix,
introduced in Subsection 2.3.3. Thus, the angular-velocity vector ω of the
rigid-body motion under study is defined as the vector of Ω, i.e.,

ω ≡ vect(Ω) (3.47)

and hence, eq.(3.45) can be written as

ṗ = Ωp = ω × p (3.48)

from which it is apparent that the velocity of any point P of a body moving
with a point O fixed is perpendicular to line OP .
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3.4 General Instantaneous Motion of a Rigid Body

If a rigid body now undergoes the most general motion, none of its points
remains fixed, and the position vector of any of these, P , in a displaced con-
figuration is given by eq.(3.2). Let a0 and p0 denote the position vectors
of points A and P of Section 3.2, respectively, in the reference configura-
tion C0, a(t) and p(t) being the position vectors of the same points in the
displaced configuration C. Moreover, if Q(t) denotes the rotation matrix,
then

p(t) = a(t) + Q(t)(p0 − a0) (3.49)

Now, the velocity of P is computed by differentiating both sides of eq.(3.49)
with respect to time, thus obtaining

ṗ(t) = ȧ(t) + Q̇(t)(p0 − a0) (3.50)

which again, as expression (3.50), is not very useful, for it requires the
values of the position vectors of A and P in the original configuration.
However, if eq.(3.49) is solved for p0 −a0 and the expression thus resulting
is substituted into eq.(3.50), we obtain

ṗ = ȧ + Ω(p − a) (3.51)

or in terms of the angular-velocity vector,

ṗ = ȧ + ω × (p − a) (3.52)

where the argument t has been dropped for brevity but is implicit, since all
variables of the foregoing equation are now functions of time. Furthermore,
from eq.(3.52), it is apparent that the result below holds:

(ṗ − ȧ) · (p− a) = 0 (3.53)

which can be summarized as

Theorem 3.4.1 The relative velocity of two points of the same rigid body
is perpendicular to the line joining them.

Moreover, similar to the outcome of Theorem 3.2.1, one now has an ad-
ditional result that is derived upon dot-multiplying both sides of eq.(3.52)
by ω, namely,

ω · ṗ = ω · ȧ = constant

and hence,

Corollary 3.4.1 The projections of the velocities of all the points of a
rigid body onto the angular-velocity vector are identical.

Furthermore, similar to the Mozzi-Chasles Theorem, we have now
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Theorem 3.4.2 Given a rigid body under general motion, a set of its
points located on a line L′ undergoes the identical minimum-magnitude
velocity v0 parallel to the angular velocity.

Definition 3.4.1 The line containing the points of a rigid body undergoing
minimum-magnitude velocities is called the instant screw axis (ISA) of the
body under the given motion.

3.4.1 The Instant Screw of a Rigid-Body Motion

From Theorem 3.4.2, the instantaneous motion of a body is equivalent to
that of the bolt of a screw of axis L′, the ISA. Clearly, as the body moves,
the ISA changes, and the motion of the body is called an instantaneous
screw. Moreover, since v0 is parallel to ω, it can be written in the form

v0 = v0
ω

‖ω‖ (3.54)

where v0 is a scalar quantity denoting the signed magnitude of v0 and bears
the sign of v0 ·ω. Furthermore, the pitch of the instantaneous screw, p′, is
defined as

p′ ≡ v0

‖ω‖ ≡ ṗ · ω
‖ω‖2

or p′ ≡ 2πv0

‖ω‖ (3.55)

which thus bears units of m/rad or correspondingly, of m/turn.
Again, the ISA L′ can be specified uniquely through its Plücker coordi-

nates, stored in the pL′ array defined as

pL′ ≡
[
e′

n′

]
(3.56)

where e′ and n′ are, respectively, the unit vector defining the direction of
L′ and its moment about the origin, i.e.,

e′ ≡ ω

‖ω‖ , n′ ≡ p× e′ (3.57)

p being the position vector of any point of the ISA. Clearly, e′ is defined
uniquely but becomes trivial when the rigid body instantaneously under-
goes a pure translation, i.e., a motion during which, instantaneously, ω = 0.
In this case, e′ is defined as the unit vector parallel to the associated dis-
placement field. Thus, an instantaneous rigid-body motion is defined by a
line L′, a pitch p′, and an amplitude ‖ω‖. Such a motion is, then, fully
determined by six independent parameters, namely, the four independent
Plücker coordinates of L′, its pitch, and its amplitude. A line supplied with
a pitch is, in general, called a screw ; a screw supplied with an amplitude
representing the magnitude of an angular velocity provides the represen-
tation of an instantaneous rigid-body motion that is sometimes called the
twist, an item that will be discussed more in detail below.
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Hence, the instantaneous screw is fully defined by six independent real
numbers. Moreover, such as in the case of the screw motion, the pitch of
the instantaneous screw can attain values from −∞ to +∞.

The ISA can be alternatively described in terms of the position vector p′
0

of its point lying closest to the origin. Expressions for p′
0 in terms of the po-

sition and the velocity of an arbitrary body-point and the angular velocity
are derived below. To this end, we decompose ṗ into two orthogonal com-
ponents, ṗ‖ and ṗ⊥, along and transverse to the angular-velocity vector,
respectively. To this end, ȧ is first decomposed into two such orthogonal
components, ȧ‖ and ȧ⊥, the former being parallel, the latter normal to the
ISA, i.e.,

ȧ ≡ ȧ‖ + ȧ⊥ (3.58)

These orthogonal components are given as

ȧ‖ ≡ ȧ · ω ω

‖ω‖2
≡ ωωT

‖ω‖2
ȧ, ȧ⊥ ≡

(
1− ωωT

‖ω‖2

)
ȧ ≡ − 1

‖ω‖2
Ω2ȧ (3.59)

In the derivation of eq.(3.59) we have used the identity introduced in
eq.(2.39), namely,

Ω2 ≡ ωωT − ‖ω‖21 (3.60)

Upon substitution of eq.(3.59) into eq.(3.52), we obtain

ṗ =
ωωT

‖ω‖2
ȧ

︸ ︷︷ ︸
ṗ‖

− 1
‖ω‖2

Ω2ȧ + Ω(p − a)
︸ ︷︷ ︸

ṗ⊥

(3.61)

Of the three components of ṗ, the first, henceforth referred to as its axial
component, is parallel, the last two being normal to ω. The sum of the last
two components is referred to as the normal component of ṗ. From eq.(3.61)
it is apparent that the axial component is independent of p, while the
normal component is a linear function of p. An obvious question now arises:
For an arbitrary motion, is it possible to find a certain point of position
vector p whose velocity normal component vanishes? The vanishing of the
normal component obviously implies the minimization of the magnitude of
ṗ. The condition under which this happens can now be written as

ṗ⊥ = 0

or
Ω(p − a) − 1

‖ω‖2
Ω2 ȧ = 0 (3.62)

which can be further expressed as a vector equation linear in p, namely,

Ωp = Ω
(
a +

1
‖ω‖2

Ωȧ
)

(3.63)
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or
Ω(p − r) = 0 (3.64a)

with r defined as
r ≡ a +

1
‖ω‖2

Ωȧ (3.64b)

and hence, a possible solution of the foregoing problem is

p = r = a +
1

‖ω‖2
Ωȧ (3.65)

However, this solution is not unique, for eq.(3.64a) does not require that
p−r be zero, only that this difference lie in the nullspace of Ω, i.e., that p−r
be linearly dependent with ω. In other words, if a vector αω is added to p,
then the sum also satisfies eq.(3.63). It is then apparent that eq.(3.63) does
not determine a single point whose normal velocity component vanishes
but a set of points lying on the ISA, and thus, other solutions are possible.
For example, we can find the point of the ISA lying closest to the origin. To
this end, let p′

0 be the position vector of that point. This vector is obviously
perpendicular to ω, i.e.,

ωTp′
0 = 0 (3.66)

Next, eq.(3.63) is rewritten for p′
0, and eq.(3.66) is adjoined to it, thereby

deriving an expanded linear system of equations, namely,

Ap′
0 = b (3.67)

where A is a 4 × 3 matrix and b is a 4-dimensional vector, both of which
are given below:

A ≡
[

Ω
ωT

]
, b ≡

[
Ωa + (1/‖ω‖2)Ω2ȧ

0

]
(3.68)

This system is of the same nature as that appearing in eq.(3.11), and hence,
it can be solved for p′

0 following the same procedure. Thus, both sides of
eq.(3.67) are multiplied from the left by AT , thereby obtaining

ATAp′
0 = AT b (3.69)

where
ATA = ΩTΩ + ωωT = −Ω2 + ωωT (3.70)

Moreover, from eq.(3.60), the rightmost side of the foregoing relation be-
comes ‖ω‖21, and hence, the matrix coefficient of the left-hand side of
eq.(3.69) and the right-hand side of the same equation reduce, respectively,
to

ATA = ‖ω‖21, ATb = Ω(ȧ − Ωa) (3.71)
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Upon substitution of eq.(3.71) into eq.(3.69) and further solving for p′
0, the

desired expression is derived:

p′
0 =

Ω(ȧ − Ωa)
‖ω‖2

≡ ω × (ȧ − ω × a)
‖ω‖2

(3.72)

Thus, the instantaneous screw is fully defined by an alternative set of six
independent scalars, namely, the three components of its angular velocity
ω and the three components of the velocity of an arbitrary body point A,
denoted by ȧ. As in the case of the screw motion, we can also represent the
instantaneous screw by a line and two additional parameters, as we explain
below.

3.4.2 The Twist of a Rigid Body

A line, as we saw earlier, is fully defined by its 6-dimensional Plücker array,
which contains only four independent components. Now, if a pitch p is
added as a fifth feature to the line or correspondingly, to its Plücker array,
we obtain a screw s, namely,

s ≡
[

e
p × e + pe

]
(3.73)

An amplitude is any scalar A multiplying the foregoing screw. The am-
plitude produces a twist or a wrench, to be discussed presently, depending
on its units. The twist or the wrench thus defined can be regarded as an
eight-parameter array. These eight parameters, of which only six are in-
dependent, are the amplitude, the pitch, and the six Plücker coordinates
of the associated line. Clearly, a twist or a wrench is defined completely
by six independent real numbers. More generally, a twist can be regarded
as a 6-dimensional array defining completely the velocity field of a rigid
body, and it comprises the three components of the angular velocity and
the three components of the velocity of any of the points of the body.

Below we elaborate on the foregoing concepts. Upon multiplication of
the screw appearing in eq.(3.73) by the amplitude A representing the mag-
nitude of an angular velocity, we obtain a twist t, namely,

t ≡
[

Ae
p × (Ae) + p(Ae)

]

where the product Ae can be readily identified as the angular velocity ω
parallel to vector e, of magnitude A. Moreover, the lower part of t can be
readily identified with the velocity of a point of a rigid body. Indeed, if we
regard the line L and point O as sets of points of a rigid body B moving
with an angular velocity ω and such that point P moves with a velocity
pω parallel to the angular velocity, then the lower vector of t, denoted by
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v, represents the velocity of point O, i.e.,

v = −ω × p + pω

We can thus express the twist t as

t ≡
[

ω
v

]
(3.74)

A special case of great interest in kinematics is the screw of infinitely
large pitch. The form of this screw is derived, very informally, by taking
the limit of expression (3.73) as p → ∞, namely,

lim
p→∞

[
e

p × e + pe

]
≡ lim

p→∞

(
p

[
e/p

(p × e)/p + e

])

which readily leads to

lim
p→∞

[
e

p× e + pe

]
=
(

lim
p→∞ p

)[
0
e

]

The screw of infinite pitch s∞ is defined as the 6-dimensional array appear-
ing in the above equation, namely,

s∞ ≡
[
0
e

]
(3.75)

Note that this screw array is identical to the Plücker array of the line at
infinity lying in a plane of unit normal e.

The twist array, as defined in eq.(3.74), with ω on top, represents the
ray coordinates of the twist. An exchange of the order of the two Cartesian
vectors of this array, in turn, gives rise to the axis coordinates of the twist.

The foregoing twist was also termed motor by Everett (1875). As Phillips
(1990) points out, the word motor is an abbreviation of moment and vector.
An extensive introduction into motor algebra was published by von Mises
(1924), a work that is now available in English (von Mises, 1996). Roth
(1984), in turn, provided a summary of these concepts, as applicable to
robotics. The foregoing array goes also by other names, such as the German
Kinemate.

The relationships between the angular-velocity vector and the time de-
rivatives of the invariants of the associated rotation are linear. Indeed, let
the three sets of four invariants of rotation, namely, the natural invariants,
the linear invariants, and the Euler-Rodrigues parameters be grouped in
the 4-dimensional arrays ν, λ, and η, respectively, i.e.,

ν ≡
[
e
φ

]
, λ ≡

[
(sin φ)e
cosφ

]
, η ≡

[
[sin(φ/2)]e
cos(φ/2)

]
(3.76)
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We then have the linear relations derived in full detail elsewhere (Angeles,
1988), and outlined in Appendix A for quick reference, namely,

ν̇ = Nω, λ̇ = Lω, η̇ = Hω (3.77a)

with N, L, and H defined as

N ≡
[

[sin φ/(2(1 − cosφ))](1 − eeT ) − (1/2)E
eT

]
, (3.77b)

L ≡
[

(1/2)[tr(Q)1 − Q]
−(sinφ)eT

]
, (3.77c)

H ≡ 1
2

[
cos(φ/2)1− sin(φ/2)E

− sin(φ/2)eT

]
(3.77d)

where, it is recalled, tr(·) denotes the trace of its square matrix argument
(·), i.e., the sum of the diagonal entries of that matrix.

The inverse relations of those shown in eqs.(3.77a) are to be derived by
resorting to the approach introduced when solving eq.(3.67) for p′

0, thereby
obtaining

ω = Ñν̇ = L̃λ̇ = H̃η̇ (3.78a)

the 3 × 4 matrices Ñ, L̃, and H̃ being defined below:

Ñ ≡ [ (sin φ)1 + (1 − cosφ)E e ] , (3.78b)

L̃ ≡ [1 + [(sin φ)/(1 + cosφ)]E −[(sin φ)/(1 + cosφ)]e ] , (3.78c)

H̃ ≡ 2 [ [cos(φ/2)]1 + [sin(φ/2)]E −[sin(φ/2)]e ] (3.78d)

As a consequence, we have the following:

Caveat The angular velocity vector is not a time-derivative, i.e., no Carte-
sian vector exists whose time-derivative is the angular-velocity vector.

However, matrices N, L, and H of eqs.(3.77b–d) can be regarded as
integration factors that yield time-derivatives.

Now we can write the relationship between the twist and the time-rate
of change of the 7-dimensional pose array s, namely,

ṡ = Tt (3.79)

where

T ≡
[

F O43

O 1

]
(3.80)

in which O and O43 are the 3 × 3 and the 4 × 3 zero matrices, while
1 is the 3 × 3 identity matrix and F is, correspondingly, N, L, or H,
depending upon the invariant representation chosen for the rotation. The
inverse relationship of eq.(3.79) takes the form

t = Sṡ (3.81a)
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where

S ≡
[

F̃ O
O34 1

]
(3.81b)

in which O34 is the 3 × 4 zero matrix. Moreover, F̃ is one of Ñ, L̃, or
H̃, depending on the rotation representation adopted, namely, the nat-
ural invariants, the linear invariants, or the Euler-Rodrigues parameters,
respectively.

A formula that relates the twist of the same rigid body at two different
points is now derived. Let A and P be two arbitrary points of a rigid body.
The twist at each of these points is defined as

tA =
[

ω
vA

]
, tP =

[
ω
vP

]
(3.82)

Moreover, eq.(3.52) can be rewritten as

vP = vA + (a − p) × ω (3.83)

Combining eq.(3.82) with eq.(3.83) yields

tP = UtA (3.84)

where

U ≡
[

1 O
A − P 1

]
(3.85)

with the 6× 6 matrix U defined as in eq.(3.31), while A and P denote the
cross-product matrices of vectors a and p, respectively. Thus, eq.(3.84) can
be fairly called the twist-transfer formula.

3.5 Acceleration Analysis of Rigid-Body Motions

Upon differentiation of both sides of eq.(3.51) with respect to time, one
obtains

p̈ = ä + Ω̇(p − a) + Ω(ṗ − ȧ) (3.86)

Now, eq.(3.51) is solved for ṗ − ȧ, and the expression thus resulting is
substituted into eq.(3.86), thereby obtaining

p̈ = ä + (Ω̇ + Ω2)(p − a) (3.87)

where the matrix sum in parentheses is termed the angular-acceleration
matrix of the rigid-body motion and is represented by W, i.e.,

W ≡ Ω̇ + Ω2 (3.88)

TLFeBOOK



92 3. Fundamentals of Rigid-Body Mechanics

Clearly, the first term of the right-hand side of eq.(3.88) is skew-symmetric,
whereas the second one is symmetric. Thus,

vect(W) = vect(Ω̇) = ω̇ (3.89)

ω̇ being termed the angular-acceleration vector of the rigid-body motion.
We have now an interesting result, namely,

tr(W) = tr(Ω2) = tr(−‖ω‖21 + ωωT )
= −‖ω‖2tr(1) + ω · ω = −2‖ω‖2 (3.90)

Moreover, eq.(3.87) can be written as

p̈ = ä + ω̇ × (p − a) + ω × [ω × (p − a)] (3.91)

On the other hand, the time derivative of t, henceforth referred to as the
twist rate, is displayed below:

ṫ ≡
[

ω̇
v̇

]
(3.92)

in which v̇ is the acceleration of a point of the body. The relationship
between the twist rate and the second time derivative of the screw is derived
by differentiation of both sides of eq.(3.79), which yields

s̈ = Tṫ + Ṫt (3.93)

where

Ṫ ≡
[

Ḟ O43

O O

]
(3.94)

and F is one of N, L, or H, accordingly. The inverse relationship of eq.(3.93)
is derived by differentiating both sides of eq.(3.81a) with respect to time,
which yields

ṫ = Ss̈ + Ṡṡ (3.95)

where

Ṡ =
[ ˙̃F O
O34 O

]
(3.96)

with O and O34 already defined in eq.(3.81b) as the 3 × 3 and the 3 × 4

zero matrices, respectively, while ˙̃F is one of ˙̃N, ˙̃L, or ˙̃H, according with
the type of rotation representation at hand.

Before we take to differentiating the foregoing matrices, we introduce a
few definitions: Let

λ ≡
[

u
u0

]
, η ≡

[
r
r0

]
(3.97a)
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i.e.,

u ≡ sin φe, u0 ≡ cosφ, r ≡ sin
(

φ

2

)
e, r0 ≡ cos

(
φ

2

)
(3.97b)

Thus, the time derivatives sought take on the forms

Ṅ =
1

4(1 − cosφ)

[
B
ė

]
(3.98a)

L̇ =
[

(1/2)[1tr(Q̇) − Q̇]
−(1/2)ωT [1tr(Q) − QT ]

]

=
[ −(ω · u)1− (1/2)ΩQ
−(1/2)ωT [1tr(Q) − QT ]

]
(3.98b)

Ḣ =
1
2

[
ṙ01 − Ṙ
−ṙT

]
(3.98c)

where we have used the identities below, which are derived in Appendix A.

tr(Q̇) ≡ tr(ΩQ) ≡ −2ωT u (3.98d)

Furthermore, R denotes the cross-product matrix of r, and B is defined as

B ≡ −2(e · ω)1 + 2(3 − cosφ)(e · ω)eeT − 2(1 + sinφ)ωeT

−(2 cosφ + sin φ)eωT − (sin φ)[Ω − (e · ω)E] (3.98e)

Moreover,

˙̃N = [ φ̇(cos φ)1 + φ̇(sin θ)E ė ] (3.99a)

˙̃L = [V/D u̇ ] (3.99b)

˙̃H = [ ṙ01 + Ṙ −ṙ ] (3.99c)

where V and D are defined below:

V ≡ U̇ − (u̇uT + uu̇T ) − u̇0

D
(U − uuT ) (3.99d)

D ≡ 1 + u0 (3.99e)

with U denoting the cross-product matrix of u.

3.6 Rigid-Body Motion Referred to Moving
Coordinate Axes

Although in kinematics no “preferred” coordinate system exists, in dynam-
ics the governing equations of rigid-body motions are valid only in inertial
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frames. An inertial frame can be defined as a coordinate system that trans-
lates with uniform velocity and constant orientation with respect to the
stars. Thus, it is important to refer vectors and matrices to inertial frames,
but sometimes it is not possible to do so directly. For instance, a spacecraft
can be supplied with instruments to measure the velocity and the acceler-
ation of a satellite drifting in space, but the measurements taken from the
spacecraft will be referred to a coordinate frame fixed to it, which is not in-
ertial. If the motion of the spacecraft with respect to an inertial coordinate
frame is recorded, e.g., from an Earth-based station, then the acceleration
of the satellite with respect to an inertial frame can be computed using the
foregoing information. How to do this is the subject of this section.

In the realm of kinematics, it is not necessary to distinguish between
inertial and noninertial coordinate frames, and hence, it will suffice to call
the coordinate systems involved fixed and moving. Thus, consider the fixed
coordinate frame X, Y, Z, which will be labeled F , and the moving coor-
dinate frame X , Y, and Z, which will be labeled M, both being depicted
in Fig. 3.4. Moreover, let Q be the rotation matrix taking frame F into
the orientation of M, and o the position vector of the origin of M from
the origin of F . Further, let p be the position vector of point P from the
origin of F and ρ the position vector of the same point from the origin of
M. From Fig. 3.4 one has

[p ]F = [o ]F + [ ρ ]F (3.100)

where it will be assumed that ρ is not available in frame F , but in M.
Hence,

[ ρ ]F = [Q ]F [ ρ ]M (3.101)
Substitution of eq.(3.101) into eq.(3.100) yields

[p ]F = [o ]F + [Q ]F [ ρ ]M (3.102)

Now, in order to compute the velocity of P , both sides of eq.(3.102) are
differentiated with respect to time, which leads to

[ ṗ ]F = [ ȯ ]F + [ Q̇ ]F [ ρ ]M + [Q ]F [ ρ̇ ]M (3.103)

Furthermore, from the definition of Ω, eq.(3.46), we have

[ Q̇ ]F = [Ω ]F [Q ]F (3.104)

Upon substitution of the foregoing relation into eq.(3.103), we obtain

[ ṗ ]F = [ ȯ ]F + [Ω ]F [Q ]F [ ρ ]M + [Q ]F [ ρ̇ ]M (3.105)

which is an expression for the velocity of P in F in terms of the velocity of
P in M and the twist of M with respect to F . Next, the acceleration of
P in F is derived by differentiation of both sides of eq.(3.105) with respect
to time, which yields

[ p̈ ]F = [ ö ]F + [ Ω̇ ]F [Q ]F [ ρ ]M + [Ω ]F [ Q̇ ]F [ ρ ]M
+[Ω ]F [Q ]F [ρ̇ ]M + [ Q̇ ]F [ ρ̇ ]M + [Q ]F [ ρ̈ ]M (3.106)
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FIGURE 3.4. Fixed and moving coordinate frames.

Further, upon substitution of identity (3.104) into eq.(3.106), we obtain

[ p̈ ]F = [ ö ]F + ( [ Ω̇ ]F + [Ω2 ]F )[Q ]F [ ρ ]M
+2[Ω ]F [Q ]F [ ρ̇ ]M + [Q ]F [ ρ̈ ]M (3.107)

Moreover, from the results of Section 3.5, it is clear that the first two
terms of the right-hand side of eq.(3.107) represent the acceleration of P as
a point of M, whereas the fourth term is the acceleration of P measured
from M. The third term is what is called the Coriolis acceleration, as it was
first pointed out by the French mathematician Gustave Gaspard Coriolis
(1835).

3.7 Static Analysis of Rigid Bodies

Germane to the velocity analysis of rigid bodies is their force-and-moment
analysis. In fact, striking similarities exist between the velocity relations
associated with rigid bodies and the forces and moments acting on them.
From elementary statics it is known that the resultant of all external ac-
tions, i.e., forces and moments, exerted on a rigid body can be reduced to
a force f acting at a point, say A, and a moment nA. Alternatively, the
aforementioned force f can be defined as acting at an arbitrary point P
of the body, as depicted in Fig. 3.5, but then the resultant moment, nP ,
changes correspondingly.

In order to establish a relationship between nA and nP , the moment of
the first system of force and moment with respect to point P is equated to
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FIGURE 3.5. Equivalent systems of force and moment acting on a rigid body.

the moment about the same point of the second system, thus obtaining

nP = nA + (a − p) × f (3.108)

which can be rewritten as

nP = nA + f × (p− a) (3.109)

whence the analogy with eq.(3.52) is apparent. Indeed, nP and nA of
eq.(3.109) play the role of the velocities of P and A, ṗ and ȧ, respec-
tively, whereas f of eq.(3.109) plays the role of ω of eq.(3.52). Thus, similar
to Theorem 3.4.2, one has

Theorem 3.7.1 For a given system of forces and moments acting on a
rigid body, if the resultant force is applied at any point of a particular line
L′′, then the resultant moment is of minimum magnitude. Moreover, that
minimum-magnitude moment is parallel to the resultant force.

Hence, the resultant of the system of forces and moments is equivalent to
a force f acting at a point of L′′ and a moment n, with both f and n parallel
to L′′. Paraphrasing the definition of the ISA, one defines line L′′ as the
axis of the wrench acting on the body. Let n0 be the minimum-magnitude
moment. Clearly, n0 can be expressed as v0 was in eq.(3.54), namely, as

n0 = n0
f

‖f‖ , n0 ≡ nP · f
‖f‖ (3.110)

Moreover, the pitch of the wrench, p′′, is defined as

p′′ ≡ n0

‖f‖ =
nP · f
‖f‖2

or p′′ =
2πnP · f
‖f‖2

(3.111)
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which again has units of m/rad or correspondingly, of m/turn. Of course,
the wrench axis can be defined by its Plücker array, pL′′ , i.e.,

pL′′ ≡
[
e′′

n′′

]
, e′′ =

f
‖f‖ , n′′ = p× e′′ (3.112)

where e′′ is the unit vector parallel to L′′, n′′ is the moment of L′′ about
the origin, and p is the position vector of any point on L′′.

The wrench axis is fully specified, then, by the direction of f and point
P ′′

0 lying closest to the origin of position vector p′′
0 , which can be derived

by analogy with eq.(3.72), namely, as

p′′
0 =

1
‖f‖2

f × (nA − f × a) (3.113)

Similar to Theorem 3.4.1, one has

Theorem 3.7.2 The projection of the resultant moment of a system of
moments and forces acting on a rigid body that arises when the resultant
force is applied at an arbitrary point of the body onto the wrench axis is
constant.

From the foregoing discussion, then, the wrench applied to a rigid body
can be fully specified by the resultant force f acting at an arbitrary point P
and the associated moment, nP . We shall derive presently the counterpart
of the 6-dimensional array of the twist, namely, the wrench array. Upon
multiplication of the screw of eq.(3.73) by an amplitude A with units of
force, what we will obtain would be a wrench w, i.e., a 6-dimensional array
with its first three components having units of force and its last components
units of moment. We would like to be able to obtain the power developed
by the wrench on the body moving with the twist t by a simple inner
product of the two arrays. However, because of the form the wrench w
has taken, the inner product of these two arrays would be meaningless,
for it would involve the sum of two scalar quantities with different units,
and moreover, each of the two quantities is without an immediate physical
meaning. In fact, the first scalar would have units of force by frequency
(angular velocity by force), while the second would have units of moment
of moment multiplied by frequency (velocity by moment), thereby leading
to a physically meaningless result. This inconsistency can be resolved if we
redefine the wrench not simply as the product of a screw by an amplitude,
but as a linear transformation of that screw involving the 6 × 6 array Γ
defined as

Γ ≡
[
O 1
1 O

]
(3.114)

where O and 1 denote, respectively, the 3 × 3 zero and identity matrices.
Now we define the wrench as a linear transformation of the screw s defined
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in eq.(3.73). This transformation is obtained upon multiplying s by the
product AΓ, the amplitude A having units of force, i.e.,

w ≡ AΓs ≡
[
p× (Ae) + p(Ae)

Ae

]

The foregoing wrench is said to be given in axis coordinates, as opposed to
the twist, which was given in ray coordinates.

Now, the first three components of the foregoing array can be readily
identified as the moment of a force of magnitude A acting along a line of
action given by the Plücker array of eq.(3.112), with respect to a point P ,
to which a moment parallel to that line and of magnitude pA is added.
Moreover, the last three components of that array pertain apparently to
a force of magnitude A and parallel to the same line. We denote here the
above-mentioned moment by n and the force by f, i.e.,

f ≡ Ae, n ≡ p× f + pf

The wrench w is then defined as

w ≡
[
n
f

]
(3.115)

which can thus be interpreted as a representation of a system of forces and
moments acting on a rigid body, with the force acting at point P of the
body B defined above and a moment n. Under these circumstances, we say
that w acts at point P of B.

With the foregoing definitions it is now apparent that the wrench has
been defined so that the inner product tTw will produce the power Π
developed by w acting at P when B moves with a twist t defined at the
same point, i.e.,

Π = tT w (3.116)

When a wrench w that acts on a rigid body moving with the twist t
develops zero power onto the body, we say that the wrench and the twist
are reciprocal to each other. By the same token, the screws associated with
that wrench-twist pair are said to be reciprocal. More specifically, let the
wrench and the twist be given in terms of their respective screws, sw and
st, as

w = WΓsw, t = T st, (3.117)

where W and T are the amplitudes of the wrench and the twist, respectively,
while Γ is as defined in eq.(3.114). Thus, the two screws sw and st are
reciprocal if

(Γsw)T st ≡ sT
wΓT st = 0 (3.118)

and by virtue of the symmetry of Γ, the foregoing relation can be further
expressed as

sT
wΓst = 0 or sT

t Γsw = 0 (3.119)
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Now, if A and P are arbitrary points of a rigid body, we define the wrench
at these points as

wA ≡
[
nA

f

]
, wP ≡

[
nP

f

]
(3.120)

Therefore, eq.(3.108) leads to

wP = VwA (3.121)

where

V ≡
[
1 A − P
0 1

]
(3.122)

and A and P were defined in eq.(3.85) as the cross-product matrices of
vectors a and p, respectively. Thus, wP is a linear transformation of wA.
By analogy with the twist-transfer formula of eq.(3.84), eq.(3.121) is termed
here the wrench-transfer formula.

Multiplying the transpose of eq.(3.84) by eq.(3.121) yields

tT
P wP = tT

AUT VwA (3.123)

where

UT V =
[
1 −A + P
0 1

] [
1 A− P
0 1

]
= 16×6 (3.124)

with 16×6 denoting the 6 × 6 identity matrix. Thus, tT
PwP = tT

AwA, as
expected, since the wrench develops the same amount of power, regardless
of where the force is assumed to be applied. Also note that an interesting
relation between U and V follows from eq.(3.124), namely,

V−1 = UT (3.125)

3.8 Dynamics of Rigid Bodies

The equations governing the motion of rigid bodies are recalled in this
section and cast into a form suitable to multibody dynamics. To this end,
a few definitions are introduced. If a rigid body has a mass density ρ, which
need not be constant, then its mass m is defined as

m =
∫

B
ρdB (3.126)

where B denotes the region of the 3-dimensional space occupied by the
body. Now, if p denotes the position vector of an arbitrary point of the
body, from a previously defined origin O, the mass first moment of the
body with respect to O, qO, is defined as

qO ≡
∫

B
ρpdB (3.127)
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Furthermore, the mass second moment of the body with respect to O is
defined as

IO ≡
∫

B
ρ[ (p · p)1− ppT ]dB (3.128)

which is clearly a symmetric matrix. This matrix is also called the moment-
of-inertia matrix of the body under study with respect to O. One can readily
prove the following result:

Theorem 3.8.1 The moment of inertia of a rigid body with respect to a
point O is positive definite.

Proof : All we need to prove is that for any vector ω, the quadratic form
ωT IOω is positive. But this is so, because

ωT IOω =
∫

B
ρ[ ‖p‖2‖ω‖2 − (p · ω)2 ]dB (3.129)

Now, we recall that
p · ω = ‖p‖‖ω‖ cos(p, ω) (3.130)

in which (p, ω) stands for the angle between the two vectors within the
parentheses. Substitution of eq.(3.130) into eq.(3.129) leads to

ωT IOω =
∫

B
ρ‖p‖2‖ω‖2[ 1 − cos2(p, ω) ]dB

=
∫

B
ρ‖p‖2‖ω‖2 sin2(p, ω)dB

which is a positive quantity that vanishes only in the ideal case of a slender
body having all its mass concentrated along a line passing through O and
parallel to ω, which would thus render sin(p, ω) = 0 within the body,
thereby completing the proof.

Alternatively, one can prove the positive definiteness of the mass moment
of inertia based on physical arguments. Indeed, if vector ω of the previous
discussion is the angular velocity of the rigid body, then the quadratic form
of eq.(3.129) turns out to be twice the kinetic energy of the body. Indeed,
the said kinetic energy, denoted by T , is defined as

T ≡
∫

B

1
2
ρ‖ṗ‖2dB

where ṗ is the velocity of any point P of the body. For the purposes of this
discussion, it will be assumed that point O, about which the second moment
is defined, is a point of the body that is instantaneously at rest. Thus, if
this point is defined as the origin of the Euclidean space, the velocity of
any point of the body, moving with an angular velocity ω, is given by

ṗ = ω × p
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which can be rewritten as
ṗ = −Pω

with P defined as the cross-product matrix of p. Hence,

‖ṗ‖2 = (Pω)TPω = ωTPT Pω = −ωT P2ω

Moreover, by virtue of eq.(2.39), the foregoing expression is readily re-
ducible to

‖ṗ‖2 = ωT (‖p‖21− ppT )ω (3.131)

Therefore, the kinetic energy reduces to

T =
1
2

∫

B
ρωT (‖p‖21− ppT )ωdB (3.132)

and since the angular velocity is constant throughout the body, it can be
taken out of the integral sign, i.e.,

T =
1
2
ωT

[∫

B
ρ(‖p‖21 − ppT )dB

]
ω (3.133)

The term inside the brackets of the latter equation is readily identified as
IO, and hence, the kinetic energy can be written as

T =
1
2
ωT IOω (3.134)

Now, since the kinetic energy is a positive-definite quantity, the quadratic
form of eq.(3.134) is consequently positive-definite as well, thereby proving
the positive-definiteness of the second moment.

The mass center of a rigid body, measured from O, is defined as a point
C, not necessarily within the body—think of a homogeneous torus—of
position vector c given by

c ≡ qO

m
(3.135)

Naturally, the mass moment of inertia of the body with respect to its
centroid is defined as

IC ≡
∫

B
ρ[ ‖r‖21 − rrT ]dB (3.136)

where r is defined, in turn, as

r ≡ p− c (3.137)

Obviously, the mass moment of inertia of a rigid body about its mass cen-
ter, also termed its centroidal mass moment of inertia, is positive-definite
as well. In fact, the mass—or the volume, for that matter—moment of
inertia of a rigid body with respect to any point is positive-definite. As a
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consequence, its three eigenvalues are positive and are referred to as the
principal moments of inertia of the body. The eigenvectors of the inertia
matrix are furthermore mutually orthogonal and define the principal axes
of inertia of the body. These axes are parallel to the eigenvectors of that
matrix and pass through the point about which the moment of inertia is
taken. Note, however, that the principal moments and the principal axes
of inertia of a rigid body depend on the point with respect to which the
moment of inertia is defined. Moreover, let IO and IC be defined as in
eqs.(3.128) and (3.136), with r defined as in eq.(3.137). It is possible to
show that

IO = IC + m(‖c‖21− ccT ) (3.138)

Furthermore, the smallest principal moment of inertia of a rigid body at-
tains its minimum value at the mass center of the body. The relationship
appearing in eq.(3.138) constitutes the Theorem of Parallel Axes.

Henceforth, we assume that c is the position vector of the mass center in
an inertial frame. Now, we recall the Newton-Euler equations governing the
motion of a rigid body. Let the body at hand be acted upon by a wrench of
force f applied at its mass center, and a moment nC . The Newton equation
then takes the form

f = mc̈ (3.139a)

whereas the Euler equation is

nC = ICω̇ + ω × ICω (3.139b)

The momentum m and the angular momentum hC of a rigid body moving
with an angular velocity ω are defined below, the angular momentum being
defined with respect to the mass center. These are

m ≡ mċ, hC ≡ ICω (3.140)

Moreover, the time-derivatives of the foregoing quantities are readily com-
puted as

ṁ = mc̈, ḣC = ICω̇ + ω × ICω (3.141)

and hence, eqs.(3.139a & b) take on the forms

f = ṁ, nC = ḣC (3.142)

The set of equations (3.139a) and (3.139b) are known as the Newton-Euler
equations. These can be written in a more compact form as we describe
below. First, we introduce a 6 × 6 matrix M that following von Mises
(1924), we term the inertia dyad, namely,

M ≡
[
IC O
O m1

]
(3.143)
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where O and 1 denote the 3 × 3 zero and identity matrices. A similar
6 × 6 matrix was defined by von Mises under the above name. However,
von Mises’s inertia dyad is full, while the matrix defined above is block-
diagonal. Both matrices, nevertheless, denote the same physical property
of a rigid body, i.e., its mass and moment of inertia. Now the Newton-Euler
equations can be written as

Mṫ + WMt = w (3.144)

in which matrix W, which we shall term, by similarity with the inertia
dyad, the angular-velocity dyad, is defined, in turn, as

W ≡
[
Ω O
O O

]
(3.145)

with Ω already defined as the angular-velocity matrix; it is, of course, the
cross-product matrix of the angular-velocity vector ω. Note that the twist
of a rigid body lies in the nullspace of its angular-velocity dyad, i.e.,

Wt = 0 (3.146)

Further definitions are introduced below: The momentum screw of the
rigid body about the mass center is the 6-dimensional vector µ defined as

µ ≡
[
ICω
mċ

]
= Mt (3.147)

Furthermore, from eqs.(3.141) and definition (3.147), the time-derivative
of µ can be readily derived as

µ̇ = Mṫ + Wµ = Mṫ + WMt (3.148)

The kinetic energy of a rigid body undergoing a motion in which its mass
center moves with velocity ċ and rotates with an angular velocity ω is given
by

T =
1
2
m‖ċ‖2 +

1
2
ωT ICω (3.149)

From the foregoing definitions, then, the kinetic energy can be written in
compact form as

T =
1
2
tTMt (3.150)

Finally, the Newton-Euler equations can be written in an even more com-
pact form as

µ̇ = w (3.151)

which is a 6-dimensional vector equation.
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4
Kinetostatics of Simple Robotic
Manipulators

4.1 Introduction

This chapter is devoted to the kinetostatics of robotic manipulators of the
serial type, i.e., to the kinematics and statics of these systems. The study is
general, but with regard to what is called the inverse kinematics problem,
we limit the chapter to decoupled manipulators, to be defined below. The
inverse displacement analysis of general six-axis manipulators is addressed
in Chapter 8.

More specifically, we will define a serial, n-axis manipulator. In connec-
tion with this manipulator, additionally, we will (i) introduce the Denavit-
Hartenberg notation for the definition of link frames that uniquely deter-
mine the architecture and the configuration, or posture, of the manipulator
at hand; (ii) define the Cartesian and joint coordinates of this manipulator;
and (iii) introduce its Jacobian matrix.

Moreover, with regard to six-axis manipulators, we will (i) define decou-
pled manipulators and provide a procedure for the solution of their displace-
ment inverse kinematics; (ii) formulate and solve the velocity-resolution
problem, give simplified solutions for decoupled manipulators, and iden-
tify their singularities; (iii) define the workspace of a three-axis positioning
manipulator and provide means to display it; (iv) formulate and solve the
acceleration-resolution problem and give simplified solutions for decoupled
manipulators; and (v) analyze manipulators statically, while giving simpli-
fied analyses for decoupled manipulators. While doing this, we will devote
special attention to planar manipulators.
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106 4. Kinetostatics of Simple Robotic Manipulators

4.2 The Denavit-Hartenberg Notation

One of the first tasks of a robotics engineer is the kinematic modeling of
a robotic manipulator. This task consists of devising a model that can be
unambiguously (i) described to a control unit through a database and (ii)
interpreted by other robotics engineers. The purpose of this task is to give
manipulating instructions to a robot, regardless of the dynamics of the
manipulated load and the robot itself. The simplest way of kinematically
modeling a robotic manipulator is by means of the concept of kinematic
chain. A kinematic chain is a set of rigid bodies, also called links, coupled by
kinematic pairs. A kinematic pair is, then, the coupling of two rigid bodies
so as to constrain their relative motion. We distinguish two basic types of
kinematic pairs, namely, upper and lower kinematic pairs. An upper kine-
matic pair arises between rigid bodies when contact takes place along a
line or at a point. This type of coupling occurs in cam-and-follower mecha-
nisms, gear trains, and roller bearings, for example. A lower kinematic pair
occurs when contact takes place along a surface common to the two bodies.
Six different types of lower kinematic pairs can be distinguished (Harten-
berg and Denavit, 1964; Angeles, 1982), but all these can be produced from
two basic types, namely, the rotating pair, denoted by R and also called
revolute, and the sliding pair, represented by P and also called prismatic.

The common surface along which contact takes place in a revolute pair is
a circular cylinder, a typical example of this pair being the coupling through
journal bearings. Thus, two rigid bodies coupled by a revolute can rotate
relative to each other about the axis of the common cylinder, which is thus
referred to as the axis of the revolute, but are prevented from undergoing
relative translations as well as rotations about axes other than the cylinder
axis. On the other hand, the common surface of contact between two rigid
bodies coupled by a prismatic pair is a prism of arbitrary cross section, and
hence, the two bodies coupled in this way are prevented from undergoing
any relative rotation and can move only in a pure-translation motion along
a direction parallel to the axis of the prism. As an example of this kinematic
pair, one can cite the dovetail coupling. Note that whereas the revolute axis
is a totally defined line in three-dimensional space, the prismatic pair has
no defined axis; this pair has only a direction. That is, the prismatic pair
does not have a particular location in space. Bodies coupled by a revolute
and a prismatic pair are shown in Fig. 4.1.

Serial manipulators will be considered in this chapter, their associated
kinematic chains thus being of the simple type, i.e., each and every link
is coupled to at most two other links. A simple kinematic chain can be
either closed or open. It is closed if each and every link is coupled to two
other links, the chain then being called a linkage; it is open if it contains
exactly two links, the end ones, that are coupled to only one other link.
Thus, simple kinematic chains studied in this chapter are open, and in the
particular robotics terminology, their first link is called the manipulator
base, whereas their last link is termed the end-effector (EE).

Thus, the kinematic chains associated with manipulators of the serial
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4.2 The Denavit-Hartenberg Notation 107

FIGURE 4.1. Revolute and prismatic pair.

type are composed of binary links, the intermediate ones, and exactly two
simple links, those at the ends. Hence, except for the end links, all links
carry two kinematic pairs, and as a consequence, two pair axes—however,
notice that a prismatic pair has a direction but no axis. In order to uniquely
describe the architecture of a kinematic chain, i.e., the relative location and
orientation of its neighboring pair axes, the Denavit-Hartenberg nomen-
clature (Denavit and Hartenberg, 1955) is introduced. To this end, links
are numbered 0, 1, . . . , n, the ith pair being defined as that coupling the
(i − 1)st link with the ith link. Hence, the manipulator is assumed to be
composed of n+1 links and n pairs; each of the latter can be either R or P,
where link 0 is the fixed base, while link n is the end-effector. Next, a coor-
dinate frame Fi is defined with origin Oi and axes Xi, Yi, Zi. This frame
is attached to the (i− 1)st link—not to the ith link!—for i = 1, . . . , n+1.
For the first n frames, this is done following the rules given below:

1. Zi is the axis of the ith pair. Notice that there are two possibilities of
defining the positive direction of this axis, since each pair axis is only
a line, not a directed segment. Moreover, the Zi axis of a prismatic

FIGURE 4.2. Definition of Xi when Zi−1 and Zi: (a) are skew; (b) intersect; and
(c) are parallel.
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108 4. Kinetostatics of Simple Robotic Manipulators

pair can be located arbitrarily, since only its direction is defined by
the axis of this pair.

2. Xi is defined as the common perpendicular to Zi−1 and Zi, directed
from the former to the latter, as shown in Fig. 4.2a. Notice that if
these two axes intersect, the positive direction of Xi is undefined and
hence, can be freely assigned. Henceforth, we will follow the right-
hand rule in this case. This means that if unit vectors ii, ki−1, and
ki are attached to axes Xi, Zi−1, and Zi, respectively, as indicated in
Fig. 4.2b, then ii is defined as ki−1 ×ki. Moreover, if Zi−1 and Zi are
parallel, the location of Xi is undefined. In order to define it uniquely,
we will specify Xi as passing through the origin of the (i−1)st frame,
as shown in Fig. 4.2c.

3. The distance between Zi and Zi+1 is defined as ai, which is thus
nonnegative.

4. The Zi-coordinate of the intersection O′
i of Zi with Xi+1 is denoted

by bi. Since this quantity is a coordinate, it can be either positive
or negative. Its absolute value is the distance between Xi and Xi+1,
also called the offset between successive common perpendiculars.

5. The angle between Zi and Zi+1 is defined as αi and is measured about
the positive direction of Xi+1. This item is known as the twist angle
between successive pair axes.

6. The angle between Xi and Xi+1 is defined as θi and is measured
about the positive direction of Zi.

The (n+1)st coordinate frame is attached to the far end of the nth link.
Since the manipulator has no (n+1)st link, the foregoing rules do not apply
to the definition of the last frame. The analyst, thus, has the freedom to
define this frame as it best suits the task at hand. Notice that n+1 frames,
F1, F2, . . ., Fn+1, have been defined, whereas links are numbered from 0
to n. In summary, an n-axis manipulator is composed of n + 1 links and
n+1 coordinate frames. These rules are illustrated with an example below.

Consider the architecture depicted in Fig. 4.3, usually referred to as a
Puma robot, which shows seven links, numbered from 0 to 6, and seven
coordinate frames, numbered from 1 to 7. Note that the last frame is arbi-
trarily defined, but its origin is placed at a specific point of the EE, namely,
at the operation point, P , which is used to define the task at hand. Fur-
thermore, three axes intersect at a point C, and hence, all points of the
last three links move on concentric spheres with respect to C, for which
reason the subchain comprising these three links is known as a spherical
wrist, point C being its center. By the same token, the subchain composed
of the first four links is called the arm. Thus, the wrist is decoupled from
the arm, and is used for orientation purposes, the arm being used for the

TLFeBOOK



4.2 The Denavit-Hartenberg Notation 109

FIGURE 4.3. Coordinate frames of a Puma robot.

positioning of point C. The arm is sometimes called the regional structure
and the wrist the local structure, the overall manipulator thus being of the
decoupled type.

In the foregoing discussion, if the ith pair is R, then all quantities involved
in those definitions are constant, except for θi, which is variable and is thus
termed the joint variable of the ith pair. The other quantities, i.e., ai, bi, and
αi, are the joint parameters of the said pair. If, alternatively, the ith pair is
P, then bi is variable, and the other quantities are constant. In this case, the
joint variable is bi, and the joint parameters are ai, αi, and θi. Notice that
associated with each joint there are exactly one joint variable and three
constant parameters. Hence, an n-axis manipulator has n joint variables—
which are henceforth grouped in the n-dimensional vector θ, regardless of
whether the joint variables are angular or translational—and 3n constant
parameters. The latter define the architecture of the manipulator, while the
former determine its configuration, or posture.

Whereas the manipulator architecture is fully defined by its 3n Denavit-
Hartenberg (DH) parameters, its posture is fully defined by its n joint vari-
ables, also called its joint coordinates, once the DH parameters are known.
The relative position and orientation between links is fully specified, then,
from the discussions of Chapter 2, by (i) the rotation matrix taking the
Xi, Yi, Zi axes into a configuration in which they are parallel pairwise
to the Xi+1, Yi+1, Zi+1 axes, and (ii) the position vector of the origin of
the latter in the former. The representations of the foregoing items in co-
ordinate frame Fi will be discussed presently. First, we obtain the matrix
representation of the rotation Qi carrying Fi into an orientation coincident
with that of Fi+1, assuming, without loss of generality because we are in-
terested only in changes of orientation, that the two origins are coincident,
as depicted in Fig. 4.4. This matrix is most easily derived if the rotation
of interest is decomposed into two rotations, as indicated in Fig. 4.5. In
that figure, X ′

i, Y ′
i , Z ′

i is an intermediate coordinate frame F ′
i , obtained by
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110 4. Kinetostatics of Simple Robotic Manipulators

FIGURE 4.4. Relative orientation of the ith and (i + 1)st coordinate frames.

rotating Fi about the Zi axis through an angle θi. Then, the intermediate
frame is rotated about Xi′ through an angle αi, which takes it into a con-
figuration coincident with Fi+1. Let the foregoing rotations be denoted by
[Ci ]i and [Λi ]i′ , respectively, which are readily derived for they are in the
canonical forms (2.55c) and (2.55a), respectively.

Moreover, let
λi ≡ cosαi, µi ≡ sin αi (4.1a)

One thus has, using subscripted brackets as introduced in Section 2.2,

[Ci ]i =




cos θi − sin θi 0
sin θi cos θi 0

0 0 1


 , [Λi ]i′ =




1 0 0
0 λi −µi

0 µi λi


 (4.1b)

and clearly, the matrix sought is computed simply as

[Qi ]i = [Ci ]i [Λi ]i′ (4.1c)

Henceforth, we will use the abbreviations introduced below:

Qi ≡ [Qi ]i, Ci ≡ [Ci ]i, Λi ≡ [Λi ]i′ (4.1d)

thereby doing away with brackets, when these are self-evident. Thus,

Qi ≡ [Qi ]i ≡



cos θi −λi sin θi µi sin θi

sin θi λi cos θi −µi cos θi

0 µi λi


 (4.1e)

One more factoring of matrix Qi, which finds applications in manipulator
kinematics, is given below:

Qi = ZiXi (4.2a)
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FIGURE 4.5. (a) Rotation about axis Zi through an angle θi; and (b) relative
orientation of the i′th and the (i + 1)st coordinate frames.

with Xi and Zi defined as two pure reflections, the former about the YiZi

plane, the latter about the XiYi plane, namely,

Xi ≡



1 0 0
0 −λi µi

0 µi λi


 , Zi ≡




cos θi sin θi 0
sin θi − cos θi 0

0 0 1


 (4.2b)

Note that both Xi and Zi are symmetric and self-inverse—see Sec-
tion 2.2. In order to derive an expression for the position vector ai con-
necting the origin Oi of Fi with that of Fi+1, Oi+1, reference is made to
Fig. 4.6, showing the relative positions of the different origins and axes
involved. From this figure, clearly,

ai ≡ −−→
OiOi+1 = −−→

OiOi′ + −−−→
Oi′Oi+1 (4.3a)

where obviously,

[−−→OiOi′ ]i =




0
0
bi


 , [−−−→Oi′Oi+1 ]i+1 =




ai

0
0




Now, in order to compute the sum appearing in eq.(4.3a), the two fore-
going vectors should be expressed in the same coordinate frame, namely,
Fi. Thus,

[−−−→Oi′Oi+1 ]i = [Qi ]i [−−−→Oi′Oi+1 ]i+1 =




ai cos θi

ai sin θi

0



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112 4. Kinetostatics of Simple Robotic Manipulators

and hence,

[ ai ]i =




ai cos θi

ai sin θi

bi


 (4.3b)

For brevity, we introduce the following definition:

ai ≡ [ ai ]i (4.3c)

Similar to the foregoing factoring of Qi, vector ai admits the factoring

ai = Qibi (4.3d)

where bi is given by

bi ≡



ai

biµi

biλi


 (4.3e)

with the definitions introduced in eq.(4.1a). Hence, vector bi is constant
for revolute pairs. From the geometry of Fig. 4.6, it should be apparent
that bi is nothing but ai in Fi+1, i.e.,

bi = [ai]i+1 .

Matrices Qi can also be regarded as coordinate transformations. Indeed,
let ii, ji, and ki be the unit vectors parallel to the Xi, Yi, and Zi axes,
respectively, directed in the positive direction of these axes. From Fig. 4.6,
it is apparent that

[ ii+1 ]i =




cos θi

sin θi

0


 , [ki+1 ]i =




µi sin θi

−µ cos θi

λi




FIGURE 4.6. Layout of three successive coordinate frames.
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whence

[ ji+1 ]i = [ki+1 × ii+1 ]i =



−λi sin θi

λi cos θi

µi




Therefore, the components of ii+1, ji+1, and ki+1 in Fi are nothing but
the first, second, and third columns of Qi. In general, then, any vector v
in Fi+1 is transformed into Fi in the form

[v ]i = [Qi ]i[v ]i+1

which is a similarity transformation, as defined in eq.(2.117). Likewise, any
matrix M in Fi+1 is transformed into Fi by the corresponding similarity
transformation, as given by eq.(2.128):

[M ]i = [Qi ]i[M ]i+1[QT
i ]i

The inverse relations follow immediately in the form

[v ]i+1 = [QT
i ]i[v ]i, [M ]i+1 = [QT

i ]i[M ]i[Qi ]i

or upon recalling the first of definitions (4.1d),

[v ]i = Qi[v ]i+1, [M ]i = Qi[M ]i+1QT
i (4.4a)

[v ]i+1 = QT
i [v ]i, [M ]i+1 = QT

i [M ]iQi (4.4b)

Moreover, if we have a chain of i frames, F1, F2, . . ., Fi, then the inward
coordinate transformation from Fi to F1 is given by

[v ]1 = Q1Q2 · · ·Qi−1[v ]i (4.5a)
[M ]1 = Q1Q2 · · ·Qi−1[M ]i(Q1Q2 · · ·Qi−1)T (4.5b)

Likewise, the outward coordinate transformation takes the form

[v ]i = (Q1Q2 · · ·Qi−1)T [v ]1 (4.6a)
[M ]i = (Q1Q2 · · ·Qi−1)T [M ]1Q1Q2 · · ·Qi−1 (4.6b)

4.3 The Kinematics of Six-Revolute Manipulators

The kinematics of serial manipulators comprises the study of the relations
between joint variables and Cartesian variables. The former were defined in
Section 4.2 as those determining the posture of a given manipulator, with
one such variable per joint; a six-axis manipulator, like the one displayed in
Fig. 4.7, thus has six joint variables, θ1, θ2, . . ., θ6. The Cartesian variables
of a manipulator, in turn, are those variables defining the pose of the EE;
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114 4. Kinetostatics of Simple Robotic Manipulators

since six independent variables are needed to define the pose of a rigid
body, the manipulator of Fig. 4.7 thus contains six Cartesian variables.

The study outlined above pertains to the geometry of the manipulator,
for it involves one single pose of the EE. Besides geometry, the kinematics of
manipulators comprises the study of the relations between the time-rates of
change of the joint variables, referred to as the joint rates, and the twist of
the EE. Additionally, the relations between the second time-derivatives of
the joint variables, referred to as the joint accelerations, with the time-rate
of change of the twist of the EE are also studied in this chapter.

In this section and in Section 4.4 we study the geometry of manipulators.
In this regard, we distinguish two problems, commonly referred to as the
direct and the inverse kinematic problems, or DKP and correspondingly,
IKP, for brevity. In the DKP, the six joint variables of a given six-axis
manipulator are assumed to be known, the problem consisting of finding
the pose of the EE. In the IKP, on the contrary, the pose of the EE is given,
while the six joint variables that produce this pose are to be found.

The DKP reduces to matrix multiplications, and as we shall show pres-
ently, poses no major problem. The IKP, however, is more challenging,
for it involves intensive variable-elimination and nonlinear-equation solv-
ing. Indeed, in the most general case, the IKP amounts to eliminating five
out of the six unknowns, with the aim of reducing the problem to a single
monovariate polynomial of up to 16th degree. While finding the roots of a
polynomial of this degree is no longer an insurmountable task, reducing the
underlying system of nonlinear equations to a monovariate polynomial re-
quires intensive computer-algebra work that must be very carefully planned
to avoid the introduction of spurious roots and, with this, an increase in
the degree of that polynomial. For this reason, we limit this chapter to the
study of the geometric IKP of decoupled six-axis manipulators, to be de-
fined presently. The IKP of the most general six-revolute serial manipulator
is studied in Chapter 8.

In studying the DKP of six-axis manipulators, we need not limit ourselves
to a particular architecture. We thus study here the DKP of general manip-
ulators, such as the one sketched in Fig. 4.7. This manipulator consists of
seven rigid bodies, or links, coupled by six revolute joints. Correspondingly,
we have seven frames, F1, F2, . . ., F7, the ith frame fixed to the (i − 1)st
link, F1 being termed the base frame, because it is fixed to the base of the
manipulator. Manipulators with joints of the prismatic type are simpler to
study and can be treated using correspondingly simpler procedures.

A line Li is associated with the axis of the ith revolute joint, and a
positive direction along this line is defined arbitrarily through a unit vector
ei. For a prismatic pair, a line Li can be also defined, as a line having the
direction of the pair but whose location is undefined; the analyst, then, has
the freedom to locate this axis conveniently. Thus, a rotation of the ith link
with respect to the (i − 1)st link or correspondingly, of Fi+1 with respect
to Fi, is totally defined by the geometry of the said link, i.e., by the DH
parameters ai, bi, and αi, plus ei and its associated joint variable θi. Then,
the DH parameters and the joint variables define uniquely the posture of
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FIGURE 4.7. Serial six-axis manipulator.

the manipulator. In particular, the relative position and orientation of Fi+1

with respect to Fi is given by matrix Qi and vector ai, respectively, which
were defined in Section 4.2 and are displayed below for quick reference:

Qi =




cos θi −λi sin θi µi sin θi

sin θi λi cos θi −µi cos θi

0 µi λi


 , ai =




ai cos θi

ai sin θi

bi


 (4.7)

Thus, Qi and ai denote, respectively, the matrix rotating Fi into an
orientation coincident with that of Fi+1 and the vector joining the origin
of Fi with that of Fi+1, directed from the former to the latter. Moreover, Qi

and ai, as given in eq.(4.7), are represented in Fi coordinates. The equations
leading to the kinematic model under study are known as the kinematic
displacement equations. It is noteworthy that the problem under study is
equivalent to the input-output analysis problem of a seven-revolute linkage
with one degree of freedom and one single kinematic loop (Duffy, 1980).
Because of this equivalence with a closed kinematic chain, sometimes the
displacement equations are also termed closure equations. These equations
relate the orientation of the EE, as produced by the joint coordinates, with
the prescribed orientation Q and the position vector p of the operation
point P of the EE. That is, the orientation Q of the EE is obtained as
a result of the six individual rotations {Qi }6

1 about each revolute axis
through an angle θi, in a sequential order, from 1 to 6. If, for example, the
foregoing relations are expressed in F1, then

[Q6 ]1[Q5 ]1[Q4 ]1[Q3 ]1[Q2 ]1[Q1 ]1 = [Q ]1 (4.8a)
[ a1 ]1 + [a2 ]1 + [a3 ]1 + [a4 ]1 + [a5 ]1 + [a6 ]1 = [p ]1 (4.8b)

Notice that the above equations require that all vectors and matrices
involved be expressed in the same coordinate frame. However, we derived
in Section 4.2 general expressions for Qi and ai in Fi, eqs.(4.1e) and (4.3b),
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respectively. It is hence convenient to represent the foregoing relations in
each individual frame, which can be readily done by means of similarity
transformations. Indeed, if we apply the transformations (4.5a & b) to each
of [ai ]1 and [Qi ]1, respectively, we obtain ai or correspondingly, Qi, in
Fi. Therefore, eq.(4.8a) becomes

[Q1 ]1[Q2 ]2[Q3 ]3[Q4 ]4[Q5 ]5[Q6 ]6 = [Q ]1

Now for compactness, let us represent [Q ]1 simply by Q and let us recall
the abbreviated notation introduced in eq.(4.1d), whereby [Qi ]i is denoted
simply by Qi, thereby obtaining

Q1Q2Q3Q4Q5Q6 = Q (4.9a)

Likewise, eq.(4.8b) becomes

a1 +Q1(a2 +Q2a3 +Q2Q3a4 +Q2Q3Q4a5 +Q2Q3Q4Q5a6) = p (4.9b)

in which both sides are given in base-frame coordinates. Equations
(4.9a & b) above can be cast in a more compact form if homogeneous
transformations, as defined in Section 2.5, are now introduced. Thus, if we
let Ti ≡ {Ti }i be the 4×4 matrix transforming Fi+1-coordinates into Fi-
coordinates, the foregoing equations can be written in 4 × 4 matrix form,
namely,

T1T2T3T4T5T6 = T (4.10)

with T denoting the transformation of coordinates from the end-effector
frame to the base frame. Thus, T contains the pose of the end-effector.

In order to ease the discussion ahead, we introduce now a few defini-
tions. A scalar, vector, or matrix expression is said to be multilinear in
a set of vectors {vi}N

1 if those vectors appear only linearly in the same
expression. This does not prevent products of components of those vectors
from occurring, as long as each product contains only one component of
the same vector. Alternatively, we can say that the expression of interest
is multilinear in the aforementioned set of vectors if and only if the partial
derivative of that expression with respect to vector vi is independent of
vi, for i = 1, . . . , N . For example, every matrix Qi and every vector ai,
defined in eqs.(4.1e) and (4.3b), respectively, is linear in vector xi, where
xi is defined as

xi ≡
[

cos θi

sin θi

]
(4.11)

Moreover, the product Q1Q2Q3Q4Q5Q6 appearing in eq.(4.9a) is hexalin-
ear, or simply, multilinear, in vectors {xi }6

1. Likewise, the sum appearing
in eq.(4.9b) is multilinear in the same set of vectors. By the same token,
a scalar, vector, or matrix expression is said to be multiquadratic in the
same set of vectors if those vectors appear at most quadratically in the
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said expression. That is, the expression of interest may contain products
of the components of all those vectors, as long as those products contain,
in turn, a maximum of two components of the same vector, including the
same component squared. Qualifiers like multicubic, multiquartic, etc., bear
similar meanings.

Further, we partition matrix Qi rowwise and columnwise, namely,

Qi ≡



mT
i

nT
i

oT
i


 ≡ [pi qi ui ] (4.12)

It is pointed out that the third row of Qi, oT
i , is independent of θi, a fact

that will be found useful in the forthcoming derivations. Furthermore, note
that according to the DH notation, the unit vector ei in the direction of
the ith joint axis in Fig. 4.7 has Fi-components given by

[ ei ]i =




0
0
1


 ≡ e (4.13)

Henceforth, e is used to represent a 3-dimensional array with its last com-
ponent equal to unity, its other components vanishing. Thus, we have

Qioi ≡ QT
i ui = e (4.14a)

or
ui = Qie, oi = QT

i e (4.14b)

That is, if we regard e in the first of the foregoing relations as [ei+1 ]i+1, and
as [ ei ]i in the second relation, then, from the coordinate transformations
of eqs.(4.4a & b),

ui = [ ei+1 ]i, and oi = [ ei ]i+1 (4.15)

4.4 The IKP of Decoupled Manipulators

Industrial manipulators are frequently supplied with a special architecture
that allows a decoupling of the positioning problem from the orientation
problem. In fact, a determinant design criterion in this regard has been
that the manipulator be kinematically invertible, i.e., that it lend itself to
a closed-form inverse kinematics solution. Although the class of manipula-
tors with this feature is quite broad, we will focus on a special kind, the most
frequently encountered in commercial manipulators, that we will term de-
coupled. Decoupled manipulators were defined in Section 4.2 as those whose
last three joints have intersecting axes. These joints, then, constitute the
wrist of the manipulator, which is said to be spherical, because when the
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FIGURE 4.8. A general 6R manipulator with decoupled architecture.

point of intersection of the three wrist axes, C, is kept fixed, all the points
of the wrist move on spheres centered at C. In terms of the DH parameters
of the manipulator, in a decoupled manipulator a4 = a5 = b5 = 0, and
thus, the origins of frames 5 and 6 are coincident. All other DH parameters
can assume arbitrary values. A general decoupled manipulator is shown in
Fig. 4.8, where the wrist is represented as a concatenation of three revolutes
with intersecting axes.

In the two subsections below, a procedure is derived for determining all
the inverse kinematics solutions of decoupled manipulators. In view of the
decoupled architecture of these manipulators, we study their inverse kine-
matics by decoupling the positioning problem from the orientation problem.

4.4.1 The Positioning Problem

The inverse kinematics of the robotic manipulators under study begins by
decoupling the positioning and orientation problems. Moreover, we must
solve first the positioning problem, which is done in this subsection.

Let C denote the intersection of axes 4, 5, and 6, i.e., the center of the
spherical wrist, and let c denote the position vector of this point. Clearly,
the position of C is independent of joint angles θ4, θ5, and θ6; hence, only
the first three joints are to be considered for this analysis. The arm structure
depicted in Fig. 4.9 will then be analyzed. From that figure,

a1 + Q1a2 + Q1Q2a3 + Q1Q2Q3a4 = c (4.16)

where the two sides are expressed in F1-coordinates. This equation can be
readily rewritten in the form

a2 + Q2a3 + Q2Q3a4 = QT
1 (c − a1)
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or if we recall eq.(4.3d),

Q2(b2 + Q3b3 + Q3Q4b4) = QT
1 c − b1

However, since we are dealing with a decoupled manipulator, we have

a4 ≡ Q4b4 ≡



0
0
b4


 ≡ b4e

which has been rewritten as the product of constant b4 times the unit vector
e defined in eq.(4.13).

Thus, the product Q3Q4b4 reduces to

Q3Q4b4 ≡ b4Q3e ≡ b4u3

with ui defined in eq.(4.14b). Hence, eq.(4.16) leads to

Q2(b2 + Q3b3 + b4u3) = QT
1 c − b1 (4.17)

Further, an expression for c can be derived in terms of p, the position
vector of the operation point of the EE, and Q, namely,

c = p− Q1Q2Q3Q4a5 − Q1Q2Q3Q4Q5a6 (4.18a)

Now, since a5 = b5 = 0, we have that a5 = 0, eq.(4.18a) thus yielding

c = p − QQT
6 a6 ≡ p− Qb6 (4.18b)

Moreover, the base coordinates of P and C, and hence, the F1-components
of their position vectors p and c, are defined as

[p ]1 =




x
y
z


 , [ c ]1 =




xC

yC

zC




so that eq.(4.18b) can be expanded in the form



xC

yC

zC


 =




x − (q11a6 + q12b6µ6 + q13b6λ6)
y − (q21a6 + q22b6µ6 + q23b6λ6)
z − (q31a6 + q32b6µ6 + q33b6λ6)


 (4.18c)

where qij is the (i, j) entry of [Q]1, and the positioning problem now be-
comes one of finding the first three joint angles necessary to position point
C at a point of base coordinates xC , yC , and zC . We thus have three un-
knowns, but we also have three equations at our disposal, namely, the three
scalar equations of eq.(4.17), and we should be able to solve the problem
at hand.

In solving the foregoing system of equations, we first note that (i) the
left-hand side of eq.(4.17) appears multiplied by Q2; and (ii) θ2 does not
appear in the right-hand side. This implies that (i) if the Euclidean norms
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FIGURE 4.9. Three-axis, serial, positioning manipulator.

of the two sides of that equation are equated, the resulting equation will
not contain θ2; and (ii) the third scalar equation of the same equation is
independent of θ2, by virtue of the structure of the Qi matrices displayed
in eq.(4.1e). Thus, we have two equations free of θ2, which allows us to
calculate the two remaining unknowns θ1 and θ3.

Let the Euclidean norm of the left-hand side of eq.(4.17) be denoted by
l, that of its right-hand side by r. We then have

l2 ≡ a2
2 + b2

2 + a2
3 + b2

3 + b2
4 + 2bT

2 Q3b3 + 2b4bT
2 u3 + 2λ3b3b4

r2 ≡ ‖c‖2 + ‖b1‖2 − 2bT
1 QT

1 c

from which it is apparent that l2 is linear in x3 and r2 is linear in x1, for
xi defined in eq.(4.11). Upon equating l2 with r2, then, an equation linear
in x1 and x3—not bilinear in these vectors—is readily derived, namely,

Ac1 + Bs1 + Cc3 + Ds3 + E = 0 (4.19a)

whose coefficients do not contain any unknown, i.e.,

A = 2a1xC (4.19b)
B = 2a1yC (4.19c)
C = 2a2a3 − 2b2b4µ2µ3 (4.19d)
D = 2a3b2µ2 + 2a2b4µ3 (4.19e)
E = a2

2 + a2
3 + b2

2 + b2
3 + b2

4 − a2
1 − x2

C − y2
C − (zC − b1)2

+2b2b3λ2 + 2b2b4λ2λ3 + 2b3b4λ3 (4.19f)
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Moreover, the third scalar equation of eq.(4.17) takes on the form

Fc1 + Gs1 + Hc3 + Is3 + J = 0 (4.20a)

whose coefficients, again, do not contain any unknown, as shown below:

F = yCµ1 (4.20b)
G = −xCµ1 (4.20c)
H = −b4µ2µ3 (4.20d)
I = a3µ2 (4.20e)
J = b2 + b3λ2 + b4λ2λ3 − (zC − b1)λ1 (4.20f)

Thus, we have derived two nonlinear equations in θ1 and θ3 that are
linear in c1, s1, c3, and s3. Each of these equations thus defines a contour
in the θ1-θ3 plane, their intersections determining all real solutions to the
problem at hand.

Note that if ci and si are substituted for their equivalents in terms
of tan(θi/2), for i = 1, 3, then two biquadratic polynomial equations in
tan(θ1/2) and tan(θ3/2) are derived. Thus, one can eliminate one of these
variables from the foregoing equations, thereby reducing the two equations
to a single quartic polynomial equation in the other variable. The quartic
equation thus resulting is called the characteristic equation of the problem
at hand. Alternatively, the two above equations, eqs.(4.19a) and (4.20a),
can be solved for, say, c1 and s1 in terms of the data and c3 and s3, namely,

c1 =
−G(Cc3 + Ds3 + E) + B(Hc3 + Is3 + J)

∆1
(4.21a)

s1 =
F (Cc3 + Ds3 + E) − A(Hc3 + Is3 + J)

∆1
(4.21b)

with ∆1 defined as

∆1 = AG − FB = −2a1µ1(x2
C + y2

C) (4.21c)

Note that in trajectory planning, to be studied in Chapter 5, ∆1 can be
computed off-line, i.e., prior to setting the manipulator into operation, for
it is a function solely of the manipulator parameters and the Cartesian co-
ordinates of a point lying on the path to be tracked. Moreover, the above
calculations are possible as long as ∆1 does not vanish. Now, ∆1 vanishes if
and only if any of the factors a1, µ1, and x2

C +y2
C does. The first two condi-

tions are architecture-dependent, whereas the third is position-dependent.
The former occur frequently in industrial manipulators, although not both
at the same time. If both parameters a1 and µ1 vanished, then the arm
would be useless to position arbitrarily a point in space. The third condi-
tion, i.e., the vanishing of x2

C + y2
C , means that point C lies on the Z1 axis.

Now, even if neither a1 nor µ1 vanishes, the manipulator can be positioned
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in a configuration at which point C lies on the Z1 axis. Such a configura-
tion is termed the first singularity. Note, however, that with point C being
located on the Z1 axis, any motion of the first joint, with the two other
joints locked, does not change the location of C. For the moment, it will be
assumed that ∆1 does not vanish, the particular cases under which it does
being studied later. Next, both sides of eqs.(4.21a & b) are squared, the
squares thus obtained are then added, and the sum is equated to 1, which
leads to a quadratic equation in x3, namely,

Kc2
3 + Ls2

3 + Mc3s3 + Nc3 + Ps3 + Q = 0 (4.22)

whose coefficients, after simplification, are given below:

K = 4a2
1H

2 + µ2
1C

2 (4.23a)
L = 4a2

1I
2 + µ2

1D
2 (4.23b)

M = 2(4a2
1HI + µ2

1CD) (4.23c)
N = 2(4a2

1HJ + µ2
1CE) (4.23d)

P = 2(4a2
1IJ + µ2

1DE) (4.23e)
Q = 4a2

1J
2 + µ2

1E
2 − 4a2

1µ
2
1ρ

2 (4.23f)

with ρ2 defined as
ρ2 ≡ x2

C + y2
C

Now, two well-known trigonometric identities are introduced, namely,

c3 ≡ 1 − τ2
3

1 + τ2
3

, s3 ≡ 2τ3

1 + τ2
3

, where τ3 ≡ tan(
θ3

2
) (4.24)

Henceforth, the foregoing identities will be referred to as the tan-half-angle
identities. We will be resorting to them throughout the book. Upon sub-
stitution of the foregoing identities into eq.(4.22), a quartic equation in τ3

is obtained, i.e.,
Rτ4

3 + Sτ3
3 + Tτ2

3 + Uτ3 + V = 0 (4.25)

whose coefficients are all computable from the data. After some simplifica-
tions, these coefficients take on the forms

R = 4a2
1(J − H)2 + µ2

1(E − C)2 − 4ρ2a2
1µ

2
1 (4.26a)

S = 4[4a2
1I(J − H) + µ2

1D(E − C)] (4.26b)
T = 2[4a2

1(J
2 − H2 + 2I2) + µ2

1(E
2 − C2 + 2D2)

−4ρ2a2
1µ

2
1] (4.26c)

U = 4[4a2
1I(H + J) + µ2

1D(C + E)] (4.26d)
V = 4a2

1(J + H)2 + µ2
1(E + C)2 − 4ρ2a2

1µ
2
1 (4.26e)

Furthermore, let { (τ3)i }4
1 be the four roots of eq.(4.25). Thus, up to four

possible values of θ3 can be obtained, namely,

(θ3)i = 2 arctan[(τ3)i], i = 1, 2, 3, 4 (4.27)
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Once the four values of θ3 are available, each of these is substituted into
eqs.(4.21a & b), which thus produce four different values of θ1. For each
value of θ1 and θ3, then, one value of θ2 can be computed from the first
two scalar equations of eq.(4.17), which are displayed below:

A11 cos θ2 + A12 sin θ2 = xC cos θ1 + yC sin θ1 − a1 (4.28a)
−A12 cos θ2 + A11 sin θ2 = −xCλ1 sin θ1 + yCλ1 cos θ1

+ (zC − b1)µ1 (4.28b)

where

A11 ≡ a2 + a3 cos θ3 + b4µ3 sin θ3 (4.28c)
A12 ≡ −a3λ2 sin θ3 + b3µ2 + b4λ2µ3 cos θ3 + b4µ2λ3 (4.28d)

Thus, if A11 and A12 do not vanish simultaneously, angle θ2 is readily
computed in terms of θ1 and θ3 from eqs.(4.28a & b) as

cos θ2 =
1

∆2
{A11(xC cos θ1 + yC sin θ1 − a1)

−A12[−xCλ1 sin θ1 + yCλ1 cos θ1

+ (zC − b1)µ1]} (4.29a)

sin θ2 =
1

∆2
{A12(xC cos θ1 + yC sin θ1 − a1)

+ A11[−xCλ1 sin θ1 + yCλ1 cos θ1

+ (zC − b1)µ1]} (4.29b)

where ∆2 is defined as

∆2 ≡ A2
11 + A2

12

≡ a2
2 + a2

3(cos2 θ3 + λ2
2 sin2 θ3) + b2

4µ
2
3(sin

2 θ3 + λ2
2 cos2 θ3)

+ 2a2a3 cos θ3 + 2a2b4µ3 sin θ3

+ 2λ2µ2(b3 + b4λ3)(b4µ3 cos θ3 − a3 sin θ3)
+2a3b4(1 − λ2

2)µ3 sin θ3 cos θ3 + (b3 + λ3b4)2µ2
2 (4.29c)

the case in which ∆2 = 0, which leads to what is termed here the second
singularity, being discussed presently.

Takano (1985) considered the solution of the positioning problem for
all possible combinations of prismatic and revolute pairs in the regional
structure of a manipulator, thereby finding that

1. In the case of arms containing either three revolutes, or two revolutes
and one prismatic pair, with a general layout in all cases, a quartic
equation in cos θ3 was obtained;

2. in the case of one revolute and two prismatic pairs, the positioning
problem was reduced to a single quadratic equation, the problem at
hand thus admitting two solutions;
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3. finally, for three prismatic pairs, a single linear equation was derived,
the problem thus admitting a unique solution.

The Vanishing of ∆1

In the above derivations we have assumed that neither µ1 nor a1 vanishes.
However, if either µ1 = 0 or a1 = 0, then one can readily show that eq.(4.25)
reduces to a quadratic equation, and hence, this case differs essentially
from the general one. Note that one of these conditions can occur, and the
second occurs indeed frequently, but both together never occur, because
their simultaneous occurrence would render the manipulator useless for a
three-dimensional task. We thus have the two cases discussed below:

1. µ1 = 0, a1 	= 0. In this case, one has

A, B 	= 0, F = G = 0

Under these conditions, eq.(4.20a) and the tan-half-angle identities
given in eq.(4.24) yield

(J − H)τ2
3 + 2Iτ3 + (J + H) = 0

which thus produces two values of τ3, namely,

(τ3)1,2 =
−I ±√

I2 − J2 + H2

J − H
(4.30a)

Once two values of θ3 have been determined according to the above
equation, θ1 can be found using eq.(4.19a) and the tan-half-angle
identities, thereby deriving

(E′ − A)τ2
1 + 2Bτ1 + (E′ + A) = 0

where

E′ = Cc3 + Ds3 + E, τ1 ≡ tan
(

θ1

2

)

whose roots are

(τ1)1,2 =
−B ±√

B2 − E′2 + A2

E′ − A
(4.30b)

Thus, two values of θ1 are found for each of the two values of θ3,
which results in four positioning solutions. Values of θ2 are obtained
using eqs.(4.29a & b).

2. a1 = 0, µ1 	= 0. In this case, one has an architecture similar to that
of the robot of Fig. 4.3. We have now
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A = B = 0, F, G 	= 0

Under the present conditions, eq.(4.19a) reduces to

(E − C)τ2
3 + 2Dτ3 + (E + C) = 0

which produces two values of τ3, namely,

(τ3)1,2 =
−D ±√

D2 − E2 + C2

E − C
(4.31a)

With the two values of θ3 obtained, θ1 can be found using eq.(4.20a)
and the tan-half-angle identities to produce

(J ′ − F )τ2
1 + 2Gτ1 + (J ′ + F ) = 0

where

J ′ = Hc3 + Is3 + J, τ1 ≡ tan
(

θ1

2

)

whose roots are

(τ1)1,2 =
−G ±√

G2 − J ′2 + F 2

J ′ − F
(4.31b)

Once again, the solution results in a cascade of two quadratic equa-
tions, one for θ3 and one for θ1, which yields four positioning solutions.
As above, θ2 is then determined using eqs.(4.29a & b). Note that for
the special case of the manipulator of Fig. 4.3, we have

a1 = b2 = 0, α1 = α3 = 90◦, α2 = 0◦

and hence,

H = I = 0, E = a2
2 + a2

3 + b2
3 + b2

4 −
[
x2

C + y2
C + (zC − b1)2

]
,

C = 2a2a3, D = 2a2b4, F = yC , G = −xC , J = b3

In this case, the foregoing solutions reduce to

(τ3)1,2 =
−D ±√

C2 + D2 − E2

E − C
, (τ1)1,2 =

xC ±√x2
C + y2

C − b2
3

b3 − yC

A robot with the architecture studied here is the Puma, which is dis-
played in Fig. 4.10 in its four distinct postures for the same location of its
wrist center. Notice that the orientation of the EE is kept constant in all
four postures.

TLFeBOOK



126 4. Kinetostatics of Simple Robotic Manipulators

FIGURE 4.10. The four arm configurations for the positioning problem of the
Puma robot: (a) and (b), elbow down; (a) and (c), shoulder fore; (c) and (d),
elbow up; (b) and (d), shoulder aft.

The Vanishing of ∆2

In some instances, ∆2, as defined in eq.(4.29c), may vanish, thereby pre-
venting the calculation of θ2 from eqs.(4.29a & b). This posture, termed
the second singularity, occurs if both coefficients A11 and A12 of eqs.(4.28a
& b) vanish. Note that from their definitions, eqs.(4.28c & d), these co-
efficients are not only position- but also architecture-dependent. Thus, an
arbitrary manipulator cannot take on this configuration unless its geometric
dimensions allow it. This type of singularity will be termed architecture-
dependent, to distinguish it from others that are common to all robots,
regardless of their particular architectures.

We can now give a geometric interpretation of the singularity at hand:
First, note that the right-hand side of eq.(4.17), from which eqs.(4.28a & b)
were derived, is identical to QT

1 (c−a1), which means that this expression is
nothing but the F2-representation of the position vector of C. That is, the
components of vector QT

1 (c − a1) are the F2-components of vector −−→
O2C.

Therefore, the right-hand sides of eqs.(4.28a & b) are, respectively, the X2-
and Y2-components of vector −−→

O2C. Consequently, if A11 = A12 = 0, then
the two foregoing components vanish and, hence, point C lies on the Z2

axis. The first singularity thus occurs when point C lies on the axis of the
first revolute, while the second occurs when the same point lies on the axis
of the second revolute.
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Many industrial manipulators are designed with an orthogonal architec-
ture, which means that the angles between neighbor axes are multiples
of 90◦. Moreover, with the purpose of maximizing their workspace, or-
thogonal manipulators are designed with their second and third links of
equal lengths, thereby rendering them vulnerable to this type of singular-
ity. An architecture common to many manipulators such as the Cincinnati-
Milacron, ABB, Fanuc, and others, comprises a planar two-axis layout with
equal link lengths, which is capable of turning about an axis orthogonal to
these two axes. This layout allows for the architecture singularity under
discussion, as shown in Fig. 4.11a. The well-known Puma manipulator is
similar to the aforementioned manipulators, except that it is supplied with
what is called a shoulder offset b3, as illustrated in Fig. 4.3. This offset,
however, does not prevent the Puma from attaining the same singularity
as depicted in Fig. 4.11b. Note that in the presence of this singularity, angle
θ2 is undetermined, but θ1 and θ3 are determined in the case of the Puma
robot. However, in the presence of the singularity of Fig. 4.11a, neither θ1

nor θ2 are determined; only θ3 of the arm structure is determined.

Example 4.4.1 A manipulator with a common orthogonal architecture is
displayed in Fig. 4.12 in an arbitrary configuration. The arm architecture
of this manipulator has the DH parameters shown below:

a1 = 0, b1 = b2 = b3 = 0, α1 = 90◦, α2 = 0◦

Find its inverse kinematics solutions.

Solution: A common feature of this architecture is that it comprises a2 = b4.
In the present discussion, however, the latter feature need not be included,
and hence, the result that follows applies even in its absence. In this case,

FIGURE 4.11. Architecture-dependent singularities of (a) the Cincinnati--
Milacron and (b) the Puma robots.
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FIGURE 4.12. An orthogonal decoupled manipulator.

coefficients C, D, and E take on the forms

C = 2a2a3, D = 0, E = a2
2 + a2

3 − (x2
C + y2

C + z2
C)

Hence,

E−C = (a2−a3)2 − (x2
C +y2

C +z2
C), E+C = (a2 +a3)2 − (x2

C +y2
C +z2

C)

Moreover,
H = I = J = 0

and so
J ′ = 0, F = yC , G = −xC

The radical of eq.(4.31b) reduces to x2
C + y2

C . Thus,

tan
(

θ1

2

)
=

xC ±√x2
C + y2

C

−yC
≡ −1 ±√1 + (yC/xC)2

yC/xC
(4.32a)

Now we recall the relation between tan(θ1/2) and tan θ1, namely,

tan
(

θ1

2

)
≡ −1 ±

√
1 + tan2 θ1

tan θ1
(4.32b)

Upon comparison of eqs.(4.32a) and (4.32b), it is apparent that

θ1 = arctan
(

yC

xC

)

a result that can be derived geometrically for this simple arm architecture.
Given that the arctan(·) function is double-valued, its two values differing
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FIGURE 4.13. An orthogonal RRR manipulator.

in 180◦, we obtain here, again, two values for θ1. On the other hand, θ3 is
calculated from eq.(4.31a) as

(τ3)1,2 = ±
√

C2 − E2

E − C

thereby obtaining two values of θ3. As a consequence, the inverse position-
ing problem of this arm architecture admits four solutions as well. These
solutions give rise to two pairs of arm postures that are usually referred to
as elbow-up and elbow-down.

Example 4.4.2 Find all real inverse kinematic solutions of the manip-
ulator shown in Fig. 4.13, when point C of its end-effector has the base
coordinates C(0, 2a, −a).

Solution: The Denavit-Hartenberg parameters of this manipulator are de-
rived from Fig. 4.14, where the coordinate frames involved are indicated.
In defining the coordinate frames of that figure, the Denavit-Hartenberg
notation was followed, with Z4 defined, arbitrarily, as parallel to Z3. From
Fig. 4.14, then, we have

a1 = a2 = a3 = b2 = b3 = a, b1 = b4 = 0, α1 = α2 = 90◦, α3 = 0◦

One inverse kinematic solution can be readily inferred from the geom-
etry of Fig. 4.14. For illustration purposes, and in order to find all other
inverse kinematic solutions, we will use the procedure derived above. To this
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FIGURE 4.14. The coordinate frames of the orthogonal RRR manipulator.

end, we first proceed to calculate the coefficients of the quartic polynomial
equation, eq.(4.25), which are given, nevertheless, in terms of coefficients
K, . . ., Q of eqs.(4.23a–f). These coefficients are given, in turn, in terms
of coefficients A, . . ., J of eqs.(4.19b–f) and (4.20b–f). We then proceed to
calculate all the necessary coefficients in the proper order:

A = 0, B = 4a2, C = D = −E = 2a2

F = 2a, G = H = 0, I = J = a

Moreover,

K = 4a4, L = 8a4, M = 8a4, N = −8a4, P = 0, Q = −8a4,

The set of coefficients sought thus reduces to

R = K − N + Q = 4a4

S = 2(P − M) = −16a4

T = 2(Q + 2L − K) = 8a4

U = 2(M + P ) = 16a4

V = K + N + Q = −12a4

which leads to the quartic equation given below:

τ4
3 − 4τ3

3 + 2τ2
3 + 4τ3 − 3 = 0
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with four real roots, namely,

(τ3)1 = (τ3)2 = 1, (τ3)3 = −1, (τ3)4 = 3

These roots yield the θ3 values that follow:

(θ3)1 = (θ3)2 = 90◦, (θ3)3 = −90◦, (θ3)4 = 143.13◦

The quartic polynomial thus admits one double root, which means that at
the configurations resulting from this root, two solutions meet, thereby pro-
ducing a singularity, an issue that is discussed in Subsection 4.5.2. Below,
we calculate the remaining angles for each solution: Angle θ1 is computed
from relations (4.21a–c), where ∆1 = −8a3.

The first two roots, (θ3)1 = (θ3)2 = 90◦, yield c3 = 0 and s3 = 1. Hence,
eqs.(4.21a & b) lead to

c1 =
B(I + J)

∆1
=

4a2(a + a)
−8a3

= −1

s1 =
F (D + E)

∆1
=

2a(2a2 − 2a2)
−8a3

= 0

and hence,
(θ1)1 = (θ1)2 = 180◦

With θ1 known, θ2 is computed from the first two of eqs.(4.17), namely,

c2 = 0, s2 = −1

and hence,
(θ2)1 = (θ2)2 = −90◦

The remaining roots are treated likewise. These are readily calculated as
shown below:

(θ1)3 = −90◦, (θ2)3 = 0, (θ1)4 = 143.13◦, (θ2)4 = 0

It is noteworthy that the architecture of this manipulator does not allow
for the second singularity, associated with ∆2 = 0.

Example 4.4.3 For the same manipulator of Example 4.4.2, find all real
inverse kinematic solutions when point C of its end-effector has the base
coordinates C(0, a, 0), as displayed in Fig. 4.15.

Solution: In this case, one obtains, successively,

A = 0, B = C = D = E = 2a2,

F = a, G = 0 H = 0, I = J = a

K = 4a6, L = M = N = 8a6, P = 16a6, Q = 4a6

R = 0, S = 16a6, T = 32a6, U = 48a6, V = 16a6

TLFeBOOK
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FIGURE 4.15. Manipulator configuration for C(0, a, 0).

Moreover, for this case, the quartic eq.(4.22) degenerates into a cubic equa-
tion, namely,

τ3
3 + 2τ2

3 + 3τ3 + 1 = 0

whose roots are readily found as

(τ3)1 = −0.43016, (τ3)2,3 = −0.78492± j1.30714

where j is the imaginary unit, i.e., j ≡ √−1. That is, only one real solution
is obtained, namely, (θ3)1 = −46.551◦. However, shown in Fig. 4.15 is a
quite symmetric posture of this manipulator at the given position of point C
of its end-effector, which does not correspond to the real solution obtained
above. In fact, the solution yielding the posture of Fig. 4.15 disappeared
because of the use of the quartic polynomial equation in tan(θ3/2). Note
that if the two contours derived from eqs.(4.19a) and (4.20a) are plotted,
as in Fig. 4.16, their intersections yield the two real roots, including the
one leading to the posture of Fig. 4.15.

The explanation of how the fourth root of the quartic equation disap-
peared is given below: Let us write the quartic polynomial in full, with a
“small” leading coefficient ε, namely,

ετ4
3 + τ3

3 + 2τ2
3 + 3τ3 + 1 = 0
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FIGURE 4.16. Contours producing the two real solutions for Example 4.4.3.

Upon dividing both sides of the foregoing equation by τ4
3 , we obtain

ε +
1
τ3

+
2
τ2

3

+
3
τ3

3

+
1
τ4

3

= 0

from which it is clear that the original equation is satisfied as ε → 0 if and
only if τ3 → ±∞, i.e, if θ3 = 180◦. It is then apparent that the missing
root is θ3 = 180◦. The remaining angles are readily calculated as

(θ1)1 = −105.9◦, (θ2)1 = −149.35◦, (θ1)4 = 180◦, (θ2)4 = 180◦

4.4.2 The Orientation Problem

Now the orientation inverse kinematic problem is addressed. This problem
consists of determining the wrist angles that will produce a prescribed
orientation of the end-effector. This orientation, in turn, is given in terms
of the rotation matrix Q taking the end-effector from its home attitude to
its current one. Alternatively, the orientation can be given by the natural
invariants of the rotation matrix, vector e and angle φ. Moreover, since θ1,
θ2, and θ3 are available, Q1, Q2, and Q3 become data for this problem.
One now has the general layout of Fig. 4.17, where angles { θi }6

4 are to be
determined from the problem data, which are in this case the orientation
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FIGURE 4.17. General architecture of a spherical wrist.

of the end-effector and the architecture of the wrist; the latter is defined
by angles α4 and α5, neither of which can be either 0 or π.

Now, since the orientation of the end-effector is given, we know the com-
ponents of vector e6 in any coordinate frame. In particular, let

[ e6 ]4 =




ξ
η
ζ


 (4.33)

Moreover, the components of vector e5 in F4 are nothing but the entries
of the third column of matrix Q4, i.e.,

[ e5 ]4 =




µ4 sin θ4

−µ4 cos θ4

λ4


 (4.34)

Furthermore, vectors e5 and e6 make an angle α5, and hence,

eT
6 e5 = λ5 or [ e6 ]T4 [ e5 ]4 = λ5 (4.35)

Upon substitution of eqs.(4.33) and (4.34) into eq.(4.35), we obtain

ξµ4 sin θ4 − ηµ4 cos θ4 + ζλ4 = λ5 (4.36)

which can be readily transformed, with the aid of the tan-half-angle iden-
tities, into a quadratic equation in τ4 ≡ tan(θ4/2), namely,

(λ5 − ηµ4 − ζλ4)τ2
4 − 2ξµ4τ4 + (λ5 + ηµ4 − ζλ4) = 0 (4.37)
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its two roots being given by

τ4 =
ξµ4 ±√(ξ2 + η2)µ2

4 − (λ5 − ζλ4)2

λ5 − ζλ4 − ηµ4
(4.38)

Note that the two foregoing roots are real as long as the radical is positive,
the two roots merging into a single one when the radical vanishes. Thus, a
negative radical means an attitude of the EE that is not feasible with the
wrist. It is to be pointed out here that a three-revolute spherical wrist is
kinematically equivalent to a spherical joint. However, the spherical wrist
differs essentially from a spherical joint in that the latter has, kinematically,
an unlimited workspace—a physical spherical joint, of course, has a limited
workspace by virtue of its mechanical construction—and can orient a rigid
body arbitrarily. Therefore, the workspace W of the wrist is not unlimited,
but rather defined by the set of values of ξ, η, and ζ that satisfy the two
relations shown below:

ξ2 + η2 + ζ2 = 1 (4.39a)
f(ξ, η, ζ) ≡ (ξ2 + η2)µ2

4 − (λ5 − ζλ4)2 ≥ 0 (4.39b)

In view of condition (4.39a), however, relation (4.39b) simplifies to an in-
equality in ζ alone, namely,

F (ζ) ≡ ζ2 − 2λ4λ5ζ − (µ2
4 − λ2

5) ≤ 0 (4.40)

As a consequence,

1. W is a region of the unit sphere S centered at the origin of the three-
dimensional space;

2. W is bounded by the curve F (ζ) = 0 on the sphere;

3. the wrist attains its singular configurations along the curve F (ζ) = 0
lying on the surface of S.

In order to gain more insight on the shape of the workspace W , let us
look at the boundary defined by F (ζ) = 0. Upon setting F (ζ) to zero, we
obtain a quadratic equation in ζ, whose two roots can be readily found to
be

ζ1,2 = λ4λ5 ± |µ4µ5| (4.41)

which thus defines two planes, Π1 and Π2, parallel to the ξ-η plane of the
three-dimensional space, intersecting the ζ-axis at ζ1 and ζ2, respectively.
Thus, the workspace W of the spherical wrist at hand is that region of the
surface of the unit sphere S contained between Π1 and Π2. For example, a
common wrist design involves an orthogonal architecture, i.e., α4 = α5 =
90◦. For such wrists,

ζ1,2 = ±1
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and hence, orthogonal wrists become singular when [ e6 ]4 = [ 0, 0, ±1 ]T ,
i.e., when the fourth and the sixth axes are aligned. Thus, the workspace
of orthogonal spherical wrists is the whole surface of the unit sphere cen-
tered at the origin, the singularity curve thus degenerating into two points,
namely, the two intersections of this sphere with the ζ-axis. If one views
ζ = 0 as the equatorial plane, then the two singularity points of the
workspace are the poles.

An alternative design is the so-called three-roll wrist of some Cincinnati-
Milacron robots, with α4 = α5 = 120◦, thereby leading to λ4 = λ5 = −1/2
and µ4 = µ5 =

√
3/2. For this wrist, the two planes Π1 and Π2 are found

below: First, we note that with the foregoing values,

ζ1,2 = 1, −1
2

and hence, the workspace of this wrist is the part of the surface of the unit
sphere S that lies between the planes Π1 and Π2 parallel to the ξ-η plane,
intersecting the ζ-axis at ζ1 = 1 and ζ2 = −1/2, respectively. Hence, if
ζ = 0 is regarded as the equatorial plane, then the points of the sphere S
that are outside of the workspace of this wrist are those lying at a latitude
of less than −30◦. The singularity points are thus the north pole and the
parallel of latitude −30◦.

Once θ4 is calculated from the two foregoing values of τ4, if these are
real, angle θ5 is obtained uniquely for each value of θ4, as explained below:
First, eq.(4.9a) is rewritten in a form in which the data are collected in the
right-hand side, which produces

Q4Q5Q6 = R (4.42a)

with R defined as
R = QT

3 QT
2 QT

1 Q (4.42b)

Moreover, let the entries of R in the fourth coordinate frame be given as

[R ]4 =




r11 r12 r13

r21 r22 r23

r31 r32 r33




Expressions for θ5 and θ6 can be readily derived by solving first for Q5

from eq.(4.42a), namely,
Q5 = QT

4 RQT
6 (4.43)

Now, by virtue of the form of the Qi matrices, as appearing in eq.(4.1e),
it is apparent that the third row of Qi does not contain θi. Hence, the third
column of the matrix product of eq.(4.43) is independent of θ6. Thus, two
equations for θ5 are obtained by equating the first two components of the
third columns of that equation, thereby obtaining

µ5s5 = (µ6r12 + λ6r13)c4 + (µ6r22 + λ6r23)s4

−µ5c5 = −λ4(µ6r12 + λ6r13)s4 + λ4(µ6r22 + λ6r23)c4 + µ4(µ6r32 + λ6r33)
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which thus yield a unique value of θ5 for every value of θ4. Finally, with
θ4 and θ5 known, it is a simple matter to calculate θ6. This is done upon
solving for Q6 from eq.(4.42a), i.e.,

Q6 = QT
5 QT

4 R

and if the partitioning (4.12) of Qi is now recalled, a useful vector equation
is derived, namely,

p6 = QT
5 QT

4 r1 (4.44)

where r1 is the first column of R. Let w denote the product QT
4 r1, i.e.,

w ≡ QT
4 r1 ≡




r11c4 + r21s4

−λ4(r11s4 − r21c4) + µ4r31

µ4(r11s4 − r21c4) + λ4r31




Hence,

QT
5 QT

4 r1 ≡



w1c5 + w2s5

λ5(−w1s5 + w2c5) + w3µ5

µ5(w1s5 − w2c5) + w3λ5




in which wi denotes the ith component of w. Hence, c6 and s6 are deter-
mined from the first two scalar equations of eq.(4.44), namely,

c6 = w1c5 + w2s5

s6 = −w1λ5s5 + w2λ5c5 + w3µ5

thereby deriving a unique value of θ6 for every pair of values (θ4, θ5). In
summary, then, two values of θ4 have been determined, each value deter-
mining, in turn, one single corresponding set of θ5 and θ6 values. Therefore,
there are two sets of solutions for the orientation problem under study,
which lead to two corresponding wrist postures. The two distinct postures
of an orthogonal three-revolute spherical wrist for a given orientation of its
EE are displayed in Fig. 4.18.

FIGURE 4.18. The two configurations of a three-axis spherical wrist.
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When combined with the four postures of a decoupled manipulator lead-
ing to one and the same location of its wrist center—positioning problem—a
maximum of eight possible combinations of joint angles for a single pose of
the end-effector of a decoupled manipulator are found.

4.5 Velocity Analysis of Serial Manipulators

The relationships between the prescribed twist of the EE, also referred to as
the Cartesian velocity of the manipulator, and the corresponding joint-rates
are derived in this section. First, a serial n-axis manipulator containing
only revolute pairs is considered. Then, relations associated with prismatic
pairs are introduced, and finally, the joint rates of six-axis manipulators
are calculated in terms of the EE twist. Particular attention is given to
decoupled manipulators, for which simplified velocity relations are derived.

We consider here the manipulator of Fig. 4.19, in which a joint coordinate
θi, a joint rate θ̇i, and a unit vector ei are associated with each revolute
axis. The Xi, Yi, Zi coordinate frame, attached to the (i− 1)st link, is not
shown, but its origin Oi is indicated. The relations that follow are apparent
from that figure.

ω0 = 0

ω1 = θ̇1e1

ω2 = θ̇1e1 + θ̇2e2 (4.45)
...

ωn = θ̇1e1 + θ̇2e2 + · · · + θ̇nen

FIGURE 4.19. General n-axis manipulator.
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and if the angular velocity of the EE is denoted by ω, then

ω ≡ ωn = θ̇1e1 + θ̇2e2 + · · · + θ̇nen =
n∑
1

θ̇iei

Likewise, from Fig. 4.19, one readily derives

p = a1 + a2 + · · · + an (4.46)

where p denotes the position vector of point P of the EE. Moreover, notice
that all vectors of the above equation must be expressed in the same frame;
otherwise, the addition would not be possible—vector ai was defined as
expressed in the ith frame in eq.(4.3c). Upon differentiating both sides of
eq.(4.46), we have

ṗ = ȧ1 + ȧ2 + · · · + ȧn (4.47)

where
ȧi = ωi × ai, i = 1, 2, . . . , n (4.48)

Furthermore, substitution of eqs.(4.45) and (4.48) into eq.(4.47) yields

ṗ = θ̇1e1 × a1 + (θ̇1e1 + θ̇2e2) × a2 +
... (4.49)

+(θ̇1e1 + θ̇2e2 + · · · + θ̇nen) × an

which can be readily rearranged as

ṗ = θ̇1e1 × (a1 + a2 + · · · + an) + θ̇2e2 × (a2 + a3 + · · · + an)
+ · · ·+ θ̇nen × an

Now vector ri is defined as that joining Oi with P , directed from the
former to the latter, i.e.,

ri ≡ ai + ai+1 + · · · + an (4.50)

and hence, ṗ can be rewritten as

ṗ =
n∑
1

θ̇iei × ri

Further, let A and B denote the 3 × n matrices defined as

A ≡ [ e1 e2 · · · en ] (4.51a)
B ≡ [ e1 × r1 e2 × r2 · · · en × rn ] (4.51b)

Furthermore, the n-dimensional joint-rate vector θ̇ is defined as

θ̇ ≡ [ θ̇1 θ̇2 · · · θ̇n ]T
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Thus, ω and ṗ can be expressed in a more compact form as

ω = Aθ̇, ṗ = Bθ̇

the twist of the EE being defined, in turn, as

t ≡
[

ω
ṗ

]
(4.52)

The EE twist is thus related to the joint-rate vector θ̇ in the form

Jθ̇ = t (4.53)

where J is the Jacobian matrix, or Jacobian, for brevity, of the manipulator
under study, first introduced by Whitney (1972). The Jacobian is defined
as the 6 × n matrix shown below:

J =
[
A
B

]
(4.54a)

or

J =
[

e1 e2 · · · en

e1 × r1 e2 × r2 · · · en × rn

]
(4.54b)

Clearly, an alternative definition of the foregoing Jacobian matrix can be
given as

J =
∂t
∂θ̇

Moreover, if ji denotes the ith column of J, one has

ji =
[

ei

ei × ri

]

It is important to note that if the axis of the ith revolute is denoted by
Ri, then ji is nothing but the Plücker array of that line, with the moment
of Ri being taken with respect to the operation point P of the EE.

On the other hand, if the ith pair is not rotational, but prismatic, then the
(i − 1)st and the ith links have the same angular velocity, for a prismatic
pair does not allow any relative rotation. However, vector ai joining the
origins of the ith and (i + 1)st frames is no longer of constant magnitude
but undergoes a change of magnitude along the axis of the prismatic pair.
That is,

ωi = ωi−1, ȧi = ωi−1 × ai + ḃiei

One can readily prove, in this case, that

ω = θ̇1e1 + θ̇2e2 + · · · + θ̇i−1ei−1 + θ̇i+1ei+1 + · · · + θ̇nen

ṗ = θ̇1e1 × r1 + θ̇2e2 × r2 + · · · + θ̇i−1ei−1 × ri−1 + ḃiei

+ θ̇i+1ei+1 × ri+1 + · · · + θ̇nen × an
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from which it is apparent that the relation between the twist of the EE and
the joint-rate vector is formally identical to that appearing in eq.(4.53) if
vector θ̇ is defined as

θ̇ ≡ [ θ̇1 θ̇2 · · · θ̇i−1 ḃi θ̇i+1 · · · θ̇n ]T

and the ith column of J changes to

ji =
[

0
ei

]
(4.56)

Note that the Plücker array of the axis of the ith joint, if prismatic, is that
of a line at infinity lying in a plane normal to the unit vector ei, as defined
in eq.(3.35).

In particular, for six-axis manipulators, J is a 6 × 6 matrix. Whenever
this matrix is nonsingular, eq.(4.53) can be solved for θ̇, namely,

θ̇ = J−1t (4.57)

Equation (4.57) is only symbolic, for the inverse of the Jacobian matrix
need not be computed explicitly. Indeed, in the general case, matrix J can-
not be inverted symbolically, and hence, θ̇ is computed using a numerical
procedure, the most suitable one being the Gauss-elimination algorithm,
also known as LU decomposition (Golub and Van Loan, 1989). Gaussian
elimination produces the solution by recognizing that a system of linear
equations is most easily solved when it is in either upper- or lower-triangular
form. To exploit this fact, matrix J is factored into the unique L and U
factors in the form:

J = LU (4.58a)

where L is lower- and U is upper-triangular. Moreover, they have the forms

L =




1 0 · · · 0
l21 1 · · · 0
...

...
. . .

...
ln1 ln2 · · · 1


 (4.58b)

U =




u11 u12 · · · u1n

0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn


 (4.58c)

where in the particular case at hand, n = 6. Thus, the unknown vector of
joint rates can now be computed from two triangular systems, namely,

Ly = t, Uθ̇ = y (4.59)

The latter equations are then solved, first for y and then for θ̇, by appli-
cation of only forward and backward substitutions, respectively. The LU
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decomposition of an n × n matrix requires M ′
n multiplications and A′

n

additions, whereas the forward substitution needed in solving the lower-
triangular system of eq.(4.59) requires M ′′

n multiplications and A′′
n addi-

tions. Moreover, the backward substitution needed in solving the upper-
triangular system of eq.(4.59) requires M ′′′

n multiplications and A′′′
n addi-

tions. These figures are (Dahlquist and Björck, 1974)

M ′
n =

n3

3
+

n2

2
+

n

6
, A′

n =
n3

3
− n

3
(4.60a)

M ′′
n =

n(n − 1)
2

, A′′
n =

n(n − 1)
2

(4.60b)

M ′′′
n =

n(n + 1)
2

, A′′′
n =

n(n − 1)
2

(4.60c)

Thus, the solution of a system of n linear equations in n unknowns, using
the LU-decomposition method, can be accomplished with Mn multiplica-
tions and An additions, as given below (Dahlquist and Björck, 1974):

Mn =
n

6
(2n2 + 9n + 1), An =

n

3
(n2 + 3n − 4) (4.61a)

Hence, the velocity resolution of a six-axis manipulator of arbitrary ar-
chitecture requires M6 multiplications and A6 additions, as given below:

M6 = 127, A6 = 100 (4.61b)

Decoupled manipulators allow an even simpler velocity resolution. For
manipulators with this type of architecture, it is more convenient to deal
with the velocity of the center C of the wrist than with that of the operation
point P . Thus, one has

tC = Jθ̇

where tC is defined as

tC =
[

ω
ċ

]

and can be obtained from tP ≡ [ωT , ṗT ]T using the twist-transfer formula
given by eqs.(3.84) and (3.85) as

tC =
[

1 O
P − C 1

]
tP

with C and P defined as the cross-product matrices of the position vectors
c and p, respectively.

If in general, JA denotes the Jacobian defined for a point A of the EE
and JB that defined for another point B, then the relation between JA and
JB is

JB = UJA (4.62a)
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where the 6 × 6 matrix U is defined as

U ≡
[

1 O
A − B 1

]
(4.62b)

while A and B are now the cross-product matrices of the position vectors a
and b of points A and B, respectively. Moreover, this matrix U is identical
to the matrix defined under the same name in eq.(3.31), and hence, it
belongs to the 6 × 6 unimodular group, i.e., the group of 6 × 6 matrices
whose determinant is unity. Thus,

det(JB) = det(JA) (4.63)

We have then proven the result below:

Theorem 4.5.1: The determinant of the Jacobian matrix of a six-axis
manipulator is not affected under a change of operation point of the EE.

Note, however, that the Jacobian matrix itself changes under a change
of operation point. By analogy with the twist- and the wrench-transfer
formulas, eq.(4.62a) can be called the Jacobian-transfer formula.

Since C is on the last three joint axes, its velocity is not affected by the
motion of the last three joints, and we can write

ċ = θ̇1e1 × r1 + θ̇2e2 × r2 + θ̇3e3 × r3

where in the case of a decoupled manipulator, vector ri is defined as that
directed from Oi to C. On the other hand, we have

ω = θ̇1e1 + θ̇2e2 + θ̇3e3 + θ̇4e4 + θ̇5e5 + θ̇6e6

and thus, the Jacobian takes on the following simple form

J =
[
J11 J12

J21 O

]
(4.64)

where O denotes the 3 × 3 zero matrix, the other 3× 3 blocks being given
below, for manipulators with revolute pairs only, as

J11 = [ e1 e2 e3 ] (4.65a)
J12 = [ e4 e5 e6 ] (4.65b)
J21 = [ e1 × r1 e2 × r2 e3 × r3 ] (4.65c)

Further, vector θ̇ is partitioned accordingly:

θ̇ ≡
[

θ̇a

θ̇w

]
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where

θ̇a ≡



θ̇1

θ̇2

θ̇3


 , θ̇w ≡




θ̇4

θ̇5

θ̇6




Henceforth, the three components of θ̇a will be referred to as the arm rates,
whereas those of θ̇w will be called the wrist rates. Now eqs.(4.53) can be
written, for this particular case, as

J11θ̇a + J12θ̇w = ω (4.66a)
J21θ̇a = ċ (4.66b)

from which the solution is derived successively from the two systems of
three equations and three unknowns that follow:

J21θ̇a = ċ (4.67a)
J12θ̇w = ω − J11θ̇a (4.67b)

From the general expressions (4.60), then, it is apparent that each of
the foregoing systems can be solved with the numbers of operations shown
below:

M3 = 23, A3 = 14

Since the computation of the right-hand side of eq.(4.67b) requires, ad-
ditionally, nine multiplications and nine additions, the total numbers of
operations required to perform one joint-rate resolution of a decoupled ma-
nipulator, Mv multiplications and Av additions, are given by

Mv = 55, Av = 37 (4.68)

which are fairly low figures and can be performed in a matter of microsec-
onds using a modern processor.

It is apparent from the foregoing kinematic relations that eq.(4.67a)
should be first solved for θ̇a; with this value available, eq.(4.67b) can then
be solved for θ̇w. We thus have, symbolically,

θ̇a = J−1
21 ċ (4.69)

θ̇w = J−1
12 (ω − J11θ̇a) (4.70)

Now, if we recall the concept of reciprocal bases introduced in Subsec-
tion 2.7.1, the above inverses can be represented explicitly. Indeed, let

∆21 ≡ det(J21) = (e1 × r1) × (e2 × r2) · (e3 × r3) (4.71)
∆12 ≡ det(J12) = e4 × e5 · e6 (4.72)

Then

J−1
21 =

1
∆21




[(e2 × r2) × (e3 × r3)]T

[(e3 × r3) × (e1 × r1)]T

[(e1 × r1) × (e2 × r2)]T


 (4.73)

TLFeBOOK



4.5 Velocity Analysis of Serial Manipulators 145

J−1
12 =

1
∆12




(e5 × e6)T

(e6 × e4)T

(e4 × e5)T


 (4.74)

Therefore,

θ̇a =
1

∆21




(e2 × r2) × (e3 × r3) · c
(e3 × r3) × (e1 × r1) · c
(e1 × r1) × (e2 × r2) · c


 (4.75a)

and if we let
� ≡ ω − J11θ̇a (4.75b)

where � is read varpi, then

θ̇w =
1

∆12




e5 × e6 · �
e6 × e4 · �
e4 × e5 · �


 (4.75c)

4.5.1 Jacobian Evaluation

The evaluation of the Jacobian matrix of a manipulator with n revolutes
is discussed in this subsection, the presence of a prismatic pair leading
to simplifications that will be outlined. Our aim here is to devise algo-
rithms requiring a minimum number of operations, for these calculations
are needed in real-time applications. We assume at the outset that all joint
variables producing the desired EE pose are available. We divide this sub-
section into two subsubsections, one for the evaluation of the upper part of
the Jacobian matrix and one for the evaluation of its lower part.

Evaluation of Submatrix A

The upper part A of the Jacobian matrix is composed of the set { ei }n
1 , and

hence, our aim here is the calculation of these unit vectors. Note, moreover,
that vector [ ei ]1 is nothing but the last column of Pi−1 ≡ Q1 · · ·Qi−1, our
task then being the calculation of these matrix products. According to the
DH nomenclature,

[ ei ]i = [ 0 0 1 ]T

Hence, [ e1 ]1 is available at no cost. However, each of the remaining [ ei ]1
vectors, for i = 2, . . . , n, is obtained as the last column of matrices Pi−1.
The recursive calculation of these matrices is described below:

P1 ≡ Q1

P2 ≡ P1Q2

...
Pn ≡ Pn−1Qn
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and hence, a simple algorithm follows:

P1 ← Q1

For i = 2 to n do

Pi ← Pi−1Qi

enddo

Now, since P1 is identical to Q1, the first product appearing in the do-
loop, P1Q2, is identical to Q1Q2, whose two factors have a special struc-
ture. The computation of this product, then, requires special treatment,
which warrants further discussion because of its particular features. From
the structure of matrices Qi, as displayed in eq.(4.1e), we have

P2 ≡



cos θ1 −λ1 sin θ1 µ1 sin θ1

sin θ1 λ1 cos θ1 −µ1 cos θ1

0 µ1 λ1






cos θ2 −λ2 sin θ2 µ2 sin θ2

sin θ2 λ2 cos θ2 −µ2 cos θ2

0 µ2 λ2




The foregoing product is calculated now by first computing the prod-
ucts λ1λ2, λ1µ2, µ1µ2, and λ2µ1, which involve only constant quantities,
these terms thus being posture-independent. Thus, in tracking a prescribed
Cartesian trajectory, the manipulator posture changes continuously, and
hence, its joint variables also change. However, its DH parameters, those
defining its architecture, remain constant. Therefore, the four above prod-
ucts remain constant and are computed prior to tracking a trajectory, i.e.,
off-line. In computing these products, we store them as

λ12 ≡ λ1λ2, µ21 ≡ λ1µ2, µ12 ≡ µ1µ2, λ21 ≡ λ2µ1

Next, we perform the on-line computations. First, let1

σ ← λ1 sin θ2

τ ← sin θ1 cos θ2

υ ← cos θ1 cos θ2

u ← cos θ1 sin θ2 + λ1τ

v ← sin θ1 sin θ2 − λ1υ

and hence,

P2 =




υ − σ sin θ1 −λ2u + µ12 sin θ1 µ2u + λ21 sin θ1

τ + σ cos θ1 −λ2v − µ12 cos θ1 µ2v − λ21 cos θ1

µ1 sin θ2 λ21 cos θ2 + µ21 −µ12 cos θ2 + λ12




1Although υ and v look similar, they should not be confused with each other,
the former being the lowercase Greek letter upsilon. As a matter of fact, no
confusion should arise, because upsilon is used only once, and does not appear
further in the book.
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As the reader can verify, the foregoing calculations consume 20 multiplica-
tions and 10 additions. Now, we proceed to compute the remaining products
in the foregoing do-loop.

Here, notice that the product Pi−1Qi, for 3 ≤ i ≤ n, can be computed
recursively, as described below: Let Pi−1 and Pi be given as

Pi−1 ≡



p11 p12 p13

p21 p22 p23

p31 p32 p33




Pi ≡



p′11 p′12 p′13

p′21 p′22 p′23

p′31 p′32 p′33




Now matrix Pi is computed by first defining

ui = p11 sin θi − p12 cos θi

vi = p21 sin θi − p22 cos θi (4.76a)
wi = p31 sin θi − p32 cos θi

and

p′11 = p11 cos θi + p12 sin θi

p′12 = −uiλi + p13µi

p′13 = uiµi + p13λi

p′21 = p21 cos θi + p22 sin θi

p′22 = −viλi + p23µi (4.76b)
p′23 = viµi + p23λi

p′31 = p31 cos θi + p32 sin θi

p′32 = −wiλi + p33µi

p′33 = wiµi + p33λi

Computing ui, vi, and wi requires six multiplications and three addi-
tions, whereas each of the p′ij entries requires two multiplications and one
addition. Hence, the computation of each Pi matrix requires 24 multiplica-
tions and 12 additions, the total number of operations required to compute
the n−2 products {Pi }n−1

2 thus being 24(n−2)+20 = 24n−28 multipli-
cations and 12(n− 2) + 10 = 12n− 14 additions, for n ≥ 2. Moreover, P1,
i.e., Q1, requires four multiplications and no additions, the total number of
multiplications MA and additions AA required to compute matrix A thus
being

MA = 24n− 24, AA = 12n − 14 (4.77)

Before concluding this section, a remark is in order: The reader may
realize that Pn is nothing but Q, and hence, the same reader may wonder
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whether we could not save some operations in the foregoing computations
by stopping the above recursive algorithm at n−1, rather than at n. This is
not a good idea, for the above equality holds if and only if the manipulator
is capable of tracking perfectly a given trajectory. However, reality is quite
different, and errors are always present when tracking. As a matter of fact,
the mismatch between Pn and Q is very useful in estimating orientation
errors, which are then used in a feedback-control scheme to synthesize the
corrective signals that are meant to correct those errors.

Evaluation of Submatrix B

The computation of submatrix B of the Jacobian is studied here. This
submatrix comprises the set of vectors { ei × ri }n

1 . We thus proceed first
to the computation of vectors ri, for i = 1, . . . , n, which is most efficiently
done using a recursive scheme, similar to that of Horner for polynomial
evaluation (Henrici, 1964), namely,

[ r6 ]6 ← [ a6 ]6
For i = 5 to 1 do

[ ri ]i ← [ ai ]i + Qi[ ri+1 ]i+1

enddo

In the foregoing algorithm, a simple scheme is introduced to perform the
product Qi[ ri+1 ]i+1, in order to economize operations: if we let
[ ri+1 ]i+1 = [ r1, r2, r3 ]T , then

Qi[ ri+1 ]i+1 =




cos θi −λi sin θi µi sin θi

sin θi λi cos θi −µi cos θi

0 µi λi






r1

r2

r3




=




r1 cos θi − u sin θi

r1 sin θi + u cos θi

r2µi + r3λi


 (4.78a)

where
u ≡ r2λi − r3µi (4.78b)

Therefore, the product of matrix Qi by an arbitrary vector consumes eight
multiplications and four additions.

Furthermore, each vector [ai ]i, for i = 1, . . . , n, requires two multiplica-
tions and no additions, as made apparent from their definitions in eq.(4.3b).
Moreover, from the foregoing evaluation of Qi[ ri+1 ]i+1, it is apparent that
each vector ri, in frame Fi, is computed with 10 multiplications and seven
additions—two more multiplications are needed to calculate each vector
[ ai ]i and three more additions are required to add the latter to vector
Qi[ ri+1 ]i+1—the whole set of vectors { ri }n

1 thus being computed, in Fi-
coordinates, with 10(n − 1) + 2 = 10n − 8 multiplications and 7(n − 1)
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additions, where one coordinate transformation, that of r1, is not counted,
since this vector is computed directly in F1.

Now we turn to the transformation of the components of all the foregoing
vectors into F1-coordinates. First, note that we can proceed now in two
ways: in the first, we transform the individual vectors ei and ri from Fi- into
F1-coordinates and then compute their cross product; in the second, we first
perform the cross products and then transform each of these products into
F1-coordinates. It is apparent that the second approach is more efficient,
which is why we choose it here.

In order to calculate the products ei×ri in Fi-coordinates, we let [ ri ]i =
[ ρ1, ρ2, ρ3 ]T . Moreover, [ ei ]i = [ 0, 0, 1 ]T , and hence,

[ ei × ri ]i =



−ρ2

ρ1

0




which is thus obtained at no cost. Now, the transformation from Fi- into
F1-coordinates is simply

[ ei × ri ]1 = Pi−1[ ei × ri ]i (4.79)

In particular, [ e1 × r1 ]1 needs no transformation, for its two factors are
given in F1-coordinates. The F1-components of the remaining cross prod-
ucts are computed using the general transformation of eq.(4.79). In the case
at hand, this transformation requires, for each i, six multiplications and
three additions, for this transformation involves the product of a full 3× 3
matrix, Pi−1, by a 3-dimensional vector, ei × ri, whose third component
vanishes. Thus, the computation of matrix B requires MB multiplications
and AB additions, as given below:

MB = 16n− 14, AB = 10(n − 1) (4.80)

In total, then, the evaluation of the complete Jacobian requires MJ multi-
plications and AJ additions, namely,

MJ = 40n− 38, AJ = 22n− 24 (4.81)

In particular, for a six-revolute manipulator, these figures are 202 multi-
plications and 108 additions.

Now, if the manipulator contains some prismatic pairs, the foregoing
figures diminish correspondingly. Indeed, if the ith joint is prismatic, then
the ith column of the Jacobian matrix changes as indicated in eq.(4.56).
Hence, one cross-product calculation is spared, along with the associated
coordinate transformation. As a matter of fact, as we saw above, the cross
product is computed at no cost in local coordinates, and so each prismatic
pair of the manipulator reduces the foregoing numbers of operations by
only one coordinate transformation, i.e., by 10 multiplications and seven
additions.
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4.5.2 Singularity Analysis of Decoupled Manipulators

In performing the computation of the joint rates for a decoupled manipu-
lator, it was assumed that neither J12 nor J21 is singular. If the latter is
singular, then none of the joint rates can be evaluated, even if the former is
nonsingular. However, if J21 is nonsingular, then eq.(4.66a) can be solved
for the arm rates even if J12 is singular. Each of these sub-Jacobians is
analyzed for singularities below.

We will start analyzing J21, whose singularity determines whether any
joint-rate resolution is possible at all. First, we note from eq.(4.65c) that
the columns of J21 are the three vectors e1 × r1, e2 × r2, and e3 × r3.
Hence, J21 becomes singular if either these three vectors become coplanar
or at least one of them vanishes. Furthermore, neither the relative layout
of these three vectors nor their magnitudes change if the manipulator un-
dergoes a motion about the first revolute axis while keeping the second
and the third revolute axes locked. This means that θ1 does not affect the
singularity of the manipulator, a result that can also be derived from in-
variance arguments—see Section 2.6—and by noticing that singularity is,
indeed, an invariant property. Hence, whether a configuration is singular or
not is independent of the viewpoint of the observer, a change in θ1 being
nothing but a change of viewpoint.

The singularity of a three-revolute arm for positioning tasks was analyzed
by Burdick (1995), by recognizing that (i) given three arbitrary lines in
space, the three revolute axes in our case, it is always possible to find a
set of lines that intersects all three, and (ii) the moments of the three
lines about any point on the intersecting line are all zero. As a matter
of fact, the locus of those lines is a quadric ruled surface, namely, a one-
sheet hyperboloid—see Exercise 3.4. Therefore, if the endpoint of the third
moving link lies in this quadric, the manipulator is in a singular posture,
and velocities of C along the intersecting line cannot be produced. This
means that the manipulator has lost, to a first order, one degree of freedom.
Here we emphasize that this loss is meaningful only at a first order because,
in fact, a motion along that intersecting line may still be possible, provided
that the full nonlinear relations of eq.(4.16) are considered. If such a motion
is at all possible, however, then it is so only in one direction, as we shall see
in Case 2 below. Motions in the opposite direction are not feasible because
of the rigidity of the links.

We will illustrate the foregoing concepts as they pertain to the most
common types of industrial manipulators, i.e., those of the orthogonal type.
In these cases, two consecutive axes either intersect at right angles or are
parallel; most of the time, the first two axes intersect at right angles and
the last two are parallel. Below we study each of these cases separately.

Case 1: Two consecutive axes intersect and C lies in their plane.
Here, the ruled hyperboloid containing the lines that intersect all
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three axes degenerates into a plane, namely, that of the two inter-
secting axes. For conciseness, let us assume that the first two axes
intersect, but the derivations are the same if the intersecting axes are
the last two. Moreover, let O12 be the intersection of the first two
axes, Π12 being the plane of these axes and n12 its normal. If we re-
call the notation adopted in Section 4.5, we have now that the vector
directed from O12 to C can be regarded as both r1 and r2. Further-
more, e1 × r1 and e2 × r2 (= e2 × r1) are both parallel to n12. Hence,
the first two axes can only produce velocities of C in the direction of
n12. As a consequence, velocities of C in Π12 and perpendicular to
e3×r3 cannot be produced in the presence of this singularity. The set
of infeasible velocities, then, lies in a line normal to n12 and e3 × r3,
whose direction is the geometric representation of the nullspace of JT

21.
Likewise, the manipulator can withstand forces applied at C in the
direction of the same line purely by reaction wrenches, i.e., without
any motor torques. The last issue falls into the realm of manipulator
statics, upon which we will elaborate in Section 4.7.
We illustrate this singularity, termed here shoulder singularity, in a
manipulator with the architecture of Fig. 4.3, as postured in Fig. 4.20.
In this figure, the line intersecting all three arm axes is not as obvious
and needs further explanation. This line is indicated by L in that
figure, and is parallel to the second and third axes. It is apparent that
this line intersects the first axis at right angles at a point I. Now, if
we take into account that all parallel lines intersect at infinity, then
it becomes apparent that L intersects the axis of the third revolute
as well, and hence, L intersects all three axes.

Case 2: Two consecutive axes are parallel and C lies in their plane,
as shown in Fig. 4.21. For conciseness, again, we assume that the
parallel axes are now the last two, a rather common case in com-
mercial manipulators, but the derivations below are the same if the
parallel axes are the first two. We now let Π23 be the plane of the
last two axes and n23 its normal. Furthermore, e3 = e2, r2 = r1, and
e2 × r3 = α(e2 × r2), where

α =

√
a2

3 + b2
4

a2 +
√

a2
3 + b2

4

in terms of the Denavit-Hartenberg notation, thereby making appar-
ent that the last two columns of J21 are linearly dependent. Moreover,
e2 × r2 and, consequently, e3 × r3 are parallel to n23, the last two
axes being capable of producing velocities of C only in the direction
of n23. Hence, velocities of C in Π23 that are normal to e1 × r1,
i.e., along line L, cannot be produced in this configuration, and the
manipulator loses, again, to a first-order approximation, one degree
of freedom. The set of infeasible velocities, then, is parallel to the
line L of Fig. 4.21, whose direction is the geometric representation of
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FIGURE 4.20. Shoulder singularity of the Puma robot.

the nullspace of JT
21. The singularity displayed in the foregoing fig-

ure, termed here the elbow singularity, pertains also to a manipulator
with the architecture of Fig. 4.3. Notice that motions along L in the
posture displayed in Fig. 4.21 are possible, but only in one direction,
from C to O2.

With regard to the wrist singularities, these were already studied when
solving the orientation problem for the inverse kinematics of decoupled
manipulators. Here, we study the same in light of the sub-Jacobian J12

of eq.(4.65b). This sub-Jacobian obviously vanishes when the wrist is so
configured that its three revolute axes are coplanar, which thus leads to

e4 × e5 · e6 = 0

Note that when studying the orientation problem of decoupled manipu-
lators, we found that orthogonal wrists are singular when the sixth and
fourth axes are aligned, in full agreement with the foregoing condition. In-
deed, if these two axes are aligned, then e4 = −e6, and the above equation
holds.

4.5.3 Manipulator Workspace

The workspace of spherical wrists for orientation tasks was discussed in
Subsection 4.4.2. Here we focus on the workspaces of three-axis positioning
manipulators in light of their singularities.
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FIGURE 4.21. Elbow singularity of the Puma robot.

FIGURE 4.22. Workspace of a Puma manipulator (a) top view; (b) side view;
(c) perspective.
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In order to gain insight into the problem, we study first the workspace of
manipulators with the architecture of Fig. 4.3. Figures 4.20 and 4.21 show
such a manipulator with point C at the limit of its positioning capabilities
in one direction, i.e., at the boundary of its workspace. Moreover, with re-
gard to the posture of Fig. 4.20, it is apparent that the first singularity is
preserved if (i) point C moves on a line parallel to the first axis and inter-
secting the second axis; and (ii) with the second and third joints locked,
the first joint goes through a full turn. Under the second motion, the line
of the first motion sweeps a circular cylinder whose axis is the first manip-
ulator axis and with radius equal to b3, the shoulder offset. This cylinder
constitutes a part of the workspace boundary, the other part consisting of
a spherical surface. Indeed, the second singularity is preserved if (i) with
point C in the plane of the second and third axes, the second joint makes a
full turn, thereby tracing a circle with center on L2, a distance b3 from the
first axis, and radius r = a2 +

√
a2

3 + b2
4; and (ii) with point C still in the

plane of the second and third joints, the first joint makes a full turn. Un-
der the second motion, the circle generated by the first motion describes
a sphere of radius R =

√
b2

3 + r2 because any point of that circle lies a
distance R from the intersection of the first two axes. This point thus be-
comes the center of the sphere, which is the second part of the workspace,
as shown in Fig. 4.22.

The determination of the workspace boundaries of more general manip-
ulators requires, obviously, more general approaches, like that proposed
by Ceccarelli (1996). By means of an alternative approach, Ranjbaran
et al. (1992) found the workspace boundary with the aid of the general
characteristic equation of a three-revolute manipulator. This equation is a
quartic polynomial, as displayed in eq.(4.25). From the discussion of Sub-
section 4.4.1, it is apparent that at singularities, two distinct roots of the
IKP merge into a single one. This happens at points where the plot of the
characteristic polynomial of eq.(4.25) is tangent to the τ3 axis, which occurs
in turn at points where the derivative of this polynomial with respect to τ3

vanishes. The condition for θ3 to correspond to a point C on the boundary
of the workspace is, then, that both the characteristic polynomial and its
derivative with respect to τ3 vanish concurrently. These two polynomials
are displayed below:

P (τ3) ≡ Rτ4
3 + Sτ3

3 + Tτ2
3 + Uτ3 + V = 0 (4.82a)

P ′(τ3) ≡ 4Rτ3
3 + 3Sτ2

3 + 2Tτ3 + U = 0 (4.82b)

with coefficients R, S, T , U , and V defined in eqs.(4.26a–e). From these
equations and eqs.(4.19d–f) and (4.20d–f), it is apparent that the foregoing
coefficients are solely functions of the manipulator architecture and the
Cartesian coordinates of point C. Moreover, from the same equations, it
is clear that the above coefficients are all quadratic in ρ2 ≡ x2

C + y2
C and

quartic in zC . Thus, since the Cartesian coordinates xC and yC do not

TLFeBOOK



4.5 Velocity Analysis of Serial Manipulators 155

appear in the foregoing coefficients explicitly, the workspace is symmetric
about the Z1 axis, a result to be expected by virtue of the independence
of singularities from angle θ1. Hence, the workspace boundary is given
by a function f(ρ2, zC) = 0 that can be derived by eliminating τ3 from
eqs.(4.82a & b). This can be readily done by resorting to any elimination
procedure, the simplest one being dialytic elimination, as discussed below.

In order to eliminate τ3 from the above two equations, we proceed in
two steps: In the first step, six additional polynomial equations are derived
from eqs.(4.82a & b) by multiplying the two sides of each of these equations
by τ3, τ2

3 , and τ3
3 , thereby obtaining a total of eight polynomial equations

in τ3, namely,

Rτ7
3 + Sτ6

3 + Tτ5
3 + Uτ4

3 + V τ3
3 = 0

4Rτ6
3 + 3Sτ5

3 + 2Tτ4
3 + Uτ3

3 = 0
Rτ6

3 + Sτ5
3 + Tτ4

3 + Uτ3
3 + V τ2

3 = 0
4Rτ5

3 + 3Sτ4
3 + 2Tτ3

3 + Uτ2
3 = 0

Rτ5
3 + Sτ4

3 + Tτ3
3 + Uτ2

3 + V τ3 = 0
4Rτ4

3 + 3Sτ3
3 + 2Tτ2

3 + Uτ3 = 0
Rτ4

3 + Sτ3
3 + Tτ2

3 + Uτ3 + V = 0
4Rτ3

3 + 3Sτ2
3 + 2Tτ3 + U = 0

In the second elimination step we write the above eight equations in linear
homogeneous form, namely,

Mτ 3 = 0 (4.83a)
with the 8 × 8 matrix M and the 8-dimensional vector τ 3 defined as

M ≡




R S T U V 0 0 0
0 4R 3S 2T U 0 0 0
0 R S T U V 0 0
0 0 4R 3S 2T U 0 0
0 0 R S T U V 0
0 0 0 4R 3S 2T U 0
0 0 0 R S T U V
0 0 0 0 4R 3S 2T U




, τ 3 =




τ7
3

τ6
3

τ5
3

τ4
3

τ3
3

τ2
3

τ3

1




(4.83b)

It is now apparent that any feasible solution of eq.(4.83a) must be nontriv-
ial, and hence, M must be singular. The desired boundary equation is then
derived from the singularity condition on M, i.e.,

f(ρ2, zC) ≡ det(M) = 0 (4.84)

Note that all entries of matrix M are linear in the coefficients R, S, . . .,
V , which are, in turn, quadratic in ρ2 and quartic in zC . Therefore, the
workspace boundary is a surface of 16th degree in ρ2 and of 32nd degree
in zC .

We used the foregoing procedure, with the help of symbolic computa-
tions, to obtain a rendering of the workspace boundary of the manipulator
of Figs. 4.13–4.15, the workspace thus obtained being displayed in Fig. 4.23.
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FIGURE 4.23. The workspace of the manipulator of Figs. 4. 17–19.

4.6 Acceleration Analysis of Serial Manipulators

The subject of this section is the computation of vector θ̈ of second joint-
variable derivatives, also called the joint accelerations. This vector is com-
puted from Cartesian position, velocity, and acceleration data. To this end,
both sides of eq.(4.53) are differentiated with respect to time, thus obtain-
ing

Jθ̈ = ṫ− J̇θ̇ (4.85)

and hence,
θ̈ = J−1(ṫ − J̇θ̇) (4.86)

From eq.(4.85), it is clear that the joint-acceleration vector is computed in
exactly the same way as the joint-rate vector. In fact, the LU decomposition
of J is the same in this case and hence, need not be recomputed. All that is
needed is the solution of a lower- and an upper-triangular system, namely,

Lz = ṫ − J̇θ̇, Uθ̈ = z

The two foregoing systems are solved first for z and then for θ̈ by forward
and backward substitution, respectively. The first of the foregoing systems
is solved with M ′′

n multiplications and A′′
n additions; the second with M ′′′

n

multiplications and A′′′
n additions. These figures appear in eqs.(4.62b & c).

Thus, the total numbers of multiplications, Mt, and additions, At, that the
forward and backward solutions of the aforementioned systems require are

Mt = n2, At = n(n − 1) (4.87)

In eq.(4.85), the right-hand side comprises two terms, the first being the
specified time-rate of change of the twist of the EE, or twist-rate, for brevity,
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which is readily available. The second term is not available and must be
computed. This term involves the product of the time-derivative of J times
the previously computed joint-rate vector. Hence, in order to evaluate the
right-hand side of that equation, all that is further required is J̇. From
eq.(4.54a), one has

J̇ =
[
Ȧ
Ḃ

]

where, from eqs.(4.51a & b),

Ȧ = [ ė1 ė2 · · · ėn ] (4.88a)
Ḃ = [ u̇1 u̇2 · · · u̇n ] (4.88b)

and ui denotes ei × ri, for i = 1, 2, . . . , n. Moreover,

ė1 = ω0 × e1 = 0 (4.89a)
ėi = ωi−1 × ei ≡ ωi × ei, i = 2, 3, . . . , n (4.89b)

and
u̇i = ėi × ri + ei × ṙi, i = 1, 2, . . . , n (4.89c)

Next, an expression for ṙi is derived by time-differentiating both sides of
eq.(4.50), which produces

ṙi = ȧi + ȧi+1 + · · · + ȧn, i = 1, 2, . . . n

Recalling eq.(4.48), the above equation reduces to

ṙi = ωi × ai + ωi+1 × ai+1 + · · · + ωn × an (4.90)

Substitution of eqs.(4.89) and (4.90) into eqs.(4.88a & b) leads to

Ȧ = [0 ω1 × e2 · · · ωn−1 × en ]
Ḃ = [e1 × ṙ1 ω12 × r2 + e2 × ṙ2 · · · ωn−1,n × rn + en × ṙn ]

with ṙk and ωk,k+1 defined as

ṙk ≡
n∑
k

ωi × ai, k = 1, . . . , n (4.91a)

ωk,k+1 ≡ ωk × ek+1, k = 1, . . . , n − 1 (4.91b)

The foregoing expressions are invariant and hence, valid in any coordinate
frame. However, they are going to be incorporated into matrix J̇, and then
the latter is to be multiplied by vector θ̇, as indicated in eq.(4.85). Thus,
eventually all columns of both Ȧ and Ḃ will have to be represented in the
same coordinate frame. Hence, coordinate transformations will have to be
introduced in the foregoing matrix columns in order to have all of these
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represented in the same coordinate frame, say, the first one. We then have
the expansion below:

J̇θ̇ = θ̇1

[
0
u̇1

]
+ θ̇2

[
ė2

u̇2

]
+ · · · + θ̇n

[
ėn

u̇n

]
(4.92)

The right-hand side of eq.(4.92) is computed recursively as described below
in five steps, the number of operations required being included at the end
of each step.

1. Compute { [ ωi ]i }n
1 :

[ ω1 ]1 ← θ̇1[ e1 ]1

For i = 1 to n− 1 do

[ ωi+1 ]i+1 ← θ̇i+1[ ei+1 ]i+1 + QT
i [ ωi ]i

enddo 8(n − 1)M & 5(n − 1)A

2. Compute { [ ėi ]i }n
1 :

[ ė1 ]1 ← [0 ]1

For i = 2 to n do

[ ėi ]i ← [ ωi × ei ]i

enddo 0M & 0A

3. Compute { [ ṙi ]i }n
1 :

[ ṙn ]n ← [ ωn × an ]n

For i = n− 1 to 1 do

[ ṙi ]i ← [ ωi × ai ]i + Qi[ ṙi+1 ]i+1

enddo (14n − 8)M & (10n − 7)A

4. Compute { [ u̇i ]i }n
1 using the expression appearing in eq.(4.89c):

[ u̇1 ]1 ← [ e1 × ṙ1 ]1 For i = 2 to n do

[ u̇i ]i ← [ ėi × ri + ei × ṙi ]i

enddo 4(n − 1)M & 3(n − 1)A
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5. Compute J̇θ̇:

Let v ≡ J̇θ̇, which is a 6-dimensional vector. A coordinate trans-
formation of its two 3-dimensional vector components will be imple-
mented using the 6 × 6 matrices Ui, which are defined as

Ui ≡
[
Qi O
O Qi

]

where O stands for the 3×3 zero matrix. Thus, the foregoing 6×6 ma-
trices are block-diagonal, their diagonal blocks being simply matrices
Qi. One then has the algorithm below:

[v ]n ← θ̇n

[
ėn

u̇n

]

n

For i = n− 1 to 1 do

[v ]i ← θ̇i

[
ėi

u̇i

]

i

+ Ui[v ]i+1

enddo

J̇θ̇ ← [v ]1 21(n − 1) + 4 M & 13(n− 1)A

thereby completing the computation of J̇θ̇.

The figures given above for the floating-point operations involved were
obtained based on a few facts, namely,

1. It is recalled that [ ei ]i = [ 0, 0, 1 ]T . Moreover, if we let [w ]i =
[ wx, wy, wz ]T be an arbitrary 3-dimensional vector, then

[ ei × w ]i =



−wy

wx

0




this product thus requiring zero multiplications and zero additions.

2. [ ėi ]i, computed as in eq.(4.89b), takes on the form [ωy, −ωx, 0 ]T ,
where ωx and ωy are the Xi and Yi components of ωi. Moreover, let
[ ri ]i = [ x, y, z ]T . Then

[ ėi × ri ]i =




−zωx

−zωy

xωx + yωy




and this product is computed with four multiplications and one ad-
dition.
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3. As found in Subsection 4.5.1, any coordinate transformation from Fi

to Fi+1, or vice versa, of any 3-dimensional vector is computed with
eight multiplications and four additions.

Thus, the total numbers of multiplications and additions required to
compute J̇θ̇ in frame F1, denoted by MJ and AJ , respectively, are as
shown below:

MJ = 47n− 37, AJ = 31n− 28

Since the right-hand side of eq.(4.85) involves the algebraic sum of two
6-dimensional vectors, then, the total numbers of multiplications and ad-
ditions needed to compute the aforementioned right-hand side, denoted by
Mr and Ar, are

Mr = 47n− 37, Ar = 31n− 22

These figures yield 245 multiplications and 164 additions for a six-revolute
manipulator of arbitrary architecture. Finally, if the latter figures are added
to those of eq.(4.87), one obtains the numbers of multiplications and addi-
tions required for an acceleration resolution of a six-revolute manipulator
of arbitrary architecture as

Ma = 281, Aa = 194

Furthermore, for six-axis, decoupled manipulators, the operation counts
of steps 1 and 2 above do not change. However, step 3 is reduced by 42
multiplications and 30 additions, whereas step 4 by 12 multiplications and
9 additions. Moreover, step 5 is reduced by 63 multiplications and 39 addi-
tions. With regard to the solution of eq.(4.85) for θ̈, an additional reduction
of floating-point operations, or flops, is obtained, for now we need only 18
multiplications and 12 additions to solve two systems of three equations
with three unknowns, thereby saving 18 multiplications and 18 additions.
Thus, the corresponding figures for such a manipulator, M ′

a and A′
a, re-

spectively, are
M ′

a = 146, A′
a = 98

4.7 Static Analysis of Serial Manipulators

In this section, the static analysis of a serial n-axis manipulator is under-
taken, particular attention being given to six-axis, decoupled manipulators.
Let τi be the torque acting at the ith revolute or the force acting at the ith
prismatic pair. Moreover, let τ be the n-dimensional vector of joint forces
and torques, whose ith component is τi, whereas w = [nT , fT ]T denotes
the wrench acting on the EE, with n denoting the resultant moment and f
the resultant force applied at point P of the end-effector of the manipulator
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of Fig. 4.19. Then the power exerted on the manipulator by all forces and
moments acting on the end-effector is

ΠE = wT t = nT ω + fT ṗ

whereas the power exerted on the manipulator by all joint motors, ΠJ , is

ΠJ = τT θ̇ (4.93)

Under static, conservative conditions, there is neither power dissipation
nor change in the kinetic energy of the manipulator, and hence, the two
foregoing powers are equal, which is just a restatement of the First Law of
Thermodynamics or equivalently, the Principle of Virtual Work, i.e.,

wT t = τT θ̇ (4.94a)

Upon substitution of eq.(4.53) into eq.(4.94a), we obtain

wT Jθ̇ = τ T θ̇ (4.94b)

which is a relation valid for arbitrary θ̇. Under these conditions, if J is not
singular, eq.(4.94b) leads to

JTw = τ (4.95)

This equation relates the wrench acting on the EE with the joint forces and
torques exerted by the actuators. Therefore, this equation finds applications
in the sensing of the wrench w acting on the EE by means of torque sensors
located at the revolute axes. These sensors measure the motor-supplied
torques via the current flowing through the motor armatures, the sensor
readouts being the joint torques—or forces, in the case of prismatic joints—
{ τk }n

1 , grouped into vector τ .
For a six-axis manipulator, in the absence of singularities, the foregoing

equation can be readily solved for w in the form

w = J−T τ

where J−T stands for the inverse of JT . Thus, using the figures recorded
in eq.(4.61b), w can be computed from eq.(4.95) with 127 multiplications
and 100 additions for a manipulator of arbitrary architecture. However,
if the manipulator is of the decoupled type, the Jacobian takes on the
form appearing in eq.(4.64), and hence, the foregoing computation can be
performed in two steps, namely,

JT
12nw = τw

JT
21f = τa − JT

11nw

where nw is the resultant moment acting on the end-effector when f is
applied at the center of the wrist, while τ has been partitioned as

τ ≡
[

τ a

τw

]
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with τa and τw defined as the wrist and the arm torques, respectively.
These two vectors are given, in turn, as

τa =




τ1

τ2

τ3


 , τw =




τ4

τ5

τ6




Hence, the foregoing calculations, as pertaining to a six-axis, decoupled
manipulator, are performed with 55 multiplications and 37 additions, which
follows from a result that was derived in Section 4.5 and is summarized in
eq.(4.68).

In solving for the wrench acting on the EE from the above relations, the
wrist equilibrium equation is first solved for nw, thus obtaining

nw = J−T
12 τw (4.96)

where J−T
12 stands for the inverse of JT

12, and is available in eq.(4.74). There-
fore,

nw =
1

∆12
[ (e5 × e6) (e6 × e4) (e4 × e5) ] τw

=
1

∆12
[ τ4(e5 × e6) + τ5(e6 × e4) + τ6(e4 × e5) ] (4.97)

Now, if we let
τa ≡ τ a − JT

11nw (4.98)

we have, from eq.(4.73),

f = [u2 × u3 u3 × u1 u1 × u2 ]
τa

∆21

where
ui ≡ ei × ri

or
f =

1
∆21

[ τ1(u2 × u3) + τ2(u3 × u1) + τ3(u1 × u2) ] (4.99)

4.8 Planar Manipulators

Shown in Fig. 4.24 is a three-axis planar manipulator. Note that in this
case, the DH parameters bi and αi vanish, for i = 1, 2, 3, the nonvanishing
parameters ai being indicated in the same figure. Below we proceed with the
displacement, velocity, acceleration, and static analyses of this manipulator.
Here, we recall a few relations of planar mechanics that will be found useful
in the discussion below.
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A 2 × 2 matrix A can be partitioned either columnwise or rowwise, as
shown below:

A ≡ [ a b ] ≡
[
cT

dT

]

where a, b, c, and d are all 2-dimensional column vectors. Furthermore,
let E be defined as an orthogonal matrix rotating 2-dimensional vectors
through an angle of 90◦ counterclockwise. Hence,

E ≡
[

0 −1
1 0

]
(4.100)

We thus have
Fact 4.8.1

E−1 = ET = −E
and hence,
Fact 4.8.2

E2 = −1

where 1 is the 2 × 2 identity matrix.
Moreover,
Fact 4.8.3

det(A) = −aTEb = bTEa = −cTEd = dTEc
and
Fact 4.8.4

A−1 =
1

det(A)

[
bT

−aT

]
E =

1
det(A)

E [−d c ]

4.8.1 Displacement Analysis

The inverse kinematics of the manipulator at hand now consists of deter-
mining the values of angles θi, for i = 1, 2, 3, that will place the end-effector
so that its operation point P will be positioned at the prescribed Carte-
sian coordinates x, y and be oriented at a given angle φ with the X axis
of Fig. 4.24. Note that this manipulator can be considered as decoupled,
for the end-effector can be placed at the desired pose by first positioning
point O3 with the aid of the first two joints and then orienting it with the
third joint only. We then solve for the joint angles in two steps, one for
positioning and one for orienting.

We now have, from the geometry of Fig. 4.24,

a1c1 + a2c12 = x

a1s1 + a2s12 = y
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FIGURE 4.24. Three-axis planar manipulator.

where x and y denote the Cartesian coordinates of point O3, while c12 and
s12 stand for cos(θ1+θ2) and sin(θ1+θ2), respectively. We have thus derived
two equations for the two unknown angles, from which we can determine
these angles in various ways. For example, we can solve the problem using
a semigraphical approach similar to that of Subsection 8.2.2.

Indeed, from the two foregoing equations we can eliminate both c12 and
s12 by solving for the second terms of the left-hand sides of those equations,
namely,

a2c12 = x − a1c1 (4.101a)
a2s12 = y − a1s1 (4.101b)

If both sides of the above two equations are now squared, then added,

FIGURE 4.25. The two real solutions of a planar manipulator.
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FIGURE 4.26. The two real values of θ1 depicted in Fig. 4.25.

and the ensuing sum is equated to a2
2, we obtain, after simplification, a

linear equation in c1 and s1 that represents a line L in the c1-s1 plane:

L: −a2
1 + a2

2 + 2a1xc1 + 2a1ys1 − (x2 + y2) = 0 (4.102)

Clearly, the two foregoing variables are constrained by a quadratic equation
defining a circle C in the same plane:

C: c2
1 + s2

1 = 1

which is a circle C of unit radius centered at the origin of the aforementioned
plane. The real roots of interest are then obtained as the intersections of L
and C. Thus, the problem can admit (i) two real and distinct roots, if the
line and the circle intersect; (ii) one repeated root if the line is tangent to
the circle; and (iii) no real root if the line does not intersect the circle.

With c1 and s1 known, angle θ1 is fully determined. Note that the two
real intersections of L with C provide each one value of θ1, as depicted in
Fig. 4.26.

Once θ1 and θ2 are available, θ3 is readily derived from the geometry of
Fig. 4.24, namely,

θ3 = φ − (θ1 + θ2)

and hence, each pair of (θ1, θ2) values yields one single value for θ3. Since
we have two such pairs, the problem admits two real solutions.

4.8.2 Velocity Analysis

Velocity analysis is most easily accomplished if the general velocity relations
derived in Section 4.5 are recalled and adapted to planar manipulators.
Thus we have, as in eq.(4.53),

Jθ̇ = t (4.103a)
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where now,

J ≡
[

e1 e2 e3

e1 × r1 e2 × r2 e3 × r3

]
, θ̇ ≡




θ̇1

θ̇2

θ̇3


 , t ≡

[
ω
ṗ

]
(4.103b)

and { ri }3
1 are defined as in eq.(4.50), i.e., as the vectors directed from Oi

to P . As in the previous subsection, we assume here that the manipulator
moves in the X-Y plane, and hence, all revolute axes are parallel to the Z
axis, vectors ei and ri, for i = 1, 2, 3, thus taking on the forms

e1 = e2 = e3 = e ≡



0
0
1


 , ri =




xi

yi

0




with t reducing to

t = [ 0 0 φ̇ ẋP ẏP 0 ]T (4.103c)

in which ẋP and ẏP denote the components of the velocity of P . Thus,

ei × ri =



−yi

xi

0




and hence, the foregoing cross product can be expressed as

ei × ri =
[
Esi

0

]

where E was defined in eq.(4.100) and si is the 2-dimensional projection
of ri onto the x-y plane of motion, i.e., si ≡ [ xi yi ]T . Equation (4.103a)
thus reduces to 


0 0 0
1 1 1

Es1 Es2 Es3

0 0 0


 θ̇ =




0
φ̇
ṗ
0


 (4.104)

where 0 is the 2-dimensional zero vector and ṗ is now reduced to ṗ ≡
[ ẋ, ẏ ]T . In summary, then, by working only with the three nontrivial equa-
tions of eq.(4.104), we can represent the velocity relation using a 3 × 3
Jacobian in eq.(4.103a). To this end, we redefine J and t as

J ≡
[

1 1 1
Es1 Es2 Es3

]
, t ≡

[
φ̇
ṗ

]
(4.105)

The velocity resolution of this manipulator thus reduces to solving for the
three joint rates from eq.(4.103a), with J and t defined as in eq.(4.105),
which thus leads to the system below:

[
1 1 1

Es1 Es2 Es3

]


θ̇1

θ̇2

θ̇3


 =
[

φ̇
ṗ

]
(4.106)
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Solving for { θ̇i }3
1 is readily done by first reducing the system of equa-

tions appearing in eq.(4.103a) to one of two equations in two unknowns
by resorting to Gaussian elimination. Indeed, if the first scalar equation
of eq.(4.106) is multiplied by Es1 and the product is subtracted from the
2-dimensional vector equation, we obtain

[
1 1 1
0 E(s2 − s1) E(s3 − s1)

]


θ̇1

θ̇2

θ̇3


 =
[

φ̇
ṗ − φ̇Es1

]
(4.107)

from which a reduced system of two equations in two unknowns is readily
obtained, namely,

[E(s2 − s1) E(s3 − s1) ]
[

θ̇2

θ̇3

]
= ṗ − φ̇Es1 (4.108)

The system of equations (4.108) can be readily solved if Fact 4.8.4 is
recalled, namely,

[
θ̇2

θ̇3

]
=

1
∆

[−(s3 − s1)TE
(s2 − s1)TE

]
E(ṗ− φ̇Es1)

=
1
∆

[
(s3 − s1)T (ṗ − φ̇Es1)
−(s2 − s1)T (ṗ − φ̇Es1)

]

where ∆ is the determinant of the 2 × 2 matrix involved, i.e.,

∆ ≡ det([E(s2 − s1) E(s3 − s1) ]) ≡ −(s2 − s1)T E(s3 − s1) (4.109)

We thus have

θ̇2 = − (s3 − s1)T (ṗ − φ̇Es1)
(s2 − s1)T E(s3 − s1)

(4.110a)

θ̇3 =
(s2 − s1)T (ṗ − φ̇Es1)
(s2 − s1)TE(s3 − s1)

(4.110b)

Further, θ̇1 is computed from the first scalar equation of eq.(4.106), i.e.,

θ̇1 = φ̇ − (θ̇2 + θ̇3) (4.110c)

thereby completing the velocity analysis.
The foregoing calculations are summarized below in algorithmic form,

with the numbers of multiplications and additions indicated at each stage.
In those numbers, we have taken into account that a multiplication of E by
any 2-dimensional vector incurs no computational cost, but rather a simple
rearrangement of the entries of this vector, with a reversal of one sign.

1. d21 ← s2 − s1 0M + 2A
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2. d31 ← s3 − s1 0M + 2A

3. ∆ ← dT
31Ed21 2M + 1A

4. u ← ṗ− φ̇Es1 2M + 2A

5. u ← u/∆ 2M + 0A

6. θ̇2 ← uTd31 2M + 1A

7. θ̇3 ← −uTd21 2M + 1A

8. θ̇1 ← φ̇ − θ̇2 − θ̇3 0M + 2A

The complete calculation of joint rates thus consumes only 10M and 11A,
which represents a savings of about 67% of the computations involved if
Gaussian elimination is applied without regarding the algebraic structure
of the Jacobian J and its kinematic and geometric significance. In fact,
the solution of an arbitrary system of three equations in three unknowns
requires, from eq.(4.61a), 28 additions and 23 multiplications. If the cost
of calculating the right-hand side is added, namely, 4A and 6M , a total
of 32A and 29M is required to solve for the joint rates if straightforward
Gaussian elimination is used.

4.8.3 Acceleration Analysis

The calculation of the joint accelerations needed to produce a given twist
rate of the EE is readily accomplished by differentiating both sides of
eq.(4.103a), with definitions (4.105), i.e.,

Jθ̈ + J̇θ̇ = ṫ

from which we readily derive a system of equations similar to eq.(4.103a)
with θ̈ as unknown, namely,

Jθ̈ = ṫ− J̇θ̇

where

J̇ =
[

0 0 0
Eṡ1 Eṡ2 Eṡ3

]
, θ̈ ≡




θ̈1

θ̈2

θ̈3


 , ṫ ≡

[
φ̈
p̈

]

and

ṡ3 = (θ̇1 + θ̇2 + θ̇3)Ea3

ṡ2 = ȧ2 + ṡ3 = (θ̇1 + θ̇2)Ea2 + ṡ3

ṡ1 = ȧ1 + ṡ2 = θ̇1Es1 + ṡ2
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Now we can proceed by Gaussian elimination to solve for the joint accelera-
tions in exactly the same manner as in Subsection 4.8.2, thereby obtaining
the counterpart of eq.(4.108), namely,

[E(s2 − s1) E(s3 − s1) ]
[

θ̈2

θ̈3

]
= w (4.111a)

with w defined as

w ≡ p̈− E(θ̇1ṡ1 + θ̇2ṡ2 + θ̇3ṡ3 + φ̈s1) (4.111b)

and hence, similar to eqs.(4.110a–c), one has

θ̈2 =
(s3 − s1)Tw

∆
(4.112a)

θ̈3 = − (s2 − s1)T w
∆

(4.112b)

θ̈1 = φ̈ − (θ̇2 + θ̇3) (4.112c)

Below we summarize the foregoing calculations in algorithmic form, in-
dicating the numbers of operations required at each stage.

1. ṡ3 ← (θ̇1 + θ̇2 + θ̇3)Ea3 2M & 2A

2. ṡ2 ← (θ̇1 + θ̇2)Ea2 + ṡ3 2M & 3A

3. ṡ1 ← θ̇1Es1 + ṡ2 2M & 2A

4. w
leftarrowp̈ − E(θ̇1ṡ1 + θ̇2ṡ2 + θ̇3ṡ3 + φ̈s1) 8M & 8A

5. w ← w/∆ 2M + 0A

6. θ̈2 ← wT d31 2M + 1A

7. θ̈3 ← −wTd21 2M + 1A

8. θ̈1 ← φ̈ − (θ̈2 + θ̈3) 0M + 2A

where d21, d31, and ∆ are available from velocity calculations. The joint
accelerations thus require a total of 20 multiplications and 19 additions.
These figures represent substantial savings when compared with the num-
bers of operations required if plain Gaussian elimination were used, namely,
33 multiplications and 35 additions.

It is noteworthy that in the foregoing algorithm, we have replaced neither
the sum θ̇1 + θ̇2 + θ̇3 nor θ̇1E(s1 + s2 + s3) by ω and correspondingly, by
ṗ, because in path tracking, there is no perfect match between joint and
Cartesian variables. In fact, joint-rate and joint-acceleration calculations
are needed in feedback control schemes to estimate the position, velocity,
and acceleration errors by proper corrective actions.
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4.8.4 Static Analysis

Here we assume that a planar wrench acts at the end-effector of the ma-
nipulator appearing in Fig. 4.24. In accordance with the definition of the
planar twist in Subsection 4.8.2, eq.(4.105), the planar wrench is now de-
fined as

w ≡
[

n
f

]
(4.113)

where n is the scalar couple acting on the end-effector and f is the 2-
dimensional force acting at the operation point P of the end-effector. If
additionally, we denote by τ the 3-dimensional vector of joint torques, the
planar counterpart of eq.(4.95) follows, i.e.,

JT w = τ (4.114)

where

JT =




1 (Es1)T

1 (Es2)T

1 (Es3)T




Now, in order to solve for the wrench w acting on the end-effector, given the
joint torques τ and the posture of the manipulator, we can still apply our
compact Gaussian-elimination scheme, as introduced in Subsection 4.8.2.
To this end, we subtract the first scalar equation from the second and the
third scalar equations of eq.(4.114), which renders the foregoing system in
the form 


1 (Es1)T

0 [E(s2 − s1)]T

0 [E(s3 − s1)]T



[

n
f

]
=




τ1

τ2 − τ1

τ3 − τ1




Thus, the last two equations have been decoupled from the first one, which
allows us to solve them separately, i.e., we have reduced the system to one
of two equations in two unknowns, namely,

[
[E(s2 − s1)]T

[E(s3 − s1)]T

]
f =
[

τ2 − τ1

τ3 − τ1

]
(4.115)

from which we readily obtain

f =
[

[E(s2 − s1)]T

[E(s3 − s1)]T

]−1 [
τ2 − τ1

τ3 − τ1

]
(4.116)

and hence, upon expansion of the above inverse,

f =
1
∆

[(τ2 − τ1)(s3 − s1) − (τ3 − τ1)(s2 − s1)] (4.117)

where ∆ is exactly as defined in eq.(4.109). Finally, the resultant moment n
acting on the end-effector is readily calculated from the first scalar equation
of eq.(4.114), namely, as

n = τ1 + sT
1 Ef
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thereby completing the static analysis of the manipulator under study. A
quick analysis of computational costs shows that the foregoing solution
needs 8M and 6A, or a savings of about 70% if straightforward Gaussian
elimination is applied.

4.9 Kinetostatic Performance Indices

The balance of Part I of the book does not depend on this section, which can
thus be skipped. We have included it here because (i) it is a simple matter to
render the section self-contained, while introducing the concept of condition
number and its relevance in robotics; (ii) kinetostatic performance can be
studied with the background of the material included up to this section;
and (iii) kinetostatic performance is becoming increasingly relevant as a
design criterion and as a figure of merit in robot control.

A kinetostatic performance index of a robotic mechanical system is a
scalar quantity that measures how well the system behaves with regard to
force and motion transmission, the latter being understood in the differen-
tial sense, i.e., at the velocity level. Now, a kinetostatic performance index,
or kinetostatic index for brevity, may be needed to assess the performance
of a robot at the design stage, in which case we need a posture-independent
index. In this case, the index becomes a function of the robot architecture
only. If, on the other hand, we want to assess the performance of a given
robot while performing a task, what we need is a posture-dependent index.
In many instances, this difference is not mentioned in the robotics liter-
ature, although it is extremely important. Moreover, while performance
indices can be defined for all kinds of robotic mechanical systems, we fo-
cus here on those associated with serial manipulators, which are the ones
studied most intensively.

Among the various performance indices that have been proposed, one
can cite the concept of service angle, first introduced by Vinogradov et
al. (1971), and the conditioning of robotic manipulators, as proposed by
Yang and Lai (1985). Yoshikawa (1985), in turn, introduced the concept of
manipulability, which is defined as the square root of the determinant of the
product of the manipulator Jacobian by its transpose. Paul and Stevenson
(1983) used the absolute value of the determinant of the Jacobian to assess
the kinematic performance of spherical wrists. Note that for square Jaco-
bians, Yoshikawa’s manipulability is identical to the absolute value of the
determinant of the Jacobian, and hence, the latter coincides with Paul and
Stevenson’s performance index. It should be pointed out that these indices
were defined for control purposes and hence, are posture-dependent. Ger-
mane to these concepts is that of dextrous workspace, introduced by Kumar
and Waldron (1981), and used for geometric optimization by Vijaykumar
et al. (1986). Although the concepts of service angle and manipulability are
clearly different, they touch upon a common underlying issue, namely, the
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kinematic, or alternatively, the static performance of a manipulator from
an accuracy viewpoint.

What is at stake when discussing the manipulability of a robotic manip-
ulator is a measure of the invertibility of the associated Jacobian matrix,
since this is required for velocity and force-feedback control. One further
performance index is based on the condition number of the Jacobian, which
was first used by Salisbury and Craig (1982) to design mechanical fingers.
Here, we shall call such an index the conditioning of the manipulator. For
the sake of brevity, we devote the discussion below to only two indices,
namely, manipulability and conditioning. Prior to discussing these indices,
we recall a few facts from linear algebra.

Although the concepts discussed here are equally applicable to square
and rectangular matrices, we shall focus on the former. First, we give a
geometric interpretation of the mapping induced by an n × n matrix A.
Here, we do not assume any particular structure of A, which can thus
be totally arbitrary. However, by invoking the polar-decomposition theorem
(Strang, 1988), we can factor A as

A ≡ RU ≡ VR (4.118)

where R is orthogonal, although not necessarily proper, while U and V are
both at least positive-semidefinite. Moreover, if A is nonsingular, then U
and V are both positive-definite, and R is unique. Clearly, U can be readily
determined as the positive-semidefinite or correspondingly, positive-definite
square root of the product AT A, which is necessarily positive-semidefinite;
it is, in fact, positive-definite if A is nonsingular. We recall here that the
square root of arbitrary matrices was briefly discussed in Subsection 2.3.6.
The square root of a positive-semidefinite matrix can be most easily under-
stood if that matrix is assumed to be in diagonal form, which is possible
because such a matrix is necessarily symmetric, and every symmetric ma-
trix is diagonalizable. The matrix at hand being positive-semidefinite, its
eigenvalues are nonnegative, and hence, their square roots are all real. The
positive-semidefinite square root of interest is, then, readily obtained as the
diagonal matrix whose nontrivial entries are the nonnegative square roots
of the aforementioned eigenvalues. With U determined, R can be found
uniquely only if A is nonsingular, in which case U is positive-definite. If
this is the case, then we have

R = U−1A (4.119a)

It is a simple matter to show that V can be found, in turn, as a similarity
transformation of U, namely, as

V = RURT (4.119b)

Now, let vector x be mapped by A into z, i.e.,

z = Ax ≡ RUx (4.120a)
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Moreover, let
y ≡ Ux (4.120b)

and hence, we have a concatenation of mappings, namely, U maps x into
y, while R maps y into z. Thus, by virtue of the nature of matrices R
and U, the latter maps the unit n-dimensional ball into an n-axis ellipsoid
whose semiaxis lengths bear the ratios of the eigenvalues of U. Moreover,
R maps this ellipsoid into another one with identical semiaxes, except that
it is rotated about its center or reflected, depending upon whether R is
proper or improper orthogonal. In fact, the eigenvalues of U or, for that
matter, those of V, are nothing but the singular values of A. Yoshikawa
(1985) explained the foregoing relations resorting to the singular-value de-
composition theorem. We prefer to invoke the polar-decomposition theorem
instead, because of the geometric nature of the latter, as opposed to the
former, which is of an algebraic nature—it is based on a diagonalization of
either U or V, which is really not needed.

We illustrate the two mappings U and R in Fig. 4.27, where we orient
the X , Y , and Z axes along the three eigenvectors of U. Therefore, the
semiaxes of the ellipsoid are oriented as the eigenvectors of U as well. If
A is singular, then the ellipsoid degenerates into one with at least one
vanishing semiaxis. On the other hand, if matrix A is isotropic, i.e., if all
its singular values are identical, then it maps the unit ball into another
ball, either enlarged or shrunken.

For our purposes, we can regard the Jacobian of a serial manipulator as
mapping the unit ball in the space of joint rates into a rotated or reflected
ellipsoid in the space of Cartesian velocities, or twists. Now, let us assume
that the polar decomposition of J is given by R and U, the manipulability
µ of the robot under study thus becoming

µ ≡ |det(J)| ≡ |det(R)||det(U)| (4.121a)

Since R is orthogonal, the absolute value of its determinant is unity.

FIGURE 4.27. Geometric representation of mapping induced by matrix A.
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Additionally, the determinant of U is nonnegative, and hence,

µ = det(U) (4.121b)

which shows that the manipulability is the product of the eigenvalues of
U or equivalently, of the singular values of J. Now, the product of those
singular values, in the geometric interpretation of the mapping induced by
J, is proportional to the volume of the ellipsoid at hand, and hence, µ can
be interpreted as a measure of the volume of that ellipsoid. It is apparent
that the manipulability defined in eq.(4.121b) is posture-dependent. For
example, if J is singular, at least one of the semiaxes of the ellipsoid van-
ishes, and so does its volume. Manipulators at singular configurations thus
have a manipulability of zero.

Now, if we want to use the concept of manipulability to define a posture-
independent kinetostatic index, we have to define this index in a global
sense. This can be done in the same way as the magnitude of a vector is
defined, namely, as the sum of the squares of its components. In this way,
the global manipulability can be defined as the integral of a certain power
of the manipulability over the whole workspace of the manipulator, which
would amount to defining the index as a norm of the manipulability in a
space of functions. For example, we can use the maximum manipulability
attained over the whole workspace, thereby ending up with what would
be like a Chebyshev norm; alternatively, we can use the root-mean square
(rms) value of the manipulability, thereby ending up with a measure similar
to the Euclidean norm.

Furthermore, if we have a Jacobian J whose entries all have the same
units, then we can define its condition number κ(J) as the ratio of the
largest singular value σl of J to the smallest one, σs, i.e.,

κ(J) ≡ σl

σs
(4.122)

Note that κ(J) can attain values from 1 to infinity. Clearly, the condition
number attains its minimum value of unity for matrices with identical sin-
gular values; such matrices map the unit ball into another ball, although
of a different size, and are, thus, called isotropic. By extension, isotropic
manipulators are those whose Jacobian matrix can attain isotropic values.
On the other side of the spectrum, singular matrices have a smallest singu-
lar value that vanishes, and hence, their condition number is infinity. The
condition number of J can be thought of as indicating the distortion of
the unit ball in the space of joint-variables. The larger this distortion, the
greater the condition number, the worst-conditioned Jacobians being those
that are singular. For these, one of the semiaxes of the ellipsoid vanishes
and the ellipsoid degenerates into what would amount to an elliptical disk
in the 3-dimensional space.

The condition number of a square matrix can also be understood as a
measure of the relative roundoff-error amplification of the computed results
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upon solving a linear system of equations associated with that matrix, with
respect to the relative roundoff error of the data (Dahlquist and Björck,
1974; Golub and van Loan, 1989). Based on the condition number of the
Jacobian, a posture-independent kinematic conditioning index of robotic
manipulators can now be defined as a global measure of the condition
number, or its reciprocal for that matter, which is better behaved because
it is bounded between 0 and unity.

Now, if the entries of J have different units, the foregoing definition of
κ(J) cannot be applied, for we would face a problem of ordering singular
values of different units from largest to smallest. We resolve this inconsis-
tency by defining a characteristic length, by which we divide the Jacobian
entries that have units of length, thereby producing a new Jacobian that
is dimensionally homogeneous. We shall therefore divide our study into (i)
manipulators for only positioning tasks, (ii) manipulators for only orien-
tation tasks, and (iii) manipulators for both positioning and orientation
tasks. The characteristic length will be introduced when studying the third
category.

In the sequel, we will need an interesting property of isotropic matri-
ces that is recalled below. First note that given the polar decomposition
of a square matrix A of eq.(4.118), its singular values are simply the—
nonnegative—eigenvalues of matrix U, or those of V, for both matrices
have identical eigenvalues. Moreover, if A is isotropic, all the foregoing
eigenvalues are identical, say equal to σ, and hence, matrices U and V are
proportional to the n × n identity matrix, i.e.,

U = V = σ1 (4.123)

In this case, then,
A = σR (4.124a)

which means that isotropic square matrices are proportional to rectangular
matrices. As a consequence, then,

ATA = σ21 (4.124b)

Given an arbitrary manipulator of the serial type with a Jacobian matrix
whose entries all have the same units, we can calculate its condition number
and use a global measure of this to define a posture-independent kineto-
static index. Let κm be the minimum value attained by the condition num-
ber of the dimensionally homogeneous Jacobian over the whole workspace.
Note that 1/κm can be regarded as a Chebyshev norm of the reciprocal of
κ(J), because now 1/κm represents the maximum value of this reciprocal
in the whole workspace. We then introduce a posture-independent perfor-
mance index, the kinematic conditioning index, or KCI for brevity, defined
as

KCI =
1

κm
× 100 (4.125)
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Notice that since the condition number is bounded from below, the KCI
is bounded from above by a value of 100%. Manipulators with a KCI of
100% are those identified above as isotropic because their Jacobians have,
at the configuration of minimum condition number, all their singular values
identical and different from zero.

While the condition number of J defined in eq.(4.122) is conceptually
simple, for it derives from the polar-decomposition theorem, it is by no
means computationally simple. First, it relies on the eigenvalues of JTJ,
which only in special cases can be found in symbolic form; second, even
if eigenvalues are available symbolically, their ordering from smallest to
largest varies with the manipulator architecture and posture. An alternative
definition of κ(J) that is computationally simpler relies on the general
definition of the concept, namely (Golub and van Loan, 1989),

κ(J) = ‖J‖‖J−1‖ (4.126a)

where ‖ · ‖ stands for the matrix norm (Golub and van Loan, 1989). While
any norm can be used in the above definition, the one that is most conve-
nient for our purposes is the Frobenius norm ‖ · ‖F , defined as

‖J‖F =

√
1
n

tr(JJT ) (4.126b)

where we have assumed that J is of n × n. Although a symbolic expres-
sion for J−1 is not always possible, this expression is more frequently
available than one for the eigenvalues of JT J. Moreover, from the polar-
decomposition theorem and Theorem 2.6.3, one can readily verify that

‖J‖F =

√
1
n

tr(JT J) (4.126c)

4.9.1 Positioning Manipulators

Here, again, we shall distinguish between planar and spatial manipulators.
These are studied separately.

Planar Manipulators

If the manipulator of Fig. 4.24 is limited to positioning tasks, we can dis-
pense with its third axis, the manipulator thus reducing to the one shown
in Fig. 4.25; its Jacobian reduces correspondingly to

J = [Es1 Es2 ]

with si denoting the two-dimensional versions of vectors ri of the Denavit-
Hartenberg notation, as introduced in Fig. 4.19. Now, if we want to design
this manipulator for maximum manipulability, we need first to determine its
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manipulability as given by eq.(4.121a) or correspondingly, as µ = |det(J)|.
Now, note that

det(J) = det(E [ s1 s2 ]) = det(E)det([ s1 s2 ])

and since matrix E is orthogonal, its determinant equals unity. Thus, the
determinant of interest is now calculated using Fact 4.8.3 of Section 4.8,
namely,

det(J) = −sT
1 Es2 (4.127)

Therefore,
µ = |sT

1 Es2| ≡ ‖s1‖‖s2‖| sin(s1, s2)|
where (s1, s2) stands for the angle between the two vectors inside the paren-
theses. Now let us denote the manipulator reach with R, i.e., R = a1 + a2,
and let ak = Rρk, where ρk, for k = 1, 2, is a dimensionless number. As
the reader can readily verify, µ turns out to be twice the area of triangle
O1O2P , with the notation adopted at the outset. Hence,

µ = R2ρ1ρ2| sin θ2| (4.128)

with ρ1 and ρ2 subjected to

ρ1 + ρ2 = 1 (4.129)

The design problem at hand, then, can be formulated as an optimization
problem aimed at maximizing µ as given in eq.(4.128) over ρ1 and ρ2,
subject to the constraint (4.129). This optimization problem can be readily
solved using, for example, Lagrange multipliers, thereby obtaining

ρ1 = ρ2 =
1
2
, θ2 = ±π

2

the absolute value of sin θ2 attaining its maximum value when θ2 = ±90◦.
The maximum manipulability thus becomes

µmax =
R2

4
(4.130)

Incidentally, the equal-length condition maximizes the workspace volume
as well.

On the other hand, if we want to minimize the condition number of J,
we should aim at rendering it isotropic, which means that the product JT J
should be proportional to the identity matrix, and so,

[
sT

1 s1 sT
1 s2

sT
1 s2 sT

2 s2

]
=
[

σ2 0
0 σ2

]

where σ is the repeated singular value of J. Hence, for J to be isotropic,
all we need is that the two vectors s1 and s2 have the same norm and that
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FIGURE 4.28. A two-axis isotropic manipulator.

they lie at right angles. The solution is a manipulator with link lengths
observing a ratio of

√
2/2, i.e., with a1/a2 =

√
2/2, and the two link axes

at an angle of 135◦, as depicted in Fig. 4.28. Manipulators of the above
type, used as mechanical fingers, were investigated by Salisburg and Craig
(1982), who found that these manipulators can be rendered isotropic if
given the foregoing dimensions and configured as shown in Fig. 4.28.

Spatial Manipulators

Now we have a manipulator like that depicted in Fig. 4.9, its Jacobian
matrix taking on the form

J = [ e1 × r1 e2 × r2 e3 × r3 ] (4.131)

The condition for isotropy of this kind of manipulator takes on the form of
eq.(4.124b), which thus leads to

3∑
1

(ek × rk)(ek × rk)T = σ21 (4.132)

This condition can be attained by various designs, one example being the
manipulator of Fig. 4.15. Another isotropic manipulator for 3-dimensional
positioning tasks is displayed in Fig. 4.29.

Note that the manipulator of Fig. 4.29 has an orthogonal architecture,
the ratio of its last link length to the length of the intermediate link being,
as in the 2-dimensional case,

√
2/2. Since the first axis does not affect

singularities, neither does it affect isotropy, and hence, not only does one
location of the operation point exist that renders the manipulator isotropic,
but a whole locus, namely, the circle known as the isotropy circle, indicated
in the same figure. By the same token, the manipulator of Fig. 4.28 has
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FIGURE 4.29. An isotropic manipulator for 3-dimensional positioning tasks.

an isotropy circle centered at the center of the first joint, with a radius of
(
√

2/2)a1.

4.9.2 Orienting Manipulators

We now have a three-revolute manipulator like that depicted in Fig. 4.17,
its Jacobian taking on the simple form

J = [ e1 e2 e3 ] (4.133)

and hence, the isotropy condition of eq. (4.124b) leads to

3∑
1

ekeT
k = σ21 (4.134)

What the foregoing condition states is that a spherical wrist for orienting
tasks is isotropic if its three unit vectors {ek}3

1 are so laid out that the three
products ekeT

k , for k = 1, 2, 3, add up to a multiple of the 3 × 3 identity
matrix. This is the case if the three foregoing unit vectors are orthonor-
mal, which occurs in orthogonal wrists when the two planes defined by the
corresponding pairs of neighboring axes are at right angles. Moreover, the
value of σ in this case can be readily found if we take the trace of both
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sides of the above equation, which yields

3∑
1

ek · ek = 3σ2 (4.135)

and hence, σ = 1, because all three vectors on the left-hand side are of unit
magnitude. In summary, then, orthogonal wrists, which are rather frequent
among industrial manipulators, are isotropic. Here we have an example of
engineering insight leading to an optimal design, for such wrists existed
long before isotropy was introduced as a design criterion for manipula-
tors. Moreover, notice that from the results of Subsection 4.4.2, spherical
manipulators with an orthogonal architecture have a maximum workspace
volume. That is, isotropic manipulators of the spherical type have two
optimality properties: they have both a maximum workspace volume and
a maximum KCI. Apparently, the manipulability of orthogonal spherical
wrists is also optimal, as the reader is invited to verify, when the wrist is
postured so that its three axes are mutually orthogonal. In this posture,
the manipulability of the wrist is unity.

4.9.3 Positioning and Orienting Manipulators

We saw already in Subsubsection 4.9.1 that the optimization of the two in-
dices studied here—the condition number of the Jacobian matrix and the
manipulability—leads to different manipulators. In fact, the two indices
entail even deeper differences, as we shall see presently. First and foremost,
as we shall prove for both planar and spatial manipulators, the manipula-
bility µ is independent of the operation point P of the end-effector, while
the condition number is not. One more fundamental difference is that while
calculating the manipulability of manipulators meant for both positioning
and orienting tasks poses no problem, the condition number cannot be
calculated, at least directly, for this kind of manipulator. Indeed, in order
to determine the condition number of the Jacobian matrix, we must or-
der its singular values from largest to smallest. However, in the presence
of positioning and orienting tasks, three of these singular values, namely,
those associated with orientation, are dimensionless, while those associated
with positioning have units of length, thereby making impossible such an
ordering. We resolve this dimensional inhomogeneity by introducing a nor-
malizing characteristic length. Upon dividing the three positioning rows,
i.e., the bottom rows, of the Jacobian by this length, a nondimensional Ja-
cobian is obtained whose singular values are nondimensional as well. The
characteristic length is then defined as the normalizing length that renders
the condition number of the Jacobian matrix a minimum. Below we shall
determine the characteristic length for isotropic manipulators; determin-
ing the same for nonisotropic manipulators requires solving a minimization
problem that calls for numerical techniques, as illustrated with an example.
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Planar Manipulators

In the ensuing development, we will need the planar counterpart of the
twist-transfer formula of Subsection 3.4.2. First, we denote the 3-dimen-
sional twist of a rigid body undergoing planar motion, defined at a point
A, by tA; when defined at point B, the corresponding twist is denoted by
tB , i.e.,

tA ≡
[

ω
ȧ

]
, tB ≡

[
ω
ḃ

]
(4.136)

The relation between the two twists, or the planar twist-transfer formula,
is given by a linear transformation U as

tB = UtA (4.137a)

where U is now defined as

U =
[

1 0T

E(b− a) 12

]
(4.137b)

with a and b representing the position vectors of points A and B, and 12

stands for the 2 × 2 identity matrix. Moreover, U is, not surprisingly, a
member of the 3 × 3 unimodular group, i.e.,

det(U) = 1

Because of the planar twist-transfer formula, the Jacobian defined at an
operation point B is related to that defined at an operation point A of the
same end-effector by the same linear transformation U, i.e., if we denote
the two Jacobians by JA and JB, then

JB = UJA (4.138)

and if we denote by µA and µB the manipulability calculated at points A
and B, respectively, then

µB = |det(JB)| = |det(U)||det(JA)| = |det(JA)| = µA (4.139)

thereby proving that the manipulability is insensitive to a change of op-
eration point, or to a change of end-effector, for that matter. Note that a
similar analysis for the condition number cannot be completed at this stage
because as pointed out earlier, the condition number of these Jacobian ma-
trices cannot even be calculated directly.

In order to resolve the foregoing dimensional inhomogeneity, we introduce
the characteristic length L, which will be defined as that rendering the
Jacobian dimensionally homogeneous and optimally conditioned, i.e., with
a minimum condition number. We thus redefine the Jacobian matrix of
interest as

J ≡
[

1 1 1
1
LEr1

1
LEr2

1
LEr3

]
(4.140)
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Now, if we want to size the manipulator at hand by properly choosing
its geometric parameters so as to render it isotropic, we must observe the
isotropy condition, eq.(4.124b), which readily leads to

[
3 1

L

∑3
1 rT

k ET

1
LE
∑3

1 rk
1

L2 E[
∑3

1(rkrT
k )]ET

]
=




σ2 0 0
0 σ2 0
0 0 σ2


 (4.141)

and hence,

σ2 = 3 (4.142a)
3∑
1

rk = 0 (4.142b)

1
L2

E

(
3∑
1

(rkrT
k )

)
ET = σ212 (4.142c)

What eq.(4.142a) states is simply that the triple singular value of the
isotropic J is

√
3; eq.(4.142b) states, in turn, that the operation point is

the centroid of the centers of all manipulator joints if its Jacobian matrix
is isotropic. Now, in order to gain more insight into eq.(4.142c), we note
that since E is orthogonal and σ2 = 3, this equation can be rewritten in a
simpler form, namely,

1
L2

(
3∑
1

(rkrT
k )

)
= (3)12 (4.143)

Further, if we recall the definition of the moment of inertia of a rigid body,
we can immediately realize that the moment of inertia IP of a set of par-
ticles of unit mass located at the centers of the manipulator joints, with
respect to the operation point P , is given by

IP ≡
3∑
1

(‖rk‖212 − rkrT
k

)
(4.144)

from which it is apparent that the moment of inertia of the set comprises
two parts, the first being isotropic—it is a multiple of the 2 × 2 identity
matrix—the second not necessarily so. However, the second part has the
form of the left-hand side of eq.(4.143). Hence, eq.(4.143) states that if the
manipulator under study is isotropic, then its joint centers are located, at
the isotropic configuration, at the corners of a triangle that has circular
inertial symmetry. What we mean by this is that the 2 × 2 moment of
inertia of the set of particles, with entries Ixx, Ixy, and Iyy, is similar to
that of a circle, i.e., with Ixx = Iyy and Ixy = 0. An obvious candidate
for such a triangle is, obviously, an equilateral triangle, the operation point
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thus coinciding with the center of the triangle. Since the corners of an
equilateral triangle are at equal distances d from the center, and these
distances are nothing but ‖rk‖, then the condition below is readily derived
for isotropy:

‖rk‖2 = d2 (4.145)
In order to compute the characteristic length of the manipulator under
study, let us take the trace of both sides of eq.(4.143), thereby obtaining

1
L2

3∑
1

‖rk‖2 = 6

and hence, upon substituting eq.(4.145) into the foregoing relation, an ex-
pression for the characteristic length, as pertaining to planar isotropic ma-
nipulators, is readily derived, namely,

L =
√

2
2

d (4.146)

It is now a simple matter to show that the three link lengths of this isotropic
manipulator are a1 = a2 =

√
3d and a3 = d. Such a manipulator is sketched

in an isotropic configuration in Fig. 4.30.

Spatial Manipulators

The entries of the Jacobian of a six-axis manipulator meant for both po-
sitioning and orienting tasks are dimensionally inhomogeneous as well. In-
deed, as discussed in Section 4.5, the ith column of J is composed of the

FIGURE 4.30. The planar 3-R isotropic manipulator.
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Plücker coordinates of the ith axis of the manipulator, namely,

J =
[

e1 e2 e3 e4 e5 e6

e1 × r1 e2 × r2 e3 × r3 e4 × r4 e5 × r5 e6 × r6

]
(4.147)

Now it is apparent that the first three rows of J are dimensionless,
whereas the remaining three, corresponding to the moments of the axes
with respect to the operation point of the end-effector, have units of length.
This dimensional inhomogeneity is resolved in the same way as in the case
of planar manipulators for both positioning and orienting tasks, i.e., by
means of a characteristic length. This length is defined as the one that
minimizes the condition number of the dimensionless Jacobian thus ob-
tained. We then redefine the Jacobian as

J ≡
[

e1 e2 e3 e4 e5 e6
1
Le1 × r1

1
Le2 × r2

1
Le3 × r3

1
Le4 × r4

1
Le5 × r5

1
Le6 × r6

]

(4.148)
and hence, the isotropy condition of eq.(4.124b) leads to

6∑
1

ekeT
k = σ21 (4.149a)

6∑
1

ek(ek × rk)T = O (4.149b)

1
L2

6∑
1

(ek × rk)(ek × rk)T = σ21 (4.149c)

where 1 is the 3× 3 identity matrix, and O is the 3× 3 zero matrix. Now,
if we take the trace of both sides of eq.(4.149a), we obtain

σ2 = 2 or σ =
√

2

Furthermore, we take the trace of both sides of eq.(4.149c), which yields

1
L2

6∑
1

‖ek × rk‖2 = 3σ2

But ‖ek × rk‖2 is nothing but the square of the distance dk of the kth
revolute axis to the operation point, the foregoing equation thus yielding

L =

√√√√1
6

6∑
1

d2
k

i.e., the characteristic length of a spatial six-revolute isotropic manipulator
is the root-mean square of the distances of the revolute axes to the opera-
tion point when the robot finds itself at the posture of minimum condition
number.
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Furthermore, eq.(4.149a) states that if { ek }6
1 is regarded as the set of

position vectors of points {Pk }6
1 on the surface of the unit sphere, then

the moment-of-inertia matrix of the set of equal masses located at these
points has spherical symmetry. What the latter means is that any direction
of the 3-dimensional space is a principal axis of inertia of the foregoing
set. Likewise, eq.(4.149c) states that if { ek × rk }6

1 is regarded as the set of
position vectors of points {Qk } in the 3-dimensional Euclidean space, then
the moment-of-inertia matrix of the set of equal masses located at these
points has spherical symmetry.

Now, in order to gain insight into eq.(4.149b), let us take the axial vector
of both sides of that equation, thus obtaining

6∑
1

ek × (ek × rk) = 0 (4.150)

with 0 denoting the 3-dimensional zero vector. Furthermore, let us denote
by Ek the cross-product matrix of ek, the foregoing equation thus taking
on the form

6∑
1

E2
krk = 0

However,
E2

k = −1 + ekeT
k

for every k, and hence, eq.(4.150) leads to

6∑
1

(1− ekeT
k )rk = 0

Moreover, (1 − ekeT
k )rk is nothing but the normal component of rk with

respect to ek, as defined in Section 2.2. Let us denote this component by
r⊥k , thereby obtaining an alternative expression for the foregoing equation,
namely,

6∑
1

r⊥k = 0 (4.151)

The geometric interpretation of the foregoing equation is readily derived:
To this end, let O′

k be the foot of the perpendicular to the kth revolute
axis from the operation point P ; then, rk is the vector directed from O′

k to
P . Therefore, the operation point of an isotropic manipulator, configured
at the isotropic posture is the centroid of the set {O′

k }6
1 of perpendicular

feet from the operation point.
A six-axis manipulator designed with an isotropic architecture, DIE-

STRO, is displayed in Fig. 4.31. The Denavit-Hartenberg parameters of this
manipulator are given in Table 4.1. DIESTRO is characterized by identical
link lengths a and offsets identical with this common link length, besides
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TABLE 4.1. DH Parameters of DIESTRO

i ai (mm) bi (mm) αi θi

1 50 50 90◦ θ1

2 50 50 −90◦ θ2

3 50 50 90◦ θ3

4 50 50 −90◦ θ4

5 50 50 90◦ θ5

6 50 50 −90◦ θ6

FIGURE 4.31. DIESTRO, a six-axis isotropic manipulator.

twist angles of 90◦ between all pairs of neighboring axes. Not surprisingly,
the characteristic length of this manipulator is a.

Example 4.9.1 Find the KCI and the characteristic length of the Fanuc
Arc Mate robot whose DH parameters are given in Table 4.2.

Solution: Apparently, what we need is the minimum value κmin that the
condition number of the manipulator Jacobian can attain, in order to cal-
culate its KCI as indicated in eq.(4.125). Now, the Fanuc Arc Mate robot
is a six-revolute manipulator for positioning and orienting tasks. Hence,
its Jacobian matrix has to be first recast in nondimensional form, as in
eq.(4.148). Next, we find L, along with the joint variables that determine
the posture of minimum condition number via an optimization procedure.
Prior to the formulation of the underlying optimization problem, however,
we must realize that the first joint, accounting for motions of the manipu-
lator as a single rigid body, does not affect its Jacobian condition number.
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We thus define the design vector x of the optimization problem at hand as

x ≡ [ θ2 θ3 θ4 θ5 θ6 L ]

and set up the optimization problem as

min
x

κ(J)

The condition number having been defined as the ratio of the largest to the
smallest singular values of the Jacobian matrix at hand, the gradient of the
above objective function, ∂κ/∂x, is apparently elusive to calculate. Thus,
we use a direct-search method, i.e., a method not requiring any partial
derivatives, but rather, only objective-function evaluations, to solve the
above optimization problem. There are various methods of this kind at
our disposal; the one we chose is the simplex method, as implemented in
Matlab. The results reported are displayed below:

xopt = [ 26.82◦ −56.06◦ 15.79◦ −73.59◦ −17.83◦ 0.3573 ]

where the last entry, the characteristic length of the robot, is in meters,
i.e.,

L = 357.3 mm

Furthermore, the minimum condition number attained at the foregoing
posture, with the characteristic length found above, is

κm = 2.589

Therefore, the KCI of the Fanuc Arc Mate is

KCI = 38.625%

and so this robot is apparently far from being kinematically isotropic. To
be sure, the KCI of this manipulator can still be improved dramatically by
noting that the condition number is highly dependent on the location of the
operation point of the end-effector. As reported by Tandirci et al. (1992),
an optimum selection of the operation point for the robot at hand yields a

TABLE 4.2. DH Parameters of the Fanuc Arc Mate Manipulator

i ai (mm) bi (mm) αi θi

1 200 810 90◦ θ1

2 600 0 0◦ θ2

3 130 30 90◦ θ3

4 0 550 90◦ θ4

5 0 100 90◦ θ5

6 0 100 0◦ θ6
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188 4. Kinetostatics of Simple Robotic Manipulators

minimum condition number of 1.591, which thus leads to a KCI of 62.85%.
The point of the EE that yields the foregoing minimum is thus termed
the characteristic point of the manipulator in the foregoing reference. Its
location in the EE is given by the DH parameters a6 and b6, namely,

a6 = 223.6 mm, b6 = 274.2 mm
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5
Trajectory Planning: Pick-and-Place
Operations

5.1 Introduction

The motions undergone by robotic mechanical systems should be, as a rule,
as smooth as possible; i.e., abrupt changes in position, velocity, and acceler-
ation should be avoided. Indeed, abrupt motions require unlimited amounts
of power to be implemented, which the motors cannot supply because of
their physical limitations. On the other hand, abrupt motion changes arise
when the robot collides with an object, a situation that should also be
avoided. While smooth motions can be planned with simple techniques, as
described below, these are no guarantees that no abrupt motion changes will
occur. In fact, if the work environment is cluttered with objects, whether
stationary or mobile, collisions may occur. Under ideal conditions, a flexible
manufacturing cell is a work environment in which all objects, machines
and workpieces alike, move with preprogrammed motions that by their
nature, can be predicted at any instant. Actual situations, however, are
far from being ideal, and system failures are unavoidable. Unpredictable
situations should thus be accounted for when designing a robotic system,
which can be done by supplying the system with sensors for the automatic
detection of unexpected events or by providing for human monitoring. Nev-
ertheless, robotic systems find applications not only in the well-structured
environments of flexible manufacturing cells, but also in unstructured en-
vironments such as exploration of unknown terrains and systems in which
humans are present. The planning of robot motions in the latter case is
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190 5. Trajectory Planning: Pick-and-Place Operations

obviously much more challenging than in the former. Robot motion plan-
ning in unstructured environments calls for techniques beyond the scope
of those studied in this book, involving such areas as pattern recognition
and artificial intelligence. For this reason, we have devoted this book to the
planning of robot motions in structured environments only.

Two typical tasks call for trajectory planning techniques, namely,

• pick-and-place operations (PPO), and

• continuous paths (CP).

We will study PPO in this chapter, with Chapter 9 devoted to CP. More-
over, we will focus on simple robotic manipulators of the serial type, al-
though these techniques can be directly applied to other, more advanced,
robotic mechanical systems.

5.2 Background on PPO

In PPO, a robotic manipulator is meant to take a workpiece from a given
initial pose, specified by the position of one of its points and its orienta-
tion with respect to a certain coordinate frame, to a final pose, specified
likewise. However, how the object moves from its initial to its final pose is
immaterial, as long as the motion is smooth and no collisions occur. Pick-
and-place operations are executed in elementary manufacturing operations
such as loading and unloading of belt conveyors, tool changes in machine
tools, and simple assembly operations such as putting roller bearings on a
shaft. The common denominator of these tasks is material handling, which
usually requires the presence of conventional machines whose motion is very
simple and is usually characterized by a uniform velocity. In some instances,
such as in packing operations, a set of workpieces, e.g., in a magazine, is
to be relocated in a prescribed pattern in a container, which constitutes
an operation known as palletizing. Although palletizing is a more elaborate
operation than simple pick-and-place, it can be readily decomposed into a
sequence of the latter operations.

It should be noted that although the initial and the final poses in a PPO
are prescribed in the Cartesian space, robot motions are implemented in
the joint space. Hence, the planning of PPO will be conducted in the latter
space, which brings about the need of mapping the motion thus planned
into the Cartesian space, in order to ensure that the robot will not collide
with other objects in its surroundings. The latter task is far from being
that simple, since it involves the rendering of the motion of all the moving
links of the robot, each of which has a particular geometry. An approach to
path planning first proposed by Lozano-Pérez (1981) consists of mapping
the obstacles in the joint space, thus producing obstacles in the joint space
in the form of regions that the joint-space trajectory should avoid. The
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5.2 Background on PPO 191

FIGURE 5.1. Still image of the animation of a palletizing operation.

idea can be readily implemented for simple planar motions and simple ge-
ometries of the obstacles. However, for general 3-D motions and arbitrary
geometries, the computational requirements make the procedure imprac-
tical. A more pragmatic approach would consist of two steps, namely, (i)
planning a preliminary trajectory in the joint space, disregarding the obsta-
cles, and (ii) visually verifying if collisions occur with the aid of a graphics
system rendering the animation of the robot motion in the presence of
obstacles. The availability of powerful graphics hardware enables the fast
animation of robot motions within a highly realistic environment. Shown
in Fig. 5.1 is a still image of the animation produced by RVS, the McGill
University Robot-Visualization System, of the motion of a robot performing
a palletizing operation. Commercial software for robot-motion rendering is
available.

By inspection of the kinematic closure equations of robotic manipulators—
see eqs.(4.5a & b)—it is apparent that in the absence of singularities,
the mapping of joint to Cartesian variables, and vice versa, is continu-
ous. Hence, a smooth trajectory planned in the joint space is guaranteed
to be smooth in the Cartesian space, and the other way around, as long as
the trajectory does not encounter a singularity.

In order to proceed to synthesize the joint trajectory, we must then start
by mapping the initial and final poses of the workpiece, which is assumed
to be rigidly attached to the EE of the manipulator, into manipulator
configurations described in the joint space. This is readily done with the
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methods described in Chapter 4. Let the vector of joint variables at the
initial and final robot configurations be denoted by θI and θF , respectively.
Moreover, the initial pose in the Cartesian space is defined by the position
vector pI of the operation point P of the EE and a rotation matrix QI .
Likewise, the final pose in the Cartesian space is defined by the position
vector pF of P and the rotation matrix QF . Moreover, let ṗI and p̈I

denote the velocity and acceleration of P , while ωI and ω̇I denote the
angular velocity and angular acceleration of the workpiece, all of these at
the initial pose. These variables at the final pose are denoted likewise, with
the subscript I changed to F . Furthermore, we assume that time is counted
from the initial pose, i.e., at this pose, t = 0. If the operation takes place
in time T , then at the final pose, t = T . We have thus the set of conditions
that define a smooth motion between the initial and the final poses, namely,

p(0) = pI ṗ(0) = 0 p̈(0) = 0 (5.1a)
Q(0) = QI ω(0) = 0 ω̇(0) = 0 (5.1b)
p(T ) = pF ṗ(T ) = 0 p̈(T ) = 0 (5.1c)
Q(T ) = QF ω(T ) = 0 ω̇(T ) = 0 (5.1d)

In the absence of singularities, then, the conditions of zero velocity and
acceleration imply zero joint velocity and acceleration, and hence,

θ(0) = θI θ̇(0) = 0 θ̈(0) = 0 (5.2a)
θ(T ) = θF θ̇(T ) = 0 θ̈(T ) = 0 (5.2b)

5.3 Polynomial Interpolation

A simple inspection of conditions (5.2a) and (5.2b) reveals that a linear
interpolation between initial and final configurations will not work here, and
neither will a quadratic interpolation, for its slope vanishes only at a single
point. Hence, a higher-order interpolation is needed. On the other hand,
these conditions imply, in turn, six conditions for every joint trajectory,
which means that if a polynomial is to be employed to represent the motion
of every joint, then this polynomial should be at least of the fifth degree.
We thus start by studying trajectory planning with the aid of a 5th-degree
polynomial.

5.3.1 A 3-4-5 Interpolating Polynomial

In order to represent each joint motion, we use here a fifth-order polynomial
s(τ), namely,

s(τ) = aτ5 + bτ4 + cτ3 + dτ2 + eτ + f (5.3)
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such that

0 ≤ s ≤ 1, 0 ≤ τ ≤ 1 (5.4)

and

τ =
t

T
(5.5)

We will thus aim at a normal polynomial that, upon scaling both its argu-
ment and the polynomial itself, will allow us to represent each of the joint
variables θj throughout its range of motion, so that

θj(t) = θI
j + (θF

j − θI
j )s(τ) (5.6a)

where θI
j and θF

j are the given initial and final values of the jth joint
variable. In vector form, eq.(5.6a) becomes

θ(t) = θI + (θF − θI)s(τ) (5.6b)

and hence,

θ̇(t) = (θF − θI)s′(τ)τ̇ (t) = (θF − θI)
1
T

s′(τ) (5.6c)

Likewise,

θ̈(t) =
1

T 2
(θF − θI)s′′(τ) (5.6d)

and
...
θ(t) =

1
T 3

(θF − θI)s′′′(τ) (5.6e)

What we now need are the values of the coefficients of s(τ) that appear in
eq.(5.3). These are readily found by recalling conditions (5.2a & b), upon
consideration of eqs.(5.6b–d). We thus obtain the end conditions for s(τ),
namely,

s(0) = 0, s′(0) = 0, s′′(0) = 0, s(1) = 1, s′(1) = 0, s′′(1) = 0
(5.7)

The derivatives of s(τ) appearing above are readily derived from eq.(5.3),
i.e.,

s′(τ) = 5aτ4 + 4bτ3 + 3cτ2 + 2dτ + e (5.8)

and

s′′(τ) = 20aτ3 + 12bτ2 + 6cτ + 2d (5.9)

Thus, the first three conditions of eq.(5.7) lead to

f = e = d = 0 (5.10)
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while the last three conditions yield three linear equations in a, b, and c,
namely,

a + b + c = 1 (5.11a)
5a + 4b + 3c = 0 (5.11b)

20a + 12b + 6c = 0 (5.11c)

Upon solving the three foregoing equations for the three aforementioned
unknowns, we obtain

a = 6, b = −15, c = 10 (5.12)

and hence, the normal polynomial sought is

s(τ) = 6τ5 − 15τ4 + 10τ3 (5.13)

which is called a 3-4-5 polynomial.
This polynomial and its first three derivatives, all normalized to fall

within the (−1, 1) range, are shown in Fig. 5.2. Note that the smoothness
conditions imposed at the outset are respected and that the curve thus
obtained is a monotonically growing function of τ , a rather convenient
property for the problem at hand.

It is thus possible to determine the evolution of each joint variable if we
know both its end values and the time T required to complete the motion.
If no extra conditions are imposed, we then have the freedom to perform
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FIGURE 5.2. 3-4-5 interpolation polynomial and its derivatives.
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the desired motion in as short a time T as possible. Note, however, that
this time cannot be given an arbitrarily small value, for we must respect
the motor specifications on maximum velocity and maximum torque, the
latter being the subject of Chapter 6. In order to ease the discussion, we
limit ourselves to specifications of maximum joint velocity and acceleration
rather than maximum torque. From the form of function θj(t) of eq.(5.6a),
it is apparent that this function takes on extreme values at points corre-
sponding to those at which the normal polynomial attains its extrema. In
order to find the values of τ at which the first and second derivatives of s(τ)
attain maximum values, we need to zero its second and third derivatives.
These derivatives are displayed below:

s′(τ) = 30τ4 − 60τ3 + 30τ2 (5.14a)
s′′(τ) = 120τ3 − 180τ2 + 60τ (5.14b)
s′′′(τ) = 360τ2 − 360τ + 60 (5.14c)

from which it is apparent that the second derivative vanishes at the two
ends of the interval 0 ≤ τ ≤ 1. Additionally, the same derivative vanishes
at the midpoint of the same interval, i.e., at τ = 1/2. Hence, the maximum
value of s′(τ), s′max, is readily found as

s′max = s′
(

1
2

)
=

15
8

(5.15)

and hence, the maximum value of the jth joint rate takes on the value

(θ̇j)max =
15(θF

j − θI
j )

8T
(5.16)

which becomes negative, and hence, a local minimum, if the difference in
the numerator is negative. The values of τ at which the second derivative
attains its extreme values are likewise determined. The third derivative
vanishes at two intermediate points τ1 and τ2 of the interval 0 ≤ τ ≤ 1,
namely, at

τ1,2 =
1
2
±

√
3

6
(5.17)

and hence, the maximum value of s′′(τ) is readily found as

s′′max = s′′
(

1
2
−

√
3

6

)
=

10
√

3
3

(5.18)

while the minimum is given as

s′′min = s′′
(

1
2

+
√

3
6

)
= −10

√
3

3
(5.19)
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Therefore, the maximum value of the joint acceleration is as shown below:

(θ̈j)max =
10

√
3

3
(θF

j − θI
j )

T 2
(5.20)

Likewise,
s′′′max = s′′′(0) = s′′′(1) = 60

and hence,

(
...
θj)max = 60

θF
J − θI

j

T 3
(5.21)

Thus, eqs.(5.16) and (5.20) allow us to determine T for each joint so that
the joint rates and accelerations lie within the allowed limits. Obviously,
since the motors of different joints are different, the minimum values of T
allowed by the joints will be, in general, different. Of those various values
of T , we will, of course, choose the largest one.

5.3.2 A 4-5-6-7 Interpolating Polynomial

Now, from eq.(5.14c), it is apparent that the third derivative of the normal
polynomial does not vanish at the end points of the interval of interest. This
implies that the third time derivative of θj(t), also known as the joint jerk,
does not vanish at those ends either. It is desirable to have this derivative
as smooth as the first two, but this requires us to increase the order of the
normal polynomial. In order to attain the desired smoothness, we will then
impose two more conditions, namely,

s′′′(0) = 0, s′′′(1) = 0 (5.22)

We now have eight conditions on the normal polynomial, which means
that the polynomial degree should be increased to seven, namely,

s(τ) = aτ7 + bτ6 + cτ5 + dτ4 + eτ3 + fτ2 + gτ + h (5.23a)

whose derivatives are readily determined as shown below:

s′(τ) = 7aτ6 + 6bτ5 + 5cτ4 + 4dτ3 + 3eτ2 + 2fτ + g (5.23b)
s′′(τ) = 42aτ5 + 30bτ4 + 20cτ3 + 12dτ2 + 6eτ + 2f (5.23c)
s′′′(τ) = 210aτ4 + 120bτ3 + 60cτ2 + 24dτ + 6e (5.23d)

The first three conditions of eq.(5.7) and the first condition of eq.(5.22)
readily lead to

e = f = g = h = 0 (5.24)
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Furthermore, the last three conditions of eq.(5.7) and the second condition
of eq.(5.22) lead to four linear equations in four unknowns, namely,

a + b + c + d = 1 (5.25a)
7a + 6b + 5c + 4d = 0 (5.25b)

42a + 30b + 20c + 12d = 0 (5.25c)
210a + 120b + 60c + 24d = 0 (5.25d)

and hence, we obtain the solution

a = −20, b = 70, c = −84, d = 35 (5.26)

the desired polynomial thus being

s(τ) = −20τ7 + 70τ6 − 84τ5 + 35τ4 (5.27)

which is a 4-5-6-7 polynomial. This polynomial and its first three deriva-
tives, normalized to fall within the range (−1, 1), are plotted in Fig. 5.3.
Note that the 4-5-6-7 polynomial is similar to that of Fig. 5.2, except that
the third derivative of the former vanishes at the extremes of the interval of
interest. As we will presently show, this smoothness has been obtained at
the expense of higher maximum values of the first and second derivatives.

We now determine the maximum values of the velocity and acceleration
produced with this motion. To this end, we display below the first three
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FIGURE 5.3. 4-5-6-7 interpolating polynomial and its derivatives.
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derivatives, namely,

s′(τ) = −140τ6 + 420τ5 − 420τ4 + 140τ3 (5.28a)
s′′(τ) = −840τ5 + 2100τ4 − 1680τ3 + 420τ2 (5.28b)
s′′′(τ) = −4200τ4 + 8400τ3 − 5040τ2 + 840τ (5.28c)

The first derivative attains its extreme values at points where the second
derivative vanishes. Upon zeroing the latter, we obtain

τ2(−2τ3 + 5τ2 − 4τ + 1) = 0 (5.29)

which clearly contains a double root at τ = 0. Moreover, the cubic polyno-
mial in the parentheses above admits one real root, namely, τ = 1/2, which
yields the maximum value of s′(τ), i.e.,

s′max = s′
(

1
2

)
=

35
16

(5.30)

whence the maximum value of the jth joint rate is found as

(θ̇j)max =
35(θF

j − θI
j )

16T
(5.31)

Likewise, the points of maximum joint acceleration are found upon zeroing
the third derivative of s(τ), namely,

s′′′(τ) = −4200τ4 + 8400τ3 − 5040τ2 + 840τ = 0 (5.32)

or

τ(τ − 1)(5τ2 − 5τ + 1) = 0 (5.33)

which yields, in addition to the two end points, two intermediate extreme
points, namely,

τ1,2 =
1
2
±

√
5

10
(5.34)

and hence, the maximum value of acceleration is found to be

s′′max = s′′(τ1) =
84

√
5

25
(5.35)

the minimum occurring at τ = τ2, with s′′min = −s′′max. The maximum value
of the jth joint acceleration is thus

(θ̈j)max =
84

√
5

25

(
θF

j − θI
j

T 2

)
(5.36)
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which becomes a minimum if the difference in the numerator is negative.
Likewise, the zeroing of the fourth derivative leads to

−20τ3 + 30τ2 − 12τ + 1 = 0

whose three roots are

τ1 =
1 −√3/5

2
, τ2 =

1
2
, τ1 =

1 +
√

3/5
2

and hence,

s′′′max = s′′′
(

1 ±√3/5
2

)
= 42, s′′′min = s′′′(0.5) = −105

2

i.e.,

max
τ

{|s′′′(τ)|} =
105
2

≡ s′′′M (5.37)

As in the case of the fifth-order polynomial, it is possible to use the
foregoing relations to determine the minimum time T during which it is
possible to perform a given PPO while observing the physical limitations
of the motors.

5.4 Cycloidal Motion

An alternative motion that produces zero velocity and acceleration at the
ends of a finite interval is the cycloidal motion. In normal form, this motion
is given by

s(τ) = τ − 1
2π

sin 2πτ (5.38a)

its derivatives being readily derived as

s′(τ) = 1 − cos 2πτ (5.38b)
s′′(τ) = 2π sin 2πτ (5.38c)
s′′′(τ) = 4π2 cos 2πτ (5.38d)

The cycloidal motion and its first three time-derivatives, normalized to
fall within the range (−1, 1), are shown in Fig. 5.4. Note that while this
motion, indeed, has zero velocity and acceleration at the ends of the interval
0 ≤ τ ≤ 1, its jerk is nonzero at these points and hence, exhibits jump
discontinuities at the ends of that interval.

When implementing the cycloidal motion in PPO, we have, for the jth
joint,

θj(t) = θI
j + (θF

j − θI
j )s(τ) (5.39a)

θ̇j(t) =
θF

j − θI
j

T
s′(τ) (5.39b)

θ̈j(t) =
θF

j − θI
j

T 2
s′′(τ) (5.39c)
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FIGURE 5.4. The normal cycloidal motion and its time derivatives.

Moreover, as the reader can readily verify, under the assumption that θF
j >

θI
j , this motion attains its maximum velocity at the center of the interval,

i.e., at τ = 0.5, the maximum being

s′max = s′(0.5) = 2

and hence,

(θ̇j)max =
2
T

(θF
j − θI

j ) (5.40a)

Likewise, the jth joint acceleration attains its maximum and minimum
values at τ = 0.25 and τ = 0.75, respectively, i.e.,

s′′max = s′′(0.25) = s′′(0.75) = 2π (5.40b)

and hence,

(θ̈j)max =
2π

T 2
(θF

j − θI
j ), (θ̈j)min = − 2π

T 2
(θF

j − θI
j ) (5.40c)

Moreover, s′′′(τ) attains its extrema at the ends of the interval, i.e.,

s′′′max = s′′′(0) = s′′′(1) = 4π2 (5.41)

and hence,

(
...
θj)max =

4π2

T 3
(θF

j − θI
j ) (5.42)

Thus, if motion is constrained by the maximum speed delivered by the
motors, the minimum time Tj for the jth joint to produce the given PPO
can be readily determined from eq.(5.40a) as

Tj =
2(θF

j − θI
j )

(θ̇j)max

(5.43)
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and hence, the minimum time in which the operation can take place can
be readily found as

Tmin = 2 max
j

{
θF

j − θI
j

(θ̇j)max

}
(5.44)

If joint-acceleration constraints are imposed, then a similar procedure can
be followed to find the minimum time in which the operation can be real-
ized. As a matter of fact, rather than maximum joint accelerations, maxi-
mum joint torques are to be respected. How to determine these torques is
studied in detail in Chapter 6.

5.5 Trajectories with Via Poses

The polynomial trajectories discussed above do not allow the specifica-
tion of intermediate Cartesian poses of the EE. All they guarantee is that
the Cartesian trajectories prescribed at the initial and final instants are
met. One way of verifying the feasibility of the Cartesian trajectories thus
synthesized was outlined above and consists of using a graphics system,
preferably with animation capabilities, to produce an animated rendering
of the robot motion, thereby allowing for verification of collisions. If the
latter occur, we can either try alternative branches of the inverse kine-
matics solutions computed at the end poses or modify the trajectory so
as to eliminate collisions. We discuss below the second approach. This is
done with what are called via poses, i.e., poses of the EE in the Cartesian
space that lie between the initial and the final poses, and are determined
so as to avoid collisions. For example, if upon approaching the final pose
of the PPO, the manipulator is detected to interfere with the surface on
which the workpiece is to be placed, a via pose is selected close to the final
point so that at this pose, the workpiece is far enough from the surface.
From inverse kinematics, values of the joint variables can be determined
that correspond to the aforementioned via poses. These values can now
be regarded as points on the joint-space trajectory and are hence called
via points. Obviously, upon plotting each joint variable vs. time, via points
appear as points on those plots as well.

The introduction of via points in the joint-space trajectories amounts to
an increase in the number of conditions to be satisfied by the desired tra-
jectory. For example, in the case of the polynomial trajectory synthesized
for continuity up to second derivatives, we can introduce two via points by
requiring that

s(τ1) = s1, s(τ2) = s2 (5.45)

where τ1, τ2, s1, and s2 depend on the via poses prescribed and the instants
at which these poses are desired to occur. Hence, s1 and s2 differ from joint
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to joint, although the occurrence instants τ1 and τ2 are the same for all
joints. Thus, we will have to determine one normal polynomial for each
joint. Furthermore, the ordinate values s1 and s2 of the normal polynomial
at via points are determined from the corresponding values of the joint
variable determined, in turn, from given via poses through inverse kine-
matics. Once the via values of the joint variables are known, the ordinate
values of the via points of the normal polynomial are found from eq.(5.6a).
Since we have now eight conditions to satisfy, namely, the six conditions
(5.7) plus the two conditions (5.45), we need a seventh-order polynomial,
i.e.,

s(τ) = aτ7 + bτ6 + cτ5 + dτ4 + eτ3 + fτ2 + gτ + h (5.46)

Again, the first three conditions of eq.(5.7) lead to the vanishing of the
last three coefficients, i.e.,

f = g = h = 0 (5.47)

Further, the five remaining conditions are now introduced, which leads to
a system of five linear equations in five unknowns, namely,

a + b + c + d + e = 1 (5.48a)
7a + 6b + 5c + 4d + 3e = 0 (5.48b)

42a + 30b + 20c + 12d + 6e = 0 (5.48c)
τ7

1 a + τ6
1 b + τ5

1 c + τ4
1 d + τ3

1 e = s1 (5.48d)
τ7

2 a + τ6
2 b + τ5

2 c + τ4
2 d + τ3

2 e = s2 (5.48e)

where τ1, τ2, s1, and s2 are all data. For example, if the via poses occur at
10% and 90% of T , we have

τ1 = 1/10, τ2 = 9/10 (5.48f)

the polynomial coefficients being found as

a = 100(12286 + 12500s1 − 12500s2)/729 (5.49a)
b = 100(−38001− 48750s1 + 38750s2)/729 (5.49b)
c = (1344358 + 2375000s1 − 1375000s2)/243 (5.49c)
d = (−1582435− 4625000s1 + 1625000s2)/729 (5.49d)
e = 10(12159 + 112500s1 − 12500s2)/729 (5.49e)

The shape of each joint trajectory thus depends on the values of s1 and s2

found from eq.(5.6a) for that trajectory.

5.6 Synthesis of PPO Using Cubic Splines

When the number of via poses increases, the foregoing approach may be-
come impractical, or even unreliable. Indeed, forcing a trajectory to pass
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through a number of via points and meet endpoint conditions is equivalent
to interpolation. We have seen that an increase in the number of condi-
tions to be met by the normal polynomial amounts to an increase in the
degree of this polynomial. Now, finding the coefficients of the interpolating
polynomial requires solving a system of linear equations. As we saw in Sec-
tion 4.9, the computed solution, when solving a system of linear equations,
is corrupted with a relative roundoff error that is roughly equal to the rel-
ative roundoff error of the data multiplied by an amplification factor that
is known as the condition number of the system matrix. As we increase
the order of the interpolating polynomial, the associated condition num-
ber rapidly increases, a fact that numerical analysts discovered some time
ago (Kahaner et al., 1989). In order to cope with this problem, orthogo-
nal polynomials, such as those bearing the names of Chebyshev, Laguerre,
Legendre, and so on, have been proposed. While orthogonal polynomials
alleviate the problem of a large condition number, they do this only up to
a certain extent. As an alternative to higher-order polynomials, spline func-
tions have been found to offer more robust interpolation schemes (Dierckx,
1993). Spline functions, or splines, for brevity, are piecewise polynomials
with continuity properties imposed at the supporting points. The latter are
those points at which two neighboring polynomials join.

The attractive feature of splines is that they are defined as a set of
rather lower-degree polynomials joined at a number of supporting points.
Moreover, the matrices that arise from an interpolation problem associated
with a spline function are such that their condition number is only slightly
dependent on the number of supporting points, and hence, splines offer
the possibility of interpolating over a virtually unlimited number of points
without producing serious numerical conditioning problems.

Below we expand on periodic cubic splines, for these will be shown to be
specially suited for path planning in robotics.

A cubic spline function s(x) connecting N points Pk (xk, yk), for k =
1, 2, . . . , N , is a function defined piecewise by N − 1 cubic polynomials
joined at the points Pk, such that s(xk) = yk. Furthermore, the spline
function thus defined is twice differentiable everywhere in x1 ≤ x ≤ xN .
Hence, cubic splines are said to be C2 functions, i.e., to have continuous
derivatives up to the second order.

Cubic splines are optimal in the sense that they minimize a functional ,
i.e., an integral defined as

F =
∫ T

0

s′′2(x) dx

subject to the constraints

s(xk) = yk, k = 1, . . . , N

where xk and yk are given. The aforementioned optimality property has
a simple kinematic interpretation: Among all functions defining a motion
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so that the plot of this function passes through a set of points P1(x1, s1),
P2(x2, s2), . . . , PN (xN , sN) in the x-s plane, the cubic spline is the one
containing the minimum acceleration magnitude. In fact, F , as given above,
is the square of the Euclidean norm (Halmos, 1974) of s′′(x), i.e., F turns
out to be a measure of the magnitude of the acceleration of a displacement
program given by s(x), if we interpret s as displacement and x as time.

Let Pk(xk, yk) and Pk+1(xk+1, yk+1) be two consecutive supporting
points. The kth cubic polynomial sk(x) between those points is assumed
to be given by

sk(x) = Ak (x − xk)3 + Bk (x − xk)2 + Ck (x − xk) + Dk (5.50a)

for xk ≤ x ≤ xk+1. Thus, for the spline s(x), 4(N − 1) coefficients Ak, Bk,
Ck, Dk, for k = 1, . . . , N − 1, are to be determined. These coefficients will
be computed presently in terms of the given function values {sk}N

1 and
the second derivatives of the spline at the supporting points, {s′′k(xk)}N

1 ,
as explained below:

We will need the first and second derivatives of sk(x) as given above,
namely,

s′k(x) = 3Ak(x − xk)2 + 2Bk(x − xk) + Ck (5.50b)
s′′k(x) = 6Ak(x − xk) + 2Bk (5.50c)

whence the relations below follow immediately:

Bk =
1
2
s′′k (5.51a)

Ck = s′k (5.51b)
Dk = sk (5.51c)

where we have used the abbreviations

sk ≡ s(xk), s′k ≡ s′(xk), s′′k ≡ s′′(xk) (5.52)

Furthermore, let
∆xk ≡ xk+1 − xk (5.53)

From the above relations, we have expressions for coefficients Bk and Dk in
terms of s′′k and sk, respectively, but the expression for Ck is given in terms
of s′k. What we would like to have are similar expressions for Ak and Ck,
i.e., in terms of sk and s′′k. The relations sought will be found by imposing
the continuity conditions on the spline function and its first and second
derivatives with respect to x at the supporting points. These conditions
are, then, for k = 1, 2, . . . , N − 1,

sk(xk+1) = sk+1 (5.54a)
s′k(xk+1) = s′k+1 (5.54b)
s′′k(xk+1) = s′′k+1 (5.54c)
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Upon substituting s′′k(xk+1), as given by eq.(5.50c), into eq.(5.54c), we
obtain

6Ak∆xk + 2Bk = 2Bk+1

but from eq.(5.51a), we have already an expression for Bk, and hence, one
for Bk+1 as well. Substituting these two expressions in the above equation,
we obtain an expression for Ak, namely,

Ak =
1

6 ∆xk
(s′′k+1 − s′′k) (5.54d)

Furthermore, if we substitute sk(xk+1), as given by eq.(5.50a), into eq.(5.54a),
we obtain

Ak(∆xk)3 + Bk(∆xk)2 + Ck∆xk + Dk = sk+1

But we already have values for Ak and Bk from eqs.(5.54d) and (5.51a), re-
spectively. Upon substituting these values in the foregoing equation, we ob-
tain the desired expression for Ck in terms of function and second-derivative
values, i.e.,

Ck =
∆sk

∆xk
− 1

6
∆xk (s′′k+1 + 2s′′k) (5.54e)

In summary, then, we now have expressions for all four coefficients of the
kth polynomial in terms of function and second-derivative values at the
supporting points, namely,

Ak =
1

6 ∆xk
(s′′k+1 − s′′k) (5.55a)

Bk =
1
2

s′′k (5.55b)

Ck =
∆sk

∆xk
− 1

6
∆xk (s′′k+1 + 2s′′k) (5.55c)

Dk = sk (5.55d)

with

∆sk ≡ sk+1 − sk (5.55e)

Furthermore, from the requirement of continuity in the first derivative,
eq.(5.54b), after substitution of eq.(5.50b), one obtains

3Ak(∆xk)2 + 2Bk∆xk + Ck = Ck+1

or if we shift to the previous polynomials,

3Ak−1(∆xk−1)2 + 2Bk−1∆xk−1 + Ck−1 = Ck
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Now, if we substitute expressions (5.55a–c) in the above equation, a linear
system of N − 2 simultaneous equations for the N unknowns {s′′k}N

1 is
obtained, namely,

(∆xk)s′′k+1 + 2(∆xk−1 + ∆xk)s′′k + (∆xk−1)s′′k−1

= 6
(

∆sk

∆xk
− ∆sk−1

∆xk−1

)
, for k = 2, . . . , N − 1 . (5.56)

Further, let s be the N -dimensional vector whose kth component is sk,
with vector s′′ being defined likewise, i.e.,

s = [ s1, · · · , sN ]T , s′′ = [ s′′1 , · · · , s′′N ]T (5.57)

The relationship between s and s′′ of eq.(5.56) can then be written in
vector form as

As′′ = 6Cs (5.58a)

where A and C are (N − 2) × N matrices defined as:

A =




α1 2α1,2 α2 0 · · · 0 0
0 α2 2α2,3 α3 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 . . . αN ′′′ 2αN ′′′,N ′′ αN ′′ 0
0 0 0 · · · αN ′′ 2αN ′′,N ′ αN ′




(5.58b)

and

C =




β1 −β1,2 β2 0 · · · 0 0
0 β2 −β2,3 β3 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 · · · βN ′′′ −βN ′′′,N ′′ βN ′′ 0
0 0 0 · · · βN ′′ −βN ′′,N ′ βN ′




(5.58c)

while for i, j, k = 1, . . . , N − 1,

αk ≡ ∆xk, αi,j ≡ αi + αj , (5.58d)
βk ≡ 1/αk, βi,j ≡ βi + βj (5.58e)

and

N ′ ≡ N − 1, N ′′ ≡ N − 2, N ′′′ ≡ N − 3 (5.58f)

Thus, two additional equations are needed to render eq.(5.58a) a deter-
mined system. The additional equations are derived, in turn, depending
upon the class of functions one is dealing with, which thus gives rise to
various types of splines. For example, if s′′1 and s′′N are defined as zero,
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then one obtains natural cubic splines, the name arising by an analogy
with beam analysis. Indeed, in beam theory, the boundary conditions of
a simply-supported beam establish the vanishing of the bending moments
at the ends. From beam theory, moreover, the bending moment is propor-
tional to the second derivative of the elastica, or neutral axis, of the beam
with respect to the abscissa along the beam axis in the undeformed con-
figuration. In this case, vector s′′ becomes of dimension N − 2, and hence,
matrix A becomes, correspondingly, of (N − 2) × (N − 2), namely,

A =




2α1,2 α2 0 · · · 0
α2 2α2,3 α3 · · · 0
...

. . . . . . . . .
...

0 . . . αN ′′′ 2αN ′′′,N ′′ αN ′′

0 0 · · · αN ′′ 2αN ′′,N ′




(5.59)

On the other hand, if one is interested in periodic functions, which is often
the case when synthesizing pick-and-place motions, then the conditions
s1 = sN , s′1 = s′N , s′′1 = s′′N are imposed, thereby producing periodic cubic
splines . The last of these conditions is used to eliminate one unknown in
eq.(5.58a), while the second condition, namely the continuity of the first
derivative, is used to add an equation. We have, then,

s′1 = s′N (5.60)

which can be written, using eq.(5.54b), as

s′1 = s′N−1(xN ) (5.61)

Upon substituting s′N−1(xN ), as given by eq.(5.50b), into the above equa-
tion, we obtain

s′1 = 3AN−1∆x2
N−1 + 2BN−1∆xN−1 + CN−1 (5.62)

Now we use eqs.(5.55a–c) and simplify the expression thus resulting, which
leads to

2(∆x1 +∆xN−1)s′′1 +∆x1s
′′
2 +∆xN−1s

′′
N−1 = 6

(
∆s1

∆x1
− ∆sN−1

∆xN−1

)
(5.63)

thereby obtaining the last equation required to solve the system of equa-
tions given by eqs.(5.58a–c). We thus have (N − 1) independent equations
to solve for (N − 1) unknowns, namely, s′′k, for k = 1, . . . , N − 1, s′′N being
equal to s′′1 . Expressions for matrices A and C, as applicable to periodic
cubic splines, are given in eqs.(9.59a & b).

While we focused in the above discussion on cubic splines, other types
of splines could have been used. For example, Thompson and Patel (1987)
used B-splines in robotics trajectory planning.
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FIGURE 5.5. Errors in the approximation of a 4-5-6-7 polynomial with a natural
cubic spline, using four supporting points.

Example 5.6.1 (Approximation of a 4-5-6-7 polynomial with a cu-
bic spline) Find the cubic spline that interpolates the 4-5-6-7 polynomial
of Fig. 5.3 with N + 1 equally-spaced supporting points and plot the inter-
polation error for N = 3 and N = 10.

Solution: Let us use a natural spline, in which case the second derivative at
the end points vanishes, with vector s′′ thus losing two components. That is,
we now have only N−1 unknowns { s′′k }N−1

1 to determine. Correspondingly,
matrix A then loses its first and last columns and hence, becomes a square
(N − 1) × (N − 1) matrix. Moreover,

∆xk =
1
N

, k = 1, . . . , N

and matrices A and C become, correspondingly,

A =
1
N




4 1 0 · · · 0
1 4 1 · · · 0
...

. . . . . . . . .
...

0 . . . 1 4 1
0 0 · · · 1 4



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FIGURE 5.6. Errors in the approximation of a 4-5-6-7 polynomial with a natural
cubic spline, using eleven supporting points.

and

C = N




1 −2 1 0 · · · 0 0
0 1 −2 1 · · · 0 0
...

...
. . . . . . . . .

...
...

0 0 · · · 1 −2 1 0
0 0 0 · · · 1 −2 1




the vector of second derivatives at the supporting points, s′′, then being
readily obtained as

s′′ = 6A−1Cs

With the values of the second derivatives at the supporting points known,
the calculation of the spline coefficients Ak, Bk, Ck, and Dk, for k =
1, . . . , N , is now straightforward. Let the interpolation error, e(x), be de-
fined as e(x) ≡ s(x)− p(x), where s(x) is the interpolating spline and p(x)
is the given polynomial. This error and its derivatives e′(x), e′′(x), and
e′′′(x) are plotted in Figs. 5.5 and 5.6 for N = 3 and N = 10, respectively.
What we observe is an increase of more than one order of magnitude in the
error as we increase the order of the derivative by one. Thus, the order of
magnitude of acceleration errors is usually higher than two orders of mag-
nitude above the displacement errors, a fact that should not be overlooked
in applications.
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6
Dynamics of Serial Robotic
Manipulators

6.1 Introduction

The main objectives of this chapter are (i) to devise an algorithm for the
real-time computed torque control and (ii) to derive the system of second-
order ordinary differential equations (ODE) governing the motion of an
n-axis manipulator. We will focus on serial manipulators, the dynamics
of a much broader class of robotic mechanical systems, namely, parallel
manipulators and mobile robots, being the subject of Chapter 10. Moreover,
we will study mechanical systems with rigid links and rigid joints and
will put aside systems with flexible elements, which pertain to a more
specialized realm.

6.2 Inverse vs. Forward Dynamics

The two basic problems associated with the dynamics of robotic mechani-
cal systems, namely, the inverse and the forward problems, are thoroughly
discussed in this chapter. The relevance of these problems cannot be over-
stated: the former is essential for the computed-torque control of robotic
manipulators, while the latter is required for the simulation and the real-
time feedback control of the same systems. Because the inverse problem
is purely algebraic, it is conceptually simpler to grasp than the forward
problem, and hence, the inverse problem will be discussed first. Moreover,
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212 6. Dynamics of Serial Robotic Manipulators

the inverse problem is also computationally simpler than the forward prob-
lem. In the inverse problem, a time-history of either the Cartesian or the
joint coordinates is given, and from knowledge of these histories and the
architecture and inertial parameters of the system at hand, the torque
or force requirements at the different actuated joints are determined as
time-histories as well. In the forward problem, current values of the joint
coordinates and their first time-derivatives are known at a given instant,
the time-histories of the applied torques or forces being also known, along
with the architecture and the inertial parameters of the manipulator at
hand. With these data, the values of the joint coordinates and their time-
derivatives are computed at a later sampling instant by integration of the
underlying system of nonlinear ordinary differential equations.

The study of the dynamics of systems of multiple rigid bodies is classical,
but up until the advent of the computer, it was limited only to theoreti-
cal results and a reduced number of bodies. First Uicker (1965) and then
Kahn (1969) produced a method based on the Euler-Lagrange equations
of mechanical systems of rigid bodies that they used to simulate the dy-
namical behavior of such systems. A breakthrough in the development of
algorithms for dynamics computations was reported by Luh et al. (1980),
who proposed a recursive formulation of multibody dynamics that is appli-
cable to systems with serial kinematic chains. This formulation, based on
the Newton-Euler equations of rigid bodies, allowed the calculation of the
joint torques of a six-revolute manipulator with only 800 multiplications
and 595 additions, a tremendous gain if we consider that the straightfor-
ward calculation of the Euler-Lagrange equations for the same type of ma-
nipulator involves 66,271 multiplications and 51,548 additions, as pointed
out by Hollerbach (1980). In the foregoing reference, a recursive derivation
of the Euler-Lagrange equations was proposed, whereby the computational
complexity was reduced to only 2,195 multiplications and 1,719 additions.

The foregoing results provoked a discussion on the merits and demerits
of each of the Euler-Lagrange and the Newton-Euler formulations. Silver
(1982) pointed out that since both formulations are equivalent, they should
lead to the same computational complexity. In fact, Silver showed how to
derive the Euler-Lagrange equations from the Newton-Euler formulation
by following an approach first introduced by Kane (1961) in connection
with nonholonomic systems. Kane and Levinson (1983) then showed how
Kane’s equations can be applied to particular robotic manipulators and
arrived at lower computational complexities. They applied the said equa-
tions to the Stanford Arm (Paul, 1981) and computed its inverse dynamics
with 646 multiplications and 394 additions. Thereafter, Khalil et al. (1986)
proposed a condensed recursive Newton-Euler method that reduced the
computational complexity to 538 multiplications and 478 additions, for ar-
bitrary architectures. Further developments in this area were reported by
Balafoutis and Patel (1991), who showed that the underlying computa-
tional complexity can be reduced to 489 multiplications and 420 additions
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for the most general case of a six-revolute manipulator, i.e., without ex-
ploiting particular features of the manipulator geometry. Balafoutis and
Patel based their algorithm on tensor analysis, whereby tensor identities
are exploited to their fullest extent in order to reduce the number of op-
erations involved. Li and Sankar (1992), in turn, reported further savings
that allowed them to bring down those numbers to 459 multiplications and
390 additions.

In this chapter, the inverse dynamics problem is solved with the well-
known recursive Newton-Euler algorithm, while the forward dynamics prob-
lem is handled with a novel approach, based on the reciprocity relations
between the constraint wrenches and the feasible twists of a manipulator.
This technique is developed with the aid of a modeling tool known as the
natural orthogonal complement, thoroughly discussed in Section 6.5.

Throughout the chapter, we will follow a multibody system approach,
which requires a review of the underlying fundamentals.

6.3 Fundamentals of Multibody System Dynamics

6.3.1 On Nomenclature and Basic Definitions

We consider here a mechanical system composed of r rigid bodies and
denote by Mi the 6 × 6 inertia dyad—see Section 3.8—of the ith body.
Moreover, we let Wi, already introduced in eq.(3.145), be the 6×6 angular-
velocity dyad of the same body. As pertaining to the case at hand, the said
matrices are displayed below:

Mi ≡
[
Ii O
O mi1

]
, Wi ≡

[
Ωi O
O O

]
, i = 1, . . . , r (6.1)

where 1 and O denote the 3 × 3 identity and zero matrices, respectively,
while Ωi and Ii are the angular-velocity and the inertia matrices of the
ith body, this last being defined with respect to the mass center Ci of this
body. Moreover, the mass of this body is denoted by mi, whereas ci and
ċi denote the position and the velocity vectors of Ci. Furthermore, let ti

denote the twist of the same body, the latter being defined in terms of
the angular velocity vector ωi, the vector of Ωi, and the velocity of Ci.
The 6-dimensional momentum screw µi is defined likewise. Furthermore,
wW

i and wC
i are defined as the working wrench and the nonworking con-

straint wrench exerted on the ith body by its neighbors, in which forces are
assumed to be applied at Ci. We thus have, for i = 1, . . . , r,

ti =
[

ωi

ċi

]
, µi =

[
Iiωi

miċi

]
, wW

i =
[
nW

i

fW
i

]
, wC

i =
[
nC

i

fC
i

]
(6.2)

where superscripted ni and fi stand, respectively, for the moment and the
force acting on the ith body, the force being applied at the mass center Ci.
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Thus, whereas wW
i accounts for forces and moments exerted by both the

environment and the actuators, including driving forces as well as dissipa-
tive effects, wC

i , whose sole function is to keep the links together, accounts
for those forces and moments exerted by the neighboring links, which do
not produce any mechanical work. Therefore, friction wrenches applied by
the (i − 1)st and the (i + 1)st links onto the ith link are not included in
wC

i ; rather, they are included in wW
i .

Clearly, from the definitions of Mi, µi, and ti, we have

µi = Miti (6.3)

Moreover, from eq.(3.148),

µ̇i = Miṫi + Wiµi = Miṫi + WiMiti (6.4)

We now recall the Newton-Euler equations for a rigid body, namely,

Iiω̇i = −ωi × Iiωi + nW
i + nC

i (6.5a)
mic̈i = fW

i + fC
i (6.5b)

which can be written in compact form using the foregoing 6-dimensional
twist and wrench arrays as well as the 6 × 6 inertia and angular-velocity
dyads. We thus obtain the Newton-Euler equations of the ith body in the
form

Miṫi = −WiMiti + wW
i + wC

i (6.5c)

6.3.2 The Euler-Lagrange Equations of Serial
Manipulators

The Euler-Lagrange dynamical equations of a mechanical system are now
recalled, as pertaining to serial manipulators. Thus, the mechanical system
at hand has n degrees of freedom, its n independent generalized coordinates
being the n joint variables, which are stored in the n-dimensional vector θ.
We thus have

d

dt

(
∂T

∂θ̇

)
− ∂T

∂θ
= φ (6.6)

where T is a scalar function denoting the kinetic energy of the system and φ
is the n-dimensional vector of generalized force. If some forces on the right-
hand side stem from a potential V , we can, then decompose φ into two
parts, φp and φn, the former arising from V and termed the conservative
force of the system; the latter is the nonconservative force φn. That is,

φp ≡ −∂V

∂θ
(6.7)

the above Euler-Lagrange equations thus becoming

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= φn (6.8)
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where L is the Lagrangian of the system, defined as

L ≡ T − V (6.9)

Moreover, the kinetic energy of the system is simply the sum of the kinetic
energies of all the r links. Recalling eq.(3.150), which gives the kinetic
energy of a rigid body in terms of 6-dimensional arrays, one has

T =
r∑
1

Ti =
r∑
1

1
2
tT
i Miti (6.10)

whereas the vector of nonconservative generalized forces is given by

φn ≡ ∂ΠA

∂θ̇
− ∂∆

∂θ̇
(6.11)

in which ΠA and ∆ denote the power supplied to the system and the
Rayleigh dissipation function, or for brevity, the dissipation function of the
system.

The first of these items is discussed below; the latter is only outlined in
this section but is discussed extensively in Section 6.8. First, the wrench
wW

i is decomposed into two parts, wA
i and wD

i , the former being the wrench
supplied by the actuators and the latter being the wrench that arises from
viscous and Coulomb friction, the gravity wrench being not needed here
because gravity effects are considered in the potential V (θ). We thus call
wA

i the active wrench and wD
i the dissipative wrench. Here, the wrenches

supplied by the actuators are assumed to be prescribed functions of time.
Moreover, these wrenches are supplied by single-dof actuators in the form of
forces along a line of action or moments in a given direction, both line and
direction being fixed to the two bodies that are coupled by an active joint.
Hence, the actuator-supplied wrenches are dependent on the posture of the
manipulator as well, but not on its twist. That is, the actuator wrenches are
functions of both the vector of generalized coordinates, or joint variables,
and time, but not of the generalized speeds, or joint-rates. Forces dependent
on the latter to be considered here are assumed to be all dissipative. As a
consequence, they can be readily incorporated into the mathematical model
at hand via the dissipation function, to be discussed in Section 6.8. Note
that feedback control schemes require actuator forces that are functions
not only of the generalized coordinates, but also of the generalized speeds.
These forces or moments are most easily incorporated into the underlying
mathematical model, once this model is derived in the state-variable space,
i.e., in the space of generalized coordinates and generalized speeds.

Thus, the power supplied to the ith link, ΠA
i , is readily computed as

ΠA
i = (wA

i )T ti (6.12a)

Similar to the kinetic energy, then, the power supplied to the overall
system is simply the sum of the individual powers supplied to each link,
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and expressed as in eq.(6.12a), i.e.,

ΠA ≡
r∑
1

ΠA
i (6.12b)

Further definitions are now introduced. These are the 6n-dimensional
vectors of manipulator twist, t; manipulator momentum, µ; manipulator
constraint wrench, wC ; manipulator active wrench, wA; and manipulator
dissipative wrench, wD. Additionally, the 6n× 6n matrices of manipulator
mass, M, and manipulator angular velocity, W, are also introduced below:

t =




t1
...
tn


 , µ =




µ1
...

µn


 , (6.13a)

wC =




wC
1
...

wC
n


 , wA =




wA
1
...

wA
n


 , wD =




wD
1
...

wD
n


 (6.13b)

M = diag (M1, . . . , Mn ), W = diag (W1, . . . , Wn ) (6.13c)

It is now apparent that, from definitions (6.13b & 6.13c) and relation
(6.3), we have

µ = Mt (6.14)

Moreover, from definitions (6.1) and (6.2),

µ̇ = Mṫ + WMt (6.15)

With the foregoing definitions, then, the kinetic energy of the manipulator
takes on a simple form, namely,

T =
1
2
tTMt ≡ 1

2
tT µ (6.16)

which is a quadratic form in the system twist. Since the twist, on the other
hand, is a linear function of the vector θ̇ of joint rates, the kinetic energy
turns out to be a quadratic form in the vector of joint rates. Moreover, we
will assume that this form is homogeneous in θ̇, i.e.,

T =
1
2
θ̇

T
I(θ)θ̇ (6.17)

Notice that the above assumption implies that the base of the robot is
fixed to an inertial base, and hence, when all joints are locked, the kinetic
energy of the robot vanishes, which would not be the case if, for example,
the robot were mounted on the International Space Station. If this were the

TLFeBOOK



6.3 Fundamentals of Multibody System Dynamics 217

case, then the kinetic energy would not vanish even if all robot joints were
locked, which means that the foregoing kinetic-energy expression would
include a linear term in θ̇ and a term independent of the joint-rates. In any
event, it is apparent that

I(θ) =
∂2

∂θ̇
2 (T ) (6.18)

which means that the n×n generalized inertia matrix is the Hessian matrix
of the kinetic energy with respect to the vector of generalized speed.

Furthermore, the Euler-Lagrange equations can be written in the form

d

dt

(
∂T

∂θ̇

)
− ∂T

∂θ
+

∂V

∂θ
= φn (6.19a)

Now, from the form of T given in eq.(6.17), the partial derivatives appearing
in the foregoing equation take the forms derived below:

∂T

∂θ̇
= I(θ)θ̇

and hence,
d

dt

(
∂T

∂θ̇

)
= I(θ)θ̈ + İ(θ, θ̇)θ̇ (6.19b)

Moreover, in order to calculate the second term of the left-hand side of
eq.(6.19a), we express the kinetic energy in the form

T =
1
2
p(θ, θ̇)T θ̇ (6.19c)

where p(θ, θ̇) is the generalized momentum of the manipulator, defined as

p(θ, θ̇) ≡ I(θ)θ̇ (6.19d)

Hence,
∂T

∂θ
=

1
2

(
∂p
∂θ

)T

θ̇ (6.19e)

or
∂T

∂θ
=

1
2

[
∂(Iθ̇)
∂θ

]T

θ̇ (6.19f)

the Euler-Lagrange equations thus taking on the alternative form

I(θ)θ̈ + İ(θ, θ̇)θ̇ − 1
2

[
∂(Iθ̇)
∂θ

]T

θ̇ +
∂V

∂θ
= φn (6.20)
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FIGURE 6.1. A planar manipulator.

Example 6.3.1 (Euler-Lagrange equations of a planar manipula-
tor) Consider the manipulator of Fig. 6.1, with links designed so that their
mass centers, C1, C2, and C3, are located at the midpoints of segments
O1O2, O2O3, and O3P , respectively. Moreover, the ith link has a mass mi

and a centroidal moment of inertia in a direction normal to the plane of
motion Ii, while the joints are actuated by motors delivering torques τ1,
τ2, and τ3, the lubricant of the joints producing dissipative torques that we
will neglect in this model. Under the assumption that gravity acts in the
direction of −Y , find the associated Euler-Lagrange equations.

Solution: Here we recall the kinematic analysis of Section 4.8 and the def-
initions introduced therein for the analysis of planar motion. In this light,
all vectors introduced below are 2-dimensional, the scalar angular velocities
of the links, ωi, for i = 1, 2, 3, being

ω1 = θ̇1, ω2 = θ̇1 + θ̇2, ω3 = θ̇1 + θ̇2 + θ̇3

Moreover, the velocities of the mass centers are

ċ1 =
1
2
θ̇1Ea1

ċ2 = θ̇1Ea1 +
1
2
(θ̇1 + θ̇2)Ea2

ċ3 = θ̇1Ea1 + (θ̇1 + θ̇2)Ea2 +
1
2
(θ̇1 + θ̇2 + θ̇3)Ea3
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the kinetic energy then becoming

T =
1
2

3∑
1

(mi‖ċi‖2 + Iiω
2
i )

The squared magnitudes of the mass-center velocities are now computed
using the expressions derived above. After simplifications, these yield

‖ċ1‖2 =
1
4
a2

1θ̇
2
1

‖ċ2‖2 = a2
1θ̇

2
1 +

1
4
a2

2(θ̇
2
1 + 2θ̇1θ̇2 + θ̇2

2) + a1a2 cos θ2(θ̇2
1 + θ̇1θ̇2)

‖ċ3‖2 = a2
1θ̇

2
1 + a2

2(θ̇
2
1 + 2θ̇1θ̇2 + θ̇2

2)

+
1
4
a2

3(θ̇
2
1 + θ̇2

2 + θ̇2
3 + 2θ̇1θ̇2 + 2θ̇1θ̇3 + 2θ̇2θ̇3)

+2a1a2 cos θ2(θ̇2
1 + θ̇1θ̇2) + a1a3 cos(θ2 + θ3)(θ̇2

1 + θ̇1θ̇2 + θ̇1θ̇3)
+a2a3 cos θ3(θ̇2

1 + θ̇2
2 + 2θ̇1θ̇2 + θ̇1θ̇3 + θ̇2θ̇3)

The kinetic energy of the whole manipulator thus becomes

T =
1
2
(I11θ̇

2
1 + 2I12θ̇1θ̇2 + 2I23θ̇2θ̇3 + I22θ̇

2
2 + 2I13θ̇1θ̇3 + I33θ̇

2
3)

with coefficients Iij , for i = 1, 2, 3, and j = i to 3 being the distinct entries
of the 3 × 3 matrix of generalized inertia of the system. These entries are
given below:

I11 ≡ I1 + I2 + I3 +
1
4
m1a

2
1 + m2

(
a2

1 +
1
4
a2

2 + a1a2c2

)

+m3

(
a2

1 + a2
2 +

1
4
a2

3 + 2a1a2c2 + a1a3c23 + a2a3c3

)

I12 ≡ I2 + I3 +
1
2

[
m2

(
1
2
a2

2 + a1a2c2

)

+ m3

(
2a2

2 +
1
2
a2

3 + 2a1a2c2 + a1a3c23 + 2a2a3c3

)]

I13 ≡ I3 +
1
2
m3

(
1
2
a2

3 + a1a3c23 + a2a3c3

)

I22 ≡ I2 + I3 +
1
4
m2a

2
2 + m3

(
a2

2 +
1
4
a2

3 + a2a3c3

)

I23 ≡ I3 +
1
2
m3

(
1
2
a2

3 + a2a3c3

)

I33 ≡ I3 +
1
4
m3a

2
3

where ci and cij stand for cos θi and cos(θi + θj), respectively. From the
foregoing expressions, it is apparent that the generalized inertia matrix is
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not a function of θ1, which is only natural, for if the second and third joints
are locked while leaving the first one free, the whole manipulator becomes
a single rigid body pivoting about point O1. Now, the polar moment of
inertia of a rigid body in planar motion about a fixed point is constant,
and hence, the first joint variable should not affect the generalized inertia
matrix.

Furthermore, the potential energy of the manipulator is computed as the
sum of the individual link potential energies, i.e.,

V =
1
2
m1ga1 sin θ1 + m2g

[
a1 sin θ1 +

1
2
a2 sin(θ1 + θ2)

]

+m3g

[
a1 sin θ1 + a2 sin(θ1 + θ2) +

1
2
a3 sin(θ1 + θ2 + θ3)

]

while the total power delivered to the manipulator takes the form

Π = τ1θ̇1 + τ2θ̇2 + τ3θ̇3

We now proceed to compute the various terms in eq.(6.20). We already
have I(θ), but we do not have, as yet, its time-derivative. However, the
entries of İ are merely the time-derivatives of the entries of I. From the
above expressions for these entries, their time-rates of change are readily
calculated, namely,

İ11 = −m2a1a2s2θ̇2 − m3[2a1a2s2θ̇2 + a1a3s23(θ̇2 + θ̇3) + a2a3s3θ̇3]

İ12 =
1
2
{−m2a1a2s2θ̇2 − m3[2a1a2s2θ̇2 + a1a3s23(θ̇2 + θ̇3) + 2a2a3s3θ̇3]}

İ13 = −1
2
m3[a1a3s23(θ̇2 + θ̇3) + a2a3s3θ̇3]

İ22 = −m3a2a3s3θ̇3

İ23 = −1
2
m3a2a3s3θ̇3

İ33 = 0

with sij defined as sin(θi + θj). It should now be apparent that the time-
rate of change of the generalized inertia matrix is independent of θ̇1, as
one should have expected, for this matrix is independent of θ1. That is,
if all joints but the first one are frozen, no matter how fast the first joint
rotates, the manipulator moves as a single rigid body whose polar moment
of inertia about O1, the center of the first joint, is constant. As a matter of
fact, I33 is constant for the same reason and İ33 hence vanishes. We have,
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then,1

İθ̇ ≡ ι =




İ11θ̇1 + İ12θ̇2 + İ13θ̇3

İ12θ̇1 + İ22θ̇2 + İ23θ̇3

İ13θ̇1 + İ23θ̇2 + İ33θ̇3




whose components, ιi, for i = 1, 2, 3, are readily calculated as

ι1 = −[m2a1a2s2 + m3a1(2a2s2 + a3s23)]θ̇1θ̇2 − m3a3(a1s23 + a2s3)θ̇1θ̇3

−1
2
[m2a1a2s2 + m3a1(2a2s2 + a3s23)]θ̇2

2 − m3a3(a1s23 + a2s3)θ̇2θ̇3

−1
2
m3a3(a1s23 + a2s3)θ̇2

3

ι2 = −1
2
[m2a1a2s2 + m3a1(2a2s2 + a3s23)]θ̇1θ̇2

−1
2
m3a3(a1s23 + a2s3)θ̇1θ̇3 − m3a2a3s3θ̇2θ̇3 − 1

2
m3a2a3s3θ̇

2
3

ι3 = −1
2
m3a1a3s23θ̇1θ̇3 − 1

2
m3a3(a1s23 + a2s3)θ̇1θ̇3 − 1

2
m3a2a3s3θ̇2θ̇3

The next term in the right-hand side of eq.(6.20) now requires the cal-
culation of the partial derivatives of vector Iθ̇ with respect to the joint
variables, which are computed below. Let

∂(Iθ̇)
∂θ

≡ I′

its entries being denoted by I ′ij . This matrix, in component form, is given
by

I′ =




0 I11,2θ̇1 + I12,2θ̇2 + I13,2θ̇3 I11,3θ̇1 + I12,3θ̇2 + I13,3θ̇3

0 I12,2θ̇1 + I22,2θ̇2 + I23,2θ̇3 I12,3θ̇1 + I22,3θ̇2 + I23,3θ̇3

0 I13,2θ̇1 + I23,2θ̇2 + I33,2θ̇3 I13,3θ̇1 + I23,3θ̇2 + I33,3θ̇3




with the shorthand notation Iij,k indicating the partial derivative of Iij

with respect to θk. As the reader can verify, these entries are given as

I ′11 = 0
I ′12 = −[m2a1a2s2 + m3(2a1a2s2 + a1a3s23)]θ̇1

−1
2
[m2a1a2s2 + m3(2a1a2s2 + a1a3s23)]θ̇2 − 1

2
m3a1a3s23θ̇3

I ′13 = −m3(a1a3s23 + a2a3s3)θ̇1 − 1
2
m3(a1a3s23 + 2a2a3s3)θ̇2

−1
2
m3(a1a3s23 + a2a3s3)θ̇3

1ι is the Greek letter iota and denotes a vector; according to our notation, its
components are ι1, ι2, and ι3.
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I ′21 = 0

I ′22 = −1
2
[m2a1a2s2 + m3(2a1a2s2 + a1a3s23)]θ̇1

I ′23 = −1
2
m3(a1a3s23 + 2a2a3s3)θ̇1 − m3a2a3s3θ̇2 − 1

2
m3a2a3s3θ̇3

I ′31 = 0

I ′32 = −1
2
m3a1a3s23θ̇1

I ′33 = −1
2
m3(a1a3s23 + a2a3s3)θ̇1 − 1

2
m3a2a3s3θ̇2

Now, we define the 3-dimensional vector γ below:

γ ≡
[

∂(Iθ̇)
∂θ

]T

θ̇

its three components, γi, for i = 1, 2, 3, being

γ1 = 0
γ2 = −[m2a1a2s2 + m3(2a1a2s2 + a1a3s23)]θ̇2

1

−[m2a1a2s2 + m3(2a1a2s2 + a1a3s23)]θ̇1θ̇2

−m3a1a3s23θ̇1θ̇3

γ3 = −m3(a1a3s23 + a2a3s3)θ̇2
1 − m3(a1a3s23 + 2a2a3s3)θ̇1θ̇2

−m3(a1a3s23 + a2a3s3)θ̇1θ̇3 − m3a2a3s3θ̇
2
3 − m3a2a3s3θ̇2θ̇3

We now turn to the computation of the partial derivatives of the potential
energy:

∂V

∂θ1
=

1
2
m1ga1c1 + m2g

(
a1c1 +

1
2
a2c12

)
+ m3g

(
a1c1 + a2c12 +

1
2
a3c123

)

∂V

∂θ2
=

1
2
m2ga2 + m3g

(
a2c12 +

1
2
a3c123

)

∂V

∂θ3
=

1
2
m3ga3c123

The Euler-Lagrange equations thus reduce to

I11θ̈1 + I12θ̈2 + I13θ̈3 + ι1 − 1
2
γ1 +

1
2
m1ga1c1

+m2g(a1c1 +
1
2
a2c12) + m3g(a1c1 + a2c12 +

1
2
a3c123) = τ1

I12θ̈1 + I22θ̈2 + I23θ̈3 + ι2 − 1
2
γ2 +

1
2
m2ga2c12

+ m3g(a2c12 +
1
2
a3c123) = τ2

I13θ̈1 + I23θ̈2 + I33θ̈3 + ι3 − 1
2
γ3 +

1
2
m3ga3c123 = τ3
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With this example, it becomes apparent that a straightforward differ-
entiation procedure to derive the Euler-Lagrange equations of a robotic
manipulator, or for that matter, of a mechanical system at large, is not
practical. For example, these equations do not seem to lend themselves
to symbolic manipulations for a six-axis manipulator of arbitrary archi-
tecture, given that they become quite cumbersome even for a three-axis
planar manipulator with an architecture that is not so general. For this
reason, procedures have been devised that lend themselves to an algorith-
mic treatment. We will study a procedure based on the natural orthogonal
complement whereby the underlying equations are derived using matrix-
times-vector multiplications.

6.3.3 Kane’s Equations

Kane’s equations (Kane and Levinson, 1983), sometimes referred to as
D’Alambert’s equations in Lagrangian form are also useful in robot dynam-
ics (Angeles et al., 1989). A feature of Kane’s equations is that they are
derived from the free-body diagrams of the various rigid bodies constituting
the multibody system at hand. Upon introducing generalized coordinates
à la Lagrange, the mathematical model of the system is derived, which is
equivalent to the underlying Euler-Lagrange equations. Kane’s equations
take a rather simple form, for an n-dof mechanical system, namely,

φ + φ∗ = 0

where φ and φ∗ are the n-dimensional vectors of generalized active force
and inertia force, respectively. With the notation introduced above, these
vectors are given by

φ =
r∑

i=1

[(
∂ċi

∂q̇

)T

fi +
(

∂ω̇i

∂q̇

)T

ni

]
(6.21a)

and

φ∗ = −
r∑

i=1

[(
∂ċi

∂q̇

)T

mic̈i +
(

∂ω̇i

∂q̇

)T

(Iiω̇i + ωi × Iiωi)

]
. (6.21b)

In the above expressions, q̇ = dq/dt is the n-dimensional vector of gener-
alized speeds in Kane’s terminology, while the n × 3 matrices ∂ċi/∂q̇ and
∂ω̇i/∂q̇ are the partial rates of change of mass-center velocity and angular
velocity of the ith rigid body.

6.4 Recursive Inverse Dynamics

The inverse dynamics problem associated with serial manipulators is stud-
ied here. We assume at the outset that the manipulator under study is of
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224 6. Dynamics of Serial Robotic Manipulators

the serial type with n+1 links including the base link and n joints of either
the revolute or the prismatic type.

The underlying algorithm consists of two steps: (i) kinematic compu-
tations, required to determine the twists of all the links and their time
derivatives in terms of θ, θ̇, and θ̈; and (ii) dynamic computations, re-
quired to determine both the constraint and the external wrenches. Each
of these steps is described below, the aim here being to calculate the desired
variables with as few computations as possible, for one purpose of inverse
dynamics is to permit the real-time model-based control of the manipulator.
Real-time performance requires, obviously, a low number of computations.
For the sake of simplicity, we decided against discussing the algorithms
with the lowest computational cost, mainly because these algorithms, fully
discussed by Balafoutis and Patel (1991), rely heavily on tensor calculus,
which we have not studied here. Henceforth, revolute joints are referred to
as R, prismatic joints as P.

6.4.1 Kinematics Computations: Outward Recursions

We will use the Denavit-Hartenberg (DH) notation introduced in Sec-
tion 4.2 and hence will refer to Fig. 4.7 for the basic notation required
for the kinematic analysis to be described first. Note that the calculation
of each Qi matrix, as given by eq.(4.1e), requires four multiplications and
zero additions.

Moreover, every 3-dimensional vector-component transfer from the Fi

frame to the Fi+1 frame requires a multiplication by QT
i . Likewise, ev-

ery component transfer from the Fi+1 frame to the Fi frame requires a
multiplication by Qi. Therefore, we will need to account for the afore-
mentioned component transfers, which we will generically term coordinate
transformations between successive coordinate frames. We derive below
the number of operations required for such transformations. If we have
[ r ]i ≡ [ r1, r2, r3 ]T and we need [ r ]i+1, then we proceed as follows:

[ r ]i+1 = QT
i [ r ]i (6.22)

and if we recall the form of Qi from eq.(4.1e), we then have

[ r ]i+1 =




cos θi sin θi 0
−λi sin θi λi cos θi µi

µi sin θi −µi cos θi λi






r1

r2

r3


 =




r1 cos θi + r2 sin θi

−λir + µir3

µir + λir3




(6.23a)
where λi ≡ cosαi and µi ≡ sin αi, while

r ≡ r1 sin θi − r2 cos θi (6.23b)

Likewise, if we have [v ]i+1 ≡ [ v1, v2, v3 ]T and we need [v ]i, we use the
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component transformation given below:

[v ]i =




cos θi −λi sin θi µi sin θi

sin θi λi cos θi −µi cos θi

0 µi λi






v1

v2

v3


 =




v1 cos θi − v sin θi

v1 sin θi + v cos θi

v2µi + v3λi




(6.24a)
where

v ≡ v2λi − v3µi (6.24b)

It is now apparent that every coordinate transformation between suc-
cessive frames, whether forward or backward, requires eight multiplications
and four additions. Here, as in Chapter 4, we indicate the units of multi-
plications and additions with M and A, respectively.

The angular velocity and acceleration of the ith link are computed re-
cursively as follows:

ωi =

{
ωi−1 + θ̇iei, if the ith joint is R

ωi−1, if the ith joint is P
(6.25a)

ω̇i =

{
ω̇i−1 + ωi−1 × θ̇iei + θ̈iei, if the ith joint is R

ω̇i−1, if the ith joint is P
(6.25b)

for i = 1, 2, . . . , n, where ω0 and ω̇0 are the angular velocity and angular
acceleration of the base link. Note that eqs.(6.25a & b) are frame-invariant;
i.e., they are valid in any coordinate frame, as long as the same frame is used
to represent all quantities involved. Below we derive the equivalent relations
applicable when taking into account that quantities with a subscript i are
available in Fi+1-coordinates. Hence, operations involving quantities with
different subscripts require a change of coordinates, which is taken care of
by the corresponding rotation matrices.

In order to reduce the numerical complexity of the algorithm developed
here, all vector and matrix quantities of the ith link will be expressed in
Fi+1. Note, however, that the two vectors ei and ei+1 are fixed to the ith
link, which is a potential source of confusion. Now, since ei has very simple
components in Fi, namely, [ 0, 0, 1 ]T , this will be regarded as a vector of
the (i− 1)st link. Therefore, this vector, or multiples of it, will be added to
vectors bearing the (i− 1)st subscript without any coordinate transforma-
tion. Moreover, subscripted brackets, as introduced in Section 2.2, can be
avoided if all vector and matrix quantities subscripted with i, except for
vector ei, are assumed to be expressed in Fi+1. Furthermore, in view of the
serial type of the underlying kinematic chain, only additions of quantities
with two successive subscripts will appear in the relations below.

Quantities given in two successive frames can be added if both are ex-
pressed in the same frame, the obvious frame of choice being the frame of
one of the two quantities. Hence, all we need to add two quantities with
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successive subscripts is to multiply one of these by a suitable orthogo-
nal matrix. Additionally, in view of the outwards recursive nature of the
kinematic relations above, it is apparent that a transfer from Fi- to Fi+1-
coordinates is needed, which can be accomplished by multiplying either ei

or any other vector with the (i − 1) subscript by matrix QT
i . Hence, the

angular velocities and accelerations are computed recursively, as indicated
below:

ωi =

{
QT

i (ωi−1 + θ̇iei), if the ith joint is R

QT
i ωi−1, if the ith joint is P

(6.26a)

ω̇i =

{
QT

i (ω̇i−1 + ωi−1 × θ̇iei + θ̈iei), if the ith joint is R

QT
i ω̇i−1, if the ith joint is P

(6.26b)

If the base link is an inertial frame, then

ω0 = 0, ω̇0 = 0 (6.27)

Thus, calculating each ωi vector in Fi+1 when ωi−1 is given in Fi requires
8M and 5A if the ith joint is R; if it is P, the said calculation reduces to 8M
and 4A. Here, note that θ̇iei = [ 0, 0, θ̇i ]T in Fi-coordinates, and hence,
the vector addition of the upper right-hand side of eq.(6.26a) requires only
1A. Furthermore, in order to determine the number of operations required
to calculate ω̇i in Fi+1 when ω̇i−1 is available in Fi, we note that

[ ei ]i =




0
0
1


 (6.28)

Moreover, we let

[ ωi−1 ]i =




ωx

ωy

ωz


 (6.29)

FIGURE 6.2. A revolute joint.
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Hence,

[ ωi−1 × θ̇iei ]i =




θ̇i ωy

−θ̇i ωx

0


 (6.30)

Furthermore, we note that

[ θ̈iei ]i =




0
0
θ̈i


 (6.31)

and hence, the calculation of ω̇i in Fi+1 when ω̇i−1 is given in Fi requires
10M and 7A if the ith joint is R; if it is P, the same calculation requires
8M and 4A.

Furthermore, let ci be the position vector of Ci, the mass center of the
ith link, ρi being the vector directed from Oi to Ci, as shown in Figs. 6.2
and 6.3. The position vectors of two successive mass centers thus observe
the relationships

(i) if the ith joint is R,

δi−1 ≡ ai−1 − ρi−1 (6.32a)
ci = ci−1 + δi−1 + ρi (6.32b)

(ii) if the ith joint is P,

δi−1 ≡ di−1 − ρi−1 (6.32c)
ci = ci−1 + δi−1 + biei + ρi (6.32d)

where point Oi, in this case, is a point of the (i − 1)st link conveniently
defined, as dictated by the particular geometry of the manipulator at hand.
The foregoing freedom in the choice of Oi is a consequence of prismatic pairs
having only a defined direction but no axis, properly speaking.

Notice that in the presence of a revolute pair at the ith joint, the differ-
ence ai−1 −ρi−1 is constant in Fi. Likewise, in the presence of a prismatic
pair at the same joint, the difference di−1 − ρi−1 is constant in Fi. There-
fore, these differences are computed off-line, their evaluation not counting
toward the computational complexity of the algorithm.

Upon differentiation of both sides of eqs.(6.32b & d) with respect to time,
we derive the corresponding relations between the velocities and accelera-
tions of the mass centers of links i − 1 and i, namely,

(i) if the ith joint is R,

ċi = ċi−1 + ωi−1 × δi−1 + ωi × ρi (6.33a)

c̈i = c̈i−1 + ω̇i−1 × δi−1 + ωi−1 × (ωi−1 × δi−1) + ω̇i × ρi +
ωi × (ωi × ρi) (6.33b)
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FIGURE 6.3. A prismatic joint.

(ii) if the ith joint is P,

ωi = ωi−1 (6.34a)

ω̇i = ω̇i−1 (6.34b)

ui ≡ δi−1 + ρi + biei (6.34c)

vi ≡ ωi × ui (6.34d)

ċi = ċi−1 + vi + ḃiei (6.34e)

c̈i = c̈i−1 + ω̇i × ui + ωi × (vi + 2ḃiei) + b̈iei (6.34f)

for i = 1, 2, . . . , n, where ċ0 and c̈0 are the velocity and acceleration of
the mass center of the base link. If the latter is an inertial frame, then

ω0 = 0, ω̇0 = 0, ċ0 = 0, c̈0 = 0 (6.35)

Expressions (6.32b) to (6.34f) are invariant, i.e., they hold in any coor-
dinate frame, as long as all vectors involved are expressed in that frame.
However, we have vectors that are naturally expressed in the Fi frame
added to vectors expressed in the Fi+1 frame, and hence, a coordinate
transformation is needed. This coordinate transformation is taken into ac-
count in Algorithm 6.4.1, whereby the logical variable R is true if the ith
joint is R; otherwise it is false.

In performing the foregoing calculations, we need the cross product of
a vector w times ei in Fi coordinates, the latter being simply [ ei ]i =
[ 0, 0, 1 ]T , and hence, this cross product reduces to [ w2, −w1, 0 ]T , whereby
wk, for k = 1, 2, 3, are the x, y, and z Fi-components of w. This cross prod-
uct, then, requires no multiplications and no additions. Likewise, vectors
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biei, ḃiei, and b̈iei take on the simple forms [ 0, 0, bi ]T , [ 0, 0, ḃi ]T , and
[ 0, 0, b̈i ]T in Fi. Adding any of these vectors to any other vector in Fi

then requires one single addition.

Algorithm 6.4.1 (Outward Recursions):

read {Qi }n−1
0 , c0, ω0, ċ0, ω̇0, c̈0, {ρi}n

1 , {δi}n−1
0

For i = 1 to n step 1 do
update Qi

if R then
ci ← QT

i (ci−1 + δi−1) + ρi

ωi ← QT
i (ωi−1 + θ̇iei)

ui−1 ← ωi−1 × δi−1

vi ← ωi × ρi

ċi ← QT
i (ċi−1 + ui−1) + vi

ω̇i ← QT
i (ω̇i−1 + ωi−1 × θ̇iei + θ̈iei)

c̈i ← QT
i (c̈i−1 + ω̇i−1 × δi−1 + ωi−1 × ui−1)

+ω̇i × ρi + ωi × vi

else
ui ← QT

i δi−1 + ρi + biei

ci ← QT
i ci−1 + ui

ωi ← QT
i ωi−1

vi ← ωi × ui

wi ← ḃiei

ċi ← QT
i ċi−1 + vi + wi

ω̇i ← QT
i ω̇i−1

c̈i ← QT
i c̈i−1 + ω̇i × ui + ωi × (vi + wi + wi) + b̈iei

endif
enddo

If, moreover, we take into account that the cross product of two arbitrary
vectors requires 6M and 3A, we then have the operation counts given below:

(i) If the ith joint is R,
Qi requires 4M and 0A
ci requires 8M and 10A
ωi requires 8M and 5A
ċi requires 20M and 16A
ω̇i requires 10M and 7A
c̈i requires 32M and 28A

(ii) If the ith joint is P,
Qi requires 4M and 0A
ci requires 16M and 15A
ωi requires 8M and 4A
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TABLE 6.1. Complexity of the Kinematics Computations

Item M A

{Qi}n
1 4n 0

{ωi}n
1 8n 5n

{ċi}n
1 20n 16n

{ω̇i}n
1 10n 7n

{c̈i}n
1 32n 28n

Total 82n 66n

ċi requires 14M and 11A
ω̇i requires 8M and 4A
c̈i requires 20M and 19A

The computational complexity for the forward recursions of the kinematics
calculations for an n-revolute manipulator, as pertaining to various algo-
rithms, are summarized in Table 6.1. Note that if some joints are P, then
these figures become lower.

6.4.2 Dynamics Computations: Inward Recursions

Moreover, a free-body diagram of the end-effector, or nth link, appears
in Fig. 6.5. Note that this link is acted upon by a nonworking constraint
wrench, exerted through the nth pair, and a working wrench; the latter
involves both active and dissipative forces and moments. Although dissipa-
tive forces and moments are difficult to model because of dry friction and
striction, they can be readily incorporated into the dynamics model, once
a suitable constitutive model for these items is available. Since these forces
and moments depend only on joint variables and joint rates, they can be
calculated once the kinematic variables are known. For the sake of simplic-
ity, dissipative wrenches are not included here, their discussion being the
subject of Section 6.8. Hence, the force and the moment that the (i − 1)st
link exerts on the ith link through the ith joint only produce nonworking
constraint and active wrenches. That is, for a revolute pair, one has

nP
i =




nx
i

ny
i

τi


 , fP

i =




fx
i

fy
i

fz
i


 (6.36)

in which nx
i and ny

i are the nonzero Fi-components of the nonworking
constraint moment exerted by the (i − 1)st link on the ith link; obviously,
this moment lies in a plane perpendicular to Zi, whereas τi is the active
torque applied by the motor at the said joint. Vector fP

i contains only
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FIGURE 6.4. Free-body diagram of the ith link.

nonworking constraint forces.
For a prismatic pair, one has

nP =




nx
i

ny
i

nz
i


 , fP =




fx
i

fy
i

τi


 (6.37)

where vector nP
i contains only nonworking constraint torques, while τi is

now the active force exerted by the ith motor in the Zi direction, fx
i and

fy
i being the nonzero Fi-components of the nonworking constraint force

exerted by the ith joint on the ith link, which is perpendicular to the Zi

axis.
In the algorithm below, the driving torques or forces { τi }n

1 , are computed
via vectors nP

i and fP
i . In fact, in the case of a revolute pair, τi is simply the

third component of nP
i ; in the case of a prismatic pair, τi is, accordingly,

the third component of fP
i . From Fig. 6.5, the Newton-Euler equations of

the end-effector are

fP
n = mnc̈n − f (6.38a)

nP
n = Inω̇n + ωn × Inωn − n + ρn × fP

n (6.38b)

where f and n are the external force and moment, the former being applied
at the mass center of the end-effector. The Newton-Euler equations for the
remaining links are derived based on the free-body diagram of Fig. 6.4,
namely,

fP
i = mic̈i + fP

i+1 (6.38c)

nP
i = Iiω̇i + ωi × Iiωi + nP

i+1 + δi × fP
i+1 + ρi × fP

i (6.38d)

with δi defined as the difference ai − ρi in eqs.(6.32a & c).
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FIGURE 6.5. Free-body diagram of the end-effector.

Once the nP
i and fP

i vectors are available, the actuator torques and
forces, denoted by τi, are readily computed. In fact, if the ith joint is a
revolute, then

τi = eT
i nP

i (6.39)

which does not require any further operations, for τi reduces, in this case,
to the Zi component of vector nP

i . Similarly, if the ith joint is prismatic,
then the corresponding actuator force reduces to

τi = eT
i fP

i (6.40)

Again, the foregoing relations are written in invariant form. In order to
perform the computations involved, transformations that transfer coordi-
nates between two successive frames are required. Here, we have to keep in
mind that the components of a vector expressed in the (i + 1)st frame can
be transferred to the ith frame by multiplying the vector array in (i + 1)st
coordinates by matrix Qi. In taking these coordinate transformations into
account, we derive the Newton-Euler algorithm from the above equations,
namely,
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Algorithm 6.4.2 (Inward Recursions):

fP
n ← mnc̈n − f
nP

n ← Inω̇n + ωn × Inωn − n + ρn × fP
n

If R then
τn ← (nP

n )z

else
τn ← (fP

n )z

For i = n− 1 to 1 step −1 do
φi+1 ← QifP

i+1

fP
i ← mic̈i + φi+1

nP
i ← Iiω̇i + ωi × Iiωi + ρi × fP

i + QinP
i+1 + δi × φi+1

If R then
τi ← (nP

i )z

else
τi ← (fP

i )z enddo

Note that, within the do-loop of the foregoing algorithm, the vectors to
the left of the arrow are expressed in the ith frame, while fP

i+1 and nP
i+1,

to the right of the arrow, are expressed in the (i + 1)st frame.
In calculating the computational complexity of this algorithm, note that

the ai−ρi term is constant in the (i+1)st frame, and hence, it is computed
off-line. Thus, its computation need not be accounted for. A summary of
computational costs is given in Table 6.2 for an n-revolute manipulator,
with the row number indicating the step in Algorithm 6.4.2.

The total numbers of multiplications Md and additions Ad required by
the foregoing algorithm are readily obtained, with the result shown below:

Md = 55n− 22, Ad = 44n− 14 (6.41)
In particular, for a six-revolute manipulator, one has

n = 6, Md = 308, Ad = 250 (6.42)

If the kinematics computations are accounted for, then the Newton-Euler
algorithm given above for the inverse dynamics of n-revolute manipulators

TABLE 6.2. Complexity of Dynamics Computations

Row # M A

1 3 3
2 30 27
5 8(n − 1) 4(n − 1)
6 3(n − 1) 3(n − 1)
7 44(n− 1) 37(n− 1)

Total 55n− 22 44n− 14
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requires M multiplications and A additions, as given below:

M = 137n− 22, A = 110n− 14 (6.43)
The foregoing number of multiplications is identical to that reported by
Walker and Orin (1982); however, the number of additions is slightly higher
than Walker and Orin’s figure, namely, 101n− 11.

Thus, the inverse dynamics of a six-revolute manipulator requires 800
multiplications and 646 additions. These computations can be performed in
a few microseconds using a modern processor. Clearly, if the aforementioned
algorithms are tailored to suit particular architectures, then they can be
further simplified. Note that, in the presence of a prismatic pair in the jth
joint, the foregoing complexity is reduced. In fact, if this is the case, the
Newton-Euler equations for the jth link remain as in eqs.(6.38c & d) for the
ith link, the only difference appearing in the implementing algorithm, which
is simplified, in light of the results derived in discussing the kinematics
calculations.

The incorporation of gravity in the Newton-Euler algorithm is done most
economically by following the idea proposed by Luh et al. (1980), namely,
by declaring that the inertial base undergoes an acceleration −g, where g
denotes the acceleration of gravity. That is

c̈0 = −g (6.44)

the gravitational accelerations thus propagating forward to the EE. A com-
parison of various algorithms with regard to their computational complex-
ity is displayed in Table 6.3 for an n-revolute manipulator. For n = 6, the
corresponding figures appear in Table 6.4.

6.5 The Natural Orthogonal Complement in Robot
Dynamics

In simulation studies, we need to integrate the system of ordinary differ-
ential equations (ODE) describing the dynamics of a robotic mechanical

TABLE 6.3. Complexity of Different Algorithms for Inverse Dynamics

Author(s) Methods Multiplications Additions
Hollerbach (1980) E-L 412n− 277 320n− 201
Luh et al. (1980) N-E 150n− 48 131n− 48
Walker & Orin (1982) N-E 137n− 22 101n− 11
Khalil et al. (1986) N-E 105n− 92 94n− 86
Angeles et al. (1989) Kane 105n− 109 90n − 105
Balafoutis & Patel (1991) tensor 93n − 69 81n− 65
Li & Sankar (1992) E-L 88n− 69 76n− 66
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TABLE 6.4. Complexity of Different Algorithms for Inverse Dynamics, for n = 6

Multiplications Additions
Author(s) Methods (n = 6) (n = 6)
Hollerbach (1980) E-L 2195 1719
Luh et al. (1980) N-E 852 738
Walker & Orin (1982) N-E 800 595
Hollerbach and Sahar (1983) N-E 688 558
Kane & Levinson (1983) Kane 646 394
Khalil et al. (1986) N-E 538 478
Angeles et al. (1989) Kane 521 435
Balafoutis & Patel (1991) tensor 489 420
Li & Sankar (1992) E-L 459 390

system. This system is known as the mathematical model of the system
at hand. Note that the Newton-Euler equations derived above for a serial
manipulator do not constitute the mathematical model because we cannot
use the recursive relations derived therein to set up the underlying ODE
directly. What we need is a model relating the state of the system with its
external generalized forces of the form

ẋ = f(x,u), x(t0) = x0 (6.45)

where x is the state vector, u is the input or control vector, x0 is the state
vector at a certain time t0, and f(x,u) is a nonlinear function of x and
u, derived from the dynamics of the system. The state of a dynamical
system is defined, in turn, as the set of variables that separate the past
from the future of the system (Bryson and Ho, 1975). Thus, if we take t0

as the present time, we can predict from eqs.(6.45) the future states of the
system upon integration of the initial-value problem at hand, even if we
do not know the complete past history of the system in full detail. Now, if
we regard the vector θ of independent joint variables and its time-rate of
change, θ̇, as the vectors of generalized coordinates and generalized speeds,
then an obvious definition of x is

x ≡ [ θT θ̇
T ]T (6.46)

The n generalized coordinates, then, define the configuration of the system,
while their time-derivatives determine its generalized momentum, an item
defined in eq.(6.19d). Hence, knowing θ and θ̇, we can predict the future
values of these variables with the aid of eqs.(6.45).

Below we will derive the mathematical model, eq.(6.45), explicitly, as
pertaining to serial manipulators, in terms of the kinematic structure of the
system and its inertial properties, i.e., the mass, mass-center coordinates,
and inertia matrix of each of its bodies. To this end, we first write the
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underlying system of uncoupled Newton-Euler equations for each link. We
have n + 1 links numbered from 0 to n, which are coupled by n kinematic
pairs. Moreover, the base link 0 need not be an inertial frame; if it is
noninertial, then the force and moment exerted by the environment upon it
must be known. For ease of presentation, we will assume in this section that
the base frame is inertial, the modifications needed to handle a noninertial
base frame to be introduced in Subsection 6.5.2.

We now recall the Newton-Euler equations of the ith body in 6-dimen-
sional form, eqs.(6.5c), which we reproduce below for quick reference:

Miṫi = −WiMiti + wW
i + wC

i , i = 1, . . . , n (6.47)

Furthermore, the definitions of eqs.(6.13b & b) are recalled. Apparently,
M and W are now 6n × 6n matrices, while t, wC , wA, and wD are all
6n-dimensional vectors. Then the foregoing 6n scalar equations for the n
moving links take on the simple form

Mṫ = −WMt + wA + wG + wD + wC (6.48)

in which wW has been decomposed into its active, gravitational, and dissi-
pative parts wA, wG, and wD, respectively. Now, since gravity acts at the
mass center of a body, the gravity wrench wG

i acting on the ith link takes
the form

wG
i =
[

0
mig

]
(6.49)

The mathematical model displayed in eq.(6.48) represents the uncoupled
Newton-Euler equations of the overall manipulator. The following step of
this derivation consists in representing the coupling between every two
consecutive links as a linear homogeneous system of algebraic equations on
the link twists. Moreover, we note that all kinematic pairs allow a relative
one-degree-of-freedom motion between the coupled bodies. We can then
express the kinematic constraints of the system in linear homogeneous form
in the 6n-dimensional vector of manipulator twist, namely,

Kt = 0 (6.50)

with K being a 6n× 6n matrix, to be derived in Subsection 6.5.1. What is
important to note at the moment is that the kinematic constraint equations,
or constraint equations, for brevity, eqs.(6.50), consist of a system of 6n
scalar equations, i.e., six scalar equations for each joint, for the manipulator
at hand has n joints. Moreover, when the system is in motion, t is different
from zero, and hence, matrix K is singular. In fact, the dimension of the
nullspace of K, termed its nullity, is exactly equal to n, the degree of
freedom of the manipulator. Furthermore, since the nonworking constraint
wrench wC produces no work on the manipulator, its sole function being
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to keep the links together, the power developed by this wrench on t, for
any possible motion of the manipulator, is zero, i.e.,

tT wC = 0 (6.51)

On the other hand, if the two sides of eq.(6.50) are transposed and then
multiplied by a 6n-dimensional vector λ, one has

tTKT λ = 0 (6.52)

Upon comparing eqs.(6.51) and (6.52), it is apparent that wC is of the form

wC = KT λ (6.53)

More formally, the inner product of wC and t, as stated by eq.(6.51),
vanishes, and hence, t lies in the nullspace of K, as stated by eq.(6.50). This
means that wC lies in the range of KT , as stated in eq.(6.53). The following
step will be to represent t as a linear transformation of the independent
generalized speeds, i.e., as

t = Tθ̇ (6.54)

with T defined as a 6n × n matrix that can be fairly termed the twist-
shaping matrix. Moreover, the above mapping will be referred to as the
twist-shape relations. The derivation of expressions for matrices K and T
will be described in detail in Subsection 6.5.1 below. Now, upon substitution
of eq.(6.54) into eq.(6.50), we obtain

KTθ̇ = 0 (6.55a)

Furthermore, since the degree of freedom of the manipulator is n, the n
generalized speeds { θ̇i }n

1 can be assigned arbitrarily. However, while doing
this, eq.(6.55a) has to hold. Thus, the only possibility for this to happen is
that the product KT vanish, i.e.,

KT = O (6.55b)

where O denotes the 6n×n zero matrix. The above equation states that T is
an orthogonal complement of K. Because of the particular form of choosing
this complement—see eq.(6.54)—we refer to T as the natural orthogonal
complement of K (Angeles and Lee, 1988).

In the final step of this method, ṫ of eq.(6.48) is obtained from eq.(6.54),
namely,

ṫ = Tθ̈ + Ṫθ̇ (6.56)

Furthermore, the uncoupled equations, eqs.(6.48), are multiplied from the
left by TT , thereby eliminating wC from those equations and reducing
these to a system of only n independent equations, free of nonworking
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constraint wrenches. These are nothing but the Euler-Lagrange equations
of the manipulator, namely,

Iθ̈ = −TT (MṪ + WMT)θ̇ + TT (wA + wD + wG) (6.57)

where I is the positive definite n × n generalized inertia matrix of the
manipulator and is defined as

I ≡ TT MT (6.58)

which is identical to the inertia matrix derived using the Euler-Lagrange
equations, with θ as the vector of generalized coordinates. Now, we let τ
and δ denote the n-dimensional vectors of active and dissipative generalized
force. Moreover, we let C(θ, θ̇)θ̇ be the n-dimensional vector of quadratic
terms of inertia force. These items are defined as

τ ≡ TT wA, δ ≡ TTwD, γ = TT wG,

C(θ, θ̇) ≡ TT MṪ + TTWMT (6.59)

Clearly, the sum τ + δ produces φ, the generalized force defined in
eq.(6.11). Thus, the Euler-Lagrange equations of the system take on the
form

Iθ̈ = −Cθ̇ + τ + δ + γ (6.60)

If, moreover, a static wrench wW acts onto the end-effector, with the force
applied at the operation point, then its effect onto the above model is taken
into account as indicated in eq.(4.95). Thus, a term JT wW is added to the
right-hand side of the above model:

Iθ̈ = −Cθ̇ + τ + δ + γ + JT wW (6.61)

As a matter of fact, δ is defined in eq.(6.59) only for conceptual reasons.
In practice, this term is most easily calculated once a dissipation function
in terms of the generalized coordinates and generalized speeds is available,
as described in Section 6.8. Thus, δ is computed as

δ = −∂∆
∂θ̇

(6.62)

It is pointed out that the first term of the right-hand side of eq.(6.60)
is quadratic in θ̇ because matrix C, defined in eq.(6.59), is linear in θ̇. In
fact, the first term of that expression is linear in a factor Ṫ that is, in turn,
linear in θ̇. Moreover, the second term of the same expression is linear in
W, which is linear in θ̇ as well. However, C is nonlinear in θ. Because of
the quadratic nature of that term, it is popularly known as the vector of
Coriolis and centrifugal forces, whereas the left-hand side of that equation
is given the name of vector of inertia forces. Properly speaking, both the
left-hand side and the first term of the right-hand side of eq.(6.60) arise
from inertia forces.

TLFeBOOK



6.5 The Natural Orthogonal Complement in Robot Dynamics 239

Example 6.5.1 (A minimum-time trajectory) A pick-and-place oper-
ation is to be performed with an n-axis manipulator in the shortest possible
time. Moreover, the maneuver is defined so that the n-dimensional vector
of joint variables is given by a common shape function s(x), with 0 ≤ x ≤ 1
and 0 ≤ s ≤ 1, which is prescribed. Thus, for a fixed n-dimensional vector
θ0, the time-history of the joint-variable vector, θ(t), is given by

θ(t) = θ0 + s

(
t

T

)
∆θ, 0 ≤ t ≤ T

with T defined as the time taken by the maneuver, while θ0 and θ0 + ∆θ
are the values of the joint-variable vector at the pick- and the place-postures
of the manipulator, respectively. These vectors are computed from inverse
kinematics, as explained in Chapter 4. Furthermore, the load-carrying ca-
pacity of the manipulator is specified in terms of the maximum torques
delivered by the motors, namely,

|τi| ≤ τ i, for i = 1, . . . , n

where the constant values τ i are supplied by the manufacturer. In order to
keep the analysis simple, we neglect power loses in this example. Find the
minimum time in which the maneuver can take place.

Solution: Let us first calculate the vector of joint-rates and its time-deriv-
ative:

θ̇(t) =
1
T

s′(x)∆θ, θ̈(t) =
1
T 2

s′′(x)∆θ, x ≡ t

T

Now we substitute the above values into the mathematical model of eq.(6.60),
with δ(t) = 0, thereby obtaining

τ = I(θ)θ̈ + C(θ, θ̇)θ̇
1
T 2

s′′(x)I(x)∆θ +
1
T 2

s′2(x)C(x)∆θ ≡ 1
T 2

f(x)

with f(x) defined, of course, as

f(x) ≡ [I(x)s′′(x) + C(x)s′2(x)]∆θ

the 1/T 2 factor in the term of Coriolis and centrifugal forces stemming
from the quadratic nature of the C(θ, θ̇)θ̇ term. What we now have is the
vector of motor torques, τ , expressed as a function of the scalar argument
x. Now, let fi(x) be the ith component of vector f(x), and

Fi ≡ max
x

{|fi(x)|}, for i = 1, . . . , n

We would then like to have each value Fi produce the maximum available
torque τ i, namely,

τ i =
Fi

T 2
, i = 1, . . . n
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and hence, for each joint we have a value Ti of T given by

T 2
i ≡ Fi

τ i
, i = 1, . . . n

Obviously, the minimum value sought, Tmin, is nothing but the maximum
of the foregoing values, i.e.,

Tmin = max
i

{Ti}n
1

thereby completing the solution.

6.5.1 Derivation of Constraint Equations and
Twist-Shape Relations

In order to illustrate the general ideas behind the method of the natural or-
thogonal complement, we derive below the underlying kinematic constraint
equations and the twist-shape relations. We first note, from eq.(6.25a), that
the relative angular velocity of the ith link with respect to the (i − 1)st
link, ωi − ωi−1, is θ̇iei. Thus, if matrix Ei is defined as the cross-product
matrix of vector ei, then, the angular velocities of two successive links obey
a simple relation, namely,

Ei(ωi − ωi−1) = 0 (6.63)

Furthermore, we rewrite now eq.(6.33a) in the form

ċi − ċi−1 + Riωi + Di−1ωi−1 = 0 (6.64)

where Di and Ri are defined as the cross-product matrices of vectors δi,
defined in Subsection 6.4.1 as ai − ρi, and ρi, respectively. In particular,
when the first link is inertial, eqs.(6.63 & b), as pertaining to the first link,
reduce to

E1ω1 = 0 (6.65a)
ċ1 + R1ω1 = 0 (6.65b)

Now, eqs.(6.63) and (6.64), as well as their counterparts for i = 1,
eqs.(6.65a & b), are further expressed in terms of the link twists, thereby
producing the constraints below:

K11t1 = 0 (6.66a)
Ki,i−1ti−1 + Kiiti = 0, i = 1, . . . , n (6.66b)

with K11 and Kij , for i = 2, . . . , n and j = i − 1, i, defined as

K11 ≡
[
E1 O
R1 1

]
(6.67a)
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Ki,i−1 ≡
[ −Ei O
Di−1 −1

]
(6.67b)

Kii ≡
[
Ei O
Ri 1

]
(6.67c)

where 1 and O denote the 3 × 3 identity and zero matrices, respectively.
Furthermore, from eqs.(6.66a & b) and (6.67a–c), it is apparent that matrix
K appearing in eq.(6.55b) takes on the form

K =




K11 O6 O6 · · · O6 O6

K21 K22 O6 · · · O6 O6
...

...
...

. . .
...

...
O6 O6 O6 · · · Kn−1,n−1 O6

O6 O6 O6 · · · Kn,n−1 Knn




(6.68)

with O6 denoting the 6 × 6 zero matrix.
Further, the link-twists are expressed as linear combinations of the joint-

rate vector θ̇. To this end, we define the 6 × n partial Jacobian Ji as the
matrix mapping the joint-rate vector θ̇ into the twist ti of that link, i.e.,

Jiθ̇ = ti (6.69)

whose jth column, tij , is given, for i, j = 1, 2, . . . , n, by

tij =





[
ej

ej × rij

]
, if j ≤ i;

[
0
0

]
, otherwise.

(6.70)

with rij illustrated in Fig. 6.6 and defined, for i, j = 1, . . . , n, as

rij ≡




aj + aj+1 + · · · + ai−1 + ρi, if j < i;
ρi, if j = i;
0, otherwise.

(6.71)

We can thus readily express the twist ti of the ith link as a linear com-
bination of the first i joint rates, namely,

ti = θ̇1ti1 + θ̇2ti2 + · · · + θ̇itii, i = 1, . . . , n (6.72)

and hence, matrix T of eq.(6.54) takes the form

T ≡




t11 0 · · · 0
t21 t22 · · · 0
...

...
. . .

...
tn1 tn2 · · · tnn


 (6.73)

As a matter of verification, one can readily prove that the product of ma-
trix T, as given by eq.(6.73), by matrix K, as given by eq.(6.68), vanishes,
and hence, relation (6.55b) holds.
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FIGURE 6.6. Kinematic subchain comprising links j, j + 1 . . . , i.

The kinematic constraint equations on the twists, for the case in which
the ith joint is prismatic, are derived likewise. In this case, we use eqs.(6.34a
& e), with the latter rewritten more conveniently for our purposes, namely,

ωi = ωi−1 (6.74a)
ċi = ċi−1 + ωi−1 × (δi−1 + ρi + biei) + ḃiei (6.74b)

We now introduce one further definition:

R′
i ≡ D′

i−1 + Ri (6.75)

where D′
i−1 is the cross-product matrix of vector δi−1, defined in Subsec-

tion 6.4.1 as di−1 −ρi−1, while Ri is the cross-product matrix of ρi + biei.
Hence, eq.(6.74b) can be rewritten as

ċi − ċi−1 + R′
iωi − ḃiei = 0 (6.76)

Upon multiplication of both sides of eq.(6.76) by Ei, the term in ḃi cancels,
and we obtain

Ei(ċi − ċi−1 + R′
iωi) = 0 (6.77)

Hence, eqs.(6.74a) and (6.77) can now be regrouped in a single 6-dimen-
sional linear homogeneous equation in the twists, namely,

K′
i,i−1ti−1 + K′

iiti = 0 (6.78)

the associated matrices being defined below:

K′
i,i−1 ≡

[−1 O
O −Ei

]
(6.79a)

K′
ii ≡
[

1 O
EiR′

i Ei

]
(6.79b)
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with 1 and O defined already as the 3 × 3 identity and zero matrices,
respectively. If the first joint is prismatic, then the corresponding constraint
equation takes on the form

K′
11t1 = 0 (6.80)

with K′
11 defined as

K′
11 ≡

[
1 O
O E1

]
(6.81)

Furthermore, if the kth pair is prismatic and 1 ≤ k ≤ i, then the twist
ti of the ith link changes to

ti = θ̇1ti1 + · · · + ḃkt′ik + · · · + θ̇itii, i = 1, . . . , n (6.82)

where t′ik is defined as

t′ik ≡
[

0
ek

]
(6.83)

In order to set up eq.(6.60), then all we now need is Ṫ, which is computed
below. Two cases will be distinguished again, namely, whether the joint at
hand is a revolute or a prismatic pair. In the first case, from eq.(6.70) one
readily derives, for i, j = 1, 2, . . . , n,

ṫij =





[
ωj × ej

(ωj × ej) × rij + ej × ṙij

]
, if j ≤ i;

[
0
0

]
, otherwise

(6.84)

where, from eq.(6.71),

ṙij = ωj × aj + · · · + ωi−1 × ai−1 + ωi × ρi (6.85)

On the other hand, if the kth pair is prismatic and 1 ≤ k ≤ i, then from
eq.(6.83), the time-rate of change of t′ik becomes

ṫ′ik =
[

0
ωk × ek

]
(6.86)

thereby completing the desired derivations.
Note that the natural orthogonal complement can also be used for the

inverse dynamics calculations. In this case, if the manipulator is subjected
to a gravity field, then the twist-rate of the first link will have to be modified
by adding a nonhomogeneous term to it, thereby accounting for the gravity-
acceleration terms. This issue is discussed in Section 6.7.
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6.5.2 Noninertial Base Link

Noninertial bases occur in space applications, e.g., in the case of a manip-
ulator mounted on a space platform or on the space shuttle. A noninertial
base can be readily handled with the use of the natural orthogonal comple-
ment, as discussed in this subsection. Since the base is free of attachments
to an inertial frame, we have to add its six degrees of freedom (dof) to the
n dof of the rest of the manipulator. Correspondingly, t, wC , wA, and wD

now become 6(n + 1)-dimensional vectors. In particular, t takes the form

t = [ tT
0 tT

1 . . . tT
n ]T (6.87)

with t0 defined as the twist of the base. Furthermore, the vector of in-
dependent generalized speeds, θ̇, is now of dimension n + 6, its first six
components being those of t0, the other n remaining as in the previous
case. Thus, θ̇ has the components shown below:

θ̇ ≡ [ tT
0 θ̇1 . . . θ̇n ]T (6.88)

Correspondingly, T becomes a 6(n + 1) × (n + 6) matrix, namely,

T ≡
[

1 O
O′ T′

]
(6.89)

where 1 is the 6 × 6 identity matrix, O denotes the 6 × n zero matrix, O′

represents the 6n × 6 zero matrix, and T′ is the 6n × n matrix defined in
eq.(6.73) as T. Otherwise, the model remains as in the case of an inertial
base.

A word of caution is in order here. Because of the presence of the twist
vector t0 in the definition of the vector of generalized speeds above, the
latter cannot, properly speaking, be regarded as a time-derivative. Indeed,
as studied in Chapter 3, the angular velocity appearing in the twist vector is
not a time-derivative. Hence, the vector of independent generalized speeds
defined in eq.(6.88) is represented instead by v, which does not imply a
time-derivative, namely,

v = [ tT
0 θ̇1 · · · θ̇n ]T (6.90)

6.6 Manipulator Forward Dynamics

Forward dynamics is needed either for purposes of simulation or for the
model-based control of manipulators (Craig, 1989), and hence, a fast cal-
culation of the joint-variable time-histories θ(t) is needed. These time-
histories are calculated from the model displayed in eq.(6.61), reproduced
below for quick reference, in terms of vector θ(t), i.e.,

Iθ̈ = −C(θ, θ̇)θ̇ + τ (t) + δ(θ, θ̇) + γ(θ) + JT wW (6.91)
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Clearly, what is at stake here is the calculation of θ̈ from the foregoing
model. Indeed, the right-hand side of eq.(6.91) can be calculated with the
aid of the Newton-Euler recursive algorithm, as we will describe below,
and needs no further discussion for the time being. Now, the calculation
of θ̈ from eq.(6.91) is similar to the calculation of θ̇ from the relation
between the joint-rates and the twist, derived in Section 4.5. From the
discussion in that section, such calculations take a number of floating-point
operations, or flops, that is proportional to n3, and is thus said to have a
complexity of O(n3)—read “order n3.” In real-time calculations, we would
like to have a computational scheme of O(n). In attempting to derive such
schemes, Walker and Orin (1982) proposed a procedure that they called the
composite rigid-body method, whereby the number of flops is minimized by
cleverly calculating I(θ) and the right-hand side of eq.(6.91) by means of the
recursive Newton-Euler algorithm. In their effort, they produced an O(n2)
algorithm to calculate θ̈. Thereafter, Featherstone (1983) proposed an O(n)
algorithm that is based, however, on the assumption that Coriolis and
centrifugal forces are negligible. The same author reported an improvement
to the aforementioned algorithm, namely, the articulated-body method, that
takes into account Coriolis and centrifugal forces (Featherstone, 1987.) The
outcome, for an n-revolute manipulator, is an algorithm requiring 300n −
267 multiplications and 279n−259 additions. For n = 6, these figures yield
1,533 multiplications and 1,415 additions. Li (1989) reported an O(n2)
algorithm leading to 783 multiplications and 670 additions.

In this subsection, we illustrate the application of the method of the
natural orthogonal complement to the modeling of an n-axis serial ma-
nipulator for purposes of simulation. While this algorithm gives an O(n3)
complexity, its derivation is straightforward and gives, for a six-axis ma-
nipulator, a computational cost similar to that of Featherstone’s, namely,
1,596 multiplications and 1,263 additions. Moreover, a clever definition of
coordinate frames leads to even lower figures, i.e., 1,353 multiplications and
1,165 additions, as reported by Angeles and Ma (1988). Further develop-
ments on robot dynamics using the natural orthogonal complement have
been reported by Saha (1997, 1999), who proposed the decoupled natural
orthogonal complement as a means to enable the real-time inversion of the
mass matrix.

The manipulator at hand is assumed to be constituted by n moving links
coupled by n kinematic pairs of the revolute or prismatic types. Again,
for brevity, the base link is assumed to be inertial, noninertial bases be-
ing readily incorporated as described in Subsection 6.5.2. For the sake of
conciseness, we will henceforth consider only manipulators mounted on an
inertial base. Moreover, we assume that the generalized coordinates θ and
the generalized speeds θ̇ are known at an instant tk, along with the driving
torque τ (t), for t ≥ tk, and of course, the DH and the inertial parameters
of the manipulator are assumed to be known as well. Based on the forego-
ing information, then, θ̈ is evaluated at tk and, with a suitable integration
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scheme, the values of θ and θ̇ are determined at instant tk+1. Obviously,
the governing equation (6.60) enables us to solve for θ̈(tk). This requires,
of course, the inversion of the n × n matrix of generalized inertia I. Since
the said matrix is positive-definite, solving for θ̈ from eq.(6.60) can be done
economically using the Cholesky-decomposition algorithm (Dahlquist and
Björck, 1974). The sole remaining task is, then, the computation of I, the
quadratic inertia term Cθ̇, and the dissipative torque δ. The last of these
is dependent on the manipulator and the constitutive model adopted for
the representation of viscous and Coulomb friction forces and will not be
considered at this stage. Models for dissipative forces will be studied in
Section 6.8. Thus, the discussion below will focus on the computation of I
and Cθ̇ appearing in the mathematical model of eq.(6.91).

Next, the 6n × 6n matrix M is factored as

M = HTH (6.92)

which is possible because M is at least positive-semidefinite. In particular,
for manipulators of the type at hand, M is positive-definite if no link-mass
is neglected. Moreover, due to the diagonal-block structure of this matrix,
its factoring is straightforward. In fact, H is given simply by

H = diag(H1, . . . ,Hn) (6.93)

each 6 × 6 block Hi of eq.(6.93) being given, in turn, as

Hi =
[
Ni O
O ni1

]
(6.94)

with 1 and O defined as the 3× 3 identity and zero matrices, respectively.
We thus have

Mi = HT
i Hi (6.95)

Furthermore, Ni can be obtained from the Cholesky decomposition of Ii,
while ni is the positive square root of mi, i.e.,

Ii = NT
i Ni, mi = n2

i (6.96)

Now, since each 6 × 6 Mi block is constant in body-fixed coordinates, the
above factoring can be done off-line. From the foregoing definitions, then,
the n × n matrix of generalized inertia I can now be expressed as

I = PTP (6.97)

where P is defined, in turn, as the 6n × n matrix given below:

P ≡ HT (6.98)
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The computation of P is now discussed. If we recall the structure of T
from eq.(6.73) and that of H from eq.(6.93), along with the definition of
P, eq.(6.98), we readily obtain

P =




H1t11 0 · · · 0
H2t21 H2t22 · · · 0

...
...

. . .
...

Hntn1 Hntn2 · · · Hntnn


 ≡




p11 0 · · · 0
p21 p22 · · · 0
...

...
. . .

...
pn1 pn2 · · · pnn


 (6.99)

with 0 denoting the 6-dimensional zero vector. Moreover, each of the above
nontrivial 6-dimensional arrays pij is given as

pij ≡ Hitij =




[
Niej

niej × rij

]
if the jth joint is R;

[
0

niej

]
if the jth joint is P

(6.100)

Thus, the (i, j) entry of I is computed as the sum of the inner products
of the (k, i) and the (k, j) blocks of P, for k = j, . . . , n, i.e.,

Iij = Iji =
n∑

k=j

pT
kipkj (6.101)

with both pki and pkj expressed in Fk+1-coordinates, i.e., in kth-link co-
ordinates. Now, the Cholesky decomposition of I can be expressed as

I = LT L (6.102)

where L is an n×n lower-triangular matrix with positive diagonal entries.
Moreover, eq.(6.91) is now rewritten as

LTLθ̈ = −(Cθ̇ − JT wW − γ) + δ + τ (6.103)

If we now recall eq.(6.91), it is apparent that the term inside the parentheses
in the right-hand side of the above equation is nothing but the torque
required to produce the motion prescribed by the current values of θ and
θ̇, in the absence of dissipative wrenches and with zero joint accelerations,
when the manipulator is acted upon by a static wrench wW . That is, if we
call τ the torque τ of eq.(6.91) under the foregoing conditions, then

Cθ̇ − JT wW − γ = τ |
wD=0,

¨θ=0
≡ τ (6.104)

which is most efficiently computed from inverse dynamics, using the recur-
sive Newton-Euler algorithm, as described in Section 6.4 . Now eq.(6.102)
is solved for θ̈ in two steps, namely,

LT x = −τ + τ + δ (6.105a)
Lθ̈ = x (6.105b)
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248 6. Dynamics of Serial Robotic Manipulators

In the above equations, then, x is first computed from eq.(6.105a) by
backward substitution. With x known, θ̈ is computed from eq.(6.105b)
by forward substitution, thereby completing the computation of θ̈. The
complexity of the foregoing algorithm is discussed in Subsection 6.6.2.

Alternatively, θ̈ can be calculated in two steps from two linear systems
of equations, the first one underdetermined, the second overdetermined.
Indeed, if we let the product Pθ̈ be denoted by y, then the dynamics
model of the manipulator, eq.(6.60), along with the factoring of eq.(6.97),
leads to

PT y = −τ + τ + δ (6.106a)
Pθ̈ = y (6.106b)

Thus, in the above equations, y is calculated first as the minimum-norm
solution of eq.(6.106a); then, the desired value of θ̈ is calculated as the
least-square approximation of eq.(6.106b). These two solutions are com-
puted most efficiently using an orthogonalization algorithm that reduces
matrix P to upper-triangular form (Golub and Van Loan, 1989). A straight-
forward calculation based on the explicit calculation of the generalized
inverses involved is not recommended, because of the frequent numerical
ill-conditioning incurred. Two orthogonalization procedures, one based on
Householder reflections, the other on the Gram-Schmidt procedure, for the
computation of both the least-square approximation of an overdetermined
system of equations and the minimum-norm solution of its underdetermined
counterpart are outlined in Appendix B.

The complexity of the foregoing calculations is discussed in Subsec-
tion 6.6.2, based on the Cholesky decomposition of the generalized iner-
tia matrix, details on the alternative approach being available elsewhere
(Angeles and Ma, 1988).

6.6.1 Planar Manipulators

The application of the natural orthogonal complement to planar manipu-
lators is straightforward. Here, we assume that the manipulator at hand is
composed of n links coupled by n joints of the revolute or the prismatic
type. Moreover, for conciseness, we assume that the first link, labeled the
base, is fixed to an inertial frame. We now adopt the planar representation
of the twists and wrenches introduced in Section 4.8; that is, we define the
twist of the ith link and the wrench acting on it as 3-dimensional arrays,
namely,

ti ≡
[

ωi

ċi

]
, wi ≡

[
ni

fi

]
(6.107)

where ωi is the scalar angular velocity of this link; ċi is the 2-dimensional
velocity of its mass center, Ci; ni is the scalar moment acting on the link;

TLFeBOOK



6.6 Manipulator Forward Dynamics 249

and fi is the 2-dimensional force acting at Ci. Moreover, the inertia dyad
is now a 3 × 3 matrix, i.e.,

Mi ≡
[

Ii 0T

0 mi1

]
(6.108)

with Ii defined as the scalar moment of inertia of the ith link about an axis
passing through its center of mass, in the direction normal to the plane of
motion, while 0 is the 2-dimensional zero vector and 1 is the 2× 2 identity
matrix.

Furthermore, the Newton-Euler equations of the ith link take on the
forms

ni = Iiω̇i (6.109a)
fi = mic̈i (6.109b)

and so, these equations can now be cast in the form

Miṫi = wW
i + wC

i , i = 1, . . . , n (6.110)

where we have decomposed the total wrench acting on the ith link into its
working component wW

i , supplied by the environment and accounting for
motor and joint dissipative torques, and wC

i , the nonworking constraint
wrench, supplied by the neighboring links via the coupling joints. The lat-
ter, it is recalled, develop no power, their sole role being to keep the links
together. An essential difference from the general 6-dimensional counter-
part of the foregoing equation, namely, eq.(6.48), is the lack of a quadratic
term in ωi in eq.(6.109a) and consequently, the lack of a WiMiti term in
eq.(6.110).

Upon assembling the foregoing 3n equations of motion, we obtain a sys-
tem of 3n uncoupled equations in the form

Mṫ = wW + wC

Now, the wrench wW accounts for active forces and moments exerted on
the manipulator, and so we can decompose this wrench into an actuator-
supplied wrench wA and a gravity wrench wG.

In the next step of the formulation, we set up the kinematic constraints
in linear homogeneous form, as in eq.(6.50), with the difference that now,
in the presence of n kinematic pairs of the revolute or the prismatic type,
K is a 3n×3n matrix. Moreover, we set up the twist-shape relations in the
form of eq.(6.56), except that now, T is a 3n×n matrix. The derivation of
the Euler-Lagrange equations for planar motion using the natural orthog-
onal complement, then, parallels that of general 3-dimensional motion, the
model sought taking the form

I(θ)θ̈ + C(θ, θ̇)θ̇ = τ + γ + δ (6.111a)
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with the definitions

I(θ) ≡ TTMT, C(θ, θ̇) ≡ TT MṪ, (6.111b)
τ ≡ TTwA, γ ≡ TTwG, δ ≡ TT wD (6.111c)

We can illustrate best this formulation with the aid of the example below.

Example 6.6.1 (Dynamics of a planar three-revolute manipulator)
Derive the model of the manipulator of Fig. 4.24, under the assumptions
of Example 6.3.1, but now using the natural orthogonal complement.

Solution: We start by deriving all kinematics-related variables, and thus,

ω1 = θ̇1, ω2 = θ̇1 + θ̇2, ω3 = θ̇1 + θ̇2 + θ̇3

Furthermore,

t1 = θ̇1t11

t2 = θ̇1t12 + θ̇2t22

t3 = θ̇1t13 + θ̇2t23 + θ̇3t33

where

t11 =
[

1
Er11

]
=
[

1
Eρ1

]
=
[

1
(1/2)Ea1

]

t21 =
[

1
Er12

]
=
[

1
E(a1 + ρ2)

]
=
[

1
E(a1 + (1/2)a2)

]

t22 =
[

1
Er22

]
=
[

1
Eρ2

]
=
[

1
(1/2)Ea2

]

t31 =
[

1
Er13

]
=
[

1
E(a1 + a2 + ρ3)

]
=
[

1
E(a1 + a2 + (1/2)a3)

]

t32 =
[

1
Er23

]
=
[

1
E(a2 + ρ3)

]
=
[

1
E(a2 + (1/2)a3)

]

t33 =
[

1
Eρ3

]
=
[

1
(1/2)Ea3

]

and hence, the 9 × 3 twist-shaping matrix T becomes

T =




1 0 0
(1/2)Ea1 0 0

1 1 0
E(a1 + (1/2)a2) (1/2)Ea2 0

1 1 1
E(a1 + a2 + (1/2)a3) E(a2 + (1/2)a3) (1/2)Ea3




The 9 × 9 matrix of inertia dyads of this manipulator now takes the form

M = diag(M1, M2, M3)
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with each 3 × 3 Mi matrix defined as

Mi ≡
[

Ii 0T

0 mi1

]

Now, the 3 × 3 generalized inertia matrix is readily derived as

I ≡ TT MT

whose entries are given below:

I11 = tT
11M1t11 + tT

21M2t21 + tT
31M3t31

I12 = tT
21M2t22 + tT

31M3t32 = I21

I13 = tT
31M3t33 = I31

I22 = tT
22M2t22 + tT

32M3t32

I23 = tT
32M3t33 = I32

I33 = tT
33M3t33

Upon expansion, the above entries result in exactly the same expressions
as those derived in Example 6.3.1, thereby confirming the correctness of
the two derivations. Furthermore, the next term in the Euler-Lagrange
equations is derived below. Here, we will need Ṫ, which is readily derived
from the above expression for T. In deriving this time-derivative, we note
that in general, for i = 1, 2, 3,

ȧi = ωiEai, E2ai = −ai

and hence,

Ṫ = −




0 0 0
(1/2)θ̇1a1 0 0

0 0 0
θ̇1a1 + (1/2)θ̇12a2 (1/2)θ̇12a2 0

0 0 0
θ̇1a1 + θ̇12a2 + (1/2)θ̇123a3 θ̇12a2 + (1/2)θ̇123a3 (1/2)θ̇123a3




where θ̇12 and θ̇123 stand for θ̇1 + θ̇2 and θ̇1 + θ̇2 + θ̇3, respectively.
We now can perform the product TT MṪ, whose (i, j) entry will be

represented as µij . Below we display the expressions for these entries:

µ11 = −1
2
[m2a1a2s2 + m3(2a1a2s2 + a1a3s23)]θ̇2 − m3

2
(a1a3s23 + a2a3s3)θ̇3

µ12 = −1
2
[m2a1a2s2 + m3(2a1a2s2 + a1a3s23)](θ̇1 + θ̇2)

−1
2
m3(a1a3s23 + a2a3s3)θ̇3
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µ13 = −1
2
m3(a1a3s23 + a2a3s3)(θ̇1 + θ̇2 + θ̇3)

µ21 =
1
2
[m2a1a2s2 + m3(2a1a2s2 + a1a3s23)]θ̇1 − 1

2
m3a2a3s3θ̇3

µ22 = −1
2
m3a2a3s3θ̇3

µ23 = −1
2
m3a2a3s3(θ̇1 + θ̇2 + θ̇3)

µ31 =
1
2
m3[(a1a3s23 + a2a3s3)θ̇1 + a2a3s3θ̇2]

µ32 =
1
2
m3a2a3s3(θ̇1 + θ̇2)

µ33 = 0

Now, let us define
ν ≡ TT MṪθ̇

whose three components are given below:

ν1 = −[m2a1a2s2 + m3(2a1a2s2 + a1a3s23)]θ̇1θ̇2 − m3(a1a3s23 + a2a3s3)θ̇1θ̇3

−1
2
[m2a1a2s2 + m3(2a1a2s2 + a1a3s23)]θ̇2

2

−m3(a1a3s23 + a2a3s3)θ̇2θ̇3 − 1
2
m3(a1a3s23 + a2a3s3)θ̇2

3

ν2 =
1
2
[m2a1a2s2 + m3(2a1a2s2 + a1a3s23)]θ̇2

1 − m3a2a3s3θ̇1θ̇3

−m3a2a3s3θ̇2θ̇3 − 1
2
m3a2a3s3θ̇

2
3

ν3 =
1
2
m3(a1a3s23 + a2a3s3)θ̇2

1 + m3a2a3s3θ̇1θ̇2 +
1
2
m3a2a3s3θ̇

2
3

The mathematical model sought, thus, takes the form

I(θ)θ̈ + ν(θ, θ̇) = τ + γ

where δ = 0 because we have not included dissipation. Moreover, γ is
derived as described below: Let wG

i be the gravity wrench acting on the
ith link, wG then being

wG =




wG
1

wG
2

wG
3




and

wG
1 =
[

0
−m1gj

]
, wG

2 =
[

0
−m2gj

]
, wG

3 =
[

0
−m3gj

]

Therefore,
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γ = TT wG

=
g

2




m1aT
1 Ej + m2(2a1 + a2)TEj + m3[2(a1 + a2) + a3)TEj

m2aT
1 Ej + m3(2a2 + a3)T Ej

m3aT
3 Ej




But

aT
1 Ej = −aT

1 i = −a1 cos θ1

aT
2 Ej = −aT

2 i = −a2 cos(θ1 + θ2)
aT

3 Ej = −aT
3 i = −a3 cos(θ1 + θ2 + θ3)

Hence,

γ =
g

2



−m1a1c1 − 2m2(a1c1 + a2c12) − 2m3(a1c1 + a2c12 + a3c123)

−m2a2c12 − 2m3(a2c12 + a3c123)
−m3a3c123




with the definitions for c1, c12, and c123 introduced in Example 6.3.1. As
the reader can verify, the foregoing model is identical to the model derived
with the Euler-Lagrange equations in that example.

Example 6.6.2 r] (Dynamics of a spatial 3-revolute manipulator)
The manipulator of Fig. 4.15 is reproduced in Fig. 6.7, in a form that
is kinematically equivalent to the sketch of that figure, but more suitable
for the purposes of this example. For this manipulator, (i) find its inertia
matrix at the configuration depicted in that figure; (ii) find the time-rate
of change of the inertia matrix under a maneuver whereby θ̇1 = θ̇2 = θ̇3 =
p s−1 and θ̈1 = θ̈2 = θ̈3 = 0; and (iii) under the same maneuver, find
the centrifugal and Coriolis terms of its governing equation. Furthermore,
assume that all links are identical and dynamically isotropic. What we mean
by “dynamically isotropic” is that the moment of inertia of all three links
about their mass centers are proportional to the 3 × 3 identity matrix, the
proportionality factor being I. Moreover, all three links are designed so that
the mass center of each is located as shown in Fig. 6.7.

Solution:

(i) Henceforth, we represent all vectors and matrices with respect to the
F1-frame of Fig. 6.7, while denoting by i, j, and k the unit vectors
parallel to the X1, Y1, and Z1 axes, respectively. Under these condi-
tions, we have, for the unit vectors parallel to the revolute axes,

e1 = k, e2 = j, e3 = i

while vector ai is directed from the origin of Fi to that of Fi+1, for
i = 1, 2, 3. Hence,

a1 = −ai, a2 = a(j− k), a3 = a(i + k)
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FIGURE 6.7. Mass-center locations of the manipulator of Fig. 4.19.

Likewise, the position vectors of the mass centers, ρi, for i = 1, 2,
and 3, with respect to the origins of their respective frames, are given
by

ρ1 =
1
2
a(−i + j)

ρ2 =
1
2
a(i + 2j− k)

ρ3 =
1
2
a(2i + k)

We can now calculate the various 6-dimensional arrays tij , for i = 1,
2, 3, and j = 1 till i, i.e.,

t11 =
[

e1

e1 × ρ1

]
=
[

k
−(a/2)(i + j)

]

t21 =
[

e1

e1 × (a1 + ρ2)

]
=
[

k
−(a/2)(2i + j)

]

t22 =
[

e2

e2 × ρ2

]
=
[

j
−(a/2)(i + k)

]

t31 =
[

e1

e1 × (a1 + a2 + ρ3)

]
=
[

k
−ai

]

t32 =
[

e2

e2 × (a2 + ρ3)

]
=
[

j
−(a/2)(i + 2k)

]

t33 =
[

e3

e3 × ρ3

]
=
[

i
−(a/2)j

]
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and so, the 18 × 3 matrix T is given by

T =




k 0 0
−(a/2)(i + j) 0 0

k j 0
−(a/2)(2i + j) −(a/2)(i + k) 0

k j i
−ai −(a/2)(i + 2k) −(a/2)j




Moreover, the 6 × 6 inertia dyad of the ith link takes the form

Mi =
[

I1 O
O m1

]
, i = 1, 2, 3

with 1 and O denoting the 3 × 3 identity and zero matrices, respec-
tively. Thus, the 18× 18 system mass matrix is given as

M = diag(M1, M2, M3)

and the 3 × 3 generalized inertia matrix I of the manipulator is

I = TTMT

whose entries are given by

I11 = tT
11M1t11 + tT

21M2t21 + tT
31M3t31

I12 = tT
21M2t22 + tT

31M3t32 = I21

I13 = tT
31M3t33 = I31

I22 = tT
22M2t22 + tT

32M3t32

I23 = tT
32M3t33 = I32

I33 = tT
33M3t33

Upon expansion, the foregoing expressions yield

I =
1
4
ma2




11 4 0
4 7 0
0 0 1


+ I




3 0 0
0 2 0
0 0 1




(ii) Now, the time-rate of change of I, İ, is calculated as

İ = TTMṪ + ṪTMTT + TT (WM− MW)T

We proceed first to compute Ṫ. This time-derivative is nothing but
the 18×3 matrix whose entries are the time-derivatives of the entries
of T, namely, ṫij , as given in eq.(6.84), which is reproduced below for
quick reference:

ṫij =
[

ωj × ej

(ωj × ej) × rij + ej × ṙij

]
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where ṙij is given, in turn, by

ṙij = ωj × aj + . . . + ωi−1 × ai−1 + ωi × ρi

Hence, we will need vectors ωi, for i = 1, 2, and 3. These are calcu-
lated below:

ω1 = θ̇1e1 = pk

ω2 = θ̇1e1 + θ̇2e2 = p(j + k)
ω3 = θ̇1e1 + θ̇2e2 + θ̇3e3 = p(i + j + k)

We have, therefore,

ṫ11 =
[

ė1

ė1 × ρ1 + e1 × ρ̇1

]
=
[

0
e1 × (ω1 × ρ1)

]
= p

[
0

(1/2)a(i− j)

]

ṫ21 =
[

ė1

ė1 × (a1 + ρ2) + e1 × (ȧ1 + ρ̇2)

]

=
[

0
e1 × (ω1 × a1 + ω2 × ρ2)

]
= p

[
0

(1/2)aj

]

ṫ22 =
[

ė2

ė2 × ρ2 + e2 × ρ̇2

]

=
[

pe1 × e2

(pe1 × e2) × ρ2 + e2 × [p(e1 + e2) × ρ2]

]

= p

[ −i
−(1/2)a(i + j− k)

]

ṫ31 =
[

ė1

ė1 × (a1 + a2 + ρ3) + e1 × (ȧ1 + ȧ2 + ρ̇3)

]

=
[

0
e1 × (ω1 × a1 + ω2 × a2 + ω3 × ρ3)

]

=
[

0
e1 × [pe1 × a1 + p(e1 + e2) × a2 + p(e1 + e2 + e3) × ρ3]

]

= p

[
0

−aj

]

(6.112)

ṫ32 =
[

ė2

ė2 × (a2 + ρ3) + e2 × (ȧ2 + ρ̇3)

]

=
[

pe1 × e2

(pe1 × e2) × (a2 + ρ3) + pe2 × [(e1 + e2) × (a2 + ρ3)]

]

= p

[ −i
−(1/2)a(2i + j − k)

]
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ṫ33 =
[

ė3

ė3 × ρ3 + e3 × ρ̇3

]
=
[

ω2 × e3

(ω2 × e3) × ρ3 + e3 × (ω3 × ρ3)

]

=
[

p(e1 + e2) × e3

p[(e1 + e2) × e3] × ρ3 + pe3 × [(e1 + e2 + e3) × ρ3]

]

=
[

p(e2 − e1)
p(e2 − e1) × ρ3 + p[(e3 · ρ3)(e1 + e2 + e3) − ρ3]

]

= p

[
j− k

(1/2)a(i − k)

]

Now, let
P ≡ TT MṪ

whose entries are displayed below:

p11 = tT
11M1ṫ11 + tT

21M2ṫ21 + tT
31M3ṫ31

p12 = tT
21M2ṫ22 + tT

31M3ṫ32

p13 = tT
31M3ṫ33

p21 = tT
22M2ṫ21 + tT

32M3ṫ31

p22 = tT
22M2ṫ22 + tT

32M3ṫ32

p23 = tT
32M3ṫ33

p31 = tT
33M3ṫ31

p32 = tT
33M3ṫ32

p33 = tT
33M3ṫ33

Upon performing the foregoing operations, we end up with

TT MṪ = p



−(1/4)a2m (7/4)a2m −(1/2)a2m − I
−(1/2)a2m 0 (1/4)a2m + I
(1/2)a2m (1/4)a2m − I 0


 ≡ P

the second term of the above expression for İ simply being PT . In
order to compute the third term, we need the products WM and
MW. However, it is apparent that the latter is the negative of the
transpose of the former, and so, all we need is one of the two terms.
Furthermore, note that since both matrices M and W are block-
diagonal, their product is block-diagonal as well, namely,

WM = diag(W1M1, W2M2, W3M3)

where for i = 1, 2, and 3,

Wi =
[
Ωi O
O O

]
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with O denoting the 3× 3 zero matrix, while Ωi is the cross-product
matrix of vector ωi. Moreover,

WiMi =
[

IΩi O
O O

]

Therefore, WiMi is skew-symmetric; as a consequence, WM is also
skew-symmetric, and the difference WM−MW vanishes. Hence, in
this particular case, İ reduces to

İ = P + PT

That is,

İ = p



−(1/2)a2m (5/4)a2m −I
(5/4)a2m 0 a2m + I

−I (1/2)a2m 0




(iii) Now, the term of Coriolis and centrifugal forces can be computed in
two ways, namely, (a) as (TT MṪ + TTWMT)θ̇, and (b) by using
the Newton-Euler algorithm with θ̈i = 0, for i = 1, 2, and 3. We
proceed in these two ways in order to verify the correctness of our
results.

In proceeding with the first alternative, we already have the first term
in the foregoing parentheses; the second term is now computed. First,
we note that

WMT =




W1M1t11 0 0
W2M2t21 W2M2t22 0
W3M3t31 W3M3t32 W3M3t33




with 0 defined as the 6-dimensional zero vector. The foregoing non-
trivial 6-dimensional arrays are computed below:

W1M1t11 =
[

IΩ1 O
O O

] [
k

−(a/2)(i + j)

]
=
[

IΩ1k
0

]
=
[
0
0

]

W2M2t21 =
[

IΩ2 O
O O

] [
k

−(a/2)(2i + j)

]
=
[

IΩ2k
0

]
= pI

[
i
0

]

W2M2t22 =
[

IΩ2 O
O O

] [
j

−(a/2)(i + k)

]
=
[

IΩ2j
0

]

=
[

pI(j + k) × j
0

]
= pI

[−i
0

]

W3M3t31 =
[

IΩ3 O
O O

] [
k

−ai

]
=
[

IΩ3k
0

]

=
[

pI(i + j + k) × k
0

]
= pI

[
i − j
0

]
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W3M3t32 =
[

IΩ3 O
O O

] [
j

−(a/2)(i + 2k)

]
=
[

IΩ3j
0

]

=
[

pI(i + j + k) × j
0

]
= pI

[−i + k
0

]

W3M3t33 =
[

IΩ3 O
O O

] [
i

−(a/2)j

]
=
[

IΩ3i
0

]

=
[

pI(i + j + k) × i
0

]
= pI

[
j − k

0

]

where 0 now denotes the 3-dimensional zero vector. Therefore,

WMT = pI




0 0 0
0 0 0
i −i 0
0 0 0

i − j −i + k j − k
0 0 0




and hence,

TT WMT = pI




0 1 −1
−1 0 1
1 −1 0




which turns out to be skew-symmetric. Notice, however, that this will
not always be the case. The reason why the above product turned out
to be skew-symmetric in this example is that the individual matrices
Wi and Mi commute, a consequence of the assumed inertial isotropy,
which leads to the isotropy of matrices Ii, for i = 1, 2, and 3. Now,
we have

TT MṪ + TT WMT = pA

with A defined as

A ≡



−(3/4)a2m (7/4)a2m + I −(1/2)a2m − 2I
−(1/2)a2m − I 0 (1/4)a2m + 2I
(3/4)a2m + I (1/4)a2m − 2I 0




Hence, the term of Coriolis and centrifugal forces is

(TT MṪ + TTWMT)θ̇ = p2




(1/2)a2m − I
−(1/4)a2m + I

a2m − I




thereby completing the desired calculations.

Now, in order to verify the correctness of the above results, we will com-
pute the same term using the Newton-Euler algorithm. To this end, we set
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θ̈i = 0, for i = 1, 2, and 3, in that algorithm, and calculate the desired
expression as the torque required to produce the joint rates given above.

Since we have already calculated the angular velocities, we will skip these
calculations here and limit ourselves to the mass-center velocities, angular
accelerations, and mass-center accelerations. We thus have

ċ1 = ω1 × ρ1 = pk ×
(
−1

2
a

)
(i − j) = −1

2
ap(i + j)

ċ2 = ċ1 + ω1 × (a1 − ρ1) + ω2 × ρ2

=
1
2
ap[−i− j− k × (i + j) + (j + k) × (i + j − k)] = −1

2
ap(3i + j + k)

ċ3 = ċ2 + ω2 × (a2 − ρ2) + ω3 × ρ3

= −1
2
ap[3i + j + k + (j + k) × (i + k) − (i + j + k) × (2i + k)]

= −1
2
ap(3i + j + 2k)

Now, the acceleration calculations are implemented recursively, which
yields

ω̇1 = θ̈1e1 = 0
ω̇2 = ω̇1 + ω1 × θ̇2e2 = p2k × j = −p2i

ω̇3 = ω̇2 + ω2 × θ̇3e3 = −p2i + p2(j + k) × i = −p2(i − j + k)

c̈1 = ω̇1 × ρ1 + ω1 × (ω1 × ρ1) = ap2k ×
[
k × 1

2
(−i + j)

]
=

1
2
ap2(i − j)

c̈2 = c̈1 + ω̇1 × (a1 − ρ1) + ω1 × [ω1 × (a1 − ρ1)] + ω̇2 × ρ2

+ ω2 × (ω2 × ρ2) =
1
2
ap2(i − j) + 0 +

1
2
ap2(i + j)

−1
2
ap2(j + 2k) +

1
2
ap2(−2i− 3j + 3k) =

1
2
ap2(−4j + k)

c̈3 = c̈2 + ω̇2 × (a2 − ρ2) + ω2 × [ω2 × (a2 − ρ2)] + ω̇3 × ρ3

= + ω3 × (ω3 × ρ3) =
1
2
ap2(−4j + k) − 1

2
ap2j +

1
2
ap2(2i − j + k)

+
1
2
ap2(i − j − 2k) +

1
2
ap2(−3i + 3j) = −2ap2j

With the foregoing values, we can now implement the inward Newton-Euler
recursions, namely,

fP
3 = m3c̈3 − f = −m(2ap2j) − 0 = −2amp2j

nP
3 = I3ω̇3 + ω3 × I3ω3 − n + ρ3 × fP

3

= −Ip2(i − j + k) + 0− 0− a2mp2(−i + 2k)
= −Ip2(i − j + k) + a2mp2(i − 2k)
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fP
2 = m2c̈2 + fP

3 =
1
2
amp2(−4j + k) − amp2j =

1
2
amp2(−6j + k)

nP
2 = I2ω̇2 + ω2 × I2ω2 + nP

3 + (a2 − ρ2) × fP
3 + ρ2 × fP

2

= −p2Ii + 0− Ip2(i − j + k) +
1
2
a2mp2(i − 2k) + a2mp2i

+
1
4
a2mp2(−4i − j− 6k)

= −Ip2(2i − j + k) +
1
4
a2mp2(2i − j − 10k)

fP
1 = m1c̈1 + fP

2 =
1
2
amp2(i − j) +

1
2
amp2(−6j + k)

=
1
2
amp2(i − 7j + k)

nP
1 = I1ω̇1 + ω1 × I1ω1 + nP

2 + (a1 − ρ1) × fP
2 + ρ1 × fP

1

= 0 + 0− p2I(2i − j + k) +
1
4
a2mp2(2i − j− 10k)

−1
4
a2mp2(i − j− 6k) +

1
4
a2mp2(i + j − 6k)

= −Ip2(2i − j + k) +
1
4
a2mp2(2i + j + 2k)

and hence,

τ3 = nP
3 · e3 = −Ip2 + a2mp2

τ2 = nP
2 · e2 = Ip2 − 1

4
a2mp2

τ1 = nP
1 · e1 = −Ip2 +

1
2
a2mp2

thereby completing the calculation of the term containing Coriolis and
centrifugal forces, i.e.,

C(θ, θ̇)θ̇ =




−Ip2 + a2mp2

Ip2 − (1/4)a2mp2

−Ip2 + (1/2)a2mp2




As the reader can verify, the natural orthogonal complement and the New-
ton-Euler algorithm produce the same result. In the process, the reader may
have realized that when performing calculations by hand, the Newton-Euler
algorithm is more prone to errors than the natural orthogonal complement,
which is more systematic, for it is based on matrix-times-vector multipli-
cations.

6.6.2 Algorithm Complexity

The complexity of this algorithm is analyzed with regard to the three items
involved, namely, (i) the evaluation of L, (ii) the solution of systems (6.105a
& b), and (iii) the computation of τ .
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FIGURE 6.8. Recursive calculation of vectors rij .

The evaluation of L involves, in turn, the three following steps: (a) the
computation of P; (b) the computation of I; and (c) the Cholesky decom-
position of I into the product LTL.

(i.a) In the computation of P, it is recalled that Hi, ai, and ρi, and con-
sequently, δi ≡ ai −ρi, are constant in Fi+1, which is the frame fixed
to the ith link. Moreover, at each step of the algorithm, both revo-
lute and prismatic pairs are considered. If the jth joint is a revolute,
then the logical variable R is true; if this joint is prismatic, then R
is false. Additionally, it is recalled that ei+1, in Fi-coordinates, is
simply the last column of Qi. The columnwise evaluation of P, with
each pij array in Fi+1-coordinates, is described in Algorithm 6.6.1.
Note that in this algorithm, rij is calculated recursively from ri−1,j .
To do this, we use the relation between these two vectors, as displayed
in Fig. 6.8.

(i.b) Now we go on to the computation of I, as described in Algorithm 6.6.2.
In that algorithm, the subscripted brackets indicate that the vectors
inside these brackets are represented in Fk+1 coordinates.

(i.c) Because the Cholesky decomposition of a positive-definite matrix is
a standard item, it is not discussed here. This step completes the
computation of L.

(ii) The solution of systems (6.105a & 6.105b) is a standard issue as well,
and hence, needs no further discussion.

(iii) The term τ is computed using the recursive Newton-Euler formula-
tion, as discussed in Section 6.4. To do this, we calculate τ by setting
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Algorithm 6.6.1:

For j = 1 to n step 1 do
rjj ← [ ρj ]j+1

pjj ←
[

Njej

njej × rjj

]

j+1

For i = j + 1 to n step 1 do
ej ← QT

i [ ej ]i

if R then
rij ← QT

i [ ri−1,j + δi−1 ]i + [ ρi ]i+1

pij ←
[

Niej

niej × rij

]

i+1

else

pij ←
[

0
niej

]

i+1

endif
enddo

enddo

Algorithm 6.6.2:

For j = 1 to n step 1 do

Ijj ← ∑n
k=j [p

T
kjpkj ]k+1

For i = j + 1 to n step 1 do

Iij ← Iji ← ∑n
k=i[p

T
kipkj ]k+1

enddo
enddo
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θ̈ = 0 in that procedure, which introduces a slight simplification of
the complexity of the inverse-dynamics algorithm.

Below we determine the computational complexity of each of the forego-
ing steps.

(i.a) This step includes Algorithm 6.6.1, which involves two nested do-
loops. The first statement of the outermost loop involves no floating-
point operations; the second statement involves (a) one multiplication
of a matrix by a vector, (b) one cross product, and (c) one multipli-
cation of a scalar by a vector. Of the last three items, (a) is done off-
line, for the matrix and the vector factors are both constant in Fj+1-
coordinates, and so, this operation is not counted. Moreover, item
(b) is nothing but the cross product of vector [ ej ]j+1 ≡ [ 0, 0, 1 ]T

by vector rjj . A similar operation was already discussed in connec-
tion with Algorithm 4.1 and was found to involve zero floating-point
operations, for the result is, simply, [ ej×rjj ]j+1 = [−y, x, 0 ]T , with
x and y denoting the Xj+1 and Yj+1 components of rjj . Hence, item
(b) requires no floating-point operations, while item (c) requires 2n
multiplications and zero additions.

The innermost do-loop, as pertaining to revolute manipulators, in-
volves two coordinate transformations between two consecutive coor-
dinate frames, from Fi- to Fi+1-coordinates, plus two vector sums,
which consumes 16(n − i) multiplications and 14(n − i) additions;
this loop also consumes one matrix-times-vector multiplication, one
cross product and one scalar-times-vector multiplication, which re-
quires 18(n − i) multiplications and 12(n − i) additions. Thus, the
total numbers of operations required by this step, for an n-revolute
manipulator, are Mia multiplications and Aia additions, as given be-
low:

Mia = 2n +
n∑

i=1

34(n − i) = 17n2 − 15n (6.113a)

Aia =
n∑

i=1

26(n − i) = 13n2 − 13n (6.113b)

the presence of prismatic pairs reducing the above figures.

(i.b) This step, summarized in Algorithm 6.6.2, is also composed of two
do-loops, each containing the inner product of two 6-dimensional ar-
rays, and hence, requires six multiplications and five additions. More-
over, in the outermost do-loop, this operation is performed n times,
whereas in the innermost loop,

∑n
i=1(n − i) times, i.e., n(n − 1)/2

times. Thus, the step requires Mib multiplications and Aib additions,
as given below:

Mib = 3n2 + 3n, Aib =
5
2
n2 +

5
2
n (6.114)
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(i.c) This step performs the Cholesky decomposition of an n×n symmet-
ric and positive-definite matrix, a standard operation that requires
Mic multiplications and Aic additions (Dahlquist and Björck, 1974),
namely,

Mic =
1
6
n3 +

1
2
n2 +

1
3
n, Aic =

1
6
n3 +

1
2
n2 +

1
3
n (6.115)

(ii) In this step, the two triangular systems of equations, eqs.(6.105a &
b), are solved first for x and then for θ̈. The numbers of operations
it takes to solve each of the two systems, as derived by Dahlquist
and Björck (1974), are repeated below for quick reference; these are
labelled Mii and Aii, respectively, i.e.,

Mii = n2, Aii = n2 − n (6.116)

(iii) In this step, τ is computed from inverse dynamics, with wD = 0
and θ̈ = 0. If this calculation is done with the Newton-Euler formu-
lation, we then have the computational costs given in eq.(6.43), and
reproduced below for quick reference:

Miii = 137n− 22, Aiii = 110n− 14 (6.117)

Because of the simplifications introduced by setting the joint accelerations
equal to zero, the foregoing figures are, in fact, slightly lower than those
required by the general recursive Newton-Euler algorithm.

Thus, the total numbers of multiplications and additions required for the
forward dynamics of an n-revolute, serial manipulator are

Mf =
1
6
n3 +

43
2

n2 +
376
3

n− 22, Af =
1
6
n3 + 17n2 +

593
6

n− 14 (6.118)

In particular, for a six-revolute manipulator, one obtains

Mf = 1, 540, Af = 1, 227 (6.119)

We have reduced the foregoing figures even further by introducing a mod-
ified Denavit-Hartenberg labeling of coordinate frames and very careful
management of the computations involved. Indeed, in (Angeles and Ma,
1988), the complexity of the algorithm for a six-revolute manipulator of
arbitrary architecture is reduced to 1,353 multiplications and 1,165 addi-
tions. Since the details of this simplification lie beyond the scope of the
book, we do not elaborate on this item here.

6.6.3 Simulation

The purpose of the algorithm introduced above is to enable us to pre-
dict the behavior of a given manipulator under given initial conditions,
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applied torques, and applied loads. The ability of predicting this behavior
is important for several reasons: for example, in design, we want to know
whether with a given selection of motors, the manipulator will be able to
perform a certain typical task in a given time frame; in devising feedback
control schemes, where stability is a major concern, the control engineer
cannot risk a valuable piece of equipment by exposing it to untested control
strategies. Hence, a facility capable of predicting the behavior of a robotic
manipulator, or of a system at large, for that matter, becomes imperative.

The procedure whereby the motion of the manipulator is determined
from initial conditions and applied torques and loads is known as simu-
lation. Since we start with a second-order n-dimensional system of ODE
in the joint variables of the manipulator, we have to integrate this system
in order to determine the time-histories of all joint variables, which are
grouped in vector θ. With current software available, this task has become
routine work, the user being freed from the quite demanding task of writing
code for integrating systems of ODE. Below we discuss a few issues pertain-
ing to the implementation of the simulation-related algorithms available in
commercial software packages.

As a rule, simulation code requires that the user supply a state-variable
model of the form of eq.(6.45), with the state-variable vector, or state-vector
for brevity, x, and the input or control vector u defined as

x ≡
[

θ
θ̇

]
≡
[

θ
ψ

]
, u(t) = τ (t) (6.120)

With the above definitions, then we can write the state-variable equations,
or state equations for brevity, in the form of eq.(6.45), with f(x, τ ) given
by

f(x, τ ) ≡
[

ψ
−I(θ)−1[C(θ, ψ)ψ − δ(θ, ψ) − γ(θ)] + I(θ)−1τ (t)

]
(6.121)

thereby obtaining a system of 2n first-order ODE in the state-variable vec-
tor x defined above. Various methods are available to solve the ensuing
initial-value problem, all of them being based on a discretization of the
time variable. That is, if the behavior of the system is desired in the inter-
val t0 ≤ t ≤ tF , then the software implementing these methods provides
approximations {yk }N

1 to the state-variable vector at a discrete set of in-
stants, { tk }N

0 , with tN ≡ tF .
The variety of methods available to solve the underlying initial-value

problem can be classified into two main categories, explicit methods and
implicit methods. The former provide yk+1 explicitly in terms of previously
computed values. On the contrary, implicit methods provide yk+1 in terms
of previously computed values yk, yk−1, . . ., etc., and yk+1 itself. For ex-
ample, in the simplest of implicit methods, namely, the backward Euler
method, we can approximate the integral of f in the interval tk ≤ t ≤ tk+1

TLFeBOOK



6.6 Manipulator Forward Dynamics 267

by resorting to the trapezoidal rule (Kahaner et al., 1989), which leads to
the expression

yk+1 = yk + hkf(tk+1,yk+1) (6.122)

In eq.(6.122), hk is the current time-step tk+1 − tk and f(tk+1,yk+1) can
be an arbitrary function of yk+1. If this function is nonlinear in the said
variable, then, a direct—as opposed to iterative—computation of yk+1 is
very unlikely. Hence, most likely an iterative scheme must be implemented
at every integration stage of an implicit method. While this feature might
render implicit schemes unattractive, they offer interesting advantages. In-
deed, the iterative procedure mentioned above requires a tolerance to decide
when and whether the procedure has converged. The convergence crite-
rion imposed thus brings about a self-correcting effect that helps keep the
unavoidable truncation error under control. This error is incurred when
approximating both the time derivative ẋ and the integral of f by floating-
point operations.

Current software provides routines for both implicit and explicit meth-
ods, the user having to decide which method to invoke. Of the explicit meth-
ods in use, by far the most common ones are the Runge-Kutta methods. Of
these, there are several versions, depending on the number of evaluations of
the function f(ti,yi), for various values of i, that they require. A two-stage
Runge-Kutta method, for example, requires two function evaluations, while
a four-stage Runge-Kutta method requires four. The self-correcting feature
of implicit methods, not present in Runge-Kutta methods—to be sure,
implicit Runge-Kutta methods also exist (Gear, 1971), but these are less
common than their explicit counterparts—is compensated for by a clever
strategy that consists in computing yk+1 using two Runge-Kutta schemes
of different numbers of stages. What is at stake here is the magnitude of the
local error in computing yk+1, under the assumption that yk is error-free.
Here, the magnitude of the error is of order hp, where p is the order of the
method in use. In Runge-Kutta methods, the order of the method is iden-
tical to its number of stages. In general, a method is said to be of order p
if it is capable of computing exactly the integral of an ordinary differential
equation, provided that the solution is known to be a pth-degree polyno-
mial. Now, upon computing yk+1 using two Runge-Kutta schemes with N
and N + 1 stages, we can compare the two computed values reported by
each method, namely, yN

k+1 and yN+1
k+1 . If a norm of the difference of these

two values is smaller than a user-prescribed tolerance, then the step size
in use is acceptable. If not, then the step size is halved, and the process is
repeated until the foregoing norm is within the said tolerance. The most
common Runge-Kutta methods are those combining two and three stages
and those combining four and five.

A drawback of Runge-Kutta methods is their inability to deal with what
are known as stiff systems, first identified by Gear (1971). As defined by
Shampine and Gear (1979), a system of ordinary differential equations is
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said to be stiff if it is not unstable and its linear part—i.e., the linear part
of the series expansion of f, evaluated at the current instant—comprises a
coefficient matrix that has an eigenvalue with a negative real part whose
absolute value is much greater than that of the other eigenvalues. In other
words, stiff systems of ODE are stable systems with very different time
scales. Thus, stiff systems are not inherently difficult to integrate, but
they require a special treatment. Gear’s method, which is implicit, pro-
vides exactly the means to handle stiff systems. However, methods like
Runge-Kutta’s, with excellent performance for nonstiff systems, perform
rather poorly for stiff systems, and the other way around. The mathemat-
ical models that arise in robotic mechanical systems are likely to be stiff
because of the various orders of magnitude of the physical parameters in-
volved. For example, robotic manipulators are provided, usually, with links
close to the base that are heavy and with links far from the base that are
light. As a consequence, when simulating robotic mechanical systems, a
provision must be made for numerical stiffness.

Commercial software for scientific computations offers Runge-Kutta meth-
ods of various orders, with combinations thereof. For example, IMSL offers
excellent FORTRAN routines, like IVPRK, for the implementation of Runge-
Kutta methods, while Matlab’s Simulink toolbox offers the C functions
rk23 and rk45 for the implementation of second-and-third and fourth-
and-fifth-order Runge-Kutta methods. With regard to stiff systems, IMSL
offers a subroutine, IVPAG, implementing both Adams’s and Gear’s meth-
ods, while Simulink offers the adams and gear functions for the imple-
mentation of either of these. Since Matlab is written in C, communication
between Matlab and FORTRAN programs is not as direct as when using
IMSL, which may be disappointing to FORTRAN users. Details on linking
FORTRAN code with Matlab and other related issues are discussed in the
pertinent literature (Etter, 1997). Moreover, the FORTRAN SDRIV2 sub-
routine (Kahaner, Moler, and Nash, 1989) comprises features that allow it
to handle both stiff and nonstiff systems.

6.7 Incorporation of Gravity Into the Dynamics
Equations

Manipulators subjected to gravity fields have been discussed in Section 6.4
in connection with the Newton-Euler algorithm and with Kane’s equa-
tions. As found in that section, gravitational forces can be incorporated into
the underlying models without introducing any major modifications that
would increase the computational load if the method of Luh et al. (1980) is
adopted. Within this approach, gravitational forces are taken into account
by defining the acceleration of the mass center of the 0th link, the base link,
as equal to −g, the negative of the gravity-acceleration vector. The effect of

TLFeBOOK



6.8 The Modeling of Dissipative Forces 269

this approach is to propagate the gravity effect into all the links composing
the manipulator. Thus, the kinematics algorithm of Section 6.4 need not
be modified in order to include gravity forces, for all that is needed is to
declare

[ c̈0 ]1 ← [−g ]1 (6.123)

If inverse dynamics is computed with the natural orthogonal complement,
then the twist-rate of the first link will have to be modified by adding a
nonhomogeneous term to it, thereby accounting for the gravity-acceleration
terms. That is,

ṫ1 ← θ̈1t11 + θ̇1ṫ11 +
[

0
−g

]
(6.124)

Otherwise, the foregoing algorithms require no modifications. Further-
more, with regard to simulation, it is pointed out that the τ term de-
fined in eq.(6.104), and appearing in the right-hand side of eq.(6.105a), is
computed from inverse dynamics with zero frictional forces and zero joint
accelerations.

6.8 The Modeling of Dissipative Forces

Broadly speaking, frictional forces are of two basic types, namely, (i) vis-
cous forces and (ii) Coulomb, or dry-friction, forces. The latter occur when
contact between two solids takes place directly, the former when contact
between the solids takes place via a viscous fluid, e.g., a lubricant. In the
analysis of viscous fluids, a basic assumption is that the relative velocity
between the fluid and the solid vanishes at the fluid-solid interface, i.e., at
the solid boundary confining the fluid. Hence, a velocity gradient appears
within the fluid, which is responsible for the power dissipation inside it. In
fact, not all the velocity gradient within the fluid, but only its symmetric
part, is responsible for power dissipation; the skew-symmetric part of the
velocity gradient accounts for a rigid-body rotation of a small fluid element.
Thus, if a velocity field v(r, t) is defined within a region R occupied by a
viscous fluid, for a point of the fluid of position vector r at a time t, then,
the velocity gradient grad(v) ≡ ∂v/∂r, can be decomposed as

grad(v) = D + W (6.125)

where D and W are the symmetric and the skew-symmetric parts of the
velocity gradient, i.e.,

D ≡ 1
2
[ grad(v) + gradT (v) ], W ≡ 1

2
[ grad(v) − gradT (v) ] (6.126)

The kinematic interpretation of D and W is given below: The former
accounts for a distorsion of an infinitesimally small spherical element of
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fluid into a three-axis ellipsoid, the ratios of the time rates of change of the
lengths of the three axes being identical to the ratios of the real eigenvalues
of D; the latter accounts for the angular velocity of the ellipsoid as a rigid-
body. Clearly, both D and W change from point to point within the fluid
and also from time to time, i.e.,

D = D(r, t), W = W(r, t) (6.127)

Since the skew-symmetric matrix W accounts only for the rotation of a
differential element of fluid as a rigid body, it cannot be responsible for any
energy dissipation, and hence, the only part that is responsible for this is
D. In fact, for a linearly viscous, incompressible fluid of viscosity coefficient
µ, the power dissipated within R is given by

ΠD =
∫

R
µtr(D2)dR (6.128)

Now, if the motion of the lubricant separating the two cylindrical surfaces
of a revolute pair is modeled as a purely tangential velocity field (Currie,
1993), which assumes that the two cylinders remain concentric, then the
foregoing expression for ΠD leads to the dissipation function

∆ =
1
2
βθ̇2 (6.129)

where θ̇ is the relative angular speed between the two cylinders and the
coefficient β is a function of the lubricant viscosity and the geometry of
the kinematic pair at hand. If the kinematic pair under study is prismatic,
then we can model the motion of the lubricant between the two prismatic
surfaces as a Couette flow between a pair of parallel surfaces of the sides of
the prism. Under these conditions, then, the associated dissipation function
∆ takes on the same form of that given for a revolute pair in eq.(6.129), in
which the sole difference is that θ̇ changes to ḃ, the time rate of change of
the associated joint variable. Of course, ḃ is the relative speed between the
two prismatic surfaces. Thus in any event, the dissipation function of the
ith joint due to linearly viscous effects can be written as

∆i =
1
2
βiθ̇

2
i (6.130)

where θ̇i changes to ḃi if the ith pair is prismatic. The dissipation function
thus arising then reduces to

∆ =
n∑
1

∆i =
1
2
θ̇

T
Bθ̇ (6.131)

where the constant n × n matrix B is given by

B = diag(β1, β2 , . . . , βn) (6.132)
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and hence, the generalized force δV associated with linearly viscous effects
is linear in the vector of joint rates, θ̇, i.e.,

δV ≡ −∂∆
∂θ̇

= −Bθ̇ (6.133)

and so, ∆ = −(1/2)ΠD, which was introduced in eqs.(6.11) and (6.12a & b).
Coulomb, or dry friction, is much more difficult to model. If δC

i denotes
either the dissipative torque produced by Coulomb friction at a revolute
or the dissipative force produced by Coulomb friction at a prismatic joint,
and θ̇i the associated joint rate, then, the simplest model for the resulting
generalized Coulomb-friction force is

δC
i = −τC

i sgn(θ̇i) (6.134)

where sgn(·) denotes the signum function, which is defined as +1 or −1,
depending on whether its argument is positive or negative, and τC

i is a
positive constant representing a torque for revolute joints or a force for
prismatic joints. The numerical value of this constant is to be determined
experimentally. The foregoing model leads to a simple expression for the
associated dissipation function, namely,

∆C
i = τC

i |θ̇i| (6.135)

The Coulomb dissipation function for the overall manipulator is, then,

∆C =
n∑
1

τC
i |θ̇i| (6.136)

The foregoing simplified model of Coulomb friction forces is applicable
when the relative speed between the two surfaces in contact is high. How-
ever, at low relative speed, that model becomes inaccurate. In robotics
applications, where typical end-effector maximum speeds are of the order
of 1 m/s, relative speeds are obviously low, and hence, a more accurate
model should be introduced. Such a model should account for the empir-
ical observation that Coulomb frictional forces are higher at low relative
speeds and become constant at very high relative speeds. A model taking
this fact into account has the form

δC
i = −(τC

i + εie
−γi|θ̇i|)sgn(θ̇i) (6.137)

where γi, and εi are constants associated with the ith joint and are to be
determined experimentally. The foregoing expression readily leads to the
dissipation function associated with the same joint, namely,

∆C
i = τC

i |θ̇i| + εi

γi
(1 − e−γi|θ̇i|) (6.138)
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and hence, the Coulomb dissipation function of the overall manipulator
becomes

∆C =
n∑
1

[
τC
i |θ̇i| + εi

γi
(1 − e−γi|θ̇i|)

]
(6.139)

Dissipation functions are very useful. On the one hand, they allow us
to obtain associated generalized frictional forces when these are difficult, if
not impossible, to express in formula form. On the other hand, since dis-
sipation functions represent nonrecoverable forms of power, their integrals
over time yield the dissipated energy. Moreover, the energy dissipated into
unrecoverable heat can be estimated from an energy balance, and hence,
the parameters associated with that dissipation function can be estimated
with suitable identification techniques, once a suitable model for a dissipa-
tion function is available. Furthermore, the said parameters appear in the
generalized frictional forces as well. For this reason, knowing these parame-
ters is essential for the modeling of the corresponding generalized frictional
forces.
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7
Special Topics in Rigid-Body
Kinematics

7.1 Introduction

The motivation for this chapter is twofold. On the one hand, the determi-
nation of the angular velocity and angular acceleration of a rigid body from
point-velocity measurements is a fundamental problem in kinematics. On
the other hand, the solution of this problem is becoming increasingly rele-
vant in the kinematics of parallel manipulators, to be studied in Chapter 8.
Moreover, the estimation of the attitude of a rigid body from knowledge of
the Cartesian coordinates of some of its points is sometimes accomplished
by time-integration of the velocity data. Likewise, the use of accelerometers
in the area of motion control readily leads to estimates of the acceleration
of a sample of points of a rigid body, which can be used to estimate the
angular acceleration of the body, and hence, to better control its motion.

In order to keep the discussion at the level of fundamentals, we assume
throughout this chapter that the information available on point velocity and
point acceleration is error-free, a rather daring assumption, but useful for
understanding the underlying concepts at this level. Once the fundamentals
are well understood, devising algorithms that yield the best estimates of
angular velocity and acceleration in the presence of noisy measurements
becomes an easier task. For the sake of conciseness, the problem of motion
estimation will not be discussed in this book.
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274 7. Special Topics in Rigid-Body Kinematics

7.2 Computation of Angular Velocity from
Point-Velocity Data

The twist of a rigid body, as introduced in eq.(3.74), defines completely
the velocity field of a rigid body under arbitrary motion. Notice that the
twist involves two vector quantities, the angular velocity and the velocity
of a point of the rigid body. Since we are assuming that point-velocity data
are available, the only item to be computed is the angular velocity of the
body under study, which is the subject of this section. Once the angular
velocity is known and the velocities of a set of body points are available,
other relevant motion parameters, such as the location of the ISA—see
Section 3.4—-can be readily determined.

If the twist of a rigid body is known, the computation of the velocity of
an arbitrary point of the body, of a given position vector, is straightforward.
However, the inverse problem, namely, the computation of the twist of the
motion under study given the velocities of a set of points of known position
vectors, is a more difficult task. A solution to this problem is now outlined.

First and foremost, we acknowledge that the velocities of a minimum
of three noncollinear points are needed in order to determine the angular
velocity of the rigid body under study. Indeed, if the velocity of a single
body point is known, we have no information on the angular motion of
the body; if the velocities of two points are known, we can calculate two
components of the angular-velocity vector of the body, namely, those that
are orthogonal to the line joining the two given points, thereby leaving
one component indeterminate, the one along that line. Therefore, in order
to know the angular velocity of a rigid body in motion, we need at least
the velocities of three noncollinear points of the body—obviously, knowing
only the velocities of any number of points along one line yields no more
information than knowing only the velocities of two points along that line.
We thus assume henceforth that we have three noncollinear points and that
we know perfectly their velocities.

Let the three noncollinear points of the body under study be denoted by
{Pi }3

1 and let {pi }3
1 be their corresponding position vectors. The centroid

C of the foregoing set has a position vector c that is the mean value of the
three given position vectors, namely,

c ≡ 1
3

3∑
1

pi (7.1)

Likewise, if the velocities of the three points are denoted by ṗi, and that
of their centroid by ċ, one has

ċ ≡ 1
3

3∑
1

ṗi (7.2)

TLFeBOOK
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From eq.(3.51), the velocity of the three given points can be expressed as

ṗi = ċ + Ω(pi − c), i = 1, 2, 3 (7.3a)

or
ṗi − ċ = Ω(pi − c), i = 1, 2, 3 (7.3b)

Now, we define a 3 × 3 matrix P as

P ≡ [p1 − c p2 − c p3 − c ] (7.4)

Upon differentiation of both sides of eq.(7.4) with respect to time, one has

Ṗ ≡ [ ṗ1 − ċ ṗ2 − ċ ṗ3 − ċ ] (7.5)

Thus, eqs.(7.3b) can be written in matrix form as

Ṗ = ΩP (7.6)

from which we want to solve for Ω, or equivalently, for ω. This cannot be
done by simply multiplying by the inverse of P, because the latter is a
singular matrix. In fact, as the reader can readily verify, any vector having
three identical components lies in the nullspace of P, thereby showing that
P is singular, its nullspace being spanned by that vector. Furthermore,
notice that from eq.(7.3b), it is apparent that

(ṗi − ċ)T ω = 0, i = 1, 2, 3 (7.7a)

Upon assembling all three scalar equations above in one single vector equa-
tion, we obtain

ṖT ω = 0 (7.7b)

a result that is summarized below:

Theorem 7.2.1 The angular-velocity vector lies in the nullspace of matrix
ṖT , with Ṗ defined in eq.(7.5).

In order to find the desired expression for ω from the above equation,
we recall here a result which is proven in Appendix A: Let S be a skew-
symmetric 3 × 3 matrix and A be an arbitrary 3 × 3 matrix. Then,

vect(SA) =
1
2

[tr(A)1 − A] vect(S) (7.8)

Upon application of the foregoing result, eq.(7.6) leads to

Dω = vect(Ṗ) (7.9)

where D is defined below and vect(Ω) is nothing but ω:
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D ≡ 1
2
[tr(P)1 − P] (7.10)

Thus, eq.(7.9) can be solved for ω as long as D is invertible. But since the
three points are noncollinear, D is invertible if and only if tr(P) does not
vanish. Indeed, if tr(P) vanishes, D becomes just one-half the negative of P,
which as we saw above, is singular. Moreover, as we saw in Example 2.6.1,
matrix P is not frame-invariant in the sense of eq.(2.136). Thus, tr(P) is not
frame-invariant either. However, if the three given points are noncollinear,
then it is always possible to find a coordinate frame in which the trace
of P does not vanish. Furthermore, under the assumption that a suitable
coordinate frame has been chosen, the inverse of D can be proven to be

D−1 = α1 − βP2 (7.11)

where coefficients α and β are given below:

α ≡ 2
tr(P)

, β ≡ 4
tr(P)[tr(P2) − tr2(P)]

(7.12)

From expressions (7.12) it is apparent that D fails to be invertible not only
when tr(P) vanishes, but also when the term in brackets in the denominator
of β does. In Exercise 7.2, the reader is confronted with a case in which the
said term vanishes, yet the three points are not collinear.

From the foregoing discussion, it is clear that given the velocities and the
position vectors of three noncollinear points of a rigid body, the angular
velocity of the body can always be determined. However, the data, i.e.,
the velocities of the three given points, cannot be arbitrary, for they must
conform to eq.(7.6) or to Theorem 7.2.1. Equation (7.6) states that the
columns of matrix Ṗ must lie in the range of Ω, while Theorem 7.2.1 states
that ω lies in the nullspace of Ṗ. However, prior to the computation of ω, or
equivalently, of Ω, it is not possible to verify this condition. An alternative
approach to verifying the compatibility of the data follows: Since lines PiC
belong to a rigid body, vectors pi − c must remain of the same magnitude
throughout a rigid-body motion. Moreover, the angles between any two of
the said lines must be preserved throughout the motion as well. This means
that the conditions below must hold:

(pi − c)T (pj − c) = cij , i, j = 1, 2, 3 (7.13)

or in compact form,
PT P = C (7.14)

where the (i, j) entry of the constant matrix C is cij , as defined in eq.(7.13)
above. Upon differentiation of both sides of eq.(7.14) with respect to time,
we obtain
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Theorem 7.2.2 (Velocity Compatibility) The velocities of three points
of a rigid body satisfy the compatibility condition given below:

ṖT P + PT Ṗ = O (7.15)

with matrices P and Ṗ defined in eqs.(7.4) and (7.5) and O denoting the
3 × 3 zero matrix.

The above equation, then, states that for the given velocities of three
points of a rigid body to be compatible, the product PT Ṗ must be skew-
symmetric. Note that the above matrix compatibility equation represents
six independent scalar equations that the data of the problem at hand must
satisfy. There is a tendency to neglect the foregoing six independent scalar
compatibility conditions and to focus only on the three scalar conditions
drawn from the diagonal entries of the above matrix equation. This is,
however, a mistake, for these three conditions do not suffice to guarantee
data compatibility in this context; all these three conditions guarantee is
that the distance between any pair of points of the set remains constant,
but they say nothing about the angles between the pairs of lines formed by
each pair of points.

Note, on the other hand, that the product PPT has no direct geometric
interpretation, although the difference tr(PPT )1−PPT does, as discussed
in Exercise 7.9. Furthermore, while Theorem 7.2.2 states that matrix PT Ṗ
is skew-symmetric, it says nothing about the product PṖT . All we can say
about this product is stated in the result below:

Theorem 7.2.3 With matrices P and Ṗ defined in eqs.(7.4) and (7.5),
the product PṖT obeys the constraint

tr(PṖT ) = 0 (7.16)

If m × n matrices are regarded as forming a vector space, then an inner
product of two such matrices A and B, denoted by (A, B), can be defined
as

(A, B) ≡ tr(ABT ) (7.17)

the two matrices being said to be orthogonal when the foregoing inner
product vanishes. We thus have that Theorem 7.2.3 states that matrices
Ṗ and P are orthogonal, a result that parallels that about the orthogo-
nality of the relative velocity of two points and the line joining them, as
stated in eq.(3.53) and summarized in the ensuing theorem. The proof of
Theorem 7.2.3 is left as an exercise.

Example 7.2.1 The rigid cube shown in Fig. 7.1 moves in such a way
that vertices P1, P2, and P3 undergo the velocities shown in that figure, for
three different possible motions. The length of the sides of the cube is 1, and
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FIGURE 7.1. A rigid cube undergoing a motion determined by the velocities of
three of its points.

the velocities all have magnitude
√

2 in Figs. 7.1a and c; these velocities
are of unit magnitude in Fig. 7.1b. Furthermore, in the motion depicted in
Fig. 7.1c, the velocity of P3 is parallel to line P4P3, whereas that of P2 is
parallel to line P1P3. Out of the three different motions, it is known that
at least one is compatible. Identify the compatible motion and compute its
angular velocity.

Solution: Let ṗi denote the velocity of Pi, of position vector pi. Each pro-
posed motion is then analyzed: (a) The projection of ṗ1 onto P1P2 is 1,
but that of ṗ2 onto the same line is 0, and hence, this motion is incom-
patible; (b) Again, the projection of ṗ1 onto P1P2 is 1, but that of ṗ2

onto the same line vanishes, and hence, this motion is also incompatible.
Thus, the only possibility is (c), which is now analyzed more formally: Use
a dextrous—right-handed—rectangular coordinate frame with origin at P1,
axis Y along P1P2, and axis Z parallel to P2P3. All vectors and matrices
are now represented in this coordinate frame, and hence,

p1 =




0
0
0


 , p2 =




0
1
0


 , p3 =




0
1
1




ṗ1 =




1
1
0


 , ṗ2 =




0
1
1


 , ṗ3 =



−1
0
1




Thus,

c =
1
3




0
2
1


 , ċ =

1
3




0
2
2



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Now matrices P and Ṗ are constructed:

P =
1
3




0 0 0
−2 1 1
−1 −1 2


 , Ṗ =

1
3




3 0 −3
1 1 −2
−2 1 1




Furthermore,

PT Ṗ =
1
9




0 −3 3
3 0 −3
−3 3 0




which is skew-symmetric, and hence, the motion is compatible. Now, matrix
D is computed:

D ≡ 1
2
[1tr(P) − P] =

1
6




3 0 0
2 2 −1
1 1 1




The angular velocity ω is computed as the solution to

Dω = vect(Ṗ)

where

vect(Ṗ) =
1
6




3
−1
1




Equations (7.2) are thus

3ω1 = 3
2ω1 + 2ω2 − ω3 = −1

ω1 + ω2 + ω3 = 1

The first of the foregoing equations leads to

ω1 = 1

whereas the second and the third lead to

2ω2 − ω3 = −3
ω2 + ω3 = 0

and hence,
ω2 = −1, ω3 = 1

Now, as a verification, ω should be normal to the three columns of Ṗ as
defined in eq.(7.15); in other words, ω should lie in the nullspace of ṖT .
But this is so, because

ṖT ω =
1
3




3 1 −2
0 1 1
−3 −2 1






1
−1
1


 =

1
3




0
0
0




thereby verifying that ω lies, in fact, in the nullspace of ṖT.
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7.3 Computation of Angular Acceleration from
Point-Acceleration Data

The angular acceleration of a rigid body under general motion is determined
in this section from knowledge of the position, velocity, and acceleration
vectors of three noncollinear points of the body. The underlying procedure
parallels that of Section 7.2. Indeed, recalling the notation introduced in
that section, and letting vectors p̈i, for i = 1, 2, 3, denote the acceleration
of the given points, one can rewrite eq.(3.87) for each point in the form

p̈i = c̈ + (Ω̇ + Ω2)(pi − c), i = 1, 2, 3 (7.18a)

or
p̈i − c̈ = (Ω̇ + Ω2)(pi − c), i = 1, 2, 3 (7.18b)

where c was defined in eq.(7.1), and c̈ is the acceleration of the centroid,
i.e.,

c̈ ≡ 1
3

3∑
1

p̈i (7.18c)

Furthermore, matrix P̈ is defined as

P̈ ≡ [ p̈1 − c̈ p̈2 − c̈ p̈3 − c̈ ] (7.19)

Thus, eqs.(7.18b) can be written in compact form as

P̈ = (Ω̇ + Ω2)P (7.20)

from which one is interested in computing Ω̇, or correspondingly, ω̇. To
this end, eq.(7.20) is rewritten as

Ω̇P = W (7.21a)

with matrix W defined as

W ≡ P̈ − Ω2P (7.21b)

The counterpart of Theorem 7.2.1 is now derived from eqs.(7.18b). First,
these equations are cast in the form

p̈i − c̈ − Ω2(pi − c) = ω̇ × (pi − c), i = 1, 2, 3

It is now apparent that if we dot-multiply the above equations by ω̇, we
obtain

[p̈i − c̈ − Ω2(pi − c)] · ω̇ = 0, i = 1, 2, 3 (7.22a)

Upon assembling the three foregoing equations in one single vector equa-
tion, we derive the counterpart of eq.(7.7b), namely,

(P̈ − Ω2P)T ω̇ = 0 (7.22b)

a result that is summarized below in theorem form:
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Theorem 7.3.1 The angular-acceleration vector ω̇ lies in the nullspace of
matrix WT , with W defined in eq.(7.21b).

Just as we did in Section 7.2 when solving for ω from eq.(7.9), we apply
the result already invoked in connection with eq.(7.9), thereby deriving an
alternative form of eq.(7.21a), namely,

Dω̇ = vect(P̈ − Ω2P) (7.23)

where D is defined as in eq.(7.10). Thus,

ω̇ = D−1vect(P̈ − Ω2P) (7.24)

with D−1 given as in eqs.(7.11) and (7.12). As in Section 7.2, then, given
the position, velocity, and acceleration vectors of three noncollinear points
of a rigid body, it is always possible to compute the associated angular
acceleration. However, as discussed in that section, the data cannot be
given arbitrarily, for they must comply with eq.(7.21a), or correspondingly,
with eq.(7.22b). The former implies that the three columns of matrix W lie
in the range of matrix Ω̇; alternatively, eq.(7.22b) implies that Ω̇ lies in the
nullspace of WT . Again, prior to the determination of Ω̇, it is impossible
to verify this condition, for which reason an alternative approach is taken
to verifying compatibility. The obvious one is to differentiate both sides of
eq.(7.15), which produces

P̈TP + 2ṖT Ṗ + PT P̈ = 0 (7.25)

thereby deriving the compatibility conditions that the acceleration measure-
ments should satisfy.

Finally, upon differentiation of both sides of eq.(7.16) with respect to
time, and while doing this, resorting to Lemma A.2 of Appendix A, we
have

tr(P̈PT + ṖṖT ) = 0 (7.26)
which is the counterpart of eq.(7.16 ).

Example 7.3.1 The three vertices of the equilateral triangular plate of
Fig. 7.2, which lies in the X-Y plane, are labeled P1, P2, and P3, their
position vectors being p1, p2, and p3. Moreover, the velocities of the fore-
going points are denoted by ṗi, for i = 1, 2, 3. The origin of the coordinate
frame X, Y, Z lies at the centroid C of the triangle, the velocities of the
vertices, in this coordinate frame, being given as

ṗ1 =
4 −√

2
4




0
0
1


 , ṗ2 =

4 −√
3

4




0
0
1


 , ṗ3 =

4 +
√

2
4




0
0
1




Likewise, p̈1, p̈2, and p̈3 denote the accelerations of the three vertices of
the plate, given below in the same coordinate frame:

p̈1 =
1
24



−6 + 4

√
3

12 − 3
√

2
0


 , p̈2 = − 1

24




8
√

3 + 3
√

6
3
√

3
0


 ,
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FIGURE 7.2. A rigid triangular plate undergoing a motion given by the velocity
and acceleration of its vertices.

p̈3 =
1
24




6 + 4
√

3
−12 + 3

√
2

0




With the foregoing information,

(a) show that the three given velocities are compatible;

(b) compute the angular velocity of the plate;

(c) determine the set of points of the plate that undergo a velocity of
minimum magnitude;

(d) show that the given accelerations are compatible;

(e) compute the angular acceleration of the plate.

Solution:

(a) Since the centroid of the triangle coincides with that of the three
given points, we have c = 0. Moreover,

p1 =




1/2
−√

3/6
0


 , p2 =




0√
3/3
0


 , p3 =




−1/2
−√

3/6
0




Thus,

P =
1
6




3 0 −3
−√

3 2
√

3 −√
3

0 0 0



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Furthermore,

ċ =




0
0

(12 −√
3)/12




and hence,

Ṗ =
1
12




0 0 0
0 0 0√

3 − 3
√

2 −2
√

3
√

3 + 3
√

2




We can readily show from the above results that

PT Ṗ = O

with O denoting the 3 × 3 zero matrix. Hence, matrix PT Ṗ is skew-
symmetric and the velocities are compatible

(b) Next, we have

D ≡ 1
2
[tr(P)1 − P] ≡ 1

12




2
√

3 0 3√
3 3

√
3

0 0 3 + 2
√

3




and

vect(Ṗ) =
1
24




−2
√

3
−√

3 + 3
√

2
0




Hence, if the components of ω in the given coordinate frame are
denoted by ωi, for i = 1, 2, 3, then we obtain

2
√

3ω1 + 3ω3 = −
√

3
√

3ω1 + 3ω2 +
√

3ω3 =
−√

3 + 3
√

2
2

(3 + 2
√

3)ω3 = 0

From the third equation,
ω3 = 0

Substitution of the foregoing value into the first of the above equa-
tions yields ω1 = −1/2. Further, upon substitution of the values of ω1

and ω3 into the second of the above equations, we obtain ω2 =
√

2/2
and hence,

ω =
1
2



−1√

2
0



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(c) Let p′
0 be the position vector of the point P ′

0 on the instantaneous
screw axis lying closest to the origin. Now, in order to find p′

0, we
can resort to eq.(3.72), using point C as a reference, i.e., with c and ċ
playing the roles of a and ȧ in that equation. Moreover, since c = 0,
the expression for p′

0 reduces to

p′
0 =

1
‖ω‖2

Ωċ

where from item (b),

‖ω‖2 =
3
4

while

Ωċ =
12 −√

3
24



√

2
1
0




and hence,

p′
0 =

12 −√
3

18



√

2
1
0




As a verification, p′
0 should be perpendicular to the ISA, as it is,

for the product ωTp′
0 to vanish. Next, the vector representing the

direction of the screw axis is obtained simply as

e =
ω

‖ω‖ =
√

3
3

[−1
√

2 0 ]T

thereby defining completely the instant screw axis.

(d) The acceleration of the centroid of the three given points is given as
follows:

c̈ = [−
√

6
24

, −
√

3
24

, 0]T

Then, matrices P̈, PT P̈, P̈TP, and ṖT Ṗ are readily computed as

P̈ =
1
24



−6 + 4

√
3 +

√
6 −8

√
3 − 2

√
6 6 + 4

√
3 +

√
6

12 − 3
√

2 +
√

3 −2
√

3 −12 + 3
√

2 +
√

3
0 0 0




PT P̈ =
1

144




−21 + 6
√

6 6 − 24
√

3 − 6
√

6 15 + 24
√

3
6 + 24

√
3 − 6

√
6 −12 6 − 24

√
3 + 6

√
6

15 − 24
√

3 6 + 24
√

3 + 6
√

6 −21 − 6
√

6




P̈T P =
1

144




−21 + 6
√

6 6 + 24
√

3 − 6
√

6 15 − 24
√

3
6 − 24

√
3 − 6

√
6 −12 6 + 24

√
3 + 6

√
6

15 + 24
√

3 6 − 24
√

3 + 6
√

6 −21 − 6
√

6



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ṖT Ṗ =
1

144




21 − 6
√

6 −6 + 6
√

6 −15
−6 + 6

√
6 12 −6 − 6

√
6

−15 −6 − 6
√

6 21 + 6
√

6




Now, it is a simple matter to verify that

P̈T P + 2ṖT Ṗ + PT P̈ = O

and hence, the given accelerations are compatible.

(e) Ω is defined as the unique skew-symmetric matrix whose vector is ω,
the latter having been computed in item (b). Thus,

Ω =
1
2




0 0
√

2
0 0 1

−√
2 −1 0


 , Ω2 =

1
4




−2 −√
2 0

−√
2 −1 0

0 0 −3


 ,

Ω2P =
1
24




−6 +
√

6 −2
√

6 6 +
√

6
−3

√
2 +

√
3 −2

√
3 3

√
2 +

√
3

0 0 0




Hence,

P̈ − Ω2P =
1
24




4
√

3 −8
√

3 4
√

3
12 0 −12
0 0 0




The angular-acceleration vector is thus computed from

Dω̇ = vect(P̈ − Ω2P)

where D was computed in item (b), while

vect(P̈ − Ω2P) =
1
12




3√
3

3 + 2
√

3




and hence, letting ω̇i denote the ith component of ω̇ in the given
coordinate frame, we obtain

1
12

(2
√

3ω̇1 + 3ω̇3) =
1
4

1
12

(
√

3ω̇1 + 3ω̇2 +
√

3ω̇3) =
√

3
12

1
12

(3 + 2
√

3)ω̇3 =
3 + 2

√
3

12
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which yields

ω̇ =




0
0
1




thereby completing the solution. Note that ω̇ lies, in fact, in the
nullspace of matrix (P̈ − Ω2Ṗ)T .
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8
Kinematics of Complex Robotic
Mechanical Systems

8.1 Introduction

Current robotic mechanical systems, encountered not only in research lab-
oratories but also in production or construction environments, include fea-
tures that deserve a chapter apart. Generically, we will call here complex
robotic mechanical systems all such systems that do not fall in the cate-
gory of those studied in Chapter 4. Thus, the complex systems at hand are
manipulators either of (i) the serial type that do not allow a decoupling of
the positioning and the orientation problems, or (ii) of the parallel type,
besides other systems than manipulators, such as dextrous hands, walking
machines, and rolling robots. While redundant manipulators of the serial
type fall within this category as well, we will leave these aside, for their
redundancy resolution calls for a more specialized background than what
we have either assumed or given here.

A special feature of serial manipulators of the kind studied here is that
they can admit up to sixteen inverse kinematics solutions. Such manipula-
tors are now in operation in industry, an example of which is the TELBOT
System, shown in Fig. 8.1, which features all its six motors on its base, the
motion and force transmission taking place via concentric tubes and bevel
gears. This special feature allows TELBOT to have unlimited angular dis-
placements at its joints, no cables traveling through its structure and no
deadload on its links by virtue of the motors (Wälischmiller and Li, 1996).
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288 8. Kinematics of Complex Robotic Mechanical Systems

FIGURE 8.1. The TELBOT System (Courtesy of Wälischmiller GmbH, Meers-
burg, Germany.)

8.2 The IKP of General Six-Revolute Manipulators

As shown in Chapter 4, the IKP of six-revolute manipulators of the most
general type leads to a system of six independent equations in six unknowns.
This is a highly nonlinear algebraic system whose solution posed a chal-
lenge to kinematicians for about two decades and that was not considered
essentially solved until the late eighties. Below we give a short historical
account of this problem.

Pieper (1968) reported what is probably the earliest attempt to formu-
late the inverse kinematic problem of six-axis serial manipulators in a uni-
variate polynomial form. He showed that decoupled manipulators, studied
in Section 4.4, and a few others, allow a closed-form solution of their in-
verse kinematics. However, apart from the simple architectures identified by
Pieper, and others that have been identified more recently (Mavroidis and
Roth, 1992), a six-axis manipulator does not admit a closed-form solution.
Attempts to derive the minimal characteristic polynomial for this manip-
ulator were reported by Duffy and Derby (1979), Duffy and Crane (1980),
Albala (1982), and Alizade et al. (1983), who derived a 32nd-degree poly-
nomial, but suspected that this polynomial was not minimal, in the sense
that the manipulator at hand might not be able to admit up to 32 postures
for a given set of joint variables. Tsai and Morgan (1985) used a technique
known as polynomial continuation (Morgan, 1987) to solve numerically the
nonlinear displacement equations, cast in the form of a system of quadratic
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8.2 The IKP of General Six-Revolute Manipulators 289

equations. These researchers found that no more than 16 solutions were to
be expected. Briefly stated, polynomial continuation consists basically of
two stages, namely, reducing first the given problem to a system of poly-
nomial equations; in the second stage, a continuous path, also known as a
homotopy in mathematics, is defined with a real parameter t that can be
regarded as time. The continuous path takes the system of equations from
a given initial state to a final one. The initial state is so chosen that all
solutions to the nonlinear system in this state are either apparent or much
easier to find numerically than those of the originally proposed system.
The final state of the system is the actual system to be solved. The initial
system is thus deformed continuously into the final state upon varying its
set of parameters, as t varies from 0 to 1. At each continuation step, a set
of initial guesses for each of the solutions already exists, for it is simply the
solution to the previous continuation step. Moreover, finding the solutions
at the current continuation step is done using a standard Newton method
(Dahlquist and Björck, 1974).

Primrose (1986) proved conclusively that the problem under discussion
admits at most 16 solutions, while Lee and Liang (1988) showed that the
same problem leads to a 16th-degree univariate polynomial. Using different
elimination procedures, as described in Subsection 8.2.3 below, Li1 (1990)
and Raghavan and Roth (1990, 1993) devised different procedures for the
computation of the coefficients of the univariate polynomial. While the
inverse kinematics problem can be considered basically solved, research on
finding all its solutions safely and quickly still continued into the nineties
(Angeles et al., 1993). Below we describe two approaches to solving this
problem: first, the bivariate-equation approach, introduced in (Angeles and
Etemadi Zanganeh, 1992) is described; then, the methods of Raghavan
and Roth (1990, 1993) and of Li (1990), aimed at reducing the kinematic
relations to a single univariate polynomial, are described.

8.2.1 Preliminaries

We start by recalling a few definitions that were introduced in Chapter 4.
In Section 4.2 we introduced the matrices Qi and the vectors ai defining
the coordinate transformations from frame Fi+1 to frame Fi or, equiva-
lently, the displacement of the former to the latter. The 4×4 homogeneous
matrix—see Section 2.5—transforming coordinates in Fi+1 to coordinates
in Fi is given by

Ai =
[
Qi ai

0T 1

]
(8.1)

1N. B. Lee and Li of the references in this chapter are one and the same
person, namely, Dr.-Ing. Hongyou Lee (a.k.a. Dr.-Ing. Hongyou Li).
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where 0 is the 3-dimensional zero vector, while the 3 × 3 rotation matrix
Qi and the 3-dimensional vector ai were defined in Chapter 4 as

Qi ≡



ci −λisi µisi

si λici −µici

0 µi λi


 , ai ≡




aici

aisi

bi


 (8.2)

In the above definitions we used the Denavit-Hartenberg notation, whereby
ai is the distance—and hence, ai ≥ 0—between the Zi- and the Zi+1-axes,
while bi is the offset—−∞ < bi < +∞—between the Xi- and Xi+1-axes,
as measured along the positive direction of the Zi-axis. Moreover,

ci ≡ cos θi , si ≡ sin θi , λi ≡ cosαi , µi ≡ sin αi

where θi is the ith joint angle, measured between Xi and Xi+1 in the
positive direction of Zi, and αi denotes the twist angle between Zi and
Zi+1, for i = 1, . . . , 6. Furthermore, the factoring of matrix Qi, introduced
in eq.(4.2a), is reproduced below for quick reference:

Qi = ZiXi (8.3)

where Xi and Zi denote two pure reflections, namely,

Xi ≡



1 0 0
0 −λi µi

0 µi λi


 , Zi ≡




ci si 0
si −ci 0
0 0 1


 (8.4a)

XT
i = Xi = X−1

i ZT
i = Zi = Z−1

i (8.4b)

the foregoing reflections thus being both symmetric and self-inverse—see
Section 2.4. As a consequence,

QT
i = XiZi

We will also use the partitionings of Qi displayed in eq.(4.12), namely,

Qi ≡ [pi qi ui ] =




mT
i

nT
i

oT
i


 (8.5)

A quick comparison between eqs.(8.2) and (8.5) leads to the relations below:

mi =




ci

−λisi

µisi


 , ni =




si

λici

−µici


 , oi =




0
µi

λi


 (8.6)

We also have

ui ≡ Qie = [ µisi −µici λi ]T , e ≡ [ 0 0 1 ]T (8.7a)

bi = QT
i ai , ai = Qibi , bi ≡ [ ai biµi biλi ]T (8.7b)
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Moreover, using eqs.(8.4a) and (8.7b), we can write

bi = Xigi , gi = [ ai 0 bi ]T (8.8)

From eqs.(8.3), (8.4a–b), (8.7b), and (8.8), we have

gi ≡ Ziai = Xibi (8.9)

Furthermore, vector xi, of eq.(4.11), is reproduced below for quick refer-
ence:

xi ≡
[

cos θi

sin θi

]
(8.10)

A useful concept in this context is that of bilinear form: An algebraic
expression of the form Auv, where u and v are two given scalar variables and
A is a constant, is said to be bilinear in u and v. Likewise, an expression of
the form Au2v2 is said to be biquadratic in u and v, with similar definitions
for bicubic, trilinear, and multilinear forms. Moreover, the same definitions
apply to vector and matrix expressions, as pertaining to their components
and, correspondingly, their scalar entries. Now we have

Lemma 8.2.1 Let matrix A be skew-symmetric and B be defined as the
similarity transformation of A given below:

B ≡ QiAQT
i (8.11)

where Qi was defined in eq.(4.1e) and A is assumed to be independent of
θi. Then, B is linear in xi.

Proof: This result follows from relation (2.138). Indeed, as the reader can
readily verify, B is skew-symmetric as well, and the product Bv, for any
3-dimensional vector v, can be expressed in terms of b, defined as vect(B)—
see Section 2.3.3. That is,

Bv = b × v

If a denotes vect(A), then a and b, by virtue of eq.(8.11) and the results
of Section 2.6, obey the relation

b = Qia

Hence,
Bv = (Qia) × v

thereby showing that the resulting product is linear in xi, q.e.d.
Moreover, let

τi ≡ tan
(

θi

2

)
(8.12a)

which allows us to write the identities below, as suggested by Li (1990):

si − τici ≡ τi, τisi + ci ≡ 1 (8.12b)
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FIGURE 8.2. Partitioning of the manipulator loop into two subloops.

We now define p as the vector directed from the origin of F1 to the
operation point (OP) P of Fig. 8.2. Moreover, we let l ≡ [ lx, ly, lz ]T ,
m ≡ [ mx, my, mz ]T , and n ≡ [ nx, ny, nz ]T represent the three mutually
perpendicular unit vectors parallel to the X7, Y7 and Z7 axes, respectively,
of F7, which has its origin at P—a layout of these axes is depicted in Fig. 4.3
for a decoupled manipulator. Hence, the pose of the EE is described in the
base frame F1, by means of the homogeneous transformation A given as

A =
[

Q p
0T 1

]
, Q ≡ [ l m n ] =




lx mx nx

ly my ny

lz mz nz




In the next step, we derive a set of scalar equations in five unknowns, upon
eliminating one of these, that is fundamental in computing the solution of
the problem at hand.

Derivation of the Fundamental Closure Equations

Given the geometric parameters of the manipulator and the pose of the EE
with respect to the base frame, we derive the displacement equations of
the manipulator, a.k.a. the loop-closure equations, from which all unknown
angles are to be computed. We start by recalling the (matrix) rotation
and (vector) translation equations of the general six-axis manipulator, as
displayed in eqs.(4.9a & b), and reproduced below for quick reference:
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Q1Q2Q3Q4Q5Q6 = Q (8.13a)
a1 + Q1a2 + Q1Q2a3 + . . . + Q1Q2Q3Q4Q5a6 = p (8.13b)

The use of 4×4 homogeneous transformations in the ensuing preparatory
work will ease the suitable recasting of the foregoing equations. Thus, by
using the matrices Ai of eq.(8.1) in the above rotation and translation
equations, we end up with a 4 × 4 matrix equation, namely,

A1A2A3A4A5A6 = A (8.14)

The unknown variables in the above equations are the joint angles {θi}6
1;

the IKP thus consists in solving the closure equations for these unknowns.
Equation (8.14)—or, equivalently, eqs.(8.13a) and (8.13b)—comprises 12
scalar equations and four identities; however, among these equations, only
six are independent, for the columns (or the rows) of a rotation matrix must
form an orthonormal—mutually orthogonal and of unit magnitude—set of
vectors. The orthonormality property of the columns or rows of a rotation
matrix, thus, brings about six scalar constraints.

The basic approach to solving the IKP resorts to disassembling the kine-
matic chain of the manipulator at two joints, e.g., joints 3 and 6, to obtain
two subchains or subloops (Li et al., 1991). The first subchain, as suggested
in the foregoing reference, and depicted in Fig. 8.2, goes from joint 3 to
joint 6 via joints 4 and 5, while the second subchain goes from joint 6 to
joint 3 via the EE and joints 1 and 2. Algebraically, this is equivalent to
rewriting eq.(8.14) in the form

A3A4A5 = A−1
2 A−1

1 AA−1
6 (8.15a)

Note that eq.(8.15a), in component form, leads to




l11(θ3, θ4, θ5) l12(θ3, θ4, θ5) l13(θ3, θ4, θ5) l14(θ3, θ4, θ5)
l21(θ3, θ4, θ5) l22(θ3, θ4, θ5) l23(θ3, θ4, θ5) l24(θ3, θ4, θ5)

l31(θ4, θ5) l32(θ4, θ5) l33(θ4, θ5) l34(θ4, θ5)
0 0 0 1


 =




r11(θ1, θ2, θ6) r12(θ1, θ2, θ6) r13(θ1, θ2) r14(θ1, θ2)
r21(θ1, θ2, θ6) r22(θ1, θ2, θ6) r23(θ1, θ2) r24(θ1, θ2)
r31(θ1, θ2, θ6) r32(θ1, θ2, θ6) r33(θ1, θ2) r34(θ1, θ2)

0 0 0 1


 (8.15b)

where lij and rij denote nontrivial components of the left- and the right-
hand sides, respectively, of eq.(8.15a). Note that, because of the forms of
matrices Qi, whose third rows are independent of θi, the third row of the
left-hand side of eq.(8.15a) or, equivalently, of eq.(8.15b), is independent of
θ3.
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It should be apparent that other pairs of joints can be used to disassemble
the kinematic chain of the manipulator into two subchains; what matters
is that none of the two subchains contain more than three joints; else, the
entries of the homogeneous matrices become unnecessarily complex on one
side of the matrix equation, while the entries of the other side become
unnecessarily simple.

Now we extract one rotation and one translation equation from the 4×4
matrix equation (8.15a), namely,

Q3Q4Q5 = QT
2 QT

1 QQT
6 (8.16a)

Q3(b3 + Q4b4 + Q4Q5b5) = QT
2 QT

1 (p − Qb6) − (b2 + QT
2 b1) (8.16b)

which are kinematically equivalent to eqs.(8.13a & b), but algebraically
much simpler. Note that, in eq.(8.16b), we used eq.(8.7b) to substitute
ai by Qibi. Upon multiplying both sides of eq.(8.16a) from the right by e
and using eqs.(8.7a), we obtain

Q3Q4u5 = QT
2 QT

1 σ6 , σ6 ≡ Qo6 (8.17)

On the other hand, eq.(8.16b) can be cast in the form

Q3(b3 + Q4b4 + Q4Q5b5) = QT
2 QT

1 ρ − (b2 + QT
2 b1) (8.18)

where ρ ≡ p−Qb6. Both sides of eq.(8.17) represent a unit vector parallel
to Z6, in frame F3. Similarly, the left- and the right-hand sides of eq.(8.18)
represent the vector directed from the origin of F3 to the origin of F6,
in frame F3. By adopting the notation of Tsai and Morgan (1985), also
adopted by Raghavan and Roth (1990, 1993), we define four vectors that
will play a key role in the ensuing derivations, namely,

f̃ ≡ f̃ (θ4, θ5) =




f1

f2

f3


 = X3(b3 + Q4b4 + Q4Q5b5) (8.19a)

h̃ ≡ h̃(θ1) =




h1

h2

h3


 = QT

1 ρ − b1 (8.19b)

r̃ ≡ r̃(θ4, θ5) =




r1

r2

r3


 = X3Q4u5 (8.19c)

ñ ≡ ñ(θ1) =




n1

n2

n3


 = QT

1 σ6 (8.19d)

Expressions for the components of the above four vectors are given in Table
8.1, where γi (i = 1, 2, 3), p, q, r, u, v, and w are auxiliary variables. Using
eqs.(8.19a–d), (8.3), (8.4b), (8.8), and (8.9), we can rewrite eqs.(8.17) and
(8.18) in terms of the foregoing vectors, namely,

Z3 f̃(θ4, θ5) = X2[Z2h̃(θ1) − g2] (8.20a)
Z3r̃(θ4, θ5) = X2Z2ñ(θ1) (8.20b)
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Item Expression Item Expression
f1 c4g1 + s4g2 + a3 r1 c4m1 + s4m2

f2 −λ3(s4g1 − c4g2) r2 −λ3(s4m1 − c4m2)
+ µ3g3 + µ3m3

f3 µ3(s4g1 − c4g2) r3 µ3(s4m1 − c4m2)
+ λ3g3 + b3 + λ3m3

g1 c5a5 + a4 m1 s5µ5

g2 −s5λ4a5 + µ4b5 m2 c5λ4µ5 + µ4λ5

g3 s5µ4a5 + λ4b5 + b4 m3 −c5µ4µ5 + λ4λ5

h1 c1p + s1q − a1 n1 c1u + s1v

h2 −λ1(s1p − c1q) n2 −λ1(s1u − c1v)
+ µ1(r − d1) + µ1w

h3 µ1(s1p − c1q) n3 µ1(s1u − c1v)
+ λ1(r − d1) + λ1w

p −lxa6 − (mxµ6 + nxλ6)d6 u mxµ6 + nxλ6

+ px

q −lya6 − (myµ6 + qnyλ6)d6 v myµ6 + nyλ6

+ py

r −lza6 − (mzµ6 + nzλ6)d6 w mzµ6 + nzλ6

+ pz

TABLE 8.1. Expressions for the components of vectors f̃ , h̃, r̃, and ñ

These six scalar equations play a key role in deriving the fundamental clo-
sure equations in five unknowns that are needed to solve the problem at
hand. We describe first a straightforward—albeit not the computationally
most suitable—method that we call the direct method, to derive the equa-
tions of interest.

Four vectors are defined in terms of the two sides of each of eqs.(8.20a
& b), namely,

f ≡ f(θ3, θ4, θ5) = Q3(b3 + Q4b4 + Q4Q5b5) = Z3f̃(θ4, θ5) (8.21a)
g ≡ g(θ1, θ2) = QT

2 QT
1 ρ − (b2 + QT

2 b1)
= QT

2 (QT
1 ρ − b1) − b2 = QT

2 (QT
1 ρ − b1) − X2g2

= X2[Z2h̃(θ1) − g2] (8.21b)
h ≡ h(θ3, θ4, θ5) = Q3Q4u5 = Z3r̃(θ4, θ5) (8.21c)
i ≡ i(θ1, θ2) = QT

2 QT
1 σ6 = X2Z2ñ(θ1) (8.21d)

where we made use of eq.(8.8). Further, in light of definitions (8.17), it
is apparent that f and g are, in fact, the third columns, excluding their
bottom entries, of the left- and the right-hand side matrices of eq.(8.15b).
Likewise, h and i are the fourth columns of the same matrices. Vectors g
and i are thus free of θ6.

Now, the six scalar equations (8.20a & b) are expressed in terms of f , g,
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h, and i, namely,

f = g or




fx(θ3, θ4, θ5)
fy(θ3, θ4, θ5)

fz(θ4, θ5)


 =




gx(θ1, θ2)
gy(θ1, θ2)
fz(θ1, θ2)


 (8.22a)

h = i or




hx(θ3, θ4, θ5)
hy(θ3, θ4, θ5)

hz(θ4, θ5)


 =




ix(θ1, θ2)
iy(θ1, θ2)
iz(θ1, θ2)


 (8.22b)

It should be noted that h and i are both unit vectors. Thus, each side of
eq.(8.22b) is subjected to a quadratic constraint, i.e.,

h · h = 1, i · i = 1

and hence, out of the above six scalar equations, only five are indepen-
dent. However, the number of unknowns in these six equations is also five.
Therefore, eqs.(8.22a) and (8.22b) suffice to determine the five unknown
joint angles contained therein.

We can now create eight new equations with the same power products2

as f , g, h and i. The new equations are constructed using the products
below:

f · f = g · g (8.22c)
f · h = g · i (8.22d)

f × h = g × i (8.22e)
(f · f)h − 2(f · h)f = (g · g)i − 2(g · i)g (8.22f)

It is noteworthy that eq.(8.22f) is derived by first equating the reflection3

of vector h onto a plane normal to f with its counterpart, namely, the
reflection of vector i onto a plane normal to g. The final form of eq.(8.22f)
is obtained upon clearing denominators in the foregoing reflection equation.

Equations (8.22a–f) amount to 14 scalar equations in five unknown joint
variables {θi}5

1. These are the fundamental closure equations sought. Some
facts pertaining to the degree of the two sides of eqs.(8.22c–f) are proven
below:

Fact 8.2.1 The inner products f ·f and f ·h are both free of x3 and bilinear
in {xi }5

4, while their counterparts g · g and g · i are linear in x1.

Proof:

2By power product we mean terms with their coefficients deleted; for example,
the power products of the polynomial 5x2y + 3xz + 9y2 + 4z = 0 are the terms
x2y, xz, y2 and z.

3Neither Li nor Raghavan and Roth disclosed the geometric interpretation of
this fourth equation, first proposed by Lee and Liang (1988).
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f · f ≡ ‖Q3(b3 + Q4b4 + Q4Q5b5)‖2

≡ ‖b3 + Q4b4 + Q4Q5b5‖2

≡
5∑
3

‖bi‖2 + 2bT
3 Q4(b4 + Q5b5) + 2bT

4 Q5b5

whose rightmost-hand side is clearly free of x3 and is bilinear in {xi }5
4.

Similarly,

f · h ≡ (b3 + Q4b4 + Q4Q5b5)T QT
3 Q3Q4u5

≡ bT
3 Q4u5 + bT

4 u5 + bT
5 QT

5 u5

whose rightmost-hand side is clearly bilinear in x4 and x5, except for the
last term, which contains two factors that are linear in x5, and hence, can
be suspected to be quadratic. However, Q5b5 is, in fact, a5, while u5 is the
last column of Q5, the suspicious term thus reducing to a constant, namely,
b5 cosα5. Similar proofs for g ·g and g · i will be given presently. Moreover,

Fact 8.2.2 Vector f ×h is trilinear in {xi }5
3, while its counterpart, g× i,

is bilinear in {xi }2
1.

Proof: If we want the cross product of two vectors in frame A but have
these vectors in frame B, then we can proceed in two ways: either (i)
transform each of the two vectors into A-coordinates and perform the cross
product of the two transformed vectors; or (ii) perform the product of the
two vectors in B-coordinates and transform the product vector into A-
coordinates. Obviously, the two products will be the same, which allows us
to write

f × h ≡ Q3 [b3 × (Q4u5) + (Q4b4) × (Q4u5) + (Q4Q5b5) × (Q4u5)]
≡ Q3{b3 × (Q4u5) + Q4(b4 × u5) + Q4 [(Q5b5) × u5)]}

whose rightmost-hand side is apparently trilinear in {xi }5
3, except for the

term in brackets, which looks quadratic in x5. A quick calculation, however,
reveals that this term is, in fact, linear in x5. Indeed, from the definitions
given in eqs.(4.3c & d) and (8.5) we have

(Q5b5) × u5 ≡ a5 × u5 ≡



a5λ5s5 + b5µ5c5

−a5λ5c5 + b5µ5s5

−a5µ5




which is obviously linear in x5. The proof for the counterpart product, g×i,
parallels the foregoing proof, and will be given below.

Fact 8.2.3 Vector (f · f)h− 2(f ·h)f is trilinear in {xi }5
3, its counterpart,

(g · g)i − 2(g · i)g, being bilinear in {xi }2
1.
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Proof: First, we write the (elongated or contracted) reflection of vector h
in the form

(f · f)h − 2(f · h)f ≡ Q3v

where

v ≡
(

5∑
3

‖bi‖2

)
Q4u5 − 2[(uT

5 Q4b3)b3 + (uT
5 b4)b3 + (uT

5 b4)Q4b4

+ (uT
5 Q5b5)b3 + (uT

5 Q5b5)Q4b4 + (uT
5 Q5b5)Q4Q5b5] + 2w

with all terms on the right-hand side, except for w, which will be defined
presently, clearly bilinear in x4 and x5. Vector w is defined as

w ≡ [ ]1 + [ ]2 + [ ]3

each of the foregoing brackets being expanded below:

[ ]1 ≡ [(bT
3 Q4b4)Q4u5 − (uT

5 QT
4 b3)Q4b4

]

≡ Q4(u5bT
4 QT

4 − b4uT
5 QT

4 )b3

≡ Q4(u5bT
4 − b4uT

5 )QT
4 b3

which thus reduces to a product including the factor QiAQT
i , with A being

the term in parentheses in the rightmost-hand side of the last equation. This
is obviously a skew-symmetric matrix, and Lemma 8.2.1 applies, i.e., the
rightmost-hand side of the last equation is linear in x4. This term is, hence,
bilinear in x4 and x5. Furthermore,

[ ]2 ≡ [(bT
4 Q5b5)Q4u5 − (uT

5 b4)Q4Q5b5

]

≡ Q4

[
(bT

5 QT
5 b4)u5 − (uT

5 b4)Q5b5

]

≡ Q4(u5bT
5 QT

5 − Q5b5uT
5 )b4

which is clearly linear in x4, but it is not obvious that it is also linear
in x5. To show that the latter linearity also holds, we can proceed in two
ways. First, note that the term in parentheses is the skew-symmetric matrix
u5aT

5 −a5uT
5 , whose vector, a5 ×u5, was already proven to be linear in x5.

Since the vector of a skew-symmetric matrix fully defines that matrix—see
Section 2.3—the linearity of the foregoing term in x5 follows immediately.
Alternatively, we can expand the aforementioned difference, thereby deriv-
ing

u5aT
5 − a5uT

5 =




0 a5µ5 −a5λ5c5 + b5µ5s5

−a5µ5 0 −a5λ5s5 − b5µ5c5

a5λ5c5 − b5µ5s5 a5λ5s5 + b5µ5c5 0




which is clearly linear in x5. Moreover, its vector can be readily identified
as a5 × u5, as calculated above. Finally,
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[ ]3 ≡ [(bT
3 Q4Q5b5)Q4u5 − (uT

5 QT
4 b3)Q4Q5b5

]

≡ Q4(u5bT
5 QT

5 − Q5b5uT
5 )QT

4 b3

≡ Q4(u5aT
5 − a5uT

5 )QT
4 b3

this bracket thus reducing to a product including the factor QiAQT
i , with

A skew-symmetric. Hence, the foregoing expression is linear in x4, ac-
cording to Lemma 8.2.1. Moreover, the matrix in parentheses was already
proven to be linear in x5, thereby completing the proof for vector (f · f)h−
2(f ·h)f . The proof for vector (g ·g)i−2(g · i)g parallels the foregoing proof
and will be given presently.

Finally, we have one more result that will be used presently:

Fact 8.2.4 If a scalar, vector, or matrix equation is linear in xi, then upon
substitution of ci and si by their equivalent forms in terms of τi ≡ tan(θi/2),
the foregoing equation becomes quadratic in τi.

Proof: We shall show that this result holds for a scalar equation, with
the extension to vector and matrix equations following directly. The scalar
equation under discussion takes on the general form

Aci + Bsi + C = 0

where the coefficients A, B, and C do not contain θi. Upon substituting
ci and si in terms of τi ≡ tan(θi/2), and multiplying both sides of that
equation by 1 + τ2

i , we obtain

A(1 − τ2
i ) + 2Bτi + C(1 + τ2

i ) = 0

which is clearly quadratic in τi, q.e.d.
The foregoing proof follows immediately for vector and matrix equations.

Moreover, if a scalar, vector, or matrix equation is of degree k in xi, upon
introducing the same trigonometric substitution, the said equation becomes
of degree 2k in τi.

Expressions for the right-hand sides of eqs.(8.22c–d) are given below:

g · g =
2∑
1

‖bi‖2 + ‖ρ‖2 − 2ρT Q1(Q2b2 + b1) + 2bT
1 Q2b2 (8.23a)

g · i = σT
6 (ρ − Q1Q2b2 − Q1b1) (8.23b)

g × i = QT
2 QT

1 (ρ × σ6) − b2 × QT
2 QT

1 σ6 − QT
2 (b1 × QT

1 σ6) (8.23c)

(g · g)i − 2(g · i)g =

(
2∑
1

‖bi‖2 + ‖ρ‖2

)
QT

2 QT
1 σ6

−2[(σT
6 ρ)(QT

2 QT
1 ρ − b2 − QT

2 b1) + (σT
6 Q1Q2b2)b2

+(σT
6 Q1b1)b2 + (σT

6 Q1b1)QT
2 b2] + 2w′ (8.23d)
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In deriving and simplifying the above relations, we use the invariance
relations—-see Section 2.7—of the dot and cross products, i.e., for any
arbitrary vectors u and v, we have

(Qiu)T (Qiv) = uTv

(Qiu) × (Qiv) = Qi(u × v)

All the terms on the right-hand sides of eqs.(8.23a–d), except for w′, are
clearly bilinear in x1 and x2. This bilinearity also holds for the last term
in eq.(8.23d), i.e., w′, which can be expressed in the form

w′ ≡ [ ]′1 + [ ]′2 + [ ]′3 (8.24)

Each of the above brackets is given as

[ ]′1 ≡ [(σT
6 Q1Q2b2)QT

2 QT
1 ρ − (ρQ1Q2b2)QT

2 QT
1 σ6]

= (QT
2 QT

1 )(ρσT
6 − σT

6 ρ)(QT
2 QT

1 )b2 (8.25a)
[ ]′2 ≡ [(bT

1 Q2b2)QT
2 QT

1 σ6 − (σT
6 Q1Q2b2)QT

2 b1]
= QT

2 [(QT
1 σ6)b1 − b1(QT

1 σ6)T ]Q2b2 (8.25b)
[ ]′3 ≡ [(σT

6 Q1b1)QT
2 QT

1 ρ − (ρTQ1b1)QT
2 QT

1 σ6]
= QT

2 [QT
1 (ρσT

6 − σ6ρ
T )Q1]b1 (8.25c)

According to Lemma 8.2.1, the terms in the right-hand sides of relations
(8.25a–c) are all bilinear in x1 and x2.

It is noteworthy that the third components of vectors f ×h and (f · f)h−
2(f ·h)f , as well as f ·f and f ·h, are all free of θ3. Hence, among the 14 scalar
equations, i.e., eqs.(8.22a–f), six are free of θ3. Casting all 14 equations in
vector form results in the fundamental closure equations:

Px45 = Rx12 (8.26)

where P and R are 14 × 9 and 14 × 8 matrices, respectively. Moreover,
the entries of P are linear in x3, while those of R are independent of the
joint angles. In addition, the 9- and 8-dimensional vectors x45 and x12 are
defined as

x45 ≡ [ s4s5 s4c5 c4s5 c4c5 s4 c4 s5 c5 1 ]T (8.27a)

x12 ≡ [ s1s2 s1c2 c1s2 c1c2 s1 c1 s2 c2 ]T (8.27b)

Various approaches have been reported to solve the fundamental clo-
sure equations for the unknown joint angles, but all methods fall into two
categories: (i) purely numerical approaches, whereby no attempt is made
to reduce the number of unknowns (Angeles, 1985), or the reduction is
rather limited, from six to four unknowns (Tsai and Morgan, 1985); and
(ii) elimination approaches, whereby unknowns are eliminated until a re-
duced number of equations in a reduced number of unknowns is derived.
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We focus here only in the second category. Of these, we have essentially
two classes: (a) the bivariate-equation approach and (b) the univariate-
polynomial approach. As the names indicate, the former aims at reducing
all fundamental closure equations to a system of equations in only two un-
knowns; the latter, in turn, aims at reducing the fundamental equations
to one single equation in one unknown. Moreover, that single equation,
being polynomial in nature, is termed the characteristic polynomial of the
problem at hand. The polynomial is derived upon substituting the cosine
and sine functions of the unknown angle, say θx, by (1− T 2)/(1 + T 2) and
2T/(1 + T 2), respectively, with T ≡ tan(θx/2). This transformation is well
known as the tan-half trigonometric identities.

The transformation of the original problem given in terms of trigono-
metric functions of the unknown angles into a polynomial equation in T is
essential from a conceptual viewpoint, for this transformation makes appar-
ent that the problem under study admits an integer number of solutions,
namely, the degree of the characteristic polynomial. On the other hand,
the same transformation is not trouble-free. Indeed, the mapping from θx

into T apparently includes a singularity at θx = π, whereby T → ∞. The
outcome is that, if one of the solutions is θx = π, then the characteristic
polynomial admits at least one solution at infinity, which is reflected in a
deflation of the polynomial. This phenomenon was made apparent in Ex-
ample 4.4.3, where a quartic characteristic polynomial appeared as cubic
because of one solution at infinity. The untold analyst may thus be misled
to believing that, in the presence of a solution at infinity, the IKP at hand
admits a smaller number of solutions than it actually does. Furthermore,
in the neighborhood of θx = π, one of the solutions is extremely large
in absolute value, which thus gives rise to numerical inaccuracies, gener-
ically referred to as ill-conditioning. As a matter of fact, the problem of
polynomial-root finding has been identified as ill-conditioned by numerical
analysts for some time (Forsythe, 1970).

In order to cope with the foregoing shortcomings of the tan-half iden-
tities, the author and his team devised an alternative means to solving
the problem at hand and other similar ones in computational kinematics
(Angeles and Etemadi Zanganeh, 1992a, b). In this approach, termed here
the bivariate-equation approach, the 14 equations are reduced to a system
of three bivariate trigonometric equations in the sines and cosines of two
of the unknown angles. These equations are then plotted in the plane of
the two unknowns, thus obtaining three contours, whose intersections yield
the real values of the two unknowns. As a matter of fact, only two such
equations would suffice; however, it turns out that the underlying reduc-
tion cannot be accomplished without the introduction of spurious roots,
which thus have to be eliminated. The spurious solutions are graphically
identified as points of intersection of the contours where only two of these
intersect. Actual solutions are those where the three contours intersect.

Now, to derive the bivariate equations, we have to eliminate three of the
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five unknowns from the 14 fundamental closure equations. The elimination
takes place in two steps: first, the 14 equations are reduced to six equations
free of θ1 and θ2; then, the foregoing six equations are reduced to three
bivariate equations in θ4 and θ5, i.e., free of θ3. We describe the elimination
procedure below.

8.2.2 The Bivariate-Equation Approach

The simplest means of eliminating θ1 and θ2 is brute force. In this vein, we
use eight of the 14 scalar equations of eq.(8.26) to solve for x12 in terms of
θ3, θ4 and θ5. To do so, we partition the foregoing equation into two groups
of six and eight equations, namely,

Pux45 = Rux12 (8.28a)
Plx45 = Rlx12 (8.28b)

where Pu and Pl are 6 × 9 and 8 × 9 submatrices of P. Likewise, Ru and
Rl are 6 × 8 and 8 × 8 submatrices of R. In the above partitioning, the
equations must be grouped such that Rl be nonsingular. Using eqs.(8.28a
& b), six scalar equations free of θ1 and θ2 can be derived, namely,

Γx45 = 06 , Γ ≡ Pu − Ru(R−1
l Pl) (8.29)

where 06 is the 6-dimensional zero vector. Since the entries of the 6 × 9
matrix Γ are all linear in x3, the entry in the ith row and jth column of
the foregoing matrix, γij , can be expressed in the form

γij = aijc3 + bijs3 + cij ; i = 1, . . . , 6 ; j = 1, . . . , 9 (8.30)

In the above relation, coefficients aij , bij , and cij are independent of the
joint variables. Using eq.(8.30), we can expand eq.(8.29) and then rearrange
the terms in the ith equation, thus obtaining

Aic3 + Bis3 + Ci = 0 ; i = 1, . . . , 6 (8.31a)

where, for i = 1, . . . , 6, we have

Ai ≡ ai1s4s5 + ai2s4c5 + ai3c4s5 + ai4c4c5 + ai5s4 + ai6c4

+ai7s5 + ai8c5 + ai9 (8.31b)
Bi ≡ bi1s4s5 + bi2s4c5 + bi3c4s5 + bi4c4c5 + bi5s4 + bi6c4

+bi7s5 + bi8c5 + bi9 (8.31c)
Ci ≡ ci1s4s5 + ci2s4c5 + ci3c4s5 + ci4c4c5 + ci5s4 + ci6c4

+ci7s5 + ci8c5 + ci9 (8.31d)

Moreover, let
yi ≡ [ ci si 1 ]T , i = 3, 4, 5 (8.32)
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Now the six scalar equations (8.31a) are cast in vector form as

Dy3 = 06 (8.33a)

In the above equation, D is a 6× 3 matrix whose entries are bilinear in x4

and x5.
Note that, if the terms in eq.(8.31a) are exchanged, one can readily come

up with other forms of eq.(8.33a), namely,

D̂y4 = 06 (8.33b)
D̃y5 = 06 (8.33c)

where D̂ and D̃ are both 6×3 matrices whose entries are bilinear in (x3,x5)
and (x3,x4), respectively. Hence, any one of eqs.(8.33a, b, or c) can be used
to eliminate one unknown joint variable, θ3, θ4, or θ5, respectively, thereby
deriving the bivariate equations.

In order to derive the bivariate equations, we choose eq.(8.33a), from
which we eliminate θ3. Indeed, from definition (8.32), y3 	= 0, and hence, D
must be rank-deficient, which means that every one of its 20—the number
of combinations of six objects taking three at a time—3× 3 determinants,
obtained by picking up three of its six rows, should vanish. We need, in
principle, only two of these determinants to obtain two independent equa-
tions in θ4 and θ5. Actually, to be on the safe side, we should impose the
vanishing of all 20 possible determinants, which would yield, correspond-
ingly, 20 contours in the θ4-θ5 plane; the intersections of all contours would
then yield the real (θ4, θ5) pairs of values which render D rank-deficient.
Nevertheless, the visualization of the intersections of all 20 contours would
be physically impossible, and so, we have to compromise with a smaller
number. As we have experienced, two of the above determinants are prone
to yield spurious solutions, for which reason we pick up three such deter-
minants and derive three equations in θ4 and θ5. Each of these equations
describes a contour Ci, for i = 1, 2, 3, in the θ4-θ5 plane,

Ci : Fi(θ4, θ5) = 0, i = 1, 2, 3. (8.34)

Note that, by plotting the three contours in the −π ≤ θi ≤ π region, for
i = 4, 5 , we ensure that no real solutions will be missed.

The intersection points can be detected visually by the user or, automat-
ically, by a suitable vision software. Depending on the method that is used
to detect the intersection points, a numerical nonlinear solution code can be
employed to refine each solution to the desired accuracy. In this way, two of
the unknown joint angles, θ4 and θ5, are already solved for, the remaining
four unknowns being determined uniquely, as described presently. Before
discussing the computation of the remaining joint angles, we describe the
univariate-polynomial approach, as proposed by Raghavan and Roth and
by Li, Woernle and Hiller.
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8.2.3 The Univariate-Polynomial Approach

We describe here two procedures leading to one single univariate 16th-
degree polynomial equation, which is the characteristic polynomial of the
IKP at hand. The two procedures bear many similarities, but they also
involve remarkable differences that warrant separate discussions.

The Raghavan and Roth Procedure

A sophisticated elimination procedure was proposed by Raghavan and Roth
(1990; 1993). Their procedure is based on eqs.(8.20a & b), but their 14
closure equations are different, as explained below.

At the outset, both sides of eqs.(8.20a & b) are multiplied from the left
by X−1

2 ≡ XT
2 ≡ X2; then, the two equations thus resulting are rearranged

in the forms

X2Z3f̃ + g2 = Z2h̃ (8.35)
X2Z3r̃ = Z2ñ (8.36)

Now, four vectors, the counterparts of those introduced in eq.(8.21a), are
defined as

f ≡ X2Z3 f̃ + g2 = X2(Z3 f̃ + b2) (8.37a)
g ≡ Z2h̃ (8.37b)
h ≡ X2Z3r̃ (8.37c)
i ≡ Z2ñ (8.37d)

Note that the first two components of f and h are trilinear in x3, x4,
and x5, while their third components are bilinear in x4 and x5, and free
of θ3. On the other hand, the first two components of g and i are bilinear
in x1 and x2, while their third components are linear in x1 and free of θ2.
Similar to the direct method, six scalar equations are obtained as

f = g (8.38a)
h = i (8.38b)

Moreover, eight more scalar equations are obtained in the forms

f · f = g · g (8.38c)
f · h = g · i (8.38d)

f × h = g × i (8.38e)
(f · f)h − 2(f · h)f = (g · g)i − 2(g · i)g (8.38f)

The third components of the two vectors on the right-hand sides of eqs.(8.38e
& f), and the terms on the right-hand sides of eqs.(8.38c & d) are free of
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θ2 and linear in x1. As proven by Raghavan and Roth in the above ref-
erences, the eight foregoing equations have the same power products as f ,
h, g, and i. Now, Raghavan and Roth’s 14 fundamental closure equations,
eqs.(8.38a–f), are cast in the form

Px45 = Rx12 (8.39)

where P and R are 14× 9 and 14× 8 matrices, respectively. Moreover, the
entries of P are linear in x3, while those of R are independent of the joint
angles. Furthermore, R has the structure below:

R ≡




× × × × 0 0 × ×
× × × × 0 0 × ×
0 0 0 0 × × 0 0
× × × × 0 0 × 0
× × × × 0 0 0 ×
0 0 0 0 × × 0 0
0 0 0 0 × × 0 0
0 0 0 0 × × 0 0
× × × × 0 0 × 0
× × × × 0 0 0 ×
0 0 0 0 × × 0 0
× × × × 0 0 × ×
× × × × 0 0 × ×
0 0 0 0 × × 0 0




(8.40)

In the above display, all nonzero entries are denoted by × and rows are
written according to the order of appearance in the 14 fundamental scalar
equations, i.e., in the order of eqs.(8.38a–f). This special structure of matrix
R is then exploited to eliminate the joint angles θ1 and θ2 in an efficient
way.

Based on the structure of R, Raghavan and Roth define two groups of
six and eight equations in the form

Pux45 = Cx1 (8.41a)
Plx45 = Ax̃12 (8.41b)

where C is a 6×2 constant matrix that is formed by the nonzero entries in
rows 3, 6, 7, 8, 11, and 14 of matrix R. A is, in turn, an 8×6 matrix whose
entries are all functions of the data, while x45 was defined in eq.(8.27a),
and x̃12 is the 6-dimensional vector defined as

x̃12 ≡ [ s1s2 s1c2 c1s2 c1c2 s2 c2 ]T (8.42)

Any two of the six scalar equations in eq.(8.41a) can now be used to solve
for x1, the resulting expression then being substituted into the remaining
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four equations of the same group. This is done by first partitioning the six
scalar equations as

Cux1 = du (8.43a)
Clx1 = dl (8.43b)

where Cu and Cl are 2 × 2 and 4 × 2 submatrices of C, respectively, with
du and dl being the corresponding 2- and 4-dimensional vectors that result
from Pux45. If eq.(8.43a) is solved for x1 and the result is substituted into
eq.(8.43b), we obtain four equations free of θ1 and θ2, namely,

Γ4x45 ≡ ClC−1
u du − dl = 04 , Γ4 ≡ ClC−1

u (Pu)2 − (Pu)4 (8.44a)

in which Γ4 is a 4 × 9 matrix whose entries are linear in x3, while (Pu)2

and (Pu)4 are 2× 9 and 4× 9 submatrices of matrix Pu, respectively. The
above set of equations is now cast in the form

D1y3 = 04 (8.44b)

with D1 defined as a 4 × 3 matrix whose entries are bilinear in x4 and x5,
while 04 is the 4-dimensional zero vector, and y3 was defined generically
in eq.(8.32). In the partitioning of C, Cu is chosen with nonzero entries in
the third and sixth rows of matrix R, i.e.,

Cu =
[

µ1p −µ1q
µ1u −µ1v

]
(8.45a)

Hence, C−1
u is readily obtained as

C−1
u =

1
µ1(uq − pv)

[−v q
−u p

]
(8.45b)

In general, Cu must be chosen such that it is nonsingular, which may
require a reordering of eqs(8.41a).

Additional equations free of θ1 and θ2 can be derived from any six of the
eight equations in eq.(8.41b), which can be used to solve for x̃12; the expres-
sions thus resulting are then substituted into the remaining two equations.
In this way, two additional equations free of θ1 and θ2 would be obtained.
However, this elimination process is not suitable for symbolic computations.
Instead, Raghavan and Roth (1990) derived the two additional equations in
a terser form. This is done by finding two independent linear combinations
of the eight equations (8.41b) that render identically zero all terms in θ1

and θ2. The left-hand sides of these equations are given as

φ1(θ3, θ4, θ5) ≡ µ2
1

2a1
[(f · f )hx − 2(f · h)fx] − µ2

1

2a1
δ1hx +

µ2
1

a1
δ2fx

−λ1µ1(f × h)x + µ1wfy − µ1(r − b1)hy (8.46a)
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φ2(θ3, θ4, θ5) ≡ µ2
1

2a1
[(f · f)hy − 2(f · h)fy] − λ1µ1(f × h)y

−µ1wfx + µ1(r − b1)hx +
µ2

1

a1
δ2fy − µ2

1

2a1
δ1hy (8.46b)

while the right-hand sides are

ψ1 ≡ µ2
1

2a1
[(g · g)ix − 2(g · i)gx] − µ2

1

2a1
δ1ix +

µ2
1

a1
δ2gx

−λ1µ1(g × i)x + µ1wgy − µ1(r − b1)iy (8.46c)

ψ2 ≡ µ2
1

2a1
[(g · g)iy − 2(g · i)gy] − λ1µ1(g × i)y

−µ1wgx + µ1(r − b1)ix +
µ2

1

a1
δ2gy − µ2

1

2a1
δ1iy (8.46d)

On the other hand, hx, ix, fx and gx represent the first components of
vectors h, i, f , and g, respectively, the other components being defined
likewise. Furthermore, Raghavan and Roth derive δ1 and δ2 as

δ1 ≡ p2 + q2 + (r − b1)2 − a2
1

δ2 ≡ pu + qv + (r − b1)w

Upon substitution of g and i, as given by eqs.(8.37b & d), respectively, into
eqs.(8.46c & d), and introduction of the definitions given in Table 8.1, it
turns out that both ψ1 and ψ2 vanish identically, i.e.,

ψ1 = 0 and ψ2 = 0

Also note that, in deriving expressions (8.46a & b) and (8.46c & d), we
assume that a1 	= 0. However, a1 vanishes in many cases, the foregoing
procedure thus becoming inapplicable. One way of coping with this case
is to go one step behind Raghavan and Roth’s procedure and redefine, for
k = 1, 2,

φk(θ3, θ4, θ5) ←− a1φk(θ3, θ4, θ5);

and
ψk ←− a1ψk

i.e.,

φ1(θ3, θ4, θ5) ≡ µ2
1

2
[(f · f)hx − 2(f · h)fx] − µ2

1

2
δ1hx +

µ2
1

a1
δ2fx

−a1λ1µ1(f × h)x + a1µ1wfy − a1µ1(r − b1)hy (8.47a)
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φ2(θ3, θ4, θ5) ≡ µ2
1

2
[(f · f)hy − 2(f · h)fy] − a1λ1µ1(f × h)y − a1µ1wfx

+ a1µ1(r − b1)hx + µ2
1δ2fy − µ2

1

2
δ1hy (8.47b)

ψ1 ≡ µ2
1

2
[(g · g)ix − 2(g · i)gx] − µ2

1

2
δ1ix + µ2

1δ2gx

−a1λ1µ1(g × i)x + a1µ1wgy − a1µ1(r − b1)iy (8.48a)

ψ2 ≡ µ2
1

2
[(g · g)iy − 2(g · i)gy] − a1λ1µ1(g × i)y

−a1µ1wgx + a1µ1(r − b1)ix + µ2
1δ2gy − µ2

1

2
δ1iy (8.48b)

Under their new definitions, apparently, ψ1 and ψ2 also vanish. Once φ1

and φ2 are equated to zero, two equations are obtained that can be cast in
the form

Γ2x45 = 02 (8.49)

or equivalently,
D2y3 = 02 (8.50)

where 02 is the 2-dimensional zero vector, Γ2 is a 2×9 matrix whose entries
are linear in x3, and D2 is a 2 × 3 matrix whose entries are bilinear in x4

and x5.
The two eqs.(8.44a) and (8.49) thus involve a total of six scalar equations

free of θ1 and θ2, and can be combined to yield a system of six equations
trilinear in x3, x4, and x5, namely,

Σx45 = 06 (8.51a)

where Σ is a 6 × 9 matrix whose entries are linear in x3, and 06 is the 6-
dimensional zero vector. Now, the tan-half trigonometric identities relating
si and ci with τi ≡ tan(θi/2), for i = 4, 5, are substituted into eq.(8.51a).
Upon multiplying the two sides of the equation thus resulting by (1+τ2

4 )(1+
τ2

5 ), Raghavan and Roth obtained

Σ′x′
45 = 06 (8.51b)

where Σ′ is a 6 × 9 matrix that is linear in x3, while x′
45 is defined as

x′
45 ≡ [ τ2

4 τ2
5 τ2

4 τ5 τ2
4 τ4τ

2
5 τ4τ5 τ4 τ2

5 τ5 1 ]T

If the same trigonometric identities, for i = 3, are now substituted into
eq.(8.51b), and then the first four scalar equations of this set are multiplied
by (1+τ2

3 ) to clear denominators, the equation thus resulting takes the form

Σ′′x′
45 = 06 (8.51c)
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In the above equations, Σ′′ is a 6 × 9 matrix whose first four rows are
quadratic in τ3, while its last two rows are apparently rational functions
of τ3. However, as reported by Raghavan and Roth, the determinant of
any 6 × 6 submatrix of Σ′′ is, in fact, an 8th-degree polynomial in τ3

and not a rational function of the same. Moreover, in order to eliminate
τ4 and τ5, they resort to dialytic elimination (Salmon, 1964), introduced
in this book in Subsection 4.5.3 and in Exercise 4.13. This elimination
procedure is further discussed in Subsection 8.2.3, in connection with the
Li, Woernle, and Hiller method, and in Section 8.3 in connection with
parallel manipulators.

In applying dialytic elimination, the two sides of the system of equations
appearing in eq.(8.51c) are first multiplied by τ4; then, the system of equa-
tions thus obtained is adjoined to the original system, thereby deriving a
system of 12 linear homogeneous equations in x̃45, namely,

Sx̃45 = 012 (8.51d)

where 012 is the 12-dimensional zero vector, while the 12-dimensional vector
x̃45 is defined as

x̃45 ≡ [ τ3
4 τ2

5 τ3
4 τ5 τ3

4 τ2
4 τ2

5 τ2
4 τ5 τ2

4 τ4τ
2
5 τ4τ5 τ4 τ2

5 τ5 1 ]T

(8.51e)
Furthermore, the 12 × 12 matrix S is defined as

S ≡
[
G
K

]

its 6 × 12 blocks G and K taking on the forms

G ≡ [Σ′′ O63 ] , K ≡ [O63 Σ′′ ]

with O63 defined as the 6 × 3 zero matrix.
Now, in order for eq.(8.51d) to admit a nontrivial solution, the determi-

nant of its coefficient matrix must vanish, i.e.,

det(S) = 0 (8.52)

The determinant of S is the characteristic equation sought. This determi-
nant turns out to be a 16th-degree polynomial in τ3. Moreover, the roots
of this polynomial give the values of τ3 corresponding to the 16 solutions of
the IKP. It should be noted that, using the same procedure, one can also
derive this polynomial in terms of either τ4 or τ5 if the associated vector in
eq.(8.51d) is written as x35 or x34, respectively. Consequently, the entries
of matrix Σ would be linear in either x4 or x5.

The Li, Woernle, and Hiller Procedure

At the outset, the factoring of Qi given in eq.(4.1c) and the identities first
used by Li (1990), namely, eqs.(8.12b), are recalled. Additionally, Li defines
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a matrix Ti as

Ti ≡


−τi 1 0
1 τi 0
0 0 1




Hence,

TiCi ≡ Ui =




τi 1 0
1 −τi 0
0 0 1




with Ci defined in eq.(4.1b). Furthermore, we note that the left-hand sides
of the four vector equations (8.22a, b, e & f) are of the form Q3v, where
v is a 3-dimensional vector independent of θ3. Upon multiplication of the
above-mentioned equations from the left by matrix T3, Li and co-authors
obtained a new set of equations, namely,

U3 f̂ = T3g (8.53a)
U3r̂ = T3i (8.53b)

U3(f̂ × r̂) = T3(g × i) (8.53c)

U3

[
(f · f)r̂ − 2(f · h)f̂

]
= T3 [(g · g)i − 2(g · i)g] (8.53d)

where f̂ and r̂ are defined as

f̂ ≡ Λ3(b3 + Q4b4 + Q4Q5b5) (8.54)
r̂ ≡ Λ3(Q4u5) (8.55)

with Λi defined, in turn, in eq.(4.1c).
Because of the form of matrices T3 and U3, the third of each of the

four vector equations (8.53a–d) is identical to its counterpart appearing
in eqs.(8.38a, b, e & f). That is, if we denote by either vi or (v)i the ith
component of any 3-dimensional vector v, the unchanged equations are

f̂3 = g3 (8.56a)
r̂3 = i3 (8.56b)

(f̂ × r̂)3 = (g × i)3 (8.56c)

(f · f)r̂3 − 2(f · h)f̂3 = (g · g)i3 − 2(g · i)g3 (8.56d)

all of which are free of θ3. Furthermore, six additional equations linear in
τ3 will be derived by multiplying both sides of eqs.(8.56a–d) and of (8.22c
& d) by τ3, i.e.,

τ3f̂3 = τ3g3 (8.57a)
τ3r̂3 = τ3i3 (8.57b)
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τ3(f̂ × r̂)3 = τ3(g × i)3 (8.57c)

τ3[(f · f)r̂3 − 2(f · h)f̂3] = τ3[(g · g)i3 − 2(g · i)g3] (8.57d)
τ3(f · f) = τ3(g · g) (8.57e)
τ3(f · h) = τ3(g · i) (8.57f)

We have now 20 scalar equations that are linear in τ3, namely, the 12
eqs.(8.53a–d), plus the six equations (8.57a–f) and the two scalar equations
(8.22c & d). Moreover, the left-hand sides of the foregoing 20 equations are
trilinear in τ3, x4, and x5, while their right-hand sides are trilinear in τ3,
x1, and x2. These 20 equations can thus be written in the form

Ax = β (8.58a)

where the 20 × 16 matrix A is a function of the data only, while the 20-
dimensional vector β is trilinear in τ3, x1, and x2, the 16-dimensional vector
x being defined, in turn, as

x ≡ [τ3c4c5 τ3c4s5 τ3s4c5 τ3s4s5 τ3c4 τ3s4 τ3c5 τ3s5

c4c5 c4s5 s4c5 s4s5 c4 s4 c5 s5]T (8.58b)

Next, matrix A and vector β are partitioned as

A ≡
[
AU

AL

]
, β ≡

[
βU

βL

]
(8.59)

where AU is a nonsingular 16 × 16 matrix, AL is a 4 × 16 matrix, vector
βU is 16-dimensional, and vector βL is 4-dimensional. Moreover, the two
foregoing matrices are functions of the data only. Thus, we can solve for x
from the first 16 equations of eq.(8.58a) in the form

x = A−1
U βU

Upon substituting the foregoing value of x into the four remaining equa-
tions of eq.(8.58a), we derive four equations free of x, namely,

ALA−1
U βU = βL (8.60)

In eq.(8.60) the two matrices involved are functions of the data only,
while the two vectors are trilinear in τ3, x1, and x2. These equations are
now cast in the form

(Aic2 + Bis2 + Ci)τ3 + Dic2 + Eis2 + Fi = 0, i = 1, 2, 3, 4 (8.61a)

where all coefficients Ai, . . . , Fi are linear in x1. Next, Li and co-authors
substitute c2 and s2 in the foregoing equations by their equivalents in terms
of τ2 ≡ tan(θ2/2), thereby obtaining, for i = 1, 2, 3, 4,

Ciiτ
2
2 τ3 + 2Biτ2τ3 + Aiiτ3 + Fiiτ

2
2 + 2Eiτ2 + Dii = 0 (8.61b)
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with the definitions

Aii ≡ Ai + Ci (8.61c)
Cii ≡ Ci − Ai (8.61d)
Dii ≡ Di + Fi (8.61e)
Fii ≡ Fi − Di (8.61f)

Further, τ2 and τ3 are both eliminated dialytically from the four equations
(8.61a). To this end, both sides of all four equations (8.61b) are multiplied
by τ2, which yields

Ciiτ
3
2 τ3 + 2Biτ

2
2 τ3 + Aiiτ2τ3 + Fiiτ

3
2 + 2Eiτ

2
2 + Diiτ2 = 0 (8.61g)

We have now eight equations that are linear homogeneous in the 8-
dimensional nonzero vector z defined as

z ≡ [ τ3
2 τ3 τ2

2 τ3 τ3
2 τ2τ3 τ2

2 τ3 τ2 1 ]T (8.61h)

and hence, the foregoing 8-dimensional system of equations takes on the
form

Mz = 0 (8.62)

where the 8 × 8 matrix M is simply

M ≡




0 C11 0 2B1 F11 A11 2E1 D11

0 C22 0 2B2 F22 A22 2E2 D22

0 C33 0 2B3 F33 A33 2E3 D33

0 C44 0 2B4 F44 A44 2E4 D44

C11 2B1 F11 A11 2E1 0 D11 0
C22 2B2 F22 A22 2E2 0 D22 0
C33 2B3 F33 A33 2E3 0 D33 0
C44 2B4 F44 A44 2E4 0 D44 0




Now, since z is necessarily nonzero, eq.(8.62) should admit nontrivial
solutions, and hence, matrix M should be singular, which leads to the
condition below:

det(M) = 0 (8.63)

Thus, considering that all entries of M are linear in x1, det(M) is octic
in x1, and hence, eq.(8.63) is equally octic in x1. By virtue of Fact 8.2,
then, eq.(8.63) is of 16th degree in τ1, i.e., it takes on the form

16∑
0

akτk
1 = 0 (8.64)

which is the characteristic equation sought, whose roots provide up to 16
real values of θ1 for the IKP at hand.
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8.2.4 Numerical Conditioning of the Solutions

We recall here the concept of condition number of a square matrix (Golub
and Van Loan, 1989), as introduced in Section 4.9. In this subsection we
stress the relevance of the concept in connection with the accuracy of the
computed solutions of the general IKP.

The concept of condition number of a square matrix is of the utmost im-
portance because it measures the roundoff-error amplification upon solving
a system of linear equations having that matrix as coefficient. The con-
dition number of a matrix, discussed in Section 4.9, can be computed in
many possible ways. For the purpose at hand, it will prove convenient to
work with the condition number defined in terms of the Frobenius norm,
as given in eqs.(4.126a–c).

In the context of the bivariate-equation approach, we can intuitively
argue that the accuracy in the computation of a solution is dictated by
the angle at which the two contours giving a solution intersect. Thus, the
solutions computed most accurately are those determined by contours in-
tersecting at right angles. On the contrary, the solutions computed least
accurately are those obtained by tangent contours. We shall formalize this
observation in the discussion below.

We distinguish between the condition number of a matrix and the condi-
tioning of a solution of a nonlinear system of equations. We define the latter
as the condition number of the Jacobian matrix of the system, evaluated
at that particular solution.

For concreteness, let

f1(x1, x2) = 0
f2(x1, x2) = 0

be a system of two nonlinear equations in the two unknowns x1 and x2.
Moreover, the Jacobian matrix of this system is defined as

F ≡
[

(∇f1)T

(∇f2)T

]
(8.65)

where ∇fk denotes the gradient of function fk(x1, x2), defined as

∇fk ≡
[

∂fk/∂x1

∂fk/∂x2

]
(8.66)

It is to be noted that multiplying each of the two given equations by a
scalar other than zero does not affect its solutions, each Jacobian column
being, then, correspondingly multiplied by the same scaling factor. To ease
matters, we will assume henceforth that each of the above equations has
been properly scaled so as to render its gradient a unit vector in the plane
of the two unknowns. In order to calculate the condition number of F,
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which determines the conditioning of the solutions, we calculate first FFT

and its inverse, namely,

FFT =
[

1 ∇f1 · ∇f2

∇f1 · ∇f2 1

]
≡
[

1 cos γ
cos γ 1

]

and

FFT =
1

sin2 γ

[
1 − cosγ

− cosγ 1

]

where γ is the angle at which the contours intersect. The condition number
κ of F can then be computed as

κ =
1

| sin γ| , −π ≤ γ ≤ π (8.67)

which means that for the best possible solutions from the numerical condi-
tioning viewpoint, the two contours cross each other at right angles, whereas
at singular configurations, the contours are tangent to each other. The
reader may have experienced that, when solving a system of two linear
equations in two unknowns with the aid of drafting instruments, the solu-
tion becomes fuzzier as the two lines representing those equations become
closer and closer to parallel.

8.2.5 Computation of the Remaining Joint Angles

So far we have reduced the system of displacement equations to either
a system of bivariate trigonometric equations in the sines and cosines of
two joint angles—the bivariate-equation approach—or one single univariate
polynomial in the tangent of half one of the joint angles—the univariate-
polynomial approach. In either case, we still need a procedure to compute
the remaining joint angles, which is the subject of the balance of this sub-
section.

The Bivariate-Equation Approach

After all common intersections of the three foregoing contours have been
determined, we have already two of the unknowns, θ4 and θ5, the remaining
four unknowns being calculated uniquely as described presently. First, θ3

can be computed from eq.(8.33a), which can be rewritten in the form

Hx3 = τ (8.68a)

where the 6 × 2 matrix H and the 6-dimensional vector τ are both bilin-
ear in x4 and x5 and hence, known. Although any two of the six equa-
tions (8.68a) suffice, in principle, to determine x3, we should not forget
that these computations will most likely be performed with finite preci-
sion, and hence, roundoff-error amplification is bound to occur. In order
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to keep roundoff errors as low as possible, we recommend to use all the
foregoing six equations and calculate x3 as the least-square approximation
of the overdetermined system (8.68a). This approximation will be, in fact,
the solution of the given system because all six equations are compatible.
Moreover, this approximation can be expressed symbolically in the form

x3 = (HTH)−1HT τ (8.68b)

In practice, the foregoing least-square approximation is computed using an
orthogonalization procedure (Golub and Van Loan, 1989), the explicit or
the numerical inversion of the product HTH being advised against because
of its frequent ill-conditioning. Appendix B outlines a robust numerical
computation of the least-square approximation of an overdetermined sys-
tem of equations using orthogonalization procedures. What is relevant to
our discussion is that eq.(8.68b) determines θ3 uniquely for given values of
θ4 and θ5.

With θ3, θ4 and θ5 known, we can now calculate θ1 and θ2 simultaneously
from eq.(8.26), which we reproduce below in a more suitable form

Rx12 = x345 (8.69)

where R is a 14 × 8 matrix depending only on the problem data, while
x345, defined as

x345 ≡ Px45 (8.70)

is a 14-dimensional vector trilinear in x3, x4, and x5, and hence, is known.
Moreover, matrices P and R as well as vectors x12 and x45 were defined
in eqs.(8.26) and (8.27a & b). Again, we have an overdetermined system,
of 14 equations, in eight unknowns this time, which can best be solved
for x12 using a least-square approach with an orthogonalization procedure.
The unique solution of the overdetermined system at hand can thus be
expressed as

x12 = (RT R)−1RTx345 (8.71)

Note that the solution thus obtained determines x1 and x2 uniquely, the
only remaining unknown being θ6. This unknown is readily computed from
eq.(4.9a). Indeed, the first of the three vector equations represented by this
matrix equation yields

Q1Q2Q3Q4Q5p6 = q (8.72a)

where q denotes the first column of Q, while, according to eq.(8.5), p6

denotes the first column of matrix Q6, i.e.,

p6 ≡



cos θ6

sin θ6

0


 , q ≡




q11

q21

q31


 (8.72b)
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Thus, eq.(8.72a) can be readily solved for p6, i.e.,

p6 = QT
5 QT

4 QT
3 QT

2 QT
1 q (8.73)

thereby obtaining a unique value for θ6 for every set of values of { θk }5
1,

thus completing the solution of the IKP under study.

The Raghavan and Roth Procedure

The most straightforward means of computing θ4 and θ5 in this procedure is
by means of eq.(8.51d), which can be interpreted as an eigenvalue problem
associated with the 12×12 matrix S, and has one known eigenvalue, namely,
0, for its sole variable, θ3, was computed so as to render it singular. Now,
every scientific package offers eigenvalue calculations, whereby the eigen-
vectors are usually produced in a normalized form, i.e., with all eigenvectors
computed as unit vectors. Let, for example, σ be the 12-dimensional eigen-
vector of S corresponding to the zero eigenvalue. In this case, ‖σ‖ = 1, but
x̃45, the solution sought, is obviously of magnitude greater than unity, for
its 12th component, σ12, is exactly 1, according to its definition, eq.(8.51e).
In order to produce (x̃45) from σ, then, all we need is a suitable scaling
of this vector that will yield (x̃45)12 = 1. We thus have that σ12 	= 0—
otherwise, eqs.(8.51d) would be inconsistent—and hence,

x45 =
1

σ12
σ

The outcome will be a set of unique values of θ4 and θ5 for each of the 16
possible values of θ3.

Next, θ1 and θ2 are computed from eq.(8.39), which is rewritten below
in a more suitable form:

Rx12 = x345 (8.74a)

with the the 14-dimensional vector x345 defined as

x345 ≡ Px45 (8.74b)

Since R is a 14× 8 matrix, eq.(8.74a) comprises 14 linear equations in the
eight unknown components of x12. Again, a least-square approach to the
solution of this system yields

x12 = (R
T
R)−1R

T
x345 (8.74c)

the only remaining unknown being θ6, which is computed in exactly the
same way as in the bivariate-equation approach.

The Li, Woernle, and Hiller Procedure

Once θ1 is available, the remaining angles are computed as indicated below:
Equations (8.62) are first rearranged in nonhomogeneous form, i.e., as

Nz′ = n (8.75)
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with the 8 × 7 matrix N and the 7- and 8-dimensional vectors z′ and n
defined as

N ≡




0 C11 0 2B1 F11 A11 2E1

0 C22 0 2B2 F22 A22 2E2

0 C33 0 2B3 F33 A33 2E3

0 C44 0 2B4 F44 A44 2E4

C11 2B1 F11 A11 2E1 0 D11

C22 2B2 F22 A22 2E2 0 D22

C33 2B3 F33 A33 2E3 0 D33

C44 2B4 F44 A44 2E4 0 D44




and

z′ ≡ −




τ3
2 τ3

τ2
2 τ3

τ3
2

τ2τ3

τ2
2

τ3

τ2




, n ≡




D11

D22

D33

D44

0
0
0
0




Now, eq.(8.75) represents an overdetermined linear algebraic system of
eight equations, but only seven unknowns. As usual, we recommend here a
least-square approach to cope with ill-conditioning. In this way, the solution
of eq.(8.75) can be expressed symbolically in the form

z′ = (NTN)−1NTn

With z′ known, both τ2 and τ3, and hence, θ2 and θ3, are known uniquely.
Further, with θ1, θ2, and θ3 known, the right-hand side of eq.(8.58a), β,
is known. Since the coefficient matrix A of that equation is independent
of the joint angles, A is known, and that equation can be solved for vec-
tor x uniquely. Once x is known, the two angles θ4 and θ5 are uniquely
determined, with θ6 the sole remaining unknown; this can be readily deter-
mined, also uniquely, as discussed in connection with the bivariate-equation
approach.

8.2.6 Examples

We solve the examples below using the bivariate-equation approach with
the purpose of helping the reader visualize the real solutions. To this end,
we resort to eq.(8.33a) and thus, produce three determinants ∆i(θ4, θ5),
which, when equated to zero, produce three contours C, for i = 1, 2, 3.
While we can choose these determinants in many possible ways, we do this
by first partitioning the 6× 3 matrix D of eq.(8.33a) into two 3× 3 blocks,
Du being the upper, Dl the lower block, which thus yields

∆1 = det(Du), ∆2 = det(Dl)
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Now, since the determinant is not additive, i.e., det(Du +Dl) 	= det(Du)+
det(Dl), we choose ∆3 as

∆3 ≡ det(Du + Dl)

which is apparently independent of ∆1 and ∆2, thereby obtaining the three
determinants, which, when equated to zero, yield the three contours sought.

Example 8.2.1 In this first example, all inverse kinematic solutions of
the Fanuc Arc Mate manipulator are found for the pose of the end-effector
given below:

Q =




0 1 0
0 0 1
1 0 0


 , p =




130
850
1540




in which p is given in mm and the DH parameters of the manipulator are
given in Table 4.2.

Solution: The solutions are obtained from the intersections of the three
contours C1, C2, and C3, as shown in Fig. 8.3.

Four intersection points can be detected in this figure, which are num-
bered 1, 2, 3, and 4. Moreover, at points 1 and 2 the three contours are
tangent to one another. Tangency indicates the existence of a multiple root
at that point, and hence, a singularity, as discussed in Subsection 4.5.2 in
connection with decoupled manipulators. The numerical values of the joint
angles of the four solutions are given in Table 8.2.

Example 8.2.2 In this example, we discuss the IKP of DIESTRO, the
isotropic six-axis orthogonal manipulator shown in Fig. 4.31 (Williams et
al., 1993). For a meaning of kinematic isotropy, we refer the reader to
Section 4.9. This manipulator has the DH parameters given in Table 4.1.

The pose of the end-effector leading to an isotropic posture, i.e., one
whose Jacobian matrix is isotropic, is defined by the orthogonal matrix Q
and the position vector p displayed below:

Q =




0 −1 0
0 0 −1
1 0 0


 , p =




0
−50
50




with p given in mm. Compute all real inverse kinematics solutions at the
given pose.

TABLE 8.2. Inverse kinematics solutions of the Fanuc Arc Mate manipulator

Sol’n
No. θ1 θ2 θ3 θ4 θ5 θ6

1 & 2 90◦ 90◦ 0◦ 180◦ −180◦ 0◦

3 75.157◦ 15.325◦ 150.851◦ 15.266◦ −103.353◦ 176.393◦

4 90◦ 16.010◦ 153.403◦ −180◦ 100.588◦ 0◦
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1,2

↓
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↙
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θ4 (rad)
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0

1
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FIGURE 8.3. Contours C1, C2, and C3 for the Fanuc Arc Mate manipulator.

Solution: The three contours in the θ4-θ5 plane, as discussed in Subsec-
tion 8.2.2, are plotted in Fig. 8.4a. As this figure shows, the three contours
intersect at two points, those labeled 1 and 2. The contours also intersect
along a curve labelled SS in Fig. 8.4.

In the same figure, the overlapping curve of the three contours represents
a manifold of singular solutions, which means that this manipulator admits
a set of self-motions, i.e., joint motions leaving the end-effector stationary.
These motions can be explained by noticing that when the end-effector is
located at the given pose and the manipulator is postured at joint-variable
values determined by any point on the SS curve, the six links form a Bricard
mechanism (Bricard, 1927). The degree of freedom of a Bricard mechanism
cannot be determined from the well-known Chebyshev-Grübler-Kutzbach
formula (Angeles, 1982), which yields a dof = 0. Here, the one-dof motion
of the mechanism occurs because the six revolute axes can be laid out in
such a way that if they are grouped in two alternating triads, then these
triads intersect. The motion of all six links of the Bricard mechanism then
is constrained to having a zero angular velocity about the line determined
by the two intersection points.

Furthermore, the contours C1 and C2 intersect at right angles at solu-
tion 1, which corresponds to the isotropic posture of the robot. The nu-
merical values of the joint variables for the isolated solutions are given in
Table 8.3.
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2

1

C1

↗

C2

↘
← C3

(SS) →

(SS) →

θ5 (rad)

θ4 (rad)
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(a)

(b) (c)

FIGURE 8.4. Contours C1, C2, and C3 for the DIESTRO manipulator at given
pose: (a) full θ4-θ5 region; (b) a close-up of the apparent contour intersection
at the point of coordinates θ4 = θ5 = π/2; and (c) a close-up of the apparent
contour intersection southwest of solution 2.
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TABLE 8.3. Inverse kinematics solutions of the DIESTRO manipulator

Solution No. θ1 θ2 θ3 θ4 θ5 θ6

1 0◦ 90◦ −90◦ 90◦ −90◦ 180◦

2 180◦ −90◦ 90◦ −90◦ 90◦ 0◦

This example shows interesting features of the inverse kinematics of ma-
nipulators which are not present in manipulators with simpler architec-
tures, such as those with intersecting or parallel consecutive axes. Indeed,
the point of coordinates θ4 = θ5 = π/2 of Fig. 8.4a appears to be an in-
tersection of the three contours, and hence, a solution of the IKP at hand.
A close-up of this point, as displayed in Fig. 8.4b, shows that this point
is indeed an intersection of all three contours, but this point is, in fact, a
double point, i.e., a point at which each contour crosses itself; this gives the
point a special character: When verifying whether this point is a solution
of the problem under study, we tried to solve for x3 from eq.(8.68a), but
then found that matrix H of that equation is rank-deficient, and hence,
does not allow for the calculation of x3. An alternative approach to testing
the foregoing values of θ4 and θ5 is described in Exercise 8.5. In following
this approach, it was found that these values do not yield a solution, and
hence, the intersection point is discarded.

One more point that appears as an intersection of the three contours is
that southwest of solution 2. A close-up of this point, as shown in Fig. 8.4c,
reveals that the three contours do not intersect in that region. In summary,
then, the manipulator at hand admits two isolated solutions at the given
pose and an infinity of solutions along the curve SS.

Example 8.2.3 Here we include an example of a manipulator admitting
16 real inverse kinematics solutions. This manipulator was proposed by Li
(1990), its Denavit-Hartenberg parameters appearing in Table 8.4.

Solution: The foregoing procedure was applied to this manipulator for an
end-effector pose given as

Q =



−0.357279 −0.850000 0.387106
0.915644 −0.237000 0.324694
−0.184246 0.470458 0.862973


 , p =




0.798811
−0.000331
1.200658




TABLE 8.4. DH parameters of Li’s manipulator

i ai (m) bi (m) αi θi

1 0.12 0 −57◦ θ1

2 1.76 0.89 35◦ θ2

3 0.07 0.25 95◦ θ3

4 0.88 -0.43 79◦ θ4

5 0.39 0.5 −75◦ θ5

6 0.93 -1.34 −90◦ θ6
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FIGURE 8.5. Contours C1, C2, and C3 for Li’s manipulator.

where p is given in meters.
The contours for this manipulator at the given EE pose are shown in

Fig. 8.5, the numerical values of the 16 solutions being given in Table 8.5.
Notice that the number of intersections in Fig. 8.5 appears to be 15, rather
than 16. The missing intersection can be explained by the proximity of
solutions 3 and 10, which appear in the same figure as a single intersection.

8.3 Kinematics of Parallel Manipulators

Unlike serial manipulators, their parallel counterparts are composed of
kinematic chains with closed subchains. A very general parallel manipu-
lator is shown in Fig. 8.6, in which one can distinguish two platforms, one
fixed to the ground, B, and one capable of moving arbitrarily within its
workspace, M. The moving platform is connected to the fixed platform
through six legs, each being regarded as a serial manipulator, the leg thus
constituting a six-axis serial manipulator whose base is B and whose end-
effector is M. The whole leg is composed of six links coupled through six
revolutes.

The manipulator shown in Fig. 8.6 is, in fact, too general, and of little use
as such. A photograph of a simpler and more practical manipulator of this
kind, which is used as a flight simulator, is shown in Fig. 1.5, its kinematic
structure being depicted in Fig. 8.7a. In this figure, the fixed platform B is
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TABLE 8.5. Joint angles of Li’s manipulator

Sol’n
No. θ1 θ2 θ3

1 174.083◦ −163.302◦ −164.791◦

2 −159.859◦ −159.324◦ −111.347◦

3 164.800◦ −154.290◦ −85.341◦

4 −148.749◦ −179.740◦ −78.505◦

5 −16.480◦ −10.747◦ −58.894◦

6 −46.014◦ −19.256◦ −46.988◦

7 −22.260◦ −22.431◦ −32.024◦

8 −53.176◦ 26.165◦ 9.103◦

9 −173.928◦ 150.697◦ 47.811◦

10 −41.684◦ −29.130◦ 52.360◦

11 −137.195◦ −156.920◦ 68.306◦

12 −139.059◦ 128.112◦ 96.052◦

13 −22.696◦ 29.214◦ 98.631◦

14 −83.094◦ 57.022◦ 130.976◦

15 1.227◦ −7.353◦ 142.697◦

16 177.538◦ −148.178◦ 159.429◦

Sol’n
No. θ4 θ5 θ6

1 −107.818◦ −155.738◦ 141.281◦

2 120.250◦ 176.596◦ 21.654◦

3 4.779◦ −127.809◦ −101.359◦

4 158.091◦ 148.266◦ 55.719◦

5 −4.164◦ 164.079◦ 5.677◦

6 −120.218◦ −145.864◦ −114.768◦

7 −32.411◦ −172.616◦ −17.155◦

8 145.868◦ 136.351◦ 127.978◦

9 −21.000◦ −40.438◦ −92.284◦

10 6.559◦ −129.124◦ 25.091◦

11 135.685◦ −51.347◦ 147.446◦

12 25.440◦ −7.345◦ −119.837◦

13 −176.071◦ 11.573◦ 170.303◦

14 67.570◦ −10.827◦ −110.981◦

15 −123.878◦ −29.214◦ 149.208◦

16 −148.647◦ −129.278◦ 110.984◦
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FIGURE 8.6. A general six-dof parallel manipulator.

a regular hexagon, while the moving platform M is an equilateral triangle,
as depicted in Fig. 8.7b. Moreover, B is connected to M by five revolutes
and one prismatic pair. Three of the revolutes constitute a spherical joint,
similar to the wrists studied in Section 4.4, while two more constitute a
universal joint, i.e., the concatenation of two revolutes with intersecting
axes. Of the foregoing six joints, only one, the prismatic pair, is actuated.

It is to be noted that although each leg of the manipulator of Fig. 8.7a
has a spherical joint at only one end and a universal joint at the other
end, we represent each leg in that figure with a spherical joint at each
end. Kinematically, the leg depicted in Fig. 8.7a is equivalent to the actual
one, the only difference being that the former appears to have a redundant
joint. We use the model of Fig. 8.7a only to make the drawing simpler. A
more accurate display of the leg architecture of this manipulator appears
in Fig. 8.8.

Because the kinematics and statics of parallel manipulators at large are
beyond the scope of this book, we will limit the discussion to parallel ma-
nipulators of the simplest type.

With regard to the manipulators under study, we can also distinguish be-
tween the inverse and the direct kinematics problems in exactly the same
way as these problems were defined for serial manipulators. The inverse
kinematics of the general manipulator of Fig. 8.6 is identical to that of the
general serial manipulator studied in Section 8.2. In fact, each leg can be
studied separately for this purpose, the problem thus becoming the same
as in that section. For the particular architecture of the manipulator of
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FIGURE 8.7. A six-dof flight simulator: (a) general layout; (b) geometry of its
two platforms.

Fig. 8.7a, in which the actuated joint variables are displacements measured
along the leg axes, the inverse kinematics simplifies substantially and al-
lows for a simple closed-form solution. However, the direct kinematics of the
same manipulator is as challenging as that of the general serial manipulator
of Section 8.2. With regard to the direct kinematics of manipulators of the
type depicted in Fig. 8.7a, Charentus and Renaud (1989) and Nanua et al.
(1990) showed independently that like the inverse kinematics of general six-
axis serial manipulators, the direct kinematics of this manipulator reduces
to a 16th-degree polynomial. Note, however, that the direct kinematics of a
manipulator similar to that of Fig. 8.7a, but with arbitrary locations of the
attachment points of each leg to the moving and fixed platforms, termed
the general platform manipulator, has been the subject of intensive research
(Merlet, 2000). A breakthrough in the solution of the direct kinematics
of platform manipulators of the general type was reported by Raghavan
(1993), who resorted to polynomial continuation, a technique already men-
tioned in Section 8.2, for computing up to 40 poses of M for given leg
lengths of a parallel manipulator with legs of the type depicted in Fig. 8.8,
but with attachment points at both M and B with an arbitrary layout.
What Raghavan did not derive is the characteristic 40th-degree polyno-
mial of the general platform manipulator. Independently, Wampler (1996)
and Husty (1996) devised procedures to derive this polynomial, although
Wampler did not pursue the univariate polynomial approach and preferred
to cast the problem in a form suitable for its solution by means of polyno-
mial continuation. Husty did derive the 40th-degree polynomial for several
examples. In the process, he showed that this polynomial is the underlying
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FIGURE 8.8. A layout of a leg of the manipulator of Fig. 8.7

characteristic polynomial for all manipulators of the platform type, which
simplifies to a lower-degree polynomial for simpler architectures. As a mat-
ter of fact, Lee and Roth (1993) solved the direct kinematics of platform
manipulators for which the attachment points at the base and the moving
platforms are located at the vertices of planar, similar hexagons. These re-
searchers showed that the problem here reduces to a cascade of quadratic
and linear equations. In the particular case in which both polygons are reg-
ular, however, the manipulator degenerates into a movable structure, upon
fixing the leg lengths, and hence, the solution set becomes a continuum.
Lazard and Merlet (1994), in turn, showed that the platform manipulator
originally proposed by Stewart (1965), and known as the Stewart platform,
has a 12th-degree characteristic polynomial. Interestingly, these mechani-
cal systems were first introduced by Gough (1956–1957) for testing tires;
Stewart (1965) suggested their use as flight simulators, an application that
is now well established.

Husty, however, did not show that his 40th-degree polynomial is minimal
in that manipulator architectures are possible that exhibit up to 40 actual
solutions. Dietmaier (1998) did this, by devising an algorithm that would
iteratively increase the number of real solutions of a given architecture.
With this paper, Dietmaier proved conclusively that Husty’s 40th-degree
polynomial is, in fact, minimal. This was rather surprising, for virtually
everybody working in the field expected a minimal polynomial of a degree
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TABLE 8.6. DH Parameters of the leg of Fig. 8.8

i ai bi αi

1 0 0 90◦

2 0 0 90◦

3 0 b3 0◦

4 0 b4 (const) 90◦

5 0 0 90◦

6 0 b6 (const) 0◦

of the form 2n, with n being a positive integer. Notice that, in the cases of
the most general serial six-revolute manipulator and of the flight simulator,
the minimal polynomial is of a degree of this form, with n = 4.

Below we analyze the inverse kinematics of one leg of the manipulator of
Fig. 8.7a, as depicted in Fig. 8.8. The Denavit-Hartenberg parameters of
the leg shown in this figure are given in Table 8.6. It is apparent that the
leg under study is a decoupled manipulator. Its inverse kinematics can be
derived by properly modifying the scheme introduced in Section 4.4, for we
now have a prismatic joint, which is, in fact, the only active joint of this
manipulator. Moreover, by virtue of the underlying design, the active joint
variable, b3, can take on only positive values.

In view of the DH parameters of this manipulator, eq.(4.16) reduces to

Q1Q2(a3 + a4) = c (8.76)

where c denotes the position vector of the center C of the spherical wrist
and, since frames F3 and F4 of the DH notation are related by a pure
transformation, Q3 = 1. Upon equating the squares of the Euclidean norms
of both sides of the foregoing equation, we obtain

‖a3 + a4‖2 = ‖c‖2 (8.77)

where by virtue of the DH parameters of Table 8.6,

‖a3 + a4‖2 = (b3 + b4)2

Now, since both b3 and b4 are positive by construction, eq.(8.77) readily
leads to the desired inverse kinematics solution, namely,

b3 = ‖c‖ − b4 > 0 (8.78)

a result that could have been derived by inspection of Fig. 8.8.
Note that the remaining five joint variables of the leg under study are

not needed for purposes of inverse kinematics, and hence, their calculation
could be skipped. However, in studying the differential kinematics of these
manipulators, these variables will be needed, and so it is convenient to solve
for them now. This is straightforward, as shown below: Upon expansion of
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eq.(8.76), we derive three scalar equations in two unknowns, θ1 and θ2,
namely,

(b3 + b4)s2 = xCc1 + yCs1 (8.79a)
−(b3 + b4)c2 = zC (8.79b)

0 = xCs1 − yCc1 (8.79c)

in which ci and si stand for cos θi and sin θi, respectively, while b3, occurring
in the above equations, is available in eq.(8.78). From eq.(8.79c), θ1 is
derived as

θ1 = tan−1

(
yC

xC

)
(8.80a)

which yields a unique value of θ1 rather than the two lying π radians apart,
for the two coordinates xC and yC determine the quadrant in which θ1 lies.
Once θ1 is known, θ2 is derived uniquely from the remaining two equations
through its cosine and sine functions, i.e.,

c2 = − zC

b3 + b4
, s2 =

xCc1 + yCs1

b3 + b4
(8.80b)

With the first three joint variables of this leg known, the remaining ones,
i.e., those of the “wrist,” are calculated as described in Subsection 4.4.2.
Therefore, the inverse kinematics of each leg admits two solutions, one for
the first three variables and two for the last three. Moreover, since the only
actuated joint is one of the first three, which of the two wrist solutions
is chosen does not affect the value of b3, and hence, each manipulator leg
admits only one inverse kinematics solution.

While the inverse kinematics of this leg is quite straightforward, its direct
kinematics is not. Below we give an outline of the solution procedure for the
manipulator under study that follows the procedure proposed by Nanua et
al. (1990).

In Fig. 8.7a, consider the triangles AiSiBi, for i = 1, 2, 3, where the
subscript i stands for the ith pair of legs. When the lengths of the six legs
are fixed and plate M is removed, triangle AiSiBi can only rotate about
the axis AiBi. Therefore, we can replace the pair of legs of lengths qia and
qib by a single leg of length li, connected to the base plate B by a revolute
joint with its axis along AiBi. The resulting simplified structure, as shown
in Fig. 8.9, is kinematically equivalent to the original structure in Fig. 8.7a.

Now we introduce the coordinate frame Fi, with origin at the attachment
point Oi of the ith leg with the base plate B, according to the convention
below:
For i = 1, 2, 3,

Oi is set at the center of the revolute joint;

Xi is directed from Ai to Bi;

Yi is chosen such that Zi is perpendicular to the plane of the hexagonal
base and points upwards.
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FIGURE 8.9. Equivalent simplified mechanism.

Next, we locate the three vertices S1, S2, and S3 of the triangular plate
with position vectors stemming from the center O of the hexagon. Fur-
thermore, we need to determine li and Oi. Referring to Figs. 8.9 and 8.10,
and letting ai and bi denote the position vectors of points Ai and Bi,
respectively, we have

di = ‖bi − ai‖
ri =

d2
i + q2

ia − q2
ib

2di

li =
√

q2
ia − r2

i

ui =
bi − ai

di

for i = 1, 2, 3, and hence, ui is the unit vector directed from Ai to Bi.
Moreover, the position of the origin Oi is given by vector oi, as indicated
below:

oi = ai + riui, for i = 1, 2, 3. (8.81)
Furthermore, let si be the position vector of Si in frame Fi (Oi, Xi, Yi, Zi).
Then

si =




0
−li cosφi

li sin φi


 , for i = 1, 2, 3 (8.82)
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FIGURE 8.10. Replacing each pair of legs with a single leg.

Now a frame F0 (O, X, Y, Z) is defined with origin at O and axes X and
Y in the plane of the base hexagon, and related to Xi and Yi as depicted
in Fig. 8.11. When expressed in frame F0, si takes on the form

[ si ]0 = [oi ]0 + [Ri ]0si, for i = 1, 2, 3 (8.83)

where [Ri ]0 is the matrix that rotates frame F0 to frame Fi, expressed in
F0, and is given as

[Ri ]0 =




cosαi − sinαi 0
sin αi cosαi 0

0 0 1


 , for i = 1, 2, 3 (8.84)

Referring to Fig. 8.11,

cosαi = ui · i = uix (8.85)
sinαi = ui · j = uiy (8.86)

After substitution of eqs.(8.84)–(8.86) into eq.(8.83), we obtain

[ si ]0 = [oi ]0 + li




uiy cosφi

−uix cosφi

sin φi


 , for i = 1, 2, 3 (8.87)

where oi is given by eq.(8.81).
Since the distances between the three vertices of the triangular plate are

fixed, the position vectors s1, s2, and s3 must satisfy the constraints below:

‖s2 − s1‖2 = a2
1 (8.88a)

‖s3 − s2‖2 = a2
2 (8.88b)

‖s1 − s3‖2 = a2
3 (8.88c)
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FIGURE 8.11. Relation between frames F0 and Fi.

After expansion, eqs.(8.88a–c) take the forms:

D1cφ1 + D2cφ2 + D3cφ1cφ2 + D4sφ1sφ2 + D5 = 0 (8.89a)
E1cφ2 + E2cφ3 + E3cφ2cφ3 + E4sφ2sφ3 + E5 = 0 (8.89b)
F1cφ1 + F2cφ3 + F3cφ1cφ3 + F4sφ1sφ3 + F5 = 0 (8.89c)

where c(·) and s(·) stand for cos(·) and sin(·), respectively, while {Di, Ei, Fi}5
1

are functions of the data only and bear the forms shown below4:

D1 = 2l1(o2 − o1)T Eu1

D2 = −2l2(o2 − o1)T Eu2

D3 = −2l1l2uT
2 u1

D4 = −2l1l2

D5 = ‖o2‖2 + ‖o1‖2 − 2oT
1 o2 + l21 + l22 − a2

1

E1 = 2l2(o3 − o2)T Eu2

E2 = −2l3(o3 − o2)T Eu3

E3 = −2l2l3uT
3 u2

E4 = −2l2l3

E5 = ‖o3‖2 + ‖o2‖2 − 2oT
3 o2 + l22 + l23 − a2

2

4Since all vectors in the 15 coefficients of interest are complanar, they are
regarded as two-dimensional vectors.
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F1 = 2l1(o1 − o3)T Eu1

F2 = −2l3(o1 − o3)T Eu3

F3 = −2l1l3uT
3 u1

F4 = −2l1l3

F5 = ‖o3‖2 + ‖o1‖2 − 2oT
3 o1 + l21 + l23 − a2

3

In the above relations the 2 × 2 matrix E is defined as in eq.(4.100), and
the frame in which the vectors are expressed is immaterial, as long as all
vectors appearing in the same scalar product are expressed in the same
frame. Since expressions for these vectors in F0 have already been derived,
it is just simpler to perform those computations in this frame.

Our next step is to reduce the foregoing system of three equations in
three unknowns to two equations in two unknowns, and hence, obtain two
contours in the plane of two of the three unknowns, the desired solutions
being determined as the intersections of the two contours. Since eq.(8.89a) is
already free of φ3, all we have to do is eliminate φ3 from equations (8.89b)
and (8.89c). To do this, we resort to the usual trigonometric identities
relating cφ3 and sφ3 with tan(φ3/2), in eqs.(8.89b) and (8.89c). After we
have cleared the denominators by multiplying the two foregoing equations
by (1 + τ2

3 ), the equations thus resulting take on the forms

k1τ
2
3 + k2τ3 + k3 = 0 (8.90a)

m1τ
2
3 + m2τ3 + m3 = 0 (8.90b)

where k1, k2, and k3 are linear combinations of sφ2, cφ2, and 1. Likewise,
m1, m2, and m3 are linear combinations of sφ1, cφ1, and 1, namely,

k1 = E1cφ2 − E2 − E3cφ2 + E5

k2 = 2E4sφ2

k3 = E1cφ2 + E2 + E3cφ2 + E5

m1 = F1cφ1 − F2 − F3cφ1 + F5

m2 = 2F4sφ1

m3 = F1cφ1 + F2 + F3cφ1 + F5

Next, we eliminate τ3 from the above equations dialytically, as we did in
Subsection 4.5.3 to find the workspace of a three-axis serial manipulator.
We proceed now by multiplying each of the above equations by τ3 to obtain
two more equations, namely,

k1τ
3
3 + k2τ

2
3 + k3τ3 = 0 (8.90c)

m1τ
3
3 + m2τ

2
3 + m3τ3 = 0 (8.90d)

Further, we write eqs.(8.90a)–(8.90d) in homogeneous form, i.e., as

Φτ 3 = 0 (8.91a)
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with the 4 × 4 matrix Φ and the 4-dimensional vector τ 3 defined as

Φ ≡




k1 k2 k3 0
m1 m2 m3 0
0 k1 k2 k3

0 m1 m2 m3


 , τ 3 ≡




τ3
3

τ2
3

τ3

1


 (8.91b)

Equation (8.91a) constitutes a linear homogeneous system. Moreover, in
view of the form of vector τ 3, we are interested only in nontrivial solutions,
which exist only if det(Φ) vanishes. We thus have the condition

det(Φ) = 0 (8.91c)

Equations (8.89a) and (8.91c) form a system of two equations in two
unknowns, φ1 and φ2. These two equations can be further reduced to a
single 16th-degree polynomial equation (Nanua et al., 1990), as discussed
later on.

In the spirit of the contour method introduced earlier, we plot these
two equations as two contours in the φ1-φ2 plane and determine the de-
sired solutions at points where the two contours intersect. Once a pair of
(φ1, φ2) values is found, φ3 can be uniquely determined from eqs.(8.89b &
c). Indeed, these equations can be arranged in the form:

[
E4sφ2 E2 + E3cφ2

F4sφ1 F2 + F3cφ1

] [
sφ3

cφ3

]
=
[ −E1cφ2 − E5

−F1cφ1 − F5

]

From the above equation, both cφ3 and sφ3 can be found uniquely; with
the foregoing unique values, φ3 is determined uniquely as well.

Knowing the angles φ1, φ2, and φ3 allows us to determine the position
vectors of the three vertices of the mobile plate, s1, s2, and s3, whose
expressions are given by eq.(8.87). Since three points define a plane, the
pose of the end-effector is uniquely determined by the positions of its three
vertices. We illustrate the foregoing procedure with a numerical example
below:

Example 8.3.1 (A Contour-Intersection Approach) Nanua et al.
(1990) studied the direct kinematics of a manipulator of the kind under
analysis. This is a platform manipulator whose base plate has six vertices
with coordinates expressed with respect to the fixed reference frame F0 as
given below, with all data given in meters:

A1 = (−2.9,−0.9), B1 = (−1.2, 3.0)
A2 = ( 2.5, 4.1), B2 = ( 3.2, 1.0)
A3 = ( 1.3,−2.3), B3 = (−1.2,−3.7)

The dimensions of the movable triangular plate are, in turn,

a1 = 2.0, a2 = 2.0, a3 = 3.0
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Determine all possible poses of the moving plate for the dimensions of the
six legs given below:

q1a = 5.0, q1b = 4.5
q2a = 5.5, q2b = 5.0
q3a = 5.7, q3b = 5.5

Solution: After substitution of the given numerical values, eqs.(8.89a) and
(8.91c) become, with ci and si standing for cosφi and sinφi, respectively,

61.848− 36.9561c1 − 47.2376c2 + 33.603c1c2 − 41.6822s1s2 = 0
−28.5721 + 48.6506c1 − 20.7097c2

1 + 68.7942c2 − 100.811c1c2

+35.9634c2
1c2 − 41.4096c2

2 + 50.8539c1c
2
2 − 15.613c2

1c
2
2 − 52.9789s2

1

+67.6522c2s
2
1 − 13.2765c2

2s
2
1 + 74.1623s1s2 − 25.6617c1s1s2

−67.953c2s1s2 + 33.9241c1c2s1s2 − 13.202s2
2

−3.75189c1s
2
2 + 6.13542c2

1s
2
2 = 0

The foregoing equations determine contours C1 and C2 in the φ1-φ2 plane,
which are plotted in Figs. 8.12. Four real solutions are found by superim-
posing C1 and C2, as shown in the above figure. The numerical values of the
solutions, listed in Table 8.7, agree with the published results. Solutions
1 and 2 represent two poses of the triangular plate over the base, while
solutions 3 and 4 are just the reflections of solutions 1 and 2 with respect
to the plane of the base plate. Hence, the geometric symmetry gives rise to
an algebraic symmetry of the solutions.

Example 8.3.2 (The Univariate Polynomial Approach) Reduce the
two equations found in Example 8.3.1, eqs.(8.89a) and (8.91c), to a single
monovariate polynomial equation.

Solution: We first substitute the trigonometric identities relating cφi and
sφi with τi ≡ tan(φi/2), for i = 1, 2, into eqs.(8.89a) and (8.91c). Upon
clearing the denominators by multiplying those equations by (1+τ2

1 )(1+τ2
2 ),

we obtain two polynomial equations in τ1, namely,

G1τ
4
1 + G2τ

3
1 + G3τ

2
1 + G4τ1 + G5 = 0 (8.92)

H1τ
2
1 + H2τ1 + H3 = 0 (8.93)

TABLE 8.7. Solutions for Nanua et al.’s Example

No. φ1 (rad) φ2 (rad) φ3 (rad)
1 0.8335 0.5399 0.8528
2 1.5344 0.5107 0.2712
3 -0.8335 -0.5399 -0.8528
4 -1.5344 -0.5107 -0.2712
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FIGURE 8.12. Contours C1 and C2 for Nanua et al.’s example.

where

G1 = K1τ
4
2 + K2τ

2
2 + K3

G2 = K4τ
3
2 + K5τ2

G3 = K6τ
4
2 + K7τ

2
2 + K8

G4 = K9τ
3
2 + K10τ2

G5 = K11τ
4
2 + K12τ

2
2 + K13

and

H1 = L1τ
2
2 + L2

H2 = L3τ2

H3 = L4τ
2
2 + L5

In the above relations, {Ki}13
1 and {Li}5

1 are all functions of the data. We
now eliminate τ1 from eqs.(8.92) and (8.93), following Bezout’s method,
as given in (Salmon, 1964). To do this, we multiply eq.(8.92) by H1 and
eq.(8.93) by G1τ

2
1 and subtract the two equations thus resulting, which

leads to a cubic equation in τ1, namely,

(G2H1 − G1H2)τ3
1 + (G3H1 − G1H3)τ2

1 + G4H1τ1 + G5H1 = 0 (8.94a)
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Likewise, if eq.(8.92) is multiplied by H1τ1 + H2 and eq.(8.93) by G1τ
3
1 +

G2τ
2
1 and the equations thus resulting are subtracted from each other, one

more cubic equation in τ1 is obtained, namely,

(G1H3 − G3H1)τ3
1 + (G4H1 + G3H2 − G2H3)τ2

1

+(G5H1 + G4H2)τ1 + G5H2 = 0 (8.94b)

Moreover, if we multiply eq.(8.93) by τ1, a third cubic equation in τ1 can
be derived, i.e.,

H1τ
3
1 + H2τ

2
1 + H3τ1 = 0 (8.94c)

Now, eqs.(8.93) and (8.94a–c) constitute a homogeneous linear system of
four equations in the first four powers of τ1, which can be cast in the form

Hτ 1 = 0 (8.95)

where τ 1 ≡ [ τ3
1 τ2

1 τ1 1 ]T and

H ≡




G2H1 − G1H2 G3H1 − G1H3 G4H1 G5H1

G3H1 − G1H3 G3H2 − G2H3 + G4H1 G4H2 + G5H1 G5H2

H1 H2 H3 0
0 H1 H2 H3




In order for eq.(8.95) to admit a nontrivial solution, the determinant of its
coefficient matrix must vanish, i.e.,

det(H) = 0 (8.96)

Given the definitions of {Gk}5
1 and {Hk}3

1, it is apparent that G1, G3, and
G5 are quartic, while G2 and G4 are cubic polynomials in τ2. Likewise,
H1 and H3 are quadratic, while H2 is linear in τ2 as well. As a result, the
highest-degree entries of the first and second rows of H are sextic, while
those of its third and fourth rows are quadratic. The outcome is that det(H)
is of degree 6 + 6 + 2 + 2 = 16, i.e., det(H) is a 16th-degree polynomial
in τ2. This equation, in general, admits up to 16 different solutions. Fur-
thermore, the roots of the polynomial appear either in the form of complex
conjugate pairs or real pairs. In the latter case, each pair represents two
symmetric positions of the mobile platform with respect to the base, i.e.,
for each solution found above the base, another, mirror-imaged, solution
exists below it. This symmetry exists, in general, as long as the six base
attachment points are coplanar.

Other parallel manipulators are the planar and spherical counterparts of
that studied above, and sketched in Figs. 8.13 and 8.14. The direct kine-
matics of the manipulator of Fig. 8.13 was found to admit up to six real
solutions (Gosselin et al., 1992), while the spherical manipulator of Fig. 8.14
has been found to admit up to eight direct kinematic solutions (Gosselin
et al., 1994a, b). A comprehensive account of the simulation and design of
three-dof spherical parallel manipulators, which includes workspace analy-
sis as well, is included in (Gosselin et al., 1995).
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8.3.1 Velocity and Acceleration Analyses of Parallel
Manipulators

Now we proceed to the velocity analysis of the manipulator of Fig. 8.7a.
The inverse velocity analysis of this manipulator consists in determining
the six rates of the active joints, { ḃk }6

1, given the twist of the moving
platform, t. The velocity analysis of a typical leg leads to a relation of the
form of eq.(4.53), namely,

JJ θ̇J = tJ , J = I, II, . . . , VI (8.97a)

where JJ is the Jacobian of the Jth leg, θ̇J is the 6-dimensional joint-
rate vector of the same leg, and tJ is the twist of the moving platform
M, with its operation point defined as the point CJ of concurrency of the
three revolutes composing the spherical joint of attachment of the leg to
the moving platform M, and shown in Fig. 8.8 as C, subscript J indicating
that point C of that figure is different for different legs. We thus have

JJ ≡
[

e1 e2 0 e4 e5 e6

b34e1 × e3 b34e2 × e3 e3 0 0 0

]

J

(8.97b)

tJ =
[

ω
ċJ

]
, b34 ≡ b3 + b4 (8.97c)

where the leg geometry has been taken into account.
Furthermore, from Fig. 8.8, it is apparent that

ċJ = ṗ− ω × rJ (8.98)

with rJ defined as the vector directed from CJ to the operation point P of
the moving platform.

Upon multiplication of both sides of the velocity relation of this leg,
eq.(8.97a), by lTJ from the left, with lJ suitably defined, we obtain a relation
free of all unactuated joint rates. Indeed, a suitable definition of lJ is shown
below:

lJ ≡ [0T eT
3 ]TJ

and hence, on the one hand,

lTJ JJ θ̇J = (ḃ3)J

where the subscript J reminds us that ḃ3 is different for each leg. In order
to ease the notation, and since we have a single variable b3 per leg, we
define henceforth

bJ ≡ (b3)J (8.99a)

and hence, the above relation between tJ and the actuated joint rate of the
Jth leg takes the form

lTJ JJ θ̇J = ḃJ (8.99b)
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On the other hand,
lTJ tJ = (eT

3 )J ċJ

Likewise, we define
(e3)J ≡ eJ (8.100a)

the foregoing relation thus yielding

lTJ tJ ≡ eT
J ċJ (8.100b)

Note that vectors eJ and rJ define uniquely the line along the two attach-
ment points of the Jth leg. Henceforth, this line will be termed the axis of
the Jth leg.

Upon equating the right-hand sides of eqs.(8.99b) and (8.100b), the de-
sired expression for the actuated joint rate is derived, namely,

ḃJ = eT
J ċJ , J = I, II, . . . , VI (8.101a)

That is, the Jth joint rate is nothing but the projection onto the Jth leg
axis of the velocity of point CJ . Furthermore, upon substituting eq.(8.98)
in eq.(8.101a) above, we obtain the relations between the actuated joint
rates and the twist of the moving platform, namely,

ḃJ = [ (eJ × rJ)T eT
J ]
[

ω
ṗ

]
≡ kT

J t (8.101b)

for J = I, II, . . . , VI. Upon assembling all six leg-equations of eq.(8.101b),
we obtain the desired relation between the vector of actuated joint rates
and the twist of the moving platform, namely,

ḃ = Kt (8.102a)

with the 6-dimensional vectors b and t defined as the vector of joint vari-
ables and the twist of the platform at the operation point, respectively.
Moreover, the 6 × 6 matrix K is the Jacobian of the manipulator at hand.
These quantities are displayed below:

b ≡




bI

bII
...

bVI


 , t ≡

[
ω
ṗ

]
, K ≡




(eI × rI)T eT
I

(eII × rII)T eT
II

...
(eVI × rVI)T eT

VI


 (8.102b)

From the above display, it is apparent that each row of K is the transpose
of the Plücker array of the corresponding leg axis, although in axis coordi-
nates, as opposed to the Jacobian matrix J of serial manipulators, whose
columns are the Plücker coordinates of the corresponding joint axis in ray
coordinates. Moreover, in these coordinates, the moment of the leg axis is
taken with respect to the operation point P of M. One more difference
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between the velocity analysis of serial and parallel manipulators is the role
played by the actuator joint rates in the underlying forward and direct
kinematics. In the case of parallel manipulators, this role is changed, for
now we have that the actuator joint rates are given by explicit formulas in
terms of the twist of the moving platform, along with the manipulator ar-
chitecture and configuration. Finding the platform twist requires inverting
matrix K. Moreover, the significance of singularities also changes: When K
becomes singular, some instantaneous motions of the platform are possible
even if all actuated joints are kept locked. That is, a singularity of K is
to be interpreted now as the inability of the manipulator to withstand a
certain static wrench. An extensive analysis of the singularities of parallel
manipulators using line geometry in a form that is known as Grassmann
geometry was reported by Merlet (1989).

Now, the acceleration analysis of the same leg is straightforward. Indeed,
upon differentiation of both sides of eq.(8.102a) with respect to time, one
obtains

b̈ = Kṫ + K̇t (8.103a)

where K̇ takes the form

K̇ =




u̇T
I ėT

I

u̇T
II ėT

I
...

u̇T
VI ėT

VI


 (8.103b)

and uJ is defined as
uJ ≡ eJ × rJ (8.103c)

Therefore,
u̇J = ėJ × rJ + eJ × ṙJ (8.103d)

Now, since vectors rJ are fixed to the moving platform, their time-deriva-
tives are simply given by

ṙJ = ω × rJ (8.103e)

On the other hand, vector eJ is directed along the leg axis, and so, its
time-derivative is given by

ėJ = ωJ × eJ

with ωJ defined as the angular velocity of the third leg link, i.e.,

ωJ = (θ̇1e1 + θ̇2e2)J

the subscript J of the above parentheses reminding us that this angular ve-
locity differs from leg to leg. Clearly, we need expressions for the rates of the
first two joints of each leg. Below we derive the corresponding expressions.
In order to simplify the notation, we start by defining

fJ ≡ (e1)J , gJ ≡ (e2)J (8.103f)
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FIGURE 8.13. A planar parallel manipulator.

FIGURE 8.14. A spherical parallel manipulator.
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Now we write the second vector equation of eq.(8.97a) using the foregoing
definitions, which yields

(θ̇1)J fJ × (bJ + b4)eJ + (θ̇2)JgJ × (bJ + b4)eJ + ḃJeJ = ċJ

where b4 is the same for all legs, since all have identical architectures. Now
we can eliminate (θ̇2)J from the foregoing equation by dot-multiplying its
two sides by gJ , thereby producing

(θ̇1)JgJ × fJ · (bJ + b4)eJ + +gT
J (eJeT

J )ċJ = gT ċJ

where an obvious exchange of the cross and the dot in the above equation
has taken place, and expression (8.101a) for ḃJ has been recalled. Now it
is a simple matter to solve for (θ̇1)J from the above equation, which yields

(θ̇1)J = −gT
J (1− eJeT

J )ċJ

∆J

with ∆J defined as

∆J ≡ (bJ + b4)eJ × fJ · gJ (8.104)

Moreover, we can obtain the above expression for (θ̇1)J in terms of the
platform twist by recalling eq.(8.98), which is reproduced below in a more
suitable form for quick reference:

ċJ = CJt

where t is the twist of the platform, the 3 × 6 matrix CJ being defined as

CJ ≡ [RJ 1 ]

in which RJ is the cross-product matrix of rJ and 1 is the 3 × 3 identity
matrix. Therefore, the expression sought for (θ̇1)J takes the form

(θ̇1)J = − 1
∆J

gT
J (1− eJeT

J )CJt, J = I, II, . . . , VI (8.105a)

A similar procedure can be followed to find (θ̇2)J , the final result being

(θ̇2)J =
1

∆J
fT
J (1− eJeT

J )CJt, J = I, II, . . . , VI (8.105b)

thereby completing the calculations required to obtain the rates of all actu-
ated joints. Note that the unit vectors involved in those calculations, eJ , fJ ,
and gJ , are computed from the leg inverse kinematics, as discussed above.
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Planar and Spherical Manipulators

The velocity analysis of the planar and spherical parallel manipulators of
Figs. 8.13 and 8.14 are outlined below: Using the results of Subsection 4.8.2,
the velocity relations of the Jth leg of the planar manipulator take the form

JJ θ̇J = t, J = I, II, III (8.106)

where JJ is the Jacobian matrix of this leg, as given by eq.(4.105), while
θ̇J is the 3-dimensional vector of joint rates of this leg, i.e.,

JJ ≡
[

1 1 1
ErJ1 ErJ2 ErJ3

]
, θ̇J ≡




θ̇J1

θ̇J2

θ̇J3


 , J = I, II, III

For purposes of kinematic velocity control, however, we are interested
only in the first joint rate of each leg; i.e., all we need to determine in order
to produce a desired twist of the end-effector is not all of the foregoing nine
joint rates, but only θ̇I1, θ̇II1, and θ̇III1. Thus, we want to eliminate from
eq.(8.106) the unactuated joint rates θ̇J2 and θ̇J3, which can be readily
done if we multiply both sides of the said equation by a 3-dimensional
vector nJ perpendicular to the second and the third columns of JJ . This
vector can be most easily determined as the cross product of those two
columns, namely, as

n ≡ jJ2 × jJ3 =
[−rT

J2ErJ3

rJ2 − rJ3

]

Upon multiplication of both sides of eq.(8.106) by nT
J , we obtain

[−rT
J2ErJ3 + (rJ2 − rJ3)T ErJ1

]
θ̇J1 = −(rT

J2ErJ3)ω + (rJ2 − rJ3)T ċ
(8.107)

and hence, we can solve directly for θ̇J1 from the foregoing equation, thereby
deriving

θ̇J1 =
−(rT

J2ErJ3)ω + (rJ2 − rJ3)T ċ
−rT

J2ErJ3 + (rJ2 − rJ3)T ErJ1
(8.108a)

Note that eq.(8.107) can be written in the form

jJ θ̇J1 = kT
J t, J = I, II, III (8.108b)

with jJ and kJ defined, for J = I, II, III, as

jJ ≡ (rJ2 − rJ3)TErJ1 − rT
J2ErJ3,

kJ ≡ [ rT
J2ErJ3 (rJ2 − rJ3)T ]T

If we further define
θ̇ ≡ [ θ̇I1 θ̇II2 θ̇III3 ]T
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and assemble all three foregoing joint-rate-twist relations, we obtain

Jθ̇ = Kt (8.109)

where J and K are the two manipulator Jacobians defined as

J ≡ diag(jI , jII , jIII ), K ≡



kT
I

kT
II

kT
III


 (8.110)

Expressions for the joint accelerations can be readily derived by differenti-
ation of the foregoing expressions with respect to time.

The velocity analysis of the spherical parallel manipulator of Fig. 8.14
can be accomplished similarly. Thus, the velocity relations of the Jth leg
take on the form

JJ θ̇J = ω, J = I, II, III (8.111)

where the Jacobian of the Jth leg, JJ , is defined as

JJ ≡ [ eJ1 eJ2 eJ3 ]

while the joint-rate vector of the Jth leg, θ̇J , is defined exactly as in the
planar case analyzed above. Again, for kinematic velocity control purposes,
we are interested only in the actuated joint rates, namely, θ̇I1, θ̇II1, and
θ̇III1. As in the planar case, we can eliminate θ̇J2 and θ̇J3 upon multiplica-
tion of both sides of eq.(8.111) by a vector nJ perpendicular to the second
and the third columns of JJ . An obvious definition of this vector is, then,

nJ ≡ eJ2 × eJ3

The desired joint-rate relation is thus readily derived as

jJ θ̇J1 = kT
J ω, J = I, II, III (8.112)

where jJ and kJ are now defined as

jJ ≡ eJ1 × eJ2 · eJ3 (8.113a)
kJ ≡ eJ2 × eJ3 (8.113b)

The accelerations of the actuated joints can be derived, again, by differen-
tiation of the foregoing expressions.

We can then say that in general, parallel manipulators, as opposed to
serial ones, have two Jacobian matrices.

8.4 Multifingered Hands

Shown in Fig. 8.15 is a three-fingered hand with fingers A, B, and C, each
supplied with three revolute joints. Furthermore, each finger carries two
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revolutes of parallel axes that are normal to the axis of the third one. Thus,
each finger comprises three links, the one closest to the palm P being of
virtually zero length and coupled to P via a revolute joint. Of the other
two, that in contact with the object O is the distal phalanx, the other being
the proximal phalanx. Moreover, the fingers can be either hard or soft; if
the latter, then contact takes place over a finite area; if the former, then
contact takes place over a point, and hence, hard fingers can exert only
force and no moment on the manipulated object. Soft fingers can exert
both force and moment. For the sake of conciseness, we will deal only with
hard fingers here. Let the contact points of fingers A, B, and C with O
be denoted by AO, BO, and CO, respectively. The purpose of the hand is
to manipulate O with respect to P . The motion of O, moreover, can be
specified through its pose, given in turn by the position vector o of one of
its points, O, and its orientation matrix Q with respect to a frame fixed
to P . Now, in order to manipulate O six degrees of freedom are needed.
When the three fingers are in contact with O, the hand-object system forms
a parallel manipulator with three “legs” of the RRS type, with S standing
for spherical joint. As the reader can verify, the system has six-dof, which
means that manipulations are possible with only two actuated revolutes
per finger. Many designs involve only two motors per finger, one of the
revolute joints being provided with springs to guarantee contact.

Thus, the location of the three contact points is fully determined if the
pose of P and the locations of AO, BO, and CO in O are given. Once
the position vectors of the three contact points are known, determining
the joint-variable values needed to take O to the desired pose reduces to
solving a 3-dimensional positioning problem for each finger, with three
revolute joints—a problem already discussed in Subsection 4.4.1. The joint
rates and accelerations are then determined as in Sections 4.4 and 4.6.

FIGURE 8.15. A three-fingered hand.

TLFeBOOK



8.4 Multifingered Hands 345

While the mechanics of grasping is quite elaborate, due to the defor-
mation of both fingers and object, some assumptions will be introduced
here to produce a simple model. One such assumption is rigidity; a second
is smoothness, under which each finger is capable of exerting only normal
force on the object. Moreover, this force is unidirectional, for the finger can-
not exert a pull on the object. The smoothness and rigidity assumptions
bring about limitations, for they require a rather large number of fingers
to exert an arbitrary wrench on the grasped object, as shown below.

We assume that we have a rigid object O bounded by a surface S that is
smooth almost everywhere, i.e., it has a well-defined normal n everywhere
except at either isolated points or isolated curves on S. Below we show that
in order to exert an arbitrary wrench w onto O, a hand with rigid, smooth
fingers should have more than six fingers. Assume that the n contact points
on S are {Pi}n

1 and that we want to find n pressure values { λi}n
1 at the

contact points that will produce the desired wrench w onto O.
Moreover, let the unit normal at Pi be denoted by ni and the vector

directed from O to Pi be denoted by pi, as shown in Fig. 8.16.
The wrench wi exerted by each finger onto O at Pi is clearly

wi = λi

[
pi × (−ni)

−ni

]
, λi ≥ 0

Upon equating the resultant wrench with the desired wrench, we obtain
n∑
1

[−pi × ni

−ni

]
λi = w

or in compact form, as
Gλ = −w (8.114a)

where G is the 6× n grasping matrix and λ is the n-dimensional vector of
pressure values, i.e.,

G ≡
[
p1 × n1 · · · pn × nn

n1 · · · nn

]
, λ ≡




λ1
...

λn


 (8.114b)

FIGURE 8.16. Geometry of grasped object O.
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FIGURE 8.17. A prototype of the KU Leuven three-fingered hand (courtesy of
Prof. H. van Brussel).

Note that the ith column of the grasping matrix is nothing but the array
of Plücker coordinates of the line of action of the force exerted by the ith
finger on the object, in ray coordinates—see Subsection 3.2.2.

Thus, for n = 6, a unique pressure vector λ is obtained as long as G is
nonsingular. However, negative values of {λi}n

1 are not allowed, and since
nothing prevents these values from becoming negative, six fingers of the
type considered here are not enough. We must thus have more than six
such fingers in order to be able to apply an arbitrary wrench onto the
body. For n > 6 and a full-rank 6 × n grasping matrix, nonnegative values
of {λi}n

1 can be generated, but only under certain conditions, as explained
below: Let u be a vector lying in the nullspace of G, i.e., such that Gu = 0.
Then an arbitrary λ can be expressed as

λ = λ0 + u

where λ0 is a particular solution of eq.(8.114a). For example, if λ0 is chosen
as the minimum-norm solution of eq.(8.114a), then we have, explicitly,

λ0 = −G†w

where G† is the generalized inverse of G, defined as

G† ≡ GT (GGT )−1
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The numerical computation of the minimum norm solution of an undeter-
mined system of linear equations is discussed in Appendix B.

Note that the 6 × 6 product GGT has the general form

GGT =
[∑n

1 (pi × ni)(pi × ni)T
∑n

1 (pi × ni)nT
i∑n

1 ni(pi × ni)T ninT
i

]

Although a symbolic expression for the inverse H of GGT is not possible
in the general case, we can always express this inverse in block form, with
all blocks of 3 × 3, namely,

H ≡ (GGT )−1 =
[
H11 H12

HT
12 H22

]

where consistently, H11 has units of meter−2, H12 has units of meter−1,
and H22 is dimensionless. Moreover, we can partition G into two 3 × n
blocks, i.e.,

G ≡
[
A
B

]

in which A has units of meter, while B is dimensionless. Hence, the product
GT H takes on the form

GT H = [ATH11 + BTHT
12 AT H12 + BTH22 ]

and hence, the left-hand block of the foregoing product has units of meter−1,
while the right-hand block is dimensionless. Upon multiplying the desired
wrench w from the left by this product, the result, λ0, has consistently
units of Newton.

Now, to find u, several numerical methods are available that do not
require any matrix inversion (Golub and Van Loan, 1989). A simple way
of expressing u, although by no means the way to compute it, is given by

u = Pv, P ≡ 1− G†G

where v is an n-dimensional vector and P is a matrix projecting v onto the
nullspace of G, and 1 defined as the n×n identity matrix. Now we are left
with the task of finding v so that

λi = λ0i + ui ≥ 0, i = 1, ..., n

Hence, our policy to determine u is simply, for i = 1, ..., n,

ui =
{

0, if λ0i ≥ 0;
−λ0i, otherwise.

Now, v is found upon solving

Pv = u
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However, P is singular—its rank of n−6, as the reader is invited to prove—
and the above equation may or may not admit a solution. For a solution
to be possible, u must lie in the range of P.

A more general approach to solving the grasping problem relies on linear
programming, but this topic lies beyond the scope of the book. The inter-
ested reader is directed to the specialized literature on the topic (Hillier
and Lieberman, 1995).

In the presence of soft fingers, however, fewer than six fingers suffice to
grasp an object. Moreover, in the presence of friction, the force transmitted
by a finger has, in addition to its normal component, a tangential compo-
nent that, hence, gives rise to a contact force making a nonzero angle with
the normal ni to the object surface at the ith contact point. Therefore, by
virtue of the linear relation between the normal and the tangential com-
ponents of the transmitted force, given by the coefficient of friction µ, this
force is constrained to lie within the friction cone. This cone has its apex
at the contact point Pi, its elements making an angle α with the normal,
that is given by α = arctan(µ). Furthermore, by virtue of the fundamental
assumption of Coulomb friction analysis, µ lies between 0 and 1, and hence,
α is constrained to lie between 0◦ and 45◦.

Shown in Fig. 8.17 is an example of a three-fingered hand. This hand
was developed at the Katholieke Universiteit Leuven (Van Brussel et al.,
1989).

The literature on multifingered hands and the problem of grasping is
far richer than we can afford to describe here. Extensive studies on these
subjects have been recently reported by Reynaerts (1995) and Teichmann
(1995.)

8.5 Walking Machines

Besides the walking machines introduced in Chapter 1, namely, the OSU
Adaptive Suspension Vehicle and the TUM Hexapod, other legged ma-
chines or leg designs are emerging with special features. For example,
CARL, shown in Fig. 8.18, is a compliant articulated robot leg that has
been designed at McGill University’s Centre for Intelligent Machines (CIM)
by Prof. Buehler and his team (Menitto and Buehler, 1996). This leg con-
tains an actuation package with a high load-carrying capacity (ATLAS) and
an antagonistic pair of concentric translational-to-angular displacement de-
vices. The leg has four degrees of freedom, of which two are actuated by
ATLAS and one by a harmonic drive motor, while one is unactuated. This
leg design is intended to provide locomotion to a quadrupled.

As nature shows in mammals, four legs are necessary to guarantee the
static equilibrium of the body while one leg is in the swing phase. Static
equilibrium is achieved as long as the horizontal projection of the mass
center of the overall body-legs system lies within the triangle defined by
the contact points of the three legs that are in the stance phase. More than
four legs would allow for greater mobility. For purposes of symmetry, some
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FIGURE 8.18. The compliant articulated robot leg (courtesy of Prof. M.
Buehler).

walking machines are designed as hexapods, so as to allow for an equal
number of legs in the swing and the stance phases.

We undertake the kinematic analysis of walking machines using the hexa-
pod displayed in Fig. 8.19.

Furthermore, contact with the ground is assumed to take place such that
the ground can exert only a “pushing” force on each leg but no moment.
Thus, while we can model the contact between leg and ground as a spherical
joint, care must be taken so that no pulls of the ground on the leg are
required for a given gait.

Additionally, we shall assume that the leg is actuated by three revolutes,
namely, those with variables θ4, θ5, and θ6 in Fig. 8.20, where G denotes
the ground and B the machine body. A photograph of one of the six iden-
tical legs of the walking machine developed at the Technical University
of Munich, introduced in Fig. 1.9, is included in Fig. 8.21. The Denavit-
Hartenberg parameters of this leg, proceeding from the ground upwards,
are displayed in Table 8.8. Note that the architecture of this leg is sim-
ply that of a three-revolute manipulator carrying a spherical joint at its
end-effector, similar to that of the decoupled manipulators studied in Sec-
tion 4.4. The spherical joint accounts for the coupling of the leg with the
ground. We are thus assuming that when a leg is in contact with the ground,
the contact point of the leg is immobile. At the same time, the motion of
the body B is prescribed through the motion of a point on the axis of the
revolute coupled to the body. Such a point is indicated by PJ for the Jth
leg. Moreover, the point of the Jth leg in contact with the ground will be
denoted by OJ . Thus, when prescribing the motion of the body through
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FIGURE 8.19. A general hexapod.

that of each of the six points PI , PII , . . ., PVI , the rigid-body compatibility
conditions of eqs.(7.14), (7.15), and (7.25) must be observed. The pose of
the body B is thus specified by the position of a point C of the body and
the orientation matrix Q of the body with respect to a frame fixed to the
ground, the position vector of C in that frame being denoted by c. The
specification of points PI to PVI thus follows from the knowledge of c and
Q, thereby guaranteeing compliance with the above-mentioned constraints.

Furthermore, a maneuver of B, given by a prescribed pose, can be achiev-
ed by suitable values of the actuated-joint variables, which thus leads to a
problem of parallel-manipulator inverse kinematics.

The mechanical system that results from the kinematic coupling of the
machine legs with the ground is thus equivalent to a parallel manipulator.
The essential difference between a walking machine and a parallel manip-
ulator is that the former usually involves more actuators than degrees of
freedom. This feature is known as redundant actuation and will not be

TABLE 8.8. DH Parameters of the leg of the TU-Munich walking machine

i ai (mm) bi (mm) αi

1 17 0 90◦

2 123 0 180◦

3 116 0 0◦

4 0 0 90◦

5 0 0 90◦

6 0 0 0◦
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FIGURE 8.20. One of the legs of a walking machine with three actuated revolutes.

FIGURE 8.21. One of the six identical legs of the TU Munich Hexapod (courtesy
of Prof. F. Pfeiffer. Reproduced with permission of TSI Enterprises, Inc.)
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pursued here.

8.6 Rolling Robots

Probably the rolling robot that has received most media attention is NASA’s
Sojourner, of the Pathfinder mission, which explored a spot of the Martian
landscape for several months in 1997. It is noteworthy that the Sojourner
was designed, built, and commissioned with a shoestring budget for NASA
standards. The Sojourner is a paradigm of rolling robots for autonomous
operation on rough terrain. We focus here on the simplest robots of this
class, i.e., robots intended for tasks on horizontal surfaces, and so, their
platforms undergo planar motion, which greatly simplifies their kinemat-
ics. One special feature of rolling robots is their nonholonomic nature. What
this means is that the minimum number m of generalized coordinates defin-
ing uniquely a posture of the system is greater than the number n of their
independent generalized speeds, i.e., m > n. In the case of serial and paral-
lel manipulators, paradigms of holonomic systems, m = n. In nonholonomic
systems, then, we must distinguish between their posture, or configuration
degree of freedom and their velocity degree of freedom. For the sake of
conciseness, we will refer to the latter whenever we mention the degree of
freedom of a rolling robot.

Rolling robots are basically of two kinds, depending on whether they
are supplied with conventional or with omnidirectional wheels. The sim-
plest robots with conventional wheels are capable only of 2-dof motions,
and hence, are kinematically equivalent to conventional terrestrial vehicles.
However, robots with omnidirectional wheels (ODWs) are capable of 3-
dof motions, which increases substantially their maneuverability. Below we
outline the kinematics of the two kinds of robots.

8.6.1 Robots with Conventional Wheels

We begin with robots rolling on conventional wheels. Since these have two
degrees of freedom, they need only two actuators, the various designs avail-
able varying essentially in where these actuators are located. The basic
architecture of this kind of robot is displayed in Fig. 8.22a, in which we
distinguish a chassis, or robot body, depicted as a triangular plate in that
figure: two coaxial wheels that are coupled to the chassis by means of revo-
lutes of axes passing through points O1 and O2; and a third wheel mounted
on a bracket.

Now, the two actuators can be placed in two essentially different arrays.
In the first array, not shown in the figure, one actuator is used for propulsion
and the other for steering, the former being used to provide locomotion
power to the common two-wheel axle via a differential gear train. This
train is required to allow for different angular velocities of the two coaxial
wheels. Moreover, the orientation of the mid-plane of the steering wheel,
defined by angle ψ, is controlled with the second actuator. This design
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FIGURE 8.22. A 2-dof rolling robot: (a) its general layout; and (b) a detail of its
actuated wheels.

has some drawbacks, namely, (i) the two motors serving two essentially
different tasks call for essentially different operational characteristics, to
the point that both may not be available from the same manufacturer; (ii)
the power motor calls for velocity control, the steering motor for position
control, thereby giving rise to two independent control systems that may
end up by operating in an uncoordinated fashion; and finally, (iii) the use
of a differential gear train increases costs, weight, and brings about the
inherent backlash of gears.

In the second actuation array, shown in Fig. 8.22b, the two coaxial wheels
are powered independently, thereby doing away with the differential train
and its undesirable side effects, the third wheel being an idle caster. More-
over, the orientation of the latter is determined by friction and inertia
forces, thereby making unnecessary the steering control system of the first
array. Below we analyze the kinematics of a robot with this form of actua-
tion.

Let point C of the platform be the operation point, its position vector in
a frame fixed to the ground being denoted by c. Additionally, let ω be the
scalar angular velocity of the platform about a vertical axis. By virtue of
the 2-dof motion of this robot, we can control either the velocity ċ of C or
a combination of ω and a scalar function of ċ by properly specifying the
two joint rates θ̇1 and θ̇2. However, we cannot control the two components
of ċ and ω simultaneously.

In order to proceed with the kinematic analysis of the system at hand,
we define an orthonormal triad of vectors whose orientation is fixed with
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respect to the chassis. Let this triad be denoted by { i, j, k }, with k point-
ing in the upward vertical direction. Thus, the velocities ȯi of points Oi,
for i = 1, 2, are given by

ȯi = rθ̇i j, i = 1, 2 (8.115a)

and moreover, the angular velocity ω of line O1O2 in planar motion, which
is the same as that of the platform, can be readily expressed as

ω =
r

l
(θ̇1 − θ̇2) (8.115b)

its positive direction being that of k.
Furthermore, the velocity of C can now be written in 2-dimensional form

as
ċ = ȯi + ωE(c′ − oi), i = 1, 2 (8.115c)

with c′ denoting the position vector of point C′, the orthogonal projec-
tion of C onto the horizontal plane of O1 and O2, while E is as defined in
eq.(4.100). Thus, all vectors of eq.(8.115c) are 2-dimensional. Upon substi-
tution of eqs.(8.115a & b) into eq.(8.115c), we obtain expressions for ċ in
terms of the joint rates, similar to eqs.(8.115c), for i = 1, 2. Furthermore,
upon adding sidewise the two expressions thus resulting, we obtain ċ in the
desired form, namely,

ċ = a
r

l
(θ̇1 − θ̇2)i +

r

2
(θ̇1 + θ̇2)j (8.115d)

Equations (8.115b & d) express now the differential direct kinematics
relations of the robot under study. In compact form, these relations become

t = Lθ̇a (8.115e)

with the 3 × 2 matrix L defined as

L ≡
[

r/l −r/l
(ar/l)i + (r/2)j −(ar/l)i + (r/2)j

]
(8.115f)

Moreover, the planar twist t of the platform and the 2-dimensional vector
θ̇a of actuated joint rates are defined as

t ≡
[

ω
ċ

]
, θ̇a ≡

[
θ̇1

θ̇2

]
(8.115g)

Computing the joint rates from the foregoing equations, i.e., solving the
associated inverse kinematics problem, is now a trivial task. The inverse
kinematics relations are computed below by noticing that eq.(8.115b) pro-
vides a relation for the joint-rate difference. Thus, all we need now is a
second equation for the joint-rate sum. By inspection of eq.(8.115d), it is
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apparent that we can derive this relation by dot-multiplying both sides of
this equation by j, thereby obtaining

ċ · j =
r

2
(θ̇1 + θ̇2) (8.116)

The two equations (8.115b) and (8.116) can now be cast into the usual
form

Jθ̇a = Kt (8.117a)

where the two robot Jacobians J and K are given below:

J ≡
[

1 −1
1 1

]
, K ≡

[
(l/r) 0T

0 (2/r)jT

]
(8.117b)

Note that J is a 2 × 2 matrix, but K is a 2 × 3 matrix.
The inverse kinematics relations are readily derived from eq.(8.117a),

namely,

θ̇1 =
1
2

(
l

r
ω +

2
r
ẏ

)

θ̇2 = −1
2

(
l

r
ω − 2

r
ẏ

)

where ẏ ≡ ċ · j.
Now, in order to complete the kinematic analysis of the robot at hand,

we calculate the rates of the unactuated joints, θ̇3 and ψ̇. To this end,
let ωi, for i = 1, 2, 3, and ȯ3 denote the 3-dimensional angular velocity
vector of the ith wheel and the 3-dimensional velocity vector of the center
of the caster wheel. Likewise, ω4 denotes the scalar angular velocity of the
bracket.

We thus have, for the angular velocity vectors of the two actuated wheels,

ω1 = −θ̇1i + ωk = −θ̇1i +
r

l
(θ̇1 − θ̇2)k

= [−i + (r/l)k −(r/l)k ]
[

θ̇1

θ̇2

]
(8.118a)

ω2 = −θ̇2i + ωk = −θ̇2i +
r

l
(θ̇1 − θ̇2)k

= [ (r/l)k −i − (r/l)k ]
[

θ̇1

θ̇2

]
(8.118b)

In the ensuing derivations, we will need the velocities of the centers of
the two actuated wheels, which were derived in eq.(8.115a). Moreover, the
angular velocity of the caster wheel can be written most easily in the frame
fixed to the bracket, { e3, f3, k }, namely,

ω3 = θ̇3e3 + (ω + ψ̇)k (8.119)
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FIGURE 8.23. Layout of the unit vectors fixed to the platform and to the bracket.

with ψ denoting the angle between vectors j and e3 of Fig. 8.22a, measured
in the positive direction of k, as indicated in the layout of Fig. 8.23.

Note that vector e3 is parallel to the axis of rolling of the caster wheel,
while f3 is a horizontal vector perpendicular to e3. These two sets of unit
vectors are related by

e3 = − sin ψi + cosψj (8.120a)
f3 = − cosψi − sin ψj (8.120b)

their inverse relations being

i = − sinψe3 − cosψf3 (8.120c)
j = cosψe3 − sin ψf3 (8.120d)

Furthermore, the velocity of the center of the caster wheel is derived as

ȯ3 = ω3 × rk = −rθ̇3f3

while the scalar angular velocity of the bracket, ω4, is given by

ω4 = ω + ψ̇ =
r

l
(θ̇1 − θ̇2) + ψ̇ (8.121)

In Chapter 10 we shall need ċ in bracket coordinates. Such an expression
is obtained from eqs.(8.115d) and (8.120c & d), namely,

ċ = [−a
r

l
(θ̇1 − θ̇2) sin ψ +

r

2
(θ̇1 + θ̇2) cosψ]e3

−[a
r

l
(θ̇1 − θ̇2) cosψ +

r

2
(θ̇1 + θ̇2) sin ψ]f3 (8.122)

Expressions for the dependent rates in terms of the independent ones,
θ̇1 and θ̇2, are readily derived. To this end, we express the velocity of P in
two independent forms, one in terms of the velocity of O3 and the other in
terms of the velocity of C, i.e.,

ṗ = ȯ3 + ω4k × (p − o3) (8.123a)
ṗ = ċ + ωk× (−bj) (8.123b)
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Upon equating the right-hand sides of the above equations, we obtain a
3-dimensional vector equation relating dependent with independent rates,
namely,

−rθ̇3f3 + (ω + ψ̇)k × (p− o3) = ċ + bωi

where we have recalled the expressions derived above for ȯ3 and ω4. Further,
we rewrite the foregoing equation with the unknown rates, θ̇3 and ψ̇, on
the left-hand side, i.e.,

−rθ̇3f3 + ψ̇k × (p − o3) = ċ + bωi− ωk × (p − o3) (8.124)

Moreover, we note that, from Fig. 8.22,

p − o3 = −df3 + (h − r)k

and hence,
k × (p− o3) = de3

equation (8.124) thus becoming

−rθ̇3f3 + ψ̇de3 = ċ + ω(bi− de3) (8.125)

Now it is a simple matter to solve for θ̇3 and ψ̇ from eq.(8.125). Indeed,
we solve for θ̇3 by dot-multiplying both sides of the above equation by f3.
Likewise, we solve for ψ̇ by dot-multiplying both sides of the same equation
by e3, thus obtaining

−rθ̇3 = ċ · f3 + ωbi · f3

dψ̇ = ċ · e3 + ω(bi · e3 − d)

Now, by recalling the expressions derived above for ω and ċ, we obtain

ċ · f3 = −a
r

l
(θ̇1 − θ̇2) cosψ − r

2
(θ̇1 + θ̇2) sin ψ

ċ · e3 = −a
r

l
(θ̇1 − θ̇2) sin ψ +

r

2
(θ̇1 + θ̇2) cos ψ

i · f3 = − cosψ, i · e3 = − sinψ

Therefore,

θ̇3 = α cosψ(θ̇1 − θ̇2) +
1
2
(sin ψ)(θ̇1 + θ̇2) (8.126a)

ψ̇ = ρ

[
−(α sinψ + δ)(θ̇1 − θ̇2) +

1
2
(cosψ)(θ̇1 + θ̇2)

]
(8.126b)

with the definitions given below:

α ≡ a + b

l
, δ ≡ d

l
, ρ ≡ r

d
(8.127)
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Hence, if we let θ̇u ≡ [θ̇3 ψ̇]T be the vector of unactuated joint rates,
then we have

θ̇u = Θθ̇a (8.128a)
with Θ defined as

Θ ≡
[

α cosψ + (sin ψ)/2 −α cosψ + (sin ψ)/2
ρ[−α sinψ + (cosψ)/2 − δ] ρ[α sin ψ + (cosψ)/2 + δ]

]
(8.128b)

thereby completing the intended kinematic analysis.

8.6.2 Robots with Omnidirectional Wheels

In general, omnidirectional wheels (ODWs) allow for two independent trans-
lational motions on the supporting floor and one independent rotational
motion about a vertical axis. Based on the shapes of the wheels, moreover,
ODWs can be classified into spherical wheels and Mekanum wheels, the
latter also being known as ilonators. Spherical wheels have been exten-
sively investigated in recent years (West and Asada, 1995). We focus here
on ODWs of the Mekanum type and assume that the robot of interest is
equipped with n of these.

The Mekanum wheel bears a set of rollers mounted along the periphery
of the wheel hub at a given angle, as shown in Figs. 1.11a and 8.24a.
Furthermore, the rollers are shaped so that the wheel appears as circular
on its side view, as shown in Fig. 8.24b, in order to ensure a smooth motion.
Pairwise orthogonal unit vectors ei, fi and gi, hi are defined on the middle
horizontal planes of the wheel hub and of the roller in contact with the floor,
respectively. This roller is termed active in the discussion below. Now we
aim at finding the kinematic relation between the wheel joint rates { θ̇i }n

1

and the Cartesian velocity variables of the robot, namely, the scalar angular
velocity ω and the 2-dimensional velocity vector ċ of the mass center of the

FIGURE 8.24. (a) The Mekanum Wheel; (b) its side view.

TLFeBOOK



8.6 Rolling Robots 359

FIGURE 8.25. The active roller of the ith wheel.

platform. To this end, we express the velocity ȯi of the centroid Oi of the
ith wheel in two different forms: first we look at this velocity from the
active roller up to the centroid Oi; then, from the mass center C of the
platform to Oi.

If we relate the velocity of Oi with that of the contact point of the active
roller with the ground, then we can write, with the aid of Fig. 8.25,

ȯi = ṗi + vi (8.129)
with vi defined as the relative velocity of Oi with respect to Pi. Now let
ωh and ωr denote the angular velocity vectors of the hub and the roller,
respectively, i.e.,

ωh = ωk + θ̇iei, ωr = ωh + φ̇igi

We thus have

ṗi = ωr ×−−→
QiPi = (ωk + θ̇iei + φ̇igi) × bk

where b is the radius of the rollers. In addition, θ̇i denotes the rate of the
wheel hub, while φ̇i denotes that of the active roller, which are positive in
the directions of vectors ei and gi, respectively. Hence,

ṗi = −b(θ̇ifi + φ̇ihi) (8.130)

Moreover,
vi = ωh ×−−→

PiOi = (ωk + θ̇iei) × (a − b)k
a denoting the height of the axis of the wheel hub, as shown in Fig. 8.24b.
Thus,

vi = −θ̇i(a − b)fi (8.131)
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FIGURE 8.26. The layout of the ith wheel with respect to the robot platform.

thereby obtaining the desired expression for ȯi, namely,

ȯi = −aθ̇ifi − bφ̇ihi (8.132)

A general layout of the ith ODW with roller axes at an angle αi with
respect to the normal ei to the middle vertical plane of the corresponding
hub is shown in Fig. 8.26. The subscript i is associated with both the ith
wheel and its active roller. Moreover, the velocity of the ith wheel, ȯi, can
be expressed in terms of the Cartesian velocity variables, ċ and ω, as

ȯi = ċ + ωEdi (8.133)

where we have used a 2-dimensional vector representation, with di defined
as the vector directed from point C to the centroid Oi of the hub and
E defined as in eq.(4.100). Furthermore, since all rollers are unactuated
and they rotate idly, the value of φ̇i is immaterial to our study. Hence, we
eliminate this variable from the foregoing equations, which is done by dot-
multiplying both sides of eq.(8.132) by gi, normal to hi, thereby deriving

gT
i ȯi = −aθ̇igT

i fi

But
gT

i fi = sin αi

Therefore,
gT

i ȯi = −a(sin αi)θ̇i (8.134)

The same multiplication performed on eq.(8.133) yields

gT
i ȯi = (gT

i Edi)ω + gT
i ċ (8.135)

Upon equating the right-hand sides of eqs.(8.134) and (8.135), we derive
the desired relation, namely,

−a(sinαi)θ̇i = kT
i t, i = 1, . . . , n (8.136)
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where the 3-dimensional vector ki is defined as

ki =
[

gT
i Edi

gi

]

and the twist vector t is as defined in eq.(8.115g). We now define the vector
of wheel rates θ̇ in the form

θ̇ ≡ [ θ̇1 θ̇2 · · · θ̇n ]T (8.137)

If the n equations of eq.(8.136) are now assembled, we obtain

Jθ̇ = Kt (8.138)

where if we assume that all angles αi are identical and labeled α, the n×n
Jacobian J and the n × 3 Jacobian K take the forms

J ≡ −a sin α1 (8.139a)

K ≡




gT
1 Ed1 gT

1
...

...
gT

nEdn gT
n


 (8.139b)

with 1 denoting the n × n identity matrix.
Given eqs.(8.139a) and (8.139b), the differential inverse kinematics can

be resolved as
θ̇ = − 1

a sinα
Kt (8.140)

whence it is apparent that sinα must be different from zero, i.e., the axes
of the rollers must not be parallel to the axis of the hub. If these axes are
parallel, then the ODWs reduce to conventional wheels.

On the other hand, the twist can be obtained from eq.(8.138), for n = 3,
as

t = K−1Jθ̇ (8.141)

where K−1 can be found in closed form as

K−1 =
1
∆

[
gT

3 Eg2 gT
1 Eg3 gT

2 Eg1

E(r2g3 − r3g2) E(r3g1 − r1g3) E(r1g2 − r2g1)

]
(8.142a)

with ∆ and { ri }3
1 defined as

∆ ≡ det(K) = r1gT
3 Eg2 + r2gT

1 Eg3 + r3gT
2 Eg1 (8.142b)

ri ≡ gT
i Edi, i = 1, 2, 3 (8.142c)

which thus completes the kinematic analysis of the system at hand.
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9
Trajectory Planning: Continuous-Path
Operations

9.1 Introduction

As a follow-up to Chapter 5, where we studied trajectory planning for pick-
and-place operations (PPO), we study in this chapter continuous-path op-
erations. In PPO, the pose, twist, and twist-rate of the EE are specified only
at the two ends of the trajectory, the purpose of trajectory planning then
being to blend the two end poses with a smooth motion. When this blend-
ing is done in the joint-variable space, the problem is straightforward, as
demonstrated in Chapter 5. There are instances in which the blending must
be made in Cartesian space, in which advanced notions of interpolation in
what is known as the image space of spatial displacements, as introduced
by Ravani and Roth (1984), are needed. The image space of spatial dis-
placements is a projective space with three dual dimensions, which means
that a point of this space is specified by four coordinates—similar to the
homogeneous coordinates introduced in Section 2.5—of the form xi + εξi,
for i = 1, 2, 3, 4, where ε is the dual unity, which has the property that
ε2 = 0. The foregoing coordinates are thus dual numbers, their purpose
being to represent both rotation and translation in one single quantity. In
following Ravani and Roth’s work, Ge and Kang (1995) proposed an inter-
polation scheme that produces curves in the image space with second-order
geometric continuity, which are referred to as G2 curves. These interpola-
tion techniques lie beyond the scope of the book and will be left aside. The
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364 9. Trajectory Planning: Continuous-Path Operations

interested reader will find a comprehensive and up-to-date review of these
techniques in (Srinivasan and Ge, 1997).

The purpose of this chapter is to develop motion interpolation techniques
in Cartesian space that produce smooth motions in both Cartesian and joint
spaces. Motion interpolation in joint space was discussed in Chapter 5, the
present chapter being devoted to motion interpolation in Cartesian space.
To this end, we resort to basic notions of differential geometry.

9.2 Curve Geometry

Continuous-path robotics applications appear in operations such as arc-
welding, flame-cutting, deburring, and routing. In these operations, a tool
is rigidly attached to the end-effector of a robotic manipulator, the tool be-
ing meant to trace a continuous and smooth trajectory in a 6-dimensional
configuration space. Three dimensions of this space describe the spatial
path followed by the operation point of the EE, while the remaining three
describe the orientation of the EE. Some applications require that this task
take place along a warped curve, such as those encountered at the inter-
sections of warped surfaces, e.g., in aircraft fuselages, while the path is to
be traversed as a prescribed function of time. This function, moreover, is
task-dependent; e.g., in arc-welding, the electrode must traverse the path
at a constant speed, if no compensation for gravity is taken into account.
If gravity compensation is warranted, then the speed varies with the ori-
entation of the path with respect to the vertical. Below we will define this
orientation as that of the Frenet-Serret frame associated with every point
of the path where the path is smooth.

Moreover, for functional reasons, the orientation of the EE is given as a
rotation matrix that is, in turn, a prescribed smooth function of time. In
arc-welding, for example, the orientation of the electrode with respect to
the curve must be constant. The trajectory planning of the configuration
subspace associated with the warped path is more or less straightforward,
but the planning of the trajectory associated with the orientation subspace
is less so.

While most methods of trajectory planning at the Cartesian-coordinate
level focus on the path followed by the operation point, the underlying in-
verse kinematics of a six-axis robotic manipulator requires the specification
of the orientation of the EE as well. In the presence of simple manipulators
with a spherical wrist, as those studied in Subsection 4.4.2, the positioning
and the orientation tasks are readily separable, and hence, the planning of
the two tasks can be done one at a time. In other instances, e.g., in most
arc-welding robots, such a separation is not possible, and both tasks must
be planned concurrently, which is the focus of our discussion below. Here,
we follow the technique presented in (Angeles et al., 1988).

Crucial to our discussion is the concept of path orientation. Let Γ be a
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9.2 Curve Geometry 365

warped curve in 3-dimensional space that is smooth in a certain interval of
interest for our discussion. Under these conditions, we can associate with
every point of this interval an orthonormal triad of vectors, i.e., a set of unit
vectors that are mutually orthogonal, namely, the tangent, the normal, and
the binormal vectors of Γ . Therefore, when this set of vectors is properly
arranged in a 3 × 3 array, a rotation matrix is obtained. This matrix thus
represents the orientation of Γ . In order to parameterize these vectors, let
s be the arc length measured along Γ from a certain reference point on this
curve. Below we review the basic differential-geometric concepts pertaining
to our discussion.

The tangent, normal, and binormal unit vectors, et, en, and eb, respec-
tively, associated with every point of Γ where this curve is smooth, are
generically termed here the Frenet-Serret vectors. These vectors are de-
fined as

et ≡ r′ (9.1a)

eb ≡ r′ × r′′

‖r′ × r′′‖ (9.1b)

en ≡ eb × et (9.1c)

where r′ stands for dr/ds and r′′ for d2r/ds2. Now the Frenet-Serret re-
lations among the three foregoing unit vectors and the curvature κ and
torsion τ of Γ are recalled (Brand, 1965):

det

ds
= κen (9.2a)

den

ds
= −κet + τeb (9.2b)

deb

ds
= −τen (9.2c)

Moreover, the curvature and torsion can be calculated with the aid of the
formulas

κ = ‖r′ × r′′‖ (9.3a)

τ =
r′ × r′′ · r′′′

κ2
(9.3b)

where r′′′ stands for d3r/ds3. Furthermore, differentiation of κ and τ , as
given above, with respect to s, yields

κ′(s) = (r′ × r′′) · (r′ × r′′′)
κ

(9.4a)

τ ′(s) =
r′ × r′′ · r(iv) − 2τ(r′ × r′′) · (r′ × r′′′)

κ2
(9.4b)

where r(iv) stands for d4r/ds4. The geometric interpretation of the curva-
ture is the rate of change of orientation of the tangent vector with respect
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to the arc length; that of the torsion is the rate at which the curve quits the
plane of the tangent and normal vectors. Thus, at points where the curva-
ture vanishes, the curve approximates a line to a second order, i.e., up to
second-order derivatives, whereas at points where the torsion vanishes, the
curve approximates a planar curve to a third order—Notice that the torsion
involves third-order derivatives. Now, from the Frenet-Serret formulas and
the chain rule, we can derive the time-rate of change of the Frenet-Serret
vectors, namely,

ėt ≡ det

ds
ṡ= ṡκen (9.5a)

ėn ≡ den

ds
ṡ= −ṡκet + ṡτeb (9.5b)

ėb ≡ deb

ds
ṡ= −ṡτen (9.5c)

Furthermore, let ω be the angular velocity of the Frenet-Serret frame. Then,
clearly,

ėt ≡ ω × et (9.6a)
ėn ≡ ω × en (9.6b)
ėb ≡ ω × eb (9.6c)

Upon equating pairwise the right-hand sides of eqs.(9.5a–c) and eqs.(9.6a–
c), we obtain three vector equations determining ω, namely,

−Etω = ṡκen (9.7a)
−Enω = −ṡκet + ṡτeb (9.7b)
−Ebω = −ṡτen (9.7c)

where we have introduced the cross-product matrices Et, En, and Eb of
vectors et, en, and eb, respectively, thereby obtaining a system of nine
scalar equations in the three unknown components of ω, i.e.,

Aω = b (9.8a)

with A defined as the 9 × 3 matrix and b as the 9-dimensional vector
displayed below:

A ≡ −



Et

En

Eb


 , b ≡




ṡκen

ṡ(−κet + τeb)
−ṡτen


 (9.8b)

Although the foregoing system is overdetermined, it is consistent, and hence
it comprises exactly three linearly independent equations, the remaining six
being dependent on the former. One way to reduce system (9.8a) to only
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three equations consists in multiplying both sides of this equation by AT .
Now, the product ATA greatly simplifies because matrix A turns out to
be isotropic, as per the discussion of Section 4.9, i.e., its three columns
are mutually orthogonal and all have the same magnitude. This fact can
become apparent if we realize that the three 3 × 3 blocks of A are cross-
product matrices of three orthonormal vectors. Thus,

ATA = ET
t Et + ET

nEn + ET
b Eb

If we now recall Theorem 2.3.4, the foregoing products take on quite simple
forms, namely,

ET
t Et = −E2

t = −(−1 + eteT
t )

ET
nEn = −E2

n = −(−1 + eneT
n )

ET
b Eb = −E2

b = −(−1 + ebeT
b )

Moreover, for any 3-dimensional vector v, we have

(eteT
t + eneT

n + ebeT
b )v ≡ v

and hence, the above sum in parentheses reduces to the identity matrix,
i.e.,

eteT
t + eneT

n + ebeT
b ≡ 1

the product ATA thus reducing to

ATA = (2)1

Therefore, ω takes on the form

ω =
1
2

[Et En Eb ]




ṡκen

ṡ(−κet + τeb)
−ṡτen




or upon expansion,

ω =
ṡ

2
[κet × en + en × (τeb − κet) − τeb × en] (9.10)

However, since the Frenet-Serret triad is orthonormal, we have

et × en = eb, en × eb = et, eb × et = en (9.11)

Upon substitution of expressions (9.11) into the expression for ω given in
eq.(9.10), we obtain

ω = ṡδ (9.12)

where δ is the Darboux vector, defined as

δ = τet + κeb (9.13)
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Expressions for the curvature and torsion in terms of the time-derivatives
of the position vector are readily derived using the chain rule, which leads
to

κ =
‖ṙ× r̈‖
‖ṙ‖3

(9.14a)

τ =
ṙ × r̈· ...

r
‖ṙ× r̈‖2

(9.14b)

Upon differentiation of both sides of eq.(9.12), the angular acceleration
ω̇ is derived as

ω̇ = s̈δ + ṡδ̇ (9.15)

where the time-derivative of the Darboux vector is given, in turn, as

δ̇ = τ̇et + κ̇eb (9.16)

in which eqs.(9.5a–c) have contributed to the simplification of the above
expression. The time-derivatives of the curvature and torsion are readily
derived by application of the chain rule, thereby obtaining

κ̇ ≡ ṡκ′(s)=
ṡ

κ
(r′ × r′′′) · (r′ × r′′) (9.17a)

τ̇ ≡ ṡτ ′(s)=
ṡ

κ2
[r′ × r′′ · r(iv) − 2τ(r′ × r′′′) · (r′ × r′′)] (9.17b)

The time-derivative of the Darboux vector thus reduces to

δ̇ = ṡ(Aet + Beb) (9.18a)

where scalars A and B are computed as

A ≡ r′ × r′′ · r(iv) − 2τ(r′ × r′′′) · (r′ × r′′)
κ2

(9.18b)

B ≡ (r′ × r′′′) · (r′ × r′′)
κ

(9.18c)

and hence, the angular acceleration reduces to

ω̇ = s̈δ + ṡ2(Aet + Beb) (9.19)

From the relations derived above, it is apparent that the angular velocity
is a bilinear function of the Darboux vector and ṡ, while the angular accel-
eration is linear in s̈ and quadratic in ṡ. The computational costs involved
in the calculation of the angular velocity and its time-derivative amount
to 31 multiplications and 13 additions for the former, and 28 multiplica-
tions with 14 additions for the latter (Angeles et al., 1988). Notice that the
angular velocity requires, additionally, one square root.
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In the above discussion, it is assumed that explicit formulas for the two
time-derivatives of the arc length s are available. This is often not the case,
as we show with the examples below, whereby an intermediate parameter,
which is easier to handle, is introduced. What we will need are, in fact,
alternative expressions for the quantities involved, in terms of kinematic
variables; i.e., we need time-derivatives of the position vector r rather than
derivatives of this vector with respect to the arc length s. Below we derive
these expressions.

First, note that et can be obtained by simply normalizing the velocity
vector ṙ, namely, as

et =
ṙ
‖ṙ‖ (9.20)

where it is not difficult to realize that

ṡ = ‖ṙ‖ (9.21)

Moreover, the binormal vector eb can be derived by application of the chain
rule to vector r′, namely,

r′′ =
dr′

ds
≡ dr′/dt

ds/dt
≡ 1

ṡ

d

dt
(r′) (9.22a)

But
r′(s) ≡ dr

ds
≡ ṙ

ṡ
(9.22b)

and hence,

r′′ =
1
ṡ

[
d

dt

(
ṙ
ṡ

)]
=

ṡr̈ − s̈ṙ
ṡ3

(9.22c)

Now, upon substitution of expressions (9.22b & c) into eq.(9.1b), an al-
ternative expression for eb is derived, in terms of time-derivatives of the
position vector, namely,

eb =
ṙ × r̈
‖ṙ× r̈‖ (9.23)

Finally, en can be readily computed as the cross product of the first two
vectors of the Frenet-Serret triad, namely,

en ≡ eb × et =
(ṙ × r̈) × ṙ
‖ṙ × r̈‖‖ṙ‖ (9.24)

The time-derivatives of the Frenet-Serret vectors can be computed by
direct differentiation of the expressions given above, namely, eqs.(9.20),
(9.23), and (9.24).
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9.3 Parametric Path Representation

Only seldom is an explicit representation of the position vector r of a ge-
ometric curve possible in terms of the arc length. In most practical cases,
alternative representations should be used. The representation of the posi-
tion vector in terms of a parameter σ, whatever its geometric interpretation
may be, whether length or angle, will henceforth be termed a parametric
representation of the curve at hand. The choice of σ is problem-dependent,
as we illustrate with examples.

Below we derive expressions for (a) the Frenet-Serret triad; (b) the cur-
vature and torsion; and (c) the derivatives of the latter with respect to
the arc length. All these expressions, moreover, will be given in terms of
derivatives with respect to the working parameter σ. The key relation that
we will use is based on the chain rule, already recalled several times earlier.
Thus, for any vector v(σ),

dv
ds

=
dv
dσ

dσ

ds

However, the foregoing relation is not very useful because we do not have
an explicit representation of parameter σ in terms of the arc length. Never-
theless, we will assume that these two variables, s and σ, obey a monotonic
relation. What this means is that

dσ

ds
> 0 (9.25)

which is normally the case. Under this assumption, moreover, we can write
the derivative of v as

dv
ds

=
dv/dσ

ds/dσ

where, apparently,
ds

dσ
=
∥∥∥∥

dr
dσ

∥∥∥∥ = ‖r′(σ)‖

Therefore, the derivative sought takes the form

dv
ds

=
v′(σ)
‖r′(σ)‖ (9.26a)

It goes without saying that the same relation holds for scalars, i.e.,

dv

ds
=

v′(σ)
‖r′(σ)‖ (9.26b)

Expressions for the Frenet-Serret triad now follow immediately, i.e.,

et =
r′(σ)
‖r′(σ)‖ (9.27a)
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eb =
r′(σ) × r′′(σ)

‖r′(σ) × r′′(σ)‖ (9.27b)

en = eb × et =
[r′(σ) × r′′(σ)] × r′(σ)
‖r′(σ) × r′′(σ)‖‖r′(σ)‖ (9.27c)

Now, paraphrasing relations (9.14a & b), we have

κ =
‖r′(σ) × r′′(σ)‖

‖r′(σ)‖3
(9.28a)

τ =
r′(σ) × r′′(σ) · r′′′
‖r′(σ) × r′′(σ)‖2

(9.28b)

the partial derivatives of the curvature and torsion with respect to the arc
length being computed in terms of the corresponding partial derivatives
with respect to the parameter σ, which is done with the aid of the chain
rule, i.e.,

κ′(s) =
κ′(σ)
‖r′(σ)‖ , τ ′(s) =

τ ′(σ)
‖r′(σ)‖ (9.29)

Expressions for κ′(σ) and τ ′(σ), in turn, are derived by a straightforward
differentiation of the expressions for κ and τ in terms of σ, as given in
eqs.(9.28a & b). To this end, we first recall a useful expression for the
derivative of a rational expression q(x) whose numerator and denominator
are denoted by N(x) and D(x), respectively. This expression is

q′(x) =
1

D(x)
[N ′(x) − q(x)D′(x)] (9.30a)

Note that nothing prevents the numerator of the foregoing rational expres-
sion from being a vector, and hence, a similar formula can be applied to
vector ratios as well. Let the denominator of a vector rational function q(x)
be n(x). Under these conditions, then, we have

q′(x) =
1

D(x)
[n′(x) − q(x)D′(x)] (9.30b)

As a matter of fact, the above relation can be extended to matrix numer-
ators. Not only is this possible, but the argument can likewise be a vector
or a matrix variable, and similar formulas would apply correspondingly.

We thus have, for the derivative of the curvature,

κ′(σ) =
1

‖r′(σ)‖3

[
d

dσ
‖r′(σ) × r′′(σ)‖ − κ

d

dσ
‖r′(σ)‖3

]
(9.31)

Now we find the first term inside the brackets of the foregoing expression
from the relation

d

dσ
‖r′(σ) × r′′(σ)‖2 = 2‖r′ × r′′‖ d

dσ
‖r′ × r′′‖
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which yields

d

dσ
‖r′ × r′′‖ =

1
2‖r′ × r′′‖

d

dσ
‖r′(σ) × r′′(σ)‖2

But

d

dσ
‖r′(σ) × r′′(σ)‖2 =

d

dσ
{[r′(σ) × r′′(σ)] · [r′(σ) × r′′(σ)]}

= 2[r′(σ) × r′′(σ)] · d

dσ
[r′(σ) × r′′(σ)] (9.32)

the derivative of the above term in brackets reducing to

d

dσ
[r′(σ) × r′′(σ)] = r′(σ) × r′′′(σ)

and hence,

d

dσ
‖r′ × r′′‖ =

[r′(σ) × r′′(σ)] · [r′(σ) × r′′′(σ)]
‖r′ × r′′‖ (9.33a)

Furthermore,
d

dσ
‖r′(σ)‖3 = 3‖r′(σ)‖2 d

dσ
‖r′(σ)‖

the last derivative again being found from an intermediate relation, namely,

d

dσ
‖r′(σ)‖2 = 2‖r′(σ)‖ d

dσ
‖r′(σ)‖

whence,
d

dσ
‖r′(σ)‖ =

1
2‖r′(σ)‖

d

dσ
‖r′(σ)‖2

with
d

dσ
‖r′(σ)‖2 =

d

dσ
[r′(σ) · r′(σ)] = 2r′(σ) · r′′(σ)

and so,
d

dσ
‖r′(σ)‖ =

r′(σ) · r′′(σ)
‖r′(σ)‖

d

dσ
‖r′(σ)‖2

Therefore,
d

dσ
‖r′(σ)‖3 = 3‖r′(σ)‖r′(σ) · r′′(σ) (9.33b)

Substitution of eqs.(9.33a & b) into eq.(9.31) yields the desired expression,
namely,

κ′(σ) =
[r′(σ) × r′′(σ)] · [r′(σ) × r′′′(σ)]

‖r′(σ)‖3‖r′ × r′′‖ − 3κ
r′(σ) · r′′(σ)
‖r′(σ)‖2

(9.34)
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Likewise,

τ ′(σ) =
N

D
(9.35a)

with N and D defined as

N ≡ d

dσ
[r′(σ) × r′′(σ) · r′′′(σ)] − τ

d

dσ
‖r′(σ) × r′′(σ)‖2 (9.35b)

D ≡ ‖r′(σ) × r′′(σ)‖2 (9.35c)

The first term of the numerator N of the foregoing expression can be readily
calculated as

d

dσ
[r′(σ) × r′′(σ) · r′′′(σ)] = r′(σ) × r′′(σ) · r(iv)(σ) (9.35d)

while the derivative appearing in the second term of the same numerator
was obtained previously, as displayed in eq.(9.32). Upon substitution of the
expressions appearing in eqs.(9.32) and (9.35d) into eq.(9.35a), we obtain
the desired expression:

τ ′(σ) =
r′(σ) × r′′(σ) · [r(iv)(σ) − 2τr′(σ) × r′′′(σ)]

‖r′(σ) × r′′(σ)‖2
(9.35e)

thereby completing the desired relations.

Example 9.3.1 (Planning of a gluing operation) A robot used for a
gluing operation is required to guide the glue nozzle fixed to its end-effector
through a helicoidal path so that the tip of the nozzle traverses the helix at
a constant speed v0 = 0.8m/s and the end-effector maintains a fixed orien-
tation with respect to the curve, i.e., with respect to the Frenet-Serret triad
of the helix. Determine the orientation matrix Q of the end-effector with
respect to a frame {x, y, z} fixed to the robot base, as well as the angular
velocity and angular acceleration of the end-effector. The operation is to be
performed with a Fanuc S-300 robot, whose Denavit-Hartenberg (DH) pa-
rameters are given in Table 9.1, while the axis of the helix is chosen to be
parallel to the first axis of the robot and beginning at point P0 (2, −2, 1.2)
in meters. Find the joint trajectories of the robot as well as the associated
joint rates and joint accelerations from Cartesian position, velocity, and
acceleration data. Verify that the joint-rate and joint-acceleration profiles
are compatible with those of the joint variables. It is known that the radius
of the helix is a = 1.6 m and that its pitch is b = 2.5 m/turn. Finally, the
gluing seam spans through one quarter of a helix turn.

Solution: We will use a Cartesian frame fixed to the base of the robot such
that its z axis coincides with the axis of the first revolute. The helix can
then be given in the parametric representation shown below:

x = 2 + a cosϕ

y = −2 + a sin ϕ

z = 1.2 +
bϕ

2π
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TABLE 9.1. DH Parameters of a Fanuc S-300 Robot

Link ai (m) bi (m) αi (deg)
1 0.0 0.9 90
2 0.9 0.0 0
3 0.95 0.0 90
4 0.0 1.3 -90
5 0.0 0.0 90
6 0.0 0.44 -90
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FIGURE 9.1. Joint trajectories for a Fanuc S-300.
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FIGURE 9.2. Joint velocities for a Fanuc S-300.

where the parameter ϕ is the angle made by the projection, onto the X-Y
plane, of the position vector of a point P of the helix with the x axis. In
the process, we will need first and second time-derivatives of the foregoing
Cartesian coordinates. These are given below for quick reference:

ẋ = −aϕ̇ sinϕ

ẏ = aϕ̇ cosϕ

ż =
b

2π
ϕ̇

and

ẍ = −aϕ̇2 cosϕ − aϕ̈ sinϕ

ÿ = −aϕ̇2 sin ϕ + aϕ̈ cosϕ

z̈ =
b

2π
ϕ̈
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We now impose the constant-speed condition, which leads to

ẋ2 + ẏ2 + ż2 ≡ a2ϕ̇2 +
b2

4π2
ϕ̇2 = v2

0

and hence,
ϕ̇ = c

where the constant c is defined as

c ≡ v0

√
4π2

4π2a2 + b2

Thus, ϕ̇ is constant, and hence,

ϕ = ct

Moreover, in terms of constant c, the Cartesian coordinates of a point of
the helix take on the forms

x = 2 + a cos ct

y = −2 + a sin ct

z = 1.2 +
bc

2π
t

the first time-derivatives of these coordinates becoming

ẋ = −ac sin ct

ẏ = ac cos ct

ż =
bc

2π

and the corresponding second time-derivatives

ẍ = −ac2 cos ct

ÿ = −ac2 sin ct

z̈ = 0

Now the Frenet-Serret triad is readily calculated as

et ≡ dr
ds

≡ ṙ
ṡ

=
c

v0



−a sin ct
a cos ct
b/2π




Furthermore,

det

ds
≡ ėt

ṡ
=

ac2

v2
0



− cos ct
− sin ct

0


 ≡ κen
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from which it is apparent that

κ = a
c2

v2
0

≡ 4π2a

4π2a2 + b2
, en = −




cos ct
sin ct

0




Thus, the binormal vector eb is calculated simply as the cross product of
the first two vectors of the Frenet-Serret triad, namely,

eb ≡ et × en = − c

v0



−(b/2π) sin ct
(b/2π) cos ct

−a




and hence, the orientation matrix Q of the gluing nozzle, or of the end-
effector for that matter, is given by

Q ≡ [ et en eb ]

Hence,

Q =
c

v0



−a sin ct −(v0/c) cos ct (b/2π) sin ct
a cos ct −(v0/c) sin ct −(b/2π) cos ct
(b/2π) 0 a




Now, the angular velocity is determined from eq.(9.12), which requires the
calculation of the Darboux vector, as given in eq.(9.13). Upon calculation
of the Darboux vector and substitution of the expression thus resulting into
eq.(9.12), we obtain

ω =
c3

v2
0




0
0

(4π2a2 + b2)/4π2


 = c




0
0
1




which is thus constant, and hence,

ω̇ = 0

Now, the coordinates of the center of the wrist, C, are determined with
the aid of relation (4.18c), where the operation point is a point on the
helix, i.e., p = xi+ yj+ zk, parameters b6, λ6, and µ6 being obtained from
Table 9.1, namely,

b6 = 0.440 m, λ6 = cosα6 = 0, µ6 = sin α6 = −1

Furthermore, the numerical value of c is obtained from the helix geometry,
namely,

c = 0.8

√
4π2

4π2 × 1.62 + 2.52
= 0.48522 s−1
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FIGURE 9.3. Joint accelerations for a Fanuc S-300.

Upon substitution in eq.(4.18c) of the entries found above for Q, along with
the numerical values, we obtain the Cartesian coordinates of the center C
of the spherical wrist of the robot as


xC

yC

zC


 =




2 + 1.16 cos(0.48522t)
−2 + 1.16 sin(0.48522t)

1.2 + 0.19306t




in meters. Apparently, point C describes a helicoidal path as well, although
of a smaller radius, that is coaxial with the given helix.

Now the time-histories of the joint angles are computed from inverse
kinematics. Note that the robot at hand being of the decoupled type, it
allows for a simple inverse kinematics solution. The details of the solution
were discussed extensively in Section 4.4 and are left as an exercise to the
reader.

Of the four inverse kinematics solutions of the arm, three were found to
lead to link interferences, when these trajectories were tested with the aid
of RVS, the package for robot visualization developed at McGill University
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(Darcovich et al., 1999). Hence, only one such solution is physically pos-
sible. This solution, along with one of the two wrist solutions, is plotted
in Fig. 9.1, with Figs. 9.2 and 9.3 showing, respectively, the corresponding
joint rates and joint accelerations.

Note that the maxima and minima of the joint-variables occur at instants
where the corresponding joint rates vanish. Likewise, the maxima and min-
ima of joint rates occur at instants where the associated joint accelerations
vanish, thereby verifying that the computed results are compatible. A more
detailed verification can be done by numerical differentiation of the joint-
variable time-histories.

Example 9.3.2 (Planning of an arc-welding operation) A spherical
reservoir of radius R is to be arc-welded to a cylindrical pipe of radius r,
with the axis of the cylinder located a distance d from the center of the
sphere, all elements of the cylinder piercing the sphere, i.e., d + r ≤ R,
as shown in Fig. 9.4. Note that two intersection curves are geometrically
possible, but the welding will take place only along the upper curve. More-
over, the welding electrode is to traverse the intersection curve, while the
tool carrying the electrode is to keep a constant orientation with respect to
that curve. In the coordinate frame shown in Fig. 9.4, find an expression
for the rotation matrix defining the orientation of the end-effector, to which
the electrode is rigidly attached.

Solution: Note that the X axis of the coordinate frame indicated in Fig. 9.4
intersects the A axis of the cylinder, this axis being parallel to the Z axis.
Moreover, we define ϕ as the angle shown in Fig 9.4b. Now, the x and y

FIGURE 9.4. Intersection curve between a spherical reservoir and a cylindrical
pipe.
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coordinates of an arbitrary point of the intersection curve are given by

x = d + r cosϕ (9.36a)
y = r sinϕ (9.36b)

Further, in order to find the remaining z coordinate, we use the equation
of the sphere, S, namely,

S: x2 + y2 + z2 = R2

If we substitute the x and y coordinates of the intersection curve in the
above equation and then solve for the z coordinate in terms of ϕ, we obtain

z = ±
√

R2 − r2 − d2 − 2dr cosϕ (9.36c)

In the above relation, the plus and minus signs correspond to the upper
and lower portions of the intersection curve, respectively. Since we are
interested in only the upper intersection, we will take only the positive
sign in that relation. Furthermore, we define

d ≡ λr, R ≡ µr

where λ and µ are nondimensional constants. Moreover, let

ρ2 ≡ µ2 − λ2 − 1 > 0

ϕ̂ ≡ 1√
ρ2 − 2λ cosϕ

the inequality following from the geometry of Fig.9.4b. Then, the position
vector r of any point on the intersection curve can be expressed in the form

r = r




λ + cosϕ
sinϕ
1/ϕ̂


 (9.37)

Now, upon differentiation of r with respect to ϕ, we obtain

r′(ϕ) = r




− sinϕ
cosϕ

λϕ̂ sinϕ


 (9.38a)

r′′(ϕ) = r




− cosϕ
− sinϕ

λϕ̂ cosϕ − (λ2 sin2 ϕ)ϕ̂3


 (9.38b)

where we have used the relation

ϕ̂′(ϕ) = −(λ sin ϕ)ϕ̂3
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In addition, using eqs.(9.38a & b), we derive the items needed to compute
the Frenet-Serret triad, from which we will derive the required orientation
matrix, i.e.,

r′(ϕ) × r′′(ϕ) = r2




λϕ̂ − λ2ϕ̂3 cosϕ sin2 ϕ
−λ2ϕ̂3 sin3 ϕ

1


 (9.39a)

‖r′(ϕ)‖ = rG(ϕ) (9.39b)

‖r′(ϕ) × r′′(ϕ)‖ = r2ϕ̂3
√

D(ϕ) (9.39c)

with functions D(ϕ) and G(ϕ) defined as

D ≡ ρ4λ2 + λ4 + ρ6 − 6ρ2λ(λ2 + ρ2) cosϕ + 6λ2(λ2 + 2ρ2) cos2 ϕ

+ 2λ3(ρ2 − 4) cos3 ϕ − 3λ4 cos4 ϕ (9.39d)

G ≡
√

1 + λ2ϕ̂2 sin2 ϕ (9.39e)

Now et, eb, and en are obtained as

et ≡ r′(ϕ)
‖r′(ϕ)‖ =

1
G




− sin ϕ
cosϕ

λϕ̂ sin ϕ


 ≡ nt

G
(9.40a)

eb ≡ r′(ϕ) × r′′(ϕ)
‖r′(ϕ) × r′′(ϕ)‖ =

1
ϕ̂3

√
D




λϕ̂ − λ2ϕ̂3 cosϕ sin2 ϕ
−λ2ϕ̂3 sin3 ϕ

1


 ≡ nb

ϕ̂3
√

D
(9.40b)

en ≡ 1
ϕ̂3

√
D G




−λ3ϕ̂4 sin4 ϕ − cosϕ
λ3ϕ̂4 cosϕ sin3 ϕ − λ2ϕ̂2 sin ϕ − sin ϕ

λϕ̂ cosϕ − λ2ϕ̂3 sin2 ϕ


 ≡ nn

ϕ̂3
√

DG
(9.40c)

where en has been calculated as en = eb × et.
The orthogonal matrix defining the orientation of the end-effector can

now be readily computed as

Q ≡ [ et en eb ]

for we have all the necessary expressions. Note, however, that these expres-
sions allow us to find Q for any value of ϕ, but we do not have, as yet, an
expression of the form ϕ(t) that would allow us to obtain Q(t). Such an
expression is derived in Example 9.5.1.

Example 9.3.3 (Calculation of torsion, curvature, and Darboux
vector) We refer here to the intersection curve of Example 9.3.2, for which
we want to find expressions for its curvature, torsion, and Darboux vector.
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Solution: We can use directly the expressions derived above, eqs.(9.28a &
b), to obtain the curvature and torsion in terms of derivatives with respect
to parameter ϕ. With these expressions and those for the Frenet-Serret
triad, the Darboux vector would follow. However, we can take shortcuts,
for we already have expressions for the Frenet-Serret triad, if we express
the curvature and torsion in terms of this triad and its derivatives with
respect to ϕ, as we explain below. Indeed, from the Frenet-Serret relations,
eqs.(9.2b), we can express the curvature and torsion in the forms

κ = e′t(s) · en (9.41a)
τ = −e′b(s) · en (9.41b)

and hence, all we need now are the derivatives of the tangent and normal
vectors with respect to s. These are readily derived using relation (9.26a),
i.e.,

e′t(s) =
e′t(ϕ)
‖r′(ϕ)‖ (9.42a)

e′b(s) =
e′b(ϕ)
‖r′(ϕ)‖ (9.42b)

Now, in order to differentiate the Frenet-Serret triad with respect to
ϕ, we first note, from eqs.(9.40a–c), that these three expressions are vector
rational functions, and hence, their derivatives with respect to ϕ are derived
by applying eq.(9.30b), thereby obtaining

e′t(ϕ) =
1
G

[n′
t(ϕ) − etG

′(ϕ)] (9.43)

e′b(ϕ) =
1

ϕ̂3
√

D

{
n′

b(ϕ) − eb

[
3ϕ̂2ϕ̂′(ϕ)

√
D + ϕ̂3 D ′(ϕ)

2
√

D

]}
(9.44)

where nt and nb are the numerators of the vector rational expressions of
et and eb, respectively, given in eq.(9.40a & b). Below we calculate the
foregoing derivatives with respect to ϕ:

n′
t(ϕ) =




− cosϕ
− sin ϕ

λϕ̂(cosϕ − λϕ̂2 sin2 ϕ)




n′
b(ϕ) = λ




ϕ̂′ − λϕ̂2 sin ϕ[3ϕ̂′ cosϕ sin ϕ + ϕ̂(3 cos2 ϕ − 1)]
−3λϕ̂2 sin2 ϕ[ϕ̂′ sin ϕ + ϕ̂ cosϕ]

0




ϕ̂′ ≡ ϕ̂′(ϕ) =
−λ sin ϕ

(ρ2 − 2λ cosϕ)3/2
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D ′(ϕ) = 6ρ2λ(λ2 + ρ2) sin ϕ − 12λ2(λ2 + 2ρ2) cosϕ sin ϕ

− 6λ3(ρ2 − 4) cos2 ϕ sin ϕ + 12λ4 cos3 ϕ sin ϕ

G ′(ϕ) =
λ2 sin ϕ

2G
(2ϕ̂ cosϕ + ϕ̂′ sin ϕ)

and ‖r′(ϕ)‖ was already calculated in Example 9.3.2.
If we now substitute all the foregoing expressions into eqs.(9.42a & b),

we obtain, after intensive simplifications,

κ =
√

Dϕ̂3

G3r
(9.45a)

τ = −3
λ2ϕ̂E sin ϕ

rDG2
(9.45b)

with function E(ϕ) defined, in turn, as

E(ϕ) ≡ 1
ϕ̂4

[−λ3ϕ̂4 sin4 ϕ + λϕ̂2 sin2 ϕ(λ cos ϕ − 1) + cosϕ] (9.46)

With the foregoing expressions for et, eb, τ , and κ, computing the Darboux
vector of the intersection curve reduces to a routine substitution of the
foregoing expressions into eq.(9.13).

9.4 Parametric Splines in Trajectory Planning

Sometimes the path to be followed by the tip of the end-effector is given
only as a discrete set of sampled points {Pi}N

1 . This is the case, for example,
if the path is the intersection of two warped surfaces, as in the arc-welding
of two plates of the hull of a vessel or the spot-welding of two sheets of the
fuselage of an airplane. In these instances, the coordinates of the sampled
points are either calculated numerically via nonlinear-equation solving or
estimated using a vision system. In either case, it is clear that only point
coordinates are available, while trajectory planning calls for information on
derivatives of the position vector of points along the path with respect to the
arc length. These derivatives can be estimated via a suitable interpolation
of the given coordinates. Various interpolation schemes are available (Foley
and Van Dam, 1982; Hoschek and Lasser, 1992), the most widely accepted
ones being based on spline functions, which were introduced in Section 5.6.
The splines introduced therein are applicable whenever a function, not a
geometric curve, is to be interpolated. However, in trajectory planning,
geometric curves in three-dimensional space come into play, and hence,
those splines, termed nonparametric, are no longer applicable. What we
need here are parametric splines, as described below.
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Although parametric splines, in turn, can be of various types (Dierckx,
1993), we will focus here on cubic parametric splines because of their sim-
plicity.

Let Pi(xi, yi, zi), for i = 1, . . . , N , be the set of sampled points on the
path to be traced by the tip of the end-effector, {pi}N

1 being the set of
corresponding position vectors. Our purpose in this section is to produce
a smooth curve Γ that passes through {Pi}N

1 and that has a continuous
Frenet-Serret triad. To this end, we will resort to the expressions derived
in Section 9.3, in terms of a parameter σ, which we will define presently.

We first introduce a few definitions: Let the kth derivative of the position
vector p of an arbitrary point P of Γ with respect to σ, evaluated at Pi,
be denoted by p(k)

i , its components being denoted correspondingly by x
(k)
i ,

y
(k)
i , and z

(k)
i . Next, the coordinates of P are expressed as piecewise cubic

polynomials of σ, namely,

x(σ) = Axi(σ − σi)3 + Bxi(σ − σi)2 + Cxi(σ − σi) + Dxi (9.47a)
y(σ) = Ayi(σ − σi)3 + Byi(σ − σi)2 + Cyi(σ − σi) + Dyi (9.47b)
z(σ) = Azi(σ − σi)3 + Bzi(σ − σi)2 + Czi(σ − σi) + Dzi (9.47c)

for a real parameter σ, such that σi ≤ σ ≤ σi+1, and i = 1, . . . , N −1, with
σi defined as

σ1 = 0, σi+1 ≡ σi + ∆σi, ∆σi ≡
√

∆x2
i + ∆y2

i + ∆z2
i (9.47d)

∆xi ≡ xi+1 − xi, ∆yi ≡ yi+1 − yi, ∆zi ≡ zi+1 − zi (9.47e)

and hence, ∆σi represents the length of the chord subtended by the arc
of path between Pi and Pi+1. Likewise, σ denotes a path length measured
along the spatial polygonal joining the N points {Pi}N

1 . Thus, the closer
the aforementioned points, the closer the approximation of ∆σi to the arc
length between these two points, and hence, the better the approximations
of the curve properties.

The foregoing spline coefficients Axi, Ayi, . . . , Dzi, for i = 1, . . . , N − 1,
are determined as explained below. Let us define the N -dimensional vectors

x ≡ [x1, . . . , xN ]T , x′′ ≡ [x′′
1 , . . . , x′′

N ]T (9.48a)
y ≡ [y1, . . . , yN ]T , y′′ ≡ [y′′

1 , . . . , y′′
N ]T (9.48b)

z ≡ [z1, . . . , zN ]T , z′′ ≡ [z′′1 , . . . , z′′N ]T (9.48c)

The relationships between x, y, and z and their counterparts x′′, y′′, and
z′′ are the same as those found for nonparametric splines in eq.(5.58a),
namely,

Ax′′ = 6Cx (9.49a)
Ay′′ = 6Cy (9.49b)
Az′′ = 6Cz (9.49c)
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which are expressions similar to those of eq.(5.58a), except that the A
and C matrices appearing in eq.(9.49b) are now themselves functions of
the coordinates of the supporting points (SP) of the spline. In fact, the
(N − 2) × N matrices A and C are defined exactly as in eqs.(5.58b & c),
repeated below for quick reference:

A =




α1 2α1,2 α2 0 · · · 0 0
0 α2 2α2,3 α3 · · · 0 0
...

...
. . . . . . . . .

...
...

0 0 . . . αN ′′′ 2αN ′,′′N ′′ αN ′′ 0
0 0 0 · · · αN ′′ 2αN,′′N ′ αN ′




(9.49d)

and

C =




β1 −β1,2 β2 0 · · · 0 0
0 β2 −β2,3 β3 · · · 0 0
...

...
. . . . . . . . .

...
...

0 0 · · · βN ′′′ −βN ′,′′N ′′ βN ′′ 0
0 0 0 · · · βN ′′ −βN,′′N ′ βN ′




(9.49e)

where αk and βk are now defined correspondingly, i.e., for i, j, k = 1, . . . , N ′,

αk = ∆σk, αi,j = αi + αj , βk = 1/αk, βi,j = βi + βj (9.50)

while N ′, N ′′, and N ′′′ are defined as in eq.(5.58f), i.e., as

N ′ ≡ N − 1, N ′′ ≡ N − 2, N ′′′ ≡ N − 3 (9.51)

Note that the spline p(σ) is fully determined once its coefficients are
known. These are computed exactly as their counterparts for nonpara-
metric splines, namely, as in eqs.(5.55a–e). Obviously, different from the
aforementioned formulas, the coefficients of the parametric spline pertain
to three coordinates, and hence, three sets of such coefficients need be com-
puted in this case. In order to simplify matters, we introduce the vectors
below:

ak ≡



Axk

Ayk

Azk


 , bk ≡




Bxk

Byk

Bzk


 , ck ≡




Cxk

Cyk

Czk


 , dk ≡




Dxk

Dyk

Dzk


 (9.52)

and thus, the position vector of an arbitrary point P on the parametric
spline takes on the form

p(σ) = ak(σ − σk)3 + bk(σ − σk)2 + ck(σ − σk) + dk, k = 1, . . . , N − 1
(9.53a)
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in the interval σk ≤ σ ≤ σk+1. The counterpart set of eqs.(5.55a–e) is then

ak =
1

6 ∆σk
(p′′

k+1 − p′′
k) (9.53b)

bk =
1
2

p′′
k (9.53c)

ck =
∆pk

∆σk
− 1

6
∆σk (p′′

k+1 + 2p′′
k) (9.53d)

dk = pk (9.53e)
∆pk ≡ pk+1 − pk (9.53f)

where vectors pk and p′′
k are defined as

pk ≡



xk

yk

zk


 , p′′

k ≡



x′′
k

y′′
k

z′′k


 (9.54)

Note that since p is piecewise cubic in σ, p′ is piecewise quadratic, whereas
p′′ is piecewise linear in the same argument, p′′′ being piecewise constant;
higher-order derivatives vanish. Properly speaking, however, the piecewise
constancy of p′′′ causes the fourth-order derivative to be discontinuous at
the SP, and consequently, all higher-order derivatives are equally discontin-
uous at those points. In practice, these discontinuities are smoothed out by
the inertia of the links and the motors, if the SP are chosen close enough.
Obviously, higher-order continuity can be achieved if higher-order splines,
e.g., quintic splines, are used instead. For the sake of conciseness, these
splines are not discussed here, the interested reader being directed to the
specialized literature (Dierckx, 1993).

Further, the N × 3 matrices P and P′′ are defined as

P ≡




pT
1

pT
2
...

pT
N


 , P′′ ≡




(p′′
1 )T

(p′′
2 )T

...
(p′′

N )T


 (9.55)

which allows us to rewrite eqs.(9.49b) in matrix form as

AP′′ = 6CP (9.56)

It is now apparent that the spline coefficients ak, . . . , dk can be calculated
once vectors p′′

k are available. These vectors can be computed via matrix
P′′ as the solution to eq.(9.56). However, finding this solution requires
inverting the (N −2)×N matrix A, which is rectangular and hence cannot
be inverted, properly speaking. We thus have an underdetermined system
of linear equations, and further conditions are needed in order to render it
determined. Such conditions are those defining the type of spline at hand.
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9.4 Parametric Splines in Trajectory Planning 387

For example, closed paths call naturally for periodic splines, while open
paths call for other types such as natural splines. The conditions imposed
on periodic parametric splines are listed below:

pN = p1, p′
N = p′

1, p′′
N = p′′

1 (9.57a)

On the other hand, natural parametric splines are obtained under the
conditions

p′′
1 = p′′

N = 0 (9.57b)

Thus, if a periodic parametric spline is required, then vectors pN and p′′
N

can be deleted from matrices P and P′′, respectively, these then becoming
(N − 1) × 3 matrices, namely,

P ≡




pT
1

pT
2
...

pT
N−1


 , P′′ ≡




(p′′
1 )T

(p′′
2 )T

...
(p′′

N−1
T )


 (9.58)

Moreover, the first-derivative condition of eq.(9.57a) is added to the N − 2
continuity conditions of eq.(5.56), thereby obtaining N−1 equations of this
form. Consequently, A becomes an (N − 1)× (N − 1) matrix. Correspond-
ingly, C also becomes an (N − 1) × (N − 1) matrix, i.e.,

A ≡




2α1,N ′ α1 0 0 · · · αN ′

α1 2α1,2 α2 0 · · · 0
0 α2 2α2,3 α3 · · · 0
...

...
. . . . . . . . .

...
0 0 . . . αN ′′′ 2αN ′,′′N ′′ αN ′′

αN ′ 0 0 · · · αN ′′ 2αN,′′N ′




(9.59a)

and

C ≡




−β1,N ′ β1 0 0 · · · βN ′

β1 −β1,2 β2 0 · · · 0
0 β2 −β2,3 β3 · · · 0
...

...
. . . . . . . . .

...
0 0 · · · βN ′′′ −βN ′,′′N ′′ βN ′′

βN ′ 0 0 · · · βN ′′ −βN,′′N ′




(9.59b)

Since A is nonsingular, eq.(9.56) can be solved for P′′, namely,

P′′ = 6A−1CP (9.60)

thereby computing all vectors {p′′
k}N−1

1 , from which p′′
N can be readily

obtained. Hence, the spline coefficients follow.
Likewise, if natural parametric splines are used, then P′′ becomes an

(N − 2)× 3 matrix, while A, consequently, becomes an (N − 2)× (N − 2)
matrix, as given in eq.(5.59).
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TABLE 9.2. The Cartesian coordinates of the supporting points

ϕ 0◦ 30◦ 60◦ 90◦ 120◦ 150◦

x 0.45 0.429904 0.375 0.3 0.225 0.170096
y 0 0.075 0.129904 0.15 0.129904 0.075
z 0.396863 0.411774 0.45 0.497494 0.540833 0.570475
ϕ 180◦ 210◦ 240◦ 270◦ 300◦ 330◦

x 0.15 0.170096 0.225 0.3 0.375 0.429904
y 0 -0.075 -0.129904 -0.15 -0.129904 -0.075
z 0.580948 0.570475 0.540833 0.497494 0.45 0.411774
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FIGURE 9.5. Plots of the positioning errors.
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Example 9.4.1 (Spline-approximation of a warped path) For the
numerical values R = 0.6 m, r = 0.15 m, and d = 0.3 m, determine
the periodic parametric cubic spline approximating the intersection of the
sphere and the cylinder of Fig. 9.4, with 12 equally spaced supporting points
along the cylindrical coordinate ϕ, i.e., with supporting points distributed
along the intersection curve at intervals ∆ϕ = 30◦. Using the spline, find
values of the tangent, normal, and binormal vectors of the curve, as well as
the rotation matrix Q. In order to quantify the error in this approximation,
compare (i) the components of the two position vectors, the exact and the
spline-generated ones, while normalizing their differences using the radius
of the cylinder r; and (ii) the Euler-Rodrigues parameters of the exact and
the spline-approximated rotation matrices. Plot these errors vs. ϕ.

Solution: We use eq.(9.37) to find the Cartesian coordinates of the sup-
porting points. The numerical results are given in terms of the components
of r ≡ [ x, y, z ]T in Table 9.2. Note that this table does not include the
Cartesian-coordinate values at 360◦ because these are identical with those
at 0◦.

The four Euler-Rodrigues parameters {ri}3
i=0 of the rotation matrix are

most suitably calculated in terms of the linear invariants, i.e., as appearing
in eq.(2.77). If we let p̃ and r̃ denote the estimates of p and r, respectively,
then the orientation error is evaluated via the the four differences ∆ri =
ri − r̃i, for i = 0, . . . , 3. The positioning error is computed, in turn, as the
normalized difference ε = (p − p̃)/r to yield a dimensionless number, its
components being denoted by εx, εy, and εz. The components of the two
errors are plotted vs. ϕ in Figs. 9.5 and 9.6. Note that the orientation errors
are, roughly, one order of magnitude greater than the positioning errors.

9.5 Continuous-Path Tracking

When a continuous trajectory is to be tracked with a robot, the joint angles
have to be calculated along a continuous set of poses of the end-effector.
In practice, the continuous trajectory is sampled at a discrete set of close-
enough poses { sk }N

1 along the continuous trajectory. Then in principle,
an IKP must be solved at each sampled pose. If the manipulator is of the
decoupled type, these calculations are feasible in a fraction of a millisecond,
for the solution reduces, in the majority of the cases, to a cascading of
quadratic equations. In the worst case, the inverse kinematics of a decoupled
manipulator requires finding all the roots of a quartic equation at each
sampled pose, but this is still feasible in the same time frame, for the
four roots of interest can be calculated from formulas. However, if the
manipulator has an architecture not lending itself to a simple solution and
requires solving polynomials of a degree higher than four, then finding all
solutions at each sample pose may require a few milliseconds, which may
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FIGURE 9.6. Plots of the orientation errors.

Algorithm 9.5.1

θ←θ(tk)

1 find correction ∆θ

if ‖∆θ ‖ ≤ ε, then stop;

else

θ←θ + ∆θ

go to 1
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be too slow in fast operations. Hence, an alternative approach is needed.
The alternative is to solve the IKP iteratively. That is, if we have the

value of the vector of joint variables θ(tk) and want to find its value at
tk+1, then we use Algorithm 9.5.1.

Various procedures are available to find the correction ∆θ of Algo-
rithm 9.5. The one we have found very convenient is based on the Newton-
Gauss method (Dahlquist and Björck, 1974). In the realm of Newton meth-
ods—there are several of these, the Newton-Gauss and the Newton-Raphson
methods being two of this class—the closure equations (4.9a & b) are writ-
ten in the form

f(θ) = sd (9.61)
where sd is the 7-dimensional prescribed-pose array. We recall here the def-
inition of the pose array introduced in Section 3.2 to represent sd, namely,

sd ≡



q
q0

p




d

(9.62)

with q and q0 defined, in turn, as a 3-dimensional vector invariant of the
rotation Q and its corresponding scalar, respectively. Moreover, p is the
position vector of the operation point. Therefore, the 7-dimensional vector
f is defined, correspondingly, as

f(θ) ≡



fv(θ)
f0(θ)
fp(θ)


 ≡



q
q0

p


 (9.63)

where fv(θ) denotes the counterpart of q above, as pertaining to the prod-
uct Q1 · · ·Q6 of eq.(4.9a); f0(θ) is the counterpart of q0, as pertaining to
the same product; and fp(θ) is the sum a1 + · · ·+Q1 · · ·Q5a6. In principle,
any of the three types of rotation invariants introduced in Section 3.2 can
be used in the above formulation.

Now, eq.(9.61) represents a nonlinear system of seven equations in six
unknowns. The system is thus overdetermined, but since the four rotational
equations are consistent, this system should admit an exact solution, even
if this solution is complex. For example, if p is specified in sd above as lying
outside of the manipulator reach, then no real solution is possible, and the
solution reported by any iterative procedure capable of handling complex
solutions will be complex.

Upon application of the Newton-Gauss method to find a solution of
eq.(9.61), we assume that we have an initial guess θ0, and based on this
value, we generate a sequence θ1, . . ., θi, θi+1, . . ., until either a conver-
gence or an abortion criterion is met. This sequence is generated in the
form

θi+1 = θi + ∆θi (9.64)
with ∆θi calculated from

Φ(θi)∆θi = −f(θi) + sd (9.65)
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and Φ defined as the Jacobian matrix of f(θ) with respect to θ. Note that
by virtue of its definition, Φ is a 7×6 matrix. A common misconception in
the robotics literature is to confuse this Jacobian matrix with the Jacobian
defined by Whitney (1972) and introduced in eq.(4.54a), which maps joint
rates into the EE twist. The difference between the two Jacobians being
essential, it is made clear in the discussion below. First and foremost, Φ is
an actual Jacobian matrix, while Whitney’s Jacobian, properly speaking,
is not. In fact, Φ is defined as

Φ ≡ ∂f
∂θ

(9.66)

In order to find Φ in eq.(9.65), we note that by application of the chain
rule,

ḟ =
∂f
∂θ

θ̇ ≡ Φθ̇ (9.67)

However, from the definition of f, we have that ḟ is the time-derivative
of the pose array of the EE, i.e., ṡ. Moreover, by virtue of eq.(3.79), this
time-derivative can be expressed as a linear transformation of the twist t
of the EE, i.e.,

ḟ = Tt (9.68a)

with T defined in Section 3.2 as

T ≡
[

F O43

O33 133

]
(9.68b)

where O33 and O43 denote the 3 × 3 and the 4 × 3 zero matrices, 133

being the 3 × 3 identity matrix. Further, matrix F takes on various forms,
depending on the type of rotation representation adopted, as discussed in
Section 3.2.

We write next the left-hand side of eq.(9.68a) as shown in eq.(9.67), and
the twist t of the right-hand side of eq.(9.68a) in terms of θ̇, as expressed
in eq.(4.53), thereby obtaining

Φθ̇ ≡ TJθ̇ (9.69)

which is a relation valid for any value of θ̇. As a consequence, then,

Φ = TJ (9.70)

whence the relation between the two Jacobians is apparent. Note that
eq.(9.68a) allows us to write

ḟ = TJθ̇ (9.71)

Upon equating the right-hand sides of eqs.(9.71) and (9.68a), we obtain

TJθ̇ = Tt ≡ ṡd (9.72)
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If linear invariants are used to represent the rotation, then T becomes
rank-deficient if and only if the angle of the rotation becomes π (Tandirci
et al., 1994); otherwise, T is always of full rank, and eq.(9.72) leads to

Jθ̇ = t (9.73)

which is exactly the same as eq.(4.53). Now we multiply both sides of the
foregoing equation by ∆t, thereby obtaining

J∆θ = t∆t (9.74)

All we need now is, apparently, the product in the right-hand side of the
above equation, namely,

t∆t =
[

ω∆t
ṗ∆t

]
≡
[

ω∆t
∆p

]
(9.75)

The product ω∆t is found below, in terms of the orientation data available:
First and foremost, it is common practice in the realm of Newton methods
to assume that a good enough approximation to the root sought is available,
and hence, ∆θ is “small.” That is, we assume that ‖∆θ‖ is small, where
‖ · ‖ denotes any vector norm. Moreover, we use the end-effector pose at
t = tk as a reference to describe the desired pose at t = tk+1, the rotation
sought—that takes the EE to its desired attitude—being denoted by ∆Q,
and defined as (∆Q)Qk = Qd, when all rotations are expressed in the same
frame and Qk represents the orientation of the EE at t = tk. Thus,

∆Q = QdQT
k (9.76)

Now we relate ω∆t with ∆Q. To this end, notice that

ω∆t = vect(Ω∆t) (9.77a)

with Ω denoting the cross-product matrix of ω. On the other hand, ∆Q is
bound to be a rotation about an axis parallel to a unit vector e, through a
small angle ∆φ, and hence, from eq.(2.48),

∆Q ≈ 1 + (∆φ)E (9.77b)

where E is the cross-product matrix of e. It is then possible to assume that
Ω∆t, as appearing in eq.(9.77a), is the skew-symmetric component of ∆Q,
as given by eq.(9.77b), i.e.,

∆Q = 1 + Ω∆t

whence
Ω∆t = QdQT

k − 1
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which readily leads to
ω∆t = vect(QdQT

k ) (9.78)
thereby obtaining the relation sought.

In summary, then, the correction ∆θ is computed from

J∆θ = ∆t (9.79)

with ∆t defined as

∆t ≡
[

vect(QdQT
k )

∆p

]
(9.80)

and ∆p defined, in turn, as the difference between the prescribed value pd

of the position vector of the operation point and its value pk at the current
iteration. Thus, the numerical path-tracking scheme consists essentially of
eqs.(9.79) and (9.80), as first proposed by Pieper (1968). We thus have
Algorithm 9.5.2.

When implementing the foregoing procedure, we want to save processing
time; hence, we aim at fast computations. The computation of the cor-
rection ∆θ involves only linear-equation solving, which was discussed at
length in Chapter 4 and need not be discussed further here. The only item
that still needs some discussion is the calculation of the vector norm ‖∆θ‖.
Since any norm can be used here, we can choose the norm that is fastest to
compute, namely, the maximum norm, also known as the Chebyshev norm,
represented as ‖∆θ‖∞, and defined as

‖∆θ‖∞ ≡ max
i

{ |θi| } (9.81)

Algorithm 9.5.2

1 ∆Q ← QdQT
k

∆p ← pk − pd

∆t ←
[

vect(∆Q)
∆p

]

∆θ ← J−1∆t

if ‖∆θ ‖ ≤ ε, then stop;

else

θ ← θ + ∆θ

Qk ← ∆QQk

pk ← p(θ)

go to 1
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Note that this norm only requires comparisons and no floating-point oper-
ations. The Euclidean norm of an n-dimensional vector, however, requires
n multiplications, n − 1 additions, and one square root.

Example 9.5.1 (Path-tracking for arc-welding) We want to weld the
sphere and the cylinder of Example 9.3.2 using a robot for arc welding,
e.g., a Fanuc Arc Mate, whose Denavit-Hartenberg parameters are listed in
Table 4.2. Furthermore, the welding seam to be tracked is placed well within
the workspace of the manipulator. A location found quite suitable for this
task was obtained with the aid of RVS, our Robot Visualization System.
This location requires that the coordinate frame FC of Fig. 9.4 have its
axes parallel pairwise to those of the robot base, F1. The latter is defined
according to the Denavit-Hartenberg notation, and so Z1 coincides with the
axis of the first revolute; it is, moreover, directed upwards. The position
found for the origin OC of FC , of position vector o, is given in F1 as

[o ]1 ≡



x
y
z


 =



−1.0
−0.1
0.5


 m

Find the time-histories of all the joint variables that will perform the desired
operation with the tip of the electrode traversing the intersection curve at
the constant speed of v0 = 0.1 m/s. Furthermore, plot the variation of the
condition number of the Jacobian matrix along the path.

Solution: The robot at hand was studied in Subsection 8.2.6, where it was
found not to be of the decoupled type. In fact, this robot does not admit a
closed-form inverse kinematics solution, and hence, the foregoing iterative
procedure is to be used.

At the outset, we calculate all inverse kinematics solutions at the pose
corresponding to ϕ = 0 using the bivariate-equation approach of Subsec-
tion 8.2.2. This pose is defined by the orthogonal matrix Q and the position
vector p given below:

[Q ]1 ≡ [ eb et en ] =




0.6030 0 −0.7977
0 1 0

0.7977 0 0.6030


 , [p ]1 =



−0.5500
−0.100
0.8969


 m

with both Q and p given in robot-base coordinates. The contours for the
above pose, which were obtained using the procedure of Subsection 8.2.2,
are shown in Fig. 9.7, the eight solutions obtained being summarized in
Table 9.3, which includes the condition number of the Jacobian, κ(J), of
each solution. Note that the calculation of κ(J) required computing the
characteristic length of the robot, as explained in Section 4.9. This length,
as calculated in that section, turned out to be L = 0.3573 m.

Now, we have eight solutions at our disposal, from which we must choose
one for path-tracking. In the absence of any criterion to single out one
specific solution, we can pick up the solution with the lowest condition
number. If we do this, we end up with solution 1 in Table 9.3. However,
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when we attempted to track the given path with this solution, it turned out
that this solution encountered a singularity and was hence discarded. Of
the seven remaining solutions, solution 5 has the lowest condition number;
this solution led to a singularity-free trajectory.

Once the appropriate solution is chosen, the trajectory can be tracked
with the aid of Algorithm 9.5.2. Here, we need a discrete set of poses at
equal time-intervals. Note that we can produce such a set at equal intervals
of angle ϕ because we have expressions for the pose variables in terms of
this angle. In order to obtain this set at equal time-intervals, then, we need
angle ϕ as a function of time, i.e., ϕ(t). In the sequel, we will also need the
time T needed to complete the task. Now, since the speed of the electrode
tip is constant and equal to v0, the time T is readily obtained by dividing
the total length l of the curve by v0. The length of the curve, in turn, can
be computed as s(2π), where function s(ϕ) denotes the arc length as a
function of angle ϕ, i.e.,

s(ϕ) =
∫ ϕ

0

‖r′(ϕ)‖dϕ (9.82)

We thus obtain, by numerical quadrature,

l ≡ s(2π) = 1.0257 m

Hence, the total time is

T ≡ l

v0
= 10.257 s

Now, in order to obtain ϕ(t), we first calculate ṡ as

ṡ ≡ ds

dt
=

ds

dϕ

dϕ

dt
= ϕ̇

ds

dϕ
(9.83a)

Furthermore, we note that ds/dϕ = ‖r′(ϕ)‖, which allows us to write ṡ
as

ṡ ≡ ϕ̇‖r′(ϕ)‖
Moreover, ‖r′(ϕ)‖ was found in eq.(9.39b) to be

‖r′(ϕ)‖ = rG(ϕ)

ṡ thus becoming
ṡ = rGϕ̇ (9.83b)

Furthermore, we recall the expression derived for G(ϕ) in eq.(9.39e). This
expression, along with the constancy condition on ṡ, i.e., ṡ = v0, leads to

rϕ̇
√

1 + (λϕ̂ sin ϕ)2 = v0
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where r is the radius of the cylinder. Upon solving for ϕ̇ from the above
equation, we obtain

ϕ̇ =
v0

r

√
ρ2 − 2λ cosϕ

ρ2 − 2λ cosϕ + λ2 sin2 ϕ

which is a nonlinear first-order differential equation for ϕ(t). Its initial value
can be assigned as ϕ(0) = 0, thereby formulating a nonlinear first-order
initial-value problem. The numerical solution of the foregoing problem is
nowadays routine work, which can be handled with suitable software, e.g.,
Matlab (Hanselman and Littlefied, 2001). Upon solving this equation, a
data file is produced that contains the time-history of ϕ. The plot of ϕ vs.
nondimensional time is displayed in Fig. 9.8a. Since the variations of ϕ(t)
are relatively small, this plot provides little information on the time-history
of interest. A more informative plot, that of ϕ̇(t), is included in Fig. 9.8b
for this reason. Apparently, ϕ turns out to be the sum of a linear and a
periodic term.

With ϕ(t) known as a function of time, we can now specify the pose of
the end-effector, i.e., p and Q, as functions of time.

The whole trajectory was tracked with the robot at hand using the algo-
rithm outlined in this section. With the aid of this algorithm, we produced
the plots of Fig. 9.9. Also, the time-history of the condition number of the
manipulator Jacobian was computed and plotted in Fig. 9.10. Apparently,
the condition number of the Jacobian remains within the same order of
magnitude throughout the whole operation, below 10, thereby showing that
the manipulator remains far enough from singularities during this task—
the condition number becomes very large when a singularity is approached,
becoming unbounded at singularities. A rendering of the welding seam with
the Frenet-Serret triad at a sample of points is displayed in Fig. 9.11. It is
noteworthy that the torsion of the path is manifested in this figure by virtue
of the inclination of the Z axis, which changes from point to point. In a
planar curve, this axis would remain at a fixed orientation while traversing
the curve.
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FIGURE 9.8. Plot of ϕ̇ vs. nondimensional time.
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FIGURE 9.9. Time-histories of the joint variables (in degrees) of the Fanuc Arc
Mate robot used to track a warped curve for arc-welding vs. nondimensional time.
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FIGURE 9.10. Time-history of the condition number of the Jacobian matrix
during an arc-welding operation vs. nondimensional time.

FIGURE 9.11. Welding seam with Frenet-Serret frames.
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10
Dynamics of Complex Robotic
Mechanical Systems

10.1 Introduction

The subject of this chapter is the dynamics of the class of robotic mechani-
cal systems introduced in Chapter 8 under the generic name of complex. No-
tice that this class comprises serial manipulators not allowing a decoupling
of the orientation from the positioning tasks. For purposes of dynamics,
this decoupling is irrelevant and hence, was not a condition in the study of
the dynamics of serial manipulators in Chapter 6. Thus, serial manipulators
need not be further studied here, the focus being on parallel manipulators
and rolling robots. The dynamics of walking machines and multifingered
hands involves special features that render these systems more elaborate
from the dynamics viewpoint, for they exhibit a time-varying topology.
What this means is that these systems include kinematic loops that open
when a leg takes off or when a finger releases an object and open chains that
close when a leg touches ground or when a finger makes contact with an
object. The implication here is that the degree of freedom of these systems
is time-varying. The derivation of such a mathematical model is discussed
in (Pfeiffer et al, 1995).

The degree of freedom (dof) of the mechanical systems studied here is
thus constant. Now, the two kinds of systems studied here pertain to very
different types, for parallel manipulators fall into the realm of holonomic,
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while rolling robots into that of nonholonomic, mechanical systems. In or-
der to better understand this essential difference between these two types
of systems, we give below a summary of the classification of mechanical
systems at large.

10.2 Classification of Robotic Mechanical Systems
with Regard to Dynamics

Because robotic mechanical systems are a class of general mechanical sys-
tems, a classification of the latter will help us focus on the systems moti-
vating this study. Mechanical systems can be classified according to vari-
ous criteria, the most common one being based on the type of constraints
to which these systems are subjected. In this context we find holonomic
vs. nonholonomic and scleronomic vs. rheonomic constraints. Holonomic
constraints are those that are expressed either as a system of algebraic
equations in displacement variables, whether angular or translational, not
involving any velocity variables, or as a system of equations in velocity vari-
ables that nevertheless can be integrated as a whole to produce a system
of equations of the first type. Note that it is not necessary that every sin-
gle scalar equation of velocity constraints be integrable; rather, the whole
system must be integrable for the system of velocity constraints to lead to
a system of displacement constraints. If the system of velocity constraints
is not integrable, the constraints are said to be nonholonomic. Moreover,
if a mechanical system is subject only to holonomic constraints, it is said
to be holonomic; otherwise, it is nonholonomic. Manipulators composed
of revolute and prismatic pairs are examples of holonomic systems, while
wheeled robots are usually nonholonomic systems. On the other hand, if a
mechanical system is subject to constraints that are not explicit functions
of time, these constraints are termed scleronomic, while if the constraints
are explicit functions of time, they are termed rheonomic. For our purposes,
however, this distinction is irrelevant.

In order to understand better one more classification of mechanical sys-
tems, we recall the concepts of generalized coordinate and generalized speed
that were introduced in Subsection 6.3.2. The generalized coordinates of a
mechanical system are all those displacement variables, whether rotational
or translational, that determine uniquely a configuration of the system.
Note that the set of generalized coordinates of a system is not unique.
Moreover, various sets of generalized coordinates of a mechanical system
need not have the same number of elements, but there is a minimum num-
ber below which the set of generalized coordinates cannot define the con-
figuration of the system. This minimum number corresponds, in the case of
holonomic systems, to the degree of freedom of the system. Serial and paral-
lel manipulators coupled only by revolute or prismatic pairs are holonomic,
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their joint variables, grouped in vector θ, playing the role of generalized
coordinates, while their joint rates, grouped in vector θ̇, in turn, play the
role of generalized speeds. Note that in the case of parallel manipulators,
not all joint variables are independent generalized coordinates. In the case
of nonholonomic systems, on the other hand, the number of generalized co-
ordinates needed to fully specify their configuration exceeds their degree of
freedom by virtue of the lack of integrability of their kinematic constraints.
This concept is best illustrated with the aid of examples, which are included
in Section 10.5. Time-derivatives of the generalized coordinates, or linear
combinations thereof, are termed the generalized speeds of the system. If
the kinetic energy of a mechanical system is zero when all its generalized
speeds are set equal to zero, the system is said to be catastatic. If, on the
contrary, the kinetic energy of the system is nonzero even if all the gener-
alized speeds are set equal to zero, the system is said to be acatastatic. All
the systems that we will study in this chapter are catastatic. A light robot
mounted on a heavy noninertial base that undergoes a controlled motion is
an example of an acatastatic system, for the motion of the base can be as-
sumed to be insensitive to the dynamics of the robot; however, the motion
of the base does affect the dynamics of the robot.

Another criterion used in classifying mechanical systems, which pertains
specifically to robotic mechanical systems, is based on the type of actua-
tion. In general, a system needs at least as many independent actuators
as degrees of freedom. However, instances arise in which the number of
actuators is greater than the degree of freedom of the system. In these
instances, we speak of redundantly actuated systems. In view of the funda-
mental character of this book, we will not study redundant actuation here;
we will thus assume that the number of independent actuators equals the
degree of freedom of the system.

The main results of this chapter are applicable to robotic mechanical
systems at large. For brevity, we will frequently refer to the objects of our
study simply as systems.

10.3 The Structure of the Dynamics Models of
Holonomic Systems

We saw in Section 6.6 that the mathematical model of a manipulator of the
serial type contains basically three terms, namely, one linear in the joint
accelerations, one quadratic in the joint rates, and one arising from the
environment, i.e., from actuators, dissipation, and potential fields such as
gravity. We show in this section that in fact, the essential structure of this
model still holds in the case of more general mechanical systems subject
to holonomic constraints, if we regard the rates of the actuated joints as
the independent generalized speeds of the system. Nonholonomic robotic
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systems are studied in Section 10.5.
First, we will assume that the mechanical system at hand is composed of

r rigid bodies and its degree of freedom is n. Henceforth, we assume that
these bodies are coupled in such a way that they may form kinematic loops;
for this reason, such systems contain some unactuated joints. Definitions
similar to those of Section 6.3.1 are henceforth adopted. In this vein, the
manipulator mass matrix of that section becomes now, more generically, the
6r× 6r system mass matrix M, the 6r × 6r system angular velocity matrix
W, and the 6r-dimensional system twist vector t being defined likewise.

We assume further that the total number of joints, active and passive,
is m > n. The m-dimensional array θ of joint variables, associated with
both actuated and unactuated joints, is thus naturally partitioned into two
subarrays, the n-dimensional vector of actuated joint variables θa and its
m′-dimensional unactuated counterpart θu, with m′ ≡ m − n, namely,

θ =
[

θa

θu

]
(10.1)

We can now set up the mathematical model of the system at hand using
the natural orthogonal complement, as introduced in Section 6.5. Since the
system under study has n degrees of freedom, the model sought must be a
system of n second-order ordinary differential equations. We can proceed to
derive this model as we did in Section 6.5, by regarding all joints first as if
they were independent, but taking into account that only n of the total m
joints are actuated. We do this by introducing a vector of constraint forces,
as is done in the realm of Lagrangian dynamics (Török, 2000). In this vein,
we first represent the twists of all the moving links as linear transformations
of the joint-rate vector θ̇, then assemble all the individual 6-dimensional
twist arrays into the 6r-dimensional array t defined above as the system
twist. We thus end up with a relation of the form

t = U(θ)θ̇ (10.2)

where U(θ) is the 6r × m twist-shaping matrix, playing a role similar to
that of matrix T of Section 6.5. Moreover, the constraints relating all joint
rates can be cast in the form

A(θ)θ̇ = 0p (10.3)

where A(θ) is a p×m matrix, whereby p < m, with nullity—the nullity of a
matrix is the dimension of its nullspace—ν = n, and 0p is the p-dimensional
zero vector. Given the nullity of A(θ), up to n of the m components of θ
can be assigned freely without violating the constraints (10.3), which is
compatible with the assumption on the dof of the system. Note that, in
setting up the foregoing p constraints on the joint rates, the number p
depends on the topology of the system, i.e., on its number of links; on its
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number of joints; and on how the links are coupled, so as to form kinematic
loops.

In applying the procedure of the natural orthogonal complement to the
constrained system, we end up with a system of m second-order ordinary
differential equations, namely, the Euler-Lagrange equations of a system
constrained by the relations (10.3), which thus takes the form

Ĩθ̈ + C̃(θ, θ̇)θ̇ = τ̃ + δ̃ + γ̃ + J̃TwW + AT λ (10.4a)

The above equation contains terms that are familiar from Section 6.5,
except for the last term of the right-hand side. This term accounts for
the generically termed constraint forces and amounting to constraint joint
torques and forces that must be exerted at all joints in order to main-
tain the topology of the system. Vector λ is termed the vector of Lagrange
multipliers in the realm of Lagrangian dynamics. In the above equation,
the definitions below, similar to those of eqs.(6.58) and (6.59), have been
introduced:

Ĩ(θ) ≡ UT MU (10.4b)
C̃(θ, θ̇) ≡ UT MU̇ + UT WMU (10.4c)

τ̃ ≡ UT wA, δ̃ ≡ UT wD, γ̃ ≡ UT wG (10.4d)

Moreover, wA, wD, wG, and wW are the various types of wrenches acting
on the system: exerted by the actuators; stemming from dissipation effects;
due to the gravity field; and exerted by the environment, respectively. In
turn, J̃ is the 6 × m Jacobian matrix mapping the system joint rates into
the end-effector twist, while wW is assumed applied onto the end-effector.

Upon resorting to the kinematics of the system, it is possible to express
the vector of joint rates θ̇ as a linear transformation of the vector of actu-
ated joint rates θ̇a, namely,

θ̇ = Θ(θa)θ̇a (10.5)

where we have assumed that, from the geometry of the system, θu has
been solved for in terms of θa. Further, upon substitution of eq.(10.5) into
eq.(10.3)), we obtain

A(θ)Θ(θa)θ̇a = 0p

which must hold for any θ̇a, given the dof of the system. As a consequence,
then,

A(θ)Θ(θa) = Opm (10.6)

and hence, Θ(θa) is an orthogonal complement of A(θ), which we can also
call a natural orthogonal complement. Notice, however, that contrary to
the natural orthogonal complement U, which maps the joint-rate vector
onto the system twist, Θ maps the space of actuated joint rates into that
of the system joint rates. Apparently,

θ̈ = Θ(θa)θ̈a + Θ̇(θa, θ̇a)θ̇a (10.7)
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Upon substitution of eq.(10.7) into eq.(10.4a), we obtain

ĨΘθ̈a + ĨΘ̇θ̇a + C̃(θa, θ̇a)Θθ̇a = τ̃ + δ̃ + γ̃ + J̃T wW + AT λ

Further, the term of constraint forces is eliminated from the above equa-
tions upon multiplying both sides of the above equation by ΘT from the
left, thus obtaining the mathematical model sought, i.e.,

Iθ̈a + Cθ̇a = τ + δ + γ + JT wW (10.8a)

with the definitions below:

I = TTMT, C = TT MṪ + TT WMT, J = J̃Θ, (10.8b)
τ = ΘT τ̃ , δ = ΘT δ̃, γ = ΘT γ̃, (10.8c)

and
T = UΘ (10.8d)

That is, the mathematical model governing the dynamics of any holonomic
robotic mechanical system is formally identical to that of eq.(6.61) obtained
for serial manipulators.

10.4 Dynamics of Parallel Manipulators

We illustrate the modeling techniques of mechanical systems with kine-
matic loops via a class of systems known as parallel manipulators. While
parallel manipulators can take on a large variety of forms, we focus here on
those termed platform manipulators, with an architecture similar to that of
flight simulators. In platform manipulators we can distinguish two special
links, namely, the base B and the moving platform M. Moreover, these
two links are coupled via six legs, with each leg constituting a six-axis kine-
matic chain of the serial type, as shown in Fig. 10.1, whereby a wrench
wW , represented by a double-headed arrow, acts on M and is applied at
CM, the mass center of M. This figure shows the axes of the revolutes cou-
pling the legs to the two platforms as forming regular polygons. However,
the modeling discussed below is not restricted to this particular geometry.
As a matter of fact, these axes need not even be coplanar. On the other
hand, the architecture of Fig. 10.1 is very general, for it includes more spe-
cific types of platform manipulators, such as flight simulators. In these, the
first three revolute axes stemming from the base platform have intersecting
axes, thereby giving rise to a spherical kinematic pair, while the upper two
axes intersect at right angles, thus constituting a universal joint. Moreover,
the intermediate joint in flight simulators is not a revolute, but rather a
prismatic pair, which is the actuated joint of the leg. A leg kinematically
equivalent to that of flight simulators can be obtained from that of the
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FIGURE 10.1. A platform-type parallel manipulator.

manipulator of Fig. 10.1, if the intermediate revolute has an axis perpen-
dicular to the line connecting the centers of the spherical and the universal
joints of the corresponding leg, as shown in Fig. 10.2. In flight simulators,
the pose of the moving platform is controlled by hydraulic actuators that
vary the distance between these two centers. In the revolute-coupled equiv-
alent leg, the length of the same line is controlled by the rotation of the
intermediate revolute.

Shown in Fig. 10.3 is the graph of the system depicted in Fig. 10.1. In
that graph, the nodes denote rigid links, while the edges denote joints. By
application of Euler’s formula for graphs (Harary, 1972), the number ι of
independent loops of a system with many kinematic loops is given by

ι = j − l + 1 (10.9)

where j is the number of revolute and prismatic joints and l is the number
of links.

Thus, if we apply Euler’s formula to the system of Fig. 10.1, we conclude
that its kinematic chain contains five independent loops. Hence, while the
chain apparently contains six distinct loops, only five of these are indepen-
dent. Moreover, the degree of freedom of the manipulator is six. Indeed,
the total number of links of the manipulator is l = 6×5+2 = 32. Of these,
one is fixed, and hence, we have 31 moving links, each with six degrees of
freedom prior to coupling. Thus, we have a total of 31 × 6 = 186 degrees
of freedom at our disposal. Upon coupling, each revolute removes five de-
grees of freedom, and hence, the 36 kinematic pairs remove 180 degrees of
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FIGURE 10.2. A leg of a simple platform-type parallel manipulator.

freedom, the manipulator thus being left with 6 degrees of freedom. We
derive below the mathematical model governing the motion of the overall
system in terms of the independent generalized coordinates associated with
the actuated joints of the legs.

We assume, henceforth, that each leg is a six-axis open kinematic chain
with either revolute or prismatic pairs, only one of which is actuated, and
we thus have as many actuated joints as degrees of freedom. Furthermore,
we label the legs with Roman numerals I, II, . . ., VI and denote the mass
center of the mobile platform M by CM, with the twist of M denoted by
tM and defined at the mass center. That is, if cM denotes the position
vector of CM in an inertial frame and ċM its velocity, while ωM is the
angular velocity of M, then

tM ≡
[

ωM
ċM

]
(10.10)

Next, the Newton-Euler equations of M are derived from the free-body
diagram shown in Fig. 10.4. In this figure, the legs have been replaced by the
constraint wrenches {wC

J }VI
I acting at point CM, the governing equation

thus taking the form of eq.(6.5c), namely,

MMṫM = −WMMMtM + wW +
VI∑

J=I

wC
J (10.11)

with wW denoting the external wrench acting on M. Furthermore, let us
denote by qJ the variable of the actuated joint of the Jth leg, all variables
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FIGURE 10.3. The graph of the flight simulator.

FIGURE 10.4. The free-body diagram of M.

of the six actuated joints being grouped in the 6-dimensional array q, i.e.,

q ≡ [ qI qII · · · qVI ]T (10.12)

Now, we derive a relation between the twist tM and the active joint rates,
q̇J , for J = I, II, . . ., VI. To this end, we resort to Fig. 10.5, depicting the
Jth leg as a serial-type, six-axis manipulator, whose twist-shape relations
are readily expressed as in eq.(4.54a), namely,

JJ θ̇J = tM, J = I, II, . . . , VI (10.13)

where JJ is the 6 × 6 Jacobian matrix of the Jth leg.
In Fig. 10.5, the moving platform M has been replaced by the constraint

wrench transmitted by the moving platform onto the end link of the Jth
leg, −wC

J , whose sign is the opposite of that transmitted by this leg onto M
by virtue of Newton’s third law. The dynamics model of the manipulator
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FIGURE 10.5. The serial manipulator of the Jth leg.

of Fig. 10.5 then takes the form

IJ θ̈J + CJ (θJ , θ̇J)θ̇J = τJ − JT
J wC

J , J = I, II, . . . , VI (10.14)

where IJ is the 6 × 6 inertia matrix of the manipulator, while CJ is the
matrix coefficient of the inertia terms that are quadratic in the joint rates.
Moreover, θJ and τJ denote the 6-dimensional vectors of joint variables
and joint torques, namely,

θJ ≡




θJ1

θJ2
...

θJ6


 , τJ ≡




0
...

τJk

0
...
0




(10.15)

with subscript Jk denoting in turn the only actuated joint of the Jth leg,
namely, the kth joint of the leg. If we now introduce eJk, defined as a unit
vector all of whose entries are zero except for the kth entry, which is unity,
then we can write

τ J = fJeJk (10.16)

If the actuated joint is prismatic, as is the case in flight simulators, then
fJ is a force; if this joint is a revolute, then fJ is a torque.
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Now, since the dimension of q coincides with the degree of freedom of
the manipulator, it is possible to find, within the framework of the natural
orthogonal complement, a 6× 6 matrix LJ mapping the vector of actuated
joint rates q̇ into the vector of Jth-leg joint-rates, namely,

θ̇J = LJ q̇, J = I, II, . . . , VI (10.17)

The calculation of LJ will be illustrated with an example.
Moreover, if the manipulator of Fig. 10.5 is not at a singular configura-

tion, then we can solve for wC
J from eq.(10.14), i.e.,

wC
J = J−T

J (τJ − IJ θ̈J − CJ θ̇J) (10.18)

in which the superscript −T stands for the transpose of the inverse, or
equivalently, the inverse of the transpose, while IJ = IJ(θJ) and CJ =
CJ (θJ , θ̇J). Further, we substitute wC

J as given by eq.(10.18) into eq.(10.11),
thereby obtaining the Newton-Euler equations of the moving platform free
of constraint wrenches. Additionally, the equations thus resulting now con-
tain inertia terms and joint torques pertaining to the Jth leg, namely,

MMṫM = −WMMMtM + wW +
VI∑

J=I

J−T
J (τ J − IJ θ̈J − CJ θ̇J ) (10.19)

Still within the framework of the natural orthogonal complement, we set
up the relation between the twist tM and the vector of actuated joint rates
q̇ as

tM = Tq̇ (10.20)

which upon differentiation with respect to time, yields

ṫM = Tq̈ + Ṫq̇ (10.21)

In the next step, we substitute tM and its time-derivative as given by
eqs.(10.20 & 10.21) into eq.(10.19), thereby obtaining

MM(Tq̈ + Ṫq̇) + WMMMTq̇

+
VI∑

J=I

J−T
J (IJ θ̈J + CJ θ̇J ) = wW +

VI∑
J=I

J−T
J τ J (10.22)

Further, we recall relation (10.17), which upon differentiation with re-
spect to time, yields

θ̈J = LJ q̈ + L̇J q̇ (10.23)

Next, relations (10.17 & 10.23) are substituted into eq.(10.22), thereby
obtaining the model sought in terms only of actuated joint variables. After
simplification, this model takes the form

MMTq̈ + MMṪq̇ + WMMMTq̇

+
J=VI∑
J=I

J−T
J (IJLJ q̈ + IJ L̇J q̇ + CJLJ q̇) = wW +

VI∑
J=I

J−T
J τJ (10.24)
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where now IJ = IJ (q) and CJ = CJ(q, q̇).
Our final step in this formulation consists in deriving a reduced 6 × 6

model in terms only of actuated joint variables. Prior to this step, we note
that from eqs.(10.13), (10.17), and (10.20),

LJ = J−1
J T (10.25)

Upon substitution of the above relation into eq.(10.24) and multiplication
of both sides of eq.(10.24) by TT from the left, we obtain the desired model
in the form of eqs.(10.8a), namely,

M(q)q̈ + N(q, q̇)q̇ = τW +
VI∑

J=I

LJτ J (10.26)

with the 6 × 6 matrices M(q), N(q, q̇), and vector τW defined as

M(q) ≡ TT MMT +
VI∑

J+I

LT
J IJLJ (10.27a)

N(q, q̇) ≡ TT (MMṪ + WMMMT) +
VI∑

J=I

LT
J (IJ L̇J + CJLJ ) (10.27b)

τW ≡ TT wW (10.27c)

Alternatively, the foregoing variables can be expressed in a more compact
form that will shed more light on the above model. To do this, we define
the 36 × 36 matrices I and C as well as the 6 × 36 matrix L, the 6 × 6
matrix Λ, and the 6-dimensional vector φ as

I ≡ diag(II , III , . . . , IVI) (10.28a)
C ≡ diag(CI , CII , . . . , CVI) (10.28b)
L ≡ [LI LII . . . LVI ] (10.28c)
Λ ≡ [LIeIk LIIeIIk . . . LVIeVIk ] (10.28d)

φ ≡ [ fI fII . . . fVI ]T (10.28e)

and hence,

M(q) ≡ TT MMT + LT IL (10.29a)
N(q, q̇) ≡ TT (MMṪ + WMMMT) + LT IL̇ + LT C(q, q̇)L (10.29b)

VI∑
J=I

LT
J τ J ≡ Λφ (10.29c)

whence the mathematical model of eq.(10.26) takes on a more familiar
form, namely,

M(q)q̈ + N(q, q̇)q̇ = τW + Λφ (10.30)
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Thus, for inverse dynamics, we want to determine φ for a motion given
by q and q̇, which can be done from the above equation, namely,

φ = Λ−1[M(q)q̈ + N(q, q̇)q̇ − τ W ] (10.31)

Notice, however, that the foregoing solution is not recursive, and since it
requires linear-equation solving, it is of order n3, which thus yields a rather
high numerical complexity. It should be possible to produce a recursive
algorithm for the computation of φ, but this issue will not be pursued here.
Moreover, given the parallel structure of the manipulator, the associated
recursive algorithm should be parallelizable with multiple processors.

For purposes of direct dynamics, on the other hand, we want to solve for
q̈ from eq.(10.30). Moreover, for simulation purposes, we need to derive the
state-variable equations of the system at hand. This can be readily done if
we define r ≡ q̇, the state-variable model thus taking on the form

q̇ = r (10.32a)
ṙ = M−1[−N(q, r)r + τW + Λφ] (10.32b)

In light of the matrix inversion of the foregoing model, then, the complexity
of the forward dynamics computations is also of order n3.

Example 10.4.1 Derive matrix LJ of eq.(10.17) for a manipulator having
six identical legs like that of Fig. 10.2, the actuators being placed at the
fourth joint.

Solution: We attach coordinate frames to the links of the serial chain of
the Jth leg following the Denavit-Hartenberg notation, while noting that
the first three joints intersect at a common point, and hence, r1 = r2 = r3.
According to this notation, we recall, vector ri is directed from the origin
Oi of the ith frame to the operation point of the manipulator, which in this
case, is CM. The Jacobian matrix of the Jth leg then takes the form

JJ =
[

e1 e2 e3 e4 e5 e6

e1 × r1 e2 × r1 e3 × r1 e4 × r4 e5 × r5 e6 × r5

]

J

the subscript J of the array in the right-hand side reminding us that the
vectors inside it pertain to the Jth leg. Thus, matrix JJ maps the joint-rate
vector of the Jth leg, θ̇J , into the twist tM of the platform, i.e.,

JJ θ̇J = tM

Clearly, the joint-rate vector of the Jth leg is defined as

θ̇J ≡ [ θ̇J1 θ̇J2 θ̇J3 θ̇J4 θ̇J5 θ̇J6 ]T

Now, note that except for θ̇J4, all joint-rates of this leg are passive and
thus need not appear in the mathematical model of the whole manipulator.
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Hence, we should aim at eliminating all joint-rates from the above twist-
rate relation, except for the one associated with the active joint. We can
achieve this if we realize that

rJ1 × eJi + eJi × rJ1 = 0, i = 1, 2, 3

Further, we define a 3 × 6 matrix AJ as

AJ ≡ [RJ1 1 ]

with RJ1 defined, in turn, as the cross-product matrix of rJ1. Now, upon
multiplication of JJ by AJ from the right, we obtain a 3× 6 matrix whose
first three columns vanish, namely,

AJJJ = [0 0 0 e4 × (r4 − r1) e5 × (r5 − r1) e6 × (r5 − r1) ]J

and hence, if we multiply both sides of the above twist-shape equation by
AJ from the right, we will obtain a new twist-shape equation that is free
of the first three joint rates. Moreover, this equation is 3-dimensional, i.e.,

[e4 × (r4 − r1)θ̇4 + e5 × (r5 − r1)θ̇5 + e6 × (r5 − r1)θ̇6]J = ωM × rJ1 + ċM

where the subscript J attached to the brackets enclosing the whole left-
hand side again reminds us that all quantities therein are to be understood
as pertaining to the Jth leg. For example, e4 is to be read eJ4. Furthermore,
only θ̇J4 is associated with an active joint and denoted, henceforth, by qJ ,
i.e.,

qJ ≡ θJ4 (10.33)

It is noteworthy that the foregoing method of elimination of passive joint
rates is not ad hoc at all. While we applied it here to the elimination of the
three joint rates of a spherical joint, it has been formalized and generalized
to all six lower kinematic pairs (Angeles, 1994).

We have now to eliminate both θ̇J5 and θ̇J6 from the foregoing equation.
This can be readily accomplished if we dot-multiply both sides of the same
equation by vector uJ defined as the cross product of the vector coefficients
of the two passive joint rates, i.e.,

uJ ≡ [e5 × (r5 − r1)]J × [e6 × (r5 − r1)]J

We thus obtain a third twist-shape relation that is scalar and free of passive
joint rates, namely,

uJ · [e4 × (r4 − r1)θ̇4]J = uJ · (ωM × rJ1 + ċM)

The above equation is clearly of the form

ζJ q̇J = yT
J tM, q̇J ≡ (θ̇4)J , J = I, II, . . . , VI
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with ζJ and yJ defined, in turn, as

ζJ ≡ uJ · eJ4 × (rJ4 − rJ1) (10.34a)

yJ ≡
[
rJ1 × uJ

uJ

]
(10.34b)

Upon assembling the foregoing six scalar twist-shape relations, we obtain
a 6-dimensional twist-shape relation between the active joint rates of the
manipulator and the twist of the moving platform, namely,

Zq̇ = YtM

with the obvious definitions for the two 6×6 matrices Y and Z given below:

Y ≡




yT
I

yT
II
...

yT
VI


 , Z ≡ diag(ζI , ζII , . . . , ζVI)

We now can determine matrix T of the procedure described above, as long
as Y is invertible, in the form

T = Y−1Z

whence the leg-matrix LJ of the same procedure is readily determined,
namely,

LJ = J−1
J T

Therefore, all we need now is an expression for the inverse of the leg Ja-
cobian JJ . This Jacobian is clearly full, which might discourage the reader
from attempting its closed-form inversion. However, a closer look reveals
that this Jacobian is similar to that of decoupled manipulators, studied
in Section 4.5, and hence, its closed-form inversion should be reducible to
that of a 3 × 3 matrix. Indeed, if we recall the twist-transfer formula of
eqs.(4.62a & b), we can then write JJ as

JJ ≡ UJKJ

where UJ is a unimodular 6×6 matrix and KJ is the Jacobian of the same
Jth leg, but now defined with its operation point located at the center of
the spherical joint. Thus,

UJ ≡
[

1 O
OJ1 − CM 1

]
, KJ ≡

[
K11 K12

O K22

]

J

the superscript J indicating the Jth leg and with the definitions below:

O: the 3 × 3 zero matrix;
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1: the 3 × 3 identity matrix;

OJ1: the cross-product matrix of oJ1, the position vector of the center of
the spherical joint;

CM: the cross product matrix of cM, the position vector of CM.

Furthermore, the 3 × 3 blocks of KJ are defined, in turn, as

(K11)J ≡ [e1 e2 e3 ]J
(K12)J ≡ [e4 e5 e6 ]J
(K22)J ≡ [e4 × (r4 − r1) e5 × (r5 − r1) e6 × (r5 − r1) ]J

Now, if the inverse of a block matrix is recalled, we have

K−1
J =

[
K−1

11 −K−1
11 K12K−1

22

O K−1
22

]

J

where the superscript of the blocks has been transferred to the whole ma-
trix, in order to ease the notation. The problem of inverting KJ has now
been reduced to that of inverting two of its 3 × 3 blocks. These can be in-
verted explicitly if we recall the concept of reciprocal bases (Brand, 1965).
Thus,

(K−1
11 )J =

1
∆J

11




(e2 × e3)T

(e3 × e1)T

(e1 × e2)T




J

(K−1
22 )J =

1
∆J

22




[(e5 × s5) × (e6 × s5)]T

[(e6 × s5) × (e4 × s4)]T

[(e4 × s4) × (e5 × s5)]T




J

with sJ4, sJ5, ∆J
11, and ∆J

22 defined as

sJ4 ≡ rJ4 − rJ1

sJ5 ≡ rJ5 − rJ1

∆J
11 ≡ det(KJ

11) = (e1 × e2 · e3)J

∆J
22 ≡ det(KJ

22) = [(e4 × s4) × (e×s5) · (e6 × s5)]J

the subscripted brackets and parentheses still reminding us that all vectors
involved pertain to the Jth leg. Moreover, since UJ is unimodular, its
inverse is simply

U−1
J =

[
1 O

CM − OJ1 1

]

and hence,

J−1
J =

[
K−1

11 − K−1
11 K12K−1

22 (CM − OJ1) −K−1
11 K12K−1

22

K22CM K−1
22

]

J
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the matrix sought, LJ , then being calculated as

LJ = J−1
J Y−1Z

While we have a closed-form inverse of JJ , we do not have one for Y, which
is full and does not bear any particular structure that would allow us its
inversion explicitly. Therefore, matrix LJ should be calculated numerically.

10.5 Dynamics of Rolling Robots

The dynamics of rolling robots, similar to that of other robotic mechanical
systems, comprises two main problems, inverse and direct dynamics. We
will study both using the same mathematical model. Hence, the main task
here is to derive this model. It turns out that while rolling robots usu-
ally are nonholonomic mechanical systems, their mathematical models are
formally identical to those of holonomic systems. The difference between
holonomic and nonholonomic systems lies in that, in the former, the num-
ber of independent actuators equals the necessary and sufficient number of
variables—independent generalized coordinates in Lagrangian mechanics—
defining a posture (configuration) of the system. In nonholonomic systems,
however, the necessary and sufficient number of variables defining a posture
of the system exceeds the number of independent actuators. As a conse-
quence, in holonomic systems the dof equals the number of independent
actuators. In nonholonomic systems, the dof is usually defined as the nec-
essary and sufficient number of variables defining the system posture, while
the number of independent actuators is termed the system mobility, which
thus turns out to be smaller than the system dof. Therefore, relations be-
tween these dependent and independent variables will be needed and will
be derived in the course of our discussion. Moreover, we will study robots
with both conventional and omnidirectional wheels. Of the latter, we will
focus on robots with Mekanum wheels.

10.5.1 Robots with Conventional Wheels

We study here the robot of Fig. 8.22, under the assumption that it is driven
by motors collocated at the axes of its two coaxial wheels, indicated as M1

and M2 in Fig. 8.22b. For quick reference, we repeat this figure here as
Fig. 10.6.

Our approach will be one of multibody dynamics; for this reason, we
distinguish five rigid bodies composing the robotic mechanical system at
hand. These are the three wheels (two actuated and one caster wheels), the
bracket carrying the caster wheel, and the platform. We label these bodies
with numbers from 1 to 5, in the foregoing order, while noticing that bodies
4 and 5, the bracket and the platform, undergo planar motion, and hence,
deserve special treatment. The 6×6 mass matrices of the first three bodies
are labeled M1 to M3, with a similar labeling for their corresponding 6-
dimensional twists, the counterpart items for bodies 4 and 5 being denoted
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FIGURE 10.6. A 2-dof rolling robot: (a) its general layout; and (b) a detail of its
actuated wheels.

by M′
4, M′

5, t′4, and t′5, the primes indicating 3 × 3—as opposed to 6 × 6
in the general case—mass matrices and 3-dimensional—as opposed to 6-
dimensional in the general case—twist arrays.

We undertake the formulation of the mathematical model of the mechan-
ical system under study, which is of the general form of eq.(10.8a) derived
for holonomic systems. The nonholonomy of the system brings about spe-
cial features that will be highlighted in the derivations below.

As a first step in our formulation, we distinguish between actuated and
unactuated joint variables, grouped into vectors θa and θu, respectively,
their time-derivatives being the actuated and unactuated joint rates, θ̇a

and θ̇u, respectively. From the kinematic analysis of this system in Subsec-
tion 8.6.1, it is apparent that the foregoing vectors are all 2-dimensional,
namely,

θa ≡
[

θ1

θ2

]
, θu ≡

[
θ3

ψ

]
(10.35)

Further, we set to deriving expressions for the twists of the five moving
bodies in terms of the actuated joint rates, i.e., we write those twists as
linear transformations of θ̇a, i.e.,

ti = Tiθ̇a, i = 1, 2, 3 (10.36a)

and
t′i = T′

iθ̇a, i = 4, 5 (10.36b)

where, from eqs.(8.115a &b), (8.118a &b), and (8.122),

T1 =
[−i + ρδk −ρδk

rj 0

]
(10.37)
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T2 =
[

ρδk −(i + ρδk)
0 rj

]
(10.38)

T3 =
[
Θ3

C3

]
(10.39)

T′
4 =
[

θT
4

C4

]
(10.40)

T′
5 =
[

ρδ −ρδ
r(λi + (1/2)j) r(−λi + (1/2)j)

]
≡
[

θT
5

C5

]
(10.41)

with Θ3, C3, θ4 and C4 yet to be derived. In the sequel, we will find
convenient to work with a few nondimensional parameters, α, δ, ρ—already
defined in eq.(8.127)— and λ, which is introduced now, and displayed below
with the first three parameters for quick referrence:

α ≡ a + b

l
, δ ≡ d

l
, ρ ≡ r

d
, λ ≡ a

l
(10.42)

In the derivations below, we resort to the notation introduced in Subsec-
tion 8.6.1. First, we note that, from eqs.(8.119) and (8.126a & b), we can
write, with θij denoting the (i, j) entry of Θ, as derived in Subsection 8.6.1,

ω3 = (θ11θ̇1 + θ12θ̇2)e3 + [ρδ(θ̇1 − θ̇2) + θ21θ̇1 + θ22θ̇2]k (10.43)

or
ω3 = Θ3θ̇a (10.44)

with Θ3 defined as

Θ3 = [ θ11e3 + (θ21 + ρδ)k θ12e3 + (θ22 − ρδ)k ]

In more compact form,

Θ3 = [ θ11e3 + θ21k θ12e3 + θ22k ] (10.45a)

with θ21 and θ22 defined, in turn, as

θ21 ≡ θ21 + ρδ, θ22 ≡ θ22 − ρδ (10.45b)

Moreover,
ċ3 = −rθ̇3f3 = −r(θ11θ̇1 + θ12θ̇2)f3

and hence,
C3 = r [−θ11f3 −θ12f3 ] (10.46)

Further, it is apparent from Fig. 10.6 that the scalar angular velocity of
the bracket, ω4, is given by

ω4 = ω + ψ̇
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and hence,

ω4 = ρδ(θ̇1 − θ̇2) + θ21θ̇1 + θ22θ̇2 = θ21θ̇1 + θ22θ̇2

Therefore, we can write
ω4 = θT

4 θ̇a (10.47a)

where θ4 is defined as
θ4 ≡ [ θ21 θ22 ]T (10.47b)

Now, since we are given the inertial properties of the bracket in bracket
coordinates, it makes sense to express ċ4 in those coordinates. Such an
expression can be obtained below:

ċ4 = ȯ3 + ω4 × 1
2
[−df3 + (h − r)k] = −rθ̇3f3 +

d

2
(ω + ψ̇)e3

Upon expressing θ̇3 and ψ̇ in terms of θ̇1 and θ̇2, we obtain

ċ4 = d

(
1
2
θ21e3 − ρθ11f3

)
θ̇1 + d

(
1
2
θ22e3 − ρθ12f3

)
θ̇2 (10.48)

whence it is apparent that

C4 = d [ (1/2)θ21e3 − ρθ11f3 (1/2)θ22e3 − ρθ12f3 ] (10.49)

Therefore,

T′
4 =
[

θ21 θ22

d[(1/2)θ21e3 − ρθ11f3] d[(1/2)θ22e3 − ρθ12f3]

]
(10.50)

thereby completing all needed twist-shaping matrices.
The 2 × 2 matrix of generalized inertia, I(θ), is now obtained. Here

we have written this matrix as a function of all variables, independent
and dependent, arrayed in the 4-dimensional vector θ, because we cannot
obtain an expression for θu in terms of θa, given the nonholonomy of the
system at hand. Therefore, I is, in general, a function of θ1, θ2, θ3, and ψ.
To be sure, from the above expressions for the twist-shaping matrices Ti

and T′
i, it is apparent that the said inertia matrix is an explicit function

of ψ only, its dependence on θ1 and θ2 being implicitly given via vectors
e3 and f3. We derive the expression sought for I starting from the kinetic
energy, namely,

T =
3∑
1

1
2
tT
i Miti +

1
2

5∑
4

(t′i)
T M′

it
′
i

or

T =
1
2
θ̇

T

a

(
3∑
1

TT
i MiTi

)
θ̇a +

1
2
θ̇

T

a

(
5∑
4

(T′
i)

TM′
iT

′
i

)
θ̇a (10.51)
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and hence,

I =
3∑
1

TT
i MiTi +

5∑
4

(T′
i)

TM′
iT

′
i (10.52)

In order to expand the foregoing expression, we let Jw and Jc be the
3 × 3 inertia matrices of the two actuated wheels and the caster wheel,
respectively, the scalar moments of inertia of the bracket and the platform,
which undergo planar motion, being denoted by Ib and Ip. Likewise, we
let mw, mb, mc, and mp denote the masses of the corresponding bodies.
Therefore,

M1 =
[
Jw O
O mw13

]
= M2

M3 =
[
Jc O
O mc13

]

M′
4 =
[

Ib 0T

0 mb12

]

M′
5 =
[

Ip 0T

0 mp12

]

with O and 13 denoting the 3×3 zero and identity matrices, while 0 and 12

the 2-dimensional zero vector and the 2 × 2 identity matrix. Furthermore,
under the assumption that the actuated wheels are dynamically balanced,
we have

Jw =




I 0 0
0 H 0
0 0 H




Moreover, we assume that the caster wheel can be modeled as a rigid disk of
uniform material of the given mass mc and radius r, and hence, in bracket-
fixed coordinates { e3, f3, k },

Jc =
1
4
mcr

2




2 0 0
0 1 0
0 0 1




It is now a simple matter to calculate

TT
1 M1T1 =

[
I + (ρδ)2H + mwr2 −(ρδ)2H

−(ρδ)2H (ρδ)2H

]

TT
2 M2T2 =

[
(ρδ)2H −(ρδ)2H
−(ρδ)2H I + (ρδ)2H + mwr2

]

where the symmetry between the two foregoing expressions is to be high-
lighted: that is, the second expression is derived if the diagonal entries of
the first expression are exchanged, which is physically plausible, because
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such an exchange is equivalent to a relabeling of the two wheels. The calcu-
lation of the remaining products is less straightforward but can be readily
obtained. From the expressions for T3 and M3, we have

TT
3 M3T3 = [ΘT

3 CT
3 ]
[
Jc O
O mc13

] [
Θ3

C3

]
= ΘT

3 JcΘ3 + mcCT
3 C3

In order to calculate the foregoing products, we write Jc and Θ3 in com-
ponent form, i.e.,

JcΘ3 =
1
4
mcr

2




2 0 0
0 1 0
0 0 1






θ11 θ12

0 0
θ21 θ22


 =

1
4
mcr

2




2θ11 2θ12

0 0
θ21 θ22




and hence,

ΘT
3 JcΘ3 =

1
4
mcr

2

[
2θ2

11 + θ
2

21 2θ11θ12 + θ21θ22

2θ11θ12 + θ21θ22 2θ2
12 + θ

2

22

]

Likewise,

m3CT
3 C3 = mcr

2

[
θ2

11 θ11θ12

θ11θ12 θ2
12

]

Further,

(T′
4)

TM′
4T

′
4 = [ θ4 CT

4 ]
[

Ib 0T

0 mb12

] [
θT

4

C4

]
= Ibθ4θ

T
4 + mbCT

4 C4

Upon expansion, we have

(T′
4)

T M′
4T

′
4 = Ib

[
θ

2

21 θ21θ22

θ21θ22 θ
2

22

]

+
1
4
mbd

2

[
θ

2

21 + 4ρ2θ2
11 θ21θ22 + 4ρ2θ11θ12

θ21θ22 + 4ρ2θ11θ12 θ
2

22 + 4ρ2θ2
12

]

Finally,

(T′
5)

TM′
5T

′
5 = [θ5 CT

5 ]
[

Ip 0T

0 mp12

] [
θT

5

C5

]
= Ipθ5θ

T
5 + mpCT

5 C5

which can be readily expanded as

(T′
5)

T M′
5T

′
5 = Ip(ρδ)2

[
1 −1
−1 1

]
+ mpr

2

[
(1/4) + λ2 (1/4) − λ2

(1/4) − λ2 (1/4) + λ2

]

We can thus express the generalized inertia matrix as

I = Iw + Ic + Ib + Ip
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where Iw, Ic, Ib, and Ip denote the contributions of the actuated wheels,
the caster wheel, the bracket, and the platform, respectively, i.e.,

Iw =
2∑
1

TT
i MiTi =

[
I + 2(ρδ)2H + mwr2 −2(ρδ)2H

−2(ρδ)2H I + 2(ρδ)2H + mwr2

]

Ic =
mcr

2

4

[
6θ2

11 + θ
2

21 6θ11θ12 + θ21θ22

6θ11θ12 + θ21θ22 6θ2
12 + θ

2

22

]

Ib = Ib

[
θ

2

21 θ21θ22

θ21θ22 θ
2

22

]

+
1
4
mbd

2

[
θ

2

21 + 4ρ2θ2
11 θ21θ22 + 4ρ2θ11θ12

θ21θ22 + 4ρ2θ11θ12 θ
2

22 + 4ρ2θ2
12

]

Ip = Ip(ρδ)2

[
1 −1
−1 1

]
+ mpr

2

[
(1/4) + λ2 (1/4)− λ2

(1/4) − λ2 (1/4) + λ2

]

It is now apparent that the contributions of the actuated wheels and the
platform are constant, while those of the caster wheel and the bracket
are configuration-dependent. Therefore, only the latter contribute to the
Coriolis and centrifugal generalized forces. We thus have

TT MṪ = TT
3 M3Ṫ3 + (T′

4)
T M′

4Ṫ
′
4

From the expression for TT
3 M3T3, we obtain

TT
3 M3Ṫ3 = ΘT

3 JcΘ̇3 + m3CT
3 Ċ3

the time-derivatives being displayed below:

Θ̇3 = [ θ̇11e3 + θ11ω4f3 + θ̇21k θ̇12e3 + θ12ω4f3 + θ̇22k ]
Ċ3 = r [−θ̇11f3 + θ11ω4e3 −θ̇12f3 + θ12ω4e3 ]

with the time-derivatives of the entries of Θ given as

Θ̇ = ψ̇

[ −α sinψ + (cosψ)/2 α sin ψ + (cosψ)/2
ρ[−α cosψ − (sin ψ)/2] ρ[α cosψ − (sin ψ)/2]

]
(10.53)

its parameters being defined in eq.(10.42). Upon expansion, the products
appearing in the expression for TT

3 M3Ṫ3 become

ΘT
3 JcΘ̇3 =

mcr
2

4

[
2θ11θ̇11 + θ21θ̇21 2θ11θ̇12 + θ21θ̇22

2θ12θ̇11 + θ22θ̇21 2θ12θ̇12 + θ22θ̇22

]

m3CT
3 Ċ3 = mcr

2

[
θ11θ̇11 θ11θ̇12

θ12θ̇11 θ12θ̇12

]

Therefore,

TT
3 M3Ṫ3 =

mcr
2

4

[
6θ11θ̇11 + θ21θ̇21 6θ11θ̇12 + θ21θ̇22

6θ12θ̇11 + θ22θ̇21 6θ12θ̇12 + θ22θ̇22

]
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Likewise,

(T′
4)

TM′
4Ṫ

′
4 = Ibθ4θ̇

T

4 + mbCT
4 Ċ4

the above time-derivatives being

θ̇
T

4 = [ θ̇21 θ̇22 ]
Ċ4 = d [ c11e3 + c12f3 c21e3 + c22f3 ]

with coefficients ci,j given below:

c11 =
1
2
θ̇21 + ρθ11ω4 , c12 =

1
2
θ21ω4 − ρθ̇11

c21 =
1
2
θ̇22 + ρθ12ω4 , c22 =

1
2
θ22ω4 − ρθ̇12

Hence,

Ibθ4θ̇
T

4 = Ib

[
θ21θ̇21 θ21θ̇22

θ22θ̇21 θ22θ̇22

]

mbCT
4 Ċ4 =

1
2
mbd

2

[
θ21c11 − 2ρθ11c12 θ21c21 − 2ρθ11c22

θ22c11 − 2ρθ12c12 θ22c21 − 2ρθ12c22

]

Therefore,

(T′
4)

TM′
4Ṫ

′
4 = Ib

[
θ21θ̇21 θ21θ̇22

θ22θ̇21 θ22θ̇22

]

+
1
2
mbd

2

[
θ21c11 − 2ρθ11c12 θ21c21 − 2ρθ11c22

θ22c11 − 2ρθ12c12 θ22c21 − 2ρθ12c22

]

In the final steps, we calculate TTWMT. As we saw earlier, only the
caster wheel and the bracket can contribute to this term, for the contribu-
tions of the other bodies to the matrix of generalized inertia are constant.
However, the bracket undergoes planar motion, and according to Exer-
cise 6.8, its contribution to this term vanishes. Therefore,

TT WMT = TT
3 W3M3T3

Upon expansion of the foregoing product, we have

TT
3 W3M3T3 = [ΘT

3 CT
3 ]
[
Ω3 O
O O

] [
Ic O
O mc13

] [
Θ3

C3

]

= ΘT
3 Ω3IcΘ3

First, we obtain Ω3 in bracket coordinates, by recalling eq.(10.43), i.e.,

[ ω3 ]3 = ωee3 + ωkk
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with ωe and ωk denoting the nonzero components of ω3 in bracket coordi-
nates, i.e.,

ωe = θ11θ̇1 + θ12θ̇2

ωk = ρδ(θ̇1 − θ̇2) + θ21θ̇1 + θ22θ̇2

and hence,

Ω3 = (θ11θ̇1 + θ12θ̇2)E3 + [ρδ(θ̇1 − θ̇2) + θ21θ̇1 + θ22θ̇2]K

with E3 and K defined as the cross-product matrices of e3 and k, respec-
tively, that is,

E3 =




0 0 0
0 0 −1
0 1 0


 , K =




0 −1 0
1 0 0
0 0 0




Therefore,

Ω3 =




0 −ωk 0
ωk 0 −ωe

0 ωe 0




After simplification,

Ω3IcΘ3 =
mcr

2

4




0 0
2θ11ωk − θ21ωe 2θ12ωk − θ22ωe

0 0




Now it is a simple matter to verify that

ΘT
3 Ω3IcΘ3 = O2

with O2 denoting the 2 × 2 zero matrix, and hence,

TTWT = O2

In summary, the Coriolis and centrifugal force terms of the system at hand
take the form

C(θ, θ̇a)θ̇a =
mcr

2

4

[
6θ11(θ̇11θ̇1 + θ̇12θ̇2) + θ21(θ̇12θ̇1 + θ̇22θ̇2)
6θ12(θ̇11θ̇1 + θ̇12θ̇2) + θ22(θ̇12θ̇1 + θ̇22θ̇2)

]

+ Ib(θ̇21θ̇1 + θ̇22θ̇2)
[

θ21

θ22

]
+

1
2
mbd

2(c11θ̇1 + c21θ̇2)
[

θ21

θ22

]

−mbd
2ρ(c12θ̇1 + c22θ̇2)

[
θ11

θ12

]

If we recall that the cij coefficients are linear in the joint rates, then the
foregoing expression clearly shows the quadratic nature of the Coriolis and
centrifugal terms with respect to the joint rates.
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The derivation of the forces supplied by the actuators is straightforward:

τ =
[

τ1

τ2

]

The dissipative generalized force is less straightforward, but its calculation
is not too lengthy. In fact, if we assume linear dashpots at all joints, then
the dissipation function is

∆ =
1
2
c1θ̇

2
1 +

1
2
c2θ̇

2
2 +

1
2
c3θ̇

2
3 +

1
2
c4ψ̇

2 =
1
2
θ̇

T

a C12θ̇a +
1
2
θ̇

T

u C34θ̇u

with C12 and C34 defined as

C12 ≡
[

c1 0
0 c2

]
, C34 ≡

[
c3 0
0 c4

]

Now, if we recall the expression for θ̇u in terms of θ̇a, we end up with

∆ =
1
2
θ̇

T

a Dθ̇a

D being defined, in turn, as the equivalent damping matrix, given by

D = C12 + ΘT C34Θ

the dynamics model under study thus taking the form

I(θ)θ̈a + C(θ, θ̇a)θ̇a = τ − Dθ̇a

with I and C(θ, θ̇a) given, such as in the case of holonomic systems, as

I(θ) = TT MT
C(θ, θ̇a) = TT MṪ + TT WMT

thereby completing the mathematical model governing the motion of the
system at hand. Note here that θ denotes the 4-dimensional vector of joint
variables containing all four angles appearing as components of θa and θu.
Because of the nonholonomy of the system, an expression for the latter in
terms of the former cannot be derived, and thus the whole 4-dimensional
vector θ is left as an argument of both I and C.

Note that calculating the torque τ required for a given motion—inverse
dynamics—of the rolling robot under study is straightforward from the
above model. However, given the strong coupling among all variables in-
volved, a recursive algorithm in this case is not apparent. On the other
hand, the determination of the motion produced by a given history of joint
torques requires (i) the calculation of I, which can be achieved symboli-
cally; (ii) the inversion of I, which can be done symbolically because this
is a 2×2 matrix; (iii) the calculation of the Coriolis and centrifugal terms,
as well as the dissipative forces; and (iv) the integration of the initial-value
problem resulting once initial values to θ and θ̇a have been assigned.
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10.5.2 Robots with Omnidirectional Wheels

We now consider a 3-dof robot with three actuated wheels of the Mekanum
type, as shown in Figs. 1.11a and 8.24, with the configuration of Fig. 10.7,
which will be termed, henceforth, the ∆-array. This system is illustrated
in Fig. 10.8.

Below we will adopt the notation of Subsection 8.6.2, with α = π/2 and
n = 3. We now recall that the twist of the platform was represented in
planar form as

t′ ≡
[

ω
ċ

]
(10.54)

where ω is the scalar angular velocity of the platform and ċ is the 2-
dimensional position vector of its mass center, which will be assumed to
coincide with the centroid of the set of points {Ci }3

1. Moreover, the three
wheels are actuated, and hence, the 3-dimensional vector of actuated joint
rates is defined as

θ̇a ≡



θ̇1

θ̇2

θ̇3


 (10.55)

The relation between θ̇a and t′ was derived in general in Subsection 8.6.2.
As pertaining to the robot of Fig. 10.7, we have

Jθ̇a = Kt′ (10.56a)

with the two 3 × 3 Jacobians J and K defined as

J ≡ −a1, K ≡



r fT
1

r fT
2

r fT
3


 (10.56b)

where, it is recalled, a is the height of the axis of the wheel hub and r
is the horizontal distance of the points of contact with the ground to the
mass center C of the platform, as indicated in Fig. 10.7a. Moreover, vectors
{ ei }3

1 and { fi }3
1, defined in Subsection 8.6.2, are displayed in Fig. 10.7.

Below we derive expressions for ω and ċ, from eq.(10.56a), in terms of the
joint rates. To this end, we expand these three equations, thus obtaining

rω + fT
1 ċ = −aθ̇1 (10.57a)

rω + fT
2 ċ = −aθ̇2 (10.57b)

rω + fT
3 ċ = −aθ̇3 (10.57c)

Upon adding corresponding sides of the three foregoing equations, we
obtain

3rω + ċT
3∑
1

fi = −a

3∑
1

θ̇i
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FIGURE 10.7. Rolling robot with ODWs in a ∆-array.

But from Fig. 10.7b, it is apparent that

e1 + e2 + e3 = 0 (10.58a)
f1 + f2 + f3 = 0 (10.58b)

Likewise,

e1 =
√

3
3

(f3 − f2), e2 =
√

3
3

(f1 − f3), e3 =
√

3
3

(f2 − f1) (10.58c)

f1 =
√

3
3

(e2 − e3), f2 =
√

3
3

(e3 − e1), f3 =
√

3
3

(e1 − e2) (10.58d)

and hence, the above equation for ω and ċ leads to

ω = − a

3r

3∑
1

θ̇i (10.59)

Now we derive an expression for ċ in terms of the actuated joint rates. We do
this by subtracting, sidewise, eq.(10.57b) from eq.(10.57a) and eq.(10.57c)
from eq.(10.57b), thus obtaining a system of two linear equations in two
unknowns, the two components of the 2-dimensional vector ċ, namely,

Aċ = b

with matrix A and vector b defined as

A ≡
[

(f1 − f2)T

(f2 − f3)T

]
≡ −

√
3
[
eT

3

eT
1

]
, b ≡ −a

[
θ̇1 − θ̇2

θ̇2 − θ̇3

]
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FIGURE 10.8. A view of the three-wheeled robot with Mekanum wheels in a
∆-array.

where we have used relations (10.58c). Since A is a 2×2 matrix, its inverse
can be readily found with the aid of Facts 4.8.3 and 4.8.4, which yield

ċ =
2
3
a [−Ee1 Ee3 ]

[
θ̇1 − θ̇2

θ̇2 − θ̇3

]

Now, from Fig. 10.7b,
Ee1 = f1, Ee3 = f3

and hence, ċ reduces to

ċ =
2
3
a[(θ̇2 − θ̇1)f1 + (θ̇2 − θ̇3)f3] ≡ 2

3
a[θ̇2(f1 + f3) − θ̇1f1 − θ̇3f3]

But by virtue of eq.(10.58b),

f1 + f3 = −f2

the above expression for ċ thus becoming

ċ = −2a

3

3∑
1

θ̇ifi (10.60)

Thus, ω is proportional to the mean value of { θ̇i }3
1, while ċ is proportional

to the mean value of { θ̇ifi }3
1. In deriving the mathematical model of the
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robot at hand, we will resort to the natural orthogonal complement, and
therefore, we will require expressions for the twists of all bodies involved in
terms of the actuated wheel rates. We start by labeling the wheels as bod-
ies 1, 2, and 3, with the platform being body 4. Moreover, we will neglect
the inertia of the rollers, and so no labels need be attached to these. Fur-
thermore, the wheel hubs undergo rotations with angular velocities in two
orthogonal directions, and hence, a full 6-dimensional twist representation
of these will be required. Henceforth, we will regard the angular velocity of
the platform and the velocity of its mass center as 3-dimensional vectors.
Therefore,

t4 ≡ T4θ̇a, T4 ≡ −λ

[
k k k

2rf1 2rf2 2rf3

]
(10.61)

with λ defined, in turn, as the ratio

λ ≡ a

3r
(10.62)

Now, the wheel angular velocities are given simply as

ωi = θ̇iei + ωk = θ̇iei − λ

(
3∑
1

θ̇i

)
k (10.63)

or

ω1 = (e1 − λk)θ̇1 − λθ̇2k − λθ̇3k (10.64a)
ω2 = −λθ̇1k + (e2 − λk)θ̇2 − λθ̇3k (10.64b)
ω3 = −λθ̇1k − λθ̇2k + (e3 − λk)θ̇3 (10.64c)

Similar expressions are derived for vectors ċi. To this end, we resort to the
geometry of Fig. 10.7, from which we derive the relations

ċi = ċ + ωrfi = −2λr

(
3∑
1

θ̇jfj

)
− λr

(
3∑
1

θ̇j

)
fi

and hence,

ċ1 = −λr[(3θ̇1 + θ̇2 + θ̇3)f1 + 2(θ̇2f2 + θ̇3f3)] (10.65a)
ċ2 = −λr[2θ̇1f1 + (θ̇1 + 3θ̇2 + θ̇3)f2 + 2θ̇3f3] (10.65b)
ċ3 = −λr[2(θ̇1f1 + θ̇2f2) + (θ̇1 + θ̇2 + 3θ̇3)f3] (10.65c)

From the foregoing relations, and those for the angular velocities of the
wheels, eqs.(10.64a–c), we can now write the twists of the wheels in the
form

ti = Tiθ̇a, i = 1, 2, 3 (10.66)
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where

T1 ≡
[
e1 − λk −λk −λk
−3λrf1 −λr(f1 + 2f2) −λr(f1 + 2f3)

]

T2 ≡
[ −λk e2 − λk −λk
−λr(f2 + 2f1) −3λrf2 −λr(f2 + 2f3)

]

T3 ≡
[ −λk −λk e3 − λk
−λr(f3 + 2f1) −λr(f3 + 2f2) −3λrf3

]

On the other hand, similar to what we have in eq.(10.60), an interesting
relationship among angular velocities of the the wheels arises here. Indeed,
upon adding the corresponding sides of the three equations (10.64a–c), we
obtain

3∑
1

ωi =
3∑
1

θ̇iei − 3λk
3∑
1

θ̇i

Further, we dot-multiply the two sides of the foregoing equation by k, which
yields, upon rearrangement of terms,

3λ

3∑
1

θ̇i = −k ·
3∑
1

ωi

and by virtue of eq.(10.59),

ω = k · ω, ω ≡ 1
3

3∑
1

ωi (10.67)

that is, the vertical component of the mean wheel angular velocity equals
the scalar angular velocity of the platform.

Now we proceed to establish the mathematical model governing the dy-
namics of the system under study. The generalized inertia matrix is then
calculated as

I =
4∑
1

TT
i MiTi (10.68)

where, if Iw and mw denote the moment-of-inertia matrix—in body-fixed
coordinates—and the mass of each of the three wheels, with similar defini-
tions for Ip and mp as pertaining to the platform,

Mi =
[
Iw O
O mw1

]
, i = 1, 2, 3, M4 =

[
Ip O
O mp1

]
(10.69)

We will also need the angular-velocity dyads, Wi, which are calculated as

Wi =
[
Ωi O
O O

]
, i = 1, 2, 3 (10.70)
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where W4 will not be needed, since the platform undergoes planar motion.
We have

M1T1 =
[
Iw(e1 − λk) −λIwk −λIwk
−3mwλrf1 −mwλr(f1 + 2f2) −mwλr(f1 + 2f3)

]

Moreover, we assume that in a local coordinate frame { ei, fi, k },

Iw =




I 0 0
0 J 0
0 0 J




in which I and J are constants. Hence,

TT
1 M1T1 =




I + λ2K λ2J λ2J
λ2J λ2L λ2M
λ2J λ2M λ2L




where

K ≡ J + 9mwr2

L ≡ J + 3mwr2

M ≡ J − 3mwr2

Likewise,

TT
2 M2T2 =




λ2L λ2J λ2M
λ2J I + λ2K λ2J
λ2M λ2J λ2L




TT
3 M3T3 =




λ2L λ2J λ2J
λ2J λ2L λ2J
λ2J λ2J I + λ2K




Furthermore,

M4T4 = −λ

[
Ipk Ipk Ipk

2mprf1 2mprf2 2mprf3

]

It is apparent that, by virtue of the planar motion undergone by the plat-
form, only its moment of inertia H about the vertical passing through its
mass center is needed. Then,

TT
4 M4T4 = λ2




H + 4mpr
2 H − 2mpr

2 H − 2mpr
2

H − 2mpr
2 H + 4mpr

2 H − 2mpr
2

H − 2mpr
2 H − 2mpr

2 H + 4mpr
2




Upon summing all four products computed above, we obtain

I =




α β β
β α β
β β α



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with the definitions below:

α ≡ I + λ2(H + 3J + 15mwr2 + 4mpr
2)

β ≡ λ2
(
H + 3J − 3mwr2 − 2mpr

2
)

which is a constant matrix. Moreover, note that the geometric and inertial
symmetry assumed at the outset is apparent in the form of the foregoing
inertia matrix, its inverse being readily obtained in closed form, namely,

I−1 =
1
∆




α + β −β −β
−β α + β −β
−β −β α + β


 , ∆ ≡ (α + β)α − 2β2

Next, we turn to the calculation of the TT MṪ term. This is readily found
to be

TTMṪ =
4∑
1

TT
i MiṪi

each of the foregoing products being expanded below. We have, first,

Ṫ1 =
[

ωf1 0 0
3λrωe1 −λrω(e3 − e2) λrω(e3 − e2)

]

Ṫ2 =
[

0 ωf2 0
λrω(e1 − e3) 3λrωe2 −λrω(e1 − e3)

]

Ṫ3 =
[

0 0 ωf3

−λrω(e2 − e1) λrω(e2 − e1) 3λrωe3

]

Ṫ4 = λ

[
0 0 0

2rωe1 2rωe2 2rωe3

]

Hence, for the first wheel,

M1Ṫ1 =
[

Iwωf1 0 0
3λmwrωe1 −λmwrω(e3 − e2) λmwrω(e3 − e2)

]

Therefore,

TT
1 M1Ṫ1 = 3

√
3λ2mwr2ω




0 −1 1
1 0 0
−1 0 0




where the skew-symmetric matrix is the cross product matrix of vector
[ 0, 1, 1 ]T . By symmetry, the other two products, TT

i MiṪi, for i = 1, 2,
take on similar forms, with the skew-symmetric matrix, becoming, corre-
spondingly, the cross-product matrix of vectors [ 1, 0, 1 ]T and [ 1, 1, 0 ]T .
This means that the first of these three products is affected by the rotation
of the second and the third wheels, but not by that of the first one; the
second of those products is affected by the rotation of the first and the
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third wheels, but not by the second; the third product is affected, in turn,
by the rotation of the first two wheels, but not by that of the third wheel.
We thus have

TT
2 M2Ṫ2 = 3

√
3λ2mwr2ω




0 −1 0
1 0 −1
0 1 0




TT
3 M3Ṫ3 = 3

√
3λ2mwr2ω




0 0 1
0 0 −1
−1 1 0




Furthermore,

M4Ṫ4 = λ

[
0 0 0

−2mprωe1 −2mprωe2 −2mprωe3

]

and hence,

TT
4 M4Ṫ4 = 2

√
3λ2mpr

2ω




0 −1 1
1 0 −1
−1 1 0


 (10.72a)

whose skew-symmetric matrix is readily identified as the cross-product ma-
trix of vector [ 1, 1, 1 ]T , thereby indicating an equal participation of all
three wheels in this term, a rather plausible result. Upon adding all four
products calculated above, we obtain

TT MṪ = 2
√

3λ2(3mw + mp)r2ω




0 −1 1
1 0 −1
−1 1 0


 (10.73)

The equal participation of all three wheels in the foregoing product is ap-
parent. Moreover, notice that the term in parentheses can be regarded as
an equivalent mass, which is merely the sum of all four masses involved,
the moments of inertia of the wheels playing no role in this term.

We now turn to the calculation of the TTWMT term, which can be
expressed as a sum, namely,

TTWMT =
3∑
1

TT
i WiMiTi

where we have not considered the contribution of the platform, because
this undergoes planar motion. Moreover, matrices Wi, for i = 1, 2, and 3,
take the obvious forms

Wi ≡
[
Ωi O
O O

]
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We then have, for the first wheel,

W1M1T1 =
[

ω1 × [Iw(e1 − λk)] −ω1 × (λIwk) −ω1 × (λIwk)
0 0 0

]

Now, it does not require too much effort to calculate the complete first
product, which merely vanishes, i.e.,

W1M1T1 = O66

with O66 defined as the 6 × 6 zero matrix. By symmetry, the remaining
two products also vanish, and hence, the sum also does, i.e.,

TTWMT = O66 (10.74)

Now, calculating the dissipative and active generalized forces is straight-
forward. We will neglect here the dissipation of energy occurring at the
bearings of the rollers, and hence, if we assume that the lubricant of the
wheel hubs produces linear dissipative torques, then we have

δ = c




θ̇1

θ̇2

θ̇3


 , τ =




τ1

τ2

τ3


 (10.75)

where c is the common damping coefficient for all three wheel hubs. We now
have all the elements needed to set up the mathematical model governing
the dynamics of the robot, namely,

Iθ̈a + C(ω)θ̇a = τ − δ (10.76)

where C(ω) ≡ TT MṪ+TTWMT; from eqs.(10.73) and (10.74), this term
becomes

C(ω) = 2
√

3λ2(3mw + mp)r2ω




0 −1 1
1 0 −1
−1 1 0


 (10.77)

Since ω = −a/(3r)(θ̇1 + θ̇2 + θ̇3), the quadratic nature of the second term
of eq.(10.76) in the joint rates becomes apparent. It is also apparent that
the mathematical model derived above does not depend on θa. What this
means is that the mathematical model allows the integration of the actu-
ated joint accelerations to yield joint-rate histories θ̇a(t), but this model
cannot provide joint-variable histories θa(t). To obtain these, for given ini-
tial conditions, the joint-rate histories have to be integrated, which can be
done by numerical quadrature.

Finally, in order to obtain the Cartesian histories of the platform pose,
given by the angle σ that a specific line of the platform makes with a
line fixed in an inertial frame, and the position vector of the mass center,
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c, eqs.(10.59) and (10.60) have to be integrated. While the integration of
the former can be readily done by quadrature, that of the latter requires
knowledge of vectors fi, for i = 1, 2, 3, and these vectors depend on σ. Thus,
the integration of eq.(10.59) can be done once the joint-rate histories are
known; that of eq.(10.60) requires knowledge of angle σ. These features are
inherent to nonholonomic systems.
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A
Kinematics of Rotations: A Summary

The purpose of this appendix is to outline proofs of some results in the
realm of kinematics of rotations that were invoked in the preceding chap-
ters. Further details are available in the literature (Angeles, 1988).

We start by noticing two preliminary facts whose proof is straightfor-
ward, as the reader is invited to verify.

Lemma A.1 The (d/dt)( · ) and the vect( · ) operators, for 3 × 3 matrix
operands, commute.

and

Lemma A.2 The (d/dt)( · ) and the tr( · ) operators, for n × n matrix
operands, commute.

Furthermore, we have

Theorem A.1 Let A and S both be 3 × 3 matrices, the former arbitrary,
the latter skew-symmetric. Then,

vect(SA ) =
1
2
[tr(A)1 − A]s

where s ≡ vect(S ).

Proof: An invariant proof of this theorem appears elusive, but a compo-
nentwise proof is straightforward. Indeed, let aij denote the (i, j) entry of
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A, and si the ith component of s. Then,

SA =



−a21s3 + a31s2 −a22s3 + a32s2 −a23s3 + a33s2

a11s3 − a31s1 a12s3 − a32s1 a13s3 − a33s1

−a11s2 + a21s1 −a12s2 + a22s1 −a13s2 + a23s1




Hence,

vect(SA ) =
1
2




(a22 + a33)s1 − a12s2 − a13s3

(a11 + a33)s2 − a21s1 − a23s3

(a11 + a22)s3 − a31s1 − a32s2




On the other hand,

tr(A )1− A =




a22 + a33 −a12 −a13

−a21 a11 + a33 −a23

−a31 −a32 a11 + a22




and hence,

1
2
[tr(A )1− A]s =

1
2




(a22 + a33)s1 − a12s2 − a13s3

(a11 + a33)s2 − a21s1 − a23s3

(a11 + a22)s3 − a31s1 − a32s2




thereby completing the proof. Moreover, we have

Theorem A.2 Let A, S, and s be defined as in Theorem A.1. Then,

tr(SA ) = −2s · [vect(A )]

Proof: From the above expression for SA,

tr(SA ) = −a21s3 + a31s2 + a12s3 − a32s1 − a13s2 + a23s1

= (a23 − a32)s1 + (a31 − a13)s2 + (a12 − a21)s3

= [ s1 s2 s3 ]




a23 − a32

a31 − a13

a12 − a21


 = −2s · [vect(A )] (A.1)

q.e.d.
Now we turn to the proof of the relations between the time-derivatives

of the rotation invariants and the angular-velocity vector. Thus,

Theorem A.3 Let ν denote the 4-dimensional array of natural rotation
invariants, as introduced in Section 2.3.2 and reproduced below for quick
reference:

ν ≡
[
e
φ

]
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Then the relationship between ν̇ and the angular velocity ω is given by

ν̇ = Nω

with N defined as

N ≡
[

[sin φ/(2(1 − cosφ))](1 − eeT ) − (1/2)E
eT

]

Proof: Let us obtain first an expression for ė. This is readily done by re-
calling that e is the real eigenvector of Q, i.e.,

Qe = e

Upon differentiation of both sides of the foregoing equation with respect to
time, we have

Q̇e + Qė = ė

i.e.,
(1− Q)ė = Q̇e

An expression for Q̇ can be derived from eq.(3.46), which yields

Q̇ = ΩQ (A.2)

Therefore,
Q̇e = Ωe ≡ ω × e

and hence, the above equation for ė takes the form

(1 − Q)ė = ω × e

from which it is not possible to solve for ė because matrix (1−Q) is singular.
Indeed, since both matrices inside the parentheses have an eigenvalue +1,
their difference has an eigenvalue 0, which renders this difference singular.
Thus, one more relation is needed in order to be able to determine ė. This
relation follows from the condition that ‖e‖2 = 1. Upon differentiation of
both sides of this condition with respect to time, we obtain

eT ė = 0

the last two equations thus yielding a system of four scalar equations to
determine ė. We now assemble these equations into a single one, namely,

Aė = b

where A is a 4 × 3 matrix, while b is a 4-dimensional vector, defined as

A ≡
[
1− Q
eT

]
, b ≡

[
ω × e

0

]
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The foregoing overdetermined system of four equations in three unknowns
now leads to a system of three equations in three unknowns if we multiply
its two sides by AT from the right, thereby producing

AT Aė = ATb

We can therefore solve for ė from the above equation in the form

ė = (AT A)−1AT b

where ATA takes the form

ATA = (2)1 − (Q + QT ) + eeT

But the sum inside the parentheses is readily identified as twice the sym-
metric component of Q, if we recall the Cartesian decomposition of matrices
introduced in eq.(2.56). Therefore,

Q + QT = 2[(cosφ)1 + (1 − cosφ)eeT ]

Hence,
AT A = 2(1 − cosφ)1 − (1 − 2 cosφ)eeT

As the reader can readily verify, the inverse of this matrix is given by

(AT A)−1 =
1

2(1 − cosφ)
1 +

1 − 2 cosφ

2(1 − cosφ)
eeT

which fails to exist only in the trivial case in which Q becomes the identity
matrix. Upon expansion of the last expression for ė, we have

ė = − 1
2(1 − cosφ)

(E− QTE)ω

Now QTE is obtained by recalling eq.(2.54), thereby obtaining

QTE = (cosφ)E + (sin φ)(1 − eeT )

the final expression for ė thus being

ė = − 1
2(1 − cosφ)

[(1 − cosφ)E − (sin φ)(1 − eeT )]ω

Now, an expression for φ̇ is obtained upon equating the trace of the two
sides of eq.(A.2), which yields

tr( Q̇ ) = tr(ΩQ ) (A.3)

From Lemma A.2,

tr( Q̇ ) =
d

dt
tr(Q ) (A.4)
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and hence,
tr( Q̇ ) = −2φ̇ sin φ

On the other hand, from Theorem A.2,

tr(ΩQ ) = −2ω · (sin φ)e

Therefore,
φ̇ = ω · e

Upon assembling the expressions for ė and φ̇, we obtain the desired relation,
with N given as displayed above, thereby proving the theorem.

Theorem A.4 Let λ denote the 4-dimensional array of linear rotation
invariants, as introduced in Section 2.3.3 and reproduced below for quick
reference:

λ ≡
[

(sin φ)e
cosφ

]
≡
[

vect(Q )
[tr(Q ) − 1]/2

]

Then the relationship between λ̇ and the angular velocity is given by

λ̇ = Lω

with L defined as

L ≡
[

(1/2)[tr(Q)1− Q]
−(sin φ)eT

]

Proof: From Lemma A.1, we have

d

dt
vect(Q ) = vect( Q̇ ) (A.5)

On the other hand, equating the vectors of the two sides of eq.(A.2) yields

vect( Q̇ ) = vect(ΩQ )

and hence,
d

dt
vect(Q ) = vect(ΩQ )

But, if we recall Theorem A.1, the foregoing relation leads to

d

dt
vect(Q ) =

1
2
[tr(Q)1 − Q]ω

Likewise, from Lemma A.2, we have

d

dt
tr(Q ) = tr( Q̇ )
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and hence,
d

dt
tr(Q ) = tr(ΩQ )

Now, if we recall Theorem A.2, the foregoing relation leads to

d

dt
tr(Q ) = −2ω · [vect(Q )] = −2(sinφ)eT ω

Hence,
d

dt
(cosφ) = −(sinφ)eT ω

Upon assembling the last two expressions for the time-derivatives of the
vector of Q and cosφ, we obtain the desired relation.

Theorem A.5 Let η denote the 4-dimensional array of the Euler-Rodri-
gues parameters of a rotation, as introduced in Section 2.3.6 and reproduced
below for quick reference:

η ≡
[

[sin(φ/2)]e
cos(φ/2)

]
≡
[

r
r0

]

Then, the relationship between η̇ and the angular velocity takes the form

η̇ = Hω

with H defined as

H ≡ 1
2

[
cos(φ/2)1 − sin(φ/2)E

− sin(φ/2)eT

]
≡ 1

2

[
r01− R
−rT

]

where R is the cross-product matrix of r.

Proof: If we differentiate r, we obtain

ṙ = ė sin
(

φ

2

)
+ e

φ̇

2
cos
(

φ

2

)

and hence, all we need to derive the desired relations is to find expressions
for ė and φ̇ in terms of the Euler-Rodrigues parameters. Note that from
Theorem A.3, we already have those expressions in terms of the natural
invariants. Thus, substitution of the time-derivatives of the natural invari-
ants, as given in Theorem A.3, into the above expression for ṙ leads to

ṙ = −1
2

sin
(

φ

2

)
Eω +

1
2

sin
(

φ

2

)
sin φ

1 − cosφ
ω

+
1
2
(e · ω)

[
cos
(

φ

2

)
− sin

(
φ

2

)
sin φ

1 − cosφ

]
e (A.6)
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Now, by recalling the identities giving the trigonometric functions of φ in
terms of those of φ/2, we obtain

sin
(

φ

2

)
sinφ

1 − cosφ
= cos

(
φ

2

)

and hence, the term in brackets of the above expression vanishes, the ex-
pression for ṙ thus reducing to

ṙ =
1
2

[
cos
(

φ

2

)
1− sin

(
φ

2

)
E
]

ω ≡ 1
2
(r01 − R)ω

thereby completing the proof.
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B
The Numerical Solution of Linear
Algebraic Systems

In this appendix we consider the solution of the linear algebraic system

Ax = b (B.1)

with A defined as a full-rank m × n matrix, while x and b are n- and m-
dimensional vectors, respectively. The case m = n is the most frequently
encountered; this case is well documented in the literature (Dahlquist and
Björck, 1974; Golub and Van Loan, 1989) and need not be further discussed.
We will consider only the following two cases:

(a) overdetermined: m > n; and

(b) underdetermined: m < n.

The overdetermined case does not admit a solution, unless vector b hap-
pens to lie in the range of A. Besides this special case, then, we must
reformulate the problem, and rather than seeking a solution of eq.(B.1), we
will look for an approximation of that system of equations. Moreover, we
will seek an approximation that will satisfy an optimality condition.

The underdetermined case, on the contrary, admits infinitely many so-
lutions, the objective then being to seek one that satisfies the system of
equations and satisfies an additional optimality condition as well.

We study each of these cases in the sections below.
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446 B. The Numerical Solution of Linear Algebraic Systems

B.1 The Overdetermined Case

The error e in the approximation of eq.(B.1) is defined as

e ≡ b − Ax (B.2)

An obvious way of imposing an optimality condition on the solution x is
to specify that this solution minimize a norm of e. All norms of e can be
expressed as

‖e‖p ≡
(

1
m

m∑
1

ep
k

)1/p

(B.3)

with ek being understood as the kth component of the m-dimensional vec-
tor e. When p = 2, the foregoing norm is known as the Euclidean norm,
which we have used most frequently in this book. When p → ∞, the in-
finity norm, also known as the Chebyshev norm, is obtained. It turns out
that upon seeking the value of x that minimizes a norm of e, the simplest
is the Euclidean norm, for the minimization of its square leads to a linear
system of equations whose solution can be obtained directly, as opposed to
iteratively. Indeed, let us set up the minimization problem below:

z(x) ≡ 1
2
‖e‖2

2 → min
x

(B.4)

The normality condition of the minimization problem at hand is derived
upon setting the gradient of z with respect to x equal to zero, i.e.,

dz

dx
= 0 (B.5)

Now, the chain rule and the results of Subsection 2.3.1 allow us to write

dz

dx
≡
(

de
dx

)T
dz

de
≡ −ATe (B.6)

and hence, we have the first result:

Theorem B.1.1 The error in the approximation of eq.(B.1), for the full-
rank m × n matrix A, with m > n, is of minimum Euclidean norm if it
lies in the nullspace of AT .

Furthermore, if eq.(B.2) is substituted into eq.(B.6), and the product
thus resulting is substituted, in turn, into the normality condition, we ob-
tain

AT Ax = ATb (B.7)

which is known as the normal equation of the minimization problem at
hand. By virtue of the assumption on the rank of A, the product ATA is
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positive-definite and hence, invertible. As a consequence, the value x0 of x
that minimizes the Euclidean norm of the approximation error of the given
system is

x0 = (AT A)−1ATb (B.8)

the matrix coefficient of b being known as a generalized inverse of A. The
error obtained with this value is known as the least-square error of the
approximation, i.e.,

e0 ≡ b− Ax0 (B.9)

The reader should be able to prove one more result:

Theorem B.1.2 (Projection Theorem) The least-square error is or-
thogonal to Ax0.

While the formula yielding the foregoing generalized inverse is quite sim-
ple to implement, the number of floating-point operations (flops) it takes
to evaluate, along with the ever-present roundoff errors in both the data
and the results, renders it not only inefficient, but also unreliable if ap-
plied as such. Indeed, if we recall the concept of condition number, in-
troduced in Section 4.9 and recalled in Subsection 8.2.4, along with the
definition adopted in the latter for the condition number, it becomes ap-
parent that the condition number of ATA is exactly the square of the
condition number of A. This result can be best understood if we apply the
Polar-Decomposition Theorem, introduced in Section 4.9, to rectangular
matrices, but we will not elaborate on this issue here.

As a consequence, then, even if A is only slightly ill-conditioned, the
product ATA can be catastrophically ill-conditioned. Below we outline
two procedures to calculate efficiently the least-square approximation of
the overdetermined system (B.1) that preserve the condition number of A
and do this with a low number of flops.

B.1.1 The Numerical Solution of an Overdetermined
System of Linear Equations

In seeking a numerical solution of the system of equations at hand, we would
like to end up with a triangular system, similar to the LU-decomposition
applied to solve a system of as many equations as unknowns, and hence,
we have to perform some transformations either on the rows of A or on
its columns. A safe numerical procedure should thus preserve (a) the Eu-
clidean norm of the columns of A and (b) the inner product between any
two columns of this matrix. Hence, a triangularization procedure like LU-
decomposition would not work, because this does not preserve inner prod-
ucts. Obviously, the transformations that do preserve these inner products
are orthogonal, either rotations or reflections. Of these, the most popular
methods are (a) the Gram-Schmidt orthogonalization procedure and (b)
Householder reflections.
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448 B. The Numerical Solution of Linear Algebraic Systems

The Gram-Schmidt procedure consists in regarding the columns of A as
a set of n m-dimensional vectors { ak }n

1 . From this set, a new set { ek }n
1

is obtained that is orthonormal. The procedure is quite simple and works
as follows: Define e1 as

e1 =
a1

‖a1‖ (B.10)

Further, we define e2 as the normal component of a2 onto e2, as introduced
in eq.(2.6b), i.e.,

b2 ≡ (1− e1eT
1 )a2 (B.11a)

e2 ≡ b2

‖b2‖ (B.11b)

In the next step, we define e3 as the unit vector normal to the plane defined
by e1 and e2 and in the direction in which the inner product eT

3 · a3 is
positive, which is possible because all vectors of the set { ak }m

1 have been
assumed to be linearly independent—remember that A has been assumed
to be of full rank. To this end, we subtract from a3 its projection onto the
plane mentioned above, i.e.,

b3 = (1− e1eT
1 − e2eT

2 )a3 (B.12a)

e3 ≡ b3

‖b3‖ (B.12b)

and so on, until we obtain en−1, the last unit vector of the orthogonal set,
en, being obtained as

bn = (1 − e1eT
1 − e2eT

2 − · · · − en−1eT
n−1)an (B.13a)

Finally,

en ≡ bn

‖bn‖ (B.13b)

In the next stage, we represent all vectors of the set { ak }n
1 in orthogonal

coordinates, i.e., in the base O = { ek }n
1 , which are then arranged in an

m×n array Ao. By virtue of the form in which the set { ek }n
1 was defined,

the last m − k components of vector ak vanish. We thus have, in the said
orthonormal basis,

[ ak ]O =




α1k

α2k
...

αkk

0
...
0




(B.14a)
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Further, we represent b in O, thus obtaining

[b ]O =




β1

β2
...

βm


 (B.14b)

Therefore, eq.(B.1), when expressed in O, becomes



α11 α12 · · · α1n

0 α22 · · · α2n
...

...
. . .

...
0 0 · · · αnn

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0







x1

x2
...

xn


 =




β1

β2
...

βn

βn+1

...
βm




(B.15)

whence x can be computed by back-substitution. It is apparent, then, that
the last m − n equations of the foregoing system are incompatible: their
left-hand sides are zero, while their right-hand sides are not necessarily
so. What the right-hand sides of these equations represent, then, is the
approximation error in orthogonal coordinates. Its Euclidean norm is, then,

‖e0‖ ≡
√

β2
n+1 + . . . + β2

m (B.16)

The second method discussed here is based on the application of a chain
of n reflections {Hk }n

1 , known as Householder reflections, to both sides of
eq.(B.1). The purpose of these reflections is, again, to obtain a represen-
tation of matrix A in upper-triangular form (Golub and Van Loan, 1989).
The algorithm proceeds as follows: We assume that we have applied re-
flections H1, H2, . . ., Hk−1, in this order, to A that have rendered it in
upper-trapezoidal form, i.e.,

Ai−1 ≡ Hi−1 . . .H2H1A

=




a∗
11 a∗

12 · · · a∗
1,i−1 a∗

1i · · · a∗
1n

0 a∗
22 · · · a∗

2,i−1 a∗
2i · · · a∗

2n

0 0 · · · a∗
3,i−1 a∗

3i · · · a∗
3n

...
...

. . .
...

...
. . .

...
0 0 · · · a∗

i−1,i−1 a∗
i−1,i · · · a∗

i−1,n

0 0 · · · 0 a∗
i,i · · · a∗

i,n

...
...

. . .
...

...
. . .

...
0 0 · · · 0 a∗

m,i · · · a∗
mn




(B.17)

The next Householder reflection, Hi, is determined so as to render the last
m− i components of the ith column of HiAi−1 equal to zero, while leaving
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its first i − 1 columns unchanged. We do this by setting

αi = sgn(a∗
ii)
√

(a∗
ii)2 + (a∗

i+1,i)2 + · · · + (a∗
mi)2

ui = [ 0 0 · · · 0 a∗
ii + αi a∗

i,i+1 · · · a∗
im ]T

Hi = 1 − 2
uiuT

i

‖ui‖2

where sgn(x) is defined as +1 if x > 0, as −1 if x < 0, and is left undefined
when x = 0. As the reader can readily verify,

1
2
‖ui‖2 = αi(ui)i = αi(a∗

ii + αi) ≡ βi

and hence, the denominator appearing in the expression for Hi is calculated
with one single addition and a single multiplication. It is noteworthy that
Hi, as defined above, is the n × n counterpart of the 3 × 3 pure reflection
defined in eq.(2.5). As a matter of fact, Hi reflects vectors in m-dimensional
space onto a hyperplane of unit normal ui/‖ui‖.

It is important to realize that

(a) αi is defined with the sign of a∗
ii because βi is a multiple of the ith

component of ui, which is, in turn, the sum of a∗
ii and αi, thereby

guaranteeing that the absolute value of this sum will always be greater
than the absolute value of each of its terms. If this provision were
not made, then the resulting sum could be of a negligibly small ab-
solute value, which would thus render βi a very small positive num-
ber, thereby introducing unnecessarily an inadmissibly large roundoff-
error amplification upon dividing the product uiuT

i by βi;

(b) an arbitrary vector v is transformed by Hi with unusually few flops,
namely,

Hiv = v − 1
βi

(vT ui)ui

Upon application of the n Householder reflections thus defined, the sys-
tem at hand becomes

HAx = Hb (B.18)

with H defined as
H ≡ Hn . . .H2H1 (B.19)

Similar to that in equation (B.15), the matrix coefficient of x in eq.(B.18),
i.e., HA, is in upper-triangular form. That is, we have

HA =
[

U
Om′n

]
, Hb =

[
bU

bL

]
(B.20)
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with Om′n denoting the (m − n) × n zero matrix, m′ ≡ m − n, and bU

and bL being n- and m′-dimensional vectors. The unknown x can thus be
calculated from eq.(B.18) by back-substitution.

Note that the last m′ components of the left-hand side of eq.(B.18) are
zero, while the corresponding components of the right-hand side of the
same equation are not necessarily so. This apparent contradiction can be
resolved by recalling that the overdetermined system at hand in general has
no solution. The lower part of b, bL, is then nothing but an m′-dimensional
array containing the nonzero components of the approximation error in the
new coordinates. That is, the least-square error, e0, in these coordinates
takes the form

e0 =
[
0n

bL

]
(B.21a)

Therefore,
‖e0‖ = ‖bL‖ (B.21b)

B.2 The Underdetermined Case

In this section we study the solution of system (B.1) under the assump-
tion that m < n and rank(A) = m. Now, the system under study admits
infinitely many solutions, which allows us to impose one condition on a
specific solution that we may want to obtain. The obvious choice is a mini-
mality condition on a norm of x. As in the previous section, the minimiza-
tion of the square of the Euclidean norm of x leads to a linear problem,
and hence, a direct solution of the problem at hand is possible. We thus
have

z(x) ≡ 1
2
‖x‖2

2 → min
x

(B.22)

subject to the constraint represented by eq.(B.1). Since we now have a
constrained minimization problem, we proceed to its solution via Lagrange
multipliers. That is, we introduce a new objective function ζ(x), defined as

ζ(x) ≡ z(x) + λT (Ax − b) → min
x

(B.23)

subject to no constraints, with λ defined as an m-dimensional vector of
Lagrange multipliers, as yet to be determined. We thus have now an un-
constrained minimization problem with m+n design variables, the m com-
ponents of λ and the n components of x, that we group in the (m + n)-
dimensional vector y ≡ [xT λT ]T . The normality condition of the fore-
going problem can now be stated as

dζ

dy
= 0m+n (B.24a)
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with 0m+n defined as the (m + n)-dimensional zero vector. The above
condition can be broken down into the two conditions below:

dζ

dx
= 0n

dζ

dλ
= 0m

with 0m and 0n defined, respectively, as the m- and n-dimensional zero
vectors. The above equations thus lead to

dζ

dx
≡ x + AT λ = 0n (B.25)

dζ

dλ
≡ Ax − b = 0m (B.26)

Upon elimination of λ from the above system of equations, we obtain

x = AT (AAT )−1b (B.27)

which is the minimum-norm solution of the proposed problem. Again, the
formula yielding the foregoing solution is deceptively simple. If we attempt
the calculation of the inverse occurring in it, we risk introducing unneces-
sarily an inadmissibly ill-conditioned matrix, the product AAT . Therefore,
an alternative approach to the straightforward implementation of the above
formula should be attempted, as we do in the subsection below.

B.2.1 The Numerical Solution of an Underdetermined
System of Linear Equations

The simplest way of solving this problem is by introducing the m × m
identity matrix 1, in a disguised manner, between the two factors of the left-
hand side of eq.(B.1). To this end, we assume that we have an orthogonal
m × m matrix H, so that

HTH = 1 (B.28)

equation (B.1) thus becoming

AHTHx = b (B.29a)

which can be rewritten in the form

AHT v = b (B.29b)

with v defined, obviously, as
v ≡ Hx (B.29c)

Now, H is chosen as the product of m Householder reflections that trans-
forms AT into upper-triangular form, i.e., so that

HAT =
[

U
On′m

]
(B.30)
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with On′m defined as the (n−m)×m zero matrix and n′ ≡ n−m. Moreover,
U is upper-triangular. Further, let us partition v in the form

v ≡
[
vU

vL

]
(B.31)

Upon substitution of eqs.(B.30) and (B.31) into eq.(B.29b), we obtain

[UT Omn′ ]
[
vU

vL

]
= b

where Omn′ is the m × (n − m) zero matrix. Hence,

UTvU + Omn′vL = b (B.32)

whence it is apparent that vL can attain any value. Now, since v is the
image of x under an orthogonal transformation, the Euclidean norms of
these two vectors are identical, and hence,

‖x‖2 = ‖vU‖2 + ‖vL‖2 (B.33)

Therefore, if we want to minimize the Euclidean norm of x, the obvious
choice of vL is zero. Furthermore, from eq.(B.32),

vU = U−T b (B.34)

and so,

x = HTv = HT

[
U−Tb
0n′

]
(B.35)

with 0n′ denoting the n′-dimensional zero vector, thereby completing the
numerical solution of the problem at hand.
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Exercises

While the following exercises are ordered by chapter, the ordering within
each chapter does not necessarily correspond to that of the sections within
the chapter. Some of the exercises call for algebraic manipulations that are
cumbersome and error-prone if done by hand. It is strongly recommended
that these exercises be worked out using software for computer algebra,
which is nowadays readily available (Pattee, 1995). On the other hand,
some problems require numerical computations that most of the time can be
done by longhand calculations; when these become cumbersome, the reader
is advised to resort to suitable software, e.g., Matlab and its toolboxes
(Hanselman and Littlefield, 2001).

1 An Overview of Robotic Mechanical Systems

The exercises listed below are meant to familiarize the uninitiated reader
with the issues involved in robotics, especially in the area of robotic me-
chanical systems. A major issue, regrettably very often overlooked, is the
terminology. In attempting to work out these exercises, the beginner should
be able to better understand the language of robotics and realize that a
common terminology is not yet available.

1.1 List some definitions of machine, say about half a dozen, trying to
cover the broadest timespan to date. Hint: Hartenberg and Denavit
(1964) list a few bibliographical references.
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1.2 Try to give an answer to the question: Are intelligent machines possi-
ble? Express your own ideas and explore what scientists like Penrose
(1994) think about this controversial issue.

1.3 What is the difference among machine, mechanism, and linkage? In
particular, analyze critically the definitions given by authorities, such
as those found in the most respected dictionaries, encyclopedias, and
archival documents of learned societies, e.g., the complete issue of
Vol. 26, No. 5 (1991) of Mechanism and Machine Theory on termi-
nology.

1.4 What is artificial intelligence? What is fuzzy logic? Can the tech-
niques of these fields be applied to robotics?

1.5 What is mechatronics? What is the difference between mechatronics
and robotics? Comerford (1994) and Soureshi et al. (1994) give an
account on this technology.

1.6 What do you understand as dexterity? The concept of dexterity is
normally applied to persons. Can it be applied to animals as well?
What about machines?

1.7 Define the term algorithm. In this context, make a clear distinction
between recursion and iteration. Note that in the robotics literature,
there is often confusion between these two terms in particular. Make
sure that you do not make the same mistake! Again, Penrose (1994)
has provided an extensive discussion on the nature of algorithms.

1.8 What is the difference among terms like real-time, on-line, and run-
time?

1.9 How fast can two floating-point numbers be multiplied using a per-
sonal computer? What about using a UNIX workstation? a supercom-
puter? Write a piece of code to estimate this time on your computer
facility.

1.10 Answer the foregoing question as pertaining to floating-point addi-
tion.

1.11 What is the smallest floating-point number on your computer? Rather
than looking for the answer in manuals, write a procedure to estimate
it.

1.12 What is the difference between conventional programming and object-
oriented programming? In terms of programming languages, what is
the difference between C and C++? Rumbaugh et al. (1991) provide
an introduction to object-oriented programming, while Stroustrup
(1991) gives an introduction to C++.
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2 Mathematical Background

2.1 Prove that the range and the nullspace of any linear transformation
L of vector space U into vector space V are vector spaces as well, the
former of V , the latter of U .

2.2 Let L map U into V and dim{U} = n, dim{V} = m. Moreover, let R
and N be the range and the nullspace of L, their dimensions being ρ
and ν, respectively. Show that ρ + ν = n.

2.3 Given two arbitrary nonzero vectors u and v in E3, find the matrix
P representing the projection of E3 onto the subspace spanned by u
and v.

2.4 Verify that P, whose matrix representation in a certain coordinate
system is given below, is a projection. Then, describe it geometri-
cally, i.e., identify the plane onto which the projection takes place.
Moreover, find the nullspace of P.

[P ] =
1
3




2 1 −1
1 2 1
−1 1 2




2.5 If for any 3-dimensional vectors a and v, matrix A is defined as

A ≡ ∂(a × v)
∂v

then we have

AT ≡ ∂(v × a)
∂v

Show that A is skew-symmetric without introducing components.

2.6 Let u and v be any 3-dimensional vectors, and define T as

T ≡ 1 + uvT

The (unit) eigenvectors of T are denoted by w1, w2, and w3. Show
that, say, w1 and w2 are any unit vectors perpendicular to v and
different from each other, whereas w3 = u/‖u‖. Also show that the
corresponding eigenvalues, denoted by λ1, λ2, and λ3, associated with
w1, w2, and w3, respectively, are given as

λ1 = λ2 = 1, λ3 = 1 + u · v
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2.7 Show that if u and v are any 3-dimensional vectors, then

det(1 + uvT ) = 1 + u · v
Hint: Use the results of the Exercise 2.6.

2.8 For the two unit vectors e and f in 3-dimensional space, define the
two reflections

R1 = 1− 2eeT , R2 = 1− 2f fT

Now, show that Q = R1R2 is a rigid-body rotation, and find its axis
and its angle of rotation in terms of unit vectors e and f. Again, no
components are permitted in this exercise.

2.9 State the conditions on the unit vectors e and f, of two reflections R1

and R2, respectively, under which a given rotation Q can be factored
into the reflections R1 and R2 given in the foregoing exercise. In
other words, not every rotation matrix Q can be factored into those
two reflections, for fixed e and f, but special cases can. Identify these
cases.

2.10 Prove that the eigenvalues of the cross-product matrix of the unit
vector e are 0, j, and −j, where j =

√−1. Find the corresponding
eigenvectors.

2.11 Without resorting to components, prove that the eigenvalues of a
proper orthogonal matrix Q are 1, ejφ, and e−jφ, with φ denoting
the angle of rotation. Hint: Use the result of the foregoing exercise
and the Cayley-Hamilton Theorem.

2.12 Find the axis and the angle of rotation of the proper orthogonal
matrix Q given below in a certain coordinate frame F .

[QF ] =
1
3



−1 −2 2
−2 −1 −2
2 −2 −1




2.13 Find E and φ of the exponential representation of the rotation matrix
given in Exercise 2.12.

2.14 Cayley’s Theorem, which is not to be confused with the Theorem of
Cayley-Hamilton, states that every 3 × 3 proper orthogonal matrix
Q can be uniquely factored as

Q = (1 − S)(1 + S)−1

where S is a skew-symmetric matrix. Find a general expression for S
in terms of Q, and state the condition under which this factoring is
not possible.
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2.15 Find matrix S of Cayley’s factoring for Q as given in Exercise 2.12.

2.16 If Q represents a rotation about an axis parallel to the unit vector e
through an angle φ, then the Rodrigues vector ρ of this rotation can
be defined as

ρ ≡ tan
(

φ

2

)
e

Note that if r and r0 denote the Euler-Rodrigues parameters of the
rotation under study, then ρ = r/r0. Show that

ρ = −vect(S)

for S given in Exercise 2.14.

2.17 The vertices of a cube, labeled A, B, . . ., H , are located so that A,
B, C, and D, as well as E, F , G, and H , are in clockwise order when
viewed from outside. Moreover, AE, BH , CG, and DF are edges of
the cube, which is to be manipulated so that a mapping of vertices
takes place as indicated below:

A → D, B → C, C → G, D → F
E → A, F → E, G → H, H → B

Find the angle of rotation and the angles that the axis of rotation
makes with edges AB, AD, and AE.

2.18 (Euler angles) A rigid body can attain an arbitrary configuration
starting from any reference configuration, 0, by means of the compo-
sition of three rotations about coordinate axes, as described below:
Attach axes X0, Y0, and Z0 to the body in the reference configuration
and rotate the body through an angle φ about Z0, thus carrying the
axes into X1, Y1, and Z1 (=Z0), respectively. Next, rotate the body
through an angle θ about axis Y1, thus carrying the axes into X2,
Y2, and Z2, respectively. Finally, rotate the body through an angle ψ
about Z2 so that the axes coincide with their desired final orientation,
X3, Y3, and Z3. Angle ψ is chosen so that axis Z3 lies in the plane of
Z0 and X1, whereas angle θ is chosen so as to carry axis Z1 (=Z0)
into Z3 (=Z2). Show that the rotation matrix carrying the body from
configuration 0 to configuration 3 is:

Q =




cθcφcψ − sφsψ −cθcφsψ − sφcψ sθcφ
cθsφcψ + cφsψ −cθsφsψ + cφcψ sθsφ

−sθcψ sθsψ cθ




where c(·) and s(·) stand for cos(·) and sin(·), respectively. Moreover,
show that α, the angle of rotation of Q given above, obeys the relation

cos
(α

2

)
= cos

(
ψ + φ

2

)
cos
(

θ

2

)
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2.19 Given an arbitrary rigid-body rotation about an axis parallel to the
unit vector e through an angle φ, it is possible to find both e and φ
using the linear invariants of the rotation matrix, as long as the vector
invariant does not vanish. The latter happens if and only if φ = 0 or
π. Now, if φ = 0, the associated rotation matrix is the identity, and
e is any 3-dimensional vector; if φ = π, then we have

Q(π) ≡ Qπ = −1 + 2eeT

whence we can solve for eeT as

eeT =
1
2
(Qπ + 1)

Now, it is apparent that the three eigenvalues of Qπ are real and the
associated eigenvectors are mutually orthogonal. Find these.

2.20 Explain why all the off-diagonal entries of a symmetric rotation ma-
trix cannot be negative.

2.21 The three entries above the diagonal of a 3 × 3 matrix Q that is
supposed to represent a rotation are given below:

q12 =
1
2
, q13 = −2

3
, q23 =

3
4

Without knowing the other entries, explain why the above entries are
unacceptable.

2.22 Let p1, p2, and p3 be the position vectors of three arbitrary points
in 3-dimensional space. Now, define a matrix P as

P ≡ [p1 p2 p3 ]

Show that P is not frame-invariant. Hint: Show, for example, that it
is always possible to find a coordinate frame in which tr(P) vanishes.

2.23 For P defined as in Exercise 2.22, let

q ≡ tr(P2) − tr2(P)

Show that q vanishes if the three given points and the origin are
collinear, for P represented in any coordinate frame.

2.24 For P defined, again, as in Exercise 2.22, show that PPT is invari-
ant under frame-rotations about the origin, and becomes singular if
and only if either the three given points are collinear or the origin
lies in the plane of the three points. Note that this matrix is more
singularity-robust than P.
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FIGURE 1. A cube in two different configurations.

2.25 The diagonal entries of a rotation matrix are known to be −0.5, 0.25,
and −0.75. Find the off-diagonal entries.

2.26 As a generalization to the foregoing exercise, discuss how you would
go about finding the off-diagonal entries of a rotation matrix whose
diagonal entries are known to be a, b, and c. Hint: This problem can be
formulated as finding the intersection of the coupler curve of a four-
bar spherical linkage (Chiang, 1988), which is a curve on a sphere,
with a certain parallel of the same sphere.

2.27 Shown in Fig. 1(a) is a cube that is to be displaced in an assembly
operation to a configuration in which face EFGH lies in the XY
plane, as indicated in Fig. 1(b). Compute the unit vector e parallel
to the axis of the rotation involved and the angle of rotation φ, for
0 ≤ φ ≤ π.

2.28 The axes X1, Y1, Z1 of a frame F1 are attached to the base of a
robotic manipulator, whereas the axes X2, Y2, Z2 of a second frame
F2 are attached to its end-effector, as shown in Fig. 2. Moreover, the
origin P of F2 has the F1-coordinates (1,−1, 1). Furthermore, the
orientation of the end effector with respect to the base is defined by
a rotation Q, whose representation in F1 is given by

[Q]1 =
1
3




1 1 −√
3 1 +

√
3

1 +
√

3 1 1 −√
3

1 −√
3 1 +

√
3 1




(a) What are the end-effector coordinates of point C of Fig. 2?
(b) The end-effector is approaching the ABC plane shown in Fig. 2.

What is the equation of the plane in end-effector coordinates?
Verify your result by substituting the answer to (a) into this
equation.
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FIGURE 2. Robotic EE approaching a stationary object ABC.

2.29 Shown in Fig. 3 is a cube of unit side, which is composed of two
parts. Frames (X0, Y0, Z0) and (X1, Y1, Z1) are attached to each of
the two parts, as illustrated in the figure. The second part is going
to be picked up by a robotic gripper as the part is transported on a
belt conveyor and passes close to the stationary first part. Moreover,
the robot is to assemble the cube by placing the second part onto the
first one in such a way that vertices A1, B1, C1 are coincident with
vertices A0, B0, C0. Determine the axis and the angle of rotation that
will carry the second part onto the first one as described above.

2.30 A piece of code meant to produce the entries of rotation matrices is
being tested. In one run, the code produced a matrix with diagonal
entries −0.866, −0.866, −0.866. Explain how without looking at the
other entries, you can decide that the code has a bug.

FIGURE 3. Roboticized assembly operation.
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FIGURE 4. Three configurations of a cube.

2.31 Shown in Fig. 4 is a rigid cube of unit side in three configurations. The
second and the third configurations are to be regarded as images of
the first one. One of the last two configurations is a reflection, and the
other is a rotation of the first one. Identify the rotated configuration
and find its associated invariants.

2.32 Two frames, G and C, are attached to a robotic gripper and to a
camera mounted on the gripper, respectively. Moreover, the camera
is rigidly attached to the gripper, and hence, the orientation of C with
respect to G, denoted by Q, remains constant under gripper motions.
The orientation of the gripper with respect to a frame B fixed to
the base of the robot was measured in both G and C. Note that this
orientation is measured in G simply by reading the joint encoders,
which report values of the joint variables, as discussed in detail in
Chapter 4. The same orientation is measured in C from estimations
of the coordinates of a set of points fixed to B, as seen by the camera.
Two measurements of the above-mentioned orientation, denoted R1

and R2, were taken in G and C, with the numerical values reported
below:

[R1 ]G =




0.667 0.333 0.667
−0.667 0.667 0.333
−0.333 −0.667 0.667


 ,

[R1 ]C =



0.500 0 −0.866
0 1.000 0

0.866 0 0.500


 ,

[R2 ]G =




0.707 0.577 0.408
0 0.577 −0.816

−0.707 0.577 0.408


 ,

[R2 ]C =



1 0 0
0 0.346 −0.938
0 0.938 0.346




(a) Verify that the foregoing matrices represent rotations.
(b) Verify that the first two matrices represent, in fact, the same

rotation R1, albeit in different coordinate frames.
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(c) Repeat item (b) for R2.
(d) Find [Q ]G . Is your computed Q orthogonal? If not, what is the

error in the computations? Note that you may have encountered
here a problem of roundoff error amplification, which can be
avoided if a robust computational scheme is used. As a matter
of fact, a robust method in this case can be devised by resorting
to the Gram-Schmidt orthogonalization procedure, as outlined in
Appendix B.

2.33 The rotation Q taking a coordinate frame B, fixed to the base of a
robot, into a coordinate frame G, fixed to its gripper, and the position
vector g of the origin of G have the representations in B given below:

[Q ]B =
1
3




1 1 −√
3 1 +

√
3

1 +
√

3 1 1 −√
3

1 −√
3 1 +

√
3 1


 , [g ]B =




1 −√
3√

3
1 +

√
3




Moreover, let p be the position vector of any point P of the 3-
dimensional space, its coordinates in B being (x, y, z). The robot is
supported by a cylindrical column C of circular cross section, bounded
by planes Π and Π. These are given below:

C: x2 + y2 = 4; Π1: z = 0; Π2: z = 10

Find the foregoing equations in G coordinates.

2.34 A certain point of the gripper of a robot is to trace an elliptical path
of semiaxes a and b, with center at C, the centroid of triangle PQR,
as shown in Fig. 5. Moreover, the semiaxis of length a is parallel to
edge PQ, while the ellipse lies in the plane of the triangle, and all
three vertices are located a unit distance away from the origin.

(a) For b = 2a/3, the gripper is to keep a fixed orientation with
respect to the unit tangent, normal, and binormal vectors of the
ellipse, denoted by et, en, and eb, respectively1. Determine the
matrix representing the rotation undergone by the gripper from
an orientation in which vector et is parallel to the coordinate axis
X , while en is parallel to Y and eb to Z. Express this matrix in
X, Y, Z coordinates, if the equation of the ellipse, in parametric
form, is given as

x′ = a cosϕ, y′ = b sinϕ, z′ = 0

the orientation of the gripper thus becoming a function of ϕ.
(b) Find the value of ϕ for which the angle of rotation of the gripper,

with respect to the coordinate axes X, Y, Z, becomes π.

1An account of curve geometry is given in Section 9.2
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FIGURE 5. An elliptical path on an inclined plane.

2.35 With reference to Exercise 2.27, find Euler angles φ, θ, and ψ that
will rotate the cube of Fig. 1a into the attitude displayed in Fig. 1b.
For a definition of Euler angles, see Exercise 2.18

2.36 Find a sequence of Euler angles φ, θ, and ψ, as defined in Exer-
cise 2.18, that will carry triangle A1, B1, C1 into triangle A0, B0, C0,
of Fig. 3.

3 Fundamentals of Rigid-Body Mechanics

3.1 The cube of Fig. 6 is displaced from configuration AB . . .H into con-
figuration A′B′ . . . H ′.

(a) Determine the matrix representing the rotation Q undergone by
the cube, in X, Y, Z coordinates.

(b) Find the Plücker coordinates of line L of the cube undergoing
displacements of minimum magnitude.

(c) Find the intersections of L with the coordinate planes.

3.2 Two unit forces, f1 and f2, are applied to the regular tetrahedron of
unit-length edges displayed in Fig. 7 in such a way that f1 is directed
from P2 to P3, whereas f2 is directed from P4 to P1. The effect of
the foregoing system of forces on the rigid tetrahedron is obtained
by application of the resultant of the two forces on a certain point
P and a moment n. Find the location of point P lying closest to P4

that will make the magnitude of n a minimum.
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FIGURE 6. Motion of a cube.

FIGURE 7. A regular tetrahedron.
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3.3 The moment of a line L1 about a second line L2 is a scalar µ defined
as

µ = n1 · e2

where n1 is the moment of L1 about an arbitrary point P of L2, while
e2 is a unit vector parallel to line L2. Apparently, the necessary and
sufficient condition for two lines to intersect is that the moment of
one about the other vanish.

Using the above concept, show that the locus of all lines L intersecting
three given lines {Lk }3

1 is a quadric surface, i.e., a surface defined by
a function that is quadratic in the position vector of a point of the
surface. Hint: Note that the moment of any line of {Lk }3

1 with respect
to L vanishes.

Note: The quadric surface above is, in fact, a ruled surface, namely,
a one-sheet hyperboloid.

3.4 A robotic gripper is provided with two redundant sensors that are
meant to measure a wrench acting on the gripper. The ith sensor,
moreover, has its own coordinate frame, labeled Fi, for i = 1, 2.
Sensor i reported the ith measurement of the wrench wP , where
subscript P indicates that the force is applied at point P , as [wP ]i ≡
[nT , fT ]Ti , for i = 1, 2. These measurements are given as

[n ]1 =




0
0
5


 , [ f ]1 =




0
2
0




[n ]2 =




−5/3
−10/3
10/3


 , [ f ]2 =



−4/3
4/3
2/3




(a) Show that the measurements are compatible, based on invari-
ance arguments.

(b) Determine the relative orientation of the two frames, i.e., find the
rotation matrix transformingF2-coordinates into F1-coordinates.

3.5 A robot-calibration method has been proposed that allows us to de-
termine the location of a joint axis, L, via the Plücker coordinates
of the axis in a coordinate frame fixed to the gripper. The Plücker
coordinates are given as πL = [ eT , nT ]T .

(a) Show that the distance of the axis to the origin of the gripper-
fixed coordinate frame, d, can be determined as d = ‖n‖.

(b) Show that the point P ∗ on the axis, which lies closest to the
above-mentioned origin, has a position vector p∗ given as

p∗ = e× n

TLFeBOOK



468 Exercises

(c) From measurements on a robot, the Plücker coordinates were
estimated, in a gripper-fixed frame G, as

[ πL ]G = [−
√

2/2, 0,
√

2/2, 0, −
√

2, 0 ]T

Find d and p∗ in gripper coordinates

3.6 The gripper G of a robot is approaching a workpiece B, as indicated
in Fig. 8, with planes Π1 and Π2 parallel to each other and normal to
Π3. The workpiece is made out of a cube of unit length from which
two vertices have been removed, thereby producing the equilateral
triangular faces DEF and D′E′F ′. Moreover, two coordinate frames,
F (X , Y , Z) and F ′ (X ′, Y ′, Z ′), are defined as indicated in the
figure, in which Y is, apparently, parallel to line D′C′.
It is required to grasp B with G in such a way that planes Π1 and Π2

coincide with the triangular faces, while carrying the Y ′ axis to an
orientation perpendicular to the diagonal CC′ of B. More concretely,
in the grasping configuration, frame F ′ is carried into F ′′ (X ′′, Y ′′,
and Z ′′), not shown in the figure, in such a way that unit vectors i′′,
j′′, k′′, parallel to X ′′, Y ′′, Z ′′, respectively, are oriented so that i′′ has
all three of its F -components positive, while j′′ has its Z-component
positive.

(a) Compute the angle of rotation of the motion undergone by G
from a pose in which F ′ and F have identical orientations,
termed the reference pose, and find the unit vector parallel to
the axis of rotation, in frame F .

(b) The position vector of point P of G is known to be, in the ref-
erence pose,

[p ]F =




2
−1
0.25




FIGURE 8. A workpiece B to be grasped by a gripper G.
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Determine the set of points of G undergoing a displacement of
minimum magnitude, under the condition that P , in the dis-
placed configuration of G, coincides with C′.

3.7 In calibrating a robot, the Plücker coordinates of one of its axes are to
be determined in a given coordinate frame. To this end, the moment
of this axis is measured with respect to two points, A and B, of
position vectors [ a ] = [ 1, 0, 0 ]T and [b ] = [ 0, 1, 1 ]T , respectively.
The said moments, nA and nB, respectively, are measured as

[nA ] =




0
2
0


 , [nB ] =




0
1
1




with all entries given in meters.

(a) Determine the unit vector e defining the direction of the axis
under discussion.

(b) Find the coordinates of the point P ∗ of the axis that lies closest
to the origin

(c) Find the Plücker coordinates of the axis about the origin, i.e., the
Plücker coordinates of the axis in which the moment is defined
with respect to the origin.

3.8 Prove that for any 3-dimensional vectors ω and p,

ω × (ω × · · · (ω × (ω︸ ︷︷ ︸
2k factors

×p)) · · ·) = (−1)k(‖ω‖2k1− ‖ω‖2(k−1)ωωT )p

ω × (ω × · · · (ω × (ω︸ ︷︷ ︸
2k+1 factors

×p)) · · ·) = (−1)k(‖ω‖2kω) × p

3.9 A “small” rotation is defined as that about an arbitrary axis parallel
to the unit vector e, through a “small” angle φ, so that φ << 1.
Prove that the angular-velocity vector, in the special case of “small”
rotations, turns out to be a time-derivative. What is the vector whose
time-derivative yields the angular-velocity vector?

3.10 Derive an expression for the angular velocity ω in terms of Euler
angles, which were introduced in Exercise 2.18. More specifically, if
we store the Euler angles in array η = [ θ, φ, ψ ]T , then, find the
matrix W such that

ω = Wη̇

Notice that, given η and ω, an expression for η̇ can be obtained upon
inverting W. However, W is not always invertible. Find under which
conditions W becomes singular. Notice: The use of computer algebra
is strongly recommended to solve this exercise.
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3.11 A rectangular prism with regular hexagonal bases whose sides are
25 mm long and whose height is 150 mm is to undergo a pick-and-
place operation—See Chapter 5 to understand what this means—that
requires knowledge of its centroid location and its moment-of-inertia
matrix. Find the centroidal principal axes and moments of inertia
under the assumption that the prism is made from a homogeneous
material.

3.12 The prism of Exercise 3.11 now undergoes a machining process cut-
ting it into two parts, which are separated by a plane that contains
one of the edges of the base and makes an angle of 45◦ with the axis of
the prism. Find the centroidal principal axes and moments of inertia
of each of the two parts.

3.13 In Exercise 2.22 assume that a mass m is located at every point Pi

of position vector pi. Give a mechanical interpretation of the matrix
m[tr(PPT )1 − PPT ], with P defined in that exercise.

3.14 The centroidal inertia matrix of a rigid body is measured by two
observers, who report the two results below:

[ I ]A =




1 0 0
0 2 0
0 0 3


 , [ I ]B =

1
3




6 2 2
2 5 0
2 0 7




Show that the two measurements are acceptable. Hint: Use invariance
arguments.

3.15 State the conditions under which a point and the mass center of a
rigid body share the same principal axes of inertia. In other words, let
IP and IC be the moment-of-inertia matrices of a rigid body about
a point P and its mass center, C, respectively. State the conditions
under which the two matrices have common eigenvectors. Moreover,
under these conditions, what are the relationships between the two
sets of principal moments of inertia?

3.16 Show that the smallest principal moment of inertia of a rigid body
attains its minimum value at the mass center.

3.17 Show that the time-rate of change of the inertia dyad M of a rigid
body is given by

Ṁ = WM− MW

Then, recalling the momentum screw µ defined as

µ ≡ Mt

where t is the twist of the body, defined at its mass center. Now, with
the above expression for Ṁ, restate the result displayed in eq.(3.148),
i.e., show that

µ̇ = Mṫ + WMt
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3.18 A wrench w = [nT fT ]T , with f acting at point P of the gripper of
Fig. 2, is measured by a six-axis force sensor, to which a frame FS is
attached, as indicated in that figure. If points P and S lie a distance
of 100 mm apart, find the wrench in F2, when the readouts of the
sensor are

[n ]S =




1
0
1


 Nm, [ f ]S =




0
1
0


 N

4 Kinetostatics of Simple Robotic Manipulators

Exercises 4.22 to 4.27 below pertain to Section 4.9. They are thus
to be assigned only if this section was covered either in class or
as a reading assignment.

4.1 Shown in Fig. 8.8 is the kinematic chain of one of the six-dof legs
of a flight simulator, such as that appearing in Fig. 1.5. The HD
parameters of this manipulator are displayed in Table 8.6. In that
figure, M is the moving platform to which an aircraft cockpit is rigidly
attached. The six-dof motion of M is controlled by means of the
hydraulic cylinder indicated in the same figure as a prismatic pair.
Find all inverse kinematics solutions of this manipulator, relating the
pose of M with all the joint variables.

4.2 Modify the inverse-kinematics solution procedure of Section 4.3 to
obtain all the postures of a PRR manipulator that give the same
EE pose, and show that this problem leads to a quartic polynomial
equation.

4.3 Repeat Exercise 4.2 as pertaining to a PRP manipulator.

4.4 The manipulator appearing in Fig. 9 is of the orthogonal type, with a
decoupled, spherical wrist, and a regional structure consisting of two
parallel axes and one axis perpendicular to these two. In that figure,
rectangles denote revolutes of axes lying in the X1-Z1 plane, while
circles with dots indicate revolutes with axes normal to the plane of
the figure. Find all inverse kinematics solutions for arbitrary poses of
the EE of this manipulator.

4.5 Similar to the manipulator of Fig. 9, that of Fig. 10 is of the orthog-
onal, decoupled type, except that the latter has a prismatic pair. For
an arbitrary pose of its EE, find all inverse kinematics solutions of
this manipulator. For a description of the meaning of the rectangles
and the circles with dots inside, see Exercise 4.4.

4.6 Derive expressions for the angle of rotation and the unit vector paral-
lel to the axis of rotation of matrices Qi, as introduced in Section 4.2.
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FIGURE 9. A six-revolute robot holding a heavy tool.

FIGURE 10. ABB-IRB 1000 robotic manipulator.

4.7 The robotic manipulator of Fig. 9 is instrumented with sensors mea-
suring the torque applied by the motors at the joints. Two readouts
are taken of the sensors for the robot in the configuration indicated
in the figure. In the first readout, the gripper is empty; in the second,
it holds a tool. If the first readout is subtracted from the second, the
vector difference ∆τ is obtained as

∆τ = [ 0 2 1 0 1 0 ]T Nm

With the foregoing information, determine the weight w of the tool
and the distance d of its mass center from C, the center of the spher-
ical wrist. For a description of the meaning of the rectangles and the
circles with dots inside, see Exercise 4.4.

4.8 A planar three-axis manipulator is shown in Fig. 11, with a1 = a2 =
a3 = 1 m. When a wrench acts onto the EE of this manipulator, the
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FIGURE 11. A planar three-axis manipulator.

joint motors exert torques that keep the manipulator under static
equilibrium. Readouts of these joint torques are recorded when the
manipulator is in the posture θ1 = θ2 = θ3 = 45◦, namely,

τ1 = −
√

2 Nm, τ2 = −
√

2 Nm, τ3 = 1 −
√

2 Nm

Calculate the above-mentioned wrench.

4.9 Shown in Fig. 12 is a computer-generated model of DIESTRO, the robot
displayed in Fig. 4.31, with a slightly modified EE. The Denavit-Hartenberg
parameters of this robot are given in Table 1. Find the Jacobian matrix of
the manipulator at the above configuration.

4.10 An orthogonal spherical wrist has the architecture shown in Fig. 4.18, with
the DH parameters

α4 = 90◦, α5 = 90◦

A frame F7 is attached to its EE so that Z7 coincides with Z6. Find the
(Cartesian) orientation that can be attained with two inverse kinematics

TABLE 1. DH parameters of the modified DIESTRO

i ai (mm) bi (mm) αi θi

1 50 50 90◦ 90◦

2 50 50 −90◦ −90◦

3 50 50 90◦ 90◦

4 50 50 −90◦ −90◦

5 50 50 90◦ 90◦

6 0 50 −90◦ −90◦
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solutions θI and θII , defining the two distinct postures, that lie the far-
thest apart. Note that a distance between two manipulator postures can be
defined as the radical of the quadratic equation yielding the two inverse
kinematic solutions of the wrist, whenever the radical is positive. Those
postures giving the same EE orientation and lying farthest from each other
are thus at the other end of the spectrum from singularities, where the two
postures merge into a single one. Hence, the postures lying farthest from
each other are singularity-robust.

4.11 For the two postures found in Exercise 4.10, the EE is to move with an
angular velocity ω = [ω1, ω2, ω3]T s−1. Show that if ‖ω‖ remains constant,
then so does ‖θ̇‖, for θ̇ defined as the joint-rate vector of the wrist.

4.12 Point C of the manipulator of Fig. 4.15 is to move with a velocity v in the
posture displayed in that figure. Show that as long as ‖v‖ remains constant,
so does ‖θ̇‖, for θ̇ defined as the joint-rate vector. Moreover, let us assume
that in the same posture, point C is to attain a given acceleration a. In
general, however, ‖θ̈‖, where θ̈ denotes the corresponding joint-acceleration
vector, does not necessarily remain constant under a constant ‖a‖. Under
which conditions does ‖a‖ remain constant for a constant ‖θ̈‖?

4.13 A load f is applied to the manipulator of Fig. 4.15 in the posture displayed
in that figure. Torque cells at the joints are calibrated to supply torque
readouts resulting from this load only, and not from the dead load—its
own weight—of the manipulator. Show that under a constant-magnitude
load, the magnitude of the joint-torque vector remains constant as well.

FIGURE 12. A six-revolute manipulator.
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4.14 Dialytic elimination. The characteristic polynomial of decoupled manip-
ulators for positioning tasks can be derived alternatively via dialytic elim-
ination, as introduced in Subsection 4.5.3. It is recalled here that dialytic
elimination consists in eliminating one unknown from a system of poly-
nomial equations by expressing this system in linear homogeneous form,
whereby each equation is a linear combination of various successive powers
of the unknown to be eliminated, including the zeroth power. This elimina-
tion can be achieved as outlined below: In eqs.(4.19a) and (4.20a), express
cos θ1 and sin θ1 in terms of tan(θ1/2) ≡ t1, thereby obtaining

(C c3 + D s3 + E − A) t2
1 + 2 B t1 + (C c3 + D s3 + E + A) = 0

(H c3 + I s3 + J − F ) t2
1 + 2 Gt1 + (H c3 + I s3 + J + F ) = 0

which can be further expressed as

m t2
1 + 2 B t1 + n = 0

p t2
1 + 2 Gt1 + q = 0

with obvious definitions for coefficients m, n, p, and q. Next, both sides of
the two foregoing equations are multiplied by t1, thereby producing

m t3
1 + 2 B t2

1 + n t1 = 0
p t3

1 + 2 Gt2
1 + q t1 = 0

Now, the last four equations can be regarded as a system of linear homo-
geneous equations, namely,

Mt1 = 0

where 0 is the 4-dimensional zero vector, while M is a 4 × 4 matrix, and
t1 is a 4-dimensional vector. These are defined as

M ≡




0 m 2B n
0 p 2G q
m 2B n 0
p 2G q 0


 , t1 ≡




t3
1

t2
1

t1

1




Clearly, t1 	= 0, and hence, M must be singular. The characteristic poly-
nomial sought can then be derived from the condition

det(M) = 0

Show that the last equation is quadratic in cos θ3 and sin θ3. Hence, the
foregoing equation should lead to a quartic equation in tan(θ3/2). Derive
the quartic equation involved. Hint: Do not do this by hand, for it may
be too time-consuming and could quickly lead to algebraic mistakes. Use
software for symbolic computations instead.
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4.15 Given an arbitrary three-revolute manipulator, as shown in Fig. 4.9, its sin-
gular postures are characterized by the existence of a line passing through
its operation point about which the moments of its three axes vanish—see
Exercise 3.3. Note that this condition can be readily applied to manipu-
lators with a simple architecture, whereby two successive axes intersect at
right angles and two others are parallel. However, more complex architec-
tures, like that of the manipulator of Fig. 4.13, are more elusive in this
regard. Find the line passing through the operation point and intersecting
the three axes of the manipulator of Fig. 4.13 at a singularity. Hint: A
singular posture of this manipulator was found in Example 4.4.2.

4.16 A robot of the Puma type has the architecture displayed in Fig. 4.3, with
the numerical values a2 = 0.432 m, a3 = 0.020 m, b3 = 0.149 m, b4 =
0.432 m. Find its maximum reach R as well as the link length a of the
manipulator of Fig. 4.15 with the same reach R.

4.17 Compute the workspace volume of the manipulator of Fig. 4.3. Here, you
can exploit the axial symmetry of the workspace by recalling the Pappus-
Guldinus Theorems—see any book on multivariable calculus—that yield
the volume as 2πq, with q defined as the first moment of the cross-section,
which is displayed in Fig. 4.22b, with respect to the axis of symmetry, Z1.
To this end, you will need the first moment of a semicircle with respect to its
diameter. This information is tabulated in books on elementary mechanics
or multivariable calculus, a.k.a. advanced calculus.

4.18 Compute the workspace volume of the manipulator of Fig. 4.15, whose
workspace is sketched in Fig. 4.23. Here, you can also use the Pappus-
Guldinus Theorem, as suggested in Exercise 4.17. However, the first mo-
ment of the cross-section has to be determined numerically, for the area
properties of the curve that generates the 3-dimensional workspace are not
tabulated. Now, for two manipulators, the Puma-type and the one un-
der discussion, with the same reach, determine which one has the larger
workspace. Note: This exercise is not more difficult than others, but it re-
quires the use of suitable software for the calculation of area properties of
planar regions bounded by arbitrary curves. Unless you have access to such
software, do not attempt this exercise.

4.19 Shown in Fig. 10 is the kinematic chain of the ABB-IRB 1000 robotic ma-
nipulator, which contains five revolutes and one prismatic pair. A revolute
is represented either as a rectangle or as a circle, depending on whether its
axis lies in the plane of the figure or is perpendicular to it. The prismatic
pair is represented, in turn, as a dashpot.

(a) Determine the manipulator Jacobian in the X1, Y1, Z1 coordi-
nate frame shown in the figure.
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4 Kinetostatics of Simple Robotic Manipulators 477

(b) Determine the twist of the end-effector, defined in terms of the
velocity of point P , for unit values of all joint-rates, and the
posture displayed in the same figure.

(c) Determine the joint accelerations that will produce a vanishing
acceleration of the point of intersection, C, of the three wrist
axes and a vanishing angular acceleration of the gripper, for the
unit joint rates given before.

4.20 The robot in Fig. 10 is now used for a deburring task. When the robot is
in the configuration shown in that figure, a static force f and no moment
acts on point P of the deburring tool. This force is sensed by torque sensors
placed at the joints of the robot. Assume that the readings of the arm joints
are τ1 = 0, τ2 = 100 Nm, and τ3 = 50 Nm.

(a) Find the force f acting at P .

(b) Find the readings of the torque sensors placed at the wrist joints.

4.21 A decoupled manipulator is shown in Fig. 8.8 with the DH parameters of
Table 8.6 in an arbitrary posture.

(a) Find the Jacobian matrix of this manipulator at a posture with
axis X1 vertical and pointing downwards, while Z2 and Y1 make
an angle of 180◦. Moreover, in this particular posture, Z3 and
Z4 are vertical and pointing upwards, while Z7 makes an angle
of 180◦ with Y1.

(b) At the posture described in item (a), compute the joint-rates
that will produce the twist

[ ω ]1 =




1
1
1


ω, [ ṗ ]1 =




1
1
1


 v

(c) A wrench given by a moment n and a force f applied at point
P acts on the EE of the same manipulator at the posture de-
scribed in item (a) above. Calculate the joint torques or moments
required to balance this wrench, which is given by

[n ]1 =




1
1
1


 T, [ f ]1 =




1
1
1


F

4.22 Show that the maximum manipulability µ =
√

det(JJT ) of an orthogonal
spherical wrist is attained when all three of its axes are mutually orthogo-
nal. Find that maximum value.
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4.23 Find an expression for the condition number of a three-revolute spherical
wrist of twist angles α1 and α2, and show that this number depends only on
α1, α2, and the intermediate joint angle, θ2. Moreover, find values of these
variables that minimize the condition number of the manipulator. Hint: To
find the required expression, the use of the condition number based on the
Frobenius norm is strongly recommended. However, rendering the Jacobian
matrix isotropic can be done by inspection.

4.24 For the manipulator of Fig. 11, with the dimensions of Exercise 4.8, find
the characteristic length, as defined in Section 4.9.

4.25 Manipulability of decoupled manipulators. Let µa and µw represent
the manipulability of the arm and the wrist of a decoupled manipulator,
i.e.,

µa ≡
√

det(J21JT
21), µw ≡

√
det(J12JT

12)

with J12 and J21 defined in Section 4.5. Show that the manipulability µ
of the overall manipulator is the product of the two manipulabilities given
above, i.e.,

µ = µaµw

4.26 Consider a planar two-revolute manipulator with link lengths a1 and a2.
Find an expression of the form κ(r, θ2) for the condition number of its
Jacobian, with r = a2/a1, and establish values of r and θ2 that minimize
κ, which reaches a minimum value of unity.

4.27 Shown in Fig. 4.29 is an orthogonal three-revolute manipulator with an
isotropic Jacobian. Find the volume of its workspace. Now consider a second
manipulator with a similar orthogonal architecture, but with more common
dimensions, i.e., with links of equal length λ. If the two manipulators have
the same reach, that is, if

λ =
1 +

√
2

2
l

find the volume of the workspace of the second manipulator. Finally, deter-
mine the KCI—see Section 4.9 for a definition of this term—of the second
manipulator. Draw some conclusions with regard to the performance of the
two manipulators.

5 Trajectory Planning: Pick-and-Place Operations

5.1 A common joint-rate program for pick-and-place operations is the
trapezoidal profile of Fig. 13, whereby we plot s′(τ) vs. τ , using the
notation introduced in Chapter 5, i.e., with s(τ) and τ defined as
dimensionless variables. Here, s′(τ) starts and ends at 0. From its
start to a value τ1, s′(τ) grows linearly, until reaching a maximum
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5 Trajectory Planning: Pick-and-Place Operations 479

s′max; then, this function remains constant until a value τ2 is reached,
after which the function decreases linearly to zero at the end of the
interval.
Clearly, this profile has a discontinuous acceleration and hence, is
bound to produce shock and vibration. However, the profile can be
smoothed with a spline interpolation as indicated below.

(a) Find the value of s′max in terms of τ1 and τ2 so that s(0) = 0
and s(1) = 1.

(b) Plot s(τ) with the value of s′max found above and decompose it
into a linear part sl(τ) and a periodic part sp(τ).

(c) Sample s(τ) with N equally spaced points and find the periodic
spline that interpolates sp(τ), for τ1 = 0.2 and τ2 = 0.9. Try
various values of N and choose the one that (a) is the smallest
possible, (b) gives a “good” approximation of the original s(τ),
and (c) yields the best-behaved acceleration program, i.e., an ac-
celeration profile that is smooth and within reasonable bounds.
Discuss how you would go about defining a reasonable bound.

5.2 An alternative approach to the solution of the foregoing smoothing
problem consists of solving an inverse interpolation problem: Plot
the acceleration program of the foregoing joint-rate plot, s′′(τ). Now,
sample a set of N equally spaced points of s′′(τ) and store them in
an N -dimensional array s′′. Next, find the ordinates of the support-
ing points of the interpolating periodic spline and store them in an
array s of suitable dimension. Note that s′′ does not contain infor-
mation on the linear part of s(τ). You will have to modify suitably
your array s so that it will produce the correct abscissa values of the
interpolated curve s(τ), with s(0) = 0 and s(1) = 1. Moreover, s(τ)
must be monotonic. Try various values of N and choose the smallest
one that gives a well-behaved acceleration program, as described in
Exercise 5.1.

FIGURE 13. A trapezoidal joint-rate profile.
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5.3 One more approach to smoothing the joint-rate profile of Fig. 13 is
to use cycloidal motions. To this end, define a segment of a cycloidal-
motion function between τ = 0 and τ = τ1, so that s′(τ1) = s′max,
for s′max as indicated in the same figure. Further, define a similar
segment between τ = τ2 and τ = 1 so that s′(τ2) = s′max and s′(1) =
0. Then, join the two segments with a line of slope s′max. Plot the
displacement, velocity, and acceleration of the smoothed motion. Note
that the smoothed profile must meet the end conditions s(0) = 0 and
s(1) = 1, and that you may have to introduce a change of variable to
shrink the corresponding s′(τ) segment to meet these conditions.

5.4 A pick-and-place operation involves picking objects from a magazine
supplied with an indexing mechanism that presents the objects with
a known pose and zero twist, at equal time-intervals T , to a robot,
which is to place the objects on a belt conveyor running at a constant
speed v0. Find 5th- and 7th-degree polynomials that can be suitably
used to produce the necessary joint-variable time-histories.

5.5 Repeat Exercise 5.4, but now the objects are to be picked up by the
robot from a belt conveyor traveling at a constant velocity v1 and
placed on a second belt conveyor traveling at a constant velocity v2.
Moreover, let p1 and p2 designate the position vectors of the points
at the pick- and the place poses, respectively. Furthermore, the belts
lie in horizontal, parallel planes. Finally, the objects must observe the
same attitude with respect to the belt orientation in both the pick-
and the place poses.

5.6 Approximate the cycloidal function of Subsection 5.4 using a peri-
odic cubic spline with N subintervals of the same lengths, for various
values of N between 5 and 100. Tabulate the approximation error eN

vs. N , with eN defined as

eN ≡ max
i

{ei}N
1

and
ei ≡ max

τ
|s(τ) − c(τ)|, τi ≤ τ ≤ τi+1

in which s(τ) denotes the spline approximation and c(τ) the cycloidal
function. Note: the cycloidal function can be decomposed into a linear
and a periodic part.

5.7 From inspection of the plot of the 3-4-5 polynomial and its deriva-
tives displayed in Fig. 5.2, it is apparent that the polynomial can be
regarded as the superposition of a linear and a periodic function in
the interval 0 ≤ τ ≤ 1. Approximate the underlying periodic func-
tion with a periodic cubic spline by subdividing the above-mentioned
interval into N equal subintervals, while finding the value of N that
will yield a maximum absolute value of less than 10−4 in the error in
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(a) the function values;

(b) the values of the first derivative; and

(c) the values of the second derivative.

5.8 Repeat Exercise 5.7 for the 4-5-6-7 polynomial of Fig. 5.3.

5.9 A pick-and-place operation is being planned that should observe man-
ufacturer’s bounds on the maximum joint rates delivered by the mo-
tors of a given robot. To this end, we have the following choices: (a)
a 4-5-6-7 polynomial; (b) a symmetric trapezoidal speed profile like
that of Fig. 13, with τ1 = 0.20; and (c) a cycloidal motion. Which
of these motions produces the minimum time in which the operation
can be performed?

5.10 The maximum speed of a cycloidal motion was found to be 2. By
noticing that the cycloidal motion is the superposition of a linear
and a periodic function, find a cubic-spline motion that will yield
a maximum speed of 1.5, with the characteristics of the cycloidal
motion at its end points.

5.11 The acceleration of a certain motion s(τ), for 0 ≤ τ ≤ 1, is given at
a sample of instants { τk }N

1 in the form

s′′(τk) = A sin(2πτk)

Find the cubic spline interpolating the given motion so that its sec-
ond time-derivative will attain those given values, while finding A
such that s(0) = 0 and s(1) = 1. Hint: A combination of a linear
function and a periodic spline can yield this motion. In order to find
the function values of the periodic spline, exploit the linear relation
between the function values and its second derivatives at the spline
supporting points, as discussed in Section 5.6.

5.12 A robotic joint has been found to require to move, within a time-
interval T , with a set of speed values { θ̇k }N

1 at equally spaced in-
stants. Find the natural cubic spline that interpolates the underlying
motion so that the angular displacement undergone from beginning to
end is a given ∆θ. Hint: You will need to establish the linear relation
between the spline function values and those of its first derivative.

6 Dynamics of Serial Robotic Manipulators

6.1 Show that:

(i) the 6n-dimensional manipulator twist lies in the nullspace of the
6n× 6n manipulator angular velocity matrix W;
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(ii) the time-derivative of the 6n × 6n manipulator mass matrix M
is given by

Ṁ = WM− MW
(iii)

dµ

dt
= Mṫ + WMt

thereby verifying eq.(6.15).

6.2 In order to gain insight into the meaning of vector γ, as defined in
Example 6.3.1, we define a similar vector η as

η =
∂(Iθ̇)
∂θ

θ̇

Compute η for that example and compare the result with γ.

6.3 The decoupled robot of Fig. 9 is to undergo a maneuver, at the pos-
ture displayed in that figure, that involves the velocity and accelera-
tion specifications given below, in base coordinates:

ċ =




1
0
1


 m/s, ω =




0
1
0


 rad/s,

c̈ =




0
1
0


 m/s2, ω̇ =




1
0
1


 rad/s2

Compute the joint torques required to drive the robot through the de-
sired maneuver, if the robot is known to have the inertial parameters
given below:

m1 = 10.521, m2 = 15.781, m3 = 8.767,

m4 = 1.052, m5 = 1.052, m6 = 0.351

ρ1 =




0
−0.054

0


 , ρ2 =




0.140
0
0


 , ρ3 =




0
−0.197

0




ρ4 =




0
0

−0.057


 , ρ5 =




0
−0.007

0


 , ρ6 =




0
0

−0.019




I1 = diag [ 1.6120 0.5091 1.6120 ]
I2 = diag [ 0.4898 8.0783 8.2672 ]
I3 = diag [ 3.3768 0.3009 3.3768 ]
I4 = diag [ 0.1810 0.1810 0.1273 ]
I5 = diag [ 0.0735 0.0735 0.1273 ]
I6 = diag [ 0.0071 0.0071 0.0141 ]
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where mi, ρi, and Ii are given in units of kg, m and kg m2, respec-
tively, with the position vectors of the mass centers and the moment-
of-inertia matrices given in link-fixed coordinates. Note: Assume that
Z7 is perpendicular to Z5 and Z6, with O7 located at the OP of the
EE.

6.4 Derive homogeneous, linear constraint equations on the twists of the
pairs of coupled bodies appearing in Fig. 14, namely,

(a) two rigid pulleys coupled by an inextensible belt, under no slip;

(b) the bevel pinion-and-gear train with axes intersecting at an ar-
bitrary angle α;

(c) the cam-and-follower mechanism whose cam disk is an eccentric
circular disk.

Notice that the constraint equations sought should have the-
form:

At1 + Bt2 = 0

with t1 and t2 denoting the twists of bodies 1 and 2, respectively.

6.5 Use the expressions derived in Example 6.6.1 with the aid of the
natural orthogonal complement, as pertaining to the planar manip-
ulator of Fig. 6.1, to obtain an expression for the time-derivative of
the inertia matrix of this manipulator. Compare the expression thus
obtained with that derived in Example 6.3.1, and verify that the dif-
ference İ−2C is skew-symmetric—see Exercise 10.2—where C is the
matrix coefficient of the Coriolis and centrifugal terms.

6.6 A three-revolute spherical wrist with an orthogonal architecture, i.e.,
with neighboring joint axes at right angles, is shown in Fig. 15. As-
sume that the moments of inertia of its three links with respect to

FIGURE 14. Three different pairs of coupled bodies.
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O, the point of concurrency of the three axes, are given by constant
diagonal matrices, in link-fixed coordinates, as

I4 = diag(J1, J2, J3)
I5 = diag(K1, K2, K3)
I6 = diag(L1, L2, L3)

while the potential energy of the wrist is

V = −m6ga cos θ5

Moreover, the motors produce torques τ4, τ5, and τ6, respectively,
whereas the power losses can be accounted for via a dissipation func-
tion of the form

∆ =
6∑
4

(
1
2
biθ̇

2
i + τC

i |θ̇i|
)

where bi and τC
i , for i = 4, 5, 6, are constants.

(a) Derive an expression for the matrix of generalized inertia of the
wrist.

(b) Derive an expression for the term of Coriolis and centrifugal
forces.

(c) Derive the dynamical model of the wrist. Hint: The kinetic en-
ergy T of a rigid body rotating about a fixed point O with angu-
lar velocity ω can be written as T = 1

2ωT IOω, where IO is the
moment-of-inertia matrix of the body with respect to O.

FIGURE 15. A three-revolute spherical wrist.
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6.7 Shown in Fig. 16 is a two-revolute pointing manipulator. The cen-
troidal inertia matrices of the links are denoted by I1 and I2. These
are given, in link-fixed coordinates, by:

I1 =




I11 I12 I13

I12 I22 I23

I13 I23 I33


 , I2 =




J11 J12 J13

J12 J22 J23

J13 J23 J33




Moreover, the mass centers of the links are denoted by C1 and C2,
respectively, and are shown in the same figure, the masses being de-
noted by m1 and m2.

(a) Determine the kinetic energy of the manipulator as a quadratic
function of θ̇1 and θ̇2.

(b) Determine the 2 × 2 matrix of generalized inertia.
(c) Find an expression for the time-rate of change of the matrix

of generalized inertia by straightforward differentiation of the
expression found in item (b).

(d) Repeat item (c), but now by differentiation of the three factors
of I, as given in

I = TT MT

6.8 The twist ti of the ith link of an n-dof serial manipulator can be
expressed as

ti = Tiθ̇

where Ti is a 6 × n link-twist-shaping matrix and θ̇ is the n-di-
mensional vector of actuated joint rates. Moreover, let Mi and Wi

be the 6 × 6 matrices defined in Section 6.3. Show that if the link is
constrained to undergo planar motion, then the product TT

i WiMiTi

vanishes.

FIGURE 16. A two-revolute pointing manipulator.
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6.9 Devise a recursive algorithm to compute the joint torques required
to balance a wrench w acting at the EE of a six-revolute manipu-
lator of arbitrary architecture. Then, derive the number of floating-
point operations (multiplications and additions) required to compute
these torques, and compare your result with the number of float-
ing point operations required to compute the same by matrix-times-
vector multiplications, using the transpose Jacobian.

6.10 Establish the computational cost incurred in computing the term of
Coriolis and centrifugal forces of an n-revolute serial manipulator,
when the Newton-Euler algorithm is used for this purpose.

6.11 Shown in Fig. 17 is an RRP manipulator, whose DH parameters are
displayed in Table 2. The masses of its three moving links are denoted
by m1, m2, and m3, and the mass center of each of links 1 and 2
coincides with O1, while the mass center of link 3 is located at P .
Moreover, the centroidal moments of inertia of these links are, in
link-fixed coordinates,

[ I1 ]2 = A1, [ I2 ]3 = B1, [ I3 ]4 = C1

where 1 denotes the 3 × 3 identity matrix.

(a) Derive the Euler-Lagrange equations of the manipulator under
the assumption that gravity acts in the direction of X1.

(b) Find the generalized inertia matrix of the manipulator.

6.12 A link is said to be inertially isotropic if its three principal moments
of inertia are identical.

FIGURE 17. An RRP spatial manipulator.
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TABLE 2. DH parameters of the RRP manipulator

i ai bi αi

1 0 0 90◦

2 0 0 90◦

3 0 b3 0◦

(a) Show that any direction is a principal axis of inertia of an iner-
tially isotropic link.

(b) Explore the advantages of a manipulator with inertially isotropic
links with regard to its real-time control, i.e., find the savings
in floating-point operations required to compute the recursive
Newton-Euler algorithm of such a manipulator.

6.13 Devise an algorithm similar to Algorithm 6.6.1, but applicable to
planar manipulators, and determine the computational costs involved
in its implementation.

6.14 Write a piece of code to evaluate numerically the inertia matrix of an
n-axis manipulator and test it with the manipulator of Example 6.6.1.
For this purpose, assume that I = ma2.

7 Special Topics on Rigid-Body Kinematics

7.1 The regular tetrahedron of Fig. 7, of unit-length edges, moves in such
a way that vertex P1 has a velocity of unit magnitude directed from
P1 to P4, whereas the velocity of P2 is parallel to edge P2P3. Define a
coordinate frame X, Y, Z with origin at P1, Y axis directed from P1

to the midpoint M of P2P3, and X axis in the plane of P1, P2, P3,
as shown in that figure. With the above information,

(a) find the velocity of P2;
(b) show that the velocity of P3 cannot be zero;
(c) if the velocity of P3 lies in the P1P2P3 plane, find that velocity;
(d) find the angular velocity of the tetrahedron;
(e) find the set of points of the tetrahedron undergoing a velocity

of minimum magnitude.

7.2 The position vectors of three points of a rigid body, p1, p2, and p3,
as well as their velocities, ṗ1, ṗ2, and ṗ3, are given below:

p1 =




1
1
1


 , p2 =




1
−1
1


 , p3 =



−1
1
−1



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ṗ1 =




1
1
1


 , ṗ2 =




3
1
−1


 , ṗ3 =



−1
1
3




(a) Is the motion possible?

(b) If the motion is possible, find its angular velocity.

7.3 For matrix P defined as in eq.(7.4), i.e., as

P ≡ [p1 − c p2 − c p3 − c ]

where {pk }3
1 are the position vectors of three points of a rigid body,

while c is that of their centroid, prove that tr(P2) = tr2(P) whenever
the origin and the three given points are collinear.

7.4 With matrix P defined as in Exercise 7.3 above, prove Theorem 7.2.3.
That is, prove that

tr(PṖT ) = 0

7.5 With the notation of Section 7.3, prove that

vect(Ω2P) = Ḋω

7.6 Derive the velocity and acceleration compatibility conditions for a
body that is known to undergo spherical motion, i.e., a motion under
which one point of the body remains fixed.

7.7 The position vectors of three points of a rigid body, p1, p2, and p3,
are given as in Exercise 7.2, and repeated below for quick reference:

p1 =




1
1
1


 , p2 =




1
−1
1


 , p3 =



−1
1
−1




However, the velocities of these points are all zero, while their accel-
erations are given as

p̈1 =




1
1
1


 , p̈2 =




3
1
−1


 , p̈3 =



−1
1
3




(a) Show that the motion is compatible.

(b) Find the angular acceleration of the body.

7.8 With reference to Example 7.2.1, compute the angular acceleration
of the cube of Fig. 7.1c if p̈i = 0, for i = 1, 2, 3.
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7.9 With the notation of Section 7.2, let

R ≡ PPT

(a) Show that the moment of inertia J of the three given points,
which is identical to that of a system of unit masses located at
these points, with respect to the centroid C of the given points,
is

J = tr(R)1 − R

(b) Show that if the three given points move as points of a rigid body
undergoing an angular velocity ω whose cross-product matrix is
Ω, then

J̇ = RΩ− ΩR

(c) Furthermore, show that if under the conditions of item (b) above,
the set of points undergoes an angular acceleration ω̇ of cross-
product matrix Ω̇, then

J̈ = RΩ̇− Ω̇R− Ω2R − RΩ2 + 2ΩRΩ

7.10 A wrench of unknown force f is applied to a rigid body. In order to
find this force, its moment with respect to a set of points {Pk }3

1,
of position vectors {pk }3

1, is measured and stored in the set {nk }3
1.

Show that f can be calculated from the relation

Df = −vect(M)

with D defined as in Section 7.2, i.e., as

D ≡ 1
2
[tr(P)1 − P]

and M given by

M = [n1 − n n2 − n n3 − n ] , n ≡ 1
3

3∑
1

nk

Note that P is defined in Exercise 7.3.

7.11 A wrench is applied to the tetrahedron of Fig. 7. When the force of
this wrench acts at point Pk, the resulting moment is nk, for k =
1, 2, 3. For the data displayed below, in frame F of that figure, find
the resultant force f, as well as the line of action of this force that will
lead to a moment of minimum magnitude. Determine this moment.

n1 = −
√

2
4




1
0
0


 , n2 =

1
12




3
√

2
−2

√
6

2
√

3


 , n3 =

1
12




3
√

2
2
√

6
−2

√
3



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7.12 Matrix D, as defined from eq.(7.6) and displayed in eq.(7.10), was
found to involve frequent singularities, even in the presence of non-
collinear points. This weakness stems from its lack of frame-invariance,
and can be readily fixed if both sides of eq.(7.6) are multiplied by PT

from the right. Show that, under these conditions, an equation simi-
lar to (7.9) is derived, but with D replaced by (1/2)J, with J defined
as in Exercise 7.9. Now show that J is frame-invariant in the sense of
Section 2.7, and becomes singular if and only if the three given points
are collinear.

8 Kinematics of Complex Robotic Mechanical
Systems

8.1 Show that the left-hand side of eq.(8.22f) represents a pure reflection
of vector h about a plane of unit normal f/‖f‖, if multiplied by ‖f‖2.
Also show that the right-hand side of the same equation represents
a pure reflection of vector i about a plane of unit normal g/‖g‖, if
multiplied by ‖g‖2.

8.2 Show that ψ1 and ψ2, as defined in eqs.(8.46c & d) both vanish.

8.3 In this exercise, we will try to gain insight into the consequence of
the double point at θ4 = θ5 = π/2 of Fig. 8.4 of Example 8.2.2.
To this end, show that, for this combination of values, matrix H of
eq.(8.68a) becomes zero, and hence, x3 cannot be computed from this
equation. As a result, none of the remaining angles can be computed
recursively.

8.4 As an alternative approach to the 14 fundamental equations derived
in Section 8.2, we recall eqs.(8.13a & b), if written in a more conve-
nient form, so as to have a minimum number of matrix multiplica-
tions, namely,

Q3Q4Q5 = QT
2 QT

1 QQT
6

QT
2 QT

1 (a1 − p) + QT
2 a2 + a3 + Q3a4

+Q3Q4a5 + Q3Q4Q5a6 = 0

Now equate the four linear invariants of the two sides of the first of the
two foregoing equations. The result is a set of four scalar equations.
When the translational equations are expanded, and appended to the
first four equations, a system of seven trigonometric equations in the
six unknown angles is derived. Obtain that system of seven equations
and comment on their suitability to solve the IKP.

TLFeBOOK



8 Kinematics of Complex Robotic Mechanical Systems 491

8.5 In Subsection 8.2.5 we realized that, upon applying the Raghavan
and Roth elimination method, and once θ3 is computed, θ4 and θ5

can be computed at once by finding the eigenvector of S associated
with its zero eigenvalue. While this calculation can be performed
with the eigenvalue-computation module of any scientific package,
computing the eigenvalues of a 12 × 12 matrix like S requires an
iterative procedure, which can be time-consuming, especially if this
computation is only a part of a more complex procedure.

In order to find x45, and hence, θ4 and θ5, from eq.(8.51d), we need
not resort to a full eigenvalue problem. Instead, a vector v can be
computed directly, as opposed to iteratively, that spans the nullspace
of S, for a given computed value of θ3, if a change of variables is
introduced that will yield S in upper-triangular form. In fact, since S
is a fortiori singular, its last row is bound to have zero entries in that
form. Devise an algorithm that will render S in upper-triangular form
and hence, compute vector x45 under the conditions that this vector
(a) lie in the nullspace of S and (b) its 12th entry be unity. Hint:
Apply an orthogonalization procedure, as described in Appendix B.

8.6 For the parallel manipulator of Fig. 8.7, find the matrix mapping
joint forces into wrenches acting on the moving platform, if actuation
is supplied through the prismatic joints.

8.7 Show that determinants ∆1, ∆2, and ∆3 of Example 8.3.2 are 14th-,
13th-, and 12th-degree polynomials in τ2, respectively.

8.8 What is the counterpart of a decoupled serial manipulator, as de-
scribed in Section 4.4, of a six-dof parallel manipulator with the ar-
chitecture of Fig. 8.7? What is the degree of the characteristic poly-
nomial of that parallel manipulator? Compare this answer with the
characteristic polynomial derived in Section 4.4.

8.9 We refer to the rolling robot with conventional wheels introduced
in Subsection 8.6.1. We would like to study the equivalent concept
of manipulability, which here we can call maneuverability. This con-
cept refers to the numerical conditioning of the two underlying Ja-
cobian matrices, J and K, as defined in eqs.(8.117a & b). Clearly, J
is isotropic and hence, optimally conditioned. In attempting to de-
termine the condition number of K, however, we need to order its
singular values from smallest to largest.

(a) Show that the two singular values of K are σ1 = l/r and σ2 =
2/r. Obviously, an ordering from smallest to largest is impossible
because of the lack of dimensional homogeneity.

(b) In order to cope with the dimensional inhomogeneity of matrix
K, we introduce the characteristic length L, which we define
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below. First, we redefine the Jacobian K in dimensionless form
as

K ←
[

(l/r) 0 0
0 0 2L/r

]

Now, L is the value that minimizes the condition number of the
dimensionless K. Show that this value is l/2 and that it produces
a condition number of unity.

8.10 Find an expression for the angular velocity φ̇i of the active roller
of the ith wheel of the robot with Mekanum wheels introduced in
Subsection 8.6.2.

8.11 We refer again to the robot with Mekanum wheels introduced in Sub-
section 8.6.2. For the case of a three-wheeled robot of this kind, we
consider here a design whereby the wheels are equally spaced in a ∆-
array. In this array, the centers of the hubs, Oi, lie at the corners of
an equilateral triangle of side a; moreover, we assume that αi = 90◦,
for i = 1, 2, 3. Under these conditions, find the characteristic length
L of the robot that renders K, as defined in the above-mentioned
subsection, dimensionless and of a minimum condition number. Find
this minimum as well.

8.12 Find the value of ψ at which the rolling robot of Fig. 8.22 attains
a singular configuration. Here, a singularity is understood as a loss
of maneuverability in the sense of not being able to drive the unac-
tuated joints by means of the actuated ones. Discuss whether under
reasonable values of the geometric parameters, this singularity can
occur.

8.13 Determine the architecture and the “posture”, i.e., the values of the
relevant joint variables of the rolling robot of Fig. 8.22 that will render
matrix Θ isotropic, where Θ represents the mapping of actuated
joint rates into unactuated ones. Is kinematic isotropy, in this sense,
kinematically possible?

8.14 Find a relation among the geometric parameters of the robot of
Fig. 8.22 that will allow the steering of the robot along a straight
course with the highest possible maneuverability in the sense defined
in Exercise 8.12. That is, find a relation among the geometric param-
eters of this robot that will render κ(Θ) a minimum along a straight
course.

8.15 Find the value of ψ under which the robot of Fig. 8.22 performs a ma-
neuver that leaves the midpoint of segment O1O2 stationary. Under
this maneuver, state a relationship among the geometric parameters
of the robot that minimizes κ(Θ).
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8.16 Upon inversion, eq.(8.128a) yields

θ̇a = Uθ̇u

(a) Find U.

(b) The above equation can be written as

θ̇1 = u13θ̇3 + u1ψψ̇ ≡ uT
1 θ̇u

θ̇2 = u23θ̇3 + u2ψψ̇ ≡ uT
2 θ̇u

The first of the above equations can be integrated if u1, which
is an implicit function of θ3 and ψ, is the gradient with respect
to θu ≡ [ θ3 ψ ]T of a scalar function U1(θ3, ψ). Likewise, the
second of the above equations can be integrated if a function
U2(θ3, ψ) exists, whose gradient with respect to θu is u2. Fur-
ther, upon recalling Schwartz’s Theorem of multivariable calcu-
lus, ui is such a gradient if and only if ∇ui, i.e., the Hessian
matrix of Ui with respect to θu, is symmetric, for i = 1, 2.
Show that the above-mentioned Hessians, for the case at hand,
are nonsymmetric, and hence, none of the above differential
expressions is integrable. Such expressions are called nonholo-
nomic.
Note: To be sure, the above condition is sufficient, but not nec-
essary. It is possible that some individual equations of a system
of differential expressions, also called Pfaffian forms, are not
integrable while the overall system is. An examination of neces-
sary and sufficient conditions for integrability falls beyond the
scope of this book. Such conditions are best understood with the
aid of the Frobenius Theorem (De Luca and Oriolo, 1995) and
its analog, the Holonomy Theorem (Ostrovskaya and Angeles,
1998).

8.17 For the rolling robot with omnidirectional wheels introduced in Sec-
tion 8.6.2, with a ∆-array, as described in Exercise 8.11, show that
the equation yielding the angular velocity of the platform in terms of
the wheel rates is integrable, but the equations yielding the velocity
of the operation point are not.

8.18 A holonomic rolling robot. The robot described in Exercise 8.17
can be rendered holonomic at the expense of one degree of freedom.
Show that if the three wheel rates are coordinated, either mechani-
cally or electronically so that

θ̇1 + θ̇2 + θ̇3 = 0
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then the platform is constrained to move under pure translation.
When operating in this mode, the robot is holonomic. Find an ex-
plicit expression for the position vector c of the operation point in
terms of the wheel angles.

9 Trajectory Planning: Continuous-Path
Operations

9.1 A PUMA 560 robot, with the DH parameters of Table 3, is used to
perform a gluing operation as indicated below: A nozzle dispensing
the glue is rigidly attached to the gripper of the robot. The tip of
the nozzle, point P , is to trace a helicoidal path at a constant rate
of 50 mm/s. Furthermore, the center of the wrist is located at a
point C, fixed to a Frenet-Serret coordinate frame. In this frame, the
coordinates of C are ( 0, −50, 86.7 ) mm. Moreover, the path to be
traced by point P is given as

x = a cosϑ, y = a sinϑ, z = bϑ, 0 ≤ ϑ ≤ π/2

with the values a = 300 mm, b = 800/π mm.

(a) Decide where to locate the robot base with respect to the path
so that the latter will lie well within the workspace of the robot.
Then, produce plots of θi vs. t, for 0 ≤ t ≤ T , where T is the
time it takes to traverse the whole trajectory, for i = 1, 2, . . . , 6.

(b) Produce plots of θ̇i vs. t in the same time interval for all six
joints.

(c) Produce plots of θ̈i vs. t in the same time interval for all six
joints.

9.2 A bracket for spot-welding, shown in Fig. 18, is rigidly attached to the
end-effector of a robotic manipulator. It is desired that point P of the
bracket follow a helicoidal path Γ , while keeping the orientation of
the bracket with respect to Γ as indicated below: Let B ≡ {i0, j0,k0}

TABLE 3. DH parameters of a PUMA 560 robot

Joint i αi (deg) ai (m) bi (m)

1 90 0 0.660

2 0 0.432 0

3 90 0.020 0.149

4 90 0 0.432

5 90 0 0

6 0 0 0.056
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and F7 ≡ {i7, j7,k7} be triads of unit orthogonal vectors fixed to
the base of the robot and to the bracket, respectively. Moreover, let
F ≡ {et, en, eb} be the Frenet-Serret triad of Γ , given as

et = −0.6 sinϕi0 + 0.6 cosϕj0 + 0.8k0

en = − cosϕi0 − sin ϕj0

eb = 0.8 sinϕi0 − 0.8 cosϕj0 + 0.6k0

where ϕ is a given function of time, ϕ(t).

Furthermore, the orientation of the bracket with respect to Γ is to
be kept constant and given in terms of the Frenet-Serret triad as

i7 = 0.933et + 0.067en − 0.354eb

j7 = 0.067et + 0.933en + 0.354eb

k7 = 0.354et − 0.354en + 0.866eb

Additionally, R and S(t) denote the rotation matrices defining the
orientation of F7 with respect to F and of F with respect to B,
respectively.

(a) Find the matrix representation of S(t) in B.

(b) Find the matrix representation of R in F .

(c) Let Q(t) denote the orientation of F7 with respect to B. Find
its matrix representation in B.

(d) Find the Darboux vector δ of the path, along with its time-
derivative, δ̇, in base-fixed coordinates. Note: You can do this
in several ways, as discussed in Section 9.2. Choose the one
that will allow you to use previously computed results, thereby
simplifying the computations.

9.3 The parametric equations of a curve are given as

x = 2t, y = t2, z = t3/3

where t is time. A robotic manipulator is to follow this trajectory
so that its gripper keeps a constant orientation with respect to the
Frenet-Serret frame of the curve.

(a) Determine the unit vector parallel to the axis of rotation and
the angle of rotation of the gripper as functions of time.

(b) Find the angular velocity and angular acceleration of the gripper
as functions of time.

9.4 Derive eqs.(9.45a & b).
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FIGURE 18. A bracket for spot-welding.

9.5 Find the spline approximation of the helix of Example 9.3.1. Then,
plot the approximation errors of the Cartesian coordinates of points
of the helix, for N = 5, 11, and 21 equally spaced supporting points.
In order to assess the orientation error, compute the Darboux vectors
of the spline, δs, and of the helix, δh. The approximation error of the
orientation is now defined as

eo ≡ max
ϕ

{‖δs(ϕ) − δh(ϕ)‖}
with ϕ defined as in Example 9.3.1.

9.6 Find the spline approximation of the curvature, torsion, and Darboux
vector of the curve introduced in Example 9.3.2. Find expressions for
the exact values of these variables and plot the approximation errors,
for 5, 10, and 20 equally spaced supporting points vs. ϕ. In the error
definitions given below, subscript e indicates exact value, subscript s
spline value:

eκ ≡ κs(ϕ) − κe(ϕ)
eτ ≡ τs(ϕ) − τe(ϕ)
eδ ≡ ‖δs(ϕ) − δe(ϕ)‖

9.7 From the plots of the time-histories of the joint angles calculated in
Example 9.5.1, it is apparent that, with the exception of θ4, which

TLFeBOOK



9 Trajectory Planning: Continuous-Path Operations 497

has a linear component, these histories are periodic. Repeat Exam-
ple 9.5.1, but now using a spline approximation of the welding seam,
with N = 5, 10, and 20 supporting points. With this spline approxi-
mation, calculate the pose, the twist, and the twist-rate at each sup-
porting point. Now, calculate values of θ, θ̇, and θ̈ at each of these
supporting points by means of inverse kinematics. Compare the val-
ues thus obtained of θ̈ with those derived from the linear relation
between the function values and the values of its second derivative
at the supporting points when using a cubic spline. Tabulate the Eu-
clidean norm of the errors vs. N .

9.8 The decoupled robot of Fig. 9 is to perform an arc-welding operation
along a welding seam that requires its wrist center C to travel at a
constant speed of 1 m/s along a line joining points A and B, not
shown in that figure, while keeping the EE holding the electrode at
a constant orientation with respect to the base frame. Moreover, the
seam is to be traversed according to the following schedule: With
point C located at a point A′ on the extension of AB, a distance
of 250 mm from A, point C approaches A with a cycloidal motion
at the specified speed; upon reaching B, point C decelerates with
a cycloidal motion as well, until it reaches a point B′ in the other
extension of AB, 250 mm from B, with zero speed. The position
vectors of points A and B, denoted by a and b, respectively, are
given, in base coordinates, as

a =




500
−500
500


 , b =




1, 200
0

1, 200




in mm. For the above-given data, find the time-histories of all joint
variables.

9.9 Derive expressions (9.45a & b).

9.10 If linear invariants are used to represent the desired pose sd, then
q = 0 and q0 = 1 when the angle of rotation becomes π. Under these
conditions, matrix T of eq.(9.72), this equation thus not necessarily
leading to eq.(9.73). One way of coping with this algorithmic singu-
larity consists in redefining axis X1 of the DH notation by rotating
the current X1 axis by an angle ∆θ1 about Z1, which does not affect
the remaining variables and parameters of the said notation.

Find the optimum value of ∆θ1 that will take T “farthest” from its
current rank-deficiency.
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10 Dynamics of Complex Robotic Mechanical
Systems

10.1 Show that the mathematical model of an arbitrary robotic mechanical
system, whether holonomic or nonholonomic, with r rigid bodies and
n degrees of freedom, can be cast in the general form

I(θ)θ̈a + C(θ, θ̇a)θ̇a = τA + γ + δ

where

θ: the m-dimensional vector of variables associated with all joints,
actuated and unactuated;

θ̇a: the n-dimensional vector of actuated joint variables, n ≤ m;

τA: the n-dimensional vector of actuator torques;

γ: the n-dimensional vector of gravity torques;

δ: the n-dimensional vector of dissipative torques;

I(θ): the n × n matrix of generalized inertia;

C(θ, θ̇a): the n × n matrix of Coriolis and centrifugal forces;

with I(θ) and C(θ, θ̇a) given by

I(θ) ≡ TT MT

C(θ, θ̇a) ≡ 1
2
[İ + TT MṪ− ṪT MT + TT (WM + MW)T]

in which

M: the 6r × 6r matrix of system mass;

T: the n × 6r twist-shaping matrix that maps the n-dimensional
vector of actuated joint rates into the 6r-dimensional vector of
system twist t;

W: the 6r × 6r matrix of system angular velocity.

10.2 For the system of Exercise 10.1, show that the matrix difference
İ(θ, θ̇a) − 2C(θ, θ̇a) is skew-symmetric. This is a well-known result
for serial manipulators (Spong and Vidyasagar, 1989).

10.3 For the rolling robot with conventional wheels of Subsection 10.5.1,
find the generalized inertia matrix of the robot under the maneuvers
described below:

(a) pure translation;

(b) midpoint of segment O1O2 stationary.
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In each case, give a physical interpretation of the matrix thus ob-
tained.

10.4 With reference to the same robot of Exercise 10.3, state the conditions
on its geometric parameters that yield Iw and Ip isotropic, these two
2 × 2 matrices having been defined in Subsection 10.5.1.

10.5 Derive the mathematical model governing the motion of a 2-dof rolling
robot with conventional wheels, similar to that of Fig. 8.22, but with
two caster wheels instead. The vertical axes of the caster wheels are
a distance l apart and a distance a + b from the common axis of the
driving wheels. What is the characteristic length of this robot?

10.6 Find the conditions under which the three-wheeled robot with om-
nidirectional wheels analyzed in Subsection 10.5.2 has an isotropic
inertia matrix. Discuss the advantages of such an inertially isotropic
robot.

10.7 With reference to the omnidirectional robot of Subsection 10.5.2,
show that the mathematical model can be manipulated to yield a
single first-order ordinary differential equation in ω, of the form

ω̇ + kω = f(t)

in which k is a constant with units of frequency, its inverse being the
time-constant of the system. Find expressions for k and f(t). Then,
integrate the above equation in closed form, to obtain the time-history
of ω for a given time-history f(t) and given initial condition ω(0).

10.8 Establish the conditions on the actuated joint rates under which the
three-wheeled robot with omnidirectional wheels of Subsection 10.5.2
undergoes pure translation. Under these conditions, the robot has
only two degrees of freedom and, hence, a 2×2 inertia matrix. Derive
an expression for its inertia matrix. Hint: The constraint for pure
translation can be written as

aT θ̇a = 0

and hence, if the 3 × 2 matrix L is an orthogonal complement of a,
i.e., if aT L = 0T

2 , where 02 is the 2-dimensional zero vector, then the
underlying Euler-Lagrange equations of the constrained system can be
derived by multiplying the two sides of the mathematical model found
in Subsection 10.5.2 by LT :

LT Iθ̈a + LT Cθ̇a = LT τ − LT δ

Further, upon writing θ̇a as a linear transformation of a 2-dimensional
vector u, namely, as

θ̇a = Lu
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we obtain
LT ILu̇ + LTCLu = LT τ − LT δ

and hence, the generalized inertia matrix under pure translation is
LT IL.

10.9 Find the maneuver(s) under which the Coriolis and centrifugal forces
of the robot analyzed in Subsection 10.5.2 vanish. Note that in gen-
eral, these forces do not vanish, even though the generalized inertia
matrix of the robot is constant.

10.10 Find the eigenvalues and eigenvectors of the matrix of generalized
inertia of the 3-dof rolling robot with omnidirectional wheels analyzed
in Subsection 10.5.2.

10.11 The Euler-Lagrange equations derived for holonomic mechanical sys-
tems in Section 10.3, termed the Euler-Lagrange equations of the sec-
ond kind, require that the generalized coordinates describing the sys-
tem be independent. In nonholonomic mechanical systems, a set of
kinematic constraints is not integrable, which prevents us from solv-
ing for dependent from independent generalized coordinates, the ap-
plication of the Euler-Lagrange equations as described in that section
thus not being possible. However, dependent generalized coordinates
can be used if the Euler-Lagrange equations of the first kind are re-
called. To this end, we let q be the m-dimensional vector of dependent
generalized coordinates that are subject to p differential constraints
of the form

A(q)q̇ = b(q, t)

where A is a p×n matrix of constraints and b is a p-dimensional vec-
tor depending on the configuration q and, possibly, on time explicitly.
When b does not contain t explicitly, the constraints are termed scle-
ronomic; otherwise, rheonomic. Furthermore, let n ≡ m − p be the
degree of freedom of the system. The Euler-Lagrange equations of the
first kind of the system at hand take on the form

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= φ + AT λ

where λ is a p-dimensional vector of Lagrange multipliers that are
chosen so as to satisfy the kinematic constraints. Thus, we regard the
m dependent generalized coordinates grouped in vector q as indepen-
dent, their constraints giving rise to the constraint forces AT λ.

Use the Euler-Lagrange equations of the first kind to set up the math-
ematical model of the rolling robot with omnidirectional wheels stud-
ied in Subsection 10.5.1.
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Index

acatastatic systems, 399
acceleration analysis

of parallel manipulators, 337
of rigid bodies, 89
of serial manipulators, 153

affine transformation, 19
AI (see artificial intelligence)
algorithm definition, 452
angle of rotation, 28
angular acceleration

computation, 278
invariant-rate relations, 91
matrix, 89
vector, 89

angular velocity
dyad, 211
invariant-rate relations, 88,
437–439
matrix, 81
vector, 81

Appendix A, 433
Appendix B, 441
arc-welding, 362, 376

operation, 376
path tracking, 387

architecture (manipulator -), 107
articulated-body method, 242
artificial intelligence, 4, 452
ABB-IRB 1000 robot, 468, 472
axial component of a vector, 21
axial vector of a 3 × 3 matrix, 32

base frame, 112
basis of a vector space, 21
Bezout’s method, 333
bivariate-equation approach, 299

C, 452
C++, 452
Canadarm (see Canadarm2)
Canadarm2, 5
canonical form of a rotation, 31
Carausius morosus, 13, 501
Cartesian coordinates

of a manipulator, 111
Cartesian decomposition, 31
caster wheel, 356
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catastatic systems, 399, 406
Cayley-Hamilton theorem, 26
Cayley’s theorem, 454
change of basis, 56
characteristic equation, 23, 26,

119
characteristic length, 172
characteristic polynomial, 22,

151, 286
Chasles’ theorem (see Mozzi-Chas-

les’ theorem)
Chebyshev norm, 171, 390
Cholesky-decomposition algorithm,

243, 262
closure equations (manipulator -),

113
compatibility conditions

for acceleration, 279
for velocity, 275

composite rigid-body method, 242
composition of reflections and rota-

tions, 45
condition number, 171, 310
configuration of a manipulator, 107
continuous path, 188, 287

operations, 361
tracking, 387

control vector, 232, 263
coordinate transformation, 46–52
CP (see continuous path)
Coriolis

acceleration, 93
Coriolis and centrifugal forces, 236,

242
Couette flow, 267
Coulomb

dissipation function, 268
friction, 268

cross-product matrix, 26
curvature, 364

derivative w. r. t. a parameter,
369
derivative w. r. t. the arc length,
363
parametric representation, 369, 370

time-derivative, 366
cycloidal motion, 197

Darboux vector, 365
time-derivative, 366

decoupled manipulators, 106, 115
delta-array (∆-array), 423, 487
Delta robot, 9
Denavit-Hartenberg

frames, 105
notation, 104
parameters, 107
rotation matrix, 107, 130
vector joining two frame origins,
108, 110

dexterity, 452
measures (see kinetostatic per-
formance indices)

dextrous hands (see multifingered hands)
dextrous workspace, 169
dialytic elimination, 152, 470
DH (see Denavit-Hartenberg)
DIESTRO manipulator, 183, 317, 318

inverse kinematics, 286, 319
Jacobian, 137, 469

differentiation with respect to vec-
tors, 26, 27

direct kinematics problem
of parallel manipulators, 326

displacement equations of a manip-
ulator, 113

dissipation
function, 213, 267

dynamic systems, 1
dynamics

of holonomic systems, 399
of multibody systems, 211
of parallel manipulators, 402
of rigid bodies, 97
of robotic mechanical systems, 398
of rolling robots, 413
of serial manipulators, 212
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EE (see end-effector)
end-effector, 104
Euclidean norm, 28
Euler

angles, 44, 455
equation (for graphs), 403
equation (in mechanics), 100
parameters (see Euler-Rodrigues
parameters)

Euler-Lagrange equations, 216
derived with the NOC, 241, 402

Euler-Rodrigues parameters, 41
Euler’s

theorem, 25
formula for graphs (see Euler
equation for graphs)

Fanuc Arc Mate robot
characteristic length, 183
DH parameters, 184
inverse kinematics, 316
KCI, 183

First Law of Thermodynamics, 158
flight simulator, 8, 322
floating-point operation, 156, 242,

443
flop (see floating-point operation)
forward dynamics

of serial manipulators, 242
algorithm (using the NOC), 260
algorithm complexity, 258

Frenet (see Frenet-Serret)
Frenet-Serret

frame, 362
formulas, 364
vectors, 363

Frobenius norm, 173
friction forces, 243, 266
fuzzy logic, 452

genealogy of robotic mechanical
systems, 1, 4

generalized coordinates, 212, 398
generalized forces, 212, 421, 422
generalized inertia matrix, 215

Cholesky decomposition, 243
factoring, 244
time-rate of change, 218, 253

generalized speeds, 213, 398
gluing operation, 371
grasping matrix, 343
gravity

terms, 241, 266
wrench, 233

hand-eye calibration, 66
Hexa robot, 9
holonomic systems, 398, 399
homogeneous coordinates, 52
homotopy, 287

IKP (see inverse kinematics problem)
Index, 511
input, 1, 238
inertia dyad, 100, 211
instant screw axis, 83
instrument calibration, 64
intelligent machines, 2, 452
intelligent robot, 2
invariance, 60
inverse dynamics

of serial manipulators, 209
recursive, 210, 221

inverse kinematics problem
of a decoupled manipulator, 115
of a general 6R manipulator, 286
of parallel manipulators, 324

inverse vs. forward dynamics, 209
inward recursions, 228, 230
ISA (see instant-screw axis)
isomorphism, 23
isotropic

manipulator, 171
matrix, 170
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isotropy, 175
iteration, 390, 452

Jacobian matrix
condition number, 169
evaluation, 142
invertibility, 169
of decoupled manipulators, 140
of serial manipulators, 137
transfer formula, 140

joint
coordinates, 103, 107
parameters, 106
variables, 107

Kane’s method, 221
KCI (see kinematic conditioning in-

dex)
kernel of a linear transformation, 19
Kinemate, 87
kinematic

chain, 104
conditioning index, 172
constraints, 234
constraints for serial manipula-
tors, 239
pair, 104

kinetostatic performance indices,
168

Lee’s manipulator, 319
Lee’s procedure, 307
Lee vs. Li, 287
left hand, 9
Li vs. Lee (see Lee vs. Li)
Li’s manipulator (see Lee’s mani-

pulator)
linear invariants, 31

of a rotation, 33
linear transformations, 18
local structure of a manipulator,

106
lower kinematic pair, 104
LU decomposition, 138

machine (definition of), 451
main gauche (see left hand)
maneuverability, 487
manipulability, 168

of decoupled manipulators, 474
manipulator

angular velocity matrix, 211
architecture, 107
configuration, 107
dynamics, 209, 402
kinematics, 111
mass matrix, 214
posture, 107
twist, 214
wrenches, 214

matrix representation, 22
norm, 173

mechanical system, 1
mechatronics, 452
minimum-time trajectory, 236
moment invariants, 61
moment of a line

about a point, 75
about another line, 462

moment of inertia, 97
momentum screw, 101
motor, 87
Mozzi-Chasles’ theorem, 71
MSS, 6
multibody system

dynamics, 211
Euler-Lagrange equations, 212

multicubic expression, 114
multifingered hands, 9, 341
multilinear expression, 114
multiquadratic expression, 114
multiquartic expression, 114
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natural orthogonal complement, 232
applied to holonomic systems, 401
applied to parallel manipulators,
408
applied to planar manipulators,
247
applied to rolling robots, 422, 431

Newton
equations, 100
-Euler algorithm, 230
methods, 287, 387
-Raphson method, 67, 387

NOC (see natural orthogonal com-
plement)

nonholonomic systems, 210, 397
noninertial base link, 241
norm (matrix -), 173

Also see Frobenius norm
normal component of a vector, 23
nullspace of a linear transformation,

21
numerical conditioning, 299, 310

object-oriented programming, 452
Odetics series of hexapods, 13
ODW (see omnidirectional wheels)
off-line, 3, 119, 143
omnidirectional wheels, 16

dynamics, 423
kinematics, 355

on-line, 452
operation point, 106
orientation problem, 130
orthogonal complement, 235
orthogonal decomposition of a vec-

tor, 21
orthogonal decoupled manipulator,

125
orthogonal projection, 19
orthogonal RRR manipulator

dynamics, 247
inverse kinematics, 126, 129
recursive dynamics, 250

workspace, 150
OSU ASV, 13
OSU hexapod, 13
outward recursions, 222

Pappus-Guldinus theorems, 472
parallel axes, theorem of, 99
parallel manipulators, 8

acceleration analysis, 337
dynamics, 402
kinematics, 319
velocity analysis, 334

parametric
path representation, 368
representation of curvature, 369
representation of curvature deri-
vative, 369
representation of torsion, 369
representation of torsion deriva-
tive, 369
splines, 381

path-tracking for arc-welding, 377
pick-and-place operations, 188
planar manipulators, 160

acceleration analysis, 165
displacement analysis, 160
dynamics, 252
static analysis, 158
velocity analysis, 163

platform manipulators, 323, 402
Plücker coordinates (of a line), 74

transfer formula, 77
polar-decomposition theorem, 169
polynomial interpolation

with 3-4-5 polynomial, 191
with 4-5-6-7 polynomial, 194

pose (of a rigid body), 77
array, 78

positioning problem, 115
posture of a manipulator, 107
PPO (see pick-and-place operations)
Principle of Virtual Work, 158
prismatic pair, 104, 105, 138
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programmable robot, 4
projection, 19
Puma robot, 107, 124

DH parameters, 107
inverse kinematics, 115
workspace, 150

pure reflection, 20

quaternions, 43

Raghavan and Roth’s procedure,
301

range of a linear transformation,
19, 453

Rayleigh dissipation function (see
dissipation function)

real time, 209, 452
reciprocal bases, 66, 142, 412
redundant sensing, 64
References, 497
reflection, 19, 20, 288

composition with rotations, 45
regional structure of a manipulator,

106
revolute pair, 104
rheonomic systems, 398
robotic hands, 9
robotic mechanical system, viii, 3
robotic system, 2
Rodrigues (see Euler-Rodrigues)

vector, 455
rolling robots, 15

dynamics, 413
kinematics, 349

rotations, 23
rotation matrix, 28

exponential representation, 30
RVS, xiii, 189, 376
run-time, 452
Runge-Kutta method, 264

scleronomic systems, 398
screw

amplitude, 72, 77, 83
axis, 72, 77
axis coordinates, 77, 80
motion, 72
pitch, 72, 83
ray coordinates, 87

self-inverse, 21
semigraphical solution of the gene-

ral IKP, 299
serial manipulators, 6

acceleration, 153
dynamics, 209
kinematics, 111
statics, 158, 167
velocity analysis, 135
workspace, 150

service angle, 168
similarity transformations, 55
simulation, 262
singular-value decomposition, 170
singular values, 170
singularity analysis of decoupled

manipulators, 147
SPDM, 6
spherical wrist, 106, 115, 132

workspace, 132
spline(s), 200

natural, 205
nonparametric, 381
parametric, 381
periodic, 201
interpolation of 4-5-6-7 polyno-
mial, 194

square root of a matrix, 42
Star robot, 9
state

of parallel manipulators, 409
of serial manipulators, 232, 263
variable, 213, 263
-variable equations, 263
-variable model of platform
manipulators, 409
vector, 263
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static analysis
of rigid bodies, 93
of serial manipulators, 158, 167

Stewart platform (see Stewart-Gough
platform)

Stewart-Gough platform, x, 323, 324
direct kinematics, 326
leg kinematics, 324

structure of mechanical systems, 3
structured environment, 3
Sutherland, Sprout & Assoc.

Hexapod, 13
system, 1

telemanipulators, 3
tensors, 17, 211, 232
Titan series of quadrapeds,13
torsion, 363

derivative w. r. t. the arc length,
363
parametric representation, 369,
time-derivative, 366

trace of a square matrix, 32
trajectories with via poses, 199
trajectory planning, 187, 361
trapezoidal velocity profile, 474
truncation error, 264
Trussarm, 9, 10
TU Munich Hand, 11
TU Munich Hexapod, 14
twist

of a rigid body, 86
transfer formula, 89

twist-shape relations, 234
for serial manipulators, 247

unimodular group (of matrices), 76
unstructured environment, 3
upper kinematic pair, 104

vector of a 3 × 3 matrix, 32
vector space, 18
velocity analysis

of parallel manipulators, 334
of rolling robots, 351
of serial manipulators, 135

via poses, 199
virtual work (see Principle of Virtual
Work)
viscosity coefficient, 267
viscous forces, 243, 266

walking machines, 13
kinematics, 346
leg architecture, 321, 324

walking stick, 13
workspace of positioning mani-

pulators, 150
wrench

acting on a rigid body, 86
axis, 94
pitch, 94
transfer formula, 96
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