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Series Preface

Mechanical engineering, an engineering discipline borne of the needs of the
industrial revolution, is once again asked to do its substantial share in the
call for industrial renewal. The general call is urgent as we face profound is-
sues of productivity and competitiveness that require engineering solutions,
among others. The Mechanical Engineering Series features graduate texts
and research monographs intended to address the need for information in
contemporary areas of mechanical engineering.

The series is conceived as a comprehensive one that covers a broad range
of concentrations important to mechanical engineering graduate education
and research. We are fortunate to have a distinguished roster of consult-
ing editors on the advisory board, each an expert in one of the areas of
concentration. The names of the consulting editors are listed on the facing
page of this volume. The areas of concentration are: applied mechanics;
biomechanics; computational mechanics; dynamic systems and control; en-
ergetics; mechanics of materials; processing; production systems; thermal
science; and tribology.

Austin, Texas Frederick F. Ling
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Preface to the Second Edition

The theory, methods and algorithms behind the development of robotic
mechanical systems continue developing at a rate faster than they can be
recorded. The second edition of Fundamentals of Robotic Mechanical Sys-
tems does not claim a comprehensive account of developments up-to-date.
Nevertheless, an attempt has been made to update the most impacting
developments in these activities. Since the appearance of the first edition,
many milestones can be cited. Advances in a host of applications areas can
be mentioned, e.g., laparoscopy, haptics, and manufacturing, to mention a
representative sample.

Perhaps the most impressive achievements to be cited lie in the realm of
space exploration. Indeed, in the period of interest we have seen the suc-
cessful landing of the Sojourner on Mars, with the wheeled robot Pathfinder
roaming on the Martian landscape in 1997. Along the same lines, the in-
frastructure of the International Space Station was set in orbit in 2000,
with the installation of Canadarm2, the successor of Canadarm, following
suit in 2001. Not less impressive are the achievements recorded on the the-
oretical side of the areas of interest, although these have received much less
media attention. To cite just one such accomplishment, one open question
mentioned in the first edition was definitely closed in 1998 with a paper pre-
sented at the International Workshop on Advances in Robot Kinematics.
This question pertains to the 40th-degree polynomial derived by Husty—
as reported in 1996 in a paper in Mechanism and Machine Theory—and
allowing the computation of all forward-kinematics solutions of a general
Stewart-Gough platform. Dietmaier reported an algorithm in that work-
shop that is capable of generating a set of geometric parameters of the
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X Preface to the Second Edition

platform that indeed lead to 40 real solutions. The conclusion then is that
Husty’s polynomial is indeed minimal.

In producing the Second Edition, we took the opportunity to clear the
manuscript of errors and inaccuracies. An in-depth revision was conducted
in-between. Special thanks go to Dr. Kourosh Etemadi Zanganeh, Can-
met (Nepean, Ontario, Canada), for his invaluable help in the rewrit-
ing of Chapter 8. Profs. Carlos Lépez-Cajin, Universidad Auténoma de
Querétaro (Mexico), and J. Jests Cervantes-Sanchez, Universidad de Gua-
najuato (Mexico) pointed out many inconsistencies in the first edition.
Moreover, Dr. Zheng Liu, Canadian Space Agency, St.-Hubert (Quebec,
Canada), who is teaching a course based on the first six chapters of the
book at McGill University, pointed out mistakes and gave valuable sugges-
tions for improving the readability of the book. All these suggestions were
incorporated in the Second Edition as suggested, except for one: While
Dr. Liu suggested to expand on the use of Euler angles in Chapter 2, be-
cause of their appeal to robotics engineers in industry, we decided to add,
instead, a couple of exercises to the list corresponding to this chapter. The
reason is that, in the author’s personal opinion, Euler angles are a neces-
sary evil. Not being frame-invariant, their manipulation tends to become
extremely cumbersome, as illustrated with those examples. Euler angles
may be good for visualizing rigid-body rotations, but they are very bad
at solving problems associated with these rotations using a computer or
simple longhand calculations. Needless to say, the feedback received from
students throughout over 15 years of using this material in the classroom,
is highly acknowledged.

One word of caution is in order: RVS, the software system used to vi-
sualize robot motions and highlighted in the first edition, has not received
either maintenance or updating. It still runs on SGI machines, but we have
no plans for its porting into Windows.

Since there is always room for improvement, we welcome suggestions from
our readership. Please address these to the author, to the e-mail address
included below. Updates on the book will be posted at

www.cim.mcgill.ca/ “rmsl

The Solutions Manual has been expanded, to include more solutions of
sampled problems. By the same token, the number of exercises at the end of
the book has been expanded. The manual is typeset in I’KTEX with Autocad
drawings; it is available upon request from the publisher.

Last, but by no means least, thanks are due to Dr. Svetlana Ostrovskaya,
a Postdoctoral Fellow at McGill University, for her help with Chapter 10
and the editing of the Second Edition.

Montreal, January 2002 Jorge Angeles
angeles@cim.mcgill.ca
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Preface to the First Edition

No todos los pensamientos son algoritmicos.

—Mario Bunge!

The beginnings of modern robotics can be traced back to the late sixties
with the advent of the microprocessor, which made possible the computer
control of a multiaxial manipulator. Since those days, robotics has evolved
from a technology developed around this class of manipulators for the re-
playing of a preprogrammed task to a multidiscipline encompassing many
branches of science and engineering. Research areas such as computer vi-
sion, artificial intelligence, and speech recognition play key roles in the
development and implementation of robotics; these are, in turn, multidis-
ciplines supported by computer science, electronics, and control, at their
very foundations. Thus we see that robotics covers a rather broad spec-
trum of knowledge, the scope of this book being only a narrow band of this
spectrum, as outlined below.

Contemporary robotics aims at the design, control, and implementation

1Not all thinking processes are algorithmic—translation of the author—
personal communication during the Symposium on the Brain-Mind Problem. A
Tribute to Professor Mario Bunge on His 75th Birthday, Montreal, September
30, 1994.
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xii Preface to the First Edition

of systems capable of performing a task defined at a high level, in a lan-
guage resembling those used by humans to communicate among themselves.
Moreover, robotic systems can take on forms of all kinds, ranging from the
most intangible, such as interpreting images collected by a space sound, to
the most concrete, such as cutting tissue in a surgical operation. We can,
therefore, notice that motion is not essential to a robotic system, for this
system is meant to replace humans in many of their activities, moving being
but one of them. However, since robots evolved from early programmable
manipulators, one tends to identify robots with motion and manipulation.
Certainly, robots may rely on a mechanical system to perform their in-
tended tasks. When this is the case, we can speak of robotic mechanical
systems, which are the subject of this book. These tasks, in turn, can be
of a most varied nature, mainly involving motions such as manipulation,
but they can also involve locomotion. Moreover, manipulation can be as
simple as displacing objects from a belt conveyor to a magazine. On the
other hand, manipulation can also be as complex as displacing these objects
while observing constraints on both motion and force, e.g., when cutting
live tissue of vital organs. We can, thus, distinguish between plain manipu-
lation and dextrous manipulation. Furthermore, manipulation can involve
locomotion as well.

The task of a robotic mechanical system is, hence, intimately related
to motion control, which warrants a detailed study of mechanical systems
as elements of a robotic system. The aim of this book can, therefore, be
stated as establishing the foundations on which the design, control, and
implementation of robotic mechanical systems are based.

The book evolved from sets of lecture notes developed at McGill Uni-
versity over the last twelve years, while I was teaching a two-semester se-
quence of courses on robotic mechanical systems. For this reason, the book
comprises two parts—an introductory and an intermediate part on robotic
mechanical systems. Advanced topics, such as redundant manipulators, ma-
nipulators with flexible links and joints, and force control, are omitted. The
feedback control of robotic mechanical systems is also omitted, although
the book refers the reader, when appropriate, to the specialized literature.
An aim of the book is to serve as a textbook in a one-year robotics course;
another aim is to serve as a reference to the practicing engineer.

The book assumes some familiarity with the mathematics taught in any
engineering or science curriculum in the first two years of college. Familiar-
ity with elementary mechanics is helpful, but not essential, for the elements
of this science needed to understand the mechanics of robotic systems are
covered in the first three chapters, thereby making the book self-contained.
These three chapters, moreover, are meant to introduce the reader to the
notation and the basics of mathematics and rigid-body mechanics needed
in the study of the systems at hand. The material covered in the same
chapters can thus serve as reading material for a course on the mathemat-
ics of robotics, intended for sophomore students of science and engineering,
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Preface to the First Edition xiii

prior to a more formal course on robotics.

The first chapter is intended to give the reader an overview of the subject
matter and to highlight the major issues in the realm of robotic mechanical
systems. Chapter 2 is devoted to notation, nomenclature, and the basics of
linear transformations to understand best the essence of rigid-body kine-
matics, an area that is covered in great detail throughout the book. A
unique feature of this chapter is the discussion of the hand-eye calibration
problem: Many a paper has been written in an attempt to solve this fun-
damental problem, always leading to a cumbersome solution that invokes
nonlinear-equation solving, a task that invariably calls for an iterative pro-
cedure; moreover, within each iteration, a singular-value decomposition,
itself iterative as well, is required. In Chapter 2, a novel approach is in-
troduced, which resorts to invariant properties of rotations and leads to a
direct solution, involving straightforward matrix and vector multiplications.
Chapter 3 reviews, in turn, the basic theorems of rigid-body kinetostatics
and dynamics. The viewpoint here represents a major departure from most
existing books on robotic manipulators: proper orthogonal matrices can be
regarded as coordinate transformations indeed, but they can also be re-
garded as representations, once a coordinate frame has been selected, of
rigid-body rotations. I adopt the latter viewpoint, and hence, fundamental
concepts are explained in terms of their invariant properties, i.e., proper-
ties that are independent of the coordinate frame adopted. Hence, matrices
are used first and foremost to represent the physical motions undergone by
rigid bodies and systems thereof; they are to be interpreted as such when
studying the basics of rigid-body mechanics in this chapter. Chapter 4 is
the first chapter entirely devoted to robotic mechanical systems, properly
speaking. This chapter covers extensively the kinematics of robotic ma-
nipulators of the serial type. However, as far as displacement analysis is
concerned, the chapter limits itself to the simplest robotic manipulators,
namely, those with a decoupled architecture, i.e., those that can be decom-
posed into a regional architecture for the positioning of one point of their
end-effector (EE), and a local architecture for the orientation of their EE.
In this chapter, the notation of Denavit and Hartenberg is introduced and
applied consistently throughout the book. Jacobian matrices, workspaces,
singularities, and kinetostatic performance indices are concepts studied in
this chapter. A novel algorithm is included for the determination of the
workspace boundary of positioning manipulators. Furthermore, Chapter 5
is devoted to the topic of trajectory planning, while limiting its scope to
problems suitable to a first course on robotics; this chapter thus focuses on
pick-and-place operations. Chapter 6, moreover, introduces the dynamics
of robotic manipulators of the serial type, while discussing extensively the
recursive Newton-Euler algorithm and laying the foundations of multibody
dynamics, with an introduction to the Euler-Lagrange formulation. The
latter is used to derive the general algebraic structure of the mathematical
models of the systems under study, thus completing the introductory part
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of the book.

The intermediate part comprises four chapters. Chapter 7 is devoted to
the increasingly important problem of determining the angular velocity and
the angular acceleration of a rigid body, when the velocity and acceleration
of a set of its points are known. Moreover, given the intermediate level of
the chapter, only the theoretical aspects of the problem are studied, and
hence, perfect measurements of point position, velocity, and acceleration
are assumed, thereby laying the foundations for the study of the same
problems in the presence of noisy measurements. This problem is finding
applications in the control of parallel manipulators, which is the reason
why it is included here. If time constraints so dictate, this chapter can be
omitted, for it is not needed in the balance of the book.

The formulation of the inverse kinematics of the most general robotic ma-
nipulator of the serial type, leading to a univariate polynomial of the 16th
degree, not discussed in previous books on robotics, is included in Chap-
ter 8. Likewise, the direct kinematics of the platform manipulator popularly
known as the Stewart platform, a.k.a. the Stewart-Gough platform, leading
to a 16th-degree monovariate polynomial, is also given due attention in this
chapter. Moreover, an alternative approach to the monovariate-polynomial
solution of the two foregoing problems, that is aimed at solving them semi-
graphically, is introduced in this chapter. With this approach, the under-
lying multivariate algebraic system of equations is reduced to a system of
two nonlinear bivariate equations that are trigonometric rather than poly-
nomial. Each of these two equations, then, leads to a contour in the plane
of the two variables, the desired solutions being found as the coordinates
of the intersections of the two contours.

Discussed in Chapter 9 is the problem of trajectory planning as per-
taining to continuous paths, which calls for some concepts of differential
geometry, namely, the Frenet-Serret equations relating the tangent, nor-
mal, and binormal vectors of a smooth curve to their rates of change with
respect to the arc length. The chapter relies on cubic parametric splines
for the synthesis of the generated trajectories in joint space, starting from
their descriptions in Cartesian space. Finally, Chapter 10 completes the
discussion initiated in Chapter 6, with an outline of the dynamics of paral-
lel manipulators and rolling robots. Here, a multibody dynamics approach
is introduced, as in the foregoing chapter, that eases the formulation of the
underlying mathematical models.

Two appendices are included: Appendix A summarizes a series of facts
from the kinematics of rotations, that are available elsewhere, with the
purpose of rendering the book self-contained; Appendix B is devoted to the
numerical solution of over- and underdetermined linear algebraic systems,
its purpose being to guide the reader to the existing robust techniques for
the computation of least-square and minimum-norm solutions. The book
concludes with a set of problems, along with a list of references, for all ten
chapters.
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On Notation

The important issue of notation is given due attention. In figuring out the
notation, I have adopted what I call the C*® norm. Under this norm, the
notation should be

1. C'omprehensive,
2. Concise, and

3. Consistent.

Within this norm, I have used boldface fonts to indicate vectors and
matrices, with uppercases reserved for matrices and lowercases for vectors.
In compliance with the invariant approach adopted at the outset, I do not
regard vectors solely as arrays, but as geometric or mechanical objects.
Regarding such objects as arrays is necessary only when it is required to
perform operations with them for a specific purpose. An essential feature
of vectors in a discussion is their dimension, which is indicated with a
single number, as opposed to the convention whereby vectors are regarded
as matrix arrays of numbers; in this convention, the dimension has to be
indicated with two numbers, one for the number of columns, and one for the
number of rows; in the case of vectors, the latter is always one, and hence,
need not be mentioned. Additionally, calligraphic literals are reserved for
sets of points or of other objects. Since variables are defined every time that
they are introduced, and the same variable is used in the book to denote
different concepts in different contexts, a list of symbols is not included.

How to Use the Book

The book can be used as a reference or as a text for the teaching of the
mechanics of robots to an audience that ranges from junior undergraduates
to doctoral students. In an introductory course, the instructor may have
to make choices regarding what material to skip, given that the duration
of a regular semester does not allow to cover all that is included in the
first six chapters. Topics that can be skipped, if time so dictates, are the
discussions, in Chapter 4, of workspaces and performance indices, and the
section on simulation in Chapter 6. Under strict time constraints, the whole
Chapter 5 can be skipped, but then, the instructor will have to refrain
from assigning problems or projects that include calculating the inverse
dynamics of a robot performing pick-and-place operations. None of these
has been included in Section 6 of the Exercises.

If sections of Chapters 4 and 5 have been omitted in a first course, it is
highly advisable to include them in a second course, prior to discussing the
chapters included in the intermediate part of the book.
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1

An Overview of Robotic Mechanical
Systems

1.1 Introduction

In defining the scope of our subject, we have to establish the genealogy of
robotic mechanical systems. These are, obviously, a subclass of the much
broader class of mechanical systems. Mechanical systems, in turn, consti-
tute a subset of the more general concept of dynamic systems. Therefore,
in the final analysis, we must have an idea of what, in general, a system is.

The Concise Ozxford Dictionary defines system as a “complex whole, set
of connected things or parts, organized body of material or immaterial
things,” whereas the Random House College Dictionary defines the same
as “an assemblage or combination of things or parts forming a complex
or unitary whole.” Le Petit Robert, in turn, defines system as “Ensem-
ble possédant une structure, constituant un tout organique,” which can
be loosely translated as “A structured assemblage constituting an organic
whole.” In the foregoing definitions, we note that the underlying idea is
that of a set of elements interacting as a whole.

On the other hand, a dynamic system is a subset of the set of systems.
For our purposes, we can dispense with a rigorous definition of this concept.
Suffice it to say that a dynamic system is a system in which one can distin-
guish three elements, namely, a state, an input, and an output, in addition
to a rule of transition from one current state to a future one. Moreover,
the state is a functional of the input and a function of a previous state. In
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2 1. An Overview of Robotic Mechanical Systems

this concept, then, the idea of order is important, and can be taken into
account by properly associating each state value with time. The state at
every instant is a functional, as opposed to a function, of the input, which is
characteristic of dynamic systems. This means that the state of a dynamic
system at a certain instant is determined not only by the value of the input
at that instant, but also by the past history of that input. By virtue of this
property, dynamic systems are said to have memory.

On the contrary, systems whose state at a given instant is only a function
of the input at the current time are static and are said to have no memory.
Additionally, since the state of a dynamic system is a result of all the past
history of the input, the future values of this having no influence on the
state, dynamic systems are said to be nonanticipative or causal. By the
same token, systems whose state is the result of future values of the input
are said to be anticipative or noncausal. In fact, we will not need to worry
about the latter, and hence, all systems we will study can be assumed to
be causal.

Obviously, a mechanical system is a system composed of mechanical ele-
ments. If this system complies with the definition of dynamic system, then
we end up with a dynamic mechanical system. For brevity, we will refer to
such systems as mechanical systems, the dynamic property being taken for
granted throughout the book. Mechanical systems of this type are those
that occur whenever the inertia of their elements is accounted for. Static
mechanical systems are those in which inertia is neglected. Moreover, the
elements constituting a mechanical system are rigid and deformable solids,
compressible and incompressible fluids, and inviscid and viscous fluids.

From the foregoing discussion, then, it is apparent that mechanical sys-
tems can be constituted either by lumped-parameter or by distributed-
parameter elements. The former reduce to particles; rigid bodies; massless,
conservative springs; and massless, nonconservative dashpots. The latter
appear whenever bodies are modeled as continuous media. In this book, we
will focus on lumped-parameter mechanical systems.

Furthermore, a mechanical system can be either natural or man-made,
the latter being the subject of our study. Man-made mechanical systems
can be either controlled or uncontrolled. Most engineering systems are con-
trolled mechanical systems, and hence, we will focus on these. Moreover,
a controlled mechanical system may be robotic or nonrobotic. The lat-
ter are systems supplied with primitive controllers, mostly analog, such
as thermostats, servovalves, etc. Robotic mechanical systems, in turn, can
be programmable, such as most current industrial robots, or intelligent,
as discussed below. Programmable mechanical systems obey motion com-
mands either stored in a memory device or generated on-line. In either
case, they need primitive sensors, such as joint encoders, accelerometers,
and dynamometers.

Intelligent robots or, more broadly speaking, intelligent machines, are
yet to be demonstrated, but have become the focus of intensive research.
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1.2 The General Structure of Robotic Mechanical Systems 3

If intelligent machines are ever feasible, they will depend highly on a so-
phisticated sensory system and the associated hardware and software for
the processing of the information supplied by the sensors. The processed
information would then be supplied to the actuators in charge of producing
the desired motion of the robot. Contrary to programmable robots, whose
operation is limited to structured environments, intelligent machines should
be capable of reacting to unpredictable changes in an unstructured environ-
ment. Thus, intelligent machines should be supplied with decision-making
capabilities aimed at mimicking the natural decision-making process of liv-
ing organisms. This is the reason why such systems are termed intelligent
in the first place. Thus, intelligent machines are expected to perceive their
environment and draw conclusions based on this perception. What is sup-
posed to make these systems intelligent is their capability of perceiving,
which involves a certain element of subjectivity. By far, the most complex
of perception tasks, both in humans and machines, is visual (Levine, 1985;
Horn, 1986).

In summary, then, an intelligent machine is expected to (i) perceive the
environment; (i¢) reason about the perceived information; (iii) make deci-
stons based on this perception; and (iv) act according to a plan specified at
a very high level. What the latter means is that the motions undergone by
the machine are decided upon based on instructions similar to those given
to a human being, like bring me a glass of water without spilling the water.

Whether intelligent machines with all the above features will be one day
possible or not is still a subject of discussion, sometimes at a philosophical
level. Penrose (1994) wrote a detailed discussion refuting the claim that
intelligent machines are possible.

A genealogy of mechanical systems, including robotic ones, is given in
Fig. 1.1. In that figure, we have drawn a dashed line between mechanical
systems and other systems, both man-made and natural, in order to em-
phasize the interaction of mechanical systems with electrical, thermal, and
other systems, including the human system, which is present in telemanip-
ulators, to be discussed below.

1.2 The General Structure of Robotic Mechanical
Systems

From Section 1.1, then, a robotic mechanical system is composed of a few
subsystems, namely, () a mechanical subsystem composed in turn of both
rigid and deformable bodies, although the systems we will study here are
composed only of the former; (ii) a sensing subsystem; (i¢) an actuation
subsystem; (iv) a controller; and (v) an information-processing subsystem.
Additionally, these subsystems communicate among themselves via inter-
faces, whose function consists basically of decoding the transmitted infor-
mation from one medium to another. Figure 1.2 shows a block diagram
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PHYSICAL NONPHYSICAL
NATURAL

MECHANICAL [=-—————————————— OTHERS

V4 \

[ conTRoLLED | [ nonrosoTic |
PROGRAMMABLE TELEMANIPULATORS INTELLIGENT MACHINES
ROBOTS * Surface Manipulators * Manipulators
* Manipulators * Space Manipulators * Rolling Robots
« Automatic Guided Vehicles * Underwater Manipulators * Dextrous Hands

* Walking Machines

FIGURE 1.1. A genealogy of robotic mechanical systems.

representation of a typical robotic mechanical system. Its input is a pre-
scribed task, which is defined either on the spot or off-line. The former case
is essential for a machine to be called intelligent, while the latter is present
in programmable machines. Thus, tasks would be described to intelligent
machines by a software system based on techniques of artificial intelligence
(AI). This system would replace the human being in the decision-making
process. Programmable robots require human intervention either for the
coding of preprogrammed tasks at a very low level or for telemanipulation.
A very low level of programming means that the motions of the machine are
specified as a sequence of either joint motions or Cartesian coordinates as-
sociated with landmark points of that specific body performing the task at
hand. The output of a robotic mechanical system is the actual task, which
is monitored by the sensors. The sensors, in turn, transmit task information
in the form of feedback signals, to be compared with the prescribed task.
The errors between the prescribed and the actual task are then fed back
into the controller, which then synthesizes the necessary corrective signals.
These are, in turn, fed back into the actuators, which then drive the me-
chanical system through the required task, thereby closing the loop. The
problem of robot control has received extensive attention in the literature,
and will not be pursued here. The interested reader is referred to the ex-
cellent works on the subject, e.g., those of Samson, Le Borgne, and Espiau
(1991) and, at a more introductory level, of Spong and Vidyasagar (1989).
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task ROBoOT | STV error P&FS driving actual
CONTROLLER ACTUATORS ROBOT
description MODEL signals actions task
AV INFORMATION C&JS
PROCESSING SENSORS
UNIT

SJV:  synthesized joint variables (angles and torques)
P&FS: position and force signals
C&JS: Cartesian and jeint signals

AJV:  actual joint variables (angles and torques)

FIGURE 1.2. Block diagram of a general robotic mechanical system.

Of special relevance to robot control is the subject of nonlinear control at
large, a pioneer here being Isidori (1989).

Robotic mechanical systems with a human being in their control loop
are called telemanipulators. Thus, a telemanipulator is a robotic mechan-
ical system in which the task is controlled by a human, possibly aided
by sophisticated sensors and display units. The human operator is then a
central element in the block diagram loop of Fig. 1.2. Based on the infor-
mation displayed, the operator makes decisions about corrections in order
to accomplish the prescribed task. Shown in Fig. 1.3 is a telemanipula-
tor to be used in space applications, namely, the Canadarm?2, along with
the Special-Purpose Dextrous Manipulator (SPDM), both mounted on the
Mobile Servicing System (MSS). Moreover, a detailed view of the Special-
Purpose Dextrous Manipulator is shown in Fig. 1.4. In the manipulators
of these two figures, the human operator is an astronaut who commands
and monitors the motions of the robot from inside the EVA (extravehicular
activity) workstation. The number of controlled axes of each of these ma-
nipulators being larger than six, both are termed redundant. The challenge
here is that the mapping from task coordinates to joint motions is not
unique, and hence, among the infinitely many joint trajectories that the
operator has at his or her disposal for a given task, an on-board processor
must evaluate the best one according to a performance criterion.

While the manipulators of Figs. 1.3 and 1.4 are still at the development
stage, examples of robotic mechanical systems in operation are the well-
known six-axis industrial manipulators, six-degree-of-freedom flight simu-
lators, walking machines, mechanical hands, and rolling robots. We outline
the various features of these systems below.
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6 1. An Overview of Robotic Mechanical Systems

FIGURE 1.3. Canadarm2 and Special-Purpose Dextrous Manipulator (courtesy
of the Canadian Space Agency.)

1.3 Serial Manipulators

Among all robotic mechanical systems mentioned above, robotic manipu-
lators deserve special attention, for various reasons. One is their relevance
in industry. Another is that they constitute the simplest of all robotic me-
chanical systems, and hence, appear as constituents of other, more complex
robotic mechanical systems, as will become apparent in later chapters. A
manipulator, in general, is a mechanical system aimed at manipulating ob-
jects. Manipulating, in turn, means to move something with one’s hands,
as it derives from the Latin manus, meaning hand. The basic idea behind
the foregoing concept is that hands are among the organs that the human
brain can control mechanically with the highest accuracy, as the work of
an artist like Picasso, of an accomplished guitar player, or of a surgeon can
attest.

Hence, a manipulator is any device that helps man perform a manip-
ulating task. Although manipulators have existed ever since man created
the first tool, only very recently, namely, by the end of World War II, have
manipulators developed to the extent that they are now capable of actu-
ally mimicking motions of the human arm. In fact, during WWII, the need
arose for manipulating probe tubes containing radioactive substances. This
led to the first six-degree-of-freedom (DOF) manipulators.

Shortly thereafter, the need for manufacturing workpieces with high ac-
curacy arose in the aircraft industry, which led to the first numerically-
controlled (NC) machine tools. The synthesis of the six-DOF manipulator
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1.3 Serial Manipulators 7

FIGURE 1.4. Special-Purpose Dextrous Manipulator (courtesy of the Canadian
Space Agency.)

and the NC machine tool produced what became the robotic manipula-
tor. Thus, the essential difference between the early manipulator and the
evolved robotic manipulator is the term robotic, which has only recently,
as of the late sixties, come into the picture. A robotic manipulator is to
be distinguished from the early manipulator by its capability of lending
itself to computer control. Whereas the early manipulator needed the pres-
ence of a manned master manipulator, the robotic manipulator can be pro-
grammed once and for all to repeat the same task forever. Programmable
manipulators have existed for about 30 years, namely, since the advent of
microprocessors, which allowed a human master to teach the manipulator
by actually driving the manipulator itself, or a replica thereof, through a
desired task, while recording all motions undergone by the master. Thus,
the manipulator would later repeat the identical task by mere playback.
However, the capabilities of industrial robots are fully exploited only if the
manipulator is programmed with software, rather than actually driving it
through its task trajectory, which many a time, e.g., in car-body spot-
welding, requires separating the robot from the production line for more
than a week. One of the objectives of this book is to develop tools for the
programming of robotic manipulators.

However, the capabilities offered by robotic mechanical systems go well
beyond the mere playback of preprogrammed tasks. Current research aims
at providing robotic systems with software and hardware that will allow
them to make decisions on the spot and learn while performing a task. The
implementation of such systems calls for task-planning techniques that fall
beyond the scope of this book and, hence, will not be treated here. For a
glimpse of such techniques, the reader is referred to the work of Latombe
(1991) and the references therein.
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8 1. An Overview of Robotic Mechanical Systems

/

FIGURE 1.5. A six-degree-of-freedom flight simulator (courtesy of CAE Elec-
tronics Ltd.)

1.4 Parallel Manipulators

Robotic manipulators first appeared as mechanical systems constituted by
a structure consisting of very robust links coupled by either rotational or
translating joints, the former being called revolutes, the latter prismatic
joints. Moreover, these structures are a concatenation of links, thereby
forming an open kinematic chain, with each link coupled to a predeces-
sor and a successor, except for the two end links, which are coupled only
to either a predecessor or to a successor, but not to both. Because of the
serial nature of the coupling of links in this type of manipulator, even
though they are supplied with structurally robust links, their load-carrying
capacity and their stiffness is too low when compared with the same prop-
erties in other multiaxis machines, such as NC machine tools. Obviously, a
low stiffness implies a low positioning accuracy. In order to remedy these
drawbacks, parallel manipulators have been proposed to withstand higher
payloads with lighter links. In a parallel manipulator, we distinguish one
base platform, one moving platform, and various legs. Each leg is, in turn,
a kinematic chain of the serial type, whose end links are the two platforms.
Contrary to serial manipulators, all of whose joints are actuated, parallel
manipulators contain unactuated joints, which brings about a substantial
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1.4 Parallel Manipulators 9

difference between the two types. The presence of unactuated joints makes
the analysis of parallel manipulators, in general, more complex than that
of their serial counterparts.

A paradigm of parallel manipulators is the flight simulator, consisting of
six legs actuated by hydraulic pistons, as displayed in Fig. 1.5. Recently, an
explosion of novel designs of parallel manipulators has occurred aimed at
fast assembly operations, namely, the Delta robot (Clavel, 1988), developed
at the Lausanne Federal Polytechnic Institute, shown in Fig. 1.6; the Hexa
robot (Pierrot et al., 1991), developed at the University of Montpellier;
and the Star robot (Hervé and Sparacino, 1992), developed at the Ecole
Centrale of Paris. One more example of parallel manipulator is the Truss-
arm, developed at the University of Toronto Institute of Aerospace Studies
(UTTAS), shown in Fig. 1.7a (Hughes et al., 1991). Merlet (2000), of the
Institut National de Recherche en Informatique et en Automatique, Sophia-
Antipolis, France, developed a six-axis parallel robot, called in French a
main gauche, or left hand, shown in Fig. 1.7b, to be used as an aid to an-
other robot, possibly of the serial type, to enhance its dexterity. Hayward,
of McGill University, designed and constructed a parallel manipulator to
be used as a shoulder module for orientation tasks (Hayward, 1994); the
module is meant for three-degree-of-freedom motions, but is provided with
four hydraulic actuators, which gives it redundant actuation—Fig. 1.7c.

FIGURE 1.6. The Clavel Delta robot.
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10 1. An Overview of Robotic Mechanical Systems

FIGURE 1.7. A sample of parallel manipulators: (a) The UTTAS Trussarm (cour-
tesy of Prof. P. C. Hughes); (b) the Merlet left hand (courtesy of Dr. J.-P. Merlet);
and (c) the Hayward shoulder module (courtesy of Prof. V. Hayward.)
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1.5 Robotic Hands

As stated above, the hand can be regarded as the most complex mechanical
subsystem of the human manipulation system. Other mechanical subsys-
tems constituting this system are the arm and the forearm. Moreover, the
shoulder, coupling the arm with the torso, can be regarded as a spherical
joint, i.e., the concatenation of three revolute joints with intersecting axes.
Furthermore, the arm and the forearm are coupled via the elbow, with the
forearm and the hand finally being coupled by the wrist. Frequently, the
wrist is modeled as a spherical join as well, while the elbow is modeled as a
simple revolute joint. Robotic mechanical systems mimicking the motions
of the arm and the forearm constitute the manipulators discussed in the
previous section. Here we outline more sophisticated manipulation systems
that aim at producing the motions of the human hand, i.e., robotic me-
chanical hands. These robotic systems are meant to perform manipulation
tasks, a distinction being made between simple manipulation and dextrous
manipulation. What the former means is the simplest form, in which the
fingers play a minor role, namely, by serving as simple static structures that
keep an object rigidly attached with respect to the palm of the hand—when
the palm is regarded as a rigid body. As opposed to simple manipulation,
dextrous manipulation involves a controlled motion of the grasped object
with respect to the palm. Simple manipulation can be achieved with the
aid of a manipulator and a gripper, and need not be further discussed here.
The discussion here is about dextrous manipulation.

In dextrous manipulation, the grasped object is required to move with re-
spect to the palm of the grasping hand. This kind of manipulation appears
in performing tasks that require high levels of accuracy, like handwriting
or cutting tissue with a scalpel. Usually, grasping hands are multifingered,
although some grasping devices exist that are constituted by a simple,
open, highly redundant kinematic chain (Pettinato and Stephanou, 1989).
The kinematics of grasping is discussed in Chapter 4. The basic kinematic
structure of a multifingered hand consists of a palm, which plays the role
of the base of a simple manipulator, and a set of fingers. Thus, kinemat-
ically speaking, a multifingered hand has a tree topology, i.e., it entails a
common rigid body, the palm, and a set of jointed bodies emanating from
the palm. Upon grasping an object with all the fingers, the chain becomes
closed with multiple loops. Moreover, the architecture of the fingers is that
of a simple manipulator. It consists of a number—two to four—of revolute-
coupled links playing the role of phalanges. However, unlike manipulators
of the serial type, whose joints are all independently actuated, those of a
mechanical finger are not and, in many instances, are driven by one single
master actuator, the remaining joints acting as slaves. Many versions of
multifingered hands exist: Stanford/JPL; Utah/MIT; TU Munich; Karls-
ruhe; Bologna; Leuven; Milan; Belgrade; and University of Toronto, among

TLFeBOOK



12 1. An Overview of Robotic Mechanical Systems

FIGURE 1.8. The four-fingered hydraulically actuated TU Munich Hand (cour-
tesy of Prof. F. Pfeiffer.)

others. Of these, the Utah/MIT Hand (Jacobsen et al., 1984; 1986) is com-
mercially available. It consists of four fingers, one of which is opposed to
the other three and hence, plays the role of the human thumb. Each finger
consists, in turn, of four phalanges coupled by revolute joints; each of these
is driven by two tendons that can deliver force only when in tension, each
being actuated independently. The TU Munich Hand, shown in Fig. 1.8,
is designed with four identical fingers laid out symmetrically on a hand
palm. This hand is hydraulically actuated, and provided with a very high
payload-to-weight ratio. Indeed, each finger weighs only 1.470 N, but can
exert a force of up to 30 N.

We outline below some problems and research trends in the area of dex-
trous hands. A key issue here is the programming of the motions of the
fingers, which is a much more complicated task than the programming
of a six-axis manipulator. In this regard, Liu et al. (1989) introduced a
task-analysis approach meant to program robotic hand motions at a higher
level. They use a heuristic, knowledge-based approach. From an analysis
of the various modes of grasping, they conclude that the requirements for
grasping tasks are (i) stability, (i¢) manipulability, (¢i7) torquability, and
(iv) radial rotatability. Stability is defined as a measure of the tendency
of an object to return to its original position after disturbances. Manipu-
lability, as understood in this context, is the ability to impart motion to
the object while keeping the fingers in contact with the object. Torquabi-
lity, or tangential rotatability, is the ability to rotate the long axis of an
object—here the authors must assume that the manipulated objects are
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convex and can be approximated by three-axis ellipsoids, thereby distin-
guishing between a longest and a shortest axis—with a minimum force, for
a prescribed amount of torque. Finally, radial rotatability is the ability to
rotate the grasped object about its long axis with minimum torque about
the axis.

Furthermore, Allen et al. (1989) introduced an integrated system of both
hardware and software for dextrous manipulation. The system consists
of a Sun-3 workstation controlling a Puma 500 arm with VAL-II. The
Utah/MIT hand is mounted on the end-effector of the arm. The system in-
tegrates force and position sensors with control commands for both the arm
and the hand. To demonstrate the effectiveness of their system, the authors
implemented a task consisting of removing a light bulb from its socket. Fi-
nally, Rus (1992) reports a paradigm allowing the high-level, task-oriented
manipulation control of planar hands. Whereas technological aspects of
dextrous manipulation are highly advanced, theoretical aspects are still
under research in this area. An extensive literature survey, with 405 refer-
ences on the subject of manipulation, is given by Reynaerts (1995).

1.6 Walking Machines

We focus here on multilegged walking devices, i.e., machines with more
than two legs. In walking machines, stability is the main issue. One distin-
guishes between two types of stability, static and dynamic. Static stability
refers to the ability of sustaining a configuration from reaction forces only,
unlike dynamic stability, which refers to that ability from both reaction and
inertia forces. Intuitively, it is apparent that static stability requires more
contact points and, hence, more legs, than dynamic stability. Hopping de-
vices (Raibert, 1986) and bipeds (Vukobratovic and Stepanenko, 1972) are
examples of walking machines whose motions aredependent upon dynamic
stability. For static balance, a walking machine requires a kinematic struc-
ture capable of providing the ground reaction forces needed to balance the
weight of the machine. A biped is not capable of static equilibrium because
during the swing phase of one leg, the body is supported by a single con-
tact point, which is incapable of producing the necessary balancing forces
to keep it in equilibrium. For motion on a horizontal surface, a minimum
of three legs is required to produce static stability. Indeed, with three legs,
one of these can undergo swing while the remaining two legs are in contact
with the ground, and hence, two contact points are present to provide the
necessary balancing forces from the ground reactions.

By the same token, the minimum number of legs required to sustain static
stability in general is four, although a very common architecture of walking
machines is the hexapod, examples of which are the Ohio State University
(OSU) Hexapod (Klein et al., 1983) and the OSU Adaptive Suspension
Vehicle (ASV) (Song and Waldron, 1989), shown in Fig. 1.10. A six-legged
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14 1. An Overview of Robotic Mechanical Systems

FIGURE 1.9. A prototype of the TU Munich Hexapod (Courtesy of Prof. F. Pfeif-
fer. Reproduced with permission of TSI Enterprises, Inc.)

walking machine with a design that mimics the locomotion system of the
Carausius morosus (Graham, 1972), also known as the walking stick, has
been developed at the Technical University of Munich (Pfeiffer et al., 1995).
A prototype of this machine, known as the TUM Hezxapod, is included in
Fig. 1.9. The legs of the TUM Hexapod are operated under neural-network
control, which gives them a reflexlike response when encountering obstacles.
Upon sensing an obstacle, the leg bounces back and tries again to move
forward, but raising the foot to a higher level.

Other machines that are worth mentioning are the Sutherland, Sprout
and Associates Hexapod (Sutherland and Ullner, 1984), the Titan series of
quadrupeds (Hirose et al., 1985) and the Odetics series of axially symmetric
hexapods (Russell, 1983).

A survey of walking machines, of a rather historical interest by now,
is given in (Todd, 1985), while a more recent comprehensive account of
walking machines is available in a special issue of The International Journal
of Robotics Research (Volume 9, No. 2).

Walking machines appear as the sole means of providing locomotion in
highly unstructured environments. In fact, the unique adaptive suspension
provided by these machines allows them to navigate on uneven terrain.
However, walking machines cannot navigate on every type of uneven ter-
rain, for they are of limited dimensions. Hence, if terrain irregularities such
as a crevasse wider than the maximum horizontal leg reach or a cliff of
depth greater than the maximum vertical leg reach are present, then the
machine is prevented from making any progress. This limitation, however,
can be overcome by providing the machine with the capability of attaching
its feet to the terrain in the same way as a mountain climber goes up a cliff.
Moreover, machine functionality is limited not only by the topography of
the terrain, but also by its constitution. Whereas hard rock poses no serious
problem to a walking machine, muddy terrain can hamper its operation to
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1.7 Rolling Robots 15

FIGURE 1.10. The OSU ASV. An example of a six-legged walking machine
(courtesy of Prof. K. Waldron. Reproduced with permission of The MIT Press.)

the point that it may jam the machine. Still, under such adverse conditions,
walking machines offer a better maneuverability than other vehicles. Some
walking machines have been developed and are operational, but their op-
eration is often limited to slow motions. It can be said, however, that like
research on multifingered hands, the pace of theoretical research on walking
machines has been much slower than that of their technological develop-
ments. The above-mentioned OSU ASV and the TU Munich Hexapod are
among the most technologically developed walking machines.

1.7 Rolling Robots

While parallel manipulators indeed solve many inherent problems of serial
manipulators, their workspaces are more limited than those of the latter. As
a matter of fact, even serial manipulators have limited workspaces due to
the finite lengths of their links. Manipulators with limited workspaces can
be enhanced by mounting them on rolling robots. These are systems evolved
from earlier systems called automatic guided vehicles, or AGVs for short.
AGVs in their most primitive versions are four-wheeled electrically powered
vehicles that perform moving tasks with a certain degree of autonomy.
However, these vehicles are usually limited to motions along predefined
tracks that are either railways or magnetic strips glued to the ground.
The most common rolling robots use conventional wheels, i.e., wheels
consisting basically of a pneumatic tire mounted on a hub that rotates
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16 1. An Overview of Robotic Mechanical Systems

about an axle fixed to the platform of the robot. Thus, the operation of
these machines does not differ much from that of conventional terrestrial
vehicles. An essential difference between rolling robots and other robotic
mechanical systems is the kinematic constraints between wheel and ground
in the former. These constraints are of a type known as nonholonomic, as
discussed in detail in Chapter 6. Nonholonomic constraints are kinematic
relations between point velocities and angular velocities that cannot be
integrated in the form of algebraic relations between translational and ro-
tational displacement variables. The outcome of this lack of integrability
leads to a lack of a one-to-one relationship between Cartesian variables and
joint variables. In fact, while angular displacements read by joint encoders
of serial manipulators determine uniquely the position and orientation of
their end-effector, the angular displacement of the wheels of rolling ma-
chines do not determine the position and orientation of the vehicle body.
As a matter of fact, the control of rolling robots bears common features
with that of the redundancy resolution of manipulators of the serial type at
the joint-rate level. In these manipulators, the number of actuated joints
is greater than the dimension of the task space. As a consequence, the
task velocity does not determine the joint rates. Not surprisingly, the two
types of problems are being currently solved using the same tools, namely,
differential geometry and Lie algebra (De Luca and Oriolo, 1995).

As a means to supply rolling robots with 3-dof capabilities, omnidirec-
tional wheels (ODW) have been proposed. An example of ODWs are those
that bear the name of Mekanum wheels, consisting of a hub with rollers
on its periphery that roll freely about their axes, the latter being oriented
at a constant angle with respect to the hub axle. In Fig. 1.11, a Mekanum
wheel is shown, along with a rolling robot supplied with this type of wheels.
Rolling robots with ODWs are, thus, 3-dof vehicles, and hence, can trans-
late freely in two horizontal directions and rotate independently about a
vertical axis. However, like their 2-dof counterparts, 3-dof rolling robots
are also nonholonomic devices, and thus, pose the same problems for their
control as the former.

FIGURE 1.11. (a) A Mekanum wheel; (b) rolling robot supplied with Mekanum
wheels.
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1.7 Rolling Robots 17

Recent developments in the technology of rolling robots have been re-
ported that incorporate alternative types of ODWs. For example, Killough
and Pin (1992) developed a rolling robot with what they call orthogonal
ball wheels, consisting basically of spherical wheels that can rotate about
two mutually orthogonal axes. West and Asada (1995), in turn, designed a
rolling robot with ball wheels, i.e., balls that act as omnidirectional wheels;
each ball being mounted on a set of rollers, one of which is actuated; hence,
three such wheels are necessary to fully control the vehicle. The unactu-
ated rollers serve two purposes, i.e., to provide stability to the wheels and
the vehicle, and to measure the rotation of the ball, thereby detecting slip.
Furthermore, Borenstein (1993) proposed a mobile robot with four degrees
of freedom; these were achieved with two chassis coupled by an extensible
link, each chassis being driven by two actuated conventional wheels.
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2
Mathematical Background

2.1 Preamble

First and foremost, the study of motions undergone by robotic mechani-
cal systems or, for that matter, by mechanical systems at large, requires
a suitable motion representation. Now, the motion of mechanical systems
involves the motion of the particular links comprising those systems, which
in this book are supposed to be rigid. The assumption of rigidity, although
limited in scope, still covers a wide spectrum of applications, while pro-
viding insight into the motion of more complicated systems, such as those
involving deformable bodies.

The most general kind of rigid-body motion consists of both transla-
tion and rotation. While the study of the former is covered in elementary
mechanics courses and is reduced to the mechanics of particles, the latter
is more challenging. Indeed, point translation can be studied simply with
the aid of 3-dimensional vector calculus, while rigid-body rotations require
the introduction of tensors, i.e., entities mapping vector spaces into vector
spaces.

Emphasis is placed on invariant concepts, i.e., items that do not change
upon a change of coordinate frame. Examples of invariant concepts are ge-
ometric quantities such as distances and angles between lines. Although we
may resort to a coordinate frame and vector algebra to compute distances
and angles and represent vectors in that frame, the final result will be inde-
pendent of how we choose that frame. The same applies to quantities whose
evaluation calls for the introduction of tensors. Here, we must distinguish
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20 2. Mathematical Background

between the physical quantity represented by a vector or a tensor and the
representation of that quantity in a coordinate frame using a 1-dimensional
array of components in the case of vectors, or a 2-dimensional array in the
case of tensors. It is unfortunate that the same word is used in English to
denote a vector and its array representation in a given coordinate frame.
Regarding tensors, the associated arrays are called matrices. By abuse of
terminology, we will refer to both tensors and their arrays as matrices,
although keeping in mind the essential conceptual differences involved.

2.2 Linear Transformations

The physical 3-dimensional space is a particular case of a vector space. A
vector space is a set of objects, called vectors, that follow certain algebraic
rules. Throughout the book, vectors will be denoted by boldface lower-
case characters, whereas tensors and their matrix representations will be
denoted by boldface uppercase characters. Let v, vi, vy, v, and w be ele-
ments of a given vector space V, which is defined over the real field, and let
« and (8 be two elements of this field, i.e., « and (3 are two real numbers.
Below we summarize the aforementioned rules:

(i) The sum of vi and vy, denoted by vi + vy, is itself an element of V
and is commutative, i.e., v1 + Vo = va + V1;

(#i) V contains an element 0, called the zero vector of V, which, when
added to any other element v of V, leaves it unchanged, i.e., v+0 = v;

(797) The sum defined in (%) is associative, i.e., vi+ (va+v3) = (vi+v2)+
V33

(iv) For every element v of V), there exists a corresponding element, w,
also of V, which, when added to v, produces the zero vector, i.e.,
v +w = 0. Moreover, w is represented as —v;

(v) The product av, or va, is also an element of V, for every v of V and
every real a. This product is associative, i.e., a(Gv) = (af)v;

(vi) If v is the real unity, then av is identically v;

(vii) The product defined in (v) is distributive in the sense that (a) (a4
B)v =av+ pv and (b) a(vy +v2) = avy + avy.

Although vector spaces can be defined over other fields, we will deal with
vector spaces over the real field unless explicit reference to another field is
made. Moreover, vector spaces can be either finite- or infinite-dimensional,
but we will not need the latter. In geometry and elementary mechanics, the
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2.2 Linear Transformations 21

dimension of the vector spaces needed is usually three, but when studying
multibody systems, an arbitrary finite dimension will be required. The
concept of dimension of a vector space is discussed in more detail later.

A linear transformation, represented as an operator L, of a vector space
U into a vector space V, is a rule that assigns to every vector u of U at
least one vector v of V, represented as v = Lu, with L endowed with two
properties:

(i) homogeneity: L(au) = av; and
(#4) additivity: L(ug + up) = v + va.

Note that, in the foregoing definitions, no mention has been made of
components, and hence, vectors and their transformations should not be
confused with their array representations.

Particular types of linear transformations of the 3-dimensional Euclidean
space that will be encountered frequently in this context are projections,
reflections, and rotations. One further type of transformation, which is not
linear, but nevertheless appears frequently in kinematics, is the one known
as affine transformation. The foregoing transformations are defined below.
It is necessary, however, to introduce additional concepts pertaining to
general linear transformations before expanding into these definitions.

The range of a linear transformation L of I/ into V is the set of vectors
v of V into which some vector u of U/ is mapped, i.e., the range of L is
defined as the set of v .= Lu, for every vector u of U. The kernel of L
is the set of vectors uy of U that are mapped by L into the zero vector
0 € V. It can be readily proven (see Exercises 2.1-2.3) that the kernel and
the range of a linear transformation are both vector subspaces of &/ and
V, respectively, i.e., they are themselves vector spaces, but of a dimension
smaller than or equal to that of their associated vector spaces. Moreover,
the kernel of a linear transformation is often called the nullspace of the said
transformation.

Henceforth, the 3-dimensional Euclidean space is denoted by £3. Having
chosen an origin O for this space, its geometry can be studied in the context
of general vector spaces. Hence, points of £3 will be identified with vectors
of the associated 3-dimensional vector space. Moreover, lines and planes
passing through the origin are subspaces of dimensions 1 and 2, respectively,
of £2. Clearly, lines and planes not passing through the origin of £2 are not
subspaces but can be handled with the algebra of vector spaces, as will be
shown here.

An orthogonal projection P of £2 onto itself is a linear transformation of
the said space onto a plane II passing through the origin and having a unit
normal n, with the properties:

P2=P, Pn=0 (2.1a)

Any matrix with the first property above is termed idempotent. For n x n
matrices, it is sometimes necessary to indicate the lowest integer [ for which
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an analogous relation follows, i.e., for which P! = P. In this case, the matrix
is said to be idempotent of degree [.

Clearly, the projection of a position vector p, denoted by p’, onto a plane
IT of unit normal n, is p itself minus the component of p along n, i.e.,

p'=p-—n(n'p) (2.1b)

where the superscript T denotes either vector or matrix transposition and
n”p is equivalent to the usual dot product n - p.

Now, the identity matrix 1 is defined as the mapping of a vector space
V into itself leaving every vector v of V unchanged, i.e.,

lv=v (2.2)
Thus, p’, as given by eq.(2.1b), can be rewritten as

“p (2:3)

and hence, the orthogonal projection P onto Il can be represented as

p =1p—nn‘p=(1-nn

P=1-nn? (2.4)

where the product nn? amounts to a 3 x 3 matrix.

Now we turn to reflections. Here we have to take into account that re-
flections occur frequently accompanied by rotations, as yet to be studied.
Since reflections are simpler to represent, we first discuss these, rotations
being discussed in full detail in Section 2.3. What we shall discuss in this
section is pure reflections, i.e., those occurring without any concomitant
rotation. Thus, all reflections studied in this section are pure reflections,
but for the sake of brevity, they will be referred to simply as reflections.

A reflection R of £ onto a plane IT passing through the origin and
having a unit normal n is a linear transformation of the said space into
itself such that a position vector p is mapped by R into a vector p’ given
by

p =p-2nn’p=(1-2nnT)p

Thus, the reflection R can be expressed as
R =1-2nn’ (2.5)

From eq.(2.5) it is then apparent that a pure reflection is represented by a
linear transformation that is symmetric and whose square equals the iden-
tity matrix, i.e., R? = 1. Indeed, symmetry is apparent from the equation
above; the second property is readily proven below:

R? = (1 — 2nn7)(1 — 2nn7)

=1—2nn” — 2nn” 4 4(nn”)(nn”) = 1 — 4nn” + 4n(n"n)n”
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which apparently reduces to 1 because n is a unit vector. Note that from
the second property above, we find that pure reflections observe a further
interesting property, namely,

R =R

i.e., every pure reflection equals its inverse. This result can be understood
intuitively by noticing that, upon doubly reflecting an image using two
mirrors, the original image is recovered. Any square matrix which equals
its inverse will be termed self-inverse henceforth.

Further, we take to deriving the orthogonal decomposition of a given
vector v into two components, one along and one normal to a unit vector
e. The component of v along e, termed here the axial component, v|—read
v-par—is simply given as

v =ee'v (2.6a)

while the corresponding normal component, v, —read v-perp—is simply
the difference v — v |, i.e.,

vi=v-v=(1- eel)v (2.6b)

the matrix in parentheses in the foregoing equation being rather frequent
in kinematics. This matrix will appear when studying rotations.

Further concepts are now recalled: The basis of a vector space V is a set
of linearly independent vectors of V, {v;}7, in terms of which any vector v
of V can be expressed as

V=q1V] +Qavy+ -+ apVa, (2.7)

where the elements of the set {«;}] are all elements of the field over which
V is defined, i.e., they are real numbers in the case at hand. The number
n of elements in the set B = {v;}7 is called the dimension of V. Note that
any set of n linearly independent vectors of V can play the role of a basis of
this space, but once this basis is defined, the set of real coefficients {a;}}
for expressing a given vector v is unique.

Let U and V be two vector spaces of dimensions m and n, respectively,
and L a linear transformation of & into V, and define bases By and By for
U and V as

By ={u;}1", By ={vi}{ (2.8)

Since each Lu; is an element of V, it can be represented uniquely in terms
of the vectors of By, namely, as

Luj :lle1+12jV2+"'+lnjVn7 ]: 17~'~am (29)

Consequently, in order to represent the images of the m vectors of By,
namely, the set {Lu,;}{", n x m real numbers l;;, for i = 1,...,n and
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j =1,...,m, are necessary. These real numbers are now arranged in the
n X m array [L]gg defined below:

lin liz -+ lim

B, lor lo -+ lom
1 (2.10)

lnl ln2 e lnm

The foregoing array is thus called the matriz representation of L with
respect to By and By . We thus have an important definition, namely,

Definition 2.2.1 The jth column of the matrix representation of L with
respect to the bases By and By is composed of the n real coefficients l;; of
the representation of the image of the jth vector of By in terms of By .

The notation introduced in eq.(2.10) is rather cumbersome, for it involves
one subscript and one superscript. Moreover, each of these is subscripted.
In practice, the bases involved are self-evident, which makes an explicit
mention of these unnecessary. In particular, when the mapping L is a map-
ping of U onto itself, then a single basis suffices to represent L in matrix
form. In this case, its bracket will bear only a subscript, and no superscript,
namely, [L]gz. Moreover, we will use, henceforth, the concept of basis and
coordinate frame interchangeably, since one implies the other.

Two different bases are unavoidable when the two spaces under study
are physically distinct, which is the case in velocity analyses of manipu-
lators. As we will see in Chapter 4, in these analyses we distinguish be-
tween the velocity of the manipulator in Cartesian space and that in the
joint-rate space. While the Cartesian-space velocity—or Cartesian veloc-
ity, for brevity—consists, in general, of a 6-dimensional vector containing
the 3-dimensional angular velocity of the end-effector and the translational
velocity of one of its points, the latter is an n-dimensional vector. More-
over, if the manipulator is coupled by revolute joints only, the units of the
joint-rate vector are all s~1, whereas the Cartesian velocity contains some
components with units of s™! and others with units of ms™*.

Further definitions are now recalled. Given a mapping L of an n-di-
mensional vector space U into the n-dimensional vector space V, a nonzero
vector e that is mapped by L into a multiple of itself, e, is called an eigen-
vector of L, the scalar A being called an eigenvalue of L. The eigenvalues
of L are determined by the equation

det(A\L — L) =0 (2.11)

Note that the matrix A1 — L is linear in A, and since the determinant of
an n X n matrix is a homogeneous nth-order function of its entries, the
left-hand side of eq.(2.11) is an nth-degree polynomial in A. The foregoing
polynomial is termed the characteristic polynomial of L. Hence, every n xn
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matrix L has n complex eigenvalues, even if L is defined over the real field.
If it is, then its complex eigenvalues appear in conjugate pairs. Clearly,
the eigenvalues of L are the roots of its characteristic polynomial, while
eq.(2.11) is called the characteristic equation of L.

Example 2.2.1 What is the representation of the reflection R of £2 into
itself, with respect to the z-y plane, in terms of unit vectors parallel to the
X, Y, Z axes that form a coordinate frame F?

Solution: Note that in this case,d =V = & and, hence, it is not necessary
to use two different bases for & and V. Now, let i, j, k, be unit vectors
parallel to the X, Y, and Z axes of a frame F. Clearly,

Ri=1i
Rj=]
Rk = —k

Thus, the representations of the images of i, j and k under R, in F, are

1 0 0
[RiJr= (0], [Rj]lr=1|1|, [Rkl]g=|0
0 0 -1

where subscripted brackets are used to indicate the representation frame.
Hence, the matrix representation of R in F, denoted by [R ]z, is

10 0
[R]F=|0 1 0
00 -1

2.3 Rigid-Body Rotations

A linear isomorphism, i.e., a one-to-one linear transformation mapping a
space V onto itself, is called an isometry if it preserves distances between
any two points of V. If u and v are regarded as the position vectors of two
such points, then the distance d between these two points is defined as

d=y/(u—v)T(u—v) (2.12)
The volume V of the tetrahedron defined by the origin and three points
of the 3-dimensional FEuclidean space of position vectors u, v, and w is

obtained as one-sixth of the absolute value of the double mized product of
these three vectors,

1 1
Eg|uxv~w|:6|det[u v w]| (2.13)
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i.e., if a 3x3 array [A] is defined in terms of the components of u, v, and
w, in a given basis, then the first column of [A] is given by the three
components of u, the second and third columns being defined analogously.

Now, let Q be an isometry mapping the triad {u, v, w} into {u’, v/, w'}.
Moreover, the distance from the origin to the points of position vectors u,
v, and w is given simply as ||ul|, ||v||, and ||w]|, which are defined as

[u] = vuTu, |v][=vvlv, |[w]=vwiw (2.14)
Clearly,
'l = ffall, VI =L Wl = lwli (2.152)
and
det[u’ v/ w']==Hdet[u v w] (2.15b)

If, in the foregoing relations, the sign of the determinant is preserved, the
isometry represents a rotation; otherwise, it represents a reflection. Now,
let p be the position vector of any point of £2, its image under a rotation
Q being p’. Hence, distance preservation requires that

T
p'p=p p (2.16)
where
P =Qp (2.17)
condition (2.16) thus leading to
Q'Q=1 (2.18)

where 1 was defined in Section 2.2 as the identity 3 x 3 matriz, and hence,
eq.(2.18) states that Q is an orthogonal matriz. Moreover, let T and T
denote the two matrices defined below:

T=[u v w], T'=[u Vv W] (2.19)

from which it is clear that
T =QT (2.20)

Now, for a rigid-body rotation, eq.(2.15b) should hold with the positive
sign, and hence,
det(T) = det(T") (2.21a)

and, by virtue of eq.(2.20), we conclude that

det(Q) = +1 (2.21Db)

Therefore, Q is a proper orthogonal matriz, i.e., it is a proper isometry.
Now we have

Theorem 2.3.1 The eigenvalues of a proper orthogonal matriz Q lie on
the unit circle centered at the origin of the complex plane.

TLFeBOOK



2.3 Rigid-Body Rotations 27

Proof: Let A be one of the eigenvalues of Q and e the corresponding eigen-
vector, so that
Qe = de (2.22)

In general, Q is not expected to be symmetric, and hence, A is not neces-
sarily real. Thus, A is considered complex, in general. In this light, when
transposing both sides of the foregoing equation, we will need to take the
complex conjugates as well. Henceforth, the complex conjugate of a vector
or a matrix will be indicated with an asterisk as a superscript. As well, the
conjugate of a complex variable will be indicated with a bar over the said
variable. Thus, the transpose conjugate of the latter equation takes on the
form

e*'Q* = le* (2.23)
Multiplying the corresponding sides of the two previous equations yields
e*Q*Qe = Me*e (2.24)

However, Q has been assumed real, and hence, Q* reduces to QT, the
foregoing equation thus reducing to

e*Q7Qe = \e'e (2.25)

But Q is orthogonal by assumption, and hence, it obeys eq.(2.18), which
means that eq.(2.25) reduces to

e'e = [\%e’e (2.26)

where | - | denotes the modulus of the complex variable within it. Thus, the
foregoing equation leads to
N2 =1 (2.27)

thereby completing the intended proof. As a direct consequence of Theo-
rem 2.3.1, we have

Corollary 2.3.1 A proper orthogonal 3 X 3 matrix has at least one eigen-
value that is +1.

Now, let e be the eigenvector of Q associated with the eigenvalue +1.
Thus,
Qe=e (2.28)

What eq.(2.28) states is summarized as a theorem below:

Theorem 2.3.2 (Euler, 1776) A rigid-body motion about a point O leaves
fizxed a set of points lying on a line L that passes through O and is parallel
to the eigenvector e of Q associated with the eigenvalue +1.

A further result, that finds many applications in robotics and, in general,
in system theory, is given below:
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Theorem 2.3.3 (Cayley-Hamilton) Let P(\) be the characteristic poly-
nomial of an n X n matriz A, i.e.,

P(A) =det(A\l — A) = A" + a1 A"t ag ) + ag (2.29)
Then A satisfies its characteristic equation, i.e.,
A" +a, A" T+ @A +a0l =0 (2.30)
where O is the n X n zero matrix.

Proof: See (Kaye and Wilson, 1998).

What the Cayley-Hamilton Theorem states is that any power p > n of
the n x n matrix A can be expressed as a linear combination of the first n
powers of A—the Oth power of A is, of course, the n x n identity matrix
1. An important consequence of this result is that any analytic matrix
function of A can be expressed not as an infinite series, but as a sum,
namely, a linear combination of the first n powersof A: 1, A, ..., A» 1. An
analytic function f(x) of a real variable x is, in turn, a function with a series
expansion. Moreover, an analytic matrix function of a matrix argument A
is defined likewise, an example of which is the exponential function. From
the previous discussion, then, the exponential of A can be written as a
linear combination of the first n powers of A. It will be shown later that
any proper orthogonal matrix Q can be represented as the exponential of a
skew-symmetric matrix derived from the unit vector e of Q, of eigenvalue
+1, and the associated angle of rotation, as yet to be defined.

2.8.1 The Cross-Product Matrix

Prior to introducing the matrix representation of a rotation, we will need a
few definitions. We will start by defining the partial derivative of a vector
with respect to another vector. This is a matrix, as described below: In
general, let u and v be vectors of spaces U and V, of dimensions m and
n, respectively. Furthermore, let ¢ be a real variable and f be real-valued
function of ¢, u = u(t) and v = v(u(t)) being m- and n-dimensional vector
functions of t as well, with f = f(u,v). The derivative of u with respect
to t, denoted by u(t), is an m-dimensional vector whose ith component is
the derivative of the ith component of u in a given basis, u;, with respect
to ¢. A similar definition follows for v(¢). The partial derivative of f with
respect to u is an m-dimensional vector whose ith component is the partial
derivative of f with respect to u;, with a corresponding definition for the
partial derivative of f with respect to v. The foregoing derivatives, as all
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other vectors, will be assumed, henceforth, to be column arrays. Thus,

af /Ou of/0n
of af /Ouz of af /Ovz
Of | Oum of/ovy,

Furthermore, the partial derivative of v with respect to u is an n x m
array whose (i, j) entry is defined as dv;/0u;, i.e.,

3@1/8%1 6@1/81@ e 8@1/8um

v Ova/Oug  OvpfOup -+ Ova/Oupm,

== : : ) : (2.32)
Ovn [Ous Qv [Oup -+ Ov,/Oupm,

Hence, the total derivative of f with respect to u can be written as

df _ of of
du_ ou <8u) v (2:33)

If, moreover, f is an explicit function of ¢, i.e., if f = f(u, v, ¢) and
v = v(u,t), then, one can write the total derivative of f with respect to ¢

as
df _of _(of\"du (of\Tov (of\" ovdu
a ot <8u) @ (av> " (8v> a2

The total derivative of v with respect to ¢ can be written, likewise, as

dv. 0v 0Ovdu
iy + udt (2.35)

Example 2.3.1 Let the components of v and x in a certain reference
frame F be given as

U1 T1
[ViF=|v2 |, [x]Fp=|a2 (2.36a)
%] €3
Then ~
VX3 — V32
[vXxx]|r=|v3zs —vi23 (2.36D)
_’lez — V2X1
Hence,

=| u3 0 -—-u (2.36¢)
—V2 U1 0

[M} 0 —-vz w2
F
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Henceforth, the partial derivative of the cross product of any 3-dimen-
sional vectors v and x will be denoted by the 3 x 3 matrix V. For obvious
reasons, V is termed the cross-product matriz of vector v. Sometimes the
cross-product matrix of a vector v is represented as v, but we do not follow
this notation for the sake of consistency, since we decided at the outset
to represent matrices with boldface uppercase letters. Thus, the foregoing
cross product admits the alternative representations

vXxx=Vx (2.37)
Now, the following is apparent:

Theorem 2.3.4 The cross-product matriz A of any 3-dimensional vector
a 1s skew-symmetric, i.e.,

AT =-A
and, as a consequence,
ax (axb)=A% (2.38)
where A? can be readily proven to be
A? = —||a||?1 + aa” (2.39)
with || - || denoting the Euclidean norm of the vector inside it.

Note that given any 3-dimensional vector a, its cross-product matrix A
is uniquely defined. Moreover, this matrix is skew-symmetric. The converse
also holds, i.e., given any 3 x 3 skew-symmetric matrix A, its associated
vector is uniquely defined as well. This result is made apparent from Ex-
ample 2.3.1 and will be discussed further when we define the axial vector
of an arbitrary 3 x 3 matrix below.

2.8.2 The Rotation Matriz

In deriving the matrix representation of a rotation, we should recall The-
orem 2.3.2, which suggests that an explicit representation of Q in terms
of its eigenvector e is possible. Moreover, this representation must contain
information on the amount of the rotation under study, which is nothing
but the angle of rotation. Furthermore, line £, mentioned in Euler’s The-
orem, is termed the axis of rotation of the motion of interest. In order to
derive the aforementioned representation, consider the rotation depicted in
Fig. 2.1 of angle ¢ about line L.
From Fig. 2.1(a), clearly, one can write

p =0G + QP (2.40)

—
where OQ) is the axial component of p along vector e, which is derived as
in eq.(2.6a), namely,

@: ee’p (2.41)
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(b)

FIGURE 2.1. Rotation of a rigid body about a line.

Furthermore, from Fig. 2.1b,
—_— - —_—
QP'= (cos ) QP +(sing) QP” (2.42)

—
with QP being nothing but the normal component of p with respect to e,
as introduced in eq.(2.6b), i.e.,

—
QP=(1-ee)p (2.43)
—_
and QP” given as
—_
QP'=exp=Ep (2.44)

Substitution of egs.(2.44) and (2.43) into eq.(2.42) leads to

SN
QP'= cos¢(1 — ee?)p + sin pEp (2.45)
If now eqgs.(2.41) and (2.45) are substituted into eq.(2.40), one obtains
p’ = eelp + cos p(1 — ee)p + sin pEp (2.46)
Thus, eq.(2.40) reduces to
p’ = [ee” + cosp(1 — ee’) + sin GE]p (2.47)

From eq.(2.47) it is apparent that p’ is a linear transformation of p, the
said transformation being given by the matrix inside the brackets, which
is the rotation matrix Q sought, i.e.,

Q = ee” + cos (1 — ee’) + sin pE (2.48)
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A special case arises when ¢ = 7,
Q=-1+2ee”, forop=n (2.49)

whence it is apparent that Q is symmetric if ¢ = 7. Of course, Q becomes
symmetric also when ¢ = 0, but this is a rather obvious case, leading to
Q = 1. Except for these two cases, the rotation matrix is not symmetric.
However, under no circumstance does the rotation matrix become skew-
symmetric, for a 3 x 3 skew-symmetric matrix is by necessity singular, which
contradicts the property of proper orthogonal matrices of eq.(2.21b).

Now one more representation of Q in terms of e and ¢ is given. For a
fixed axis of rotation, i.e., for a fixed value of e, the rotation matrix Q is
a function of the angle of rotation ¢, only. Thus, the series expansion of Q
in terms of ¢ is

Q6) = QM)+ QO)6 + Q" (06 + -+ QPO)6* + -+ (250)

where the superscript (k) stands for the kth derivative of Q with respect to
¢. Now, from the definition of E, one can readily prove the relations below:

ECHD — ()RR, E? = (—1)*(1 — ee”) (2.51)
Furthermore, using eqs.(2.48) and (2.51), one can readily show that
Q"W (0) = E* (2.52)

with E defined already as the cross-product matrix of e. Moreover, from
eqs.(2.50) and (2.52), Q(¢) can be expressed as

Q(cb)=1+E¢+%E2¢2+-~-+%E’“¢’“+~-~

whose right-hand side is nothing but the exponential of E¢, i.e.,
Q(¢p) = ™ (2.53)

Equation (2.53) is the exponential representation of the rotation matrix
in terms of its natural invariants, e and ¢. The foregoing parameters are
termed invariants because they are clearly independent of the coordinate
axes chosen to represent the rotation under study. The adjective natural is
necessary to distinguish them from other invariants that will be introduced
presently. This adjective seems suitable because the said invariants stem
naturally from Euler’s Theorem.
Now, in view of egs.(2.51), the above series can be written as

Qo) =1+ [%qﬁz + %d)“ — @(—1)%2’“ + - } (1-ee”)

2k +1)
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The series inside the first brackets is apparently cos¢ — 1, while that in
the second is sin ¢. We have, therefore, an alternative representation of Q,
namely,

Q =1 +singE + (1 — cos ¢)E? (2.54)

which is an expected result in view of the Cayley-Hamilton Theorem.

The Canonical Forms of the Rotation Matrix

The rotation matrix takes on an especially simple form if the axis of rotation
coincides with one of the coordinate axes. For example, if the X axis is
parallel to the axis of rotation, i.e., parallel to vector e, in a frame that we
will label X', then, we will have

1 0 0 O 0 O 0
lelx={0|, [Elx=[0 0 —1|, [E*lx={0 -1 0
0 0 1 0 0o 0 -1

In the X-frame, then,

1 0 0

[Qlx=|0 cos¢ —sing (2.55a)
0 sing cos¢

Likewise, if we define the coordinate frames ) and Z so that their Y and
7 axes, respectively, coincide with the axis of rotation, then

[ cos¢p 0 sing ]

(Qly = 0 1 0 (2.55Db)
| —sing 0 cos¢ |
and
[cos¢p —sing 0]
[Qlz=|sing cos¢p O (2.55¢)
0 0 1

The representations of eqs.(2.55a—c) can be called the X-, Y-, and Z-
canonical forms of the rotation matrix. In many instances, a rotation matrix
cannot be derived directly from information on the original and the final
orientations of a rigid body, but the overall motion can be readily decom-
posed into a sequence of simple rotations taking the above canonical forms.
An application of canonical forms lies in the parameterization of rotations
by means of Fuler angles, consisting of three successive rotations, ¢, 6
and v, about one axis of a coordinate frame. Euler angles are introduced
in Exercise 2.18, and applications thereof in Exercises 2.35, 2.36, 3.9, and
3.10.
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2.3.8 The Linear Invariants of a 3 x 3 Matrix

Now we introduce two linear invariants of 3 x 3 matrices. Given any 3 X 3
matrix A, its Cartesian decomposition, the counterpart of the Cartesian
representation of complex numbers, consists of the sum of its symmetric
part, Ag, and its skew-symmetric part, Agg, defined as

As=~(A+AT), Ags= %(A _ AT (2.56)

The azxial vector or for brevity, the vector of A, is the vector a with the

property
axv= Assv (257)

for any 3-dimensional vector v. The trace of A is the sum of the eigenvalues
of Ag, which are real. Since no coordinate frame is involved in the above
definitions, these are invariant. When calculating these invariants, of course,
a particular coordinate frame must be used. Let us assume that the entries
of matrix A in a certain coordinate frame are given by the array of real
numbers a;j, for 4,5 = 1,2, 3. Moreover, let a have components a;, for ¢ =
1,2, 3, in the same frame. The above-defined invariants are thus calculated
as

1 | @82 —azs
vect(A) =a= 5 |as—as |, tr(A) = a1 + aze + ass (2.58)
az1 — G12

From the foregoing definitions, the following is now apparent:

Theorem 2.3.5 The vector of a 3 X 3 matrix vanishes if and only if it is
symmetric, whereas the trace of an n X n matriz vanishes if the matriz is
skew symmetric.

Other useful relations are given below. For any 3-dimensional vectors a
and b,

1
vect(ab?) = —5ax b (2.59)
and
tr(ab?) = a’b (2.60)

The second relation is quite straightforward, but the first one is less so; a
proof of the first relation is given below: Let w denote vect(ab”). From
Definition (2.57), for any 3-dimensional vector v,

wxv=Wv (2.61)

where W is the skew-symmetric component of ab”, namely,

1
W = §(abT — ba’) (2.62)
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and hence,

Wv=wxv= %[(bTV)a — (aTv)b] (2.63)

Now, let us compare the last expression with the double cross product
(b x a) x v, namely,

(bxa)xv=(blv)a—(alv)b (2.64)
from which it becomes apparent that

w = %b X a (2.65)

and the aforementioned relation readily follows.

Note that Theorem 2.3.5 states a necessary and sufficient condition for
the vanishing of the vector of a 3 x 3 matrix, but only a sufficient condition
for the vanishing of the trace of an n x n matrix. What this implies is that
the trace of an n X n matrix can vanish without the matrix being necessar-
ily skew symmetric, but the trace of a skew-symmetric matrix necessarily
vanishes. Also note that whereas the vector of a matrix is defined only for
3 x 3 matrices, the trace can be defined more generally for n x n matrices.

2.3.4  The Linear Invariants of a Rotation

From the invariant representations of the rotation matrix, eqs.(2.48) and
(2.54), it is clear that the first two terms of Q, ee” and cos ¢(1 — ee’), are
symmetric, whereas the third one, sin ¢E, is skew-symmetric. Hence,

vect(Q) = vect(singp E) =singe (2.66)
whereas

tr(Q) = trfee” + cos p(1 — ee’)] = eTe + cos (3 —eTe) = 1 + 2cos b

(2.67)
from which one can readily solve for cos ¢, namely,
t -1
cos ¢ = r(% (2.68)

Henceforth, the vector of Q will be denoted by q and its components in a
given coordinate frame by ¢1, g2, and ¢3. Moreover, rather than using tr(Q)
as the other linear invariant, go = cos ¢ will be introduced to refer to the
linear invariants of the rotation matriz. Hence, the rotation matrix is fully
defined by four scalar parameters, namely {g;}3, which will be conveniently
stored in the 4-dimensional array A, defined as

A= [qla q2, 43, QO]T (269)
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Note, however, that the four components of A are not independent, for
they obey the relation

lal|?2 + & =sin® ¢+ cos? ¢ = 1 (2.70)
Thus, eq.(2.70) can be written in a more compact form as
IMZ =i +d5+d5+a5=1 (2.71)

What eq.(2.70) states has a straightforward geometric interpretation: As
a body rotates about a fixed point, its motion can be described in a 4-
dimensional space by the motion of a point of position vector A that moves
on the surface of the unit sphere centered at the origin of the said space.
Alternatively, one can conclude that, as a rigid body rotates about a fixed
point, its motion can be described in a 3-dimensional space by the motion
of position vector q, which moves within the unit solid sphere centered at
the origin of the said space. Given the dependence of the four components
of vector A, one might be tempted to solve for, say, go from eq.(2.70) in
terms of the remaining components, namely, as

to=+/1- (& +B+d) (2.72)

This, however, is not a good idea because the sign ambiguity of eq.(2.72)
leaves angle ¢ undefined, for gp is nothing but cos¢. Moreover, the three
components of vector q alone, i.e., sin ¢ e, do not suffice to define the ro-
tation represented by Q. Indeed, from the definition of q, one has

sing=tlal, e=a/sin¢ (2.73)

from which it is clear that q alone does not suffice to define the rotation
under study, since it leaves angle ¢ undefined. Indeed, the vector of the
rotation matrix provides no information about cos¢. Yet another repre-
sentation of the rotation matrix is displayed below, in terms of its linear
invariants, that is readily derived from representations (2.48) and (2.54),
namely,

q” aq”
Q= +qo (1 > +Q (2.74a)
IMP lall?
in which Q is the cross-product matrix of vector q, i.e.,
5 - 9axx)
Q= ox

for any vector x.
Note that by virtue of eq.(2.70), the representation of Q given in eq.(2.74a)
can be expressed alternatively as

aq’

1+ qo

Q=ql1+Q+ (2.74b)
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From either eq.(2.74a) or eq.(2.74b) it is apparent that linear invariants
are not suitable to represent a rotation when the associated angle is either
7 or close to it. Note that a rotation through an angle ¢ about an axis
given by vector e is identical to a rotation through an angle —¢ about an
axis given by vector —e. Hence, changing the sign of e does not change the
rotation matrix, provided that the sign of ¢ is also changed. Henceforth,
we will choose the sign of the components of e so that sin¢g > 0, which is
equivalent to assuming that 0 < ¢ < 7. Thus, sin ¢ is calculated as ||q||,
while cos ¢ as indicated in eq.(2.68). Obviously, e is simply q normalized,
i.e., q divided by its Euclidean norm.

2.3.5 FExamples

The examples below are meant to stress the foregoing ideas on rotation
invariants.

Example 2.3.2 If [e]r = [V/3/3, —v/3/3, V3/3]T in a given coordinate
frame F and ¢ = 120°, what is Q in F?

Solution: From the data,

1
cos ¢ = 5 sin ¢ = @

2
Moreover, in the F frame,
1 1 -1 1
[eel]p==|-1|[1 -1 1]==|-1 1 -1
1 1 -1 1
and hence,
2 1 -1 0O -1 -1
1 3
[1-ee’lz=|1 2 1|, [E]fz% 1 0 -1
-1 1 2 1 1 0
Thus, from eq.(2.48),
1 1 -1 1 1 1 -1 3 0o -1 -1
QF=g|-1 1 —1]-c11 2 1 /+2/1 0 -1
1 -1 1 -1 1 2 1 1 0
ie.,
0 -1 0
Qr={0 0 -1
1 0 0
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Example 2.3.3 The matriz representation of a linear transformation Q
in a certain reference frame F is given below. Find out whether the said
transformation is a rigid-body rotation. If it is, find its natural invariants.

0 1 0
[Qlr=[0 0 1
1 0 0

Solution: First the given array is tested for orthogonality:
010 0 0 1 100
[Qls[Q"]z=]0 0 1| |1 0 O|l=|0 1 0
100 010 0 0 1

thereby showing that the said array is indeed orthogonal. Thus, the linear
transformation could represent a reflection or a rotation. In order to de-
cide which one this represents, the determinant of the foregoing array is
computed:

det(Q) = +1

which makes apparent that Q indeed represents a rigid-body rotation. Now,
its natural invariants are computed. The unit vector e can be computed
as the eigenvector of Q associated with the eigenvalue +1. This requires,
however, finding a nontrivial solution of a homogeneous linear system of
three equations in three unknowns. This is not difficult to do, but it is
cumbersome and is not necessary. In order to find e and ¢, it is recalled
that vect(Q) = sin ¢ e, which is readily computed with differences only, as
indicated in eq.(2.58), namely,

1 1
[q]fzsin¢[e]f:—§ 1
1

Under the assumption that sin¢ > 0, then,

| V3
sin 6 = [lal| = £

and hence,

and
¢ =60° or 120°
The foregoing ambiguity is resolved by the trace of Q, which yields
1

14+2cos¢p=tr(Q) =0, cos¢= -3
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The negative sign of cos ¢ indicates that ¢ lies in the second quadrant—it
cannot lie in the third quadrant because of our assumption about the sign
of sin ¢—and hence

¢ =120°

Example 2.3.4 A coordinate frame X1, Y1, Z1 is rotated into a configu-
ration Xo, Yo, Zo in such a way that

Xo=-Y1, Yo=7, Z>=-X;

Find the matriz representation of the rotation in X1, Y1, Z1 coordinates.
From this representation, compute the direction of the axis and the angle
of rotation.

Solution: Let i1, j1, k1 be unit vectors parallel to X1, Y1, Z1, respectively,
iz, j2, ko being defined correspondingly. One has

ip=-j1, Jjo=ki, ko=-i1

and hence, from Definition 2.2.1, the matrix representation [Q]1 of the
rotation under study in the X1, Y1, Z; coordinate frame is readily derived:

0 0 -1
[Qi=|-1 0 0
0 1 0

from which the linear invariants follow, namely,

1

[q}lz[vect(Q)h:sinqﬁ[e}l:% 71 , cosqﬁ:%[tr(Q)fl]:f%

Under our assumption that sin¢ > 0, we obtain

ﬁ [e} _ [q]l _ﬁ _11
2 YTsing 3|

sing = [lq| =

From the foregoing values for sin ¢ and cos ¢, angle ¢ is computed uniquely
as
¢ =120°

Example 2.3.5 Show that the matriz P given in eq.(2.4) satisfies proper-
ties (2.1a).

Solution: First, we prove idempotency, i.e.,

P2 =(1—-nn?)(1 — nn?)

=1-—2nn” +non"nn” =1 —nn” =P
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thereby showing that P is, indeed, idempotent. Now we prove that n is an
eigenvector of P with eigenvalue, 0 and hence, n spans the nullspace of P.
In fact,

Pn=(1-nmn')n=n-nn"n=n-n=0

thereby completing the proof.

Example 2.3.6 The representations of three linear transformations in a
given coordinate frame F are given below:

2 1 o2
-1 -2 2]
1 (2 1 17
(Blr=5|1 2 -1
|1 -1 2 |

1 (1 2 2
[C];::§ 2 1 =2
2 -2 1 |

One of the foregoing matrices is an orthogonal projection, one is a reflec-
tion, and one is a rotation. Identify each of these and give its invariants.

Solution: From representations (2.48) and (2.54), it is clear that a rotation
matrix is symmetric if and only if sin¢ = 0. This means that a rotation
matrix cannot be symmetric unless its angle of rotation is either 0 or m,
i.e., unless its trace is either 3 or —1. Since [B |z and [ C | are symmetric,
they cannot be rotations, unless their traces take on the foregoing values.
Their traces are thus evaluated below:

tr(B) =2, tr(C)=1

which thus rules out the foregoing matrices as suitable candidates for ro-
tations. Thus, A is the only candidate left for proper orthogonality, its
suitability being tested below:

1 [9 00
[AAT]f:§ 0 9 0|, det(A)=+1
00 9

and hence, A indeed represents a rotation. Its natural invariants are next
computed:
-1
. 1 1 1 1
single]r = [vect(A)]r==1] 1 |, cosp==[tr(A)—1]==(2-1)==
2 1 2 2 2
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We assume, as usual, that sin¢ > 0. Then,

sin g = ||vect(A)|| = ?, ie., ¢ =60°
Moreover,
[vect(A)r V3 -1
el = TeBhE V3
||vect(A)]| 31

Now, one matrix of B and C is an orthogonal projection and the other is
a reflection. To be a reflection, a matrix has to be orthogonal. Hence, each
matrix is tested for orthogonality:

16 3 3 L9 00
[BB']r=5 |3 6 -3|=[B’lr=[Bls [CCT]r=5 |0 9 0
3 -3 6 00 9

thereby showing that C is orthogonal and B is not. Furthermore, det(C) =
—1, which confirms that C is a reflection. Now, if B is a projection, it is
bound to be singular and idempotent. From the orthogonality test it is clear
that it is idempotent. Moreover, one can readily verify that det(B) = 0,
and hence B is singular. The unit vector [n]z = [n1, n2, n3]? spanning
its nullspace is determined from the general form of projections, eq.(2.1a),
whence it is apparent that

nn” =1-B

Therefore, if a solution n has been found, then —n is also a solution, i.e., the
problem admits two solutions, one being the negative of the other. These two
solutions are found below, by first rewriting the above system of equations
in component form:

nf ninz NinN3 1 -1 -1
nin2 n% nong | ==|—-1 1 1
ning nna n% -1 1 1

Now, from the diagonal entries of the above matrices, it is apparent that the
three components of n have identical absolute values, i.e., v/3 /3. Moreover,
from the off-diagonal entries of the same matrices, the second and third
components of n bear equal signs, but we cannot tell whether positive or
negative, because of the quadratic nature of the problem at hand. The two
solutions are thus obtained as

1
nz:l:@ -1
31

which is the only invariant of B.
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We now look at C, which is a reflection, and hence, bears the form
C=1-2nn"

In order to determine n, note that

or in component form,

n% ning nNiN3 1 -1 -1
nino n% nonz | =—-1—-1 1 1
ning nn3 n% -1 1 1

which is identical to the matrix equation derived in the case of matrix B.
Hence, the solution is the same, i.e.,

V3 1

n=+—|-1
3

thereby finding the invariant sought.

Example 2.3.7 The vector and the trace of a rotation matriz Q, in a
certain reference frame F, are given as

-1

vect(Q)]r = 5 AOECE

Find the matriz representation of Q in the given coordinate frame and in
a frame having its Z-axis parallel to vect(Q).

Solution: We shall resort to eq.(2.74a) to determine the rotation matrix
Q. The quantities involved in the aforementioned representation of Q are
readily computed, as shown below:

1 -1 1 0 1

o1 , 3 1 !
1 -1 1 -1 -1 0

from which Q follows:

in the given coordinate frame. Now, let Z denote a coordinate frame whose
Z-axis is parallel to q. Hence,

0 0 00 0 -1 0

V3 3 = V3
lalz=-7 0], [aa"]z=7{0 0 0f, [Qlz==-|1 0 0
1 0 01 0 0 O
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which readily leads to

/2 —V/3/2 0
[Qlz=|Vv3/2 1/2 0
0 0 1

and is in the Z-canonical form.

Example 2.3.8 A procedure for trajectory planning produced a matrix rep-
resenting a rotation for a certain pick-and-place operation, as shown below:

0433 —0.500 =z
Q=] = 0866 —0.433
0866  y 0.500

where x, y, and z are entries that are unrecognizable due to failures in the
printing hardware. Knowing that Q 1is in fact a rotation matriz, find the
missing entries.

Solution: Since Q is a rotation matrix, the product P = Q7' Q should equal
the 3 x 3 identity matrix, and det(Q) should be +1. The foregoing product
is computed first:

0.437 + 22 0433(x —2z—1) 0.5(—y+2)+0.375
[Plr= * 0.937 + a2 0.866(x +y) — 0.216
* * 1+ y2

where the entries below the diagonal have not been printed because the
matrix is symmetric. Upon equating the diagonal entries of the foregoing
array to unity, we obtain

x==£0.250, y=0, z==0.750
while the vanishing of the off-diagonal entries leads to
x=0.250, y=0, z=-0.750

which can be readily verified to produce det(Q) = +1.

2.3.6 The Euler-Rodrigues Parameters

The invariants defined so far, namely, the natural and the linear invariants
of a rotation matrix, are not the only ones that are used in kinematics.
Additionally, one has the Euler parameters, or Euler-Rodrigues parameters,
as Cheng and Gupta (1989) propose that they should be called, represented
here as r and ro. The Euler-Rodrigues parameters are defined as

r = sin (g) e, Trg=CoS (g) (2.75)
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One can readily show that Q takes on a quite simple form in terms of
the Euler-Rodrigues parameters, namely,

Q= (10> —r-r)1 +2rr” + 2R (2.76)
in which R is the cross-product matrix of r, i.e.,

O(r x x)

R
ox

for arbitrary x.

Note that the Euler-Rodrigues parameters appear quadratically in the
rotation matrix. Hence, these parameters cannot be computed with sim-
ple sums and differences. A closer inspection of eq.(2.74b) reveals that the
linear invariants appear almost linearly in the rotation matrix. This means
that the rotation matrix, as given by eq.(2.74b), is composed of two types
of terms, namely, linear and rational. Moreover, the rational term is com-
posed of a quadratic expression in the numerator and a linear expression
in the denominator, the ratio thus being linear, which explains why the
linear invariants can be obtained by sums and differences from the rotation
matrix.

The relationship between the linear invariants and the Euler-Rodrigues
parameters can be readily derived, namely,

1+ qo q
=+ = — 2.77
To 2 ) r 27"07 (b?éﬂ' ( )

Furthermore, note that, if ¢ = m, then ro = 0, and formulae (2.77) fail
to produce r. However, from eq.(2.75),

Forg=m r=e, 1r9=0 (2.78)

We now derive invariant relations between the rotation matrix and the
Euler-Rodrigues parameters. To do this, we resort to the concept of ma-
trix square root. As a matter of fact, the square root of a square matrix is
nothing but a particular case of an analytic function of a square matrix,
discussed in connection with Theorem 2.3.3 and the exponential represen-
tation of the rotation matrix. Indeed, the square root of a square matrix is
an analytic function of that matrix, and hence, admits a series expansion in
powers of the matrix. Moreover, by virtue of the Cayley-Hamilton Theorem
(Theorem 2.3.3) the said square root should be, for a 3 x 3 matrix, a linear
combination of the identity matrix 1, the matrix itself, and its square, the
coefficients being found using the eigenvalues of the matrix.

Furthermore, from the geometric meaning of a rotation through the angle
¢ about an axis parallel to the unit vector e, it is apparent that the square
of the matrix representing the foregoing rotation is itself a rotation about
the same axis, but through the angle 2¢. By the same token, the square
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root of the same matrix is again a rotation matrix about the same axis,
but through an angle ¢/2. Now, while the square of a matrix is unique, its
square root is not. This fact is apparent for diagonalizable matrices, whose
diagonal entries are their eigenvalues. Each eigenvalue, whether positive
or negative, admits two square roots, and hence, a diagonalizable n x n
matrix admits as many square roots as there are combinations of the two
possible roots of individual eigenvalues, disregarding rearrangements of the
latter. Such a number is 2", and hence, a 3 x 3 matrix admits eight square
roots. For example, the eight square roots of the identity 3 x 3 matrix are
displayed below:

100 10 0 1 0 0 -1 0 0
o010/, o1 of, [0 -10], [0 10,
00 1 00 —1 0 0 1 0 0 1

1 0 0 -1 0 0 -1 0 0 -1 0 0

0o -1 0|, 0 1 0], 0 -1 0], 0 -1 0

0 0 -1 0 0 -1 0 0 1 0 0 -1

In fact, the foregoing result can be extended to orthogonal matrices as
well and, for that matter, to any square matrix with n linearly indepen-
dent eigenvectors. That is, an n X n orthogonal matrix admits 2" square
roots. However, not all eight square roots of a 3 x 3 orthogonal matrix are
orthogonal. In fact, not all eight square roots of a 3 x 3 proper orthogonal
matrix are proper orthogonal either. Of these square roots, nevertheless,
there is one that is proper orthogonal, the one representing a rotation of
¢/2. We will denote this particular square root of Q by 1/Q. The Euler-
Rodrigues parameters of Q can thus be expressed as the linear invariants

of v/Q, namely,

r = vect(1v/Q), o= — (2.79)

It is important to recognize the basic differences between the linear in-
variants and the Euler-Rodrigues parameters. Whereas the former can be
readily derived from the matrix representation of the rotation involved by
simple additions and subtractions, the latter require square roots and en-
tail sign ambiguities. However, the former fail to produce information on
the axis of rotation whenever the angle of rotation is 7, whereas the latter
produce that information for any value of the angle of rotation.

The Euler-Rodrigues parameters are nothing but the gquaternions in-
vented by Sir William Rowan Hamilton (1844) in an extraordinary moment
of creativity on Monday, October 16, 1843, as “Hamilton, accompanied by
Lady Hamilton, was walking along the Royal Canal in Dublin towards the
Royal Irish Academy, where Hamilton was to preside a meeting.” (Altmann,
1989).
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Moreover, the Euler-Rodrigues parameters should not be confused with
the Fuler angles, which are not invariant and hence, admit multiple defi-
nitions. The foregoing means that no single set of Euler angles exists for
a given rotation matrix, the said angles depending on how the rotation is
decomposed into three simpler rotations. For this reason, Euler angles will
not be stressed here. The reader is referred to Exercise 18 for a short dis-
cussion of Euler angles; Synge (1960) includes a classical treatment, while
Kane, Likins and Levinson provide an extensive discussion of the same.

Example 2.3.9 Find the Fuler-Rodrigues parameters of the proper orthog-
onal matrix Q given as

Solution: Since the given matrix is symmetric, its angle of rotation is 7
and its vector linear invariant vanishes, which prevents us from finding
the direction of the axis of rotation from the linear invariants; moreover,
expressions (2.77) do not apply. However, we can use eq.(2.49) to find the
unit vector e parallel to the axis of rotation, i.e.,

eel = %(1 +Q)

or in component form,

6% €1€2 €1€3

1 1 1 1
e1ez e% eses | = 3 1 1 1
e1es  ezes 6% 1 1 1

A simple inspection of the components of the two sides of the above equa-
tion reveals that all three components of e are identical and moreover, of
the same sign, but we cannot tell which sign this is. Therefore,

Moreover, from the symmetry of Q, we know that ¢ = m, and hence,

1
r—esin<?>—ﬂ:\/—§ 1], ro—cos(?>—0
2 3 1 2
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2.4  Composition of Reflections and Rotations

As pointed out in Section 2.2, reflections occur often accompanied by ro-
tations. The effect of this combination is that the rotation destroys the
two properties of pure reflections, symmetry and self-inversion, as defined
in Section 2.2. Indeed, let R be a pure reflection, taking on the form ap-
pearing in eq.(2.5), and Q an arbitrary rotation, taking on the form of
eq.(2.48). The product of these two transformations, QR, denoted by T,
is apparently neither symmetric nor self-inverse, as the reader can readily
verify. Likewise, the product of these two transformations in the reverse
order is neither symmetric nor self-inverse.

As a consequence of the foregoing discussion, an improper orthogonal
transformation that is not symmetric can always be decomposed into the
product of a rotation and a pure reflection, the latter being symmetric
and self-inverse. Moreover, this decomposition can take on the form of
any of the two possible orderings of the rotation and the reflection. Note,
however, that once the order has been selected, the decomposition is not
unique. Indeed, if we want to decompose T in the above paragraph into
the product QR, then we can freely choose the unit normal n of the plane
of reflection and write

R=1-2nn"

vector n then being found from

1
nn’ = 5(1 -R)

Hence, the factor Q of that decomposition is obtained as
Q=TR !=TR =T -2(Tn)n”

where use has been made of the self-inverse property of R. Any other
selection of vector n will lead to a different decomposition of T.

Example 2.4.1 Join the palms of your two hands in the position adopted
by swimmers when preparing for plunging, while holding a sheet of paper
between them. The sheet defines a plane in each hand that we will call the
hand plane, its unit normal, pointing outside of the hand, being called the
hand normal and represented as vectors ng and ny, for the right and left
hand, respectively. Moreover, let op and or denote unit vectors pointing
in the direction of the finger axes of each of the two hands. Thus, in the
swimmer position described above, n;, = —ng and or, = or. Now, without
moving your right hand, let the left hand attain a position whereby the
left-hand normal lies at right angles with the right-hand normal, the palm
pointing downwards and the finger azes of the two hands remaining parallel.
Find the representation of the transformation carrying the right hand to the
final configuration of the left hand, in terms of the unit vectors ng and og.
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Solution: Let us regard the desired transformation T as the product of a
rotation Q by a pure reflection R, in the form T = QR. Thus, the trans-
formation occurs so that the reflection takes place first, then the rotation.
The reflection is simply that mapping the right hand into the left hand,
and hence, the reflection plane is simply the hand plane, i.e.,

R =1 —2ngznk

Moreover, the left hand rotates from the swimmer position about an axis
parallel to the finger axes through an angle of 90° clockwise from your
viewpoint, i.e., in the positive direction of vector og. Hence, the form of
the rotation involved can be derived readily from eq.(2.48) and the above
information, namely,

Q =orok +Ox

where Op is the cross-product matrix of ogr. Hence, upon performing the
product QR, we have

T = OROE +20pr —2(og X nR)ng

which is the transformation sought.

2.5 Coordinate Transformations and Homogeneous
Coordinates

Crucial to robotics is the unambiguous description of the geometrical re-
lations among the various bodies in the environment surrounding a robot.
These relations are established by means of coordinate frames, or frames,
for brevity, attached to each rigid body in the scene, including the robot
links. The origins of these frames, moreover, are set at landmark points
and orientations defined by key geometric entities like lines and planes. For
example, in Chapter 4 we attach two frames to every moving link of a serial
robot, with origin at a point on each of the axis of the two joints coupling
this link with its two neighbors. Moreover, the Z-axis of each frame is de-
fined, according to the Denavit-Hartenberg notation, introduced in that
chapter, along each joint axis, while the X-axis of the frame closer to the
base—termed the fore frame—is defined along the common perpendicular
to the two joint axes. The origin of the same frame is thus defined as the in-
tersection of the fore axis with the common perpendicular to the two axes.
This section is devoted to the study of the coordinate transformations of
vectors when these are represented in various frames.
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2.5.1 Coordinate Transformations Between Frames
with a Common Origin

We will refer to two coordinate frames in this section, namely, A = {X, Y, Z}
and B = {X, Y, Z}. Moreover, let Q be the rotation carrying A into B,
ie.,

Q A — B (2.80)

The purpose of this subsection is to establish the relation between the
representations of the position vector of a point P in A and B, denoted by
[p]a and [p]g, respectively. Let

[Pla= |y (2.81)

We want to find [p]p in terms of [p] 4 and Q, when the latter is represented
in either frame. The coordinate transformation can best be understood if
we regard point P as attached to frame A, as if it were a point of a box
with sides of lengths x, y, and z, as indicated in Fig. 2.2a. Now, frame A
undergoes a rotation Q about its origin that carries it into a new attitude,
that of frame B, as illustrated in Fig. 2.2b. Point P in its rotated position
is labeled II, of position vector , i.e.,

T =Qp (2.82)

It is apparent that the relative position of point P with respect to its box
does not change under the foregoing rotation, and hence,

(m]s= |y (2.83)

Moreover, let

[7la=|n (2.84)

The relation between the two representations of the position vector of any
point of the 3-dimensional Euclidean space is given by

Theorem 2.5.1 The representations of the position vector w of any point
in two frames A and B, denoted by [ 7] and [T ]|g, respectively, are related

by
[7]a=[Qlal7]s (2.85)
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FIGURE 2.2. Coordinate transformation: (a) coordinates of point P in the
A-frame; and (b) relative orientation of frame B with respect to A.

Proof: Let us write eq.(2.82) in A:

[m]a=[Qlalpla (2.86)
Now, from Fig. 2.2b and egs.(2.81) and (2.83) it is apparent that
(7wl =[Pla (2.87)
Upon substituting eq.(2.87) into eq.(2.86), we obtain
[m]a=[Q]a[r]s (2.88)

q.e.d. Moreover, we have

Theorem 2.5.2 The representations of Q carrying A into B in these two
frames are identical, i.e.,

[Qla=1[Q]s (2.89)

Proof: Upon substitution of eq.(2.82) into eq.(2.85), we obtain
[Qpla=[QlalQpP]s

[Qlalpla=[QJa[QpP]5

Now, since Q is orthogonal, it is nonsingular, and hence, [Q]4 can be
deleted from the foregoing equation, thus leading to

[pla=[Qlslpls (2.90)

However, by virtue of Theorem 2.5.1, the two representations of p observe
the relation

[Pla=[Qlalpls (2.91)
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the theorem being proved upon equating the right-hand sides of egs.(2.90)
and (2.91).

Note that the foregoing theorem states a relation valid only for the con-
ditions stated therein. The reader should not conclude from this result that
rotation matrices have the same representations in every frame. This point
is stressed in Example 2.5.1. Furthermore, we have

Theorem 2.5.3 The inverse relation of Theorem 2.5.1 is given by

(75 =[Q" |s[m]a (2.92)

Proof: This is straightforward in light of the two foregoing theorems, and
is left to the reader as an exercise.

Example 2.5.1 Coordinate frames A and B are shown in Fig. 2.8. Find
the representations of Q rotating A into B in these two frames and show
that they are identical. Moreover, if [p]a =[1, 1, 1|7, find [p]s.

Solution: Let i, j, and k be unit vectors in the directions of the X-, Y-,
and Z-axes, respectively; unit vectors ¢, v, and k are defined likewise as
parallel to the X-; V-, and Z-axes of Fig. 2.3. Therefore,

Qi=cv=-k, Qj=~v=-i, Qk=k=]

Therefore, using Definition 2.2.1, the matrix representation of Q carrying
A into B, in A, is given by

0
1
0

FIGURE 2.3. Coordinate frames A and B with a common origin.
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Now, in order to find [Q]g, we apply Q to the three unit vectors of B, ¢,
~, and . Thus, for ¢, we have

0 -1 0 0 0
Q=10 0 1 0 (=|-1|==-j=—-k
-1 0 O -1 0
Likewise,
Qv=-t, Qr=~
again, from Definition 2.2.1, we have
0 -1 0
(Qls=|0 0 1|=[QJa
-1 0 O

thereby confirming Theorem 2.5.2. Note that the representation of this
matrix in any other coordinate frame would be different. For example, if
we represent this matrix in a frame whose X-axis is directed along the axis
of rotation of Q, then we end up with the X-canonical representation of
Q, namely,

1 0 0

[Qlx=1{0 cos¢p —sing
0 sing cos¢

with the angle of rotation ¢ being readily computed as ¢ = 120°, which
thus yields
1 0 0
[Qlx= |0 —1/2 —v3/2
0 V3/2 —1/2
which apparently has different entries from those of [Q]4 and [Q ]z found

above.
Now, from eq.(2.92),

0 0 —-17[1 -1
[pls=|-1 0 0] |1]|=]-1
0 1 0|1 1

a result that can be readily verified by inspection.

2.5.2  Coordinate Transformation with Origin Shift

Now, if the coordinate origins do not coincide, let b be the position vector
of O, the origin of B, from O, the origin of A, as shown in Fig. 2.4. The
corresponding coordinate transformation from A to B, the counterpart of
Theorem 2.5.1, is given below.
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Theorem 2.5.4 The representations of the position vector p of a point P
of the Euclidean 3-dimensional space in two frames A and B are related by

[Pla=[bla+[Qla[n]s (2.93a)
[7]s = [Q" ]5([-bla+[pla) (2.93b)

with b defined as the vector directed from the origin of A to that of B, and
7 the vector directed from the origin of B to P, as depicted in Fig. 2.4.

Proof: We have, from Fig. 2.4,
p=b+mw (2.94)
If we express the above equation in the A-frame, we obtain
[Pla=[bla+[m]a

where 7r is assumed to be readily available in B, and so the foregoing
equation must be expressed as

[Pla=[bla+[Qla[7]s

which thus proves eq.(2.93a). To prove eq.(2.93b), we simply solve eq.(2.94)
for 7 and apply eq.(2.92) to the equation thus resulting, which readily leads
to the desired relation.

Example 2.5.2 If [b]a =[—-1,—1, —1]7 and A and B have the relative
orientations giwen in Example 2.5.1, find the position vector, in B, of a
point P of position vector [pla given as in the same example.

Solution: What we obviously need is [ 7 |3, which is given in eq.(2.93b). We
thus compute first the sum inside the parentheses of that equation, i.e.,

2
[=bla+[pla= |2

FIGURE 2.4. Coordinate frames with different origins.
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We need further [Q7 ]g, which can be readily derived from [Q]z. We do
not have as yet this matrix, but we have [Q7]4, which is identical to
[QT]5 by virtue of Theorem 2.5.2. Therefore,

0 0 —1772 -2
[mlg=|-1 0 0| |2]=]-2
0 1 0]]2 2

a result that the reader is invited to verify by inspection.

2.5.8 Homogeneous Coordinates

The general coordinate transformation, involving a shift of the origin, is not
linear, in general, as can be readily realized by virtue of the nonhomoge-
neous term involved, i.e., the first term of the right-hand side of eq.(2.93a),
which is independent of p. Such a transformation, nevertheless, can be rep-
resented in homogeneous form if homogeneous coordinates are introduced.
These are defined below: Let [p | am be the coordinate array of a finite point
P in reference frame M. What we mean by a finite point is one whose co-
ordinates are all finite. We are thus assuming that the point P at hand is
not at infinity, points at infinity being dealt with later. The homogeneous
coordinates of P are those in the 4-dimensional array {p} s, defined as

{pIm = {[pl]M} (2.95)

The affine transformation of eq.(2.93a) can now be rewritten in homo-
geneous-coordinate form as

{pta={T}ta{r}s (2.96)

where {T} 4 is defined as a 4 x 4 array, i.e.,

{Tha= {[[(?f]ﬁ‘ [bl]““] (2.97)

The inverse transformation of that defined in eq.(2.97) is derived from
eq.(2.93a & b), i.e.,
~1y _ [[QT]s [-Db]s
{T }B = { [OT]B 1 (2'98)

Furthermore, homogeneous transformations can be concatenated. In-
deed, let Fy, for K =i — 1, ¢, i + 1, denote three coordinate frames, with
origins at Oy. Moreover, let Q,;_1 be the rotation carrying F;_1 into an ori-
entation coinciding with that of ;. If a similar definition for Q; is adopted,
then Q; denotes the rotation carrying F; into an orientation coinciding with
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that of F;+1. First, the case in which all three origins coincide is considered.
Clearly,

pli=| le] 1[Pli-1 (2.99)
[plivs = [QF li[p)i = [Q] i[Q_1]i-1[PJi1 (2.100)

the inverse relation of that appearing in eq.(2.100) being

Pli-1 =[Qi-1]i—1[ Qi li[PJi+1 (2.101)

If now the origins do not coincide, let a;,_1 and a; denote the vectors
0;_10; and O;0;4+1, respectively. The homogeneous-coordinate transfor-
mations {T;_1};—1 and {T;}; thus arising are obviously

{Ti—1}ici= [[Qi_l]i_l [ai_l]i‘l] . ATy, = HQi]{ [ali]i:|

[OT ]i—l 1 o” ]7,
(2.102)
whereas their inverse transformations are
T T
—1y [ [Qiza]i [Qisilil—aicaia
{Ti 5} = [ [07]; 1 (2.103)
T1. TV [_al
{T; }iv1 = [Q% i1 Qi Josa[—aili (2.104)
! [07 Ji+a 1
Hence, the coordinate transformations involved are
{ptica ={Ti-1}i1{P}i (2.105)
{p}ic1 = {Ti—1}i1{Ti}i{p}iv1 (2.106)
the corresponding inverse transformations being
{p}:={T; 1 }{p}i1 (2.107)

{plivs ={T; Lira{p }i = {T; Jira{T; 1 }i{p}ic1  (2.108)

Now, if P lies at infinity, we can express its homogeneous coordinates in
a simpler form. To this end, we rewrite expression (2.95) in the form

{p}ac = o [1[ /]p”}

o {p}M_(mlel ”p> <|p|m H?}QAIID

i (p)ac= (i) [ 190 ]

lpl— el

and hence,

or
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We now define the homogeneous coordinates of a point P lying at infinity
as the 4-dimensional array appearing in the foregoing expression, i.e.,

{Poo I = {[e(])M} (2.109)

which means that a point at infinity, in homogeneous coordinates, has only
a direction, given by the unit vector e, but an undefined location. When
working with objects within the atmosphere of the earth, for example, stars
can be regarded as lying at infinity, and hence, their location is completely
specified simply by their longitude and latitude, which suffice to define the
direction cosines of a unit vector in spherical coordinates.

On the other hand, a rotation matrix can be regarded as composed of
three columns, each representing a unit vector, e.g.,

Q=[e1 e e3]

where the triad { e }3 is orthonormal. We can thus represent { T } 4 of
eq.(2.97) in the form

{T}A:[%l %2 %3 ﬂ (2.110)

thereby concluding that the columns of the 4 x 4 matrix T represent the
homogeneous coordinates of a set of corresponding points, the first three
of which are at infinity.

Example 2.5.3 An ellipsoid is centered at a point Op of position vector
b, its three axes X', YV, and Z defining a coordinate frame IB. Moreover, its
semiazes have lengths a = 1, b = 2, and ¢ = 3, the coordinates of Op in
a coordinate frame A being [b]a = [1, 2, 3|T. Additionally, the direction
cosines of X are (0.933, 0.067, —0.354), whereas ) is perpendicular to b
and to the unit vector u that is parallel to the X -axis. Find the equation of
the ellipsoid in A. (This example has relevance in collision-avoidance algo-
rithms, some of which approximate manipulator links as ellipsoids, thereby
easing tremendously the computational requirements.)

Solution: Let u, v, and w be unit vectors parallel to the X-, Y-, and Z-axes,
respectively. Then,

0.933 auxb
[ujJa=] 0067 |, V=——", w=uxv
~0.354 lu b
and hence,
0.243 —0.266
(v]ia=|-0843|, [wla=|-0.535
0.481 —0.803
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from which the rotation matrix Q, rotating the axes of A into orientations
coinciding with those of B3, can be readily represented in A, or in B for that
matter, as

0.933  0.243 —0.266
(Qla=[u,v,wlsa=| 0067 —0.843 —0.535
—0.354 0.481 —0.803

On the other hand, if the coordinates of a point P in A and B are [p]a =

[p1, p2, p3]t and [m]g = [m1, m2, 73]7, respectively, then the equation of
the ellipsoid in B is clearly

2 2 2

. ™ T2 | T3

=1

Now, what is needed in order to derive the equation of the ellipsoid in A is
simply a relation between the coordinates of P in B and those in A. These
coordinates are related by eq.(2.93b), which requires [ QT |5, while we have
[Q] .- Nevertheless, by virtue of Theorem 2.5.2

0.933  0.067 —0.354
(QT|5=[Q7]a=| 0243 —0.843 0.481
—0.266 —0.535 —0.803

Hence,
0.933  0.067 —0.354 -1 P1
[7w]p=| 0.243 —0.843 0.481 —2| 4+ | p2
—0.266 —0.535 —0.803 -3 D3
Therefore,

71 = 0.933p1 + 0.067p, — 0.354ps — 0.005
T2 = 0.243p1 — 0.843p2 + 0.481p3
73 = —0.266p1 — 0.535p; — 0.803p3 + 3.745

Substitution of the foregoing relations into the ellipsoid equation in B leads
to

A: 32.1521p12 + 7.70235p2° + 9.17286p3% — 8.30524p1 — 16.0527p2
—23.9304p3 + 9.32655p1p2 + 9.02784pops — 19.9676p1p3 + 20.101 = 0

which is the equation sought, as obtained using computer algebra.
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2.6 Similarity Transformations

Transformations of the position vector of points under a change of coor-
dinate frame involving both a translation of the origin and a rotation of
the coordinate axes was the main subject of Section 2.5. In this section, we
study the transformations of components of vectors other than the position
vector, while extending the concept to the transformation of matrix entries.
How these transformations take place is the subject of this section.

What is involved in the present discussion is a change of basis of the
associated vector spaces, and hence, this is not limited to 3-dimensional
vector spaces. That is, n-dimensional vector spaces will be studied in this
section. Moreover, only isomorphisms, i.e., transformations L of the n-di-
mensional vector space V onto itself will be considered. Let A = {a;}} and
B = {b;}7 be two different bases of the same space V. Hence, any vector
v of V can be expressed in either of two ways, namely,

v =owia; + apaz + - + apa, (2.111)
v = Bib1 + Bebz + - + Byby (2.112)
from which two representations of v are readily derived, namely,
Qi B
[v]a= sz , [vls= ﬂf (2.113)
a, .
Furthermore, let the two foregoing bases be related by
b; = aija; +azjaz+ -+ anja,, j=1,...,n (2.114)

Now, in order to find the relationship between the two representations
of eq.(2.113), eq.(2.114) is substituted into eq.(2.112), which yields

v = fB1(a11a1 + a21a2 + - - - + ap1ay)

+ Bo(arpa1 + azpaz + - - - + anay,)

+ Bn(a1nay + aznaz + - - - + apnan) (2.115)

This can be rearranged to yield

v = (a1101 + a12082 + - - - + a1nfn)ar
+ (a2181 + az2202 + - - - + aonfBn)az

+ (an1f1 + an2f2 + - + annfn)an (2.116)
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Comparing eq.(2.116) with eq.(2.111), one readily derives

[v]ia=[Alalv]s (2.117)
where
ail ai2 ccr Ain
[Ala= |20 (2.118)
a ay e

which are the relations sought. Clearly, the inverse relationship of eq.(2.117)
is
[(vIg =[AT ]a[v]a (2.119)

Next, let L have the representation in A given below:

lin liz - lin
lor b -+ g

Lia=| b 7 . (2.120)
lnl ln2 e lnn

Now we aim at finding the relationship between [L]4 and [L]g. To this
end, let w be the image of v under L, i.e.,

Lv=w (2.121)
which can be expressed in terms of either A or B as

[L]alv]ia=[w]a (2.122)
[L]glv]s =[w]s (2.123)

Now we assume that the image vector w of the transformation of eq.(2.121)
is identical to that of vector v in the range of L, which is not always the
case. Our assumption is, then, that similar to eq.(2.117),

[(Wla=[A]a[w]s (2.124)
Now, substitution of eq.(2.124) into eq.(2.122) yields
[Alalwls = [L]a[A]alv]s (2.125)
which can be readily rearranged in the form
[wls =[A7]4[L]a[A]4lv]s (2.126)
Comparing eq.(2.123) with eq.(2.126) readily leads to

[L]s = [A ] a[L]a[A]4 (2.127)
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which upon rearrangement, becomes
[L]a =[AJa[L]s[A )4 (2.128)

Relations (2.117), (2.119), (2.127), and (2.128) constitute what are called
similarity transformations. These are important because they preserve in-
variant quantities such as the eigenvalues and eigenvectors of matrices, the
magnitudes of vectors, the angles between vectors, and so on. Indeed, one
has the following:

Theorem 2.6.1 The characteristic polynomial of a given n X n matriz re-
mains unchanged under a similarity transformation. Moreover, the eigen-
values of two matrix representations of the same nxn linear transformation
are identical, and if [e]p is an eigenvector of [L]p, then under the sim-
ilarity transformation (2.128), the corresponding eigenvector of [L]a is

[e]la=T[Alale]s.
Proof: From eq.(2.11), the characteristic polynomial of [L]z is

P(\) =det(\[1]s —[L]s) (2.129)
which can be rewritten as

P(\) = det(A[A ™ 4[1]a[A]a — [ATHA[L]a[A]A)
= det([A™ ] a(A\[1]a = [L])[A]A)
= det([A™ ] 4)det(A[1]4 — [L]a)det([A]a)
But
det([A™]4)det([A]4) =1

and hence, the characteristic polynomial of [L] 4 is identical to that of
[L]s. Since both representations have the same characteristic polynomial,
they have the same eigenvalues. Now, if [e]g is an eigenvector of L]z
associated with the eigenvalue A, then

[Lis[els = Aels

Next, eq.(2.127) is substituted into the foregoing equation, which thus leads
to

[A7 a[L]a[Alale]s = Ale]s
Upon rearrangement, this equation becomes

[L]a[A]a[e]s = A[A]ale]s (2.130)

whence it is apparent that [A]4[e]s is an eigenvector of [ L] 4 associated
with the eigenvalue A, g.e.d.
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Theorem 2.6.2 If [L]4 and [L]g are related by the similarity transfor-
mation (2.127), then

[L*]5 = [A7 ] 4[L*]a[Aa (2.131)
for any integer k.

Proof: This is done by induction. For k = 2, one has

(L) = [A ™ 4[L]A[A]A[AT Al L]a[ A4
=[A 1] 4[L2)a[A]4

Now, assume that the proposed relation holds for £ = n. Then,

(L™ ] g = [A 7 AL Ja[AJa[ A A[L]a[ A4
=[AT L[ 4[A]4

i.e., the relation also holds for k = n + 1, thereby completing the proof.

Theorem 2.6.3 The trace of an n X n matriz does not change under a
similarity transformation.

Proof: A preliminary relation will be needed: Let [A], [B] and [C] be
three different n x n matrix arrays, in a given reference frame, that need
not be indicated with any subscript. Moreover, let a;j, b;;, and c;; be the
components of the said arrays, with indices ranging from 1 to n. Hence,
using standard index notation,

tI‘([A] [B] [C]) = aijbjkckl- = bjkckl-aij = tI‘([B} [C] [A]) (2132)

Taking the trace of both sides of eq.(2.127) and applying the foregoing
result produces

tr([L]s) = tr((A™ a[L]a[A]a) = tr([A]a[AT [ L]a) = tr([L]a)
(2.133)
thereby proving that the trace remains unchanged under a similarity trans-
formation.

Example 2.6.1 We consider the equilateral triangle sketched in Fig. 2.5,
of side length equal to 2, with vertices P1, P>, and Ps, and coordinate
frames A and B of axes X, Y and X', Y’', respectively, both with origin at
the centroid of the triangle. Let P be a 2 X 2 matriz defined by

P=[p1 p2]

with p; denoting the position vector of P; in a given coordinate frame. Show
that matriz P does not obey a similarity transformation upon a change of
frame, and compute its trace in frames A and B to make it apparent that
this matriz does not comply with the conditions of Theorem 2.6.3.
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FIGURE 2.5. Two coordinate frames used to represent the position vectors of
the corners of an equilateral triangle.

Solution: From the figure it is apparent that

1 0 0 1
[Pla=|_\3/3 2\/5/3}’ [Pls = {—2\/5/3 V3/3
Apparently,

2V/3 V3

u([Pla) = 1+ —== #u((Pls) = 5~

The reason why the trace of this matrix did not remain unchanged under
a coordinate transformation is that the matrix does not obey a similarity
transformation under a change of coordinates. Indeed, vectors p; change
as

[Pila=[Qlalpils
under a change of coordinates from B to .4, with Q denoting the rotation
carrying A into B. Hence,

[Pla=[QJa[P]s

which is different from the similarity transformation of eq.(2.128). However,
if we now define

R =PPT
then
B 1 —V3/3 1 V3/3
Rla=1_v3i3 53 ] [R]B_[\/ﬁ/?) 5/3}
and hence,
([ R]s) = >

thereby showing that R does comply with the conditions of Theorem 2.6.3.
Indeed, under a change of frame, matrix R changes as

[R]a=[PP"]4=[QJalP]5([QJa[P]s)" = [Qa[PP]5[Q" |4

which is indeed a similarity transformation.
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2.7 Invariance Concepts

From Example 2.6.1 it is apparent that certain properties, like the trace
of certain square matrices do not change under a coordinate transforma-
tion. For this reason, a matrix like R of that example is said to be frame-
invariant, or simply invariant, whereas matrix P of the same example is
not. In this section, we formally define the concept of invariance and high-
light its applications and its role in robotics. Let a scalar, a vector, and
a matrix function of the position vector p be denoted by f(p), f(p) and
F(p), respectively. The representations of f(p) in two different coordinate
frames, labelled A and B, will be indicated as [f(p)]4 and [f(p)]g, respec-
tively, with a similar notation for the representations of F(p). Moreover,
let the two frames differ both in the location of their origins and in their
orientations. Additionally, let the proper orthogonal matrix [Q]4 denote
the rotation of coordinate frame A into B. Then, the scalar function f(p)
is said to be frame invariant, or invariant for brevity, if

f(plg) = F(lpla) (2.134)
Moreover, the vector quantity f is said to be invariant if
[fla = [Qlalfls (2.135)

and finally, the matrix quantity F is said to be invariant if

[Fa = [Qla[F]5Q")4 (2.136)

Thus, the difference in origin location becomes irrelevant in this context,
and hence, will no longer be considered. From the foregoing discussion, it
is clear that the same vector quantity has different components in differ-
ent coordinate frames; moreover, the same matrix quantity has different
entries in different coordinate frames. However, certain scalar quantities
associated with vectors, e.g., the inner product, and matrices, e.g., the ma-
trix moments, to be defined presently, remain unchanged under a change
of frame. Additionally, such vector operations as the cross product of two
vectors are invariant. In fact, the scalar product of two vectors a and b
remains unchanged under a change of frame, i.e.,

[a]’[b], =[alj[blg (2.137)

Additionally,
[axb],=[Q] [axb]g (2.138)

The kth moment of an n x n matrix T, denoted by Z, is defined as
(Leigh, 1968)
T, = tr(T%), k=0,1,... (2.139)

where Zp = tr(1) = n. Now we have
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Theorem 2.7.1 If the trace of an n X n matriz T is invariant, then so
are its moments.

Proof: This is straightforward. Indeed, from Theorem 2.6.2, we have
[TF ] = [A [T a[A]4 (2.140)

Now, let [Zyx ], and [Zx]gz denote the kth moment of [T], and [T]g,
respectively. Thus,

[Tilg =tr([ATY] [Tk]A[A}A)ztr([A}A[A’l]A[Tk]A)
:tr([Tk]A)E[Ik}A

thereby completing the proof.
Furthermore,

Theorem 2.7.2 An nxn matriz has only n linearly independent moments.

Proof: Let the characteristic polynomial of T be
PN =ao+ath+-+a, 1A\ T+ X" =0 (2.141)
Upon application of the Cayley-Hamilton Theorem, eq.(2.141) leads to
aol + a1 T4+ ap, 1T+ TV =0 (2.142)

where 1 denotes the n X n identity matrix.
Now, if we take the trace of both sides of eq.(2.142), and Definition (2.139)
is recalled, one has

aoZo +a1Zy + -+ an-1Zpn1+Z, =0

from which it is apparent that Z,, can be expressed as a linear combination
of the first n moments of T, { Z;, }§~*. By simple induction, one can likewise
prove that the mth moment is dependent upon the first n moments if
m > n, thereby completing the proof.

The vector invariants of an n X n matrix are its eigenvectors, which
have a direct physical significance in the case of symmetric matrices. The
eigenvalues of these matrices are all real, its eigenvectors being also real and
mutually orthogonal. Skew-symmetric matrices, in general, need not have
either real eigenvalues or real eigenvectors. However, if we limit ourselves
to 3 x 3 skew-symmetric matrices, exactly one of their eigenvalues, and its
associated eigenvector, are both real. The eigenvalue of interest is 0, and
the associated vector is the axial vector of the matrix under study.

It is now apparent that two n X n matrices related by a similarity trans-
formation have the same set of moments. Now, by virtue of Theorem 2.7.2,
one may be tempted to think that if two n x n symmetric matrices share
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their first n moments {Zy }57%, then the two matrices are related by a
similarity transformation. A simple example will show that this is not true.
Consider the two matrices A and B given below:

aefp 9] o[t ]

The two foregoing matrices cannot possibly be related by a similarity trans-
formation, for the first one is the identity matrix, while the second is not.
However, the two matrices share the two moments Zo = 2 and Z; = 2. Let
us now compute the second moments of these matrices:

tr(A?) =2, tr(B?) =tr [Z 4] =10
5

which are indeed different. Therefore, to test whether two different matri-
ces represent the same linear transformation, and hence, are related by a
similarity transformation, we must verify that they share the same set of
n + 1 moments {Z; }§. In fact, since all n x n matrices share the same
zeroth moment Zy = n, only the n moments {Zy }7 need be tested for a
similarity verification. That is, if two n X n matrices share the same n mo-
ments {Zj }7, then they represent the same linear transformation, albeit
in different coordinate frames.

The foregoing discussion does not apply, in general, to nonsymmetric
matrices, for these matrices are not fully characterized by their eigenvalues.
For example, consider the matrix

1 1
A= o 1)
Its two first moments are Zop = 2, Z3 = tr(A) = 2, which happen to be the
first two moments of the 2 x 2 identity matrix as well. However, while the
identity matrix leaves all 2-dimensional vectors unchanged, matrix A does
not.
Now, if two symmetric matrices, say A and B, represent the same trans-

formation, they are related by a similarity transformation, i.e., a nonsin-
gular matrix T exists such that

B=T1AT

Given A and T, then, finding B is trivial, a similar statement holding
if B and T are given; however, if A and B are given, finding T is more
difficult. The latter problem occurs sometimes in robotics in the context of
calibration, to be discussed in Subsection 2.7.1.

Example 2.7.1 Two symmetric matrices are displayed below. Find out
whether they are related by a similarity transformation.

1 01 1 0 0
A=1[0 1 0|, B=|0 2 -1
10 2 0 -1 1
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Solution: The traces of the two matrices are apparently identical, namely,
4. Now we have to verify whether their second and third moments are also
identical. To do this, we need the square and the cube of the two matrices,
from which we then compute their traces. Thus, from

2 0 3 1 0 0
A?=10 1 0|, B>=|0 5 -3
3 0 5 0 -3 2
we readily obtain
tr(A?) = tr(B?) =8
Moreover,
5 0 8 1 0 0
A®=1{0 1 o], B3 =|0 13 -8
8 0 13 0 -8 5
whence

tr(A%) = tr(B3) =19

Therefore, the two matrices are related by a similarity transformation.
Hence, they represent the same linear transformation.

Example 2.7.2 Same as Example 2.7.1, for the two matrices displayed

below:
1

10 2 11
A=|01 0|, B=|11 0
2 0 0 1 0 0

Solution: As in the previous example, the traces of these matrices are iden-
tical, i.e., 2. However, tr(A2) = 10, while tr(B?) = 6. We thus conclude
that the two matrices cannot be related by a similarity transformation.

2.7.1 Applications to Redundant Sensing

A sensor, such as a camera or a range finder, is often mounted on a robotic
end-effector to determine the pose—i.e., the position and orientation, as
defined in Subsection 3.2.3—of an object. If redundant sensors are intro-
duced, and we attach frames A and B to each of these, then each sensor
can be used to determine the orientation of the end-effector with respect to
a reference configuration. This is a simple task, for all that is needed is to
measure the rotation R that each of the foregoing frames underwent from
the reference configuration, in which these frames are denoted by 4g and
Bop, respectively. Let us assume that these measurements produce the or-
thogonal matrices A and B, representing R in A and B, respectively. With
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this information we would like to determine the relative orientation Q of
frame B with respect to frame A, a problem that is called here instrument
calibration.

We thus have A = [R], and B = [R]g, and hence, the algebraic
problem at hand consists in determining [Q] 4 or equivalently, [Q]z. The
former can be obtained from the similarity transformation of eq.(2.136),
which leads to

A= [Q]AB[QT]A

AlQl.=[Ql4B

This problem could be solved if we had three invariant vectors associated
with each of the two matrices A and B. Then, each corresponding pair of
vectors of these triads would be related by eq.(2.135), thereby obtaining
three such vector equations that should be sufficient to compute the nine
components of the matrix Q rotating frame A into . However, since A
and B are orthogonal matrices, they admit only one real invariant vector,
namely, their axial vector, and we are short of two vector equations. We
thus need two more invariant vectors, represented in both A and B, to
determine Q. The obvious way of obtaining one additional vector in each
frame is to take not one, but two measurements of the orientation of Ag
and By with respect to A and B, respectively. Let the matrices representing
these orientations be given, in each of the two coordinate frames, by A;
and B;, for i = 1,2. Moreover, let a; and b;, for i = 1,2, be the axial
vectors of matrices A; and B, respectively.

Now we have two possibilities: (¢) neither of a; and a, and, consequently,
neither of by and by, is zero; and (i7) at least one of a; and ap, and
consequently, the corresponding vector of the { by, by } pair, vanishes. In
the first case, nothing prevents us from computing a third vector of each
set, namely,

az = ax X ay, b3 = bl X b2 (2143)

In the second case, however, we have two more possibilities, i.e., the angle
of rotation of that orthogonal matrix, A; or A, whose axial vector vanishes
is either 0 or «. If the foregoing angle vanishes, then A underwent a pure
translation from Ap, the same holding, of course, for B and Bpy. This means
that the corresponding measurement becomes useless for our purposes, and
a new measurement is needed, involving a rotation. If, on the other hand,
the same angle is m, then the associated rotation is symmetric and the unit
vector e parallel to its axis can be determined from eq.(2.49) in both A
and B. This unit vector, then, would play the role of the vanishing axial
vector, and we would thus end up, in any event, with two pairs of nonzero
vectors, {a; }2 and {b; }2. As a consequence, we can always find two triads
of nonzero vectors, { a; }3 and { b; }3, that are related by

a;=[Q| b;, fori=1,2,3 (2.144)

TLFeBOOK



68 2. Mathematical Background

The problem at hand now reduces to computing [Q] 4 from eq.(2.144). In
order to perform this computation, we write the three foregoing equations
in matrix form, namely,

E:[Q]AF (2.145)
with E and F defined as

EE[al ap 3.3]7 FE[bl b2 b3] (2.146)

Now, by virtue of the form in which the two vector triads were defined,
none of the two above matrices is singular, and hence, we have

(Q],=EF! (2.147)

Moreover, note that the inverse of F can be expressed in terms of its
columns explicitly, without introducing components, if the concept of re-
ciprocal bases is recalled (Brand, 1965). Thus,

(bg X bg)T
F 1= Z (b3 X bl)T s A =Dbi X by -bs (2148)
(bl X bg)T

Therefore,
1 T T T
[Q]A = Z[al(bg X b3) + az(bg X bl) + ag(bl X bg) ] (2.149)

thereby completing the computation of [Q] , directly and with simple vec-
tor operations.

Example 2.7.3 (Hand-Eye Calibration) Determine the relative orien-
tation of a frame B attached to a camera mounted on a robot end-effector,
with respect to a frame A fized to the latter, as shown in Fig. 2.6. It is as-
sumed that two measurements of the orientation of the two frames with re-
spect to frames Ao and Bo in the reference configuration of the end-effector
are available. These measurements produce the orientation matrices A; of
the frame fized to the camera and B; of the frame fixed to the end-effector,
fori=1,2. The numerical data of this example are given below:

[ —0.92592593 —0.37037037 —0.07407407
A; = | 0.28148148 —0.80740741 0.51851852
| —0.25185185  0.45925926 0.85185185

[ —0.83134406 0.02335236 —0.55526725
A, = | —0.52153607 0.31240270 0.79398028
| 0.19200830  0.94969269 —0.24753503

[ —0.90268482 0.10343126 —0.41768659 |
B; = | 0.38511568 0.62720266 —0.67698060
| 0.19195318  —0.77195777 —0.60599932 |

[ —0.73851280 —0.54317226 0.39945305 |
B, = | —0.45524951 0.83872293  0.29881721
| —0.49733966  0.03882952 —0.86668653 |
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FIGURE 2.6. Measuring the orientation of a camera-fixed coordinate frame with
respect to a frame fixed to a robotic end-effector.

Solution: Shiu and Ahmad (1987) formulated this problem in the form
of a matrix linear homogeneous equation, while Chou and Kamel (1988)
solved the same problem using quaternions and very cumbersome numeri-
cal methods that involve singular-value computations. The latter require an
iterative procedure within a Newton-Raphson method, itself iterative, for
nonlinear-equation solving. Other attempts to solve the same problem have
been reported in the literature, but these also resorted to extremely com-
plicated numerical procedures for nonlinear-equation solving (Chou and
Kamel, 1991). More recently, Horaud and Dornaika (1995) proposed a more
concise method based on quaternions, a.k.a. Euler-Rodrigues parameters,
that nevertheless is computationally costlier than the method we use here.
The approach outlined in this subsection is essentially the same as that
proposed earlier (Angeles, 1989), although here we have adopted a simpler
procedure than that of the foregoing reference.

First, the vector of matrix A;, represented by a;, and the vector of matrix
B,, represented by by, for ¢ = 1,2, are computed from simple differences of
the off-diagonal entries of the foregoing matrices, followed by a division by
2 of all the entries thus resulting, which yields

—0.02962963 0.07784121
a; = | 0.08888889 |, ap= [—0.37363778
0.32592593 —0.27244422
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—0.04748859 —0.12999385
b; = | —0.30481989 | , by = | 0.44869636
0.14084221 0.04396138

In the calculations below, 16 digits were used, but only eight are dis-
played. Furthermore, with the foregoing vectors, we compute az and bg
from cross products, thus obtaining

[ 0.09756097
az = | 0.01730293
| 0.00415020

[ —0.07655343
bs; = | —0.01622096
| —0.06091842

Furthermore, A is obtained as
A = 0.00983460

while the individual rank-one matrices inside the brackets of eq.(2.149) are
calculated as

[ 0.00078822  0.00033435 —0.00107955]
as(bz x b3)” = | —0.00236467 —0.00100306 0.00323866
| —0.00867044 —0.00367788 0.01187508 |

[ —0.00162359 0.00106467  0.00175680 |
as(bs x by)T = | 0.00779175 —0.00510945 —0.00843102
| 0.00568148 —0.00372564 —0.00614762 |

[ —0.00746863 —0.00158253 —0.00594326 |
az(by x by)T = | —0.00132460 —0.00028067 —0.00105407
| —0.00031771 —0.00006732 —0.00025282 |

whence Q in the A frame is readily obtained as

—0.844365563 —0.01865909 —0.53545750
[Q]A = | 0.41714750 —0.65007032 —0.63514856
—0.33622873 —0.75964911 0.55667078

thereby completing the desired computation.
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Fundamentals of Rigid-Body
Mechanics

3.1 Introduction

The purpose of this chapter is to lay down the foundations of the kineto-
statics and dynamics of rigid bodies, as needed in the study of multibody
mechanical systems. With this background, we study the kinetostatics and
dynamics of robotic manipulators of the serial type in Chapters 4 and 6,
respectively, while devoting Chapter 5 to the study of trajectory planning.
The latter requires, additionally, the background of Chapter 4. A special
feature of this chapter is the study of the relations between the angular
velocity of a rigid body and the time-rates of change of the various sets
of rotation invariants introduced in Chapter 2. Similar relations between
the angular acceleration and the second time-derivatives of the rotation
invariants are also recalled, the corresponding derivations being outlined in
Appendix A.

Furthermore, an introduction to the very useful analysis tool known as
screw theory (Roth, 1984) is included. In this context, the concepts of twist
and wrench are introduced, which prove in subsequent chapters to be ex-
tremely useful in deriving the kinematic and static, i.e., the kinetostatic,
relations among the various bodies of multibody mechanical systems.
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3.2  General Rigid-Body Motion and Its Associated
Screw

In this section, we analyze the general motion of a rigid body. Thus, let A
and P be two points of the same rigid body B, the former being a particular
reference point, whereas the latter is an arbitrary point of 5. Moreover, the
position vector of point A in the original configuration is a, and the position
vector of the same point in the displaced configuration, denoted by A’ is
a’. Similarly, the position vector of point P in the original configuration is
p, while in the displaced configuration, denoted by P’, its position vector is
p’. Furthermore, p’ is to be determined, while a, a’, and p are given, along
with the rotation matrix Q. Vector p — a can be considered to undergo a
rotation Q about point A throughout the motion taking the body from the
original to the final configuration. Since vector p — a is mapped into p’ —a’
under the above rotation, one can write

p'—a' =Q(p—a) (3.1)
and hence
p'=a+Q(p—a) (3.2)

which is the relationship sought. Moreover, let d4 and dp denote the dis-
placements of A and P, respectively, i.e.,

dyj=a —a, dp=p -p (3.3)

From eqs.(3.2) and (3.3) one can readily obtain an expression for dp,
namely,

dp=a'-p+Q(p-a)
=a' —a-p+Q(p—a)ta (3.4)
=da+(Q-1)(p—2) (3.5)

What eq.(3.5) states is that the displacement of an arbitrary point P of
a rigid body whose position vector in an original configuration is p is de-
termined by the displacement of one certain point A and the concomitant
rotation Q. Clearly, once the displacement of P is known, its position vec-
tor p’ can be readily determined. An interesting result in connection with
the foregoing discussion is summarized below:

Theorem 3.2.1 The component of the displacements of all the points of
a 1igid body undergoing a general motion along the axis of the underlying
rotation is a constant.

Proof: Multiply both sides of eq.(3.5) by e, the unit vector parallel to the
axis of the rotation represented by Q, thereby obtaining

ef’dp=e’ds+e"(Q—-1)(p—a)
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Now, the second term of the right-hand side of the above equation vanishes
because Qe = e, and hence, Q”e = e, by hypothesis, the said equation
thus leading to

eldp =efds =do (3.6)

thereby showing that the displacements of all points of the body have the
same projection dp onto the axis of rotation, qg.e.d.

As a consequence of the foregoing result, we have the classical Mozzi-
Chasles Theorem (Mozzi, 1763; Chasles, 1830; Ceccarelli, 1995), namely,

Theorem 3.2.2 (Mozzi, 1763; Chasles, 1830) Given a rigid body un-
dergoing a general motion, a set of its points located on a line L undergo
identical displacements of minimum magnitude. Moreover, line L and the
minimum-magnitude displacement are parallel to the axis of the rotation
1nvolved.

Proof: The proof is straightforward in light of Theorem 3.2.1, which al-
lows us to express the displacement of an arbitrary point P as the sum of
two orthogonal components, namely, one parallel to the axis of rotation,
independent of P and denoted by d|;, and one perpendicular to this axis,
denoted by d , i.e.,
dp = dH +d (3.7&)
where
d“ = eerp = doe, dJ_ = (1 — eeT)dp (37b)

and clearly, do is a constant that is defined as in eq.(3.6), while d| and d 1
are mutually orthogonal. Indeed,

d“ . dJ_ = doeT(l — eeT)dp = do(eT — eT)dp =0

Now, by virtue of the orthogonality of the two components of dp, it is
apparent that

ldp )1 = [y + ld.L]® = d§ + [ dL|?

for the displacement d p of any point of the body. Now, in order to minimize
|[dp|| we have to make ||d ||, and hence, d, itself, equal to zero, i.e., we
must have dp parallel to e:

dp = ae

for a certain scalar a. That is, the displacements of minimum magnitude
of the body under study are parallel to the axis of Q, thereby proving the
first part of the Mozzi-Chasles Theorem. The second part is also readily
proven by noticing that if P* is a point of minimum magnitude of position
vector p*, its component perpendicular to the axis of rotation must vanish,
and hence,

di =1 —eel)dp-
=(1—-ee’)da+(1-ee’)(Q—-1)(p*—a)=0
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Upon expansion of the above expression for d*, the foregoing equation
leads to
(1—ee”)ds +(Q—1)(p* —a) = 0

Now it is apparent that if we define a line £ passing through P* and parallel
to e, then the position vector p* + Ae of any of its points P satisfies the
foregoing equation. As a consequence, all points of minimum magnitude lie
in a line parallel to the axis of rotation of Q, q.e.d.

An important implication of the foregoing theorem is that a rigid body
can attain an arbitrary configuration from a given original one, following a
screw-like motion of axis £ and pitch p, the latter being defined presently.
Thus, it seems appropriate to call £ the screw azis of the rigid-body motion.

Note that dp, as defined in eq.(3.6), is an invariant of the motion at hand.
Thus, associated with a rigid-body motion, one can then define a screw of
axis £ and pitch p. Of course, the pitch is defined as

do df,e 27Tdo
D _Zp= p

¢ ¢ ¢
which has units of m/rad or, correspondingly, of m/turn. Moreover, the
angle ¢ of the rotation involved can be regarded as one more feature of this
motion. This angle is, in fact, the amplitude associated with the said motion.
We will come across screws in discussing velocities and forces acting on rigid
bodies, along with their pitches and amplitudes. Thus, it is convenient to
introduce this concept at this stage.

(3.8)

p=

3.2.1 The Screw of a Rigid-Body Motion

The screw axis L is totally specified by a given point Py of £ that can be
defined, for example, as that lying closest to the origin, and a unit vector
e defining its direction. Expressions for the position vector of Py, po, in
terms of a, a’ and Q, are derived below:

If Py is defined as above, i.e., as the point of £ lying closest to the origin,
then, obviously, po is perpendicular to e, i.e.,

el'po=0 (3.9)

Moreover, the displacement dg of Py is parallel to the vector of Q, and
hence, is identical to d| defined in eq.(3.7b), i.e., it satisfies

(Q—1)do =0
where dg is given as in eq.(3.5), namely, as
do=da+(Q—1)(po—a) (3.10a)

Now, since do is identical to d|, we have, from eq.(3.7b),

dA + (Q — 1)(p0 — a) = d“ = eero
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But from Theorem 3.2.1,
eldy =eTdy
and so
ds+(Q—1)(po—a) =eeldy
or after rearranging terms,

(Q-1)po = (Q - 1)a— (1 — ee”)d (3.10b)

Furthermore, in order to find an expression for pg, eq.(3.9) is adjoined to
eq.(3.10b), thereby obtaining

Apo=Db (3.11)

where A is a 4 X 3 matrix and b is a 4-dimensional vector, being given by
_ _ (1 — eaT

A= [QeTl} , b= [(Q La él ee’)da (3.12)

Equation (3.11) cannot be solved for pg directly, because A is not a square
matrix. In fact, that equation represents an overdetermined system of four
equations and three unknowns. Thus, in general, that system does not
admit a solution. However, the four equations are compatible, and hence
in this particular case, a solution of that equation, which turns out to be
unique, can be determined. In fact, if both sides of eq.(3.11) are multiplied
from the left by AT, we have

ATApo=A"b (3.13)

Moreover, if the product AT A, which is a 3 x 3 matrix, is invertible, then
po can be computed from eq.(3.13). In fact, the said product is not only
invertible, but also admits an inverse that is rather simple to derive, as
shown below. Now the rotation matrix Q is recalled in terms of its natural
invariants, namely, the unit vector e parallel to its axis of rotation and the
angle of rotation ¢ about this axis, as given in eq.(2.48), reproduced below
for quick reference:

Q = ee’ + cos¢(1 — ee”) + sin ¢E

where 1 represents the 3 x 3 identity matrix and E the cross-product ma-
triz of e, as introduced in eq.(2.37). Further, eq.(2.48) is substituted into
eq.(3.12), which yields

ATA =2(1 —cos )1 — (1 —2cos ¢)ee” (3.14)

It is now apparent that the foregoing product is a linear combination of 1
and ee”. This suggests that its inverse is very likely to be a linear com-
bination of these two matrices as well. If this is in fact true, then one can
write

(ATA)™ = a1 + Bee” (3.15)
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coefficients o and ( being determined from the condition that the product
of AT A by its inverse should be 1, which yields

1 1—2cos¢

‘= 2(1 —cos @)’ = 2(1 — cos ¢) (3.16)
and hence,
TAv—1 1 1—2cos¢ o
(ATA)™ = 2(1 — cos @) 1+ 2(1 — cos ¢) ee (8.17)
On the other hand,
ATb=(Q-1)"[(Q-1)a—dy] (3.18)

Upon solving eq.(3.13) for po and substituting relations (3.17) and (3.18)
into the expression thus resulting, one finally obtains

_ T ol
po = Q 2(1)((:(3:@ a)7 for ¢ #£0 (3.19)

We have thus defined a line £ of the rigid body under study that is
completely defined by its point Py of position vector pg and a unit vector
e determining its direction. Moreover, we have already defined the pitch of
the associated motion, eq.(3.8). The line thus defined, along with the pitch,
determines the screw of the motion under study.

3.2.2  The Pliicker Coordinates of a Line

Alternatively, the screw axis, and any line for that matter, can be defined
more conveniently by its Pliicker coordinates. In motivating this concept,
we recall the equation of a line £ passing through two points P; and P> of
position vectors p1 and p2, as shown in Fig. 3.1.

If point P lies in £, then, it must be collinear with P; and P, a property
that is expressed as

(p2—p1) X (p—p1)=0

0
FIGURE 3.1. A line £ passing through two points.
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or upon expansion,

(P2 —P1) XP+P1X(P2—pP1)=0 (3.20)

If we now introduce the cross-product matrices P1 and P; of vectors p;
and p2 in the above equation, we have an alternative expression for the
equation of the line, namely,

(P2 —P1)p+p1x(p2—p1)=0

The above equation can be regarded as a linear equation in the homoge-
neous coordinates of point P, namely,

[P2—P1 p1x(p2—p1)] [ﬂ =0 (3.21)

It is now apparent that the line is defined completely by two vectors, the
difference pp — p1, or its cross-product matrix for that matter, and the
cross product p1 X (p2 — p1). We will thus define a 6-dimensional array v,
containing these two vectors, namely,

— P2 — P1
Te= {pl x (p2 — Pl)} (3-22)

whose six scalar entries are the Pliicker coordinates of £. Moreover, if we
let

GEM, n=p; xe (3.23)
P2 — p1ll

then we can write
e
v =lIpz— el [ €]

The six scalar entries of the above array are the normalized Plicker coor-
dinates of L. Vector e determines the direction of £, while n determines
its location; n can be interpreted as the moment of a unit force parallel to
e and of line of action £. Hence, n is called the moment of L. Henceforth,
only the normalized Pliicker coordinates of lines will be used. For brevity,
we will refer to these simply as the Pliicker coordinates of the line under
study. The Pliicker coordinates thus defined will be thus stored in a Pliicker
array Ko in the form

K= {e] (3.24)

n

where for conciseness, we have dropped the subscript £, while assuming
that the line under discussion is self-evident.

Note, however, that the six components of the Pliicker array, i.e., the
Pliicker coordinates of line L, are not independent, for they obey

ece=1, n-e=0 (3.25)
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and hence, any line £ has only four independent Pliicker coordinates. In the
foregoing paragraphs, we have talked about the Pliicker array of a line, and
not about the Pliicker vector; the reason for this distinction is given below.
The set of Pliicker arrays is a clear example of an array of real numbers
not constituting a vector space. What disables Pliicker arrays from being
vectors are the two constraints that their components must satisfy, namely,
(7) the sum of the squares of the first three components of a Pliicker array
is unity, and (¢¢) the unit vector of a line is normal to the moment of the
line. Nevertheless, we can perform with Pliicker arrays certain operations
that pertain to vectors, as long as we keep in mind the essential differences.
For example, we can multiply Pliicker arrays by matrices of the suitable
dimension, with entries having appropriate units, as we will show presently.

It must be pointed out that a Pliicker array is dependent upon the loca-
tion of the point with respect to which the moment of the line is measured.
Indeed, let k4 and kg denote the Pliicker arrays of the same line £ when
its moment is measured at points A and B, respectively. Moreover, this
line passes through a point P of position vector p for a particular origin
O. Now, let the moment of £ with respect to A and B be denoted by ny4
and np, respectively, i.e.,

ns=(p-a)xe, np=(p-—b)xe (3.26)
and hence,
_ e o e
kA= [DA]’ KB = [IIB] (3.27)
Obviously,
ng—ny=(a—b)xe (3.28)
ie.,
e
Kp = {nAJr(ab)xe} (3.29)

which can be rewritten as
kp = Uk, (3.30)

with the 6 x 6 matrix U defined as

o~[a 7

31
A-B 1 (3:31)
while A and B are, respectively, the cross-product matrices of vectors a
and b, and O denotes the 3 x 3 zero matrix. Given the lower-triangular
structure of matrix U, its determinant is simply the product of its diagonal
entries, which are all unity. Hence,

det(U) = 1 (3.32)
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3.2 General Rigid-Body Motion and Its Associated Screw 79

U thus belonging to the unimodular group of 6 x 6 matrices. These matrices
are rather simple to invert. In fact, as one can readily prove,

Ul= {BIA ﬂ (3.33)

Relation (3.30) can then be called the Plicker-coordinate transfer formula.
Note that upon multiplication of both sides of eq.(3.28) by (a — b),

(a—b)'ng=(a—b)'ny (3.34)

and hence, the moments of the same line £ with respect to two points are
not independent, for they have the same component along the line joining
the two points.

A special case of a line, of interest in kinematics, is a line at infinity.
This is a line with undefined orientation, but with a defined direction of its
moment; this moment is, moreover, independent of the point with respect
to which it is measured. Very informally, the Pliicker coordinates of a line at
infinity can be derived from the general expression, eq.(3.24), if we rewrite

it in the form
e/|n
K= ||nH { /H ”}

n/|n]|

where clearly n/||n|| is a unit vector; henceforth, this vector will be denoted
by f. Now let us take the limit of the above expression as P goes to infinity,
i.e., when ||p|| — oo, and consequently, as ||n|| — co. Thus,

lim n_< lim ||n>< lim {e/”n])
| —oo | o0 Inj e | T
0
lim k= lim |n
Inf|—o0 <|n|%o | ) [f}

The 6-dimensional array appearing in the above equation is defined as the
Pliicker array of a line at infinity, Koo, namely,

whence

Koo = {?] (3.35)

Note that a line at infinity of unit moment f can be thought of as being
a line lying in a plane perpendicular to the unit vector f, but otherwise
with an indefinite location in the plane, except that it is an infinitely large
distance from the origin. Thus, lines at infinity vary only in the orientation
of the plane in which they lie.
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3.2.8 The Pose of a Rigid Body

A possible form of describing a general rigid-body motion, then, is through
a set of eight real numbers, namely, the six Pliicker coordinates of its screw
axis, its pitch, and its amplitude, i.e., its angle. Hence, a rigid-body mo-
tion is fully described by six independent parameters. Moreover, the pitch
can attain values from —oo to +o00. Alternatively, a rigid-body motion can
be described by seven dependent parameters as follows: four invariants of
the concomitant rotation—the linear invariants, the natural invariants, or
the Euler—Rodrigues parameters, introduced in Section 2.3—and the three
components of the displacement of an arbitrary point. Since those invari-
ants are not independent, but subject to one constraint, this description
consistently involves six independent parameters. Thus, let a rigid body
undergo a general motion of rotation Q and displacement d from a refer-
ence configuration Cp. If in the new configuration C a landmark point A of
the body has a position vector a, then the pose array, or simply the pose,
s of the body, is defined as a 7-dimensional array, namely,

q
s=| q (3.36)
dy

where the 3-dimensional vector q and the scalar go are any four invariants
of Q. For example, if these are the Euler-Rodrigues parameters, then

q= sin(g)e, qo = cos(%)
If alternatively, we work with the linear invariants, then
q = (sing)e, qo=cosod
and, of course, if we work instead with the natural invariants, then
q=e, Q=9
In the first two cases, the constraint mentioned above is
lall? + g5 =1 (3.37)
In the last case, the constraint is simply
lel2 =1 (3.38)

An important problem in kinematics is the computation of the screw pa-
rameters, i.e., the components of s, as given in eq.(3.36), from coordinate
measurements over a certain finite set of points. From the foregoing discus-
sion, it is clear that the computation of the attitude of a rigid body, given
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3.2 General Rigid-Body Motion and Its Associated Screw 81

by matrix Q or its invariants, is crucial in solving this problem. Moreover,
besides its theoretical importance, this problem, known as pose estimation,
has also practical relevance. Shown in Fig. 3.2 is the helmet-mounted dis-
play system used in flight simulators. The helmet is supplied with a set of
LEDs (light-emitting diodes) that emit infrared light signals at different
frequencies each. These signals are then picked up by two cameras, from
whose images the Cartesian coordinates of the LEDs centers are inferred.
With these coordinates and knowledge of the LED pattern, the attitude
of the pilot’s head is determined from the rotation matrix Q. Moreover,
with this information and that provided via sensors mounted on the lenses,
the position of the center of the pupil of the pilot’s eyes is then estimated.
This position, then, indicates on which part of his or her visual field the
pilot’s eyes are focusing. In this way, a high-resolution graphics monitor
synthesizes the image that the pilot would be viewing with a high level of
detail. The rest of the visual field is rendered as a rather blurred image, in
order to allocate computer resources where it really matters.

A straightforward method of computing the screw parameters consists
of regarding the motion as follows: Choose a certain point A of the body,

FIGURE 3.2. Helmet-mounted display system (courtesy of CAE Electronics Ltd.,
St.-Laurent, Quebec, Canada.)
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FIGURE 3.3. Decomposition of the displacement of a rigid body.

of position vector a, and track it as the body moves to a displaced config-
uration, at which point A moves to A’, of position vector a’. Assume that
the body reaches the displaced configuration B’, passing through an inter-
mediate one B”, which is attained by pure translation. Next, configuration
B’ is reached by rotating the body about point A’, as indicated in Fig. 3.3.

Matrix Q can now be readily determined. To do this, define three points
of the body, P1, P>, and Ps, in such a way that the three vectors defined
below are orthonormal and form a right-hand system:

e = ;ﬂﬁi, e = Z‘ﬁz), ez = m (3.39)
e -e; =10, 1,j=123 e3=e1xe (3.40)

where 0;; is the Kronecker delta, defined as 1 if i = j and 0 otherwise. Now,
let the set {e;}3 be labelled {e/}3 and {e/}3 in configurations B’ and B”,
respectively. Moreover, let ¢;; denote the entries of the matrix representa-
tion of the rotation Q in a frame X, Y, Z with origin at A and such that
the foregoing axes are parallel to vectors e, €2, and es, respectively. It is
clear, from Definition 2.2.1, that

Gij = i - €] (3.41)

i.e.,
e1-€; e;-e, e1-ef
[Q]=|ezx-€e] ex-€e), er-€f (3.42)
ez-€e] ez-e, e3-e}

Note that all e; and e} appearing in eq.(3.42) must be represented in the
same coordinate frame. Once Q is determined, computing the remaining
screw parameters is straightforward. One can use, for example, eq.(3.19) to
determine the point of the screw axis that lies closest to the origin, which
would thus allow one to compute the Pliicker coordinates of the screw axis.
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3.3 Rotation of a Rigid Body About a Fixed Point

In this section, the motion of a rigid body having a point fixed is analyzed.
This motion is fully described by a rotation matrix Q that is proper or-
thogonal. Now, Q will be assumed to be a smooth function of time, and
hence, the position vector of a point P in an original configuration, denoted
here by po, is mapped smoothly into a new vector p(¢), namely,

p(t) = Q(t)po (3.43)

The velocity of P is computed by differentiating both sides of eq.(3.43)
with respect to time, thus obtaining

p(t) = Q(t)po (3.44)

which is not a very useful expression, because it requires knowledge of the
original position of P. A more useful expression can be derived if eq.(3.43) is
solved for pg and the expression thus resulting is substituted into eq.(3.44),
which yields

p=QQ"p (3.45)

where the argument ¢ has been dropped because all quantities are now
time-varying, and hence, this argument is self-evident. The product QQT
is known as the angular-velocity matriz of the rigid-body motion and is
denoted by €2, i.e.,

Q=QQ” (3.46)

As a consequence of the orthogonality of Q, one has a basic result,
namely,

Theorem 3.3.1 The angular-velocity matriz is skew symmetric.

In order to derive the angular-velocity vector of a rigid-body motion,
we recall the concept of azial vector, or simply vector, of a 3 X 3 matrix,
introduced in Subsection 2.3.3. Thus, the angular-velocity vector w of the
rigid-body motion under study is defined as the vector of €2, i.e.,

w = vect() (3.47)
and hence, eq.(3.45) can be written as

P=Qp=wxp (3.48)

from which it is apparent that the velocity of any point P of a body moving
with a point O fized is perpendicular to line OP.
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3.4 General Instantaneous Motion of a Rigid Body

If a rigid body now undergoes the most general motion, none of its points
remains fixed, and the position vector of any of these, P, in a displaced con-
figuration is given by eq.(3.2). Let ag and po denote the position vectors
of points A and P of Section 3.2, respectively, in the reference configura-
tion Co, a(t) and p(t) being the position vectors of the same points in the
displaced configuration C. Moreover, if Q(t) denotes the rotation matrix,
then

p(t) = a(t) + Q(t)(po — ao) (3.49)

Now, the velocity of P is computed by differentiating both sides of eq.(3.49)
with respect to time, thus obtaining

p(t) = a(t) + Q(t)(po — a0) (3.50)

which again, as expression (3.50), is not very useful, for it requires the
values of the position vectors of A and P in the original configuration.
However, if eq.(3.49) is solved for pg — ag and the expression thus resulting
is substituted into eq.(3.50), we obtain

p=a+Qp—-a) (3.51)
or in terms of the angular-velocity vector,
p=a+wx(p—a) (3.52)

where the argument ¢ has been dropped for brevity but is implicit, since all
variables of the foregoing equation are now functions of time. Furthermore,
from eq.(3.52), it is apparent that the result below holds:

P-4a)-(p—a)=0 (3.53)
which can be summarized as

Theorem 3.4.1 The relative velocity of two points of the same rigid body
is perpendicular to the line joining them.

Moreover, similar to the outcome of Theorem 3.2.1, one now has an ad-
ditional result that is derived upon dot-multiplying both sides of eq.(3.52)
by w, namely,

w - p =w -a = constant

and hence,

Corollary 3.4.1 The projections of the wvelocities of all the points of a
rigid body onto the angular-velocity vector are identical.

Furthermore, similar to the Mozzi-Chasles Theorem, we have now
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Theorem 3.4.2 Given a rigid body under general motion, a set of its
points located on a line L' undergoes the identical minimum-magnitude
velocity vo parallel to the angular velocity.

Definition 3.4.1 The line containing the points of a rigid body undergoing
minimum-magnitude velocities is called the instant screw axis (ISA) of the
body under the given motion.

3.4.1 The Instant Screw of a Rigid-Body Motion

From Theorem 3.4.2, the instantaneous motion of a body is equivalent to
that of the bolt of a screw of axis £’, the ISA. Clearly, as the body moves,
the ISA changes, and the motion of the body is called an instantaneous
screw. Moreover, since vq is parallel to w, it can be written in the form
w
Vo = V07— (354)
[

where vg is a scalar quantity denoting the signed magnitude of vp and bears

the sign of vg - w. Furthermore, the pitch of the instantaneous screw, p’, is

defined as )
, v prw , _ 2mug
or p'=

(3.55)

lew]? @]l

which thus bears units of m/rad or correspondingly, of m/turn.
Again, the ISA £’ can be specified uniquely through its Pliicker coordi-
nates, stored in the p,: array defined as

e/
pr = {n’] (3.56)
where € and n’ are, respectively, the unit vector defining the direction of
L' and its moment about the origin, i.e.,

e=—"— n=pxée (3.57)

p being the position vector of any point of the ISA. Clearly, €’ is defined
uniquely but becomes trivial when the rigid body instantaneously under-
goes a pure translation, i.e., a motion during which, instantaneously, w = 0.
In this case, € is defined as the unit vector parallel to the associated dis-
placement field. Thus, an instantaneous rigid-body motion is defined by a
line £', a pitch p’, and an amplitude ||w]|. Such a motion is, then, fully
determined by six independent parameters, namely, the four independent
Pliicker coordinates of £', its pitch, and its amplitude. A line supplied with
a pitch is, in general, called a screw; a screw supplied with an amplitude
representing the magnitude of an angular velocity provides the represen-
tation of an instantaneous rigid-body motion that is sometimes called the
twist, an item that will be discussed more in detail below.
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Hence, the instantaneous screw is fully defined by six independent real
numbers. Moreover, such as in the case of the screw motion, the pitch of
the instantaneous screw can attain values from —oo to +oo.

The ISA can be alternatively described in terms of the position vector py
of its point lying closest to the origin. Expressions for py in terms of the po-
sition and the velocity of an arbitrary body-point and the angular velocity
are derived below. To this end, we decompose p into two orthogonal com-
ponents, p; and p_, along and transverse to the angular-velocity vector,
respectively. To this end, a is first decomposed into two such orthogonal
components, & and &, , the former being parallel, the latter normal to the
ISA, i.e.,

These orthogonal components are given as
T

w ww ww 1
a=a-w = a, a, = 1—>a_—92a (3.59)
! w]2 ™ w2 ( ]2 ]2

In the derivation of eq.(3.59) we have used the identity introduced in
eq.(2.39), namely,

Q2 = ww? — w1 (3.60)
Upon substitution of eq.(3.59) into eq.(3.52), we obtain

ww’ 1 2
p=-—5a— Q“a+Q(p—a) (3.61)
]2 lel?
joJ Pl

Of the three components of p, the first, henceforth referred to as its azial
component, is parallel, the last two being normal to w. The sum of the last
two components is referred to as the normal component of p. From eq.(3.61)
it is apparent that the axial component is independent of p, while the
normal component is a linear function of p. An obvious question now arises:
For an arbitrary motion, is it possible to find a certain point of position
vector p whose velocity normal component vanishes? The vanishing of the
normal component obviously implies the minimization of the magnitude of
P- The condition under which this happens can now be written as

pL=0
or

1 .

which can be further expressed as a vector equation linear in p, namely,

1
Qp =0 <a+ —na> 3.63
Tl (3.63)
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or

Qp-1r)=0 (3.64a)
with r defined as

1
r=a+ ——-0a (3.64Db)
lw]|?

and hence, a possible solution of the foregoing problem is

1 .
p=r=a+ Wﬂa (3.65)

However, this solution is not unique, for eq.(3.64a) does not require that
p—r be zero, only that this difference lie in the nullspace of €2, i.e., that p—r
be linearly dependent with w. In other words, if a vector aw is added to p,
then the sum also satisfies eq.(3.63). It is then apparent that eq.(3.63) does
not determine a single point whose normal velocity component vanishes
but a set of points lying on the ISA, and thus, other solutions are possible.
For example, we can find the point of the ISA lying closest to the origin. To
this end, let pg be the position vector of that point. This vector is obviously
perpendicular to w, i.e.,

wiph =0 (3.66)

Next, eq.(3.63) is rewritten for pg, and eq.(3.66) is adjoined to it, thereby
deriving an expanded linear system of equations, namely,

Ap,=b (3.67)

where A is a 4 x 3 matrix and b is a 4-dimensional vector, both of which
are given below:

Ao [usﬂ b= [Qa+(1/0w2)92a (3.68)

This system is of the same nature as that appearing in eq.(3.11), and hence,
it can be solved for py following the same procedure. Thus, both sides of
eq.(3.67) are multiplied from the left by AT, thereby obtaining

ATApy = A™b (3.69)
where
ATA =070 + ww’ = 0% + ww’ (3.70)

Moreover, from eq.(3.60), the rightmost side of the foregoing relation be-
comes ||w|?1, and hence, the matrix coefficient of the left-hand side of
eq.(3.69) and the right-hand side of the same equation reduce, respectively,
to

ATA = |lw|’1, ATb=Q(a - Qa) (3.71)
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Upon substitution of eq.(3.71) into eq.(3.69) and further solving for pg, the
desired expression is derived:

Qa—-QNa) wx(a—wxa)

/

Py = = (3.72)
° lw][? lew]?

Thus, the instantaneous screw is fully defined by an alternative set of six
independent scalars, namely, the three components of its angular velocity
w and the three components of the velocity of an arbitrary body point A,
denoted by a. As in the case of the screw motion, we can also represent the
instantaneous screw by a line and two additional parameters, as we explain
below.

3.4.2  The Twist of a Rigid Body

A line, as we saw earlier, is fully defined by its 6-dimensional Pliicker array,
which contains only four independent components. Now, if a pitch p is
added as a fifth feature to the line or correspondingly, to its Pliicker array,
we obtain a screw s, namely,

S_{ e ] (3.73)

P X e+ pe

An amplitude is any scalar A multiplying the foregoing screw. The am-
plitude produces a twist or a wrench, to be discussed presently, depending
on its units. The twist or the wrench thus defined can be regarded as an
eight-parameter array. These eight parameters, of which only six are in-
dependent, are the amplitude, the pitch, and the six Pliicker coordinates
of the associated line. Clearly, a twist or a wrench is defined completely
by six independent real numbers. More generally, a twist can be regarded
as a 6-dimensional array defining completely the velocity field of a rigid
body, and it comprises the three components of the angular velocity and
the three components of the velocity of any of the points of the body.

Below we elaborate on the foregoing concepts. Upon multiplication of
the screw appearing in eq.(3.73) by the amplitude A representing the mag-
nitude of an angular velocity, we obtain a twist t, namely,

Ae

©=1p x (4e) + pl4e)

where the product Ae can be readily identified as the angular velocity w
parallel to vector e, of magnitude A. Moreover, the lower part of t can be
readily identified with the velocity of a point of a rigid body. Indeed, if we
regard the line £ and point O as sets of points of a rigid body B moving
with an angular velocity w and such that point P moves with a velocity
pw parallel to the angular velocity, then the lower vector of t, denoted by
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3.4 General Instantaneous Motion of a Rigid Body 89

v, represents the velocity of point O, i.e.,
V=—wXDp-+pw

We can thus express the twist t as

t= {“’} (3.74)

A special case of great interest in kinematics is the screw of infinitely
large pitch. The form of this screw is derived, very informally, by taking
the limit of expression (3.73) as p — oo, namely,

Hm [pX(Sere} = <p {(px2§7p+e])

which readily leads to

. e . 0
lim =|( lim p
p—oo | P X € + pe p—00 e

The screw of infinite pitch s is defined as the 6-dimensional array appear-
ing in the above equation, namely,

0
Soo = [e} (3.75)
Note that this screw array is identical to the Pliicker array of the line at
infinity lying in a plane of unit normal e.

The twist array, as defined in eq.(3.74), with w on top, represents the
ray coordinates of the twist. An exchange of the order of the two Cartesian
vectors of this array, in turn, gives rise to the azis coordinates of the twist.

The foregoing twist was also termed motor by Everett (1875). As Phillips
(1990) points out, the word motor is an abbreviation of moment and vector.
An extensive introduction into motor algebra was published by von Mises
(1924), a work that is now available in English (von Mises, 1996). Roth
(1984), in turn, provided a summary of these concepts, as applicable to
robotics. The foregoing array goes also by other names, such as the German
Kinemate.

The relationships between the angular-velocity vector and the time de-
rivatives of the invariants of the associated rotation are linear. Indeed, let
the three sets of four invariants of rotation, namely, the natural invariants,
the linear invariants, and the Euler-Rodrigues parameters be grouped in
the 4-dimensional arrays v, A, and 7, respectively, i.e.,

c[e]. ae[m] e[| om
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We then have the linear relations derived in full detail elsewhere (Angeles,
1988), and outlined in Appendix A for quick reference, namely,

vy=Nw, A=Lw, 7n=Hw (3.77a)
with N, L, and H defined as
N = [[sincﬁ/( (1 —cos ¢))](1 —ee’) - (1/2)E} ’ (3.77b)

_ [1/2)(Q) )

L= [ (Sm¢ ] (3.77¢)
_ 1 [cos(¢/2)1 — sin(¢/2)E

H= [ L ain(@/2)eT } (3.77d)

where, it is recalled, tr(-) denotes the trace of its square matrix argument
(+), i.e., the sum of the diagonal entries of that matrix.

The inverse relations of those shown in egs.(3.77a) are to be derived by
resorting to the approach introduced when solving eq.(3.67) for pg, thereby
obtaining _ B B

w=Nv=L\A=Hgp (3.78a)

the 3 x 4 matrices 1(1, i, and H being defined below:

I\NT =[(sing)1 + (1 —cosp)E e], (3.78b)
E, =[14[(sing)/(1+cosp)|]E —[(sin¢g)/(1+ cosp)le], (3.78¢)
H = 2[[cos(¢/2)]1 + [sin(¢/2)|E  —[sin(¢/2)]e] (3.78d)

As a consequence, we have the following:

Caveat The angular velocity vector is not a time-derivative, i.e., no Carte-
sian vector exists whose time-derivative is the angular-velocity vector.

However, matrices N, L, and H of eqs.(3.77b—d) can be regarded as
integration factors that yield time-derivatives.

Now we can write the relationship between the twist and the time-rate
of change of the 7-dimensional pose array s, namely,

s=Tt (3.79)
where

O 1

in which O and Q43 are the 3 x 3 and the 4 x 3 zero matrices, while
1 is the 3 x 3 identity matrix and F is, correspondingly, N, L, or H,
depending upon the invariant representation chosen for the rotation. The
inverse relationship of eq.(3.79) takes the form

T= {F 043} (3.80)

t =S5 (3.81a)
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where

S = [01‘:4 (1’] (3.81b)

in which Ogg4 is the 3 x 4 zero matrix. Moreover, F is one of 1<T, i, or
H, depending on the rotation representation adopted, namely, the nat-
ural invariants, the linear invariants, or the Euler-Rodrigues parameters,
respectively.

A formula that relates the twist of the same rigid body at two different
points is now derived. Let A and P be two arbitrary points of a rigid body.
The twist at each of these points is defined as

tA_[‘:], tp—|:w:| (3.82)

vp
Moreover, eq.(3.52) can be rewritten as
vp=va+(a—p)xXw (3.83)
Combining eq.(3.82) with eq.(3.83) yields
tp = Uty (3.84)

where

(3.85)

o~ 9

A-P 1

with the 6 x 6 matrix U defined as in eq.(3.31), while A and P denote the
cross-product matrices of vectors a and p, respectively. Thus, eq.(3.84) can
be fairly called the twist-transfer formula.

3.5 Acceleration Analysis of Rigid-Body Motions

Upon differentiation of both sides of eq.(3.51) with respect to time, one
obtains

Pp=a+Q(p—a)+Qp-a) (3.86)

Now, eq.(3.51) is solved for p — a, and the expression thus resulting is
substituted into eq.(3.86), thereby obtaining

p=5a+(Q+9%)(p-a) (3.87)

where the matrix sum in parentheses is termed the angular-acceleration
matriz of the rigid-body motion and is represented by W, i.e.,

W=0Q+02 (3.88)
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92 3. Fundamentals of Rigid-Body Mechanics

Clearly, the first term of the right-hand side of eq.(3.88) is skew-symmetric,
whereas the second one is symmetric. Thus,

vect (W) = vect(2) = w (3.89)

w being termed the angular-acceleration vector of the rigid-body motion.
We have now an interesting result, namely,

tr(W) = tr(Q?) = tr(—||w|?1 4+ ww?)
= —||w|?tr(1) + w - w = —2||w]? (3.90)

Moreover, eq.(3.87) can be written as
p=d+wx(p—a)+wX[wx(p—a) (3.91)
On the other hand, the time derivative of t, henceforth referred to as the

twist rate, is displayed below:

. w
in which v is the acceleration of a point of the body. The relationship
between the twist rate and the second time derivative of the screw is derived
by differentiation of both sides of eq.(3.79), which yields

§=Tt+ Tt (3.93)
where .
o_ | F Ous
w=[E o) 99

and F is one of N, L, or H, accordingly. The inverse relationship of eq.(3.93)
is derived by differentiating both sides of eq.(3.81a) with respect to time,
which yields

t =S8+ Ss (3.95)
where )
$— { F 0] (3.96)
Oz O

with O and Og4 already defined in eq.(3.81b) as the 3 x 3 and the 3 x 4

zero matrices, respectively, while F is one of N, fJ, or ﬁ, according with
the type of rotation representation at hand.
Before we take to differentiating the foregoing matrices, we introduce a

feW deﬁnitlons: Lel
A ) ] (3 E E)
uQ To
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ie.,

u=singe, wug=cos¢, r=sin (g) e, 719 =cCos (%) (3.97Db)
Thus, the time derivatives sought take on the forms

N = m {B} (3.98a)

. [ (1/2)1tx(Q) - Q) ]
(1/2)w1tr(Q) ~ Q7]

—(w w1 - (1/2)0Q
[ (1/2)w™[1tr(Q) — ]] (3.98b)
= VOII*T R] (3.98¢)

where we have used the identities below, which are derived in Appendix A.
tr(Q) = tr(2Q) = —2w’u (3.984)
Furthermore, R denotes the cross-product matrix of r, and B is defined as

B=-2(e-w)l+2(3—cosop)(e-w)ee’ —2(1+ sinp)we’

—(2cos ¢ + sin p)ew” — (sin ¢)[Q — (e - w)E] (3.98¢)
Moreover,

N = [H(cos )1 + (sinO)E & (3.99a)
=[V/D 1] (3.99h)
H=[iol + R ] (3.99¢)

where V and D are defined below:
V=U- (uu? 4 ua?) - %(U —uu’) (3.99d)
D=1+uwo (3.99¢)

with U denoting the cross-product matrix of u.

3.6 Rigid-Body Motion Referred to Moving
Coordinate Axes

Although in kinematics no “preferred” coordinate system exists, in dynam-
ics the governing equations of rigid-body motions are valid only in inertial
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94 3. Fundamentals of Rigid-Body Mechanics

frames. An inertial frame can be defined as a coordinate system that trans-
lates with uniform velocity and constant orientation with respect to the
stars. Thus, it is important to refer vectors and matrices to inertial frames,
but sometimes it is not possible to do so directly. For instance, a spacecraft
can be supplied with instruments to measure the velocity and the acceler-
ation of a satellite drifting in space, but the measurements taken from the
spacecraft will be referred to a coordinate frame fixed to it, which is not in-
ertial. If the motion of the spacecraft with respect to an inertial coordinate
frame is recorded, e.g., from an Earth-based station, then the acceleration
of the satellite with respect to an inertial frame can be computed using the
foregoing information. How to do this is the subject of this section.

In the realm of kinematics, it is not necessary to distinguish between
inertial and noninertial coordinate frames, and hence, it will suffice to call
the coordinate systems involved fized and moving. Thus, consider the fixed
coordinate frame X, Y, Z, which will be labeled F, and the moving coor-
dinate frame X, ), and Z, which will be labeled M, both being depicted
in Fig. 3.4. Moreover, let Q be the rotation matrix taking frame F into
the orientation of M, and o the position vector of the origin of M from
the origin of F. Further, let p be the position vector of point P from the
origin of F and p the position vector of the same point from the origin of
M. From Fig. 3.4 one has

[plr=[o]r+I[plF (3.100)

where it will be assumed that p is not available in frame F, but in M.
Hence,

[plr=[QlrlPIMm (3.101)
Substitution of eq.(3.101) into eq.(3.100) yields
[plr=lo]r +[Qlx[pPIMm (3.102)

Now, in order to compute the velocity of P, both sides of eq.(3.102) are
differentiated with respect to time, which leads to

[plr=[0]lr+[QlrlpIm+[Qlx[p]Mm (3.103)
Furthermore, from the definition of €2, eq.(3.46), we have
[QlF = [2]£[Q]F (3.104)
Upon substitution of the foregoing relation into eq.(3.103), we obtain
[plr =[o]r+[Q2]7[Q]r[pIlm +[Qlr[P]M (3.105)

which is an expression for the velocity of P in F in terms of the velocity of
P in M and the twist of M with respect to F. Next, the acceleration of
P in F is derived by differentiation of both sides of eq.(3.105) with respect
to time, which yields

[Blr=[6]F+ [Q]f[Q]f[P]M +(Q]7[Qlrlp]m
+HQAQIrPIM + [Qlx[PIM +[Q]x[pIMm  (3.106)
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FIGURE 3.4. Fixed and moving coordinate frames.

Further, upon substitution of identity (3.104) into eq.(3.106), we obtain

(Blr =[6]F+ ([Qr + [Q®]7)[Q]r[p]um
+2[QF[Qlr[pIm + [Q]r[ Pl (3.107)

Moreover, from the results of Section 3.5, it is clear that the first two
terms of the right-hand side of eq.(3.107) represent the acceleration of P as
a point of M, whereas the fourth term is the acceleration of P measured
from M. The third term is what is called the Coriolis acceleration, as it was
first pointed out by the French mathematician Gustave Gaspard Coriolis
(1835).

3.7 Static Analysis of Rigid Bodies

Germane to the velocity analysis of rigid bodies is their force-and-moment
analysis. In fact, striking similarities exist between the velocity relations
associated with rigid bodies and the forces and moments acting on them.
From elementary statics it is known that the resultant of all external ac-
tions, i.e., forces and moments, exerted on a rigid body can be reduced to
a force f acting at a point, say A, and a moment n,4. Alternatively, the
aforementioned force f can be defined as acting at an arbitrary point P
of the body, as depicted in Fig. 3.5, but then the resultant moment, np,
changes correspondingly.

In order to establish a relationship between ns and np, the moment of
the first system of force and moment with respect to point P is equated to
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96 3. Fundamentals of Rigid-Body Mechanics

(a) (b)

FIGURE 3.5. Equivalent systems of force and moment acting on a rigid body.

the moment about the same point of the second system, thus obtaining
np=ny+(a—p)xf (3.108)
which can be rewritten as
np=n4+f x (p—a) (3.109)

whence the analogy with eq.(3.52) is apparent. Indeed, np and ny of
eq.(3.109) play the role of the velocities of P and A, p and a, respec-
tively, whereas f of eq.(3.109) plays the role of w of eq.(3.52). Thus, similar
to Theorem 3.4.2, one has

Theorem 3.7.1 For a given system of forces and moments acting on a
rigid body, if the resultant force is applied at any point of a particular line
L", then the resultant moment is of minimum magnitude. Moreover, that
minimum-magnitude moment is parallel to the resultant force.

Hence, the resultant of the system of forces and moments is equivalent to
a force f acting at a point of £” and a moment n, with both f and n parallel
to L£”. Paraphrasing the definition of the ISA, one defines line £” as the
axis of the wrench acting on the body. Let ng be the minimum-magnitude
moment. Clearly, ng can be expressed as vg was in eq.(3.54), namely, as
f np - f

= — = 3.110
R0 = Mo 10 = g (3.110)

Moreover, the pitch of the wrench, p”’, is defined as

" no Ilp-f "o 27T1’1p-f

=-—=—0> or p=—c— (3.111)
Il El? I1£112
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which again has units of m/rad or correspondingly, of m/turn. Of course,
the wrench axis can be defined by its Pliicker array, pg~, i.e.,

1 f
pri = [ ,,] , €= T n" =pxe’ (3.112)

where €” is the unit vector parallel to £”, n” is the moment of £” about

the origin, and p is the position vector of any point on £”.

The wrench axis is fully specified, then, by the direction of f and point
P lying closest to the origin of position vector pg, which can be derived
by analogy with eq.(3.72), namely, as

Py = Wf X (ng —f x a) (3.113)

Similar to Theorem 3.4.1, one has

Theorem 3.7.2 The projection of the resultant moment of a system of
moments and forces acting on a rigid body that arises when the resultant
force is applied at an arbitrary point of the body onto the wrench axis is
constant.

From the foregoing discussion, then, the wrench applied to a rigid body
can be fully specified by the resultant force f acting at an arbitrary point P
and the associated moment, np. We shall derive presently the counterpart
of the 6-dimensional array of the twist, namely, the wrench array. Upon
multiplication of the screw of eq.(3.73) by an amplitude A with units of
force, what we will obtain would be a wrench w, i.e., a 6-dimensional array
with its first three components having units of force and its last components
units of moment. We would like to be able to obtain the power developed
by the wrench on the body moving with the twist t by a simple inner
product of the two arrays. However, because of the form the wrench w
has taken, the inner product of these two arrays would be meaningless,
for it would involve the sum of two scalar quantities with different units,
and moreover, each of the two quantities is without an immediate physical
meaning. In fact, the first scalar would have units of force by frequency
(angular velocity by force), while the second would have units of moment
of moment multiplied by frequency (velocity by moment), thereby leading
to a physically meaningless result. This inconsistency can be resolved if we
redefine the wrench not simply as the product of a screw by an amplitude,
but as a linear transformation of that screw involving the 6 x 6 array I’

defined as
O 1
r= [ S o} (3.114)

where O and 1 denote, respectively, the 3 x 3 zero and identity matrices.
Now we define the wrench as a linear transformation of the screw s defined

TLFeBOOK



98 3. Fundamentals of Rigid-Body Mechanics

in eq.(3.73). This transformation is obtained upon multiplying s by the
product AT, the amplitude A having units of force, i.e.,

p X (Ae) + p(Ae)

w=AI's = e

The foregoing wrench is said to be given in azxis coordinates, as opposed to
the twist, which was given in ray coordinates.

Now, the first three components of the foregoing array can be readily
identified as the moment of a force of magnitude A acting along a line of
action given by the Pliicker array of eq.(3.112), with respect to a point P,
to which a moment parallel to that line and of magnitude pA is added.
Moreover, the last three components of that array pertain apparently to
a force of magnitude A and parallel to the same line. We denote here the
above-mentioned moment by n and the force by f, i.e.,

f=Ae, n=px{f+pf

The wrench w is then defined as

= {‘H (3.115)

which can thus be interpreted as a representation of a system of forces and
moments acting on a rigid body, with the force acting at point P of the
body B defined above and a moment n. Under these circumstances, we say
that w acts at point P of B.

With the foregoing definitions it is now apparent that the wrench has
been defined so that the inner product tTw will produce the power II
developed by w acting at P when B moves with a twist t defined at the
same point, i.e.,

I=t"w (3.116)

When a wrench w that acts on a rigid body moving with the twist t
develops zero power onto the body, we say that the wrench and the twist
are reciprocal to each other. By the same token, the screws associated with
that wrench-twist pair are said to be reciprocal. More specifically, let the
wrench and the twist be given in terms of their respective screws, s,, and
St, as

w =WTs,, t=1Ts, (3.117)

where W and T are the amplitudes of the wrench and the twist, respectively,
while T' is as defined in eq.(3.114). Thus, the two screws s,, and s; are

reciprocal if
(Tsy)''si =siT7s; =0 (3.118)

and by virtue of the symmetry of T', the foregoing relation can be further
expressed as
siTs;, =0 or s'Ts, =0 (3.119)
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Now, if A and P are arbitrary points of a rigid body, we define the wrench
at these points as

w4 = [an] , Wp= |:l'1fp:| (3.120)
Therefore, eq.(3.108) leads to
wp =Vwy (3.121)

where

o 1 (3.122)

V= [1 A - P}
and A and P were defined in eq.(3.85) as the cross-product matrices of
vectors a and p, respectively. Thus, wp is a linear transformation of w 4.
By analogy with the twist-transfer formula of eq.(3.84), eq.(3.121) is termed
here the wrench-transfer formula.

Multiplying the transpose of eq.(3.84) by eq.(3.121) yields

thwp = t{UTVwy (3.123)
where
1 -A+P][1 A-P
U’V = {0 1 ] [0 1 } = loxo (3.124)

with 1gxe denoting the 6 x 6 identity matrix. Thus, tgwla = tiwA, as
expected, since the wrench develops the same amount of power, regardless
of where the force is assumed to be applied. Also note that an interesting
relation between U and V follows from eq.(3.124), namely,

vi=u" (3.125)

3.8 Dynamics of Rigid Bodies

The equations governing the motion of rigid bodies are recalled in this
section and cast into a form suitable to multibody dynamics. To this end,
a few definitions are introduced. If a rigid body has a mass density p, which
need not be constant, then its mass m is defined as

m:/de (3.126)
B

where B denotes the region of the 3-dimensional space occupied by the
body. Now, if p denotes the position vector of an arbitrary point of the
body, from a previously defined origin O, the mass first moment of the
body with respect to O, qo, is defined as

qo0 E/pde (3.127)
B
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Furthermore, the mass second moment of the body with respect to O is
defined as

Ip = /Igp[(p -p)1 —pp’ JdB (3.128)

which is clearly a symmetric matrix. This matrix is also called the moment-
of-inertia matrix of the body under study with respect to O. One can readily
prove the following result:

Theorem 3.8.1 The moment of inertia of a rigid body with respect to a
point O is positive definite.

Proof : All we need to prove is that for any vector w, the quadratic form
wTTpw is positive. But this is so, because

wfbw—iépNMFMM2@~wVHB (3.129)

Now, we recall that
p - w = [|p|[lw] cos(p,w) (3.130)

in which (p,w) stands for the angle between the two vectors within the
parentheses. Substitution of eq.(3.130) into eq.(3.129) leads to

W Tow = /13 PPl lw|2[1 - cos?(p,w) |dB

- /13 pllpll?]|w|? sin?(p, w)dB

which is a positive quantity that vanishes only in the ideal case of a slender
body having all its mass concentrated along a line passing through O and
parallel to w, which would thus render sin(p,w) = 0 within the body,
thereby completing the proof.

Alternatively, one can prove the positive definiteness of the mass moment
of inertia based on physical arguments. Indeed, if vector w of the previous
discussion is the angular velocity of the rigid body, then the quadratic form
of eq.(3.129) turns out to be twice the kinetic energy of the body. Indeed,
the said kinetic energy, denoted by T, is defined as

1.
7= [ Solplas
B

where p is the velocity of any point P of the body. For the purposes of this
discussion, it will be assumed that point O, about which the second moment
is defined, is a point of the body that is instantaneously at rest. Thus, if
this point is defined as the origin of the Euclidean space, the velocity of
any point of the body, moving with an angular velocity w, is given by

P=wXxp

TLFeBOOK



3.8 Dynamics of Rigid Bodies 101

which can be rewritten as
p=—Pw

with P defined as the cross-product matrix of p. Hence,
Ipl? = (Pw)"Pw = w"P"Pw = —w' P?w

Moreover, by virtue of eq.(2.39), the foregoing expression is readily re-
ducible to
15?2 =" (Ipl*1 - pp”)w (3.131)

Therefore, the kinetic energy reduces to

1

7= [ o (IpIP1 - pp" s (3.132)
B

and since the angular velocity is constant throughout the body, it can be

taken out of the integral sign, i.e.,

1
7= Lyt [ [ pllplP1 - poT)as) (3.133)

The term inside the brackets of the latter equation is readily identified as
Ip, and hence, the kinetic energy can be written as

1
T= inIow (3.134)

Now, since the kinetic energy is a positive-definite quantity, the quadratic
form of eq.(3.134) is consequently positive-definite as well, thereby proving
the positive-definiteness of the second moment.

The mass center of a rigid body, measured from O, is defined as a point
C, not necessarily within the body—think of a homogeneous torus—of
position vector ¢ given by

C

qo0
— 3.135
L (3.135)

Naturally, the mass moment of inertia of the body with respect to its
centroid is defined as

Ic = / pl|r||?1 — re?')dB (3.136)
B

where r is defined, in turn, as
r=p-c (3.137)

Obviously, the mass moment of inertia of a rigid body about its mass cen-
ter, also termed its centroidal mass moment of inertia, is positive-definite
as well. In fact, the mass—or the volume, for that matter—moment of
inertia of a rigid body with respect to any point is positive-definite. As a
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consequence, its three eigenvalues are positive and are referred to as the
principal moments of inertia of the body. The eigenvectors of the inertia
matrix are furthermore mutually orthogonal and define the principal azes
of inertia of the body. These axes are parallel to the eigenvectors of that
matrix and pass through the point about which the moment of inertia is
taken. Note, however, that the principal moments and the principal axes
of inertia of a rigid body depend on the point with respect to which the
moment of inertia is defined. Moreover, let Io and I be defined as in
eqs.(3.128) and (3.136), with r defined as in eq.(3.137). It is possible to
show that

Io = I + m(|c]|?1 — ccT) (3.138)

Furthermore, the smallest principal moment of inertia of a rigid body at-
tains its minimum value at the mass center of the body. The relationship
appearing in eq.(3.138) constitutes the Theorem of Parallel Azes.
Henceforth, we assume that c is the position vector of the mass center in
an inertial frame. Now, we recall the Newton-Euler equations governing the
motion of a rigid body. Let the body at hand be acted upon by a wrench of
force f applied at its mass center, and a moment no. The Newton equation
then takes the form
f =mé (3.139a)

whereas the Euler equation is
ne =Icw+wxIcw (3.139b)

The momentum m and the angular momentum he of a rigid body moving
with an angular velocity w are defined below, the angular momentum being
defined with respect to the mass center. These are

m=me¢, he=Icw (3.140)

Moreover, the time-derivatives of the foregoing quantities are readily com-
puted as
m=mc¢, he=Icw+wxIow (3141)

and hence, eqs.(3.139a & b) take on the forms
f=m, nc=he (3.142)

The set of equations (3.139a) and (3.139b) are known as the Newton-FEuler
equations. These can be written in a more compact form as we describe
below. First, we introduce a 6 x 6 matrix M that following von Mises
(1924), we term the inertia dyad, namely,

M = {Ig m01:| (3.143)
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where O and 1 denote the 3 x 3 zero and identity matrices. A similar
6 x 6 matrix was defined by von Mises under the above name. However,
von Mises’s inertia dyad is full, while the matrix defined above is block-
diagonal. Both matrices, nevertheless, denote the same physical property
of a rigid body, i.e., its mass and moment of inertia. Now the Newton-Euler
equations can be written as

Mt + WMt = w (3.144)

in which matrix W, which we shall term, by similarity with the inertia
dyad, the angular-velocity dyad, is defined, in turn, as

v s

o6 o (3.145)

with € already defined as the angular-velocity matrix; it is, of course, the
cross-product matrix of the angular-velocity vector w. Note that the twist
of a rigid body lies in the nullspace of its angular-velocity dyad, i.e.,

Wt =0 (3.146)

Further definitions are introduced below: The momentum screw of the
rigid body about the mass center is the 6-dimensional vector p defined as

p= {IC“’] = Mt (3.147)

me

Furthermore, from eqs.(3.141) and definition (3.147), the time-derivative
of p can be readily derived as

[ =Mt + Wy =Mt + WMt (3.148)

The kinetic energy of a rigid body undergoing a motion in which its mass
center moves with velocity ¢ and rotates with an angular velocity w is given

by

1 1
T= §m||é||2 + inICw (3.149)

From the foregoing definitions, then, the kinetic energy can be written in
compact form as

1
T = 5tTMt (3.150)

Finally, the Newton-Euler equations can be written in an even more com-
pact form as
n=w (3.151)

which is a 6-dimensional vector equation.
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4

Kinetostatics of Simple Robotic
Manipulators

4.1 Introduction

This chapter is devoted to the kinetostatics of robotic manipulators of the
serial type, i.e., to the kinematics and statics of these systems. The study is
general, but with regard to what is called the inverse kinematics problem,
we limit the chapter to decoupled manipulators, to be defined below. The
inverse displacement analysis of general six-axis manipulators is addressed
in Chapter 8.

More specifically, we will define a serial, n-axis manipulator. In connec-
tion with this manipulator, additionally, we will () introduce the Denavit-
Hartenberg notation for the definition of link frames that uniquely deter-
mine the architecture and the configuration, or posture, of the manipulator
at hand; (i7) define the Cartesian and joint coordinates of this manipulator;
and (#i7) introduce its Jacobian matriz.

Moreover, with regard to six-axis manipulators, we will (¢) define decou-
pled manipulators and provide a procedure for the solution of their displace-
ment inverse kinematics; (i7) formulate and solve the wvelocity-resolution
problem, give simplified solutions for decoupled manipulators, and iden-
tify their singularities; (iii) define the workspace of a three-axis positioning
manipulator and provide means to display it; (iv) formulate and solve the
acceleration-resolution problem and give simplified solutions for decoupled
manipulators; and (v) analyze manipulators statically, while giving simpli-
fied analyses for decoupled manipulators. While doing this, we will devote
special attention to planar manipulators.
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106 4. Kinetostatics of Simple Robotic Manipulators
4.2 The Denavit-Hartenberg Notation

One of the first tasks of a robotics engineer is the kinematic modeling of
a robotic manipulator. This task consists of devising a model that can be
unambiguously () described to a control unit through a database and (i)
interpreted by other robotics engineers. The purpose of this task is to give
manipulating instructions to a robot, regardless of the dynamics of the
manipulated load and the robot itself. The simplest way of kinematically
modeling a robotic manipulator is by means of the concept of kinematic
chain. A kinematic chain is a set of rigid bodies, also called links, coupled by
kinematic pairs. A kinematic pair is, then, the coupling of two rigid bodies
so as to constrain their relative motion. We distinguish two basic types of
kinematic pairs, namely, upper and lower kinematic pairs. An upper kine-
matic pair arises between rigid bodies when contact takes place along a
line or at a point. This type of coupling occurs in cam-and-follower mecha-
nisms, gear trains, and roller bearings, for example. A lower kinematic pair
occurs when contact takes place along a surface common to the two bodies.
Six different types of lower kinematic pairs can be distinguished (Harten-
berg and Denavit, 1964; Angeles, 1982), but all these can be produced from
two basic types, namely, the rotating pair, denoted by R and also called
revolute, and the sliding pair, represented by P and also called prismatic.

The common surface along which contact takes place in a revolute pair is
a circular cylinder, a typical example of this pair being the coupling through
journal bearings. Thus, two rigid bodies coupled by a revolute can rotate
relative to each other about the axis of the common cylinder, which is thus
referred to as the azis of the revolute, but are prevented from undergoing
relative translations as well as rotations about axes other than the cylinder
axis. On the other hand, the common surface of contact between two rigid
bodies coupled by a prismatic pair is a prism of arbitrary cross section, and
hence, the two bodies coupled in this way are prevented from undergoing
any relative rotation and can move only in a pure-translation motion along
a direction parallel to the axis of the prism. As an example of this kinematic
pair, one can cite the dovetail coupling. Note that whereas the revolute axis
is a totally defined line in three-dimensional space, the prismatic pair has
no defined axis; this pair has only a direction. That is, the prismatic pair
does not have a particular location in space. Bodies coupled by a revolute
and a prismatic pair are shown in Fig. 4.1.

Serial manipulators will be considered in this chapter, their associated
kinematic chains thus being of the simple type, i.e., each and every link
is coupled to at most two other links. A simple kinematic chain can be
either closed or open. It is closed if each and every link is coupled to two
other links, the chain then being called a linkage; it is open if it contains
exactly two links, the end ones, that are coupled to only one other link.
Thus, simple kinematic chains studied in this chapter are open, and in the
particular robotics terminology, their first link is called the manipulator
base, whereas their last link is termed the end-effector (EE).

Thus, the kinematic chains associated with manipulators of the serial
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4.2 The Denavit-Hartenberg Notation 107

FIGURE 4.1. Revolute and prismatic pair.

type are composed of binary links, the intermediate ones, and exactly two
simple links, those at the ends. Hence, except for the end links, all links
carry two kinematic pairs, and as a consequence, two pair axes—however,
notice that a prismatic pair has a direction but no axis. In order to uniquely
describe the architecture of a kinematic chain, i.e., the relative location and
orientation of its neighboring pair axes, the Denavit-Hartenberg nomen-
clature (Denavit and Hartenberg, 1955) is introduced. To this end, links
are numbered 0, 1, ..., n, the ¢th pair being defined as that coupling the
(1 — 1)st link with the ith link. Hence, the manipulator is assumed to be
composed of n+ 1 links and n pairs; each of the latter can be either R or P,
where link 0 is the fixed base, while link n is the end-effector. Next, a coor-
dinate frame F; is defined with origin O; and axes X;, Y;, Z;. This frame
is attached to the (i — 1)st link—not to the ith link!—fori =1, ..., n+1.
For the first n frames, this is done following the rules given below:

1. Z; is the axis of the i¢th pair. Notice that there are two possibilities of
defining the positive direction of this axis, since each pair axis is only
a line, not a directed segment. Moreover, the Z; axis of a prismatic

FIGURE 4.2. Definition of X; when Z;_1 and Z;: (a) are skew; (b) intersect; and
(c) are parallel.
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108 4. Kinetostatics of Simple Robotic Manipulators

pair can be located arbitrarily, since only its direction is defined by
the axis of this pair.

2. X; is defined as the common perpendicular to Z; 1 and Z;, directed
from the former to the latter, as shown in Fig. 4.2a. Notice that if
these two axes intersect, the positive direction of X; is undefined and
hence, can be freely assigned. Henceforth, we will follow the right-
hand rule in this case. This means that if unit vectors i;, k;_1, and
k; are attached to axes X;, Z;_1, and Z;, respectively, as indicated in
Fig. 4.2b, then i; is defined as k;_; x k;. Moreover, if Z;_; and Z; are
parallel, the location of X; is undefined. In order to define it uniquely,
we will specify X; as passing through the origin of the (i —1)st frame,
as shown in Fig. 4.2c.

3. The distance between Z; and Z;4+1 is defined as a;, which is thus
nonnegative.

4. The Z;-coordinate of the intersection O} of Z; with X;4+1 is denoted
by b;. Since this quantity is a coordinate, it can be either positive
or negative. Its absolute value is the distance between X; and X;+1,
also called the offset between successive common perpendiculars.

5. The angle between Z; and Z;+1 is defined as «; and is measured about
the positive direction of X;+1. This item is known as the twist angle
between successive pair axes.

6. The angle between X; and X;+; is defined as 6; and is measured
about the positive direction of Z;.

The (n+ 1)st coordinate frame is attached to the far end of the nth link.
Since the manipulator has no (n+1)st link, the foregoing rules do not apply
to the definition of the last frame. The analyst, thus, has the freedom to
define this frame as it best suits the task at hand. Notice that n+ 1 frames,
F1, Fo2, ..., Fn+1, have been defined, whereas links are numbered from 0
to n. In summary, an n-axis manipulator is composed of n + 1 links and
n—+1 coordinate frames. These rules are illustrated with an example below.

Consider the architecture depicted in Fig. 4.3, usually referred to as a
Puma robot, which shows seven links, numbered from 0 to 6, and seven
coordinate frames, numbered from 1 to 7. Note that the last frame is arbi-
trarily defined, but its origin is placed at a specific point of the EE, namely,
at the operation point, P, which is used to define the task at hand. Fur-
thermore, three axes intersect at a point C, and hence, all points of the
last three links move on concentric spheres with respect to C, for which
reason the subchain comprising these three links is known as a spherical
wrist, point C being its center. By the same token, the subchain composed
of the first four links is called the arm. Thus, the wrist is decoupled from
the arm, and is used for orientation purposes, the arm being used for the
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4.2 The Denavit-Hartenberg Notation 109

FIGURE 4.3. Coordinate frames of a Puma robot.

positioning of point C'. The arm is sometimes called the regional structure
and the wrist the local structure, the overall manipulator thus being of the
decoupled type.

In the foregoing discussion, if the ith pair is R, then all quantities involved
in those definitions are constant, except for #;, which is variable and is thus
termed the joint variable of the ith pair. The other quantities, i.e., a;, b;, and
«;, are the joint parameters of the said pair. If, alternatively, the ith pair is
P, then b; is variable, and the other quantities are constant. In this case, the
joint variable is b;, and the joint parameters are a;, ;, and 6;. Notice that
associated with each joint there are exactly one joint variable and three
constant parameters. Hence, an n-axis manipulator has n joint variables—
which are henceforth grouped in the n-dimensional vector 0, regardless of
whether the joint variables are angular or translational-—and 3n constant
parameters. The latter define the architecture of the manipulator, while the
former determine its configuration, or posture.

Whereas the manipulator architecture is fully defined by its 3n Denavit-
Hartenberg (DH) parameters, its posture is fully defined by its n joint vari-
ables, also called its joint coordinates, once the DH parameters are known.
The relative position and orientation between links is fully specified, then,
from the discussions of Chapter 2, by (i) the rotation matrix taking the
X;, Y, Z; axes into a configuration in which they are parallel pairwise
to the X;+1, Yi+1, Zi+1 axes, and (i1) the position vector of the origin of
the latter in the former. The representations of the foregoing items in co-
ordinate frame F; will be discussed presently. First, we obtain the matrix
representation of the rotation Q; carrying F; into an orientation coincident
with that of F;+1, assuming, without loss of generality because we are in-
terested only in changes of orientation, that the two origins are coincident,
as depicted in Fig. 4.4. This matrix is most easily derived if the rotation
of interest is decomposed into two rotations, as indicated in Fig. 4.5. In
that figure, X/, Y/, Z! is an intermediate coordinate frame F}, obtained by
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110 4. Kinetostatics of Simple Robotic Manipulators

i+1

45

FIGURE 4.4. Relative orientation of the ith and (¢ 4+ 1)st coordinate frames.

rotating F; about the Z; axis through an angle 6;. Then, the intermediate
frame is rotated about X;/ through an angle a;, which takes it into a con-
figuration coincident with F;4+1. Let the foregoing rotations be denoted by
[C;]; and [ A; ]+, respectively, which are readily derived for they are in the
canonical forms (2.55¢) and (2.55a), respectively.
Moreover, let
Ai =cosay, p; = sinay (4.1a)

One thus has, using subscripted brackets as introduced in Section 2.2,

cosf); —sin#; O 1 0 0
[Ci]; = | sin€; cost; O, [Ai]l,=10 N —p (4.1b)

and clearly, the matrix sought is computed simply as
[Qili =[Cili [Ai]w (4.1c)
Henceforth, we will use the abbreviations introduced below:
Q:=[Qili, Ci=[Cil;, Ai=[Aily (4.1d)
thereby doing away with brackets, when these are self-evident. Thus,

cos®; —MN;sinf; p;sind;
Q. =[Q;]i = |sinf; Acosf; —p;cosb; (4.1e)
0 i Ai

One more factoring of matrix Q;, which finds applications in manipulator

kinematics, is given below:
Qi = ZiXi (423.)
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Zi b 24 Zi

y!

-
f\yi

FIGURE 4.5. (a) Rotation about axis Z; through an angle 6;; and (b) relative
orientation of the i'th and the (i + 1)st coordinate frames.

with X; and Z; defined as two pure reflections, the former about the Y;Z;
plane, the latter about the X,;Y; plane, namely,

1 0 0 cosf; sinf; O
X, =0 =N pi|, Z;=|sinf; —cosf; 0 (4.2b)

Note that both X; and Z; are symmetric and self-inverse—see Sec-
tion 2.2. In order to derive an expression for the position vector a; con-
necting the origin O; of F; with that of F;+1, O;+1, reference is made to
Fig. 4.6, showing the relative positions of the different origins and axes
involved. From this figure, clearly,

a; = @i+1 = Oﬁﬂ + Oi’ai+1 (4.3a)

where obviously,

0 a;
[(To)i/ li=10], [Oi’6i+1]i+l =10
b; 0

Now, in order to compute the sum appearing in eq.(4.3a), the two fore-
going vectors should be expressed in the same coordinate frame, namely,
Fi. Thus,

a; cosb;

[0:0,41)i = [Qi i [050;41 i1 = | aisinb;
0
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and hence,
a; cosb;
[ai ]z = a; sin 91 (43b)
b;
For brevity, we introduce the following definition:
a; =[a;); (4.3c)
Similar to the foregoing factoring of Q;, vector a; admits the factoring
where b; is given by
[£23
biA;

with the definitions introduced in eq.(4.1a). Hence, vector b; is constant
for revolute pairs. From the geometry of Fig. 4.6, it should be apparent
that b; is nothing but a; in F;41, i.e.,

b; = [az‘]i+1 .

Matrices Q; can also be regarded as coordinate transformations. Indeed,
let i;, j;, and k; be the unit vectors parallel to the X;, Y;, and Z; axes,
respectively, directed in the positive direction of these axes. From Fig. 4.6,
it is apparent that

cos 0; i sin 6;
[ii+1]; = | sinb; |, [ki+1]i= | —pcosb;
0 Ai

FIGURE 4.6. Layout of three successive coordinate frames.
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whence
_)\i sin 91
[.ji+1]i = [ki+1 X ii+1]i = i COS9¢
Hi

Therefore, the components of i;+1, ji+1, and k;+1 in F; are nothing but
the first, second, and third columns of Q;. In general, then, any vector v
in F;+1 is transformed into F; in the form

[v]i=[Qili[V]i+1

which is a similarity transformation, as defined in eq.(2.117). Likewise, any
matrix M in F;4+1 is transformed into F; by the corresponding similarity
transformation, as given by eq.(2.128):

[M]; = [Qi]:i[M]i+1[ Q] i

The inverse relations follow immediately in the form

(VI =[Q] Li[v]i, [Mli+a=1[Q] i[MJ[Qil;

or upon recalling the first of definitions (4.1d),

[v]i=Qi[v]ir1, [M]; = Qi[M]1Q] (4.4a)
[V]ie1 = Qf [V]i, [MJis1= Q] [M];Q; (4.4b)
Moreover, if we have a chain of i frames, F1, F», ..., F;, then the inward

coordinate transformation from F; to Fi is given by

[Vv]i=QuQz - Qi-a[V]i (4.5a)
M]1 =Q1Qz2-+- Qi1 [M]i(Q1Qz--- Qi—1)" (4.5b)
Likewise, the outward coordinate transformation takes the form
[v]i=(Q1Qz--Qi-1)"[v] (4.6a)
[M]; = (Q1Qz---Qi-1)"[M1Q1Q2--- Qi1 (4.6b)

4.3 The Kinematics of Six-Revolute Manipulators

The kinematics of serial manipulators comprises the study of the relations
between joint variables and Cartesian variables. The former were defined in
Section 4.2 as those determining the posture of a given manipulator, with
one such variable per joint; a six-axis manipulator, like the one displayed in
Fig. 4.7, thus has six joint variables, 61, 62, ..., 8. The Cartesian variables
of a manipulator, in turn, are those variables defining the pose of the EE;
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since six independent variables are needed to define the pose of a rigid
body, the manipulator of Fig. 4.7 thus contains six Cartesian variables.

The study outlined above pertains to the geometry of the manipulator,
for it involves one single pose of the EE. Besides geometry, the kinematics of
manipulators comprises the study of the relations between the time-rates of
change of the joint variables, referred to as the joint rates, and the twist of
the EE. Additionally, the relations between the second time-derivatives of
the joint variables, referred to as the joint accelerations, with the time-rate
of change of the twist of the EE are also studied in this chapter.

In this section and in Section 4.4 we study the geometry of manipulators.
In this regard, we distinguish two problems, commonly referred to as the
direct and the inverse kinematic problems, or DKP and correspondingly,
IKP, for brevity. In the DKP, the six joint variables of a given six-axis
manipulator are assumed to be known, the problem consisting of finding
the pose of the EE. In the IKP, on the contrary, the pose of the EE is given,
while the six joint variables that produce this pose are to be found.

The DKP reduces to matrix multiplications, and as we shall show pres-
ently, poses no major problem. The IKP, however, is more challenging,
for it involves intensive variable-elimination and nonlinear-equation solv-
ing. Indeed, in the most general case, the IKP amounts to eliminating five
out of the six unknowns, with the aim of reducing the problem to a single
monovariate polynomial of up to 16th degree. While finding the roots of a
polynomial of this degree is no longer an insurmountable task, reducing the
underlying system of nonlinear equations to a monovariate polynomial re-
quires intensive computer-algebra work that must be very carefully planned
to avoid the introduction of spurious roots and, with this, an increase in
the degree of that polynomial. For this reason, we limit this chapter to the
study of the geometric IKP of decoupled six-axis manipulators, to be de-
fined presently. The IKP of the most general six-revolute serial manipulator
is studied in Chapter 8.

In studying the DKP of six-axis manipulators, we need not limit ourselves
to a particular architecture. We thus study here the DKP of general manip-
ulators, such as the one sketched in Fig. 4.7. This manipulator consists of
seven rigid bodies, or links, coupled by six revolute joints. Correspondingly,
we have seven frames, F1, Fo, ..., F7, the ith frame fixed to the (i — 1)st
link, 1 being termed the base frame, because it is fixed to the base of the
manipulator. Manipulators with joints of the prismatic type are simpler to
study and can be treated using correspondingly simpler procedures.

A line £; is associated with the axis of the i¢th revolute joint, and a
positive direction along this line is defined arbitrarily through a unit vector
e;. For a prismatic pair, a line £; can be also defined, as a line having the
direction of the pair but whose location is undefined; the analyst, then, has
the freedom to locate this axis conveniently. Thus, a rotation of the ith link
with respect to the (i — 1)st link or correspondingly, of F;+1 with respect
to Fi, is totally defined by the geometry of the said link, i.e., by the DH
parameters a;, b;, and «;, plus e; and its associated joint variable 6;. Then,
the DH parameters and the joint variables define uniquely the posture of
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FIGURE 4.7. Serial six-axis manipulator.

the manipulator. In particular, the relative position and orientation of F;4+1
with respect to F; is given by matrix Q; and vector a;, respectively, which
were defined in Section 4.2 and are displayed below for quick reference:

cos; —MN;sinf;  p;sinb; a; cos;
Qi = sin 01 )\1 COS 91 — i COS 01 ; a; = a; sin 91 (47)
0 i Ai b;

Thus, Q; and a; denote, respectively, the matrix rotating JF; into an
orientation coincident with that of F;+1 and the vector joining the origin
of F; with that of F;+1, directed from the former to the latter. Moreover, Q;
and a;, as given in eq.(4.7), are represented in F; coordinates. The equations
leading to the kinematic model under study are known as the kinematic
displacement equations. It is noteworthy that the problem under study is
equivalent to the input-output analysis problem of a seven-revolute linkage
with one degree of freedom and one single kinematic loop (Duffy, 1980).
Because of this equivalence with a closed kinematic chain, sometimes the
displacement equations are also termed closure equations. These equations
relate the orientation of the EE, as produced by the joint coordinates, with
the prescribed orientation Q and the position vector p of the operation
point P of the EE. That is, the orientation Q of the EE is obtained as
a result of the six individual rotations { Q; }$ about each revolute axis
through an angle 6;, in a sequential order, from 1 to 6. If, for example, the
foregoing relations are expressed in Fi, then

[Q6]1[Qs5]1[Q4]1[Q3]1[Q2]1[Q1]1 = [Q]1  (4.82)
la1]1 +[az2]1 + [as]1 +[asg]1 + [as]1 + [as]1 = [P]1 (4.8b)

Notice that the above equations require that all vectors and matrices
involved be expressed in the same coordinate frame. However, we derived
in Section 4.2 general expressions for Q; and a; in F;, egs.(4.1e) and (4.3b),
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respectively. It is hence convenient to represent the foregoing relations in
each individual frame, which can be readily done by means of similarity
transformations. Indeed, if we apply the transformations (4.5a & b) to each
of [a;]1 and [Q;]1, respectively, we obtain a; or correspondingly, Q;, in
Fi. Therefore, eq.(4.8a) becomes

[Q1]1[Q2]2[Q3]3[Q4]a[Qs]5[ Qs 6 = [Q]1

Now for compactness, let us represent [Q]1 simply by Q and let us recall
the abbreviated notation introduced in eq.(4.1d), whereby [ Q; |; is denoted
simply by Q;, thereby obtaining

Q1Q2Q3Q4Q5Q6 = Q (4.9a)

Likewise, eq.(4.8b) becomes

a; + Qi(az + Qzaz + Q2Qzas + Q2Q3Quas + Q2Q3Q4Qsas) = p (4.9b)

in which both sides are given in base-frame coordinates. Equations
(4.9a & b) above can be cast in a more compact form if homogeneous
transformations, as defined in Section 2.5, are now introduced. Thus, if we
let T; = { T; }; be the 4 X 4 matrix transforming F;+1-coordinates into F;-
coordinates, the foregoing equations can be written in 4 X 4 matrix form,
namely,

T, T,T3T4TsTe = T (4.10)

with T denoting the transformation of coordinates from the end-effector
frame to the base frame. Thus, T contains the pose of the end-effector.

In order to ease the discussion ahead, we introduce now a few defini-
tions. A scalar, vector, or matrix expression is said to be multilinear in
a set of vectors { v;}{ if those vectors appear only linearly in the same
expression. This does not prevent products of components of those vectors
from occurring, as long as each product contains only one component of
the same vector. Alternatively, we can say that the expression of interest
is multilinear in the aforementioned set of vectors if and only if the partial
derivative of that expression with respect to vector v; is independent of

v;, for ¢ = 1,..., N. For example, every matrix Q; and every vector a;,
defined in eqgs.(4.1e) and (4.3b), respectively, is linear in vector x;, where
X; is defined as
| cosb;
X; = [sin@i] (4.11)

Moreover, the product Q1Q2Q3Q4Qs5Qs appearing in eq.(4.9a) is hezalin-
ear, or simply, multilinear, in vectors {x; }$. Likewise, the sum appearing
in eq.(4.9b) is multilinear in the same set of vectors. By the same token,
a scalar, vector, or matrix expression is said to be multiquadratic in the
same set of vectors if those vectors appear at most quadratically in the
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said expression. That is, the expression of interest may contain products
of the components of all those vectors, as long as those products contain,
in turn, a maximum of two components of the same vector, including the
same component squared. Qualifiers like multicubic, multiquartic, etc., bear
similar meanings.

Further, we partition matrix Q; rowwise and columnwise, namely,

Q; = n; =[p; q u] (4.12)

It is pointed out that the third row of Q;, o}, is independent of 6;, a fact
that will be found useful in the forthcoming derivations. Furthermore, note
that according to the DH notation, the unit vector e; in the direction of
the ith joint axis in Fig. 4.7 has F;-components given by

[ei]i = (4.13)

— o o
Il
(¢}

Henceforth, e is used to represent a 3-dimensional array with its last com-
ponent equal to unity, its other components vanishing. Thus, we have

Qio; = QiTlli =e (4.14a)

or
u; = Qie, o;,=Qle (4.14b)

That is, if we regard e in the first of the foregoing relations as [ e;+1 ];+1, and
as [e;]; in the second relation, then, from the coordinate transformations
of egs.(4.4a & b),

w; = [ej+1];, and o0; =[e;]i+1 (4.15)

4.4 The IKP of Decoupled Manipulators

Industrial manipulators are frequently supplied with a special architecture
that allows a decoupling of the positioning problem from the orientation
problem. In fact, a determinant design criterion in this regard has been
that the manipulator be kinematically invertible, i.e., that it lend itself to
a closed-form inverse kinematics solution. Although the class of manipula-
tors with this feature is quite broad, we will focus on a special kind, the most
frequently encountered in commercial manipulators, that we will term de-
coupled. Decoupled manipulators were defined in Section 4.2 as those whose
last three joints have intersecting axes. These joints, then, constitute the
wrist of the manipulator, which is said to be spherical, because when the
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FIGURE 4.8. A general 6R manipulator with decoupled architecture.

point of intersection of the three wrist axes, C, is kept fixed, all the points
of the wrist move on spheres centered at C. In terms of the DH parameters
of the manipulator, in a decoupled manipulator a4 = as = bs = 0, and
thus, the origins of frames 5 and 6 are coincident. All other DH parameters
can assume arbitrary values. A general decoupled manipulator is shown in
Fig. 4.8, where the wrist is represented as a concatenation of three revolutes
with intersecting axes.

In the two subsections below, a procedure is derived for determining all
the inverse kinematics solutions of decoupled manipulators. In view of the
decoupled architecture of these manipulators, we study their inverse kine-
matics by decoupling the positioning problem from the orientation problem.

4.4.1 The Positioning Problem

The inverse kinematics of the robotic manipulators under study begins by
decoupling the positioning and orientation problems. Moreover, we must
solve first the positioning problem, which is done in this subsection.

Let C denote the intersection of axes 4, 5, and 6, i.e., the center of the
spherical wrist, and let ¢ denote the position vector of this point. Clearly,
the position of C is independent of joint angles 64, 65, and 0g; hence, only
the first three joints are to be considered for this analysis. The arm structure
depicted in Fig. 4.9 will then be analyzed. From that figure,

a; + Qiazx + Q1Qraz + Q1Q2Qzas = ¢ (4.16)

where the two sides are expressed in Fj-coordinates. This equation can be
readily rewritten in the form

az + Qoaz + Q2Qzas = Q7 (c — aj)
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or if we recall eq.(4.3d),
Q2(bz + Qzbs + Q3Qsbs) = QT c — by

However, since we are dealing with a decoupled manipulator, we have

0
ay=Qubs= | 0| =bse
ba

which has been rewritten as the product of constant b4 times the unit vector

e defined in eq.(4.13).
Thus, the product Q3Q4bs reduces to

Q3Qsbs = b4Qze = bsus
with u; defined in eq.(4.14b). Hence, eq.(4.16) leads to
Qz(b2 + Qsbs + baug) = Qfc — by (4.17)

Further, an expression for ¢ can be derived in terms of p, the position
vector of the operation point of the EE, and Q, namely,

c=p - Q1Q2Q3Qsas — Q1Q2Q3Q4Qsas (4.18a)
Now, since as = bs = 0, we have that as = 0, eq.(4.18a) thus yielding
c=p—-QQfas=p—Qbs (4.18Db)

Moreover, the base coordinates of P and C, and hence, the F3-components
of their position vectors p and c, are defined as

x rc
(Pli=]y|, [ch=ye
z zZC

so that eq.(4.18b) can be expanded in the form

zo x — (qu106 + q12be 6 + q13b6 N6)
Yo | = | v — (g21a6 + g22bspte + q23b6e) (4.18¢)
zc z — (g31a6 + qa2bsfie + q33bse)

where g;; is the (¢,7) entry of [Q]1, and the positioning problem now be-
comes one of finding the first three joint angles necessary to position point
C at a point of base coordinates z¢, yc, and z¢. We thus have three un-
knowns, but we also have three equations at our disposal, namely, the three
scalar equations of eq.(4.17), and we should be able to solve the problem
at hand.

In solving the foregoing system of equations, we first note that (i) the
left-hand side of eq.(4.17) appears multiplied by Qg; and (i7) 62 does not
appear in the right-hand side. This implies that (¢) if the Euclidean norms
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/ x,

FIGURE 4.9. Three-axis, serial, positioning manipulator.

of the two sides of that equation are equated, the resulting equation will
not contain 6,; and (i7) the third scalar equation of the same equation is
independent of 02, by virtue of the structure of the Q; matrices displayed
in eq.(4.1e). Thus, we have two equations free of 6, which allows us to
calculate the two remaining unknowns 6; and 63.

Let the Euclidean norm of the left-hand side of eq.(4.17) be denoted by
[, that of its right-hand side by . We then have

1 = a3 + b5 + a3 + b3 + b2 + 2b2 Qsbg + 2bsb3uz + 2\3b3bs
r? = ||c|® + [b1]|® — 2b]{ Qi c

from which it is apparent that [? is linear in x3 and 2 is linear in x1, for
x; defined in eq.(4.11). Upon equating [? with r2, then, an equation linear
in x1 and x3—mnot bilinear in these vectors—is readily derived, namely,

Aci +Bsy+Ceg+Dszg+E=0 (4.19a)

whose coeflicients do not contain any unknown, i.e.,

A =2a1z¢ (4.19b)
B =2a1yc (4.19¢)
C = 2aza3 — 2bobapz i3 (4.19d)
D = 2azbouz + 2a2ba43 (4.19e)
E=a5+a5+b3+b5+0b5—ad — 2% —y2 — (20 — b1)?
+2b2b3 A2 + 2b2b4 2 \3 + 2b3ba )3 (4.19f)
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Moreover, the third scalar equation of eq.(4.17) takes on the form
Feiy +Gs1+Hez+1s3+J=0 (4.20a)

whose coefficients, again, do not contain any unknown, as shown below:

F=ycm (4.20b)
G = —zcm (4.20c¢)
H = —bapuzpiz (4.20d)
I =agup (4.20e)
J = by + bads + badods — (2¢ — b1)As (4.20f)

Thus, we have derived two nonlinear equations in €1 and 63 that are
linear in ¢;, s1, c3, and s3. Each of these equations thus defines a contour
in the #;-63 plane, their intersections determining all real solutions to the
problem at hand.

Note that if ¢; and s; are substituted for their equivalents in terms
of tan(#;/2), for i« = 1,3, then two biquadratic polynomial equations in
tan(61/2) and tan(f3/2) are derived. Thus, one can eliminate one of these
variables from the foregoing equations, thereby reducing the two equations
to a single quartic polynomial equation in the other variable. The quartic
equation thus resulting is called the characteristic equation of the problem
at hand. Alternatively, the two above equations, eqs.(4.19a) and (4.20a),
can be solved for, say, ¢1 and s in terms of the data and c3 and s3, namely,

_ —G(CC3+DS3 +E) +B(HC3+IS3 +J)

a1 AL (4.21a)
51:F(OC3+D53+E)AZA(HC3+ISS+J) (4.21b)

with A4 defined as
A1 = AG — FB = —2a1p1 (2% + y2) (4.21c)

Note that in trajectory planning, to be studied in Chapter 5, A1 can be
computed off-line, i.e., prior to setting the manipulator into operation, for
it is a function solely of the manipulator parameters and the Cartesian co-
ordinates of a point lying on the path to be tracked. Moreover, the above
calculations are possible as long as Aj does not vanish. Now, Aj vanishes if
and only if any of the factors a1, p1, and xzc —l—yé does. The first two condi-
tions are architecture-dependent, whereas the third is position-dependent.
The former occur frequently in industrial manipulators, although not both
at the same time. If both parameters a1 and pi1 vanished, then the arm
would be useless to position arbitrarily a point in space. The third condi-
tion, i.e., the vanishing of x% + yé, means that point C lies on the Z; axis.
Now, even if neither a; nor u; vanishes, the manipulator can be positioned
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in a configuration at which point C lies on the Z; axis. Such a configura-
tion is termed the first singularity. Note, however, that with point C' being
located on the Z; axis, any motion of the first joint, with the two other
joints locked, does not change the location of C'. For the moment, it will be
assumed that A; does not vanish, the particular cases under which it does
being studied later. Next, both sides of eqs.(4.21a & b) are squared, the
squares thus obtained are then added, and the sum is equated to 1, which
leads to a quadratic equation in x3, namely,

Kc§+Ls§+M0383+N03+P53+Q:0 (4.22)
whose coeflicients, after simplification, are given below:
K =4a2H? + p2C? (4.23a)
L = 4a?I? + 14 D? (4.23b)
M = 2(4a3HI + i2CD) (4.23c¢)
N =2(4a2HJ + i2CE) (4.23d)
P =2(4a21J + 2DE) (4.23€)
Q = 4a3J? + 12 F? — 40212 p? (4.23f)

with p? defined as
2_ .2 2
p°=xo Yo
Now, two well-known trigonometric identities are introduced, namely,

1 7'3? . 2m _ 03
BE T BT Ty Mheem sty (42

Henceforth, the foregoing identities will be referred to as the tan-half-angle
identities. We will be resorting to them throughout the book. Upon sub-
stitution of the foregoing identities into eq.(4.22), a quartic equation in 73
is obtained, i.e.,

R+ S +Tm2+Urs+V =0 (4.25)

whose coefficients are all computable from the data. After some simplifica-
tions, these coefficients take on the forms

R=4a{(J - H)? + p{(E - C)* — 4p*aipi (4.26a)
S =4[4afl(J — H) + p2D(E — O)] (4.26b)
T = 2[4a3(J? — H? + 2I%) + i2(E? — C? 4 2D?)

—4p%aff) (4.26¢)
U =4[4a2I1(H + J) + i4D(C + E)] (4.26d)
V =4af(J + H)? + p(E + C)? — 4p®afpi? (4.26¢)

Furthermore, let { (73); }4 be the four roots of eq.(4.25). Thus, up to four
possible values of 63 can be obtained, namely,

(03); = 2arctan|(r3);], i=1,2,3,4 (4.27)
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Once the four values of #3 are available, each of these is substituted into
egs.(4.21a & b), which thus produce four different values of ;. For each
value of A1 and 03, then, one value of #, can be computed from the first
two scalar equations of eq.(4.17), which are displayed below:

A1 cosbr + Arosinfy, = xo cosbfy + Yo sin 01— a1 (428&)

—Ajpcosbr + Airsinfy = —xeo A sinfy + yo Ay cosby
+ (2 = b1)pm (4.28Db)
where
A11 = ag + az cos b3 + bauz sin 03 (4.28c¢)

A1p = —agAz8in 03 + bz + badopiz cos O3 + bapip Az (4.28d)

Thus, if A;; and Aj> do not vanish simultaneously, angle 6, is readily
computed in terms of 61 and 63 from egs.(4.28a & b) as

cos o = AL{AM(:EC cosf1 + yosinby —aq)
2

—A12[—xc A1 8inb1 + yo A1 cos b1
+ (2¢ — b1)pal} (4.29a)

1
sinfy, = A—{Alz(wc cos 01 + Yo sin 01 — a]_)
2

+ Aj1[—zc A1 sinf1 4+ yo A1 cos b1
+(zc — b1)pal} (4.29Db)
where Aj is defined as
Ay = A3 + A3,
a3 + a3(cos® B3 + \3sin” B3) + b5 (sin® O3 + A3 cos® 03)
+ 2aza3 cos 03 + 2aba 3 sin 03
+ 2202 (bs + baAz) (baps cos B3 — azsin 63)
+2azbs(1 — )\%),ug sin 03 cos 63 + (bs + )\3b4)2u% (4.29¢)

the case in which A, = 0, which leads to what is termed here the second
singularity, being discussed presently.

Takano (1985) considered the solution of the positioning problem for
all possible combinations of prismatic and revolute pairs in the regional
structure of a manipulator, thereby finding that

1. In the case of arms containing either three revolutes, or two revolutes
and one prismatic pair, with a general layout in all cases, a quartic
equation in cos A3 was obtained;

2. in the case of one revolute and two prismatic pairs, the positioning
problem was reduced to a single quadratic equation, the problem at
hand thus admitting two solutions;
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3. finally, for three prismatic pairs, a single linear equation was derived,
the problem thus admitting a unique solution.

The Vanishing of Aj

In the above derivations we have assumed that neither 1 nor a; vanishes.
However, if either g3 = 0 or a; = 0, then one can readily show that eq.(4.25)
reduces to a quadratic equation, and hence, this case differs essentially
from the general one. Note that one of these conditions can occur, and the
second occurs indeed frequently, but both together never occur, because
their simultaneous occurrence would render the manipulator useless for a
three-dimensional task. We thus have the two cases discussed below:

1. p1 =0, a1 # 0. In this case, one has
A, B#0, F=G=0

Under these conditions, eq.(4.20a) and the tan-half-angle identities
given in eq.(4.24) yield

(J—H) +2Im3+ (J+H)=0
which thus produces two values of 73, namely,

—I+VIZ— 2+ H?
J—H

(7’3)1,2 = (4.30&)

Once two values of 63 have been determined according to the above
equation, #; can be found using eq.(4.19a) and the tan-half-angle
identities, thereby deriving

(B' = A2 +2Bm + (F'+A)=0

where
0
E' =Ccs+Ds3+FE, 7 =tan (%)

whose roots are

—B++VB?—-E?+ A?
E—A

()12 = (4.30b)

Thus, two values of 1 are found for each of the two values of 03,
which results in four positioning solutions. Values of 6, are obtained
using eqs.(4.29a & b).

2. a1 = 0, pu1 # 0. In this case, one has an architecture similar to that
of the robot of Fig. 4.3. We have now
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A=B=0, F,G#0
Under the present conditions, eq.(4.19a) reduces to
(E-C)2 +2Dm3+ (E+C) =0
which produces two values of 73, namely,

D+ DZ_E? {2
(T3)1,2 = 0 (4.31a)

With the two values of 63 obtained, 61 can be found using eq.(4.20a)
and the tan-half-angle identities to produce

(J —F)2 +2Gn+ (J +F)=0

where 0
J =Hcz+Is3+J, 71 =tan <?1)

whose roots are

-G+ VG?—J?+ F?
J —F

()12 = (4.31Db)

Once again, the solution results in a cascade of two quadratic equa-
tions, one for 63 and one for #;, which yields four positioning solutions.
As above, 6 is then determined using eqs.(4.29a & b). Note that for
the special case of the manipulator of Fig. 4.3, we have

a1 =by=0, ar=a3=90° a=0°
and hence,
H=I1=0, E=a3+ad5+0b]+0b3— [22 +y2 + (2c —b1)?],
C = 2aza3, D =2aby, F=yo, G=—-xc, J=b3

In this case, the foregoing solutions reduce to

—D++C?+ D?—F? ro £ /2%, + y2 — b3
E_C o (2= b
- 3 — Yo

(13)1,2 =

A robot with the architecture studied here is the Puma, which is dis-
played in Fig. 4.10 in its four distinct postures for the same location of its
wrist center. Notice that the orientation of the EE is kept constant in all
four postures.

TLFeBOOK
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FIGURE 4.10. The four arm configurations for the positioning problem of the
Puma robot: (a) and (b), elbow down; (a) and (c), shoulder fore; (c) and (d),
elbow up; (b) and (d), shoulder aft.

The Vanishing of Ay

In some instances, Ay, as defined in eq.(4.29¢), may vanish, thereby pre-
venting the calculation of 6, from eqs.(4.29a & b). This posture, termed
the second singularity, occurs if both coefficients A11 and A1z of eqs.(4.28a
& b) vanish. Note that from their definitions, eqs.(4.28¢ & d), these co-
efficients are not only position- but also architecture-dependent. Thus, an
arbitrary manipulator cannot take on this configuration unless its geometric
dimensions allow it. This type of singularity will be termed architecture-
dependent, to distinguish it from others that are common to all robots,
regardless of their particular architectures.

We can now give a geometric interpretation of the singularity at hand:
First, note that the right-hand side of eq.(4.17), from which eqs.(4.28a & b)
were derived, is identical to Q¥ (c—a;), which means that this expression is
nothing but the F»-representation of the position vector of C'. That is, the
components of vector QlT(c — aj) are the Fy-components of vector m
Therefore, the right-hand sides of eqs.(4.28a & b) are, respectively, the Xo-
and Yz-components of vector Oﬁ Consequently, if Aj; = A1 = 0, then
the two foregoing components vanish and, hence, point C lies on the Z>
axis. The first singularity thus occurs when point C' lies on the axis of the
first revolute, while the second occurs when the same point lies on the axis
of the second revolute.
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Many industrial manipulators are designed with an orthogonal architec-
ture, which means that the angles between neighbor axes are multiples
of 90°. Moreover, with the purpose of maximizing their workspace, or-
thogonal manipulators are designed with their second and third links of
equal lengths, thereby rendering them vulnerable to this type of singular-
ity. An architecture common to many manipulators such as the Cincinnati-
Milacron, ABB, Fanuc, and others, comprises a planar two-axis layout with
equal link lengths, which is capable of turning about an axis orthogonal to
these two axes. This layout allows for the architecture singularity under
discussion, as shown in Fig. 4.11a. The well-known Puma manipulator is
similar to the aforementioned manipulators, except that it is supplied with
what is called a shoulder offset b3, as illustrated in Fig. 4.3. This offset,
however, does not prevent the Puma from attaining the same singularity
as depicted in Fig. 4.11b. Note that in the presence of this singularity, angle
0, is undetermined, but 61 and 63 are determined in the case of the Puma
robot. However, in the presence of the singularity of Fig. 4.11a, neither 6
nor #, are determined; only 63 of the arm structure is determined.

Example 4.4.1 A manipulator with a common orthogonal architecture is
displayed in Fig. 4.12 in an arbitrary configuration. The arm architecture
of this manipulator has the DH parameters shown below:

ale, b1=b2=b3=0, 0412900, 04220O
Find its inverse kinematics solutions.

Solution: A common feature of this architecture is that it comprises a; = bg.
In the present discussion, however, the latter feature need not be included,
and hence, the result that follows applies even in its absence. In this case,

g (a) (b)

FIGURE 4.11. Architecture-dependent singularities of (a) the Cincinnati--
Milacron and (b) the Puma robots.
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FIGURE 4.12. An orthogonal decoupled manipulator.

coefficients C, D, and F take on the forms
C =2aza3, D=0, E=a5+a3— (z5+y2+22)
Hence,
E-C=(a2—a3)* — (2 +ye+28), E+C = (az+as)’ - (ag+yZ +2¢)

Moreover,
H=I=J=0

and so
J,:O7 F:yC7 G:—QTC

The radical of eq.(4.31b) reduces to 2%, + y%. Thus,

0 + /22 2 _14./1 2
tan (%) _ e T Yo = + (ye/zc) (4.32a)
c

-y yc/l’c

Now we recall the relation between tan(f1/2) and tan 61, namely,

(91) -1+ 1—|—tan291
tan | — | =

= 4.32b
tan 61 ( )

Upon comparison of eqs.(4.32a) and (4.32b), it is apparent that

01 = arctan (y_c)
Tc

a result that can be derived geometrically for this simple arm architecture.
Given that the arctan(-) function is double-valued, its two values differing
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FIGURE 4.13. An orthogonal RRR manipulator.

in 180°, we obtain here, again, two values for #1. On the other hand, 63 is
calculated from eq.(4.31a) as

N(ocamy i
E-C

thereby obtaining two values of f3. As a consequence, the inverse position-

ing problem of this arm architecture admits four solutions as well. These

solutions give rise to two pairs of arm postures that are usually referred to

as elbow-up and elbow-down.

(r3)12 ==+

Example 4.4.2 Find all real inverse kinematic solutions of the manip-
ulator shown in Fig. 4.13, when point C of its end-effector has the base
coordinates C(0, 2a, —a).

Solution: The Denavit-Hartenberg parameters of this manipulator are de-
rived from Fig. 4.14, where the coordinate frames involved are indicated.
In defining the coordinate frames of that figure, the Denavit-Hartenberg
notation was followed, with Z, defined, arbitrarily, as parallel to Z3. From
Fig. 4.14, then, we have

a1:a2:a3:b2:b3:a, b1:b4:0, 0412012:900, 013:00

One inverse kinematic solution can be readily inferred from the geom-
etry of Fig. 4.14. For illustration purposes, and in order to find all other
inverse kinematic solutions, we will use the procedure derived above. To this
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€,

- \X4

Zy

FIGURE 4.14. The coordinate frames of the orthogonal RRR manipulator.

end, we first proceed to calculate the coefficients of the quartic polynomial
equation, eq.(4.25), which are given, nevertheless, in terms of coefficients
K, ..., Q of egs.(4.23a—f). These coefficients are given, in turn, in terms
of coefficients A4, ..., J of eqs.(4.19b—f) and (4.20b—f). We then proceed to
calculate all the necessary coefficients in the proper order:

A=0, B=4d®>, C=D=—F=2ad

F=2a G=H=0, I=J=a

Moreover,
K =4a* L=28a* M=8e N=-8" P=0, = —8a*,

The set of coefficients sought thus reduces to
R=K— N+ Q = 4a*
S =2(P—-M)=—16a*
T=2Q+2L—-K)=8a*
U=2(M+ P)=16a*
V=K+N+Q=-12d*

which leads to the quartic equation given below:

T§—4T§+2T§+4Tg—3:0
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with four real roots, namely,
(13)1=(m3)2=1, (73)3=-1, (73)a=3
These roots yield the 03 values that follow:
(03)1 = (63)2 =90°, (63)3 = —90°, (63)s = 143.13°

The quartic polynomial thus admits one double root, which means that at
the configurations resulting from this root, two solutions meet, thereby pro-
ducing a singularity, an issue that is discussed in Subsection 4.5.2. Below,
we calculate the remaining angles for each solution: Angle 61 is computed
from relations (4.21a-c), where A; = —8aS.

The first two roots, (63)1 = (03)2 = 90°, yield ¢z = 0 and s3 = 1. Hence,
egs.(4.21a & b) lead to

B +J) _ 4a?(a + a)

“a= A]_ 78&3 - _1
o F(D+E) 2a(2a® — 2a?) _o
e A B —8a® B

and hence,
(01)1 = (01)2 = 180°

With 61 known, 6 is computed from the first two of eqgs.(4.17), namely,
Cy = 0, S2 = -1

and hence,

(02)1 = (62)2 = —90°
The remaining roots are treated likewise. These are readily calculated as
shown below:

(01)3 = —90°, (02)3 =0, (01)a =143.13°, (02)4=0

It is noteworthy that the architecture of this manipulator does not allow
for the second singularity, associated with A, = 0.

Example 4.4.3 For the same manipulator of Example 4.4.2, find all real
inverse kinematic solutions when point C' of its end-effector has the base
coordinates C(0, a, 0), as displayed in Fig. 4.15.

Solution: In this case, one obtains, successively,
A=0, B=C=D=F=2d,
F=a, G=0 H=0 I=J=a
K=4a°L =M =N =8a® P=16a% Q=4a°
R=0, S=16a% T =232d°% U=484°% V =16a’
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€
? ¥,

e
FIGURE 4.15. Manipulator configuration for C(0, a, 0).

Moreover, for this case, the quartic eq.(4.22) degenerates into a cubic equa-
tion, namely,

TS +275+3m3+1=0

whose roots are readily found as
(13)1 = —0.43016, (73)2,3 = —0.78492 + j1.30714

where j is the imaginary unit, i.e., j = v/—1. That is, only one real solution
is obtained, namely, (3)1 = —46.551°. However, shown in Fig. 4.15 is a
quite symmetric posture of this manipulator at the given position of point C'
of its end-effector, which does not correspond to the real solution obtained
above. In fact, the solution yielding the posture of Fig. 4.15 disappeared
because of the use of the quartic polynomial equation in tan(f3/2). Note
that if the two contours derived from egs.(4.19a) and (4.20a) are plotted,
as in Fig. 4.16, their intersections yield the two real roots, including the
one leading to the posture of Fig. 4.15.

The explanation of how the fourth root of the quartic equation disap-
peared is given below: Let us write the quartic polynomial in full, with a
“small” leading coefficient e, namely,

€Ty + 75 4212 4334+ 1=0
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03 (deg) *°f \/
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FIGURE 4.16. Contours producing the two real solutions for Example 4.4.3.

Upon dividing both sides of the foregoing equation by 75, we obtain

1 2 3 1
€+ — + - + —3 + — = 0
TS T§ T3 T3
from which it is clear that the original equation is satisfied as e — 0 if and
only if 3 — +£o0, i.e, if 3 = 180°. It is then apparent that the missing
root is f3 = 180°. The remaining angles are readily calculated as

(1)1 = —105.9%, (62)1 = —149.35°, (01)s = 180°, (62)4 = 180°

4.4.2  The Orientation Problem

Now the orientation inverse kinematic problem is addressed. This problem
consists of determining the wrist angles that will produce a prescribed
orientation of the end-effector. This orientation, in turn, is given in terms
of the rotation matrix Q taking the end-effector from its home attitude to
its current one. Alternatively, the orientation can be given by the natural
invariants of the rotation matrix, vector e and angle ¢. Moreover, since 6y,
02, and 63 are available, Q1, Q2, and Qg become data for this problem.
One now has the general layout of Fig. 4.17, where angles { 6; }§ are to be
determined from the problem data, which are in this case the orientation
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FIGURE 4.17. General architecture of a spherical wrist.

of the end-effector and the architecture of the wrist; the latter is defined
by angles a4 and as, neither of which can be either 0 or 7.

Now, since the orientation of the end-effector is given, we know the com-
ponents of vector eg in any coordinate frame. In particular, let

§
[esla= |7 (4.33)
¢

Moreover, the components of vector es in F, are nothing but the entries
of the third column of matrix Qg, i.e.,

Ha sin 04
[es]a = | —pacosby (4.34)
A4
Furthermore, vectors es and eg make an angle as, and hence,
e6Te5 = )\5 or [ea]f[esh = )\5 (4.35)
Upon substitution of eqs.(4.33) and (4.34) into eq.(4.35), we obtain
Epasin by — npg cos by + Chg = As (4.36)

which can be readily transformed, with the aid of the tan-half-angle iden-
tities, into a quadratic equation in 74 = tan(6s4/2), namely,

(As — npa — CAa) 74 — 26pams + (X5 + npa — CAa) =0 (4.37)
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its two roots being given by

e — Epa £ /(2 +n?)pg — (As — (g)?
As — CAq — g

(4.38)

Note that the two foregoing roots are real as long as the radical is positive,
the two roots merging into a single one when the radical vanishes. Thus, a
negative radical means an attitude of the EE that is not feasible with the
wrist. It is to be pointed out here that a three-revolute spherical wrist is
kinematically equivalent to a spherical joint. However, the spherical wrist
differs essentially from a spherical joint in that the latter has, kinematically,
an unlimited workspace—a physical spherical joint, of course, has a limited
workspace by virtue of its mechanical construction—and can orient a rigid
body arbitrarily. Therefore, the workspace W of the wrist is not unlimited,
but rather defined by the set of values of £, 1, and ( that satisfy the two
relations shown below:

E+nf+¢=1 (4.39a)
FEm Q) = (€ +n°)ud — (Ms —CA)? >0 (4.39b)

In view of condition (4.39a), however, relation (4.39b) simplifies to an in-
equality in ¢ alone, namely,

F(Q)=¢*—2\XsC — (13— A2) <0 (4.40)
As a consequence,

1. W is a region of the unit sphere S centered at the origin of the three-
dimensional space;

2. W is bounded by the curve F({) = 0 on the sphere;

3. the wrist attains its singular configurations along the curve F({) =0
lying on the surface of S.

In order to gain more insight on the shape of the workspace W, let us
look at the boundary defined by F(¢) = 0. Upon setting F'({) to zero, we
obtain a quadratic equation in ¢, whose two roots can be readily found to
be

(1,2 = MaAs =+ |paps| (4.41)

which thus defines two planes, IT; and Il,, parallel to the £-n plane of the
three-dimensional space, intersecting the (-axis at {1 and (2, respectively.
Thus, the workspace W of the spherical wrist at hand is that region of the
surface of the unit sphere S contained between II7 and II. For example, a
common wrist design involves an orthogonal architecture, i.e., ag = as =
90°. For such wrists,

(12 ==%1
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and hence, orthogonal wrists become singular when [eg]s = [0, 0, £1]7,
i.e., when the fourth and the sixth axes are aligned. Thus, the workspace
of orthogonal spherical wrists is the whole surface of the unit sphere cen-
tered at the origin, the singularity curve thus degenerating into two points,
namely, the two intersections of this sphere with the (-axis. If one views
¢ = 0 as the equatorial plane, then the two singularity points of the
workspace are the poles.

An alternative design is the so-called three-roll wrist of some Cincinnati-
Milacron robots, with ay = a5 = 120°, thereby leading to A\g = A5 = —1/2
and pg = pus = \/§/2 For this wrist, the two planes ITy and Il, are found
below: First, we note that with the foregoing values,

1

G2=1, —3

and hence, the workspace of this wrist is the part of the surface of the unit
sphere S that lies between the planes IT; and IT, parallel to the £&-n plane,
intersecting the (-axis at (; = 1 and {2 = —1/2, respectively. Hence, if
¢ = 0 is regarded as the equatorial plane, then the points of the sphere &
that are outside of the workspace of this wrist are those lying at a latitude
of less than —30°. The singularity points are thus the north pole and the
parallel of latitude —30°.

Once 64 is calculated from the two foregoing values of 74, if these are
real, angle 05 is obtained uniquely for each value of 64, as explained below:
First, eq.(4.9a) is rewritten in a form in which the data are collected in the
right-hand side, which produces

QsQsQs =R (4.42a)

with R defined as
R-QlQ}alQ (L42b)

Moreover, let the entries of R in the fourth coordinate frame be given as

ri1 T2 713
[R]a= |7r21 7122 723
r31 T32 133
Expressions for #5 and 6 can be readily derived by solving first for Qs
from eq.(4.42a), namely,
Qs = Q;RQ{ (4.43)
Now, by virtue of the form of the Q; matrices, as appearing in eq.(4.1e),
it is apparent that the third row of Q; does not contain ;. Hence, the third
column of the matrix product of eq.(4.43) is independent of fg. Thus, two
equations for s are obtained by equating the first two components of the
third columns of that equation, thereby obtaining

psss = (periz + Aer1z)ca + (uer22 + Aer23)sa
—pscs = —Aa(peri2 + Aer13)sa + Aa(per22 + Xer23)ca + pa(persz + Xe733)
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which thus yield a unique value of 5 for every value of 6. Finally, with
04 and 05 known, it is a simple matter to calculate fg. This is done upon
solving for Qg from eq.(4.42a), i.e.,

Qs =QIQIR

and if the partitioning (4.12) of Q; is now recalled, a useful vector equation
is derived, namely,

Ps = Qs Qzr1 (4.44)
where r; is the first column of R. Let w denote the product QJry, i.e.,

T11C4 + 72154
AT, _
w=Qur1 = | —Xa(r1154 — ro1ca) + parz1
pa(r1154 — T21C4) 4 AaT31

Hence,
w165 + W25
QLQir1 = | As(—wiss + wacs) + waps
ps(w1ss — wacs) + wads
in which w; denotes the ith component of w. Hence, cg and sg are deter-
mined from the first two scalar equations of eq.(4.44), namely,

Cg = W1Cs5 + W2S5
86 = —wW1A585 + W2A5C5 + W35

thereby deriving a unique value of g for every pair of values (64, 65). In
summary, then, two values of 64 have been determined, each value deter-
mining, in turn, one single corresponding set of 5 and 6 values. Therefore,
there are two sets of solutions for the orientation problem under study,
which lead to two corresponding wrist postures. The two distinct postures
of an orthogonal three-revolute spherical wrist for a given orientation of its
EE are displayed in Fig. 4.18.

FIGURE 4.18. The two configurations of a three-axis spherical wrist.
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138 4. Kinetostatics of Simple Robotic Manipulators

When combined with the four postures of a decoupled manipulator lead-
ing to one and the same location of its wrist center—positioning problem—a
maximum of eight possible combinations of joint angles for a single pose of
the end-effector of a decoupled manipulator are found.

4.5 Velocity Analysis of Serial Manipulators

The relationships between the prescribed twist of the EE, also referred to as
the Cartesian velocity of the manipulator, and the corresponding joint-rates
are derived in this section. First, a serial n-axis manipulator containing
only revolute pairs is considered. Then, relations associated with prismatic
pairs are introduced, and finally, the joint rates of six-axis manipulators
are calculated in terms of the EE twist. Particular attention is given to
decoupled manipulators, for which simplified velocity relations are derived.

We consider here the manipulator of Fig. 4.19, in which a joint coordinate
0;, a joint rate 9i, and a unit vector e; are associated with each revolute
axis. The X;, Y;, Z; coordinate frame, attached to the (i — 1)st link, is not
shown, but its origin O; is indicated. The relations that follow are apparent
from that figure.

wo = 0
w1 = 9161
wy = élel + ézez (4.45)

Wy, = 9161 +92e2 +-~-+9nen

/dez

FIGURE 4.19. General n-axis manipulator.
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4.5 Velocity Analysis of Serial Manipulators 139

and if the angular velocity of the EE is denoted by w, then
w=wy, zélel—i—ézeg—i—-n—i—énen :Z@ei
1

Likewise, from Fig. 4.19, one readily derives
p=a;tay+---+a, (4.46)

where p denotes the position vector of point P of the EE. Moreover, notice
that all vectors of the above equation must be expressed in the same frame;
otherwise, the addition would not be possible—vector a; was defined as
expressed in the ith frame in eq.(4.3¢). Upon differentiating both sides of
eq.(4.46), we have

p=a+ta+---+a, (4.47)

where
é\i:wixal—, i:1,2,...,ﬂ (448)

Furthermore, substitution of egs.(4.45) and (4.48) into eq.(4.47) yields
p = b1e1 x a; + (f1e1 + bzez) x az +

: (4.49)
+(9lel —+ ézez + -+ Hnen) X an

which can be readily rearranged as

Pzélelx(a1+az+--~+an)+92e2x(a2+a3+~~~+an)
+~~~+9nenxan

Now vector r; is defined as that joining O; with P, directed from the
former to the latter, i.e.,

ri=a +ag+1+--+a, (4.50)

and hence, p can be rewritten as

p = Z 0161 X T;
1
Further, let A and B denote the 3 x n matrices defined as

A=ler e - e,] (4.51a)
B=[e1Xr; exXry -+ €,X7T,] (4.51b)

Furthermore, the n-dimensional joint-rate vector 6 is defined as

95[91 92 Gn]T
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Thus, w and p can be expressed in a more compact form as
w=A0, p=Bo

the twist of the EE being defined, in turn, as

t = {‘;} (4.52)

The EE twist is thus related to the joint-rate vector 6 in the form
Jo=t (4.53)

where J is the Jacobian matriz, or Jacobian, for brevity, of the manipulator
under study, first introduced by Whitney (1972). The Jacobian is defined
as the 6 x n matrix shown below:

A
J= {B] (4.54a)
or
J= [ €1 € Cnm } (4.54D)
€1 XI1 €2 Xrp -+ €ep XTIy

Clearly, an alternative definition of the foregoing Jacobian matrix can be
given as
ot
J - —
00
Moreover, if j; denotes the ith column of J, one has

s €e;
Ji = e; XTI;

It is important to note that if the axis of the ith revolute is denoted by
Ri, then j; is nothing but the Pliicker array of that line, with the moment
of R; being taken with respect to the operation point P of the EE.

On the other hand, if the ith pair is not rotational, but prismatic, then the
(i — 1)st and the ¢th links have the same angular velocity, for a prismatic
pair does not allow any relative rotation. However, vector a; joining the
origins of the ith and (i + 1)st frames is no longer of constant magnitude
but undergoes a change of magnitude along the axis of the prismatic pair.
That is, )

w; =wi_1, a; =w;_1Xa;+be;

One can readily prove, in this case, that
w=01e;+0rep + -+ 0;_1e;_1 + Or1€i01 + - + Oney,
p=01e1 Xxr1+0ex Xxro+---+0;_1€,_1 X T;_1+ bie;

+0i+r1€i41 X Tiw1 + -+ Ope, X Ay
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from which it is apparent that the relation between the twist of the EE and
the joint-rate vector is formally identical to that appearing in eq.(4.53) if
vector @ is defined as

95[91 92 9'1‘—1 ih‘ 9i+1 9n]T

and the ith column of J changes to

§i = [ 0 ] (4.56)

€

Note that the Pliicker array of the axis of the ¢th joint, if prismatic, is that
of a line at infinity lying in a plane normal to the unit vector e;, as defined
in eq.(3.35).

In particular, for six-axis manipulators, J is a 6 x 6 matrix. Whenever
this matrix is nonsingular, eq.(4.53) can be solved for 6, namely,

0=J3"" (4.57)

Equation (4.57) is only symbolic, for the inverse of the Jacobian matrix
need not be computed explicitly. Indeed, in the general case, matrix J can-
not be inverted symbolically, and hence, 6 is computed using a numerical
procedure, the most suitable one being the Gauss-elimination algorithm,
also known as LU decomposition (Golub and Van Loan, 1989). Gaussian
elimination produces the solution by recognizing that a system of linear
equations is most easily solved when it is in either upper- or lower-triangular
form. To exploit this fact, matrix J is factored into the unique L and U
factors in the form:

J=LU (4.58a)
where L is lower- and U is upper-triangular. Moreover, they have the forms
r1 o --- 0

lpy 1 -+ 0
L= . .. . (4.58Db)
L lnl ln2 1
[u11 w12 -+ Uip
0 wuzp -+ wug,
U=| . . } (4.58¢)
L O 0 - Upp

where in the particular case at hand, n = 6. Thus, the unknown vector of
joint rates can now be computed from two triangular systems, namely,

Ly=t, U=y (4.59)

The latter equations are then solved, first for y and then for 8, by appli-
cation of only forward and backward substitutions, respectively. The LU
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decomposition of an n x n matrix requires M/ multiplications and A,
additions, whereas the forward substitution needed in solving the lower-
triangular system of eq.(4.59) requires M, multiplications and A! addi-
tions. Moreover, the backward substitution needed in solving the upper-
triangular system of eq.(4.59) requires M multiplications and A/’ addi-
tions. These figures are (Dahlquist and Bjorck, 1974)

3 2 3

n n n n n
A L Ly VA L 4.60
nT3 Tty Ty T3 (4.602)
n 2 i n - 2 .
M = L”; D} A = L”; D) (4.60¢)

Thus, the solution of a system of n linear equations in n unknowns, using
the LU-decomposition method, can be accomplished with M,, multiplica-
tions and A,, additions, as given below (Dahlquist and Bjorck, 1974):

n n

M, = E(2n2 +9n+1), A, = g(n2 +3n —4) (4.61a)
Hence, the velocity resolution of a six-axis manipulator of arbitrary ar-

chitecture requires Mg multiplications and Ag additions, as given below:

Mg =127, Ag =100 (4.61b)

Decoupled manipulators allow an even simpler velocity resolution. For
manipulators with this type of architecture, it is more convenient to deal
with the velocity of the center C' of the wrist than with that of the operation
point P. Thus, one has

to = Jo

<[4

]T

where to is defined as

and can be obtained from tp = [w?, pT
given by eqs.(3.84) and (3.85) as

using the twist-transfer formula

1 o0
to = {PC 1}“’

with C and P defined as the cross-product matrices of the position vectors
c and p, respectively.

If in general, J4 denotes the Jacobian defined for a point A of the EE
and Jp that defined for another point B, then the relation between J4 and
JB is

Jp=UJ,4 (4.62a)
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where the 6 x 6 matrix U is defined as

(4.62b)

o-[a 7

A-B 1
while A and B are now the cross-product matrices of the position vectors a
and b of points A and B, respectively. Moreover, this matrix U is identical
to the matrix defined under the same name in eq.(3.31), and hence, it

belongs to the 6 x 6 unimodular group, i.e., the group of 6 x 6 matrices
whose determinant is unity. Thus,

det(Jp) = det(J4) (4.63)

We have then proven the result below:

Theorem 4.5.1: The determinant of the Jacobian matriz of a siz-axis
manipulator is not affected under a change of operation point of the EF.

Note, however, that the Jacobian matrix itself changes under a change
of operation point. By analogy with the twist- and the wrench-transfer
formulas, eq.(4.62a) can be called the Jacobian-transfer formula.

Since C' is on the last three joint axes, its velocity is not affected by the
motion of the last three joints, and we can write

¢ =01e1 Xxr1 +0e Xy + 0363 X1r3

where in the case of a decoupled manipulator, vector r; is defined as that
directed from O; to C. On the other hand, we have

w = 91e1 + 9262 + 9363 + 9464 + 9565 + ésee

and thus, the Jacobian takes on the following simple form

| du Jre
- o

where O denotes the 3 x 3 zero matrix, the other 3 x 3 blocks being given
below, for manipulators with revolute pairs only, as

Ju=ler e es] (4.65a)
le = [64 €5 ee] (465b)
Jor=[e1xr1 eyxry egxrs] (4.65¢)

Further, vector 0 is partitioned accordingly:
. [0,
b= { ew]
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where .
il [
Ga = 92 , Bw = 95
03 0s

Henceforth, the three components of 6, will be referred to as the arm rates,
whereas those of 8, will be called the wrist rates. Now eqs.(4.53) can be
written, for this particular case, as

31100+ J120, = w (4.66a)
J20,=¢ (4.66Db)

from which the solution is derived successively from the two systems of
three equations and three unknowns that follow:

J210, = ¢ (4.67a)
J120, = w — J110, (4.67b)

From the general expressions (4.60), then, it is apparent that each of
the foregoing systems can be solved with the numbers of operations shown

below:

Mz =23, Az3=14
Since the computation of the right-hand side of eq.(4.67b) requires, ad-
ditionally, nine multiplications and nine additions, the total numbers of

operations required to perform one joint-rate resolution of a decoupled ma-
nipulator, M, multiplications and A, additions, are given by

M, =55, A, =37 (4.68)

which are fairly low figures and can be performed in a matter of microsec-
onds using a modern processor.

It is apparent from the foregoing kinematic relations that eq.(4.67a)
should be first solved for 8,; with this value available, eq.(4.67b) can then
be solved for @,,. We thus have, symbolically,

0, =J51¢ (4.69)
0, =I5 (w—J116,) (4.70)

Now, if we recall the concept of reciprocal bases introduced in Subsec-
tion 2.7.1, the above inverses can be represented explicitly. Indeed, let

Ao = det(.]gl) = (el X I‘l) X (ez X 1‘2) . (e3 X I‘3) (471)
A1p = det(le) =e€ey4 X €5 - €5 (4.72)
Then
1 [(ez X 1‘2) X (63 X I‘3)]T
I = Ao [(es x r3) x (€1 x r1)]” (4.73)

[(el X 1‘1) X (ez X rz)]T
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1 (e5 X eG)T
It =—|(es xeq)” (4.74)
Ag (ea x e5)T
Therefore,
. 1 (e2 X12) X (e3 X13)-C
0, = . (e3 xr3) x (e1 xr1)-c (4.75a)
21 | (eg x11) X (€2 X T2) - C

and if we let
w=Ww — Jljﬂa (475b)

where ©o is read varpi, then

€; X €+ ™
€ X €4 T (4.75¢)
€4 X €5 T

0, = —
Ag

4.5.1 Jacobian Fvaluation

The evaluation of the Jacobian matrix of a manipulator with n revolutes
is discussed in this subsection, the presence of a prismatic pair leading
to simplifications that will be outlined. Our aim here is to devise algo-
rithms requiring a minimum number of operations, for these calculations
are needed in real-time applications. We assume at the outset that all joint
variables producing the desired EE pose are available. We divide this sub-
section into two subsubsections, one for the evaluation of the upper part of
the Jacobian matrix and one for the evaluation of its lower part.

Evaluation of Submatrix A

The upper part A of the Jacobian matrix is composed of the set { e; }}, and
hence, our aim here is the calculation of these unit vectors. Note, moreover,
that vector [e; |1 is nothing but the last column of P;_3 = Q1 -+ - Q;_1, our
task then being the calculation of these matrix products. According to the
DH nomenclature,

le;)i=1[0 0 1]"

Hence, [e1]1 is available at no cost. However, each of the remaining [e; |1
vectors, for ¢ = 2,...,n, is obtained as the last column of matrices P;_;.
The recursive calculation of these matrices is described below:

Pi=Q
P, =P1Q;
Pn = Pn—lQn
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and hence, a simple algorithm follows:

P — Q
For i =2 tondo
P, — Pilei

enddo

Now, since P is identical to Q1, the first product appearing in the do-
loop, P1Q2, is identical to Q1Q2, whose two factors have a special struc-
ture. The computation of this product, then, requires special treatment,
which warrants further discussion because of its particular features. From
the structure of matrices Q;, as displayed in eq.(4.1e), we have

COSs 01 7)\1 sin 01 M1 sin 01 COSs 92 7/\2 sin 02 M2 sin 02
Py,= {sinf; Apcosfy —pyicosf sinf, Apcosfp —ppcosby
0 M1 A1 0 M2 A2

The foregoing product is calculated now by first computing the prod-
ucts A1z, A1z, pip2, and App1, which involve only constant quantities,
these terms thus being posture-independent. Thus, in tracking a prescribed
Cartesian trajectory, the manipulator posture changes continuously, and
hence, its joint variables also change. However, its DH parameters, those
defining its architecture, remain constant. Therefore, the four above prod-
ucts remain constant and are computed prior to tracking a trajectory, i.e.,
off-line. In computing these products, we store them as

M2 = M2, pi2 = Mpe, a2 = pape,  Aoi = A
Next, we perform the on-line computations. First, let?

)\1 sin 92
sin 01 cos 6>
cos 61 cos 0,

cosfysinfy + A\ 7

¢ 2 < 3 9
T

sin 01 sin 02 - /\11)
and hence,

v—osinf; —Xu+ 12 Sin 01 U2t + A1 sin 6
Po=|74+0cosfy —Xv—p12cosfy v — Mg cosby
1 sin 6 A21cosllz + pp1 —p12costz + A2

1 Although v and v look similar, they should not be confused with each other,
the former being the lowercase Greek letter upsilon. As a matter of fact, no
confusion should arise, because upsilon is used only once, and does not appear
further in the book.
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As the reader can verify, the foregoing calculations consume 20 multiplica-
tions and 10 additions. Now, we proceed to compute the remaining products
in the foregoing do-loop.

Here, notice that the product P;_1Q;, for 3 < ¢ < n, can be computed
recursively, as described below: Let P;_1 and P; be given as

pb11 P12 pa3

P,_1=|pa p22 p23
| P31 P32 P33 |

P11 P2 Plis

P, = |ph Py Do
_pél D3> Dis ]

Now matrix P; is computed by first defining

u; = p118in0; — p12 cost;
v; = p218in6; — pao cosb; (4.76a)
w; = p31 sinf; — ps2 cos O;

and

P11 = p11cost; + piasin;

Pl2 = —uiXi + p1spi

Pl3 = Witi + 13X

Phy = P21 €08 0; + popsinb;

a2 = —vii + P23jli (4.76Db)
Pz = Vipti + P23

Ph1 = pa1 cosb; + pap sinb;

P32 = —WiXi + Paspli

Pa3 = Wikt + P33

Computing w;, v;, and w; requires six multiplications and three addi-
tions, whereas each of the pgj entries requires two multiplications and one
addition. Hence, the computation of each P; matrix requires 24 multiplica-
tions and 12 additions, the total number of operations required to compute
the n — 2 products { P; }57* thus being 24(n — 2) 420 = 24n — 28 multipli-
cations and 12(n — 2) + 10 = 12n — 14 additions, for n > 2. Moreover, P,
i.e., Q1, requires four multiplications and no additions, the total number of
multiplications M4 and additions A 4 required to compute matrix A thus
being

My =24n—24, Ap=12n-—14 (4.77)

Before concluding this section, a remark is in order: The reader may
realize that P, is nothing but Q, and hence, the same reader may wonder
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whether we could not save some operations in the foregoing computations
by stopping the above recursive algorithm at n— 1, rather than at n. This is
not a good idea, for the above equality holds if and only if the manipulator
is capable of tracking perfectly a given trajectory. However, reality is quite
different, and errors are always present when tracking. As a matter of fact,
the mismatch between P, and Q is very useful in estimating orientation
errors, which are then used in a feedback-control scheme to synthesize the
corrective signals that are meant to correct those errors.

Evaluation of Submatrix B

The computation of submatrix B of the Jacobian is studied here. This
submatrix comprises the set of vectors { e; x r; }}. We thus proceed first
to the computation of vectors r;, for ¢ = 1,...,n, which is most efficiently
done using a recursive scheme, similar to that of Horner for polynomial
evaluation (Henrici, 1964), namely,

[re]e — [as]e
For i =5to 1do
[ri]i < [ai]i + Qi[riv1]iva
enddo
In the foregoing algorithm, a simple scheme is introduced to perform the

product Q;[ri+1]i+1, in order to economize operations: if we let
T
[ri+1]i+1 = [71, 72, 73]", then

i COSs 01 7)\1‘ sin 01 i sin 01 1
Qi [ r;+1 ]i+l = sin 01 /\1 COSs 01 — i COS 01 T2
| O i Ai T3
[ 1 cosf; — usinb;
= | r1sinf; + ucosb; (4.78a)
T2 g + T’3/\i
where
U= 1o — T3l (4.78b)

Therefore, the product of matrix Q; by an arbitrary vector consumes eight
multiplications and four additions.

Furthermore, each vector [a; |, for i = 1,...,n, requires two multiplica-
tions and no additions, as made apparent from their definitions in eq.(4.3b).
Moreover, from the foregoing evaluation of Q;[r;+1 |;+1, it is apparent that
each vector r;, in frame F;, is computed with 10 multiplications and seven
additions—two more multiplications are needed to calculate each vector
[a;]; and three more additions are required to add the latter to vector
Q;[ri+1]i+1—the whole set of vectors {r; }} thus being computed, in F;-
coordinates, with 10(n — 1) + 2 = 10n — 8 multiplications and 7(n — 1)
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additions, where one coordinate transformation, that of r1, is not counted,
since this vector is computed directly in Fj.

Now we turn to the transformation of the components of all the foregoing
vectors into Fi-coordinates. First, note that we can proceed now in two
ways: in the first, we transform the individual vectors e; and r; from F;- into
JFi-coordinates and then compute their cross product; in the second, we first
perform the cross products and then transform each of these products into
JFi-coordinates. It is apparent that the second approach is more efficient,
which is why we choose it here.

In order to calculate the products e; x r; in F;-coordinates, we let [r;]; =
[p1, p2, p3]T. Moreover, [e;]; = [0, 0, 1]7, and hence,

—p2
[ei X ri]i = P1
0

which is thus obtained at no cost. Now, the transformation from F;- into
Fi-coordinates is simply

[ei X 1‘1‘]1 = Pi_l[ei X ri]i (479)

In particular, [el X r1] 1 needs no transformation, for its two factors are
given in JFj-coordinates. The Fi-components of the remaining cross prod-
ucts are computed using the general transformation of eq.(4.79). In the case
at hand, this transformation requires, for each ¢, six multiplications and
three additions, for this transformation involves the product of a full 3 x 3
matrix, P;_1, by a 3-dimensional vector, e; x r;, whose third component
vanishes. Thus, the computation of matrix B requires Mp multiplications
and Ap additions, as given below:

Mp=16n—14, Ap=10(n—1) (4.80)

In total, then, the evaluation of the complete Jacobian requires M ; multi-
plications and A; additions, namely,

My =40n—38, Ay =22n—24 (4.81)

In particular, for a six-revolute manipulator, these figures are 202 multi-
plications and 108 additions.

Now, if the manipulator contains some prismatic pairs, the foregoing
figures diminish correspondingly. Indeed, if the ith joint is prismatic, then
the ith column of the Jacobian matrix changes as indicated in eq.(4.56).
Hence, one cross-product calculation is spared, along with the associated
coordinate transformation. As a matter of fact, as we saw above, the cross
product is computed at no cost in local coordinates, and so each prismatic
pair of the manipulator reduces the foregoing numbers of operations by
only one coordinate transformation, i.e., by 10 multiplications and seven
additions.
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4.5.2  Singularity Analysis of Decoupled Manipulators

In performing the computation of the joint rates for a decoupled manipu-
lator, it was assumed that neither Ji1» nor Jp; is singular. If the latter is
singular, then none of the joint rates can be evaluated, even if the former is
nonsingular. However, if Jp1 is nonsingular, then eq.(4.66a) can be solved
for the arm rates even if J12 is singular. Each of these sub-Jacobians is
analyzed for singularities below.

We will start analyzing J21, whose singularity determines whether any
joint-rate resolution is possible at all. First, we note from eq.(4.65¢) that
the columns of J,; are the three vectors e; X ri, e X rp, and ez X r3.
Hence, J2;1 becomes singular if either these three vectors become coplanar
or at least one of them vanishes. Furthermore, neither the relative layout
of these three vectors nor their magnitudes change if the manipulator un-
dergoes a motion about the first revolute axis while keeping the second
and the third revolute axes locked. This means that 8, does not affect the
singularity of the manipulator, a result that can also be derived from in-
variance arguments—see Section 2.6—and by noticing that singularity is,
indeed, an invariant property. Hence, whether a configuration is singular or
not is independent of the viewpoint of the observer, a change in 61 being
nothing but a change of viewpoint.

The singularity of a three-revolute arm for positioning tasks was analyzed
by Burdick (1995), by recognizing that (i) given three arbitrary lines in
space, the three revolute axes in our case, it is always possible to find a
set of lines that intersects all three, and (i¢) the moments of the three
lines about any point on the intersecting line are all zero. As a matter
of fact, the locus of those lines is a quadric ruled surface, namely, a one-
sheet hyperboloid—see Exercise 3.4. Therefore, if the endpoint of the third
moving link lies in this quadric, the manipulator is in a singular posture,
and velocities of C' along the intersecting line cannot be produced. This
means that the manipulator has lost, to a first order, one degree of freedom.
Here we emphasize that this loss is meaningful only at a first order because,
in fact, a motion along that intersecting line may still be possible, provided
that the full nonlinear relations of eq.(4.16) are considered. If such a motion
is at all possible, however, then it is so only in one direction, as we shall see
in Case 2 below. Motions in the opposite direction are not feasible because
of the rigidity of the links.

We will illustrate the foregoing concepts as they pertain to the most
common types of industrial manipulators, i.e., those of the orthogonal type.
In these cases, two consecutive axes either intersect at right angles or are
parallel; most of the time, the first two axes intersect at right angles and
the last two are parallel. Below we study each of these cases separately.

Case 1: Two consecutive axes intersect and C' lies in their plane.
Here, the ruled hyperboloid containing the lines that intersect all

TLFeBOOK



4.5 Velocity Analysis of Serial Manipulators 151

three axes degenerates into a plane, namely, that of the two inter-
secting axes. For conciseness, let us assume that the first two axes
intersect, but the derivations are the same if the intersecting axes are
the last two. Moreover, let O12 be the intersection of the first two
axes, I112 being the plane of these axes and nj its normal. If we re-
call the notation adopted in Section 4.5, we have now that the vector
directed from O12 to C can be regarded as both r; and r,. Further-
more, e; X r1 and ez X ry (= ez X rp) are both parallel to nj,. Hence,
the first two axes can only produce velocities of C' in the direction of
ni». As a consequence, velocities of C' in II;2 and perpendicular to
e3 X r3 cannot be produced in the presence of this singularity. The set
of infeasible velocities, then, lies in a line normal to ni2 and ez X r3,
whose direction is the geometric representation of the nullspace of JZ; .
Likewise, the manipulator can withstand forces applied at C' in the
direction of the same line purely by reaction wrenches, i.e., without
any motor torques. The last issue falls into the realm of manipulator
statics, upon which we will elaborate in Section 4.7.

We illustrate this singularity, termed here shoulder singularity, in a
manipulator with the architecture of Fig. 4.3, as postured in Fig. 4.20.
In this figure, the line intersecting all three arm axes is not as obvious
and needs further explanation. This line is indicated by £ in that
figure, and is parallel to the second and third axes. It is apparent that
this line intersects the first axis at right angles at a point I. Now, if
we take into account that all parallel lines intersect at infinity, then
it becomes apparent that £ intersects the axis of the third revolute
as well, and hence, £ intersects all three axes.

Case 2: Two consecutive axes are parallel and C lies in their plane,
as shown in Fig. 4.21. For conciseness, again, we assume that the
parallel axes are now the last two, a rather common case in com-
mercial manipulators, but the derivations below are the same if the
parallel axes are the first two. We now let II»3 be the plane of the
last two axes and np3 its normal. Furthermore, e3 = e, r» = rp, and
ey x r3 = a(ey X rp), where

az + /a3 + b5

in terms of the Denavit-Hartenberg notation, thereby making appar-
ent that the last two columns of J»1 are linearly dependent. Moreover,
ey X rp and, consequently, ez X r3 are parallel to ny3, the last two
axes being capable of producing velocities of C only in the direction
of ny3. Hence, velocities of C' in Ilo3 that are normal to e; X ryp,
i.e., along line £, cannot be produced in this configuration, and the
manipulator loses, again, to a first-order approximation, one degree
of freedom. The set of infeasible velocities, then, is parallel to the
line £ of Fig. 4.21, whose direction is the geometric representation of

o =
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FIGURE 4.20. Shoulder singularity of the Puma robot.

the nullspace of J%;. The singularity displayed in the foregoing fig-
ure, termed here the elbow singularity, pertains also to a manipulator
with the architecture of Fig. 4.3. Notice that motions along £ in the
posture displayed in Fig. 4.21 are possible, but only in one direction,
from C to O.

With regard to the wrist singularities, these were already studied when
solving the orientation problem for the inverse kinematics of decoupled
manipulators. Here, we study the same in light of the sub-Jacobian Ji2
of eq.(4.65b). This sub-Jacobian obviously vanishes when the wrist is so
configured that its three revolute axes are coplanar, which thus leads to

e4><e5~e5:()

Note that when studying the orientation problem of decoupled manipu-
lators, we found that orthogonal wrists are singular when the sixth and
fourth axes are aligned, in full agreement with the foregoing condition. In-

deed, if these two axes are aligned, then e4 = —eg, and the above equation
holds.

4.5.8  Manipulator Workspace

The workspace of spherical wrists for orientation tasks was discussed in
Subsection 4.4.2. Here we focus on the workspaces of three-axis positioning
manipulators in light of their singularities.
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FIGURE 4.21. Elbow singularity of the Puma robot.

FIGURE 4.22. Workspace of a Puma manipulator (a) top view; (b) side view;
(c) perspective.
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In order to gain insight into the problem, we study first the workspace of
manipulators with the architecture of Fig. 4.3. Figures 4.20 and 4.21 show
such a manipulator with point C' at the limit of its positioning capabilities
in one direction, i.e., at the boundary of its workspace. Moreover, with re-
gard to the posture of Fig. 4.20, it is apparent that the first singularity is
preserved if (¢) point C moves on a line parallel to the first axis and inter-
secting the second axis; and (i¢) with the second and third joints locked,
the first joint goes through a full turn. Under the second motion, the line
of the first motion sweeps a circular cylinder whose axis is the first manip-
ulator axis and with radius equal to bz, the shoulder offset. This cylinder
constitutes a part of the workspace boundary, the other part consisting of
a spherical surface. Indeed, the second singularity is preserved if (i) with
point C' in the plane of the second and third axes, the second joint makes a
full turn, thereby tracing a circle with center on £, a distance b3 from the
first axis, and radius r = ap + /a3 + b3; and (i) with point C still in the
plane of the second and third joints, the first joint makes a full turn. Un-
der the second motion, the circle generated by the first motion describes
a sphere of radius R = /b3 + r2 because any point of that circle lies a
distance R from the intersection of the first two axes. This point thus be-
comes the center of the sphere, which is the second part of the workspace,
as shown in Fig. 4.22.

The determination of the workspace boundaries of more general manip-
ulators requires, obviously, more general approaches, like that proposed
by Ceccarelli (1996). By means of an alternative approach, Ranjbaran
et al. (1992) found the workspace boundary with the aid of the general
characteristic equation of a three-revolute manipulator. This equation is a
quartic polynomial, as displayed in eq.(4.25). From the discussion of Sub-
section 4.4.1, it is apparent that at singularities, two distinct roots of the
IKP merge into a single one. This happens at points where the plot of the
characteristic polynomial of eq.(4.25) is tangent to the 73 axis, which occurs
in turn at points where the derivative of this polynomial with respect to 73
vanishes. The condition for 3 to correspond to a point C' on the boundary
of the workspace is, then, that both the characteristic polynomial and its
derivative with respect to 73 vanish concurrently. These two polynomials
are displayed below:

P(73) = R7§ + S5 + T3 + Urs +V =0 (4.82a)
P'(13) = 4R73 + 3575 +2Tm3+ U =0 (4.82b)

with coefficients R, S, T, U, and V defined in egs.(4.26a—e). From these
equations and egs.(4.19d—f) and (4.20d-f), it is apparent that the foregoing
coefficients are solely functions of the manipulator architecture and the
Cartesian coordinates of point C. Moreover, from the same equations, it
is clear that the above coefficients are all quadratic in p? = mzc + yé and
quartic in zc. Thus, since the Cartesian coordinates x¢ and yo do not
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appear in the foregoing coefficients explicitly, the workspace is symmetric
about the Z; axis, a result to be expected by virtue of the independence
of singularities from angle 6;. Hence, the workspace boundary is given
by a function f(p?, zc) = 0 that can be derived by eliminating 73 from
egs.(4.82a & b). This can be readily done by resorting to any elimination
procedure, the simplest one being dialytic elimination, as discussed below.

In order to eliminate 73 from the above two equations, we proceed in
two steps: In the first step, six additional polynomial equations are derived
from eqs.(4.82a & b) by multiplying the two sides of each of these equations
by 73, 72, and 73, thereby obtaining a total of eight polynomial equations
in 73, namely,

R+ ST +TH+U+Vi3=0
ARTS + 3575 +2T75 + U3 =0
RS+ S+ T8+ U +Vr2 =0
ARTS + 38758 + 2175+ UTE =0
R+ S +TH3+Ur2 +V =0
ARTS + 3873 +2T2 + U3 =0
R +Sm3+T72 +Urs +V =0
ARTS + 3815 + 2T +U =0

In the second elimination step we write the above eight equations in linear
homogeneous form, namely,

Mt3=0 (4.83a)
with the 8 x 8 matrix M and the 8dimensional vector 73 defined as
R S T U V 0 0 07 r74 ]
0 4R 35 2" U 0 0 O 5
O R S T U V 0 0 5
|0 0 4R 35S 2T U 0 0 K
M=1g 0 R s 7 0 v of ™= |z| (8P
0 0 0 4R 3S 2T U 0 2
o 0 0 R S T U V 73
L0 0 0 0 4R 3S 2T Ul [ 1]

It is now apparent that any feasible solution of eq.(4.83a) must be nontriv-
ial, and hence, M must be singular. The desired boundary equation is then
derived from the singularity condition on M, i.e.,

f(p?, zc) = det(M) =0 (4.84)

Note that all entries of matrix M are linear in the coefficients R, S, ...,
V, which are, in turn, quadratic in p? and quartic in zc. Therefore, the
workspace boundary is a surface of 16th degree in p? and of 32nd degree
in z¢.

We used the foregoing procedure, with the help of symbolic computa-
tions, to obtain a rendering of the workspace boundary of the manipulator
of Figs. 4.13-4.15, the workspace thus obtained being displayed in Fig. 4.23.

TLFeBOOK



156 4. Kinetostatics of Simple Robotic Manipulators
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FIGURE 4.23. The workspace of the manipulator of Figs. 4. 17-19.

4.6 Acceleration Analysis of Serial Manipulators

The subject of this section is the computation of vector 6 of second joint-
variable derivatives, also called the joint accelerations. This vector is com-
puted from Cartesian position, velocity, and acceleration data. To this end,
both sides of eq.(4.53) are differentiated with respect to time, thus obtain-
ing

Jo=t-1J0 (4.85)

and hence, ) o
0=J1t—-Jo) (4.86)

From eq.(4.85), it is clear that the joint-acceleration vector is computed in
exactly the same way as the joint-rate vector. In fact, the LU decomposition
of J is the same in this case and hence, need not be recomputed. All that is
needed is the solution of a lower- and an upper-triangular system, namely,

Lz:t'f..]é7 Uh =1z

The two foregoing systems are solved first for z and then for 8 by forward
and backward substitution, respectively. The first of the foregoing systems
is solved with M’ multiplications and A! additions; the second with M}
multiplications and A!’ additions. These figures appear in eqs.(4.62b & c).
Thus, the total numbers of multiplications, M;, and additions, A;, that the
forward and backward solutions of the aforementioned systems require are

M;=n? A, =n(n—-1) (4.87)

In eq.(4.85), the right-hand side comprises two terms, the first being the
specified time-rate of change of the twist of the EE, or twist-rate, for brevity,
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which is readily available. The second term is not available and must be
computed. This term involves the product of the time-derivative of J times
the previously computed joint-rate vector. Hence, in order to evaluate the
right-hand side of that equation, all that is further required is J. From
eq.(4.54a), one has

: A
- [8]
where, from eqs.(4.51a & b),
A=[é é - &,] (4.88a)
B=[u uw - u,] (4.88b)
and u; denotes e; X r;, for ¢ = 1,2,...,n. Moreover,
él =Wwp X e1 = 0 (4.89&)
éi:wi,lxeizwixei, i:2,3,...,n (489b)
and
l'li:éixri+eiXI.‘i, i:1,2,...,n (4890)

Next, an expression for r; is derived by time-differentiating both sides of
eq.(4.50), which produces

Pi=a At +a,, i=1,2,...n
Recalling eq.(4.48), the above equation reduces to
I = w; Xa; +Witr1 X a+1 + -+ +wy X a, (4.90)
Substitution of egs.(4.89) and (4.90) into egs.(4.88a & b) leads to

A:[O w1 X € - Whpo1Xey]

B=[e1><1"1 Wip XTIy +eyXry --- wn_l,nxrn—i—enxi‘n]

with I, and wy, p+1 defined as

i‘kEZwixai, k=1,....n (4.91a)
k
WE k+1 = WE X €g+1, k= 1,...,7171 (491b)

The foregoing expressions are invariant and hence, valid in any coordinate
frame. However, they are going to be incorporated into matrix J, and then
the latter is to be multiplied by vector 8, as indicated in eq.(4.85). Thus,
eventually all columns of both A and B will have to be represented in the
same coordinate frame. Hence, coordinate transformations will have to be
introduced in the foregoing matrix columns in order to have all of these
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represented in the same coordinate frame, say, the first one. We then have
the expansion below:

Jé91{31]+é2{§ﬂ+m+9n[§”} (4.92)

The right-hand side of eq.(4.92) is computed recursively as described below
in five steps, the number of operations required being included at the end
of each step.

1. Compute { [w;]; }1:
(w1l — fafer]s

Fori=1ton—1do
[Wit1]iv1 — Oiva[eiva fivs + Q) [wili
enddo 8n—1)M & 5(n—1)A
2. Compute {[&;]; }7:

[é1]1 < [0]1

Fori =2to n do
[&]i « [wixe];
enddo 0M & 0A
3. Compute { [¥;]; }1=

[Tn]n — [wn X an]n

Fori=n—-1to 1 do
[Pi )i« [wi xa;]i + Qi[Fi+1 i1
enddo (14n — 8)M & (10n —T)A
4. Compute {[0;]; }T using the expression appearing in eq.(4.89c¢):
[m]1 <« [erxt1]1 For i =2 to n do
[0;]; < [& xr;+e; x1;];

enddo dn—1)M &3(n—1)A
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5. Compute JO:

Let v = J0, which is a 6-dimensional vector. A coordinate trans-
formation of its two 3-dimensional vector components will be imple-
mented using the 6 x 6 matrices U;, which are defined as

_1Q: O
Ui:{o Qz}

where O stands for the 3 x 3 zero matrix. Thus, the foregoing 6 x 6 ma-
trices are block-diagonal, their diagonal blocks being simply matrices
Q;. One then has the algorithm below:

- e,
o -alt]
Fori=n—-—1to 1 do

[v]i <« 91 L?} + Ui[V]i+1

enddo
Jo —[v]1 20n—1)+4M & 13(n—1) A

thereby completing the computation of Jo.

The figures given above for the floating-point operations involved were
obtained based on a few facts, namely,

1. Tt is recalled that [e;]; = [0, 0, 1]7. Moreover, if we let [w]; =
[Wg, Wy, W ]” be an arbitrary 3-dimensional vector, then

—wy
[ei XWL‘Z Wy

0

this product thus requiring zero multiplications and zero additions.

2. [é;]i, computed as in eq.(4.89b), takes on the form [w,, —w,, 0]7,
where w, and w, are the X; and Y; components of w;. Moreover, let
[r;]; =[x, y, z]T. Then

—ZWy
[ez X ri]i = —ZWy

Twy + Ywy

and this product is computed with four multiplications and one ad-
dition.
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3. As found in Subsection 4.5.1, any coordinate transformation from F;
to Fi+1, or vice versa, of any 3-dimensional vector is computed with
eight multiplications and four additions.

Thus, the total numbers of multiplications and additions required to
compute JO in frame Fi, denoted by M; and Ay, respectively, are as
shown below:

My =470 —37, A;=31n—28

Since the right-hand side of eq.(4.85) involves the algebraic sum of two
6-dimensional vectors, then, the total numbers of multiplications and ad-
ditions needed to compute the aforementioned right-hand side, denoted by
M, and A,, are

M, =470 — 37, A, =31ln—22

These figures yield 245 multiplications and 164 additions for a six-revolute
manipulator of arbitrary architecture. Finally, if the latter figures are added
to those of eq.(4.87), one obtains the numbers of multiplications and addi-
tions required for an acceleration resolution of a six-revolute manipulator
of arbitrary architecture as

M, =281, A,=194

Furthermore, for six-axis, decoupled manipulators, the operation counts
of steps 1 and 2 above do not change. However, step 3 is reduced by 42
multiplications and 30 additions, whereas step 4 by 12 multiplications and
9 additions. Moreover, step 5 is reduced by 63 multiplications and 39 addi-
tions. With regard to the solution of eq.(4.85) for 8, an additional reduction
of floating-point operations, or flops, is obtained, for now we need only 18
multiplications and 12 additions to solve two systems of three equations
with three unknowns, thereby saving 18 multiplications and 18 additions.
Thus, the corresponding figures for such a manipulator, M} and A/, re-
spectively, are

M/ =146, Al =98

4.7 Static Analysis of Serial Manipulators

In this section, the static analysis of a serial n-axis manipulator is under-
taken, particular attention being given to six-axis, decoupled manipulators.
Let 7; be the torque acting at the ith revolute or the force acting at the ith
prismatic pair. Moreover, let 7 be the n-dimensional vector of joint forces
and torques, whose ith component is 7;, whereas w = [nT, fT']T" denotes
the wrench acting on the EE, with n denoting the resultant moment and f
the resultant force applied at point P of the end-effector of the manipulator
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of Fig. 4.19. Then the power exerted on the manipulator by all forces and
moments acting on the end-effector is

g =wlt=nTw+fTp
whereas the power exerted on the manipulator by all joint motors, I1;, is
;=776 (4.93)

Under static, conservative conditions, there is neither power dissipation
nor change in the kinetic energy of the manipulator, and hence, the two
foregoing powers are equal, which is just a restatement of the First Law of
Thermodynamics or equivalently, the Principle of Virtual Work, i.e.,

wit =776 (4.94a)
Upon substitution of eq.(4.53) into eq.(4.94a), we obtain
wlJo =770 (4.94b)

which is a relation valid for arbitrary 6. Under these conditions, if J is not
singular, eq.(4.94b) leads to
J'w=r1 (4.95)

This equation relates the wrench acting on the EE with the joint forces and
torques exerted by the actuators. Therefore, this equation finds applications
in the sensing of the wrench w acting on the EE by means of torque sensors
located at the revolute axes. These sensors measure the motor-supplied
torques via the current flowing through the motor armatures, the sensor
readouts being the joint torques—or forces, in the case of prismatic joints—
{7k }1, grouped into vector 7.

For a six-axis manipulator, in the absence of singularities, the foregoing
equation can be readily solved for w in the form

w=JTr

where J~7 stands for the inverse of J7. Thus, using the figures recorded
in eq.(4.61b), w can be computed from eq.(4.95) with 127 multiplications
and 100 additions for a manipulator of arbitrary architecture. However,
if the manipulator is of the decoupled type, the Jacobian takes on the
form appearing in eq.(4.64), and hence, the foregoing computation can be
performed in two steps, namely,

T
lel’lw = Tuw
T T
J21f =Tq — Jllnw

where n,, is the resultant moment acting on the end-effector when f is
applied at the center of the wrist, while 7 has been partitioned as

= [%:]
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with 7, and 7, defined as the wrist and the arm torques, respectively.
These two vectors are given, in turn, as

T T4
Ta=|T2|, Tw= |75
73 T6

Hence, the foregoing calculations, as pertaining to a six-axis, decoupled
manipulator, are performed with 55 multiplications and 37 additions, which
follows from a result that was derived in Section 4.5 and is summarized in
eq.(4.68).

In solving for the wrench acting on the EE from the above relations, the
wrist equilibrium equation is first solved for n,,, thus obtaining

n, =J5 Tw (4.96)

where J IzT stands for the inverse of J75, and is available in eq.(4.74). There-
fore,

1
my = 5~ [(es x es) (es x ea) (ea xe5)] Ty
12
1
_ A_lz[m(es x €g) + T5(es X €4) + T6(€4 X €5)] (4.97)
Now, if we let
?a =Tq — J{ll’lw (4'98)

we have, from eq.(4.73),

fZ[lngllg u3z X u1 111)(112]—a
A
where
u; =e€; Xr;

or

1

f———
AV

[71(112 X U3) + 72(113 X 11]_) +73(U1 X UQ” (499)

4.8 Planar Manipulators

Shown in Fig. 4.24 is a three-axis planar manipulator. Note that in this
case, the DH parameters b; and «; vanish, for ¢ = 1, 2, 3, the nonvanishing
parameters a; being indicated in the same figure. Below we proceed with the
displacement, velocity, acceleration, and static analyses of this manipulator.
Here, we recall a few relations of planar mechanics that will be found useful
in the discussion below.
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A 2 x 2 matrix A can be partitioned either columnwise or rowwise, as

shown below:
T
A=[a b]= [ dT]
where a, b, ¢, and d are all 2-dimensional column vectors. Furthermore,
let E be defined as an orthogonal matrix rotating 2-dimensional vectors
through an angle of 90° counterclockwise. Hence,

E= [0 1] (4.100)

‘We thus have
Fact 4.8.1

and hence,
Fact 4.8.2

where 1 s the 2 X 2 identity matriz.
Moreover,
Fact 4.8.3

det(A) = —a’Eb = b’Ea = —c"Ed = d"Ec
and
Fact 4.8.4

A1t ! { b’

~ det(A) —aT} E= det(A)

4.8.1 Displacement Analysis

The inverse kinematics of the manipulator at hand now consists of deter-
mining the values of angles 6;, for ¢« = 1, 2, 3, that will place the end-effector
so that its operation point P will be positioned at the prescribed Carte-
sian coordinates x, y and be oriented at a given angle ¢ with the X axis
of Fig. 4.24. Note that this manipulator can be considered as decoupled,
for the end-effector can be placed at the desired pose by first positioning
point Oz with the aid of the first two joints and then orienting it with the
third joint only. We then solve for the joint angles in two steps, one for
positioning and one for orienting.
We now have, from the geometry of Fig. 4.24,

aic1 + aC12 =

a181 + azs12 =y
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164 4. Kinetostatics of Simple Robotic Manipulators

FIGURE 4.24. Three-axis planar manipulator.

where x and y denote the Cartesian coordinates of point Oz, while ¢12 and
s12 stand for cos(61+62) and sin(61+6-), respectively. We have thus derived
two equations for the two unknown angles, from which we can determine
these angles in various ways. For example, we can solve the problem using
a semigraphical approach similar to that of Subsection 8.2.2.

Indeed, from the two foregoing equations we can eliminate both c12 and
s12 by solving for the second terms of the left-hand sides of those equations,
namely,

ascio = T — a1 (4.101a)
azs12 =Y — ai181 (4.101b)

If both sides of the above two equations are now squared, then added,

FIGURE 4.25. The two real solutions of a planar manipulator.
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FIGURE 4.26. The two real values of 61 depicted in Fig. 4.25.

and the ensuing sum is equated to a3, we obtain, after simplification, a
linear equation in ¢; and s1 that represents a line £ in the c;-s1 plane:

L: —a? + a3 + 2a1xc1 + 2a1ys1 — (2% +4?) =0 (4.102)

Clearly, the two foregoing variables are constrained by a quadratic equation
defining a circle C in the same plane:

C: c%—l—s%:l

which is a circle C of unit radius centered at the origin of the aforementioned
plane. The real roots of interest are then obtained as the intersections of £
and C. Thus, the problem can admit () two real and distinct roots, if the
line and the circle intersect; (i7) one repeated root if the line is tangent to
the circle; and (i4¢) no real root if the line does not intersect the circle.

With ¢1 and s; known, angle 6; is fully determined. Note that the two
real intersections of £ with C provide each one value of 1, as depicted in
Fig. 4.26.

Once 0; and 6, are available, 63 is readily derived from the geometry of
Fig. 4.24, namely,

03 = ¢ — (01 + 62)

and hence, each pair of (61, 62) values yields one single value for 3. Since
we have two such pairs, the problem admits two real solutions.

4.8.2  Velocity Analysis

Velocity analysis is most easily accomplished if the general velocity relations
derived in Section 4.5 are recalled and adapted to planar manipulators.
Thus we have, as in eq.(4.53),

Jo=t (4.103a)
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where now,

01
J— el e e3 0= |61, t= [w} (4.103Db)
e Xr; ex Xrp e3xXrs 9'3 | &

and {r; }3 are defined as in eq.(4.50), i.e., as the vectors directed from O;
to P. As in the previous subsection, we assume here that the manipulator
moves in the X-Y plane, and hence, all revolute axes are parallel to the Z
axis, vectors e; and r;, for ¢ = 1,2, 3, thus taking on the forms

0 T;
eg=e;=ez3=e= |0|, ;= |y
1 0
with t reducing to
t=[0 0 ¢ @p yp 0] (4.103¢)

in which £p and yp denote the components of the velocity of P. Thus,

—Yi
e, Xr; = Z;
0 -
and hence, the foregoing cross product can be expressed as
e; Xr;= Es; |
1 (2 0 ]
where E was defined in eq.(4.100) and s; is the 2-dimensional projection
of r; onto the z-y plane of motion, i.e., s; = [2; y:]". Equation (4.103a)
thus reduces to
0 0 0 0
1 1 1 Ao
ES]_ ESZ ESg 0= p (4.104)
0 0 0 0

where 0 is the 2-dimensional zero vector and p is now reduced to p =
[4, #]T. In summary, then, by working only with the three nontrivial equa-
tions of eq.(4.104), we can represent the velocity relation using a 3 x 3
Jacobian in eq.(4.103a). To this end, we redefine J and t as

[ 1 1 [
=g w ] =[] (4109

The velocity resolution of this manipulator thus reduces to solving for the
three joint rates from eq.(4.103a), with J and t defined as in eq.(4.105),
which thus leads to the system below:

01 ;
1 1 1 K
[Esl Es> Ess} 32 _{P} (4.106)
3
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Solving for {6;}3 is readily done by first reducing the system of equa-
tions appearing in eq.(4.103a) to one of two equations in two unknowns
by resorting to Gaussian elimination. Indeed, if the first scalar equation
of eq.(4.106) is multiplied by Es; and the product is subtracted from the
2-dimensional vector equation, we obtain

01 .
1 1 1 L é
0 E(s;—s1) E(sz— sl)} z; - [p _ ¢ESJ (4.107)

from which a reduced system of two equations in two unknowns is readily
obtained, namely,

0 .
[E(s2 —s1) E(sz—s1)] [92] =p— ¢Es; (4.108)
The system of equations (4.108) can be readily solved if Fact 4.8.4 is
recalled, namely,
9:2 o i —(Sg—Sl)TE s
6] 3 [
_ 1 [ (ss —s1)”(p — ¢Es1) ]
A [ —(s2 —s1)"(p — ¢Es1)
where A is the determinant of the 2 x 2 matrix involved, i.e.,
A =det([E(sy —s1) E(ss—s1)]) = —(s2 —s1)"E(ss —s1)  (4.109)
We thus have

(ss —s1)7(p — $Esy)
(Sz — Sl)TE(S3 — Sj_)
(s2 —s1)7(p — ¢Es1)

b3 = O (4.110b)

0y = — (4.110a)

Further, 6; is computed from the first scalar equation of eq.(4.106), i.e.,
01 = ¢ — (62 + 63) (4.110c)

thereby completing the velocity analysis.

The foregoing calculations are summarized below in algorithmic form,
with the numbers of multiplications and additions indicated at each stage.
In those numbers, we have taken into account that a multiplication of E by
any 2-dimensional vector incurs no computational cost, but rather a simple
rearrangement of the entries of this vector, with a reversal of one sign.

1. dpg < sp —s1 0OM +2A
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2. d31 < 83 — 81 OM +2A
3. A — d}Edy 2M + 14
4. u—p— ¢Es; 2M +2A
5. u«< u/A 2M +0A
6. 6 —ulda 2M + 1A
7. 03 — —uTdy 2M + 1A
8. 01— ¢ — 6, — b3 OM +2A

The complete calculation of joint rates thus consumes only 10M and 11A,
which represents a savings of about 67% of the computations involved if
Gaussian elimination is applied without regarding the algebraic structure
of the Jacobian J and its kinematic and geometric significance. In fact,
the solution of an arbitrary system of three equations in three unknowns
requires, from eq.(4.61a), 28 additions and 23 multiplications. If the cost
of calculating the right-hand side is added, namely, 4A and 6 M, a total
of 32A and 29M is required to solve for the joint rates if straightforward
Gaussian elimination is used.

4.8.3  Acceleration Analysis

The calculation of the joint accelerations needed to produce a given twist
rate of the EE is readily accomplished by differentiating both sides of
eq.(4.103a), with definitions (4.105), i.e.,

Jo+3o=t

from which we readily derive a system of equations similar to eq.(4.103a)
with 8 as unknown, namely,

Jo=t-J6
where ..
6, .
o IR P o N S
Es; Es, Esj S P
63
and

S3 = (91 + ég + ég)Eag
Sp =ap + 83 = (91 + 92)Ea2 + S3
$1=a1 + 82 = 1Es; +$2
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Now we can proceed by Gaussian elimination to solve for the joint accelera-

tions in exactly the same manner as in Subsection 4.8.2, thereby obtaining
the counterpart of eq.(4.108), namely,

[E(ss —s1) E(ss—s1)] [ZZ] —w (4.111a)
3
with w defined as

w =P — E(0151 + 0282 + a8 + ds1) (4.111D)

and hence, similar to egs.(4.110a—c), one has

. f— T

fp = w (4.112a)
. f— T

iy — *w (4.112b)
01 = ¢ — (62 + 63) (4.112¢)

Below we summarize the foregoing calculations in algorithmic form, in-
dicating the numbers of operations required at each stage.

1. 83 « (01 + 62 + 03)Eag 2M & 24
2. 5 « (01 + 02)Eap + 33 2M & 3A
3. 81 — 61Es1 + 87 2M & 2A

leftarrowp — E(0181 + 0282 + 0383 + ¢s1) 8M & 8A
5. w— w/A 2M +0A
6. O — wldz 2M + 1A
7. 03 — —wTdy oM +1A
8. 01 — & — (62 + 63) 0M + 24

where dz1, d31, and A are available from velocity calculations. The joint
accelerations thus require a total of 20 multiplications and 19 additions.
These figures represent substantial savings when compared with the num-
bers of operations required if plain Gaussian elimination were used, namely,
33 multiplications and 35 additions.

It is noteworthy that in the foregoing algorithm, we have replaced neither
the sum 61 + 6 + 63 nor élE(sl + s2 + s3) by w and correspondingly, by
P, because in path tracking, there is no perfect match between joint and
Cartesian variables. In fact, joint-rate and joint-acceleration calculations
are needed in feedback control schemes to estimate the position, velocity,
and acceleration errors by proper corrective actions.
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4.8.4  Static Analysis

Here we assume that a planar wrench acts at the end-effector of the ma-
nipulator appearing in Fig. 4.24. In accordance with the definition of the
planar twist in Subsection 4.8.2, eq.(4.105), the planar wrench is now de-
fined as

w = {H (4.113)

where n is the scalar couple acting on the end-effector and f is the 2-
dimensional force acting at the operation point P of the end-effector. If
additionally, we denote by 7 the 3-dimensional vector of joint torques, the
planar counterpart of eq.(4.95) follows, i.e.,

Jw=r (4.114)
where
1 (ES]_)T
JT =11 (Esp)”
1 (ESg)T

Now, in order to solve for the wrench w acting on the end-effector, given the
joint torques 7 and the posture of the manipulator, we can still apply our
compact Gaussian-elimination scheme, as introduced in Subsection 4.8.2.
To this end, we subtract the first scalar equation from the second and the
third scalar equations of eq.(4.114), which renders the foregoing system in
the form

1 (ES]_)T n T
0 B sl | [§] = [ n
0 [E(ss—s1)]" T3 —T1

Thus, the last two equations have been decoupled from the first one, which
allows us to solve them separately, i.e., we have reduced the system to one
of two equations in two unknowns, namely,

{[E(sz - Sl)}T} £ [Tz - 71} (4.115)

[E(ss —s1)]" T3 —T1

from which we readily obtain

f = [[E(SZ - Sl)q - {TZ - Tl] (4.116)

T
[E(Sg — S]_)] ™3 — T1
and hence, upon expansion of the above inverse,

1

f= N (12 — 71)(s3 —s1) — (13 — 1) (52 — 81)] (4.117)

where A is exactly as defined in eq.(4.109). Finally, the resultant moment n
acting on the end-effector is readily calculated from the first scalar equation
of eq.(4.114), namely, as

n=rm +slEf
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thereby completing the static analysis of the manipulator under study. A
quick analysis of computational costs shows that the foregoing solution
needs 8M and 6A, or a savings of about 70% if straightforward Gaussian
elimination is applied.

4.9 Kinetostatic Performance Indices

The balance of Part I of the book does not depend on this section, which can
thus be skipped. We have included it here because (i) it is a simple matter to
render the section self-contained, while introducing the concept of condition
number and its relevance in robotics; (i4) kinetostatic performance can be
studied with the background of the material included up to this section;
and (ii1) kinetostatic performance is becoming increasingly relevant as a
design criterion and as a figure of merit in robot control.

A kinetostatic performance indexr of a robotic mechanical system is a
scalar quantity that measures how well the system behaves with regard to
force and motion transmission, the latter being understood in the differen-
tial sense, i.e., at the velocity level. Now, a kinetostatic performance index,
or kinetostatic index for brevity, may be needed to assess the performance
of a robot at the design stage, in which case we need a posture-independent
index. In this case, the index becomes a function of the robot architecture
only. If, on the other hand, we want to assess the performance of a given
robot while performing a task, what we need is a posture-dependent index.
In many instances, this difference is not mentioned in the robotics liter-
ature, although it is extremely important. Moreover, while performance
indices can be defined for all kinds of robotic mechanical systems, we fo-
cus here on those associated with serial manipulators, which are the ones
studied most intensively.

Among the various performance indices that have been proposed, one
can cite the concept of service angle, first introduced by Vinogradov et
al. (1971), and the conditioning of robotic manipulators, as proposed by
Yang and Lai (1985). Yoshikawa (1985), in turn, introduced the concept of
manipulability, which is defined as the square root of the determinant of the
product of the manipulator Jacobian by its transpose. Paul and Stevenson
(1983) used the absolute value of the determinant of the Jacobian to assess
the kinematic performance of spherical wrists. Note that for square Jaco-
bians, Yoshikawa’s manipulability is identical to the absolute value of the
determinant of the Jacobian, and hence, the latter coincides with Paul and
Stevenson’s performance index. It should be pointed out that these indices
were defined for control purposes and hence, are posture-dependent. Ger-
mane to these concepts is that of dextrous workspace, introduced by Kumar
and Waldron (1981), and used for geometric optimization by Vijaykumar
et al. (1986). Although the concepts of service angle and manipulability are
clearly different, they touch upon a common underlying issue, namely, the
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kinematic, or alternatively, the static performance of a manipulator from
an accuracy viewpoint.

What is at stake when discussing the manipulability of a robotic manip-
ulator is a measure of the invertibility of the associated Jacobian matrix,
since this is required for velocity and force-feedback control. One further
performance index is based on the condition number of the Jacobian, which
was first used by Salisbury and Craig (1982) to design mechanical fingers.
Here, we shall call such an index the conditioning of the manipulator. For
the sake of brevity, we devote the discussion below to only two indices,
namely, manipulability and conditioning. Prior to discussing these indices,
we recall a few facts from linear algebra.

Although the concepts discussed here are equally applicable to square
and rectangular matrices, we shall focus on the former. First, we give a
geometric interpretation of the mapping induced by an n x n matrix A.
Here, we do not assume any particular structure of A, which can thus
be totally arbitrary. However, by invoking the polar-decomposition theorem
(Strang, 1988), we can factor A as

A=RU=VR (4.118)

where R is orthogonal, although not necessarily proper, while U and V are
both at least positive-semidefinite. Moreover, if A is nonsingular, then U
and V are both positive-definite, and R is unique. Clearly, U can be readily
determined as the positive-semidefinite or correspondingly, positive-definite
square root of the product AT A, which is necessarily positive-semidefinite;
it is, in fact, positive-definite if A is nonsingular. We recall here that the
square root of arbitrary matrices was briefly discussed in Subsection 2.3.6.
The square root of a positive-semidefinite matrix can be most easily under-
stood if that matrix is assumed to be in diagonal form, which is possible
because such a matrix is necessarily symmetric, and every symmetric ma-
trix is diagonalizable. The matrix at hand being positive-semidefinite, its
eigenvalues are nonnegative, and hence, their square roots are all real. The
positive-semidefinite square root of interest is, then, readily obtained as the
diagonal matrix whose nontrivial entries are the nonnegative square roots
of the aforementioned eigenvalues. With U determined, R can be found
uniquely only if A is nonsingular, in which case U is positive-definite. If
this is the case, then we have

R=U"!A (4.119a)

It is a simple matter to show that V can be found, in turn, as a similarity
transformation of U, namely, as

V = RURT (4.119b)
Now, let vector x be mapped by A into z, i.e.,

z = Ax = RUx (4.120a)

TLFeBOOK



4.9 Kinetostatic Performance Indices 173

Moreover, let
y =Ux (4.120b)

and hence, we have a concatenation of mappings, namely, U maps x into
y, while R maps y into z. Thus, by virtue of the nature of matrices R
and U, the latter maps the unit n-dimensional ball into an n-axis ellipsoid
whose semiaxis lengths bear the ratios of the eigenvalues of U. Moreover,
R maps this ellipsoid into another one with identical semiaxes, except that
it is rotated about its center or reflected, depending upon whether R is
proper or improper orthogonal. In fact, the eigenvalues of U or, for that
matter, those of V, are nothing but the singular values of A. Yoshikawa
(1985) explained the foregoing relations resorting to the singular-value de-
composition theorem. We prefer to invoke the polar-decomposition theorem
instead, because of the geometric nature of the latter, as opposed to the
former, which is of an algebraic nature—it is based on a diagonalization of
either U or V, which is really not needed.

We illustrate the two mappings U and R in Fig. 4.27, where we orient
the X, Y, and Z axes along the three eigenvectors of U. Therefore, the
semiaxes of the ellipsoid are oriented as the eigenvectors of U as well. If
A is singular, then the ellipsoid degenerates into one with at least one
vanishing semiaxis. On the other hand, if matrix A is isotropic, i.e., if all
its singular values are identical, then it maps the unit ball into another
ball, either enlarged or shrunken.

For our purposes, we can regard the Jacobian of a serial manipulator as
mapping the unit ball in the space of joint rates into a rotated or reflected
ellipsoid in the space of Cartesian velocities, or twists. Now, let us assume
that the polar decomposition of J is given by R and U, the manipulability
u of the robot under study thus becoming

= |det(J)] = |det(R)||det(U)] (4.121a)

Since R is orthogonal, the absolute value of its determinant is unity.

FIGURE 4.27. Geometric representation of mapping induced by matrix A.
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Additionally, the determinant of U is nonnegative, and hence,
= det(U) (4.121D)

which shows that the manipulability is the product of the eigenvalues of
U or equivalently, of the singular values of J. Now, the product of those
singular values, in the geometric interpretation of the mapping induced by
J, is proportional to the volume of the ellipsoid at hand, and hence, p can
be interpreted as a measure of the volume of that ellipsoid. It is apparent
that the manipulability defined in eq.(4.121b) is posture-dependent. For
example, if J is singular, at least one of the semiaxes of the ellipsoid van-
ishes, and so does its volume. Manipulators at singular configurations thus
have a manipulability of zero.

Now, if we want to use the concept of manipulability to define a posture-
independent kinetostatic index, we have to define this index in a global
sense. This can be done in the same way as the magnitude of a vector is
defined, namely, as the sum of the squares of its components. In this way,
the global manipulability can be defined as the integral of a certain power
of the manipulability over the whole workspace of the manipulator, which
would amount to defining the index as a norm of the manipulability in a
space of functions. For example, we can use the maximum manipulability
attained over the whole workspace, thereby ending up with what would
be like a Chebyshev norm; alternatively, we can use the root-mean square
(rms) value of the manipulability, thereby ending up with a measure similar
to the Euclidean norm.

Furthermore, if we have a Jacobian J whose entries all have the same
units, then we can define its condition number x(J) as the ratio of the
largest singular value o; of J to the smallest one, oy, i.e.,

k(J) =2 (4.122)
Os

Note that «(J) can attain values from 1 to infinity. Clearly, the condition
number attains its minimum value of unity for matrices with identical sin-
gular values; such matrices map the unit ball into another ball, although
of a different size, and are, thus, called isotropic. By extension, isotropic
manipulators are those whose Jacobian matrix can attain isotropic values.
On the other side of the spectrum, singular matrices have a smallest singu-
lar value that vanishes, and hence, their condition number is infinity. The
condition number of J can be thought of as indicating the distortion of
the unit ball in the space of joint-variables. The larger this distortion, the
greater the condition number, the worst-conditioned Jacobians being those
that are singular. For these, one of the semiaxes of the ellipsoid vanishes
and the ellipsoid degenerates into what would amount to an elliptical disk

in the 3-dimensional space.
The condition number of a square matrix can also be understood as a
measure of the relative roundoff-error amplification of the computed results
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upon solving a linear system of equations associated with that matrix, with
respect to the relative roundoff error of the data (Dahlquist and Bjorck,
1974; Golub and van Loan, 1989). Based on the condition number of the
Jacobian, a posture-independent kinematic conditioning index of robotic
manipulators can now be defined as a global measure of the condition
number, or its reciprocal for that matter, which is better behaved because
it is bounded between 0 and unity.

Now, if the entries of J have different units, the foregoing definition of
k(J) cannot be applied, for we would face a problem of ordering singular
values of different units from largest to smallest. We resolve this inconsis-
tency by defining a characteristic length, by which we divide the Jacobian
entries that have units of length, thereby producing a new Jacobian that
is dimensionally homogeneous. We shall therefore divide our study into ()
manipulators for only positioning tasks, (i¢) manipulators for only orien-
tation tasks, and (i4i) manipulators for both positioning and orientation
tasks. The characteristic length will be introduced when studying the third
category.

In the sequel, we will need an interesting property of isotropic matri-
ces that is recalled below. First note that given the polar decomposition
of a square matrix A of eq.(4.118), its singular values are simply the—
nonnegative—eigenvalues of matrix U, or those of V, for both matrices
have identical eigenvalues. Moreover, if A is isotropic, all the foregoing
eigenvalues are identical, say equal to o, and hence, matrices U and V are
proportional to the n x n identity matrix, i.e.,

U=V=o01 (4.123)

In this case, then,
A=0R (4.124a)

which means that isotropic square matrices are proportional to rectangular
matrices. As a consequence, then,

ATA =5%1 (4.124b)

Given an arbitrary manipulator of the serial type with a Jacobian matrix
whose entries all have the same units, we can calculate its condition number
and use a global measure of this to define a posture-independent kineto-
static index. Let k,, be the minimum value attained by the condition num-
ber of the dimensionally homogeneous Jacobian over the whole workspace.
Note that 1/k,, can be regarded as a Chebyshev norm of the reciprocal of
k(J), because now 1/k,, represents the maximum value of this reciprocal
in the whole workspace. We then introduce a posture-independent perfor-
mance index, the kinematic conditioning indez, or KCI for brevity, defined
as

KCT = —& % 100 (4.125)

Km
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Notice that since the condition number is bounded from below, the KCI
is bounded from above by a value of 100%. Manipulators with a KCI of
100% are those identified above as isotropic because their Jacobians have,
at the configuration of minimum condition number, all their singular values
identical and different from zero.

While the condition number of J defined in eq.(4.122) is conceptually
simple, for it derives from the polar-decomposition theorem, it is by no
means computationally simple. First, it relies on the eigenvalues of J7J,
which only in special cases can be found in symbolic form; second, even
if eigenvalues are available symbolically, their ordering from smallest to
largest varies with the manipulator architecture and posture. An alternative
definition of x(J) that is computationally simpler relies on the general
definition of the concept, namely (Golub and van Loan, 1989),

r(I) = [T (4.1262)

where || - || stands for the matrix norm (Golub and van Loan, 1989). While
any norm can be used in the above definition, the one that is most conve-
nient for our purposes is the Frobenius norm || - ||r, defined as

130 =/ Ler@aT) (4.126b)
n

where we have assumed that J is of n x n. Although a symbolic expres-
sion for J=1 is not always possible, this expression is more frequently
available than one for the eigenvalues of JTJ. Moreover, from the polar-
decomposition theorem and Theorem 2.6.3, one can readily verify that

1
130 = /- (373) (4.126¢)

4.9.1 Positioning Manipulators

Here, again, we shall distinguish between planar and spatial manipulators.
These are studied separately.

Planar Manipulators

If the manipulator of Fig. 4.24 is limited to positioning tasks, we can dis-
pense with its third axis, the manipulator thus reducing to the one shown
in Fig. 4.25; its Jacobian reduces correspondingly to

J= [ES]_ ESz}

with s; denoting the two-dimensional versions of vectors r; of the Denavit-
Hartenberg notation, as introduced in Fig. 4.19. Now, if we want to design
this manipulator for maximum manipulability, we need first to determine its
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manipulability as given by eq.(4.121a) or correspondingly, as u = |det(J)|.
Now, note that

det(J) = det(E[s1 s2]) = det(E)det([s1 s2])

and since matrix E is orthogonal, its determinant equals unity. Thus, the
determinant of interest is now calculated using Fact 4.8.3 of Section 4.8,

namely,
det(J) = —sT Es; (4.127)

Therefore,
p = [s{ Esz| = [|su|l[|s2|| sin(s1, s2)|

where (s1, s2) stands for the angle between the two vectors inside the paren-
theses. Now let us denote the manipulator reach with R, i.e., R = a1 + ap,
and let ar = Rpx, where pg, for £ = 1,2, is a dimensionless number. As
the reader can readily verify, p turns out to be twice the area of triangle
010, P, with the notation adopted at the outset. Hence,

1= R?p1pz|sin 6, (4.128)
with p1 and py subjected to
pr+p2=1 (4.129)

The design problem at hand, then, can be formulated as an optimization
problem aimed at maximizing p as given in eq.(4.128) over p; and py,
subject to the constraint (4.129). This optimization problem can be readily
solved using, for example, Lagrange multipliers, thereby obtaining
1 m
= = —, 0 = :l:—
P1 = P2 B 2 5
the absolute value of sinf, attaining its maximum value when 6, = +90°.
The maximum manipulability thus becomes

RZ

Incidentally, the equal-length condition maximizes the workspace volume
as well.

On the other hand, if we want to minimize the condition number of J,
we should aim at rendering it isotropic, which means that the product J7'J
should be proportional to the identity matrix, and so,

sfs; sfsp] 0?2 0
sTsy; sis; 0 o2

where o is the repeated singular value of J. Hence, for J to be isotropic,
all we need is that the two vectors s; and s, have the same norm and that
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g @ 135

FIGURE 4.28. A two-axis isotropic manipulator.

they lie at right angles. The solution is a manipulator with link lengths
observing a ratio of v/2/2, i.e., with a1/a2 = v/2/2, and the two link axes
at an angle of 135°, as depicted in Fig. 4.28. Manipulators of the above
type, used as mechanical fingers, were investigated by Salisburg and Craig
(1982), who found that these manipulators can be rendered isotropic if
given the foregoing dimensions and configured as shown in Fig. 4.28.

Spatial Manipulators

Now we have a manipulator like that depicted in Fig. 4.9, its Jacobian
matrix taking on the form

J= [el Xrp €2 XTIz e3 X I‘3] (4131)

The condition for isotropy of this kind of manipulator takes on the form of
eq.(4.124b), which thus leads to

3
Z(ek X rk)(ek X I‘k)T = 0'21 (4.132)
1
This condition can be attained by various designs, one example being the
manipulator of Fig. 4.15. Another isotropic manipulator for 3-dimensional
positioning tasks is displayed in Fig. 4.29.

Note that the manipulator of Fig. 4.29 has an orthogonal architecture,
the ratio of its last link length to the length of the intermediate link being,
as in the 2-dimensional case, \/5/2 Since the first axis does not affect
singularities, neither does it affect isotropy, and hence, not only does one
location of the operation point exist that renders the manipulator isotropic,
but a whole locus, namely, the circle known as the isotropy circle, indicated
in the same figure. By the same token, the manipulator of Fig. 4.28 has
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1sotropy circle
_— -

FIGURE 4.29. An isotropic manipulator for 3-dimensional positioning tasks.

an isotropy circle centered at the center of the first joint, with a radius of

(V2/2)as.

4.9.2  Orienting Manipulators

We now have a three-revolute manipulator like that depicted in Fig. 4.17,
its Jacobian taking on the simple form

J:[el €2 63] (4133)

and hence, the isotropy condition of eq. (4.124b) leads to
3
> eref =0°1 (4.134)
1

What the foregoing condition states is that a spherical wrist for orienting
tasks is isotropic if its three unit vectors {ej }3 are so laid out that the three
products ekeg, for £k = 1,2,3, add up to a multiple of the 3 x 3 identity
matrix. This is the case if the three foregoing unit vectors are orthonor-
mal, which occurs in orthogonal wrists when the two planes defined by the
corresponding pairs of neighboring axes are at right angles. Moreover, the
value of ¢ in this case can be readily found if we take the trace of both
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sides of the above equation, which yields

3
> ek -ep =307 (4.135)
1

and hence, 0 = 1, because all three vectors on the left-hand side are of unit
magnitude. In summary, then, orthogonal wrists, which are rather frequent
among industrial manipulators, are isotropic. Here we have an example of
engineering insight leading to an optimal design, for such wrists existed
long before isotropy was introduced as a design criterion for manipula-
tors. Moreover, notice that from the results of Subsection 4.4.2, spherical
manipulators with an orthogonal architecture have a maximum workspace
volume. That is, isotropic manipulators of the spherical type have two
optimality properties: they have both a maximum workspace volume and
a maximum KCI. Apparently, the manipulability of orthogonal spherical
wrists is also optimal, as the reader is invited to verify, when the wrist is
postured so that its three axes are mutually orthogonal. In this posture,
the manipulability of the wrist is unity.

4.9.83  Positioning and Orienting Manipulators

We saw already in Subsubsection 4.9.1 that the optimization of the two in-
dices studied here—the condition number of the Jacobian matrix and the
manipulability—leads to different manipulators. In fact, the two indices
entail even deeper differences, as we shall see presently. First and foremost,
as we shall prove for both planar and spatial manipulators, the manipula-
bility u is independent of the operation point P of the end-effector, while
the condition number is not. One more fundamental difference is that while
calculating the manipulability of manipulators meant for both positioning
and orienting tasks poses no problem, the condition number cannot be
calculated, at least directly, for this kind of manipulator. Indeed, in order
to determine the condition number of the Jacobian matrix, we must or-
der its singular values from largest to smallest. However, in the presence
of positioning and orienting tasks, three of these singular values, namely,
those associated with orientation, are dimensionless, while those associated
with positioning have units of length, thereby making impossible such an
ordering. We resolve this dimensional inhomogeneity by introducing a nor-
malizing characteristic length. Upon dividing the three positioning rows,
i.e., the bottom rows, of the Jacobian by this length, a nondimensional Ja-
cobian is obtained whose singular values are nondimensional as well. The
characteristic length is then defined as the normalizing length that renders
the condition number of the Jacobian matrix a minimum. Below we shall
determine the characteristic length for isotropic manipulators; determin-
ing the same for nonisotropic manipulators requires solving a minimization
problem that calls for numerical techniques, as illustrated with an example.
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Planar Manipulators

In the ensuing development, we will need the planar counterpart of the
twist-transfer formula of Subsection 3.4.2. First, we denote the 3-dimen-
sional twist of a rigid body undergoing planar motion, defined at a point
A, by t4; when defined at point B, the corresponding twist is denoted by
tB, i.e.,

ty = [Z] , tp= {ﬂ (4.136)

The relation between the two twists, or the planar twist-transfer formula,
is given by a linear transformation U as

tp = Uty (4.137a)

where U is now defined as

! OT] (4.137h)

U= [E(b—a) 1,

with a and b representing the position vectors of points A and B, and 1,
stands for the 2 x 2 identity matrix. Moreover, U is, not surprisingly, a
member of the 3 X 3 unimodular group, i.e.,

det(U) =1

Because of the planar twist-transfer formula, the Jacobian defined at an
operation point B is related to that defined at an operation point A of the
same end-effector by the same linear transformation U, i.e., if we denote
the two Jacobians by J4 and Jp, then

Jp=UJ, (4.138)

and if we denote by p4 and pp the manipulability calculated at points A
and B, respectively, then

s = |det(T )| = |det(U)||det(J4)| = |det(ITa)| = pia (4.139)

thereby proving that the manipulability is insensitive to a change of op-
eration point, or to a change of end-effector, for that matter. Note that a
similar analysis for the condition number cannot be completed at this stage
because as pointed out earlier, the condition number of these Jacobian ma-
trices cannot even be calculated directly.

In order to resolve the foregoing dimensional inhomogeneity, we introduce
the characteristic length L, which will be defined as that rendering the
Jacobian dimensionally homogeneous and optimally conditioned, i.e., with
a minimum condition number. We thus redefine the Jacobian matrix of
interest as

1 1 1

J=11 1 1
T Er1 ZEI‘Z ZEI‘:;

(4.140)
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Now, if we want to size the manipulator at hand by properly choosing
its geometric parameters so as to render it isotropic, we must observe the
isotropy condition, eq.(4.124b), which readily leads to

2
3 5 % 2:3:; I{ET :| _ “ O(.)2 8 (4141)
%E 21Tk %E[Zl(rkrf)]ET 0 o2
and hence,

0?2 =3 (4.142a)

3
d =0 (4.142b)

1

3

%E <Z(rkr5)> E” = 021, (4.142¢)

1

What eq.(4.142a) states is simply that the triple singular value of the
isotropic J is v/3; eq.(4.142b) states, in turn, that the operation point is
the centroid of the centers of all manipulator joints if its Jacobian matrix
is isotropic. Now, in order to gain more insight into eq.(4.142c), we note
that since E is orthogonal and ¢? = 3, this equation can be rewritten in a
simpler form, namely,

3
= (Zukrz)) = 312 (4.143)

1

Further, if we recall the definition of the moment of inertia of a rigid body,
we can immediately realize that the moment of inertia Ip of a set of par-
ticles of unit mass located at the centers of the manipulator joints, with
respect to the operation point P, is given by

3
Ip =Y (|lrel*12 — rerf) (4.144)
1

from which it is apparent that the moment of inertia of the set comprises
two parts, the first being isotropic—it is a multiple of the 2 x 2 identity
matrix—the second not necessarily so. However, the second part has the
form of the left-hand side of eq.(4.143). Hence, eq.(4.143) states that if the
manipulator under study is isotropic, then its joint centers are located, at
the isotropic configuration, at the corners of a triangle that has circular
inertial symmetry. What we mean by this is that the 2 x 2 moment of
inertia of the set of particles, with entries I, Iy, and I, is similar to
that of a circle, i.e., with I, = I, and I, = 0. An obvious candidate
for such a triangle is, obviously, an equilateral triangle, the operation point
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thus coinciding with the center of the triangle. Since the corners of an
equilateral triangle are at equal distances d from the center, and these
distances are nothing but ||rk||, then the condition below is readily derived
for isotropy:

|r]|? = d? (4.145)
In order to compute the characteristic length of the manipulator under
study, let us take the trace of both sides of eq.(4.143), thereby obtaining

1 3
7z 2 ImelP =6
1

and hence, upon substituting eq.(4.145) into the foregoing relation, an ex-
pression for the characteristic length, as pertaining to planar isotropic ma-
nipulators, is readily derived, namely,

L= gd (4.146)

It is now a simple matter to show that the three link lengths of this isotropic
manipulator are a1 = ap = v3d and a3 = d. Such a manipulator is sketched
in an isotropic configuration in Fig. 4.30.

Spatial Manipulators

The entries of the Jacobian of a six-axis manipulator meant for both po-
sitioning and orienting tasks are dimensionally inhomogeneous as well. In-
deed, as discussed in Section 4.5, the ith column of J is composed of the

FIGURE 4.30. The planar 3-R isotropic manipulator.
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Pliicker coordinates of the ith axis of the manipulator, namely,

J=| “ ©2 s 4 ©s ©e (4.147)
€1 XT1 €2 XTIp2 €3 XTr3 €4 XTrg €5 XTI €eg XTg

Now it is apparent that the first three rows of J are dimensionless,
whereas the remaining three, corresponding to the moments of the axes
with respect to the operation point of the end-effector, have units of length.
This dimensional inhomogeneity is resolved in the same way as in the case
of planar manipulators for both positioning and orienting tasks, i.e., by
means of a characteristic length. This length is defined as the one that
minimizes the condition number of the dimensionless Jacobian thus ob-
tained. We then redefine the Jacobian as

J= 1el 1e2 1e3 1e4 1e5 1e5
Zel X T feg X I feg X r3 Ze4 X Ta Ze5 X I's fes X Tg
(4.148)
and hence, the isotropy condition of eq.(4.124b) leads to
6
> eref =01 (4.149a)
1
6
Zek(ek X I‘k)T =0 (4.149b)
1
15
T2 Z(ek x 1) (er x 1)t = 0?1 (4.149c)

1

where 1 is the 3 x 3 identity matrix, and O is the 3 x 3 zero matrix. Now,
if we take the trace of both sides of eq.(4.149a), we obtain

02=2 or o=12
Furthermore, we take the trace of both sides of eq.(4.149¢), which yields

6

1

ﬁ Z ||ek X I‘;.CH2 = 302
1

But |lex x r4]|? is nothing but the square of the distance dj of the kth
revolute axis to the operation point, the foregoing equation thus yielding

i.e., the characteristic length of a spatial siz-revolute isotropic manipulator
is the root-mean square of the distances of the revolute azes to the opera-
tion point when the robot finds itself at the posture of minimum condition
number.
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Furthermore, eq.(4.149a) states that if { ey }$ is regarded as the set of
position vectors of points { Py }$ on the surface of the unit sphere, then
the moment-of-inertia matrix of the set of equal masses located at these
points has spherical symmetry. What the latter means is that any direction
of the 3-dimensional space is a principal axis of inertia of the foregoing
set. Likewise, eq.(4.149c) states that if { e, x rj, }% is regarded as the set of
position vectors of points { @k, } in the 3-dimensional Euclidean space, then
the moment-of-inertia matrix of the set of equal masses located at these
points has spherical symmetry.

Now, in order to gain insight into eq.(4.149b), let us take the axial vector
of both sides of that equation, thus obtaining

6
D er x (erx1i) =0 (4.150)
1

with 0 denoting the 3-dimensional zero vector. Furthermore, let us denote
by Eg the cross-product matrix of e, the foregoing equation thus taking

on the form .
Z Eirk =0
1

However,
E2 = -1+ epel

for every k, and hence, eq.(4.150) leads to

6

Z(l —epel)r, =0

1

Moreover, (1 — ekeg)rk is nothing but the normal component of r; with
respect to e, as defined in Section 2.2. Let us denote this component by
ri, thereby obtaining an alternative expression for the foregoing equation,
namely,

6
dorp=0 (4.151)
1

The geometric interpretation of the foregoing equation is readily derived:
To this end, let O}, be the foot of the perpendicular to the kth revolute
axis from the operation point P; then, ry is the vector directed from O, to
P. Therefore, the operation point of an isotropic manipulator, configured
at the isotropic posture is the centroid of the set { O} }$ of perpendicular
feet from the operation point.

A six-axis manipulator designed with an isotropic architecture, DIE-
STRO, is displayed in Fig. 4.31. The Denavit-Hartenberg parameters of this
manipulator are given in Table 4.1. DIESTRO is characterized by identical
link lengths a and offsets identical with this common link length, besides
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TABLE 4.1. DH Parameters of DIESTRO

1 | ai (mm) | b; (mm) a; 0;
1 50 50 90° 01
2 50 50 —90° | 62
3 50 50 90° 03
4 50 50 —90° | 64
5 50 50 90° Os
6 50 50 —90° | Oe

FIGURE 4.31. DIESTRO, a six-axis isotropic manipulator.

twist angles of 90° between all pairs of neighboring axes. Not surprisingly,
the characteristic length of this manipulator is a.

Example 4.9.1 Find the KCI and the characteristic length of the Fanuc
Arc Mate robot whose DH parameters are given in Table 4.2.

Solution: Apparently, what we need is the minimum value kmin that the
condition number of the manipulator Jacobian can attain, in order to cal-
culate its KCI as indicated in eq.(4.125). Now, the Fanuc Arc Mate robot
is a six-revolute manipulator for positioning and orienting tasks. Hence,
its Jacobian matrix has to be first recast in nondimensional form, as in
eq.(4.148). Next, we find L, along with the joint variables that determine
the posture of minimum condition number via an optimization procedure.
Prior to the formulation of the underlying optimization problem, however,
we must realize that the first joint, accounting for motions of the manipu-
lator as a single rigid body, does not affect its Jacobian condition number.
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We thus define the design vector x of the optimization problem at hand as
X = [92 93 94 95 95 L]
and set up the optimization problem as

min k(J)
X

The condition number having been defined as the ratio of the largest to the
smallest singular values of the Jacobian matrix at hand, the gradient of the
above objective function, dk/9x, is apparently elusive to calculate. Thus,
we use a direct-search method, i.e., a method not requiring any partial
derivatives, but rather, only objective-function evaluations, to solve the
above optimization problem. There are various methods of this kind at
our disposal; the one we chose is the simplex method, as implemented in
Matlab. The results reported are displayed below:

Xopt = [26.82° —56.06° 15.79° —73.59° —17.83° 0.3573]

where the last entry, the characteristic length of the robot, is in meters,
i.e.,

L =357.3 mm

Furthermore, the minimum condition number attained at the foregoing
posture, with the characteristic length found above, is

Km = 2.589
Therefore, the KCI of the Fanuc Arc Mate is
KCI = 38.625%

and so this robot is apparently far from being kinematically isotropic. To
be sure, the KCI of this manipulator can still be improved dramatically by
noting that the condition number is highly dependent on the location of the
operation point of the end-effector. As reported by Tandirci et al. (1992),
an optimum selection of the operation point for the robot at hand yields a

TABLE 4.2. DH Parameters of the Fanuc Arc Mate Manipulator

i | a; (mm) | b (mm) | «; 0;
1 200 810 90° | 6,1
2 600 0 0° 02
3 130 30 90° | 03
4 0 550 90° | 64
5 0 100 90° | Os
6 0 100 0° Oe
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minimum condition number of 1.591, which thus leads to a KCI of 62.85%.
The point of the EE that yields the foregoing minimum is thus termed
the characteristic point of the manipulator in the foregoing reference. Its
location in the EE is given by the DH parameters ag and bg, namely,

ag = 223.6 mm, bg =274.2 mm
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Trajectory Planning: Pick-and-Place
Operations

5.1 Introduction

The motions undergone by robotic mechanical systems should be, as a rule,
as smooth as possible; i.e., abrupt changes in position, velocity, and acceler-
ation should be avoided. Indeed, abrupt motions require unlimited amounts
of power to be implemented, which the motors cannot supply because of
their physical limitations. On the other hand, abrupt motion changes arise
when the robot collides with an object, a situation that should also be
avoided. While smooth motions can be planned with simple techniques, as
described below, these are no guarantees that no abrupt motion changes will
occur. In fact, if the work environment is cluttered with objects, whether
stationary or mobile, collisions may occur. Under ideal conditions, a flexible
manufacturing cell is a work environment in which all objects, machines
and workpieces alike, move with preprogrammed motions that by their
nature, can be predicted at any instant. Actual situations, however, are
far from being ideal, and system failures are unavoidable. Unpredictable
situations should thus be accounted for when designing a robotic system,
which can be done by supplying the system with sensors for the automatic
detection of unexpected events or by providing for human monitoring. Nev-
ertheless, robotic systems find applications not only in the well-structured
environments of flexible manufacturing cells, but also in unstructured en-
vironments such as exploration of unknown terrains and systems in which
humans are present. The planning of robot motions in the latter case is
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obviously much more challenging than in the former. Robot motion plan-
ning in unstructured environments calls for techniques beyond the scope
of those studied in this book, involving such areas as pattern recognition
and artificial intelligence. For this reason, we have devoted this book to the
planning of robot motions in structured environments only.

Two typical tasks call for trajectory planning techniques, namely,

e pick-and-place operations (PPO), and
e continuous paths (CP).

We will study PPO in this chapter, with Chapter 9 devoted to CP. More-
over, we will focus on simple robotic manipulators of the serial type, al-
though these techniques can be directly applied to other, more advanced,
robotic mechanical systems.

5.2  Background on PPO

In PPO, a robotic manipulator is meant to take a workpiece from a given
initial pose, specified by the position of one of its points and its orienta-
tion with respect to a certain coordinate frame, to a final pose, specified
likewise. However, how the object moves from its initial to its final pose is
immaterial, as long as the motion is smooth and no collisions occur. Pick-
and-place operations are executed in elementary manufacturing operations
such as loading and unloading of belt conveyors, tool changes in machine
tools, and simple assembly operations such as putting roller bearings on a
shaft. The common denominator of these tasks is material handling, which
usually requires the presence of conventional machines whose motion is very
simple and is usually characterized by a uniform velocity. In some instances,
such as in packing operations, a set of workpieces, e.g., in a magazine, is
to be relocated in a prescribed pattern in a container, which constitutes
an operation known as palletizing. Although palletizing is a more elaborate
operation than simple pick-and-place, it can be readily decomposed into a
sequence of the latter operations.

It should be noted that although the initial and the final poses in a PPO
are prescribed in the Cartesian space, robot motions are implemented in
the joint space. Hence, the planning of PPO will be conducted in the latter
space, which brings about the need of mapping the motion thus planned
into the Cartesian space, in order to ensure that the robot will not collide
with other objects in its surroundings. The latter task is far from being
that simple, since it involves the rendering of the motion of all the moving
links of the robot, each of which has a particular geometry. An approach to
path planning first proposed by Lozano-Pérez (1981) consists of mapping
the obstacles in the joint space, thus producing obstacles in the joint space
in the form of regions that the joint-space trajectory should avoid. The
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FIGURE 5.1. Still image of the animation of a palletizing operation.

idea can be readily implemented for simple planar motions and simple ge-
ometries of the obstacles. However, for general 3-D motions and arbitrary
geometries, the computational requirements make the procedure imprac-
tical. A more pragmatic approach would consist of two steps, namely, (4)
planning a preliminary trajectory in the joint space, disregarding the obsta-
cles, and (#4) visually verifying if collisions occur with the aid of a graphics
system rendering the animation of the robot motion in the presence of
obstacles. The availability of powerful graphics hardware enables the fast
animation of robot motions within a highly realistic environment. Shown
in Fig. 5.1 is a still image of the animation produced by RVS, the McGill
University Robot-Visualization System, of the motion of a robot performing
a palletizing operation. Commercial software for robot-motion rendering is
available.

By inspection of the kinematic closure equations of robotic manipulators—
see egs.(4.5a & b)—it is apparent that in the absence of singularities,
the mapping of joint to Cartesian variables, and vice versa, is continu-
ous. Hence, a smooth trajectory planned in the joint space is guaranteed
to be smooth in the Cartesian space, and the other way around, as long as
the trajectory does not encounter a singularity.

In order to proceed to synthesize the joint trajectory, we must then start
by mapping the initial and final poses of the workpiece, which is assumed
to be rigidly attached to the EE of the manipulator, into manipulator
configurations described in the joint space. This is readily done with the
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methods described in Chapter 4. Let the vector of joint variables at the
initial and final robot configurations be denoted by 81 and 0, respectively.
Moreover, the initial pose in the Cartesian space is defined by the position
vector py of the operation point P of the EE and a rotation matrix Q.
Likewise, the final pose in the Cartesian space is defined by the position
vector pr of P and the rotation matrix Qp. Moreover, let p; and P;
denote the velocity and acceleration of P, while w; and w; denote the
angular velocity and angular acceleration of the workpiece, all of these at
the initial pose. These variables at the final pose are denoted likewise, with
the subscript I changed to F'. Furthermore, we assume that time is counted
from the initial pose, i.e., at this pose, t = 0. If the operation takes place
in time 7', then at the final pose, t = T. We have thus the set of conditions
that define a smooth motion between the initial and the final poses, namely,

p(0) = ps p(0)=0 p0)=0 (5.1a)
Q(0) = Qs w(0)=0 w(0)=0 (5.1b)
p(T) =pr p(T) =0 p(T)=0 (51¢c)
Q(T)=Qr w(T)=0 w(T)=0 (5.1d)

In the absence of singularities, then, the conditions of zero velocity and
acceleration imply zero joint velocity and acceleration, and hence,

0(0) = 6; 6(0)=0 6(0)=0 .
0(T)=6p 6(T)=0 6(T)=0 (5.2b)

5.3 Polynomial Interpolation

A simple inspection of conditions (5.2a) and (5.2b) reveals that a linear
interpolation between initial and final configurations will not work here, and
neither will a quadratic interpolation, for its slope vanishes only at a single
point. Hence, a higher-order interpolation is needed. On the other hand,
these conditions imply, in turn, six conditions for every joint trajectory,
which means that if a polynomial is to be employed to represent the motion
of every joint, then this polynomial should be at least of the fifth degree.
We thus start by studying trajectory planning with the aid of a 5th-degree
polynomial.

5.83.1 A 3-4-5 Interpolating Polynomial

In order to represent each joint motion, we use here a fifth-order polynomial
s(7), namely,

s(r) =ar® +br* + e +dr® + et + f (5.3)
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such that
, 0<r<1 (5.4)
and

T=— (5.5)

We will thus aim at a normal polynomial that, upon scaling both its argu-
ment and the polynomial itself, will allow us to represent each of the joint
variables 6; throughout its range of motion, so that

0;(t) =01 + (05 — 6))s(r) (5.6a)

where 0]1- and Gf are the given initial and final values of the jth joint
variable. In vector form, eq.(5.6a) becomes

H(t) :01+(0F —9[)8(7') (56b)
and hence,
0(t) = O — 1) (1)7(t) = (6 — 9,)%3/(7) (5.6¢)
Likewise,
o(t) = %(aF —6;)s" (1) (5.6d)
and L
0(t) = 75(0r — 6,)s" (1) (5.6¢)

What we now need are the values of the coefficients of s(7) that appear in
eq.(5.3). These are readily found by recalling conditions (5.2a & b), upon
consideration of eqs.(5.6b—d). We thus obtain the end conditions for s(7),
namely,

s(0)=0, §0)=0, §0)=0, s(1)=1, §(1)=0, §(1)=0

The derivatives of s(7) appearing above are readily derived from eq.(5.3),
i.e.,

' (1) = 5ar®* + 4br3 4 3¢7? + 2d7 +- € (5.8)
and
" (1) = 20ar® +12b72 + 6er + 2d (5.9)
Thus, the first three conditions of eq.(5.7) lead to

f=e=d=0 (5.10)
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while the last three conditions yield three linear equations in a, b, and c,
namely,

a+b+c=1 (5.11a)
5a+4b+ 3¢ =0 (5.11b)
20a + 12b+ 6c = 0 (5.11c)

Upon solving the three foregoing equations for the three aforementioned
unknowns, we obtain

a =6, b= —15, c=10 (5.12)
and hence, the normal polynomial sought is
s() = 67° — 157% 4 1073 (5.13)

which is called a 3-4-5 polynomial.

This polynomial and its first three derivatives, all normalized to fall
within the (—1, 1) range, are shown in Fig. 5.2. Note that the smoothness
conditions imposed at the outset are respected and that the curve thus
obtained is a monotonically growing function of 7, a rather convenient
property for the problem at hand.

It is thus possible to determine the evolution of each joint variable if we
know both its end values and the time T required to complete the motion.
If no extra conditions are imposed, we then have the freedom to perform
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FIGURE 5.2. 3-4-5 interpolation polynomial and its derivatives.
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the desired motion in as short a time T as possible. Note, however, that
this time cannot be given an arbitrarily small value, for we must respect
the motor specifications on maximum velocity and maximum torque, the
latter being the subject of Chapter 6. In order to ease the discussion, we
limit ourselves to specifications of maximum joint velocity and acceleration
rather than maximum torque. From the form of function 6;(¢) of eq.(5.6a),
it is apparent that this function takes on extreme values at points corre-
sponding to those at which the normal polynomial attains its extrema. In
order to find the values of 7 at which the first and second derivatives of s(7)
attain maximum values, we need to zero its second and third derivatives.
These derivatives are displayed below:

s'(1) = 307% — 6073 + 3072 (5.14a)
" (1) = 1207 — 18072 + 607 (5.14b)
s (1) = 36072 — 3607 + 60 (5.14c)

from which it is apparent that the second derivative vanishes at the two
ends of the interval 0 < 7 < 1. Additionally, the same derivative vanishes
at the midpoint of the same interval, i.e., at 7 = 1/2. Hence, the maximum
value of §'(7T), Smax, is readily found as

1 15
Smax = ' <5> =3 (5.15)
and hence, the maximum value of the jth joint rate takes on the value

15(05 — 607)

(9j)max = ST

(5.16)
which becomes negative, and hence, a local minimum, if the difference in
the numerator is negative. The values of 7 at which the second derivative
attains its extreme values are likewise determined. The third derivative
vanishes at two intermediate points 71 and 7» of the interval 0 < 7 < 1,
namely, at

1 V3
=—-+ — 5.17
n2=5* % (5.17)
and hence, the maximum value of s”(7) is readily found as
P 1_ @ = M (5.18)
max 2 6 3
while the minimum is given as
1 V3 10v3
min = 5" (5 + ?> =TT (5.19)
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196 5. Trajectory Planning: Pick-and-Place Operations

Therefore, the maximum value of the joint acceleration is as shown below:

10v3 (07 — 61)

(0)max = 3 T2 (5.20)
Likewise,
smax = 8" (0) = s"(1) = 60
and hence,
r_ gl
(6;)max = 60— T3 : (5.21)

Thus, egs.(5.16) and (5.20) allow us to determine T for each joint so that
the joint rates and accelerations lie within the allowed limits. Obviously,
since the motors of different joints are different, the minimum values of T
allowed by the joints will be, in general, different. Of those various values
of T', we will, of course, choose the largest one.

5.8.2 A 4-5-6-7 Interpolating Polynomial

Now, from eq.(5.14c¢), it is apparent that the third derivative of the normal
polynomial does not vanish at the end points of the interval of interest. This
implies that the third time derivative of 6;(¢), also known as the joint jerk,
does not vanish at those ends either. It is desirable to have this derivative
as smooth as the first two, but this requires us to increase the order of the
normal polynomial. In order to attain the desired smoothness, we will then
impose two more conditions, namely,

$"0)=0, s"(1)=0 (5.22)

We now have eight conditions on the normal polynomial, which means
that the polynomial degree should be increased to seven, namely,

s(r)=ar’ + b8 +er® +dr* +er® + frP+gr+h (5.23a)
whose derivatives are readily determined as shown below:

s'(1) = Tar® + 6b7° + 5cr? + 4d7> + 3er® + 2fT+g  (5.23b)
(1) = 42a7° 4 30b7* + 20c7® + 12d7% + 6er +2f  (5.23¢)
s (1) = 210a7* + 120072 + 60c7? + 24dT + 6e (5.23d)

The first three conditions of eq.(5.7) and the first condition of eq.(5.22)
readily lead to

e=f=g=h=0 (5.24)
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5.3 Polynomial Interpolation 197

Furthermore, the last three conditions of eq.(5.7) and the second condition
of eq.(5.22) lead to four linear equations in four unknowns, namely,

a+b+c+d=1 (5.25a)
Ta+6b+5c+4d=0 (5.25Db)
420 + 300+ 20c+12d =0 (5.25¢)
210a 4 1200 + 60c +24d = 0 (5.25d)

and hence, we obtain the solution
a = —20, b =170, c= —84, d=35 (5.26)

the desired polynomial thus being
5(1) = —207" + 707° — 847° 4 3574 (5.27)

which is a 4-5-6-7 polynomial. This polynomial and its first three deriva-
tives, normalized to fall within the range (—1,1), are plotted in Fig. 5.3.
Note that the 4-5-6-7 polynomial is similar to that of Fig. 5.2, except that
the third derivative of the former vanishes at the extremes of the interval of
interest. As we will presently show, this smoothness has been obtained at
the expense of higher maximum values of the first and second derivatives.

We now determine the maximum values of the velocity and acceleration
produced with this motion. To this end, we display below the first three
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FIGURE 5.3. 4-5-6-7 interpolating polynomial and its derivatives.
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derivatives, namely,

§'(1) = —1407° + 4207° — 4207* + 14073 (5.28a)
s"(1) = —8407° + 21007* — 16807> + 42072 (5.28Db)
§"(1) = —42007* + 84007° — 504072 + 8407 (5.28¢)

The first derivative attains its extreme values at points where the second
derivative vanishes. Upon zeroing the latter, we obtain

72(=2r3 4 57% —47 +1) =0 (5.29)

which clearly contains a double root at 7 = 0. Moreover, the cubic polyno-
mial in the parentheses above admits one real root, namely, 7 = 1/2, which
yields the maximum value of s'(7), i.e.,

1 35

whence the maximum value of the jth joint rate is found as

35(0F — 01)

(éj)max = 16T

(5.31)

Likewise, the points of maximum joint acceleration are found upon zeroing
the third derivative of s(7), namely,

§"() = —42007* + 84007° — 504072 + 8407 = 0 (5.32)
or
T(r—1)(572 =57 +1) =0 (5.33)

which yields, in addition to the two end points, two intermediate extreme
points, namely,

1 V5
= — :I: —_ . 4
71,2 D) 10 (5 3 )

and hence, the maximum value of acceleration is found to be

84v/5
Sthax = 8"(71) = 2;5[ (5.35)

the minimum occurring at 7 = 72, with s/ = —si .. The maximum value

min
of the jth joint acceleration is thus

84v/5 (9;“ - 9;)

(6;)max = (5.36)

25 T2

TLFeBOOK



5.4 Cycloidal Motion 199

which becomes a minimum if the difference in the numerator is negative.
Likewise, the zeroing of the fourth derivative leads to

—207% +3072 - 127 +1=0

whose three roots are

1-/3/5 1 1++/3/5
= - — 7'1 = —
2

T1 9 5 T2 = 27
and hence,
14++/3/5 105
s <7v2 / >:42, St = 57(05) = - 12
ie.,
105
max{]s”' ()|} = —§—££5X2 (5.37)

As in the case of the fifth-order polynomial, it is possible to use the
foregoing relations to determine the minimum time 7T during which it is
possible to perform a given PPO while observing the physical limitations
of the motors.

5.4 Cycloidal Motion

An alternative motion that produces zero velocity and acceleration at the
ends of a finite interval is the cycloidal motion. In normal form, this motion
is given by

1
s(t) =7 — —sin2n7 (5.38a)
2
its derivatives being readily derived as
s'(1) =1 — cos2nT (5.38b)
s"(t) = 2msin 27T (5.38¢)
" (1) = 4m? cos 2mT (5.38d)

The cycloidal motion and its first three time-derivatives, normalized to
fall within the range (—1,1), are shown in Fig. 5.4. Note that while this
motion, indeed, has zero velocity and acceleration at the ends of the interval
0 < 7 < 1, its jerk is nonzero at these points and hence, exhibits jump
discontinuities at the ends of that interval.

When implementing the cycloidal motion in PPO, we have, for the jth
joint,

0;(t) =01 + (05 — 6))s(r) (5.39a)
j 9? — 9]1_ ’

0;(t) = 78 (1) (5.39b)
. A

0,(t) = “z—=5"(7) (5.39¢)
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FIGURE 5.4. The normal cycloidal motion and its time derivatives.

Moreover, as the reader can readily verify, under the assumption that Qf >
0[

i, this motion attains its maximum velocity at the center of the interval,
i.e., at 7 = 0.5, the maximum being
Smax = 5 (0.5) = 2
and hence,
(6;)max = %(Hf ) (5.40a)

Likewise, the jth joint acceleration attains its maximum and minimum
values at 7 = 0.25 and 7 = 0.75, respectively, i.e.,

s%ax = 8"(0.25) = 8"(0.75) =27 (5.40b)
and hence,
. 21 . 2
(0j)max = ﬁ(ﬁf - 9;), (0)min = *ﬁ(ﬁf - Gf) (5.40¢)
Moreover, s”/(7) attains its extrema at the ends of the interval, i.e.,
si . =5"(0)=s"(1) = 4x (5.41)
and hence,
A2 P s
(65)max = W(ej —05) (5.42)

Thus, if motion is constrained by the maximum speed delivered by the
motors, the minimum time 7} for the jth joint to produce the given PPO
can be readily determined from eq.(5.40a) as

_ 2(9;“ —0))

y 5.43
(67)max (543
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and hence, the minimum time in which the operation can take place can
be readily found as

or — ol
Thin = 2max{(3.7]} (5.44)

J ej)max

If joint-acceleration constraints are imposed, then a similar procedure can
be followed to find the minimum time in which the operation can be real-
ized. As a matter of fact, rather than maximum joint accelerations, maxi-
mum joint torques are to be respected. How to determine these torques is
studied in detail in Chapter 6.

5.5 Trajectories with Via Poses

The polynomial trajectories discussed above do not allow the specifica-
tion of intermediate Cartesian poses of the EE. All they guarantee is that
the Cartesian trajectories prescribed at the initial and final instants are
met. One way of verifying the feasibility of the Cartesian trajectories thus
synthesized was outlined above and consists of using a graphics system,
preferably with animation capabilities, to produce an animated rendering
of the robot motion, thereby allowing for verification of collisions. If the
latter occur, we can either try alternative branches of the inverse kine-
matics solutions computed at the end poses or modify the trajectory so
as to eliminate collisions. We discuss below the second approach. This is
done with what are called via poses, i.e., poses of the EE in the Cartesian
space that lie between the initial and the final poses, and are determined
so as to avoid collisions. For example, if upon approaching the final pose
of the PPO, the manipulator is detected to interfere with the surface on
which the workpiece is to be placed, a via pose is selected close to the final
point so that at this pose, the workpiece is far enough from the surface.
From inverse kinematics, values of the joint variables can be determined
that correspond to the aforementioned via poses. These values can now
be regarded as points on the joint-space trajectory and are hence called
via points. Obviously, upon plotting each joint variable vs. time, via points
appear as points on those plots as well.

The introduction of via points in the joint-space trajectories amounts to
an increase in the number of conditions to be satisfied by the desired tra-
jectory. For example, in the case of the polynomial trajectory synthesized
for continuity up to second derivatives, we can introduce two via points by
requiring that

s(1) = s1, s(12) = s2 (5.45)

where 71, 72, s1, and s2 depend on the via poses prescribed and the instants
at which these poses are desired to occur. Hence, s; and s, differ from joint
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202 5. Trajectory Planning: Pick-and-Place Operations

to joint, although the occurrence instants 7 and 7> are the same for all
joints. Thus, we will have to determine one normal polynomial for each
joint. Furthermore, the ordinate values s; and s, of the normal polynomial
at via points are determined from the corresponding values of the joint
variable determined, in turn, from given via poses through inverse kine-
matics. Once the via values of the joint variables are known, the ordinate
values of the via points of the normal polynomial are found from eq.(5.6a).
Since we have now eight conditions to satisfy, namely, the six conditions
(5.7) plus the two conditions (5.45), we need a seventh-order polynomial,
ie.,

s(r) =ar’ +br® +er® +drt + et + fri 4+ gr+h (5.46)

Again, the first three conditions of eq.(5.7) lead to the vanishing of the
last three coefficients, i.e.,

f=g=h=0 (5.47)

Further, the five remaining conditions are now introduced, which leads to
a system of five linear equations in five unknowns, namely,

a+b+ct+d+e=1 (5.48a)
Ta+6b+5c+4d+3e =10 (5.48Db)

424 + 30b + 20¢ + 12d + 6 = 0 (5.48¢)
a4 b+ ic+ Tid + e = 51 (5.48d)
404 8b + T5c + Thd + e = 52 (5.48¢)

where 71, T2, s1, and s» are all data. For example, if the via poses occur at
10% and 90% of T, we have

71 = 1/10, ™ =9/10 (5.48f)
the polynomial coefficients being found as
a = 100(12286 + 1250051 — 12500s2) /729 (5.49a)
b = 100(—38001 — 48750s1 + 38750s2) /729 (5.49b)
¢ = (1344358 + 237500051 — 1375000s2) /243 (5.49¢)
d = (—1582435 — 46250001 + 1625000s2) /729 (5.49d)
e =10(12159 + 11250051 — 12500s2) /729 (5.49¢)

The shape of each joint trajectory thus depends on the values of s1 and sz
found from eq.(5.6a) for that trajectory.

5.6 Synthesis of PPO Using Cubic Splines

When the number of via poses increases, the foregoing approach may be-
come impractical, or even unreliable. Indeed, forcing a trajectory to pass
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5.6 Synthesis of PPO Using Cubic Splines 203

through a number of via points and meet endpoint conditions is equivalent
to interpolation. We have seen that an increase in the number of condi-
tions to be met by the normal polynomial amounts to an increase in the
degree of this polynomial. Now, finding the coefficients of the interpolating
polynomial requires solving a system of linear equations. As we saw in Sec-
tion 4.9, the computed solution, when solving a system of linear equations,
is corrupted with a relative roundoff error that is roughly equal to the rel-
ative roundoff error of the data multiplied by an amplification factor that
is known as the condition number of the system matrix. As we increase
the order of the interpolating polynomial, the associated condition num-
ber rapidly increases, a fact that numerical analysts discovered some time
ago (Kahaner et al., 1989). In order to cope with this problem, orthogo-
nal polynomials, such as those bearing the names of Chebyshev, Laguerre,
Legendre, and so on, have been proposed. While orthogonal polynomials
alleviate the problem of a large condition number, they do this only up to
a certain extent. As an alternative to higher-order polynomials, spline func-
tions have been found to offer more robust interpolation schemes (Dierckx,
1993). Spline functions, or splines, for brevity, are piecewise polynomials
with continuity properties imposed at the supporting points. The latter are
those points at which two neighboring polynomials join.

The attractive feature of splines is that they are defined as a set of
rather lower-degree polynomials joined at a number of supporting points.
Moreover, the matrices that arise from an interpolation problem associated
with a spline function are such that their condition number is only slightly
dependent on the number of supporting points, and hence, splines offer
the possibility of interpolating over a virtually unlimited number of points
without producing serious numerical conditioning problems.

Below we expand on periodic cubic splines, for these will be shown to be
specially suited for path planning in robotics.

A cubic spline function s(x) connecting N points Py (zk, yk), for k =
1,2,...,N, is a function defined piecewise by N — 1 cubic polynomials
joined at the points Py, such that s(zp) = yg. Furthermore, the spline
function thus defined is twice differentiable everywhere in z1 < =z < zp.
Hence, cubic splines are said to be C? functions, i.e., to have continuous
derivatives up to the second order.

Cubic splines are optimal in the sense that they minimize a functional,

i.e., an integral defined as
T e
F = / s"(x) dx
o
subject to the constraints
s(zk) = Yk, k=1,...,N

where xj and yi are given. The aforementioned optimality property has
a simple kinematic interpretation: Among all functions defining a motion
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so that the plot of this function passes through a set of points Py (z1, $1),
Py(x2, $2), ..., Pn(xn, sy) in the z-s plane, the cubic spline is the one
containing the minimum acceleration magnitude. In fact, F', as given above,
is the square of the Fuclidean norm (Halmos, 1974) of s (x), i.e., F turns
out to be a measure of the magnitude of the acceleration of a displacement
program given by s(x), if we interpret s as displacement and x as time.

Let Py(xk, yr) and Py+1(xp+1, yk+1) be two consecutive supporting
points. The kth cubic polynomial si(x) between those points is assumed
to be given by

sk(x) = A (I — Ik)3 + By, (I — LE]C)Z + C (I - Ik) + Dy (550&)

for z < & < xg+1. Thus, for the spline s(x), 4(N — 1) coefficients Ay, By,
Ck, Dy, for k=1,...,N — 1, are to be determined. These coefficients will
be computed presently in terms of the given function values {sz} and
the second derivatives of the spline at the supporting points, {s}(xx)}{,
as explained below:

We will need the first and second derivatives of si(z) as given above,
namely,

sh(2) = 3A(x — xx)? + 2Bi(x — a1) + Cy (5.50b)
sp(z) = 6Ag(x — zx) + 2B (5.50c)
whence the relations below follow immediately:
1 "
By = 35k (5.51a)
Cr = s, (5.51b)
Dy, = sg (5.51c¢)

where we have used the abbreviations
sk =s(zy), s, =5(vg), sp=s"(zx) (5.52)

Furthermore, let
Az = Tpe1 — Tp (5.53)

From the above relations, we have expressions for coefficients By and Dy, in
terms of s} and sy, respectively, but the expression for Cy, is given in terms
of sj.. What we would like to have are similar expressions for Ay and Cj,
i.e., in terms of s, and s}. The relations sought will be found by imposing
the continuity conditions on the spline function and its first and second
derivatives with respect to z at the supporting points. These conditions
are, then, for k =1,2,..., N —1,

Sk (Th+1) = Sgp+1 (5.54a)
S;(Ik+1) = S;€+1 (5.54b)
Sp(Th+1) = Shan (5.54c)
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Upon substituting s} (zx+1), as given by eq.(5.50¢c), into eq.(5.54c), we
obtain
6AxAxy + 2By, = 2Bj+1

but from eq.(5.51a), we have already an expression for By, and hence, one
for Bp+1 as well. Substituting these two expressions in the above equation,
we obtain an expression for A, namely,

1
Ay = 600, (Sk+1 — 5%) (5.54d)

Furthermore, if we substitute s;(xk+1), as given by eq.(5.50a), into eq.(5.54a),
we obtain

Ak(Al‘k)S + Bk(AIk)z + CrAxy + Dy, = Sp+1

But we already have values for Ay and By, from eqgs.(5.54d) and (5.51a), re-
spectively. Upon substituting these values in the foregoing equation, we ob-
tain the desired expression for C in terms of function and second-derivative
values, i.e.,

As 1
Cy = A—xz — & D (sq + 25) (5.54¢)
In summary, then, we now have expressions for all four coefficients of the
kth polynomial in terms of function and second-derivative values at the

supporting points, namely,

1
Ap = 6 Ay (Sk+1 — SK) (5.55a)
1
By = 35 (5.55b)
Asy, 1
Cy = Ao 6 Az (8)eq +257) (5.55¢)
Dk = Sk (555d)
with
ASp = Sp+1 — Sk (5.55¢)

Furthermore, from the requirement of continuity in the first derivative,
eq.(5.54b), after substitution of eq.(5.50b), one obtains

34(Az1)? + 2By Az, + Cp = Ot
or if we shift to the previous polynomials,

3Ak_1(A$k_1)2 + 2B 1Az + Cr_1 = C
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Now, if we substitute expressions (5.55a—c) in the above equation, a linear
system of N — 2 simultaneous equations for the N unknowns {s}}{V is
obtained, namely,

(Azp)spg + 2(Azp_1 + Azg)sy + (Azg_1)s;_q

-6 Ask _ Ask_l
- Axk A:l?k,]_

), for k=2,....N—1. (5.56)

Further, let s be the N-dimensional vector whose kth component is sy,
with vector s” being defined likewise, i.e.,

T "

T
52[817"'751\7] ) S :[Sg_/a""sxf]

(5.57)

The relationship between s and s” of eq.(5.56) can then be written in
vector form as

As" =6Cs (5.58a)

where A and C are (N — 2) x N matrices defined as:

(0%} 20&172 a2 0 e O O
0 a2 20[2,3 a3 e 0 0
A= : : (5.58b)
0 O P QN1 2aN"',N// QN O
O 0 O e QN 20[]\7//71\[/ QN
and
B =Bz B2 0 a 0 0
0 B2 P23 [Bs a 0 0
C=1: : : | (5.58)
O O A /BN/// 7/8N///7N// /BN// 0
0 0 0 s B —Bnr Nt BN
while for 7,5, k=1,...,N — 1,
ar = Az, @ = o+, (5.58d)
Br=1/ax, Bij =i+ P (5.58¢)
and
N=N-1, N'=N-2,  N"=N-3 (5.58f)

Thus, two additional equations are needed to render eq.(5.58a) a deter-
mined system. The additional equations are derived, in turn, depending
upon the class of functions one is dealing with, which thus gives rise to
various types of splines. For example, if s{ and s% are defined as zero,
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then one obtains natural cubic splines, the name arising by an analogy
with beam analysis. Indeed, in beam theory, the boundary conditions of
a simply-supported beam establish the vanishing of the bending moments
at the ends. From beam theory, moreover, the bending moment is propor-
tional to the second derivative of the elastica, or neutral axis, of the beam
with respect to the abscissa along the beam axis in the undeformed con-
figuration. In this case, vector s” becomes of dimension N — 2, and hence,
matrix A becomes, correspondingly, of (N — 2) x (N — 2), namely,

2a172 (6 %] 0 e 0
(6 %] 2C¥2,3 a3 e 0
A= : : (5.59)
0 P QN1 2aN”’,N” QN
0 0 e QN1 2O{NH7N/

On the other hand, if one is interested in periodic functions, which is often
the case when synthesizing pick-and-place motions, then the conditions
$1 = SN, 8§ = s, 8] = s are imposed, thereby producing periodic cubic
splines. The last of these conditions is used to eliminate one unknown in
eq.(5.58a), while the second condition, namely the continuity of the first
derivative, is used to add an equation. We have, then,

sp = sy (5.60)
which can be written, using eq.(5.54b), as
sh = sy_1(zn) (5.61)

Upon substituting sy _;(zn), as given by eq.(5.50b), into the above equa-
tion, we obtain

5/1 = 3AN,1AI§V,1 +2Bn_1Axzn_1 +Cn_1 (5.62)
Now we use egs.(5.55a—c) and simplify the expression thus resulting, which
leads to

AS]_ ASN,]_
2(Az1+Axn_1)s) +Ax1shy + Axy_15%_41 =6 (A—xl " Ao,

> (5.63)

thereby obtaining the last equation required to solve the system of equa-
tions given by egs.(5.58a—c). We thus have (N — 1) independent equations
to solve for (N — 1) unknowns, namely, s}, for k=1,..., N — 1, s’ being
equal to sf. Expressions for matrices A and C, as applicable to periodic
cubic splines, are given in egs.(9.59a & b).

While we focused in the above discussion on cubic splines, other types
of splines could have been used. For example, Thompson and Patel (1987)
used B-splines in robotics trajectory planning.
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FIGURE 5.5. Errors in the approximation of a 4-5-6-7 polynomial with a natural
cubic spline, using four supporting points.

Example 5.6.1 (Approximation of a 4-5-6-7 polynomial with a cu-
bic spline) Find the cubic spline that interpolates the 4-5-6-7 polynomial
of Fig. 5.8 with N + 1 equally-spaced supporting points and plot the inter-
polation error for N =3 and N = 10.

Solution: Let us use a natural spline, in which case the second derivative at
the end points vanishes, with vector s” thus losing two components. That is,
we now have only N—1 unknowns { s}, le ~1 to determine. Correspondingly,
matrix A then loses its first and last columns and hence, becomes a square
(N —1) x (N — 1) matrix. Moreover,

1
A,Ikzﬁ, k:1,7N

and matrices A and C become, correspondingly,

4 1 0 0
1 4 1 0
AL L
- .
o ... 1 4 1
0 0 1 4
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FIGURE 5.6. Errors in the approximation of a 4-5-6-7 polynomial with a natural
cubic spline, using eleven supporting points.

and
1 -2 1 0 0 0
o 1 -2 1 0 0
C=N
0 0 1 -2 1 0
0 O o --- 1 =21

the vector of second derivatives at the supporting points, s”, then being
readily obtained as
s" =6A"1Cs

With the values of the second derivatives at the supporting points known,
the calculation of the spline coefficients Ay, By, Ck, and Dy, for k =
1,..., N, is now straightforward. Let the interpolation error, e(x), be de-
fined as e(z) = s(x) — p(x), where s(z) is the interpolating spline and p(x)
is the given polynomial. This error and its derivatives e’(z), e”(x), and
e’ (z) are plotted in Figs. 5.5 and 5.6 for N = 3 and N = 10, respectively.
What we observe is an increase of more than one order of magnitude in the
error as we increase the order of the derivative by one. Thus, the order of
magnitude of acceleration errors is usually higher than two orders of mag-
nitude above the displacement errors, a fact that should not be overlooked
in applications.
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6

Dynamics of Serial Robotic
Manipulators

6.1 Introduction

The main objectives of this chapter are (i) to devise an algorithm for the
real-time computed torque control and (i¢) to derive the system of second-
order ordinary differential equations (ODE) governing the motion of an
n-axis manipulator. We will focus on serial manipulators, the dynamics
of a much broader class of robotic mechanical systems, namely, parallel
manipulators and mobile robots, being the subject of Chapter 10. Moreover,
we will study mechanical systems with rigid links and rigid joints and
will put aside systems with flexible elements, which pertain to a more
specialized realm.

6.2 Inverse vs. Forward Dynamics

The two basic problems associated with the dynamics of robotic mechani-
cal systems, namely, the inverse and the forward problems, are thoroughly
discussed in this chapter. The relevance of these problems cannot be over-
stated: the former is essential for the computed-torque control of robotic
manipulators, while the latter is required for the simulation and the real-
time feedback control of the same systems. Because the inverse problem
is purely algebraic, it is conceptually simpler to grasp than the forward
problem, and hence, the inverse problem will be discussed first. Moreover,
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212 6. Dynamics of Serial Robotic Manipulators

the inverse problem is also computationally simpler than the forward prob-
lem. In the inverse problem, a time-history of either the Cartesian or the
joint coordinates is given, and from knowledge of these histories and the
architecture and inertial parameters of the system at hand, the torque
or force requirements at the different actuated joints are determined as
time-histories as well. In the forward problem, current values of the joint
coordinates and their first time-derivatives are known at a given instant,
the time-histories of the applied torques or forces being also known, along
with the architecture and the inertial parameters of the manipulator at
hand. With these data, the values of the joint coordinates and their time-
derivatives are computed at a later sampling instant by integration of the
underlying system of nonlinear ordinary differential equations.

The study of the dynamics of systems of multiple rigid bodies is classical,
but up until the advent of the computer, it was limited only to theoreti-
cal results and a reduced number of bodies. First Uicker (1965) and then
Kahn (1969) produced a method based on the Euler-Lagrange equations
of mechanical systems of rigid bodies that they used to simulate the dy-
namical behavior of such systems. A breakthrough in the development of
algorithms for dynamics computations was reported by Luh et al. (1980),
who proposed a recursive formulation of multibody dynamics that is appli-
cable to systems with serial kinematic chains. This formulation, based on
the Newton-Euler equations of rigid bodies, allowed the calculation of the
joint torques of a six-revolute manipulator with only 800 multiplications
and 595 additions, a tremendous gain if we consider that the straightfor-
ward calculation of the Euler-Lagrange equations for the same type of ma-
nipulator involves 66,271 multiplications and 51,548 additions, as pointed
out by Hollerbach (1980). In the foregoing reference, a recursive derivation
of the Euler-Lagrange equations was proposed, whereby the computational
complexity was reduced to only 2,195 multiplications and 1,719 additions.

The foregoing results provoked a discussion on the merits and demerits
of each of the Euler-Lagrange and the Newton-Euler formulations. Silver
(1982) pointed out that since both formulations are equivalent, they should
lead to the same computational complexity. In fact, Silver showed how to
derive the Euler-Lagrange equations from the Newton-Euler formulation
by following an approach first introduced by Kane (1961) in connection
with nonholonomic systems. Kane and Levinson (1983) then showed how
Kane’s equations can be applied to particular robotic manipulators and
arrived at lower computational complexities. They applied the said equa-
tions to the Stanford Arm (Paul, 1981) and computed its inverse dynamics
with 646 multiplications and 394 additions. Thereafter, Khalil et al. (1986)
proposed a condensed recursive Newton-Euler method that reduced the
computational complexity to 538 multiplications and 478 additions, for ar-
bitrary architectures. Further developments in this area were reported by
Balafoutis and Patel (1991), who showed that the underlying computa-
tional complexity can be reduced to 489 multiplications and 420 additions
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6.3 Fundamentals of Multibody System Dynamics 213

for the most general case of a six-revolute manipulator, i.e., without ex-
ploiting particular features of the manipulator geometry. Balafoutis and
Patel based their algorithm on tensor analysis, whereby tensor identities
are exploited to their fullest extent in order to reduce the number of op-
erations involved. Li and Sankar (1992), in turn, reported further savings
that allowed them to bring down those numbers to 459 multiplications and
390 additions.

In this chapter, the inverse dynamics problem is solved with the well-
known recursive Newton-Euler algorithm, while the forward dynamics prob-
lem is handled with a novel approach, based on the reciprocity relations
between the constraint wrenches and the feasible twists of a manipulator.
This technique is developed with the aid of a modeling tool known as the
natural orthogonal complement, thoroughly discussed in Section 6.5.

Throughout the chapter, we will follow a multibody system approach,
which requires a review of the underlying fundamentals.

6.3 Fundamentals of Multibody System Dynamics

6.3.1 On Nomenclature and Basic Definitions

We consider here a mechanical system composed of r rigid bodies and
denote by M; the 6 x 6 inertia dyad—see Section 3.8—of the ith body.
Moreover, we let W;, already introduced in eq.(3.145), be the 6 x 6 angular-
velocity dyad of the same body. As pertaining to the case at hand, the said
matrices are displayed below:

| O _ |2 O .
Mi:[o mil]’ Wz_{o O}’ i=1,...,r (6.1)

where 1 and O denote the 3 x 3 identity and zero matrices, respectively,
while ©; and I, are the angular-velocity and the inertia matrices of the
1th body, this last being defined with respect to the mass center C; of this
body. Moreover, the mass of this body is denoted by m;, whereas c¢; and
¢; denote the position and the velocity vectors of C;. Furthermore, let t;
denote the twist of the same body, the latter being defined in terms of
the angular velocity vector w;, the vector of €2;, and the velocity of C;.
The 6-dimensional momentum screw p; is defined likewise. Furthermore,
w!V and w{ are defined as the working wrench and the nonworking con-
straint wrench exerted on the ith body by its neighbors, in which forces are
assumed to be applied at C;. We thus have, fore=1,...,r,

w; Liw; n;” n{’
) (i) (] - [£]

where superscripted n; and f; stand, respectively, for the moment and the
force acting on the ith body, the force being applied at the mass center Cj.
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214 6. Dynamics of Serial Robotic Manipulators
Thus, whereas w}V accounts for forces and moments exerted by both the
environment and the actuators, including driving forces as well as dissipa-
tive effects, w¢, whose sole function is to keep the links together, accounts
for those forces and moments exerted by the neighboring links, which do
not produce any mechanical work. Therefore, friction wrenches applied by
the (¢ — 1)st and the (i + 1)st links onto the ith link are not included in
w¢; rather, they are included in w}".

Clearly, from the definitions of M, u;, and t;, we have

p; = Mt (6.3)
Moreover, from eq.(3.148),
fo; = Mit; + Wip, = Mit; + W, Mt; (6.4)
We now recall the Newton-Euler equations for a rigid body, namely,
Liw; = —w; x Lw; +n/V 4+ n¢ (6.5a)
mié; = £V + £° (6.5b)

which can be written in compact form using the foregoing 6-dimensional
twist and wrench arrays as well as the 6 x 6 inertia and angular-velocity
dyads. We thus obtain the Newton-Euler equations of the ith body in the
form

6.3.2 The Euler-Lagrange FEquations of Serial
Manipulators

The Euler-Lagrange dynamical equations of a mechanical system are now
recalled, as pertaining to serial manipulators. Thus, the mechanical system
at hand has n degrees of freedom, its n independent generalized coordinates
being the n joint variables, which are stored in the n-dimensional vector 6.

We thus have 4 /oT or
——=)-==9¢ (6.6)
dt \ 06

where T is a scalar function denoting the kinetic energy of the system and ¢
is the n-dimensional vector of generalized force. If some forces on the right-
hand side stem from a potential V', we can, then decompose ¢ into two
parts, ¢, and ¢,,, the former arising from V' and termed the conservative
force of the system; the latter is the nonconservative force ¢,,. That is,

ov

the above Euler-Lagrange equations thus becoming
d (0L oL
(%)%= (6.5)
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6.3 Fundamentals of Multibody System Dynamics 215

where L is the Lagrangian of the system, defined as
L=T-V (6.9)

Moreover, the kinetic energy of the system is simply the sum of the kinetic
energies of all the r links. Recalling eq.(3.150), which gives the kinetic
energy of a rigid body in terms of 6-dimensional arrays, one has

T T 1
T=) T,=)Y —tIMt; :
Sr=y ke 510)
1 1
whereas the vector of nonconservative generalized forces is given by
oIt A
¢ 00 00 ( )

in which II* and A denote the power supplied to the system and the
Rayleigh dissipation function, or for brevity, the dissipation function of the
system.

The first of these items is discussed below; the latter is only outlined in
this section but is discussed extensively in Section 6.8. First, the wrench
w)V is decomposed into two parts, wi! and w?, the former being the wrench
supplied by the actuators and the latter being the wrench that arises from
viscous and Coulomb friction, the gravity wrench being not needed here
because gravity effects are considered in the potential V' (0). We thus call
wil the active wrench and wP the dissipative wrench. Here, the wrenches
supplied by the actuators are assumed to be prescribed functions of time.
Moreover, these wrenches are supplied by single-dof actuators in the form of
forces along a line of action or moments in a given direction, both line and
direction being fixed to the two bodies that are coupled by an active joint.
Hence, the actuator-supplied wrenches are dependent on the posture of the
manipulator as well, but not on its twist. That is, the actuator wrenches are
functions of both the vector of generalized coordinates, or joint variables,
and time, but not of the generalized speeds, or joint-rates. Forces dependent
on the latter to be considered here are assumed to be all dissipative. As a
consequence, they can be readily incorporated into the mathematical model
at hand via the dissipation function, to be discussed in Section 6.8. Note
that feedback control schemes require actuator forces that are functions
not only of the generalized coordinates, but also of the generalized speeds.
These forces or moments are most easily incorporated into the underlying
mathematical model, once this model is derived in the state-variable space,
i.e., in the space of generalized coordinates and generalized speeds.

Thus, the power supplied to the ¢th link, Hf, is readily computed as

It = (w7t (6.12a)

Similar to the kinetic energy, then, the power supplied to the overall
system is simply the sum of the individual powers supplied to each link,
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216 6. Dynamics of Serial Robotic Manipulators

and expressed as in eq.(6.12a), i.e.,

=S "1 (6.12b)
1

Further definitions are now introduced. These are the 6n-dimensional
vectors of manipulator twist, t; manipulator momentum, w; manipulator
constraint wrench, w®; manipulator active wrench, w?; and manipulator
dissipative wrench, wP. Additionally, the 6n x 6n matrices of manipulator
mass, M, and manipulator angular velocity, W, are also introduced below:

[t1 [ 11
t= ||, wu=|":], (6.13a)
Lty | Hn
Wi [wi! w1
wl=| ¢ [,wi=] |, wPl=1 (6.13b)
| Wy L wi W

M = diag (Mg, ..., M, ), W = diag (W3, ..., W, ) (6.13¢)

It is now apparent that, from definitions (6.13b & 6.13¢) and relation
(6.3), we have

=Mt (6.14)

Moreover, from definitions (6.1) and (6.2),
[ =Mt + WMt (6.15)
With the foregoing definitions, then, the kinetic energy of the manipulator

takes on a simple form, namely,

7= Lerve = ltT,u (6.16)
2 2
which is a quadratic form in the system twist. Since the twist, on the other
hand, is a linear function of the vector 8 of joint rates, the kinetic energy
turns out to be a quadratic form in the vector of joint rates. Moreover, we
will assume that this form is homogeneous in 9, ie.,

1. )
T = 5¢9T1(¢9)¢9 (6.17)
Notice that the above assumption implies that the base of the robot is
fixed to an inertial base, and hence, when all joints are locked, the kinetic

energy of the robot vanishes, which would not be the case if, for example,
the robot were mounted on the International Space Station. If this were the

TLFeBOOK



6.3 Fundamentals of Multibody System Dynamics 217

case, then the kinetic energy would not vanish even if all robot joints were
locked, which means that the foregoing kinetic-energy expression would
include a linear term in @ and a term independent of the joint-rates. In any
event, it is apparent that

82

1(6) = —(T) (6.18)

00
which means that the n xn generalized inertia matrix is the Hessian matrix
of the kinetic energy with respect to the vector of generalized speed.

Furthermore, the Euler-Lagrange equations can be written in the form

b, (6.19a)

da(ory _or ov _
dt \ 96 00 00

Now, from the form of T" given in eq.(6.17), the partial derivatives appearing

in the foregoing equation take the forms derived below:
oT .
— =1(0)0

00

and hence,

% (g%) =1(0)0 +1(0,6)6 (6.19b)

Moreover, in order to calculate the second term of the left-hand side of
eq.(6.19a), we express the kinetic energy in the form

T = %p(@,é)Té (6.19c¢)

where p(6, 0) is the generalized momentum of the manipulator, defined as

p(0,0) =1(0)6 (6.19d)
Hence,
or 1 [/op\".
or
or 1 [oae)]"
the Euler-Lagrange equations thus taking on the alternative form
1| a(16) ooy
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P(xz,y)

FIGURE 6.1. A planar manipulator.

Example 6.3.1 (Euler-Lagrange equations of a planar manipula-

tor) Consider the manipulator of Fig. 6.1, with links designed so that their
mass centers, Cqp, C2, and C3, are located at the midpoints of segments
01032, 0,03, and O3 P, respectively. Moreover, the ith link has a mass m;
and a centroidal moment of inertia in a direction normal to the plane of
motion I;, while the joints are actuated by motors delivering torques T,
T2, and T3, the lubricant of the joints producing dissipative torques that we
will neglect in this model. Under the assumption that gravity acts in the
direction of =Y, find the associated Fuler-Lagrange equations.

Solution: Here we recall the kinematic analysis of Section 4.8 and the def-
initions introduced therein for the analysis of planar motion. In this light,
all vectors introduced below are 2-dimensional, the scalar angular velocities
of the links, w;, for i =1, 2, 3, being

wlzél, w2:é1+92, w3291+92+93

Moreover, the velocities of the mass centers are
1.
¢, = -0 E
C1 501 ay
. 1 . .
¢, = 01Ea; + 5(91 + 02)Ea2

. . 1. ..
¢3 = 61Ea; + (01 + 62)Eay + 5(91 + 60>+ 63)Eas
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the kinetic energy then becoming

3
1 ,
T = 3 E (miHCiHZ-l-Iiwiz)
1

The squared magnitudes of the mass-center velocities are now computed
using the expressions derived above. After simplifications, these yield

. .y
&2 = 30262

€212 = a20% + TaB(6% + 2616 + 03) + araz cos 6o 6 + ff)
€s]|? = aZ6] + a5 (0% + 20102 + 65)
+0B(0Z + 08 + 68 + 2010y + 2015 + 20,ls)
+2a1a, cos 0 (0% + 9192) + araz cos(0y + 93)(0% + 610, + 9193)
+azag cos 03(0% + 03 + 20102 + 6103 + 0,63)
The kinetic energy of the whole manipulator thus becomes
T= %(11103 + 21120102 + 21230203 + 122605 + 21136105 + I3363)

with coefficients I;;, for i = 1, 2, 3, and j = 7 to 3 being the distinct entries
of the 3 x 3 matrix of generalized inertia of the system. These entries are
given below:

1 1
Ihn=hLh+ L+ 15+ Zmla% —+ mo <a% + Za% + alazcz)

1
+ms3 (a% + a% + Zag + 2a1a2¢2 + ajazcrz + a2a303)

1 1
Ip=L+ 13+ 3 [mz (5063 + a1a202>

1
+ ma (2@% + §a§ + 2a1a2¢2 + arascrs + 2a2a303)]
1 1,
Iiz =13+ 3™Ma | 593 + aiazcz3 + azascs

1 1
o =L+ 13+ nga% + ms3 (a% + Zag + a2a3C3>

1 1
Iz =13+ §m3 (§a§ + a2a303)

1
I3z =13+ nga%

where ¢; and ¢;; stand for cosf; and cos(f; + 6;), respectively. From the
foregoing expressions, it is apparent that the generalized inertia matrix is
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not a function of 61, which is only natural, for if the second and third joints
are locked while leaving the first one free, the whole manipulator becomes
a single rigid body pivoting about point O;. Now, the polar moment of
inertia of a rigid body in planar motion about a fixed point is constant,
and hence, the first joint variable should not affect the generalized inertia
matrix.

Furthermore, the potential energy of the manipulator is computed as the
sum of the individual link potential energies, i.e.,

1 1
V= 3m1gay sin 61 + mag {al sin 61 + 502 sin(61 + 92)}

1
+mazg |:Cl1 sinf1 + az sin(61 + 62) + 5(13 sin(f1 + 0, + 93):|

while the total power delivered to the manipulator takes the form
II = 7191 + Tzéz + T393

We now proceed to compute the various terms in eq.(6.20). We already
have I(6), but we do not have, as yet, its time-derivative. However, the
entries of 1 are merely the time-derivatives of the entries of I. From the
above expressions for these entries, their time-rates of change are readily
calculated, namely,

L1 = —maa1azs20, — ma(2a1a25202 + arasszs(02 + 03) + azazsabs]

Io = %{fmgalazszéz — m3[2a1a25292 + alagsgg(éz + 03) + 2a2a33393]}
Iis= —§m3[a1a3523(92 + 03) + azazsabs)

Irp = —mgazazssfs

Iy = —Smaazasssfs

I =0

with s;; defined as sin(f; + 6,). It should now be apparent that the time-
rate of change of the generalized inertia matrix is independent of 01, as
one should have expected, for this matrix is independent of 6;. That is,
if all joints but the first one are frozen, no matter how fast the first joint
rotates, the manipulator moves as a single rigid body whose polar moment
of inertia about O7, the center of the first joint, is constant. As a matter of
fact, I33 is constant for the same reason and f33 hence vanishes. We have,
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then71 . . . . . .
. 11161 + 1120, + I1303
16 = o = | 1201 + 12202 + 12303
11301 + 2302 + I3303

whose components, ¢;, for i = 1, 2, 3, are readily calculated as
1 = 7[m2a1a252 =+ m3a1(2a252 =+ a3523)]9192 — m3a3(a1523 + a253)9193

1 . ..
—§[m2a1a282 + m3a1(2a232 + a3523)]9§ — m3a3(a1323 + a233)9293

—§m3a3(a1523 + a253)9§
1o = —%[m2a1a232 + mgay(2azs2 + a3823)]9192

—%m3a3(a1823 + azs3)b163 — maazagsabals — %m3a2“333é§
La = —%m3a1a38239193 — %m3a3(a1323 + aps3)0103 — %msazasssézés

The next term in the right-hand side of eq.(6.20) now requires the cal-

culation of the partial derivatives of vector 18 with respect to the joint
variables, which are computed below. Let

d(10)

!
00 I

its entries being denoted by Ii’j. This matrix, in component form, is given
by

0 111,29:1 + 112,29:2 + 113,29:3 111,39:1 + 112,39:2 + 113,39:3
I'=10 In2 261 + I22 262 + I23.2603 112,301 + 122,302 + 123,303
0 I13201 + 123202 + I33 203 113301 + I>3 302 + I33 303

with the shorthand notation I;;; indicating the partial derivative of I;;
with respect to 6. As the reader can verify, these entries are given as

I}, = —[maarazsz + ma(2a1azs2 + arasszs)|fr
| )
—§[m2a1a252 + maz(2a1a252 + a1a3s23)|02 — §m3a1a352393
.1 .
Iis = _mS(a1a3323 + azazsz)f1 — §m3(a1a3823 + 2a2a333)92

1
_§m3(a1a3523 + axazss)f3

11 is the Greek letter iota and denotes a vector; according to our notation, its
components are t1, t2, and ¢3.
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/ 1 2
[22 = —§[m2a1a252 —+ m3(2a1a232 —+ a1a3823)]91
. . 1 .
Iég = —§m3(a1a3323 + 2(12(1383)01 — m3a2a35302 — §m3a2a35303
Iy =0
[éz = *§m3ala382391
. 1 .
Iés = *§m3(a1a3823 + azazss)f1 — §m3a2a35302
Now, we define the 3-dimensional vector « below:
o16)]"
v = [—30 0
its three components, ;, for ¢ = 1, 2, 3, being
11=0
Y2 = *[Mzalazsz + m3(2a1a232 + alagszg)}ﬂf
—[mzalazsz =+ m3(2a1a282 =+ a1a3823)]9192
—mga1a3s23t103
v3 = —ma(a1assas + azazs3)03 — ma(arazsaz + 2a2a353)0102

P 5 ..
—mg(alagsz:; =+ a2a383)9193 — m3a2a35393 — m3a2a3839293

We now turn to the computation of the partial derivatives of the potential

energy:

ov

v 1 . !
692 - 2m29a2 m3g | azC12 a3C123

2
8_V _ 1
903 = 2m3ga36123

The Euler-Lagrange equations thus reduce to

. . . 1 1
111601 + 11202 + 13603 + 11 — omn + 3magaicy

1 1
+mag(aict + 5(12012) + mag(aic1 + azc12 + 5(130123) =T

; ; . 1 1
I1201 + 12207 + I2303 + 12 — 32 + 5M2902¢12

1
+mag(azxcio + 5(130123) =T

. . . 1 1
I1301 + 12302 + I3303 + 13 — 373 + 3MaYasC123 = T3

1 1 1
-~ = cmagaici +mag | a1c1 + zazc12 | +mag | aic1 + azci2 + -asci123
001 2 2 2
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With this example, it becomes apparent that a straightforward differ-
entiation procedure to derive the Euler-Lagrange equations of a robotic
manipulator, or for that matter, of a mechanical system at large, is not
practical. For example, these equations do not seem to lend themselves
to symbolic manipulations for a six-axis manipulator of arbitrary archi-
tecture, given that they become quite cumbersome even for a three-axis
planar manipulator with an architecture that is not so general. For this
reason, procedures have been devised that lend themselves to an algorith-
mic treatment. We will study a procedure based on the natural orthogonal
complement whereby the underlying equations are derived using matrix-
times-vector multiplications.

6.3.3 Kane’s Equations

Kane’s equations (Kane and Levinson, 1983), sometimes referred to as
D’Alambert’s equations in Lagrangian form are also useful in robot dynam-
ics (Angeles et al., 1989). A feature of Kane’s equations is that they are
derived from the free-body diagrams of the various rigid bodies constituting
the multibody system at hand. Upon introducing generalized coordinates
a la Lagrange, the mathematical model of the system is derived, which is
equivalent to the underlying Euler-Lagrange equations. Kane’s equations
take a rather simple form, for an n-dof mechanical system, namely,

$+¢" =0

where ¢ and ¢* are the n-dimensional vectors of generalized active force
and inertia force, respectively. With the notation introduced above, these
vectors are given by

¢=§ [(Z‘Z)Tfﬁ(agg)ipni] (6.21a)

oe\" o \"

In the above expressions, q = dq/dt is the n-dimensional vector of gener-
alized speeds in Kane’s terminology, while the n x 3 matrices d¢;/9q and
0w;/0q are the partial rates of change of mass-center velocity and angular
velocity of the ith rigid body.

and

=1

6.4 Recursive Inverse Dynamics

The inverse dynamics problem associated with serial manipulators is stud-
ied here. We assume at the outset that the manipulator under study is of
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the serial type with n+1 links including the base link and n joints of either
the revolute or the prismatic type.

The underlying algorithm consists of two steps: (i) kinematic compu-
tations, required to determine the twists of all the links and their time
derivatives in terms of 9, 97 and 6, and (i7) dynamic computations, re-
quired to determine both the constraint and the external wrenches. Each
of these steps is described below, the aim here being to calculate the desired
variables with as few computations as possible, for one purpose of inverse
dynamics is to permit the real-time model-based control of the manipulator.
Real-time performance requires, obviously, a low number of computations.
For the sake of simplicity, we decided against discussing the algorithms
with the lowest computational cost, mainly because these algorithms, fully
discussed by Balafoutis and Patel (1991), rely heavily on tensor calculus,
which we have not studied here. Henceforth, revolute joints are referred to
as R, prismatic joints as P.

6.4.1 Kinematics Computations: Outward Recursions

We will use the Denavit-Hartenberg (DH) notation introduced in Sec-
tion 4.2 and hence will refer to Fig. 4.7 for the basic notation required
for the kinematic analysis to be described first. Note that the calculation
of each Q; matrix, as given by eq.(4.1e), requires four multiplications and
zero additions.

Moreover, every 3-dimensional vector-component transfer from the F;
frame to the Fie1 frame requires a multiplication by QI. Likewise, ev-
ery component transfer from the Fi+1 frame to the F; frame requires a
multiplication by Q;. Therefore, we will need to account for the afore-
mentioned component transfers, which we will generically term coordinate
transformations between successive coordinate frames. We derive below
the number of operations required for such transformations. If we have
[r]; = [r1, r2, r3]T and we need [r];+1, then we proceed as follows:

[r]i+1 = Q[ [r]; (6.22)

and if we recall the form of Q; from eq.(4.1e), we then have

cos 0; sin 6; 0 r1 r1cosb; + rpsin b;
[I‘]Z‘+1 = 7Al sin 01 /\1 COSs 01 i T2 = 7)\1‘7" + i3
i sin 01 — b COS 01 /\1 r3 J22%A + /\ﬂ’g
(6.23a)

where \; = cos «; and p; = sin «;, while
r=ri18in6; — rp cosb; (6.23b)

Likewise, if we have [v];+1 = [v1, v2, v3]T and we need [v];, we use the
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component transformation given below:

cos; —M\;sinf;  p;sinéd; U1 v1 cos6; —vsinb;
[v]; = |sinf; Acos€; —p;cosb; vo | = | vysinf; + vcosb;
0 i Ad V3 Vs + V3N
(6.24a)
where
U= Up A — U3l (6.24Db)

It is now apparent that every coordinate transformation between suc-
cessive frames, whether forward or backward, requires eight multiplications
and four additions. Here, as in Chapter 4, we indicate the units of multi-
plications and additions with M and A, respectively.

The angular velocity and acceleration of the ¢th link are computed re-
cursively as follows:

wi_1+ 9'iei, if the ith joint is R
w; = ! J (6.25a)
wi_1, if the ¢th joint is P
Wi1 +wi_1 x O;e; + éiei, if the ith joint is R
W, =4 Tt ! J (6.25D)
wi_1, if the ith joint is P
fori=1, 2, ..., n, where wg and wg are the angular velocity and angular

acceleration of the base link. Note that egs.(6.25a & b) are frame-invariant;
i.e., they are valid in any coordinate frame, as long as the same frame is used
to represent all quantities involved. Below we derive the equivalent relations
applicable when taking into account that quantities with a subscript ¢ are
available in F;+1-coordinates. Hence, operations involving quantities with
different subscripts require a change of coordinates, which is taken care of
by the corresponding rotation matrices.

In order to reduce the numerical complexity of the algorithm developed
here, all vector and matrix quantities of the ith link will be expressed in
Fi+1. Note, however, that the two vectors e; and e;+; are fixed to the ith
link, which is a potential source of confusion. Now, since e; has very simple
components in F;, namely, [0, 0, 1]7, this will be regarded as a vector of
the (¢ — 1)st link. Therefore, this vector, or multiples of it, will be added to
vectors bearing the (i — 1)st subscript without any coordinate transforma-
tion. Moreover, subscripted brackets, as introduced in Section 2.2, can be
avoided if all vector and matrix quantities subscripted with ¢, except for
vector e;, are assumed to be expressed in F;+1. Furthermore, in view of the
serial type of the underlying kinematic chain, only additions of quantities
with two successive subscripts will appear in the relations below.

Quantities given in two successive frames can be added if both are ex-
pressed in the same frame, the obvious frame of choice being the frame of
one of the two quantities. Hence, all we need to add two quantities with
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successive subscripts is to multiply one of these by a suitable orthogo-
nal matrix. Additionally, in view of the outwards recursive nature of the
kinematic relations above, it is apparent that a transfer from F;- to Fj+1-
coordinates is needed, which can be accomplished by multiplying either e;
or any other vector with the (i — 1) subscript by matrix Q7. Hence, the
angular velocities and accelerations are computed recursively, as indicated
below:

QF (w1 + éiei), if the ith joint is R
i = (6.26a)
Qlw; 1, if the ith joint is P
r c.bi, + w;_1 X Glel + 0181 y if the ith joint is R
o] U @i ! ), i the dth joint is & ¢ 61y
Qlw; 4, if the ith joint is P
If the base link is an inertial frame, then
wo = 0, (.;.)o =0 (627)

Thus, calculating each w; vector in F;+1 when w;_1 is given in F; requires
8M and 5A if the ith joint is R; if it is P, the said calculation reduces to 8M
and 4A. Here, note that 6;e; = [0, 0, Hl]T in F;-coordinates, and hence,
the vector addition of the upper right-hand side of eq.(6.26a) requires only
1A. Furthermore, in order to determine the number of operations required
to calculate w; in F;4+1 when w,;_; is available in F;, we note that

0
[eili= |0 (6.28)

Moreover, we let

[wi_l]i = | Wy (629)

FIGURE 6.2. A revolute joint.
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Hence, '
. 91 Wy
[wi—1 x bie;]i = | —0;w, (6.30)
0
Furthermore, we note that
. O
0

K2

and hence, the calculation of w; in F;4+1 when w;_j is given in F; requires
10M and 7A if the ith joint is R; if it is P, the same calculation requires
8M and 4A.

Furthermore, let c; be the position vector of C;, the mass center of the
ith link, p, being the vector directed from O; to Cj;, as shown in Figs. 6.2
and 6.3. The position vectors of two successive mass centers thus observe
the relationships

(¢) if the ith joint is R,

dic1=a,-1— p;_1 (6.32a)
Ci=C¢Ci—1+0i—1+p; (6.32Db)

(i) if the ith joint is P,
61',1 = di,]_ — Pi-1 (6320)
ci=cCi—1+0;_1+be;+p; (6.32d)

where point O;, in this case, is a point of the (i — 1)st link conveniently
defined, as dictated by the particular geometry of the manipulator at hand.
The foregoing freedom in the choice of O; is a consequence of prismatic pairs
having only a defined direction but no axis, properly speaking.

Notice that in the presence of a revolute pair at the ith joint, the differ-
ence a;—1 — p,_1 is constant in F;. Likewise, in the presence of a prismatic
pair at the same joint, the difference d;_1 — p;_4 is constant in F;. There-
fore, these differences are computed off-line, their evaluation not counting
toward the computational complexity of the algorithm.

Upon differentiation of both sides of eqs.(6.32b & d) with respect to time,
we derive the corresponding relations between the velocities and accelera-
tions of the mass centers of links ¢ — 1 and ¢, namely,

(7) if the ith joint is R,
€ =Ci—1twi-1X08i—1+tw; xp,; (6.33a)

¢ =6 1+ w1 X081+ wi—1 X (wWi—1 X 0;—1) +w; X p; +
w; X (w; X p;) (6.33b)
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FIGURE 6.3. A prismatic joint.

(¢4) if the ith joint is P,

Wi = w1 (6.34a
Wi = W1 (6.34b
u; = 51-,1 + P; + biei

V, = WwW; X U;
¢ =¢_1+Vv;+ biei (6.346
¢ =¢C14+w; xu+w; x(v;+ QBiei) + Biei (6.34f

fori =1, 2, ..., n, where ¢g and ¢y are the velocity and acceleration of
the mass center of the base link. If the latter is an inertial frame, then

wop = 07 dJo = 07 éo = 07 éo =0 (6.35)

Expressions (6.32b) to (6.34f) are invariant, i.e., they hold in any coor-
dinate frame, as long as all vectors involved are expressed in that frame.
However, we have vectors that are naturally expressed in the F; frame
added to vectors expressed in the F;+1 frame, and hence, a coordinate
transformation is needed. This coordinate transformation is taken into ac-
count in Algorithm 6.4.1, whereby the logical variable R is true if the ith
joint is R; otherwise it is false.

In performing the foregoing calculations, we need the cross product of
a vector w times e; in JF; coordinates, the latter being simply [e;]; =
[0, 0, 1]7, and hence, this cross product reduces to [wp, —ws, 0]7, whereby
wg, for k = 1,2, 3, are the =, y, and z F;-components of w. This cross prod-
uct, then, requires no multiplications and no additions. Likewise, vectors
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bie;, l.)éei, and be; take on the simple forms [0, 0, b;]7, [0, 0, b;]7, and
[0, 0, b;]T in F;. Adding any of these vectors to any other vector in F;

then requires one single addition.

Algorithm 6.4.1 (Outward Recursions):

For i=1 to n step 1 do

update Q;

if R then
¢ — Qf(cicitdi1)+p;
w; QZT(wifl + b;e;)
Wi—1— wi—1 X 0i—1
A% w; X p;
¢ QF(¢i—1 + 1) + Vi

Jw; X p; +w; X Vv,

else

W — Qi1+ p;+bie

¢i — Qlcii+tuy

w; — Qlw;,

Vi — Ww; X Uu;

W; < biei

¢ = Qléatvitw

wi — Qlw,;
endif

enddo

read {Q; }§ 1, co, wo, o, wo, o, {p;}7, {0i}5 "

-
-

Wi — QI(wi—1+wi—1 xbie; +0;e)
— QF &1+ wi—1 X881 +wi—1xXu_1)

Q;-TEZ',]_ + w1 X u; +w; X (Vi + w; + Wi) + blel

If, moreover, we take into account that the cross product of two arbitrary
vectors requires 6 M and 3A, we then have the operation counts given below:

(¢) If the ith joint is R,
Q; requires 4M and 0A
c; requires 8M and 10A
w; requires 8M and 5A
¢; requires 20M and 16 A
w; requires 10M and 7A
¢; requires 32M and 28A

(74) If the ith joint is P,
Q; requires 4M and 0A
c; requires 16 M and 15A
w; requires 8M and 4A
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TABLE 6.1. Complexity of the Kinematics Computations

Item M A
{Qi7 4n 0
{w;i 7 8n 5n
{¢:}} 20n 16n
{wi}T 10n ™
{¢&}1 32n 28n
Total 82n 66m

¢; requires 14M and 11A
w; requires 8M and 4A
¢; requires 20M and 194

The computational complexity for the forward recursions of the kinematics
calculations for an m-revolute manipulator, as pertaining to various algo-
rithms, are summarized in Table 6.1. Note that if some joints are P, then
these figures become lower.

6.4.2 Dynamics Computations: Inward Recursions

Moreover, a free-body diagram of the end-effector, or nth link, appears
in Fig. 6.5. Note that this link is acted upon by a nonworking constraint
wrench, exerted through the nth pair, and a working wrench; the latter
involves both active and dissipative forces and moments. Although dissipa-
tive forces and moments are difficult to model because of dry friction and
striction, they can be readily incorporated into the dynamics model, once
a suitable constitutive model for these items is available. Since these forces
and moments depend only on joint variables and joint rates, they can be
calculated once the kinematic variables are known. For the sake of simplic-
ity, dissipative wrenches are not included here, their discussion being the
subject of Section 6.8. Hence, the force and the moment that the (i — 1)st
link exerts on the ¢th link through the ¢th joint only produce nonworking
constraint and active wrenches. That is, for a revolute pair, one has

ny 1
Ti fi

in which n¥ and n! are the nonzero F;-components of the nonworking
constraint moment exerted by the (¢ — 1)st link on the ith link; obviously,
this moment lies in a plane perpendicular to Z;, whereas 7; is the active
torque applied by the motor at the said joint. Vector f contains only
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FIGURE 6.4. Free-body diagram of the ith link.

nonworking constraint forces.
For a prismatic pair, one has

ny I
n"=n?|, F=|f (6.37)
nf T

where vector nf contains only nonworking constraint torques, while 7; is

now the active force exerted by the ith motor in the Z; direction, f and
/7 being the nonzero F;-components of the nonworking constraint force
exerted by the ith joint on the ith link, which is perpendicular to the Z;
axis.

In the algorithm below, the driving torques or forces { 7; }T, are computed
via vectors nf’ and £f'. In fact, in the case of a revolute pair, 7; is simply the
third component of n?’; in the case of a prismatic pair, 7; is, accordingly,
the third component of f¥'. From Fig. 6.5, the Newton-Euler equations of
the end-effector are

£ =m,¢, - f (6.38a)
P =T,w, +wy, xLw, —n+p, xf’ (6.38b)

n —

n

where f and n are the external force and moment, the former being applied
at the mass center of the end-effector. The Newton-Euler equations for the
remaining links are derived based on the free-body diagram of Fig. 6.4,
namely,

£ =mé; + L, (6.38¢)
with d; defined as the difference a; — p; in egs.(6.32a & ¢).
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nthlink

FIGURE 6.5. Free-body diagram of the end-effector.

Once the nf’ and fF vectors are available, the actuator torques and
forces, denoted by 7;, are readily computed. In fact, if the ¢th joint is a
revolute, then

7, =elnf (6.39)

which does not require any further operations, for 7; reduces, in this case,
to the Z; component of vector nf’. Similarly, if the ith joint is prismatic,
then the corresponding actuator force reduces to

i =el (6.40)

Again, the foregoing relations are written in invariant form. In order to
perform the computations involved, transformations that transfer coordi-
nates between two successive frames are required. Here, we have to keep in
mind that the components of a vector expressed in the (i + 1)st frame can
be transferred to the ith frame by multiplying the vector array in (i + 1)st
coordinates by matrix Q;. In taking these coordinate transformations into
account, we derive the Newton-Euler algorithm from the above equations,
namely,
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Algorithm 6.4.2 (Inward Recursions):

P .
fo  — myé, —f

n? — Lw,+w,xLw,—n+p, xf’
If R then

Tn (nﬁ)z

else

T = (7))
For i=n—-1to 1 step —1 do
Piv1 — Qifﬁl

7 = mi& + $iag
IlZP — Lwi + w; X Lwl + pP; X fZP + Qinﬁ,_l + 51 X ¢i+l
If R then
oo~ (nf).
else
T (fF).  enddo

Note that, within the do-loop of the foregoing algorithm, the vectors to
the left of the arrow are expressed in the ith frame, while f5; and nZ,,,
to the right of the arrow, are expressed in the (i 4+ 1)st frame.

In calculating the computational complexity of this algorithm, note that
the a; — p; term is constant in the (¢4 1)st frame, and hence, it is computed
off-line. Thus, its computation need not be accounted for. A summary of
computational costs is given in Table 6.2 for an n-revolute manipulator,
with the row number indicating the step in Algorithm 6.4.2.

The total numbers of multiplications My and additions Ay required by
the foregoing algorithm are readily obtained, with the result shown below:

Mg =55n—22, A;=44n—14 (6.41)
In particular, for a six-revolute manipulator, one has
n=6, Mgz=2308 A;=250 (6.42)

If the kinematics computations are accounted for, then the Newton-Euler
algorithm given above for the inverse dynamics of n-revolute manipulators

TABLE 6.2. Complexity of Dynamics Computations

Row # M A
1 3 3
2 30 27
5 8(n—1) 4(n—1)
6 3(n—1) 3(n—1)
7 44(n—1) | 37(n—1)
Total 56m — 22 44n — 14
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requires M multiplications and A additions, as given below:

M =13Tn—22, A=110n—14 (6.43)
The foregoing number of multiplications is identical to that reported by
Walker and Orin (1982); however, the number of additions is slightly higher
than Walker and Orin’s figure, namely, 101n — 11.

Thus, the inverse dynamics of a six-revolute manipulator requires 800
multiplications and 646 additions. These computations can be performed in
a few microseconds using a modern processor. Clearly, if the aforementioned
algorithms are tailored to suit particular architectures, then they can be
further simplified. Note that, in the presence of a prismatic pair in the jth
joint, the foregoing complexity is reduced. In fact, if this is the case, the
Newton-Euler equations for the jth link remain as in eqs.(6.38¢c & d) for the
ith link, the only difference appearing in the implementing algorithm, which
is simplified, in light of the results derived in discussing the kinematics
calculations.

The incorporation of gravity in the Newton-Euler algorithm is done most
economically by following the idea proposed by Luh et al. (1980), namely,
by declaring that the inertial base undergoes an acceleration —g, where g
denotes the acceleration of gravity. That is

éo=—g (6.44)

the gravitational accelerations thus propagating forward to the EE. A com-
parison of various algorithms with regard to their computational complex-
ity is displayed in Table 6.3 for an n-revolute manipulator. For n = 6, the
corresponding figures appear in Table 6.4.

6.5 The Natural Orthogonal Complement in Robot
Dynamics

In simulation studies, we need to integrate the system of ordinary differ-
ential equations (ODE) describing the dynamics of a robotic mechanical

TABLE 6.3. Complexity of Different Algorithms for Inverse Dynamics

Author(s) Methods Multiplications  Additions
Hollerbach (1980) E-L 412n — 277 320n — 201
Luh et al. (1980) N-E 150n — 48 131n — 48
Walker & Orin (1982) N-E 137n — 22 101n — 11
Khalil et al. (1986) N-E 105m — 92 94n — 86
Angeles et al. (1989) Kane 105n — 109 90n — 105
Balafoutis & Patel (1991)  tensor 93n — 69 81n — 65
Li & Sankar (1992) E-L 88n — 69 76n — 66
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TABLE 6.4. Complexity of Different Algorithms for Inverse Dynamics, for n = 6

Multiplications  Additions
Author(s) Methods (n=6) (n=6)
Hollerbach (1980) E-L 2195 1719
Luh et al. (1980) N-E 852 738
Walker & Orin (1982) N-E 800 595
Hollerbach and Sahar (1983)  N-E 688 558
Kane & Levinson (1983) Kane 646 394
Khalil et al. (1986) N-E 538 478
Angeles et al. (1989) Kane 521 435
Balafoutis & Patel (1991) tensor 489 420
Li & Sankar (1992) E-L 459 390

system. This system is known as the mathematical model of the system
at hand. Note that the Newton-Euler equations derived above for a serial
manipulator do not constitute the mathematical model because we cannot
use the recursive relations derived therein to set up the underlying ODE
directly. What we need is a model relating the state of the system with its
external generalized forces of the form

x =f(x,u), =x(to) =x0 (6.45)

where x is the state vector, u is the input or control vector, Xg is the state
vector at a certain time tp, and f(x,u) is a nonlinear function of x and
u, derived from the dynamics of the system. The state of a dynamical
system is defined, in turn, as the set of variables that separate the past
from the future of the system (Bryson and Ho, 1975). Thus, if we take tg
as the present time, we can predict from egs.(6.45) the future states of the
system upon integration of the initial-value problem at hand, even if we
do not know the complete past history of the system in full detail. Now, if
we regard the vector @ of independent joint variables and its time-rate of
change, 0, as the vectors of generalized coordinates and generalized speeds,
then an obvious definition of x is

x=[o7 &' (6.46)
The n generalized coordinates, then, define the configuration of the system,
while their time-derivatives determine its generalized momentum, an item
defined in eq.(6.19d). Hence, knowing 0 and 0, we can predict the future
values of these variables with the aid of eqs.(6.45).

Below we will derive the mathematical model, eq.(6.45), explicitly, as
pertaining to serial manipulators, in terms of the kinematic structure of the
system and its inertial properties, i.e., the mass, mass-center coordinates,
and inertia matrix of each of its bodies. To this end, we first write the
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underlying system of uncoupled Newton-Euler equations for each link. We
have n + 1 links numbered from 0 to n, which are coupled by n kinematic
pairs. Moreover, the base link 0 need not be an inertial frame; if it is
noninertial, then the force and moment exerted by the environment upon it
must be known. For ease of presentation, we will assume in this section that
the base frame is inertial, the modifications needed to handle a noninertial
base frame to be introduced in Subsection 6.5.2.

We now recall the Newton-Euler equations of the ith body in 6-dimen-
sional form, eqs.(6.5¢), which we reproduce below for quick reference:
Furthermore, the definitions of eqs.(6.13b & b) are recalled. Apparently,
M and W are now 6n x 6n matrices, while t, w¢, w4, and w? are all
6n-dimensional vectors. Then the foregoing 6n scalar equations for the n
moving links take on the simple form

Mt = ~-WMt + w? + w¢ + wl + w® (6.48)

in which w" has been decomposed into its active, gravitational, and dissi-
pative parts w2, w¥, and w?, respectively. Now, since gravity acts at the
mass center of a body, the gravity wrench wiG acting on the ith link takes
the form
a 0

w, = {mig} (6.49)
The mathematical model displayed in eq.(6.48) represents the uncoupled
Newton-Euler equations of the overall manipulator. The following step of
this derivation consists in representing the coupling between every two
consecutive links as a linear homogeneous system of algebraic equations on
the link twists. Moreover, we note that all kinematic pairs allow a relative
one-degree-of-freedom motion between the coupled bodies. We can then
express the kinematic constraints of the system in linear homogeneous form
in the 6n-dimensional vector of manipulator twist, namely,

Kt =0 (6.50)

with K being a 6n x 6n matrix, to be derived in Subsection 6.5.1. What is
important to note at the moment is that the kinematic constraint equations,
or constraint equations, for brevity, egs.(6.50), consist of a system of 6n
scalar equations, i.e., six scalar equations for each joint, for the manipulator
at hand has n joints. Moreover, when the system is in motion, t is different
from zero, and hence, matrix K is singular. In fact, the dimension of the
nullspace of K, termed its nullity, is exactly equal to m, the degree of
freedom of the manipulator. Furthermore, since the nonworking constraint
wrench w® produces no work on the manipulator, its sole function being
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to keep the links together, the power developed by this wrench on t, for
any possible motion of the manipulator, is zero, i.e.,

tTw? =0 (6.51)

On the other hand, if the two sides of eq.(6.50) are transposed and then
multiplied by a 6n-dimensional vector A, one has

tTKT'XA =0 (6.52)
Upon comparing eqs.(6.51) and (6.52), it is apparent that w¢ is of the form
w¢ =KTX (6.53)

More formally, the inner product of w® and t, as stated by eq.(6.51),
vanishes, and hence, t lies in the nullspace of K, as stated by eq.(6.50). This
means that w© lies in the range of K7, as stated in eq.(6.53). The following
step will be to represent t as a linear transformation of the independent
generalized speeds, i.e., as

t =T6 (6.54)

with T defined as a 6n x n matrix that can be fairly termed the twist-
shaping matriz. Moreover, the above mapping will be referred to as the
twist-shape relations. The derivation of expressions for matrices K and T
will be described in detail in Subsection 6.5.1 below. Now, upon substitution
of eq.(6.54) into eq.(6.50), we obtain

KT =0 (6.55a)

Furthermore, since the degree of freedom of the manipulator is n, the n
generalized speeds { 0; }7 can be assigned arbitrarily. However, while doing
this, eq.(6.55a) has to hold. Thus, the only possibility for this to happen is
that the product KT vanish, i.e.,

KT =0 (6.55b)

where O denotes the 6nxn zero matrix. The above equation states that T is
an orthogonal complement of K. Because of the particular form of choosing
this complement—see eq.(6.54)—we refer to T as the natural orthogonal
complement of K (Angeles and Lee, 1988).
In the final step of this method, t of eq.(6.48) is obtained from eq.(6.54),
namely,
t=T0+T6 (6.56)

Furthermore, the uncoupled equations, egs.(6.48), are multiplied from the
left by T7, thereby eliminating w® from those equations and reducing
these to a system of only n independent equations, free of nonworking
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constraint wrenches. These are nothing but the Euler-Lagrange equations
of the manipulator, namely,

16 = —TT(MT + WMT)§ + T7 (w* + w” + w®) (6.57)

where I is the positive definite n x n generalized inertia matriz of the
manipulator and is defined as

I=T"MT (6.58)

which is identical to the inertia matrix derived using the Euler-Lagrange
equations, with 0 as the vector of generalized coordinates. Now, we let 7
and § denote the n-dimensional vectors of active and dissipative generalized
force. Moreover, we let C(6, 8) be the n-dimensional vector of quadratic
terms of inertia force. These items are defined as

r=TTw?, 6=TTwP, ~=TTwC,
C(0, 6) = T"MT + T"WMT (6.59)

Clearly, the sum 7 + & produces ¢, the generalized force defined in
eq.(6.11). Thus, the Euler-Lagrange equations of the system take on the
form

10 =—-CO+1+d+7 (6.60)

If, moreover, a static wrench w" acts onto the end-effector, with the force
applied at the operation point, then its effect onto the above model is taken
into account as indicated in eq.(4.95). Thus, a term J7w" is added to the
right-hand side of the above model:

0=-CO+1+d+~+I"wW (6.61)

As a matter of fact, 4 is defined in eq.(6.59) only for conceptual reasons.
In practice, this term is most easily calculated once a dissipation function
in terms of the generalized coordinates and generalized speeds is available,
as described in Section 6.8. Thus, d is computed as

0A

00

It is pointed out that the first term of the right-hand side of eq.(6.60)
is quadratic in @ because matrix C, defined in eq.(6.59), is linear in 6. In
fact, the first term of that expression is linear in a factor T that is, in turn,
linear in 6. Moreover, the second term of the same expression is linear in
W, which is linear in @ as well. However, C is nonlinear in 0. Because of
the quadratic nature of that term, it is popularly known as the vector of
Coriolis and centrifugal forces, whereas the left-hand side of that equation
is given the name of vector of inertia forces. Properly speaking, both the
left-hand side and the first term of the right-hand side of eq.(6.60) arise
from inertia forces.

5= (6.62)
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Example 6.5.1 (A minimum-time trajectory) A pick-and-place oper-
ation is to be performed with an n-axis manipulator in the shortest possible
time. Moreover, the maneuver is defined so that the n-dimensional vector
of joint variables is given by a common shape function s(x), with0 < x <1
and 0 < s < 1, which is prescribed. Thus, for a fized n-dimensional vector
0o, the time-history of the joint-variable vector, O(t), is given by

0(t):90+s<%>A0, 0<t<T

with T defined as the time taken by the maneuver, while 8y and Oy + AO
are the values of the joint-variable vector at the pick- and the place-postures
of the manipulator, respectively. These vectors are computed from inverse
kinematics, as explained in Chapter 4. Furthermore, the load-carrying ca-
pacity of the manipulator is specified in terms of the maximum torques
delivered by the motors, namely,

|7i| <7y, for i=1,...,n

where the constant values T; are supplied by the manufacturer. In order to
keep the analysis simple, we neglect power loses in this example. Find the
minimum time in which the maneuver can take place.

Solution: Let us first calculate the vector of joint-rates and its time-deriv-
ative:

0(t) = ls’(x)AH ot) = is"(gc)AG r= L

T ’ -T2 T T

Now we substitute the above values into the mathematical model of eq.(6.60),
with §(¢) = 0, thereby obtaining

T =1(0)0 + C(6, 9)9%3”($)I($)A9 + %s’z(x)C(x)AH = _—f(x)

with f(x) defined, of course, as
f(z) = [I(z)s" (z) + C(z)s' ()] A8

the 1/T? factor in the term of Coriolis and centrifugal forces stemming
from the quadratic nature of the C(6,0)8 term. What we now have is the
vector of motor torques, 7, expressed as a function of the scalar argument
x. Now, let f;(z) be the ith component of vector f(x), and

F, = max{|fi(z)|}, for i=1,....n

We would then like to have each value F; produce the maximum available
torque T;, namely,

I

oF

Z:ﬁ, 2:1,71
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and hence, for each joint we have a value T; of T' given by

Obviously, the minimum value sought, Tmin, is nothing but the maximum
of the foregoing values, i.e.,

thereby completing the solution.

6.5.1 Derivation of Constraint Equations and
Twist-Shape Relations

In order to illustrate the general ideas behind the method of the natural or-
thogonal complement, we derive below the underlying kinematic constraint
equations and the twist-shape relations. We first note, from eq.(6.25a), that
the relative angular velocity of the ith link with respect to the (i — 1)st
link, w; —w;_1, is éiei. Thus, if matrix E; is defined as the cross-product
matrix of vector e;, then, the angular velocities of two successive links obey
a simple relation, namely,

Furthermore, we rewrite now eq.(6.33a) in the form
¢ —¢_1+Rw;,+D;,_1w;—1=0 (6.64)

where D; and R,; are defined as the cross-product matrices of vectors d;,
defined in Subsection 6.4.1 as a; — p;, and p;, respectively. In particular,
when the first link is inertial, eqs.(6.63 & b), as pertaining to the first link,
reduce to

Elwl =0 (6.653)
¢ +Riw; =0 (6.65b)

Now, eqs.(6.63) and (6.64), as well as their counterparts for i = 1,
eqs.(6.65a & b), are further expressed in terms of the link twists, thereby
producing the constraints below:

Klltl =0 (666&)
Kiiciti-1 +Kyut; =0, ¢=1,...,n (6.66b)

with K11 and Kjj;, for i =2,...,n and j =14 — 1,4, defined as

En O] (6.67a)

Ky = [Rl 1
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[-E, O
Kii1= [I)il 1] (6.67b)
_[E;, O

where 1 and O denote the 3 x 3 identity and zero matrices, respectively.
Furthermore, from egs.(6.66a & b) and (6.67a—c), it is apparent that matrix
K appearing in eq.(6.55b) takes on the form

Kll Oe Oe ce 06 06
Ko Ky O --- Oe¢ Oe
K= : : Lo : : (6.68)
O O Os -+ Kp_1n-1 Os
06 06 06 e Kn,nfl Knn

with Og denoting the 6 x 6 zero matrix.

Further, the link-twists are expressed as linear combinations of the joint-
rate vector . To this end, we define the 6 x n partial Jacobian J; as the
matrix mapping the joint-rate vector 6 into the twist t; of that link, i.e.,

J0=t; (6.69)
whose jth column, t;;, is given, for i, j=1,2, ..., n, by
{ N } , it <
€; X I'j;
ti; = (6.70)
0 .
[ O] , otherwise.

with r;; illustrated in Fig. 6.6 and defined, for ¢, j =1,...,n, as
aj +aj+1+ - +ai_1+p;, ifj<i;
rij =4 Pis if j =1 (6.71)
0, otherwise.

We can thus readily express the twist t; of the ith link as a linear com-
bination of the first 7 joint rates, namely,

tiZéltil—l—éztiz-i-'“—l—éitii, 1=1,....,n (6.72)
and hence, matrix T of eq.(6.54) takes the form
ty O - 0
tog te - 0
T=| . . ) (6.73)
thr th2 o tan

As a matter of verification, one can readily prove that the product of ma-
trix T, as given by eq.(6.73), by matrix K, as given by eq.(6.68), vanishes,
and hence, relation (6.55b) holds.

TLFeBOOK



242 6. Dynamics of Serial Robotic Manipulators

O +1

04

FIGURE 6.6. Kinematic subchain comprising links j, 7+ 1..., i.

The kinematic constraint equations on the twists, for the case in which
the ith joint is prismatic, are derived likewise. In this case, we use egs.(6.34a
& e), with the latter rewritten more conveniently for our purposes, namely,

Wi = Wi—1 (6.74a)
¢ = €1+t w1 X (8—1+ p; + bie;) + ey (6.74b)

We now introduce one further definition:
R;=D;_; +R; (6.75)

where D}_, is the cross-product matrix of vector d;_1, defined in Subsec-
tion 6.4.1 as d;—_1 — p,_,, while R; is the cross-product matrix of p; + b;e;.
Hence, eq.(6.74b) can be rewritten as

éi — éi—l + R;wl - i)iei =0 (676)

Upon multiplication of both sides of eq.(6.76) by E;, the term in b; cancels,
and we obtain
Ez(cz - éi_l + R;wl) =0 (677)
Hence, eqs.(6.74a) and (6.77) can now be regrouped in a single 6-dimen-
sional linear homogeneous equation in the twists, namely,

K 1ti-1 +Kjt; =0 (6.78)
the associated matrices being defined below:
ii-1= [61 _%i] (6.79a)

10 } (6.79b)

[ —
Kii = [EiR; E;
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with 1 and O defined already as the 3 x 3 identity and zero matrices,
respectively. If the first joint is prismatic, then the corresponding constraint
equation takes on the form

K)t1 =0 (6.80)
with K/, defined as

= [(1) éﬂ (6.81)

Furthermore, if the kth pair is prismatic and 1 < k < ¢, then the twist
t; of the ith link changes to

ti = Ot + -+ bgtly 4+ Oity, i=1,....n (6.82)
where tf, is defined as

; |0
t, = {ek} (6.83)

In order to set up eq.(6.60), then all we now need is T, which is computed
below. Two cases will be distinguished again, namely, whether the joint at
hand is a revolute or a prismatic pair. In the first case, from eq.(6.70) one
readily derives, for i, j =1,2,...,n,

{(w- X e')wi :--eie- X r] i<
b = e (6.84)
0 otherwise
0 )
where, from eq.(6.71),
Fij =wjXaj+ w1 Xa_1+wxp; (6.85)

On the other hand, if the kth pair is prismatic and 1 < k < 4, then from
eq.(6.83), the time-rate of change of t, becomes

i = Lkg ek] (6.86)
thereby completing the desired derivations.

Note that the natural orthogonal complement can also be used for the
inverse dynamics calculations. In this case, if the manipulator is subjected
to a gravity field, then the twist-rate of the first link will have to be modified
by adding a nonhomogeneous term to it, thereby accounting for the gravity-
acceleration terms. This issue is discussed in Section 6.7.
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6.5.2 Noninertial Base Link

Noninertial bases occur in space applications, e.g., in the case of a manip-
ulator mounted on a space platform or on the space shuttle. A noninertial
base can be readily handled with the use of the natural orthogonal comple-
ment, as discussed in this subsection. Since the base is free of attachments
to an inertial frame, we have to add its six degrees of freedom (dof) to the
n dof of the rest of the manipulator. Correspondingly, t, w®, w#, and wP
now become 6(n + 1)-dimensional vectors. In particular, t takes the form

t=[tF t7 ... t7)" (6.87)

with tg defined as the twist of the base. Furthermore, the vector of in-
dependent generalized speeds, 9, is now of dimension n + 6, its first six
components being those of tg, the other n remaining as in the previous
case. Thus, 0 has the components shown below:

O=[tT 6, ... 6,]" (6.88)

Correspondingly, T becomes a 6(n + 1) x (n + 6) matrix, namely,

T= [5, ,i,),] (6.89)

where 1 is the 6 x 6 identity matrix, O denotes the 6 x n zero matrix, O’
represents the 6n x 6 zero matrix, and T’ is the 6n X n matrix defined in
eq.(6.73) as T. Otherwise, the model remains as in the case of an inertial
base.

A word of caution is in order here. Because of the presence of the twist
vector to in the definition of the vector of generalized speeds above, the
latter cannot, properly speaking, be regarded as a time-derivative. Indeed,
as studied in Chapter 3, the angular velocity appearing in the twist vector is
not a time-derivative. Hence, the vector of independent generalized speeds
defined in eq.(6.88) is represented instead by v, which does not imply a
time-derivative, namely,

v=[tF 6. - 6,]" (6.90)

6.6 Manipulator Forward Dynamics

Forward dynamics is needed either for purposes of simulation or for the
model-based control of manipulators (Craig, 1989), and hence, a fast cal-
culation of the joint-variable time-histories @(¢) is needed. These time-
histories are calculated from the model displayed in eq.(6.61), reproduced
below for quick reference, in terms of vector 6(¢), i.e.,

10 = —C(0,0)0 + (1) +(0,0) +~(0) + I"w" (6.91)
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Clearly, what is at stake here is the calculation of @ from the foregoing
model. Indeed, the right-hand side of eq.(6.91) can be calculated with the
aid of the Newton-Euler recursive algorithm, as we will describe below,
and needs no further discussion for the time being. Now, the calculation
of @ from eq.(6.91) is similar to the calculation of @ from the relation
between the joint-rates and the twist, derived in Section 4.5. From the
discussion in that section, such calculations take a number of floating-point
operations, or flops, that is proportional to n®, and is thus said to have a
complexity of O(n®)—read “order n3.” In real-time calculations, we would
like to have a computational scheme of O(n). In attempting to derive such
schemes, Walker and Orin (1982) proposed a procedure that they called the
composite rigid-body method, whereby the number of flops is minimized by
cleverly calculating I(@) and the right-hand side of eq.(6.91) by means of the
recursive Newton-Euler algorithm. In their effort, they produced an O(n?)
algorithm to calculate . Thereafter, Featherstone (1983) proposed an O(n)
algorithm that is based, however, on the assumption that Coriolis and
centrifugal forces are negligible. The same author reported an improvement
to the aforementioned algorithm, namely, the articulated-body method, that
takes into account Coriolis and centrifugal forces (Featherstone, 1987.) The
outcome, for an n-revolute manipulator, is an algorithm requiring 300n —
267 multiplications and 279n — 259 additions. For n = 6, these figures yield
1,533 multiplications and 1,415 additions. Li (1989) reported an O(n?)
algorithm leading to 783 multiplications and 670 additions.

In this subsection, we illustrate the application of the method of the
natural orthogonal complement to the modeling of an n-axis serial ma-
nipulator for purposes of simulation. While this algorithm gives an O(n?)
complexity, its derivation is straightforward and gives, for a six-axis ma-
nipulator, a computational cost similar to that of Featherstone’s, namely,
1,596 multiplications and 1,263 additions. Moreover, a clever definition of
coordinate frames leads to even lower figures, i.e., 1,353 multiplications and
1,165 additions, as reported by Angeles and Ma (1988). Further develop-
ments on robot dynamics using the natural orthogonal complement have
been reported by Saha (1997, 1999), who proposed the decoupled natural
orthogonal complement as a means to enable the real-time inversion of the
mass matrix.

The manipulator at hand is assumed to be constituted by n moving links
coupled by n kinematic pairs of the revolute or prismatic types. Again,
for brevity, the base link is assumed to be inertial, noninertial bases be-
ing readily incorporated as described in Subsection 6.5.2. For the sake of
conciseness, we will henceforth consider only manipulators mounted on an
inertial base. Moreover, we assume that the generalized coordinates 8 and
the generalized speeds @ are known at an instant ¢, along with the driving
torque T(t), for t > t;, and of course, the DH and the inertial parameters
of the manipulator are assumed to be known as well. Based on the forego-
ing information, then, 0 is evaluated at ¢, and, with a suitable integration
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scheme, the values of @ and @ are determined at instant tj+1. Obviously,
the governing equation (6.60) enables us to solve for 8(t;). This requires,
of course, the inversion of the n x n matrix of generalized inertia I. Since
the said matrix is positive-definite, solving for 6 from eq.(6.60) can be done
economically using the Cholesky-decomposition algorithm (Dahlquist and
Bjorck, 1974). The sole remaining task is, then, the computation of I, the
quadratic inertia term Cé, and the dissipative torque 8. The last of these
is dependent on the manipulator and the constitutive model adopted for
the representation of viscous and Coulomb friction forces and will not be
considered at this stage. Models for dissipative forces will be studied in
Section 6.8. Thus, the discussion below will focus on the computation of I
and C@ appearing in the mathematical model of eq.(6.91).
Next, the 6n x 6n matrix M is factored as

M =H"H (6.92)

which is possible because M is at least positive-semidefinite. In particular,
for manipulators of the type at hand, M is positive-definite if no link-mass
is neglected. Moreover, due to the diagonal-block structure of this matrix,
its factoring is straightforward. In fact, H is given simply by

H = diag(Hy, ..., H,) (6.93)

each 6 x 6 block H; of eq.(6.93) being given, in turn, as

Ni O } (6.94)

with 1 and O defined as the 3 x 3 identity and zero matrices, respectively.
We thus have

M, = H/ H; (6.95)

Furthermore, IN; can be obtained from the Cholesky decomposition of I;,
while n; is the positive square root of my, i.e.,

Ii = NZTN“ m; = 7112 (696)
Now, since each 6 x 6 M; block is constant in body-fixed coordinates, the

above factoring can be done off-line. From the foregoing definitions, then,
the n X n matrix of generalized inertia I can now be expressed as

I=P'P (6.97)
where P is defined, in turn, as the 6n x n matrix given below:

P =HT (6.98)
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The computation of P is now discussed. If we recall the structure of T
from eq.(6.73) and th