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Chapter 8 

Monte Carlo Simulation 
 
8.1 Introduction 
 

Monte Carlo simulation is named after the city of Monte Carlo in Monaco, which is 
famous for gambling such as roulette, dice, and slot machines. Since the simulation 
process involves generating chance variables and exhibits random behaviors, it has been 
called Monte Carlo simulation. Monte Carlo simulation is a powerful statistical analysis 
tool and widely used in both non-engineering fields and engineering fields. It was 
initially used to solve neutron diffusion problems in atomic bomb work at Alamos 
Scientific Laboratory in 1944. Monte Carlo simulation has been applied to diverse 
problems ranging from the simulation of complex physical phenomena such as atom 
collisions to the simulation of traffic flow and Dow Jones forecasting. Monte Carlo is 
also suitable for solving complex engineering problems because it can deal with a large 
number of random variables, various distribution types, and highly nonlinear engineering 
models.  
  
Different from a physical experime nt, Monte Carlo simulation performs random 
sampling and conducts a large number of experiments on computer. Then the statistical 
characteristics of the experiments (model outputs) are observed, and conclusions on the 
model outputs are drawn based on the statistical experiments. In each experiment, the 
possible values of the input random variables 1 2( , , , )nX X X=X L  are sampled 
(generated) according to their distributions. Then the values of the output variable Y are 
calculated through the performance function ( )Y g= X  at the samples of input random 
variables. With a number of experiments carried out in this manner, a set of samples of 
output variable Y are available for the statistical analysis, which estimates the 
characteristics of the output variable Y. 
 
The outline of Monte Carlo simulation is depicted in Fig. 9.1. Three steps are required in 
the simulation process: Step 1 – sampling on random input variables X, Step 2 – 
evaluating model output Y, and Step 3 – statistical analysis on model output.  
 
We will focus our discussions on independent random variables. However, Monte Carlo 
simulation is applicable for dependent variables. The three steps of Monte Carlo 
simulation are discussed in the following sections. 
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Figure 9.1 Monte Carlo Simulation 
 

 
8.2 Sampling on input random variables 
 

The purpose of sampling on the input random variables 1 2( , , , )nX X X=X L  is to 
generate samples that represent distributions of the input variable from their cdfs 

( ) ( 1,2, , )
iX iF x i n= L . The samples of the random variables will then be used as inputs to 

the simulation experiments. Two steps are involved for this purpose: Step 1 – generating 
random variables that are uniformly distributed between 0 and 1, and Step 2 – 
transforming the values of the uniform variable obtained from Step 1 to the values of 
random variables that follow the given distributions ( ) ( 1,2, , )

iX iF x i n= L . 
 
Step 1 – Generating random variables that are uniformly distributed between 0 and 1 

 
The importance of uniform numbers over the continuous range [0, 1] is that they can be 
transformed into real values that follow any distributions of interest. In the early times of 
simulation, random numbers were generated by mechanical ways, such as drawing balls, 
throwing dice, as the same way as many of today’s  lottery drawings. Now any modern 
computers have the capability to generate uniformly distributed random variables 

Step 3: Statistic Analysis on model output 
Extracting probabilistic information 

Step 2: Numerical Experimentation 
Evaluating performance function 

Step 1: Sampling of random variables 
Generating samples of random variables  

Analysis Model 
 

Y = g(X) 
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input variables 
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characteristics of output 
variables 

Distributions of 
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between 0 and 1. There are a number of arithmetic random-generators developed for the 
computer-based random generation. Random variables generated this way are called 
pseudo random numbers.   

 
A random-generator produces a sequence of uniform numbers between 0 and 1. The 
length of the sequence before repeating itself is machine and algorithm dependent. The 
following 20 uniform random variables in the interval of [0, 1] are generated with the 
MATLAB random variable generator rand. 
 

Table 9.1 [0, 1] Uniform Random Variables 
 

0.8381 0.6813 0.8318 0.7095 0.3046 0.1934 0.3028 0.1509 0.3784 0.8537 
0.0196 0.3795 0.5028 0.4289 0.1897 0.6822 0.5417 0.6979 0.8600 0.5936 

 
 

Step 2 – Transforming [0, 1] uniform variables into random variables that follow the 
given distributions 

 
The task is to transform the samples of [0, 1] uniform variable, 1 2( , , , )Nz z z=z L , where 
N is the number of samples, generated from Step 1, into values of random variable Xi  
that follows a given distribution ( )

iX iF x . There are several methods for such a 
transformation. The simple and direct transformation is the inverse transformation 
method. By this method, the random variable is given by 

 
 1( ), 1,2, ,

ii X ix F z i N−= = L  (9.1) 
 

where  1
iXF −  is the inverse of the cdf of the random variable iX . 

 
The transformation is demonstrated in Fig. 9.2. 
 

 
Figure 9.2 The Inverse Transformation Method 
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For example, if X is normally distributed with ( ,  )X XN µ σ , since 
 

 ( ) X
X

X

x
z F x

µ
σ

 −
= = Φ 

 
 (9.2) 

 
then 

 1( )X Xx zµ σ −= + Φ  (9.3) 
 

 
8.3 Numerical Experimentation 
 

Suppose that N samples of each random variable are generated, then all the samples of 
random variables constitute N sets of inputs, 1 2( , , , ), 1,2, ,i i i inx x x i N= =x L L , to the 
model ( )Y g= X . Solving the problem N times deterministically yields N sample points 
of the output Y.  
 

 ( ), 1,2,i iy g i N= =x L  (9.4) 
 

 
8.4 Extraction of probabilistic information of output variables 
 

After N samples of output Y have been obtained, statistical analysis can be carried out to 
estimate the characteristics of the output Y, such as the mean, variance, reliability, the 
probability of failure, pdf and cdf. The associated equations are given below: 

 
The mean 

 
1

1 N

i
i

Y y
N =

= ∑  (9.5) 

 
The variance 

 2 2

1

1 ( )
1

N

Y i
i

y Y
N

σ
=

= −
− ∑   (9.6) 

 
If the failure is defined by the event 0g ≤ , the probability of failure is then calculated by 

(see Eq. 6.9) 

 { }
1 2, , , 1 2 1 2

( ) 0 ( ) 0

P 0 ( , , , ) ( )
nf X X X n n

g g

p g f x x x dx dx dx f d
≤ ≤

= ≤ = =∫ ∫ ∫ X
x x

x xLL L L  (9.7) 

where 1 2( , , , )nX X X=X L  and 1 2=( , , , )nx x xx L .  
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The equation can be rewritten as 

 ( ) ( )f Xp I f d
+∞

−∞
= ∫ x x x  (9.8) 

where ( )I ⋅  is an indicator function, which is defined by 

 
1 if ( ) 0

( )
0 otherwise

g
I

≤
= 



x
x                                                  (9.9)    

According to Eq. 3.9, the integral on the right-hand side of Eq. 9.8 is simply the expected 

value (or average) of ( )I x . Therefore, fp can be estimated by the average value of ( )I x  

as  

 
1

1
( ) ( )

N
f

f i
i

N
p I I

N N=

= = =∑x x  (9.10) 

 
where fN is the number of samples that have the performance function less than or equal 

to zero, i.e. 0g ≤ . 
 

The reliability is then estimated by 
 

 { }P 0 1 f
f

N N
R g p

N

−
= > = − =  (9.11) 

 
Similar to the calculation of the probability of failure, the cdf is given by 

 

 ( ) '

1

1( ) P ( )
N

Y i
i

F y g y I y
N =

= ≤ = ∑  (9.12) 

 
where the indicator function is defined by 

 

 ' 1 if ( )
( )

0 otherwise
g y

I
≤

= 


x
x         (9.13)                                                 

 
The pdf ( )Yf y can be obtained by the numerical differentiation of cdf ( )YF y . 
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8.5 Examples  
  

Two examples are used to demonstrate Monte Carlo simulation.  
 
Example 9.1 
 
The allowable stress 1X of a mechanical component is normally distributed, 

1 (120,20) MPaX N∼ , and the maximum stress 2X  is normally distributed, 

2 (100,10) MPaX N∼ . What is the probability of failure fp ? 
 
Analytical solution 
 
For this simple problem, an analytical solution exists. Since both 1X  and 2X are normally 
distributed, 1 2( )Y g X X= = −X  is also normally distributed. Then the probability of 
failure is given by 
 

 ( )
2 2

0 (120 100)
0 (0) 0.1855

20 10
Y

f Y
Y

p P Y F
µ

σ
  − − −

= < = = Φ = Φ =   
+   

                                                         

 
Monte Carlo simulation solution 
 
Table 9.2 shows the results from Monte Carlo simulation. 20 samples for 1X  and 2X  are 
drawn from their respective distributions. Then the output Y is calculated with the 
function 1 2( )Y g X X= = −X , and the indication function I is also calculated.   

 
Table 9.2 Samples from Monte Carlo Simulation 

 
Simulation X1 X2 Y I 

1 158.9081 96.3591 62.549 0 
2 127.9944 97.7657 30.2287 0 
3 89.3021 89.0936 0.2085 0 
4 114.9522 94.0466 20.9056 0 
5 129.7092 74.1456 55.5636 0 
6 122.9478 112.6098 10.338 0 
7 163.0985 95.8219 67.2765 0 
8 115.815 109.4279 6.3871 0 
9 121.8649 102.7287 19.1362 0 
10 103.0178 109.9262 -6.9085 1 
11 126.8695 86.0036 40.8658 0 
12 138.3068 114.8298 23.4771 0 
13 118.5968 86.3359 32.2609 0 
14 149.3739 94.2811 55.0927 0 
15 145.7642 95.8336 49.9307 0 
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Simulation X1 X2 Y I 
16 87.46 105.8226 -18.3626 1 
17 89.7571 85.6344 4.1227 0 
18 111.4169 92.4829 18.934 0 
19 120.5707 98.9355 21.6353 0 
20 119.3122 113.1373 6.1749 0 

 
 
From Eq. 9.10, the probability of failure is computed by 
 

 
1

1 2( ) ( ) 0.10
20

N

f i
i

p I I y
N =

= = = =∑x   

 
Other characteristics of Y can also be calculated as follows. 
 
The mean 
 

 
20

1 1

1 1 20.9823 MPa
20

N

i i
i i

Y y y
N = =

= = =∑ ∑   

The standard deviation 
 

  
20

2 2

1 1

1 1( ) ( 20.9823) 19.1673 MPa
1 20 1

N

i i
i i

S y Y y
N = =

= − = − =
− −∑ ∑  

 
Figure 9.3 Samples of 1X  and 2X  

 

1 2( ) 0Y g X X= = − =X
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The samples of 1X  and 2X  are plotted in Fig. 9.3. As shown in the figure and Table 9.2, 
two samples are in the failure region; namely, the number of failures is two. 
 
The result of the probability of failure fp has a large error compared to the analytical 
solution because the number of simulations is small. If the number of simulations N 
increases, the solution of fp  will be more accurate. The solutions from different number 
of simulations are displayed in Table 9.3. The numbers of failures and the errors of the 
solutions of fp  are also shown in the table. As the number of simulations increases, the 
error decreases. Theoretically, if the number of simulations approaches infinity, the 
solution of fp  converges to the true solution. The relationship between the error and the 
number of simulations will be discussed in next section. 
 

Table 9.3 Results from Different Numbers of Simulations 
 

N 20 103 104 105 106 

fN  2 156 1.763 18606 185446 

fp  0.10 0.1560 0.1763 0.1861 0.1854 
Error -46.09% -15.90% -4.96% 0.32% -0.05% 

 
 
Example 9.2 
 
A cantilever beam is illustrated in Fig. 9.4. This is the same problem we have presented 
in Example 7.2. 
 

Px 

Py 
 

w 

t 

L 

 

Figure 9.4 A Cantilever Beam 

One of the failure modes is that the tip displacement exceeds the allowable value, D0. The 
performance function is the difference between D0 and the tip displacement and is given 
by 
 

   
2 23

0 2 2

4 y x
PL Pg D

Ewt t w
 = − +     
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where ''
0 3D = , 630 10 psiE = ×  is the modulus of elasticity, ''100L =  is the length, w and t 

are width and height of the cross section, respectively, and ''2w = and ''4t = . xP  and yP  

are external forces which follow normal distributions, and ~ (500,100)xP N lb  and 
~ (1000,100)yP N lb . 

 
The probability of failure is defined as the probability of the allowable displacement less 
than the tip displacement, i.e.   
 

 
2 23

0 2 2

4
0y x

f

P PL
p P g D

Ewt t w

    = = − + ≤    
    

  

 
This problem involves only two random variables and can be easily visualized within a  
2-D random space as shown in Fig. 9.5.  It is seen that the space is divided by the curve 
of limit state 0g = into the safe region and failure region. At first, 10 samples of xP  and 

yP  are drawn and are shown in Table 9.4. The samples are also depicted in the Fig. 9.5 
(a).  
 

Table 9.4 Random Samples for the Example 
 

Simulations 
xP  yP  Y 

1 456.7435 981.3291 0.8397 
2 333.4416 1072.5791 1.2171 
3 512.5332 941.1683 0.6502 
4 528.7676 1218.3186 0.4574 
5 385.3529 986.3604 1.0938 
6 619.0915 1011.3931 0.2136 
7 618.9164 1106.6768 0.1752 
8 496.2367 1005.9281 0.6820 
9 532.7292 990.4352 0.5522 

10 517.4639 916.7651 0.6419 
 

 
At all the sample points, the performance function g>0 (see Table 9.4 and Fig. 9.5(a)). In 
other words, all the samples fall into the safe region. Therefore the probability of failure 
is equal to zero. This means that the sample size is not large enough. If 100 samples are 
used, there is one sample falling into the failure region (see Fig. 9.5 (b)). Therefore the 
probability is 1/100=0.01. If we increase the sample size to 1,000, there are 27 samples 
where the beam fails. This gives an estimate of the probability of failure of 27/1000 = 
0.027 (see Fig. 9.5 (c)). As we have seen in the last example, the larger the sample size is, 
the more accurate the estimate of the probability of failure will be. If 100,000 simulations 
are performed, the estimate of the probability of failure is 0.04143 as shown in Fig. 9.5 
(d). Recall that the probability of failure computed by FORM in Example 7.2 is 0.04054  
and by SORM in Example 7.5 is 0.04098 . If the probability of failure obtained from 
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Monte Carlo simulation with 100,000 simulations is considered as an accurate solution, 
and the example confirms that SORM is more accurate than FORM for this problem. 
 
Figs. 9.6 and 9.7 show the cdf and pdf of the performance function g with 100,000 
simulations.  
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             (c) N=1000          (d) N=100000 
 

Figure 9.5 Monte Carlo Simulation of the Cantilever Beam 
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Figure 9.6 cdf           Figure 9.7 pdf  
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8.6 Error Analysis 
 
As demonstrated in preceding examples, the accuracy of Monte Carlo Simulation 
depends on the number of simulations N. The higher the number of simulations is, the 
more accurate the estimate will be. As the number of simulations N approaches infinity, 
the solution of Monte Carlo simulation will converge to the true probability that is under 
estimation. Since reliability assessment normally needs high accuracy, it is important to 
know the error involved in the estimated probability of failure. On the other hand, it is 
also important to know how many simulations are required to achieve the desired 
accuracy. The percentage error of the estimate of the probability failure is found to be 

 

 1 / 2

(1 )
% 100

T
f

T
f

p
u

Npαε −

−
=  (9.14) 

 
where 1 / 2u −α is the (1-a/2) quantile (percentile value) of the standard normal distribution, 

and T
fp  is the true value of the probability of failure. The above equation gives the 

percentage error under the 100(1-a)% confidence. The error is not in an absolute 
(deterministic) sense. On the contrary, it indicates that there is a 100(1-a)% chance that 

the probability of failure will be in the range of 
100f fp p

ε
± with N simulations. The 

commonly used confidence level is 95% under which the error is approximately given by 
 

 
(1 )

% 200
T
f

T
f

p
Np

ε
−

≈  (9.15) 

 
Since the theoretic value of the probability of failure T

fp  is unknown, the estimated 

probability of failure fp is used in Eqs. 9.14 and 9.15 to replace T
fp . 

 
For example, if 0.001fp =  and the number of simulations 510N = , with 95% 

confidence, from Eq. 9.15 the error is calculated to be  20%ε= . With 95% likelihood, 
therefore, the probability of failure will be 0.001 0.0002fp = ± . If we desire the error to 
be within 10%, from the same equation, the number of simulation calculated should be 
399,600.  
 
For the beam problem in Example 9.2, the error of the probability of failure with 100,000 
samples is 
 

 (1 0.04143)% 200 3.0422%
100000 0.04143

ε −≈ =
×
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Since the point estimate of the probability of failure is 0.04143, the 95% confident 
interval is 0.04143 0.04143 3.0422%± × , i.e. [0.0401, 0.0427]. 
 
According to Eq. 9.14, higher reliability (or lower probability of failure) requires a higher 
number of simulations. For example, a probability of failure of 610fp −=  indicates that 
only one item will fail out of 1 million items. The required number of simulations is 
about 84 10N = × with 10% error under 95% confidence. Therefore higher reliability 
requires a higher computational effort. For the same reason, if higher accuracy for 
estimating cdf in distribution tail areas, a large number of simulations must be used. 
 
From the above discussion, the features of Monte Carlo simulation are summarized as 
follows. 
 
1) Monte Carlo simulation is easy to use for engineers who have only limited working 

knowledge of probability and statistics. 
 
2) Monte Carlo simulation is feasible to use for virtually any performance functions and 

distributions. 
 

3) Monte Carlo simulation is computationally robust; with sufficient number of 
simulations, it can always converge. 

 
4) The problem dimension (the number of random variables) does not affect the 

accuracy of Monte Carlo simulation as indicated in Eq. 9.14. This feature is beneficial 
to large scale engineering problems. 

 
5) For reliability analysis, Monte Carlo simulation is generally computationally 

expensive. The higher the reliability is, the larger the simulation size is needed.       
 

Because of the accuracy, Monte Carlo simulation is widely used in 1) engineering 
applications where the model evaluations (deterministic analyses) are not 
computationally expensive and 2) validating other methods. However, due to its 
computational inefficiency, Monte Carlo simulation is not commonly used for problems 
where deterministic analyses are expensive. 
 
 

8.7 MPP Based Importance Sampling 
 

From the preceding discussions, it is noted that the computational cost is very high when 
the probability of failure is small. The reason is that only the samples that fall into the 
failure region can contribute to the probability estimation. Importance sampling 
technique was developed with the motivation to improve the computational efficiency.  
The central idea of importance sampling is to sample the random variables according to 
an alternative set of distributions such that more samples will be in the failure region. 



Chapter 8    Monte Carlo Simulation 

 13 

More samples will therefore contribute to the probability estimation. The idea is 
illustrated in Fig. 9.8. 
 

 
 

Figure 9.8 Importance Sampling 
 
As shown in Fig. 9.8, all the samples (the lower cloud) generated from the original 
distributions of X1 and X2 are in the safe region. They do not have any contribution to the 
probability estimation. If a new set of distributions of X1 and X2 is selected such that 
many samples will fall into the failure region, then the samples (the upper cloud in the 
figure) will contribute to the probability estimation significantly. There are several 
importance sampling schemes, and we will discuss the MPP based importance sampling 
herein. 
 
After the MPP is obtained, samples are picked around the MPP to evaluate the 
probability of failure through importance sampling (see Fig. 9.8). To do so, an 
importance-sampling density, ( )hX x , is introduced into the Monte Carlo estimation, Eq. 
9.7, to obtain the probability of failure 
 

 ( )
[ ( )] ( ) [ ( )] ( )

( )f

f
p I g f d I g h d

h
 

= =  
 

∫ ∫ X
X X

X

x
X x x X x x

x
        (9.16) 

 
where the importance-sampling density ( )hX x  is the same as ( )fX x  except that the 

means values of X are replace by the MPP * * * *
1 2( , , , )nx x x=x L .  For example, if the 

distribution of X1 is normally distributed with 1 1( , )N µ σ  and 

1

2

1

11

1 1
( ) exp

22X

x
f x

µ
σπσ

  − = −  
   

, the corresponding importance sampling distribution 

X1
 

Limit state  g(X)=0 
 

Safe region g(X)>0
 

X2
 MPP * *

1 2( , )x x  (the white circle) 

Original distributions 
New distributions 

New distributions 
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will be *
1 1( , )N x σ  and 

1

2*
1

11

1 1
( ) exp

22X

x x
h x

σπσ

  − = −  
   

. It is noted that the importance 

sampling density 
1
( )Xh x  is centered at *

1x . 
 
Eq. 9.16 indicates that the probability of failure is the mean of the integrand 

( )
[ ( )]

( )
f

I g
h

 
 
 

X

X

x
X

x
 that is evaluated at the samples of X drawn from the importance 

sampling density ( )hX x . Therefore,  
 

 
1

( )1 [ ( )]
( )

N
i

f i
i i

f
p I g

N h=

= ∑ X

X

x
x

x
        (9.17) 

 
As shown in Fig. 9.8, with the sample size, a significant number of failures occur when 
the samples are drawn from the importance sampling density ( )hX x . It can be approved 
that with the same sample size the error bound of importance sampling is much smaller 
than the general Monte Carlo simulation.  
 
Example 9.3 
 
Use MPP based importance sampling to solve Example 9.2.  
 
From Example 7.2, the MPP in U-space from FORM is * (1.7367, 0.16376)=u . Their 
transformation to X-space is  * (673.67, 1016.38)=x The original distributions of two 
random variables are ~ (500,100)xP N  and ~ (1000,100)yP N , and the distributions for 

importance sampling are then given by (673.67,100)N  for  xP  and (1016.38,100)N  for 

yP . 
 
Fig. 9.9 shows the results of the general Monte Carlo simulation where there are only 27 
failures out of 1000 samples. The probability of failure is 0.027 which has a large error as 
compared to the accurate solution 0.04143fp =  with 100,000 simulations. Fig. 10 shows 
the results from importance sample with only 200 samples, out of which 96 samples are 
in the failure region. The calculated probability of failure is 0.040976 and is very close to 
the accurate solution from 100,000 general Monte Carlo samples. 
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Figure 9.9 General Monte Carlo simulation           Figure 9.10 Importance Sampling 
 

 
8.8 MATLAB Random Number Generators 
 

MATLAB provides random number generators for commonly used distributions. 
 
1)  normrnd  – random matrices from normal distribution 

 
R = normrnd(MU,SIGMA) returns a random number chosen from the normal distribution 
with parameters MU (mean) and SIGMA (standard deviation). 

  
R = normrnd (MU,SIGMA,M,N) returns an M by N matrix.  

 
2)  lognrnd – random matrices from the lognormal distribution 

 
R = lognrnd (MU,SIGMA) returns a random number chosen from the lognormal 
distribution with parameters MU (mean) and SIGMA (standard deviation). 

  
R = LOGNRND(MU,SIGMA,M,N) returns an M by N  matrix.  

 
3) exprnd – random matrices from exponential distribution 

 
R = exprnd (MU) returns a random number chosen from the exponential distribution with 
parameter MU (mean). 
 
R = exprnd (MU,M,N) returns an M by N matrix.  

 
4) unifrnd – random matrices from continuous uniform distribution 
 
R = unifrnd (A,B) returns a random number chosen from the continuous uniform 
distribution on the interval from A to B. 
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R = UNIFRND(A,B,M,N) returns an M by N matrix.  
 

In addition to the above random variable generators, MATLAB can also generate random 
variables for more distributions. 

 


