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We consider the problem of optimally scheduling a fleet of K vehicles to make deliveries toz customers subject to vehicle
capacity constraints. Given a graph with z + 1 nodes, a K-tree is defined to be a set of n + K edges that span the graph.
We show that the vehicle routing problem can be modeled as the problem of finding a minimum cost K-tree with two
K edges incident on the depot and subject to some side constraints that impose vehicle capacity and the requirement that
each customer be visited exactly once. The side constraints are dualized to obtain a Lagrangian problem that provides
lower bounds in a branch-and-bound algorithm. This algorithm has produced proven optimal solutions for a number of
difficult problems, including a well-known problem with 100 customers and several real problems with 25-71 customers.

Vehicle routing and scheduling concerns a rich
class of problems involving the optimal use of a
fleet of vehicles to transport finished goods or manu-
facturing supplies. This paper considers a version of
the vehicle routing problem defined by the following
parameters.

K = the number of vehicles;

n = the number of customers to which a delivery
must be made; customers are indexed from
1 to n and index 0 denotes the central depot;

b = the capacity (e.g., weight or volume) of
vehicle k;

a, = the size of the delivery to customer i (@, = 0);

¢,; = the cost of direct travel between points i and j

(c; = c; for all ij).

We are required to assign each customer to a ve-
hicle and to establish the delivery sequence for the
customers assigned to each vehicle to minimize total
travel cost subject to vehicle capacity constraints.
Routes with single customers are not allowed.

Many case studies have reported the successful
implementation of algorithms for this problem or vari-
ations on it. These real implementations seem to have
relied exclusively on heuristics. Although optimiza-
tion has not been considered a practical approach for
real problems in the past, there are now marny reasons

for changing this viewpoint. Rapidly decreasing com-
putation costs are pushing the tradeoffbetween compu-
tation time and solution quality in the direction of
higher quality solutions. The accuracy of data on the
cost of travel between customers has been improved
greatly by the creation of road network data bases.
Finally, a growing body of research on related models
like the traveling salesman problem provides a base of
theoretical results on which to draw for vehicle rout-
ing optimization. Even if optimization algorithms are
not run to full optimality, they offer the possibility of
better solutions than existing heuristics can provide
and increased robustness because they provide a
bound on the amount by which a particular solution
differs from optimality.

This paper develops an approach to vehicle routing
optimization that draws on the ideas in Held and
Karp’s (1971) successful study of the traveling sales-
man problem. Given a graph with n + 1 nodes, we
define a K-tree to be a set of n + K edges that span
the graph. We show that the vehicle routing problem
can be modeled as the problem of finding a minimum
K-tree with degree 2K on the depot, together with
side constraints that impose vehicle capacity and the
requirement that the degree at each customer must be
2. The side constraints are dualized to obtain a
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Lagrangian relaxation that is a minimum degree-con-
strained K-tree problem. We have developed a poly-
nomial algorithm for this problem (reported in Fisher
1994) that generalizes the results of Glover and Kling-
man (1974a) for the degree-constrained minimum
spanning tree problem. We also use a novel branch-
and-bound procedure in which the problem is parti-
tioned by fixing the edge incidence of selected subsets
of clustered customers. The K-tree approach to ve-
hicle routing was first described in Fisher (1988).

To evaluate the hypothesis that optimization can be
a practical tool, we have tested our algorithm on a
sample of problems that includes a number of real
problems and much larger problems than have previ-
ously been attempted. Our test problems include six
well-known problems with 50-199 customers that are
reported in Christofides and Eilon (1969) and
Christofides, Mingozzi and Toth (1979), and six real
problems with 25-134 customers supplied by Air
Products and Chemicals, National Grocers Limited,
and Exxon. Customer locations in the six problems
taken from the literature were all generated randomly.
In five of these problems, customer locations were
chosen from a uniform distribution. The other prob-
lem, reported in Christofides, Mingozzi and Toth
(1979), had 100 customers and was designed to be
“‘realistic’” by generating customer locations in clus-
ters. We have solved to optimality this 100-customer
realistic problem and five of the six real problems.
The remaining real problem with 134 customers was
solved to within 1.04% of optimality. Solution times
ranged from 6-860 minutes. Calculations were per-
formed on a somewhat outdated workstation, an
Apollo Domain 3000. A contemporary version of this
workstation sells for about $10,000, and is about 15
times faster. Thus, one can optimize these problems
in a matter of minutes on a computer selling for a
fraction of the cost of a single truck. We also describe
how the K-tree approach can be extended to accom-
modate realistic variations, such as asymmetric costs,
time windows, and nonuniform fleets. It thus seems
that practical optimization of complex, real problems
of moderate size can now be contemplated.

It is easy to see that our prohibition of single
customer routes is not constraining in many cases.
Note that customer j cannot appear alone on a route
it (X7~ a,) — a, > (K — 1)b, because using a
dedicated vehicle to deliver customer j would leave
insufficient vehicle capacity to service the remaining
customers. Rearranging terms in this expression, we
can see that our prohibition of single customer routes
is not constraining ifa,/b < ¥_, a,/b — (K — 1) for
all j, a condition that will be satisfied if vehicle
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capacity constraints are sufficiently tight and no cus-
tomer is large relative to vehicle capacity. This con-
dition was satisfied for 8 out of the 12 test problems
used here (problems 1, 2, 3, 5, 7, §, 11, 12). For two
other problems (problems 9 and 10), a few customers
violated this condition, but the resulting single route
solutions were easy to show to be nonoptimal using
the lower bounding procedure presented here and a
negligible amount of computation time. While it has
not been established formally that the optimal solu-
tions to problems 4 and 6 do not contain single cus-
tomer routes, it seems unlikely because deleting the
largest customer and a single vehicle would leave a
very tightly constrained problem. Our development
could be modified to allow for particular customers to
be served on single stop routes by including two edges
between these customers and the depot in the graph
used to compute lower bounds, although, of course,
this could affect lower bound strength.

General research on vehicle routing is surveyed in
Bodin et al. (1983), Christofides (1985), and Fisher
(1992) and on optimization algorithms, in particular,
in Laporte and Nobert (1987). Some theoretical re-
sults related to optimization have been developed.
Araque (1989) provided the polyhedral description of
the unit demand vehicle routing polytope, and
Cornuejols and Harche (1989) extended valid travel-
ing salesmen inequalities for vehicle routing. Specific
optimization algorithms have been given by
Christofides and Eilon (1969), Lucena (1986), Fisher
and Jaikumar (1978), Christofides, Mingozzi and Toth
(1981a, b), Laporte, Nobert and Desrochers (1985)
and Cornuejols and Harche (1989). Computational
results reported in these papers were based on ran-
domly generated test problems, and the largest prob-
lems solved to optimality had about 50 customers.

Christofides, Mingozzi and Toth (1981a) use span-
ning trees to obtain lower bounds, but in a different
way from the approach described in this paper. For a
specified value k, K < k < 2K (details on the ap-
propriate choice of k are provided in Christofides,
Mingozzi and Toth 1981a) they find a spanning tree of
the customers and depot with degree k on the depot
(which they call a k-degree center tree) and add K
least-cost edges, 2K — k incident on the depot and
k — K not incident on the depot. Lagrangian penalties
on the customer degree constraints are used to tighten
this bound. The K least-cost edges added need not be
distinct from those in the spanning tree, i.e., a given
edge can be used twice, once in the spanning tree and
once in the K additional edges, which makes analysis
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of the lower bounding problem simple. Those dupli-
cated edges incident on the depot allow for the pos-
sibility of single customer routes. Vehicle capacity
constraints are not used, except in a minor way to
regulate the choice of k.

The lower bounds from this procedure appear to be
quite weak. For the 10 problems with 10-25 custom-
ers solved in Christofides, Mingozzi and Toth (1981a),
this lower bound was 85% of the optimum on average.
By contrast, the results reported here in Table II for
the K-tree relaxation applied to problems with 25-199
customers show lower bounds of 98% of the optimum
on average. The weaker bounds could arise from
limited use of vehicle capacity constraints, the possi-
bility of choosing edges twice, and the preclusion here
of single customer routes.

There is also a growing literature on a class of
capacitated spanning tree problems that arise in tele-
communications and share some properties with the
vehicle routing problem. Gavish (1982, 1985) has de-
veloped a Lagrangian algorithm, Bousba and Wolsey
(1989) achieved good computational results for a gen-
eral model, and Araque, Hall and Magnanti (1990)
discuss the polyhedral structure of capacitated tree
and routing problems. Gavish’s approach is closest to
ours, except that he works with spanning trees in-
stead of K-trees.

Section 1 of this paper defines the Lagrangian re-
laxation. We also identify a special case of the vehicle
routing problem for which the Lagrangian bound
equals the optimal value. Section 2 presents heuristics
for generating vehicle capacity constraints, and
Section 3 gives two primal heuristics for obtaining
feasible solutions using information from Lagrangian
solutions. In Section 4 we describe the problems used
in computational testing and report lower bounds ob-
tained with the K-tree algorithm. Section 5 describes
our branch-and-bound procedure and computational
results for problems solved to optimality. Section 6
extends these ideas to incorporate a number of com-
plications found in real problems.

Data for new test problems and improved solutions
are provided in an Appendix. One of our findings is
that algorithms perform differently on real versus uni-
form random problems, so it is important to test exact
and approximation algorithms on real data. The new
test cases provided here should contribute to that goal.

1. FORMULATION AND LAGRANGIAN
RELAXATION

We model the problem considered, which we denote
VRP, as a minimum cost, degree-constrained K-tree

problem with side constraints. The side constraints
are then dualized to obtain a Lagrangian relaxation.

LetN = {1, ... ,n}, Ny = N U {0} and x,; denote
a0 — 1 variable equal to 1 if edge (i, j) is selected in a
solution. Since the edge (i, j) is undirected, it will
simplify notation to adopt the convention that the
subscripts ij on x; are an unordered pair, so x,; and x;,
denote the same variable. Then x,, is defined for the
n(n + 1)/2 unordered pairs in Ny X N,. Also define
s s Xn—1n );

X = (x015x02’ v s Xy X125 ¢

X= [xlx =0 — 1 and defines a K-tree satisfying

n
<Y xq = ZK].
1=1

ForS CN,letS = Ny — S, a(S) = X,e5 a; and
r(S) = [a(S )/b], where fy] denotes the smallest integer
not less thany. For § C N,, let E(S) denote the edge
set of a complete, undirected graph on the node set S,
i.e., E(S) is the set of all unordered pairs ij, i € S,
j €S, i = j. Then the VRP can be formulated as

*=min » cyx; (1)
x€X ,EE(No) Y
> x,=2 foraliEN (2)
JENy
I

> > x, =22r(S) forall SCN with |S| 2 2.(3)

IES JE S

In this formulation, routes with single customers are
not allowed.

Theorem 1. A solution x € X is feasible in VRP if and
only if it satisfies (2)—~3).

Proof. First note that an x € X satisfying (2) must
correspond to K cycles that begin and end at the
depot. Index these cyclesbyk = 1, ..., Kand let S,
denote the set of customers on cycle k. We will
establish the if case by showing thatif a(S,) > b, then
constraint (3) with § = S, is violated. This follows
because 3,5, Syes, X, = 2 while 7(S,) = la(S,)b] > 1.

To establish the only-if case, first note that any
feasible solution to VRP must consist of K cycles that
begin and end at the depot and hence must satisfy
x € X and (2). To see that (3) must also hold, note that
the vehicle capacity constraint implies that at least
r(S) vehicles are required to service the demand in set
S. Since each vehicle must enter and leave set S, we
must have at least 2r(S) edges between sets S and S,
exactly as constraint (3) requires.
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Letting u,, i € Nandvg 2 0 for § C N, |S| = 2
denote Lagrange multipliers for (2) and (3), we can
define the Lagrangian relaxation of (1)-(3) as:

n
Zp(u,v)y=min X C,x, +2 ) u,
X€EX JEE(No) =1
+2 E vsr(S), (4)
SCN

where u, = 0, and

—u, — E Vs.
S such that
€5,5€ 8§

or

1€ 5,]65

C,=cCy —u,

It is well known and easy to show that Z,(u, v) < Z*.
A polynomial algorithm for (4) is given in Fisher
(1994). We use the subgradient method to approxi-
mate an optimal solution to max « Zp(u, v). Since
there are 0(2") constraints in the set (3), it is not
feasible to tabulate explicitly all these constraints
prior to computation. Rather, we will develop proce-
dures described in Section 4 to generate a subset of
these constraints dynamically as they are violated. All
other constraints have v, = 0 and are ignored.

The quantity r(S) = [a(S)/b] in the right-hand side
of (3) is a lower bound on the number of vehicles
required to service the customers in the set §. As
noted by Laporte and Nobert, (3) can be tightened in
some cases by replacing 7(S) by the value of a bin
packing solution for the customer in § or by a lower
bound on the bin packing solution, such as in Martello
and Toth (1990). We have not implemented this re-
finement because in the data we were using a,/b was
small for most customers, so it seemed likely that
[a(S )/b1 would equal the bin packing values of S in
most cases.

Constraints (3) are analogous to the subtour elimi-
nation constraints in a well-known formulation of the
traveling salesman problem. Nobert (1982) and
Laporte, Nobert and Desrochers (1985) showed that
vehicle capacity also can be imposed by the general-
ized subtour elimination constraints:

> x, <|S|-r(S) all §$CN with S| = 2. (3')

yEE(S)

It is easy to show that (2) and (3) are equivalent to
(2) and (3'), so it might seem inconsequential whether
we work with (3) or (3'). However, the choice is
important computationally because it is impractical to
generate more than a small fraction of the 0(2”) pos-
sible constraints in (3) or (3'). Hence, one must work
with a modest number of m << 27 constraints. In-
formal computational comparisons have shown that
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the best m constraints from (3) produce a tighter
bound than the best m constraints from (3’).

Constraints (3) also lend themselves to tightening in
the following way. The rationale underlying (3) is that
br(S) defines the minimum vehicle capacity that must
enter and leave S to feasibly carry the customers in
set §. However, if x,, = 1 in the left-hand side of (3)
for some customerj € S, then customer is serviced
by the same vehicle as at least one customer in set S
and its demand subtracts from the capacity available
for set S. Hence, the total vehicle capacity entering
and leaving set S must be at least a(S) plus the
customer demand for ali customers j € S with x, =1
This implies

a(S)+ X ax,

IE%

(=3

S S x, 22 d (5)
€S JES b

Constraint (5) is not directly useful, because the
right-hand side is a nonlinear function of x, but it can
be used to derive other constraints. An example is
given below.

Forany S C N, let

S'={j€5|j>1anda, >br(S) - a(S)}

0, JES
0, JES and S| <2
e =1 ) o o
S +1° JES and [S']| >2
1, jeES-§

We can now define the tightened vehicle capacity
constraints

n
e >x, 221(S) forallSCNwith[S|22. (6)

=0 1ES

Theorem 2. A solution x € X is feasible in VRP if and
only if it satisfies (2) and (6).

Proof. Proof of the if case is obvious because (6) is
the same constraint as (3) except that some coeffi-
cients may be smaller in (6). Hence, x € X that
satisfies (2) and (6) also satisfies (2) and (3) and is
feasible in VRP by Theorem 1.

Now we will consider the only-if case and show that
a given x € X satisfying (2) and (3) also satisfies (6).
For a given S T N, first suppose that |S'| = 0 or
x, =0foralli €S, j € S'. Then (3) and (6) are the
same constraint, so (6) obviously holds. Alterna-
tively, suppose that |[S’| = 1 and x,,. = 1 for some
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j* € 8" and k € S. We will consider two cases to
show that (6) holds.

Case 1. (|S’| > 2) At least r(S) + 1 vehicles are
required to carry the customers in § U {j*} which
implies that 27(S) + 2 edges are incidenton S U {j*}.
The fact thatx,,. = 1 and ¥,en, - X,,» = 2 implies
that 2r(S) + 2 edges are incident on the set S s0 ¥ ¢35
ZesXx, 2 2r(S) + 2.

Multiplying both sides of this constraint by r(S)/
(r(S)+1)gives

r(S)
_— g 2 2r(S
S5 H(S) + 1 ,ezsx’ r(5)

which implies (6).

Case 2. (|S'| < 2) LetS" = {j € §'|Z,esx,; > 0}.
If |S”| = 1, then a single customer j* from S’ and one
or more customers from S are on the same route.
Because a,, > br(S) — a(S), the remaining custom-
ers in S require at least r(.S) vehicles. Hence, at least
2r(S) edges are incident on S from S — §'. This
implies 3, § — S'Z, esx, = 2(S), whichis equiva-
lent to (6) in this case.

Now suppose that |S”| = 2, so two customers in S’
are linked to customers in S. If these two customers
are on the same route, then the remaining customers
in S require at least r(S) vehicles, so at least 2r(S)
edges are incident on S from § — S’. Hence (6) is
satisfied.

If the customers in S’ are on two different routes,
then these two routes contribute at least two edges
incident on S from § — S'. The remaining customers
in S require at least 7(S) — 1 vehicles contributing
2r(S) — 2 additional edges incidenton § fromS — S'.
Hence (6) is satisfied.

Constraint (6) clearly dominates (3). We have also
found computationally that the constraints produce
much tighter bounds in certain cases. We can also
obtain a valid linear inequality by removing the upper
brackets from the right-hand side of (5) to obtain
2(a(S) + X €5 a,x,)/b. While this constraint is gen-
erally not tighter than (3), it might be useful in some
cases.

A constraint in set (3) or (6) need not be a facet. For
example, consider the case where § = {1, 2, 3},
a, = a, = as = 3, a=1,j 2 4 and b = 5.
Constraints (3) and (6) are the same for this example.
Both have a right-hand side of 4 when the constraint
is clearly valid with a right-hand side of 6.

Although we have not established the worst-case
behavior of the lower bound Z,,, we have considered

a potentially troublesome special case and have
shown that Z, = Z* for this case. Consider the case
in which b = 4, n = 4K, a; = 1 for all j, 2K
customers are located at the depot and 2K are located
1 unit from the depot.

Then Z* = K, while there is a minimum K-tree
with degree 2K on node 0 that has a cost Zg = 1.
Since Z*/Zx — = as K — », one might expect that
this case could be problematic for K-tree-based
bounds. In fact, it is easy to show that Z, = Z* for
a broader class of problems that includes this case.

Consider a vehicle routing problem in which cus-
tomer i is distance d, from the depot (dy, = 0), ¢; =
d, — d| for all ij, a, = 1 for allj, and K = [n/bl. For
notational simplicity, assume that n/b is integral and
d,<d, s...sd,_, <d,. A feasible solution to
this problem is obtained by assigning customers 1,
2, ..., b tovehicle 1, customersb + 1, b + 2, ...,
2b to vehicle 2,..., and customers n — b + 1,
n—b+2,...,ntovehicle K. The objective value for
this solution is Z = 2(d, + dop ++- + d,,_p + d,).

It is easy to show that this solution is optimal and
Z, = Z = Z* by exhibiting values u* and v* for the
Lagrange multipliers in the K-tree relaxation such
that Z,(u*, v*) = Z. The required values of u* and
v* are defined as follows. Setuf =0,i =1, ...,
n—1andu®* =d, —d,_,. The variables v = 0 for
all S exceptn — 1 sets defined as S, = {k, ..., n},
k=1, ...,n — 1. For these sets, define vy = d; —
di_,k=1,...,n—1.

Straightforward substitution of these values for u*
and v* into the definition of &,, reveals that ¢, = 0 for
all ij. The fact that ; = 0 for all §j implies that the
value of a minimum K-tree is also 0, so

Zp@*, vy =2 X ut+2 Y vir(s)

1=1 SCN
= Z(dn - dn—l)
Sin+l—k
+2 kZl !Vn———‘b ‘} (di —dg-1)

=2 2
k=1

: -

It is clear that for this example only a subset of (3)
and 0 < x < 1 is needed to define the optimal value.

2. CONSTRAINT GENERATION

Lower bounds are obtained by applying the subgra-
dient method to max g, Zp(u, v) with Zp(u, v)
determined by (4) in Section 1. Since the number of
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vehicle capacity constraints (6) is vast, we have de-
veloped heuristics to identify a small subset of this
enormous family to use explicitly in our computa-
tions. Our heuristics include procedures for choosing
an initial subset of capacity constraints and for dy-
namically adding and deleting constraints during sub-
gradient computations.

Our procedure for initializing the constraint set is
motivated by the result at the end of Section 1 in
which we found for a special case that optimal con-
straints corresponded to sets nested around the cus-
tomer farthest from the depot. To mimic this
behavior, we define m seed customers s, ..., s,
and construct nested sets around them that define the
initial constraints. In our computational work, m =
K + 3 and seeds s, ..., sx were chosen to be the
customers farthest from the depot on the routes of a
given initial feasible solution. The remaining three
seeds were chosen sequentially, with each picked to
be maximally distant from existing seeds and the de-
pot. Specifically, letting S, denote the set of seeds
chosen thus far, seed s, is picked to max,gs,
min{cy, , min,es cj}.

Leti,, ..., i,_, be an indexing of the customers in
N — {s,} in increasing order of proximity to seed s,.
Then the initial constraints increasing for seed s; cor-
respond to the sets

{sla ll}
{S,, iZ}
{519 il: iZ}

{si’ il, i29 13}
{s:, iy, @2, is}

{S,, il’ i2’ i3a i4}

In our computational work, the number of sets for
each seed was limited to 60.

After some number of iterations (50 in our compu-
tational work), we begin adding constraints to the
explicit set as they are violated by the Lagrangian
solution. To find violated constraints, we delete all
edges incident on the depot from the graph corre-
sponding to the Lagrangian solution and then check
the customers in each connected component for vio-
lation of constraint (3).

We also delete constraints from the active set if v
has been 0 for some number of consecutive iterations
(3 in our computations). Constraint deletion was not
begun until the 10th subgradient iteration.
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3. LAGRANGIAN HEURISTICS

Feasible solutions are obtained at each subgradient
iteration using three alternative heuristics based on
the Lagrangian solution or on reduced costs ¢,,. None
of these heuristics dominates on the others in perfor-
mance. Each heuristic generates K partial routes. The
final steps in each case are to optimally insert un-
scheduled customers as possible and apply the 3 —
opt interchange heuristic (Lin and Kernighan 1973) to
each route.

The first heuristic is executed on any iteration in
which the Lagrangian solution graph contains exactly
K connected components after deletion of edges in-
cident on the depot. Let C,, ..., Cx denote the set
of customers in each component. To obtain K feasible
partial routes, for any k& with a(C,) > b delete cus-
tomers in the order of proximity to the depot until
a(C,) < b.

Our second heuristic was motivated by the obser-
vation that Lagrangian solutions were often nearly
feasible once the dual variables were close to optimal.
This suggested obtaining feasible solutions by apply-
ing the minimum K-tree algorithm to the Lagrangian
problem with the added restriction that we not violate
any vehicle routing constraints. In the resulting pro-
cedure, the first route is initialized by selecting a
customer closest to the depot as measured by the
reduced costs ¢,,. (All distances in this heuristic are
measured with respect to the reduced costs ¢;,.) A
second customer is chosen to be closest to the first.
We continue to select customers for the first route,
with each new customer chosen to be closest to the
last selected, until adding further customers would
exceed vehicle capacity, or until the depot is selected
as the nearest customer. At this point, the first route
is complete. (We do not allow selection of the depot
if the load on the route is less than X,=n a; — (K — 1)b,
because this would lead to infeasibility.) The remain-
ing routes are formed according to the same proce-
dure working always with unscheduled customers
that remain.

The third Lagrangian heuristic attempts to use as
many edges as possible from the Lagrangian solution.
Let x;, denote the Lagrangian solution at some itera-
tion. Choose a customer i, farthest from the depot and
select a shortest arc (i;, i,) satisfying %, = 1 and
a, + a, < b. At any point in the algorithm, we will
have a partial route iy, ..., i, for a vehicle satisfying
X0 = X - = X, = 1. At this point, we
choose a shortest edge joining some customer j to
either i; or i,, satisfying %, =1lorx,,6 =1 and
a({iy, ..., iy, j}) < b. When no edge can be found

i3
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Table 1
Characteristics of the Test Problems

1) )] 3

2.4,
1IEN
Problem n K Kb
1 50 5 0.97
2 75 10 0.97
3 100 8 0.91
4 150 12 0.93

5 199 16 0.999
6 100 10 0.91
7 25 3 0.92
8 29 4 0.94
9 36 4 0.76
10 44 4 0.90
11 71 4 0.96
12 134 7 0.95

that satisfies the required conditions, we select an
unscheduled customer farthest from the depot and
repeat the process for generating a partial vehicle
route until K partial vehicle routes have been
generated.

4. COMPUTATIONAL RESULTS

The procedures described in this paper were applied
to 12 test problems. Characteristics of these problems
are displayed in Table I including the number of cus-
tomers (column 1), the number of vehicles (column 2)
and the average wvehicle utilization (column 3).
Column 3 measures the tightness of the vehicle capacity
constraints. All these problems are tightly constrained.
Problem demand is 93% of vehicle capacity on average,
and in each problem the fleet size could not be reduced
without destroying feasibility. By contrast, some
problems solved previously had relatively loose ve-
hicle capacity constraints. For example, the problems
in Laporte, Nobert and Desrochers have demand
equal to about 66% of vehicle capacity on average.

All problems except 7-9 were planar; that is, cus-
tomers are located at points in the plane, and ¢,, is the
distance between points i and j, computed as a single
precision real value. In problems 7-9, integral values
for all c,, were defined as part of the input.

The first six problems are well known test cases
taken from the literature. Customer locations for
problems 1-3 were randomly generated from a uni-
form distribution. The data for these problems are
given in Christofides and Eilon. Problem 4 was ob-
tained by adding the customers of problems 1
and 3 with the depot and vehicle capacities as in

problem 3. Problem 5 was obtained by adding the
customers of problem 4 with the first 49 customers
of problem 2. Data for problem 6 are given in
Christofides, Mingozzi and Toth (1979). As described
there, this problem was designed to resemble real
problems by generating customer locations that are
clustered. We used K = [Z:;l a i/b] for all problems.

These problems have been used in many previous
studies to test the performance of various heuristics.
These studies computed c,; in different ways (some
using real values, others various rounding schemes)
and were not always clear on how cost values were
being computed. In retrospect, lower cost solutions
reported for these problems may have been due as
much to how the cost data were rounded as to the
inherent superiority of the heuristic used. In this
study, all solutions and bounds for these problems are
based on real cs.

Although many researchers have applied heuristics
to problems 1-6, there has been little effort to com-
pute lower bounds to determine how close the
heuristic values are to optimal. An exception is a
recent analysis by Cornuejols and Harche who ap-
plied an LP-based branch-and-bound algorithm en-
hanced with a facet generation scheme to problem 1
with all ¢,, rounded to integral values. They obtained
an initial lower bound of 514 and then used branching
to establish that 521 is the optimal value for this
problem with integral costs.

The data in problems 7-12 are taken from real
vehicle routing applications. Problems 7-9 are con-
cerned with the delivery of industrial gases in cylin-
ders and are based on data provided by Air Products
and Chemicals, Inc. Problems 10 and 12 represent
a day of grocery deliveries from the Peterboro
and Bramalea, Ontario terminals, respectively, of
National Grocers Limited (see Arrizza and Karellas
1983). Problem 11 is concerned with the delivery of
tires, batteries and accessories to gasoline service
stations and is based on data obtained from Exxon
that they had developed for other studies.

These problems required some adaptation for
our purposes, because the original problems had
nonuniform fleets and time window constraints.
Problems 7-12 use the original depot location, cus-
tomer locations, and order sizes, but omit the time
constraints and use a uniform vehicle capacity within
the range of capacities spanned by the heterogeneous
fleet. In all cases, omitting time constraints resulted in
loose vehicle capacity constraints. To obtain a tightly
constrained problem, we set K = fo;l ai/b].
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Table I
Computational Results
(1) @ © @ © © & ®) ©) (10)
Upper Bounds
Optimal
or
Best Improved Computation
Previously Solution Degree- Vehicle Time Apollo
Known Found in Spanning Constrained Capacity Sub- Domain
Feasible our Lower Lower/ Tree K-Tree K-Tree Constraints gradient 3000

Problem Solution Testing Bound Upper Cost Cost Cost Generated Iterations (Minutes)
1 524.61° — 507.09 0.97 376.49 415.51 445.41 611 3,000 95.75
2 835.26* — 755.50 0.90 472.33  536.87 636.55 177 3,000 183.97
3 826.14°  — 785.86 0.95 562.26 587.84 673.25 410 3,000 307.95
4 1028.42°  — 932.68 0.91 635.28 669.55 805.96 249 3,000 682.41
5 1334.55° — 1096.72 0.82 691.99 734.70 958.89 233 3,000 1186.00
6 819.56*  819.56° 817.77 0.998 417.30 444.51 635.94 21 2,000 259.64
7 3104¢ 3070° 3070 1.00 1,769 1,769 1,769 24 769 11.23
8 5830° 58297 5829 1.00 2,313 2,313 3,255 25 2,444 53.33
9 5032°¢ 4961° 4961 1.00 2,479 2,479 2,968 27 320 4.87
10 723.54°  723.54° 720.76 0.996 428.09 436.95 452.76 78 2,000 49.74
11 244.92° 24197 237.76 0.98 150.16  154.16 187.93 347 2,000 105.03
12 1216.66° 1163.60° 1133.73 0.97 615.03 620.97 688.97 500 2,000 253.84

Sources for Upper Bounds:
¢ Taillard (1992).
® Osman (1993).

¢ Algorithm in Bramel and Simchi-Levi (1992). These problems were run and the results communicated to me by Julien Bramel and

David Simchi-Levi.
< First Lagrangian heuristic described in Section 5.
¢ Second Lagrangian heuristic described in Section 5.
£ Third Lagrangian heuristic described in Section 5.

Table II presents the results of our lower bound
calculations on these 12 problems. The first two col-
umns show the cost of the best known feasible solu-
tion for each problem, either obtained from the
literature (column 1) or obtained as part of our com-
putational testing (column 2).

Column 3 reports the best lower bound obtained
from the Lagrangian relaxation after a number of
iterations, and column 4 shows the ratio of lower to
upper bounds. The lower bounds are quite tight, es-
pecially considering that in most cases we are com-
paring to a heuristic cost that may be higher than the
optimal value.

Columns 5-7 give the cost of a spanning tree,
K-tree, and degree-constrained spanning tree. This
shows the contribution of the various constraints of
the Lagrangian problem to the lower bound value.
The difference between the value in column 7 and the
final lower bound in column 3 is due to the constraints
on vehicle capacity and the degree of each customer.
Column 8 lists the number of vehicle capacity con-
straints active at the end of the run. The number of
active constraints increases and decreases during the

run but was generally at or near a maximum value at
the end of a run.

The subgradient iterations required to obtain the
lower bounds are listed in column 8. The step size in
the subgradient method was set according to the usual
formula (e.g., see p. 14 in Fisher 1985). We initialized
u =y = (0 and A = 2, and reduced A by a factor of 0.75
if the lower bound did not improve in 30 iterations.

All computations were performed on an Apollo
Domain 3000 microcomputer. Although the
computation times in column 10 are large, note that
we were using a small computer and these are by far
the largest problems on which optimization has been
attempted.

One insight these computations provide is that real
problems appear to be easier for optimization than
randomly generated problems. For example, compare
real problems 10, 11, and the “‘realistic” problem 6
with problems 1-3, which are random problems of a
similar size. For problems 6, 10 and 11, the lower
bounds computed with 2,000 subgradient iterations
were 99.1% of the optimum, on average, while for
problems 1-3, the lower bounds computed with 3,000
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Figure 1. Customer and depot locations for problem
2 (the square is the depot and dots are
customers).

subgradient iterations were 94% of the optimum, on
average. We will see in the next section that real
problems 7-11 and “‘realistic’’ problem 6 are the prob-
lems we are able to solve to optimality.

The difference between random and real problems
is illustrated in Figures 1 and 2, which show depot and
customer locations for problems 2 and 11, respec-
tively. The rather even distribution of customers in
Figure 1 is typical of problems 1-5, just as the group-
ing of customers into clusters is typical of problems
6-12. This clustering seems to play a role akin to
sparsity in linear programming in providing a struc-
ture that can make problems easier to solve if prop-
erly exploited in computations. For example, a group
of customers clustered together tends to act as one
customer for vehicle capacity constraints (6); they are
either all in or all out of a set S defining a constraint.
In the next section, we will see how these clusters
also can be used in defining a branch-and-bound
algorithm.

5. OPTIMAL SOLUTION WITH BRANCH AND
BOUND

In this section, we describe branching rules used to
obtain proven optimal solutions to problems 6, 10,
and 11. (Problems 7-9 were solved to optimality with-
out branching.) Two approaches to branching were
tried.

Figure 2. Customer and depot locations for problem
11 (the square is the depot and dots are
customers).

The first is a traditional approach in which nodes of
the search tree correspond to partially-sequenced sets
of customers (e.g., see Christofides, Mingozzi and
Toth 1981b). We branch on either edges or customers.
An edge branch is executed by selecting an edge (4, j)
and creating two branches, one with edge (i, j) forced
into the solution and one with it forced out.

Customer branching is executed from a node of the
branch-and-bound tree at which a sequence has been
established for a set of customers iy, ..., i; that
comprises a portion of a vehicle route. We chose
either end of the sequence and branch by enumerating
various customers that could be appended to the par-
tial route. Assume that we are branching from cus-
tomer i,. We execute a customer branch step by
identifyingaset T C Ng — {i, .- , ix} of unbranched
customers or depot satisfying a{iy, ... , iy, j} < b for
all j € T. We create a node corresponding to the
sequence iy, ... , i, j for allj € T and an additional
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node at which customer i, cannot link to any cus-
tomerj € T, i.e., the edge (i, j) is excluded for all
J € T. Normally, T would be selected so that points
in T are close to .

A route is completed when the depot has been
appended to both ends in the sequence. We do not
allow a route to be completed if the unused capacity
on the vehicle is so great that the remaining vehicles
have insufficient capacity to deliver the remaining
customer orders.

This procedure begins with an edge branch on an
edge (i;, i;). In our computational work, i, was a
customer farthest from the depot and i, was a cus-
tomer closest to i;. At the node of the search tree,
where (i, i,) is forced into the solution, we execute
a customer branch using the partial sequence i, i,. At
the other node, we execute another edge branch. In
general, at any node of the tree where we have defined
a sequenced subset of customers corresponding to a
partial vehicle route, we use customer branching.
Otherwise, edge branching is used.

This procedure was applied to several of the test
problems, but was unsuccessful in finding a proven
optimal solution for any of them. The major problem
with this approach is that the decisions resolved when
we branch are quite minor. To illustrate the difficulty
this can create, consider a problem with a cluster of k
customers close to each other. Any solution in which
these customers are delivered contiguously on the
same route in some sequence will have about
the same cost. Hence, when we branch to resolve the
sequence for these customers, unless the lower bound
is exceptionally tight, we will be unable to fathom any
of the 0(k!) nodes generated. Looking at Figure 2, one
can see many clusters of 4-5 customers where this
problem could and did arise.

As suggested in Christofides, Mingozzi and Toth
(1981a), a dominance fathoming test can be formu-
lated that mitigates this problem to some extent. A
node of the branch-and-bound tree that corresponds
to asequence,, ..., i, for a set of customers cannot
lead to an optimal solution, and therefore can be
fathomed, if there is a different sequence for the
customers that begins with customer i;, ends with
customer i, and has lower cost. We operationatized
this test by applying the Lin and Kernighan 3-opt rule
to the customer sequence specified at a node. If the
3-opt rule found an improved sequence, then the node
was fathomed. This dominance test reduced some-
what the problem that we have described, but not
enough to allow optimal solution of any of the test
cases.

FIsHER / 635

—————

. -

~————

Figure 3. Examples of branch clusters for problem
11.

This experience suggests that we might obtain a
better branching procedure by identifying macroprop-
erties of an optimal solution whose violation would
have a sufficiently large impact on cost to allow fath-
oming. Figure 3 shows the optimal solution for
problem 11. One property that stands out in this op-
timal solution is the presence of clusters of customers
delivered contiguously on the same route which are
close to each other and far from the remaining cus-
tomers in the problem. Three examples are encircled
in Figure 3 and labeled as T, T,, and T,. Requiring
the customers in any of these three clusters to be
delivered on two different routes appears to have a
significant impact on cost.

This observation was used to develop a new
branching rule. Let I(T) denote the incidence of edges
on the node set T in a solution graph, i.e., I(T) = 3,
2,e7X,- In the solution depicted in Figure 3, I(T}) = 2,
k = 1, 2, 3. Note that in a feasible solution the
incidence on any customer set must be an even inte-
ger not less than 2[a(T)/b]. We branch by selecting
any set T C N and creating two nodes corresponding
to I(T) = 2la(T)/bl and I(T) = 2la(T)/b] + 2. The
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constraint I(T) = 2fa(T)/b] + 2 is of the same form as (3)
and, hence, is easy to incorporate within our current
Lagrangian relaxation. If we branch in this way for
the sets T, T,, and T;, the node corresponding to
I(T,) = 4 is fathomed by obtaining a lower bound
greater than the feasible value of 244.92, the best
known feasible value prior to applying branch and
bound, thus establishing that [(T,) = 2, k =1, 2, 3
in an optimal solution to problem 11.

The constraint I(T) = 2la(T)/b] can be used to
derive additional restrictions that tighten the
Lagrangian problem. First, for any j ¢ T such that
a; + a(T) > [a(T)/b] b, we can force out of the
solution the edges (i, j) for alli € T. Second, if there
is another set S for which I(S) = 2, S N T = ¢ and
a(SUT > [a(T)/b] b, we can force out of the
solution the edges (i, j) for alli € T, j € S. Third,
if [a(T)/b] = 1 and b — a(T) is sufficiently small, it
may be feasible to enumerate all combinations of
customers that can fit in the remaining space b — a(7T)
and branch by generating a node corresponding to
each combination. Fourth, if [a(T)/b] = 2, we can
select a subset S C T of a few large customers for
which it is computationally feasible to enumerate all
partitions of S into two sets corresponding to the
customers assigned to each of the two vehicles that
must deliver the customer orders in 7. We can then
branch on the choice of a partition.

Finally, we describe a simple dominance test that
can sometimes establish an optimal sequence for the
customers in a set T with I(T) = 2. By way of
illustration, consider set T, in Figure 3. We have
indexed the customers in this set from 1-4. Because
I(T,) = 2, there will be precisely two customers in T
joined to customers outside of T;. There are 3 =6
choices for this pair of customers. Index these pairs
(ix, ji)» kK = 1, ..., 6, and assume that (i}, j;) =
(1, 4). For any pair (i;, ji), the path through the
remaining two customers must minimize cost and can
be determined by enumeration. For example, it is
apparent that for (i, j,), the optimal path is (1, 2, 3,
4). Let C; denote the cost of the optimal path from i,
to ji, €.g., C1 = €12 + €23 + Caa.

We call a pair (i, j;) dominated if, for each pair i,
j,i#j,i € Ng—T,j € Ny — T, there exists
k* = k such that

Ci» + min(c;,, +¢j,.5 Cji,. + ci,.) <Cy
+ min(c,;, + ¢, €, €y, )- @)

It is clear that a path through 7 joining a dominated
pair can be ignored as a sequence for the customers in
T, because it could be replaced in any feasible

solution by a different sequence (namely, the shortest
path through 7 joining i;. and j,.) without increasing
cost.

Returning to our example, for the set T,, all pairs
k =2, ..., 6 can be shown by direct computation of
(7) to be dominated by k* = 1. Hence, we can fix the
sequence of customers in T, to 1, 2, 3, 4. For the set
T,, there are four sequences that dominate all others.
In this event, we can branch by selecting one of those
sequences.

In our computational work, we apply the domi-
nance test for each k by computing (7) for all possible
ij and each possible k*. The step of finding the short-
est path through T that joins a pair of customers in T
can be accomplished by a straightforward modifica-
tion of the dynamic programming algorithm for the
traveling salesman problem given by Held and Karp
(1962).

There is another form of set branching that we have
not implemented, but which is potentially interesting.
Choose a set T, let T = N — T and branch two
ways according to whether X, c7 Xje7x; 0 or
Yer 2;e T X, = 1. Along the branch with ¥;cr
Yjer x, = 0, we have effectively partitioned the
problem into two parts corresponding to the customer
sets T and T.

The ideas defined above can be combined in many
ways to create a branch-and-bound algorithm, de-
pending on how branch sets are chosen and the order
in which the various methods of branching are com-
bined. We describe here the particular algorithm used
in our computations. Further research would be use-
ful on how best to design a branching procedure using
these ideas.

We need to identify sets of customers on which to
branch. We used two types of branch sets. One was
the set of customers S on a single route or a pair of
crossed routes for which average vehicle utilization
exceeded 98%. If S was a pair of crossed routes, we
added to S any customers within the convex hull of
S U {0} that fit (i.e., a(S) < 2b with the customers
added), starting with customers farthest from the de-
pot. Sets like these made good branch sets because
the branch I(S) = Z[a(S)/b] removes many cdges
from the problem, namely those edges (i, j) for which
i€ S,j €S anda(S) + a, > la(S)blb.

The second type of branch sets were clusters of
customers S = {i;, *** , iz} delivered contiguously in
the order iy, --- , i, on a single route of a starting
feasible solution. We also required S to contain the
customer on the route farthest from the depot, to be
separable from S by a straight line, and to have a
sufficiently small value of
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The quantity D(S) is used to measure the extent to
which the customers in § are close to each other and
far from the remaining points S. It is easy to see that
the sets T, T, and T in Figure 3 satisfy the required
properties and have relatively small values of D(S).

We describe the specific steps in our branch-and-
bound procedure in the order they are executed. We
first branch on any § with a(S) where § is the cus-
tomers of a route of the starting feasible solution = b
and then on |7/10] of the second type of branch sets
described above with the smallest values of D(S),
provided we can fathom the node corresponding to
I(S) = 4.

We next apply the dominance test described pre-
viously to any set § with I(S) = 2 and |S| < 11 (the
computation time for the dominance test was prohib-
itive for larger sets). We branch on choice of sequence
whenever at most four sequences are nondominated.
For a set S with I(S) = 2 and b — a(S) > 0, but
sufficiently small that at most one other customer
could fit feasibly with S on a single route, we branch
by enumerating all feasible completions of the vehicle
route containing S.

We then branch on all single routes or pairs of
crossed routes with average vehicle utilization ex-
ceeding 98%. If S is a pair of routes, at the node
corresponding to /(S) = 4, we branch on all partitions
of R C S into two sets corresponding to the set of
customers assigned to each of the two routes, where
R contains the 11 largest customers in S(R = § if
ISI < 11). Aset T C S for which I(T) = 2 has been
imposed can be treated as a single customer for this
purpose.

Finally, at any node still unfathomed, we apply the
traditional branching method described at the start of
this section.

Optimization using real cost coefficients must inev-
itably be somewhat inexact on a finite word length
computer. Because of roundoff errors, the computed
value of a lower bound can be less than its true value,
so it becomes necessary to modify the usual fathom-
ing criterion for a node of the branch-and-bound tree
toLB = UB — ¢, where LB and UB are the relevant
lower and upper bounds and € is a small positive
scalar. If the ¢, are real, this means the solution
obtained is € optimal in that it may exceed the true
optimum by an additive constant e. If the ¢, are
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Table I
Optimization Results

Time to Find Optimal

Solution® Apollo Nodes in Branch-

Problem  Domain 3000 Minutes and-Bound Tree
6 591 89
7 11 1
8 64 1
9 6 1
10 342 148
11 948 37

“Time includes the time (reported in column 10 of Table II)
to bound the root node.

integral, we can rely on the integrality of the objective
function to use any e < 1 without loss of optimality.

The algorithm described above was applied to
problems 6-11. For problems 7-9, feasible solutions
were found with UB — LB = 0.5. Since the ¢,; for
these problems are integral, we know that these so-
lutions are exactly optimal. For problems 6, 10, and
11, with real ¢,,, € = 0.0001 was used. Results are
shown in Table III.

Note that it is fairly common in computational stud-
ies on vehicle routing and the traveling salesman
problem to circumvent the problem of limited accu-
racy in computations by rounding c,, to integral val-
ues. While this finesses a messy technical problem, it
can also introduce serious inaccuracies, because each
¢, is now subject to an error of up to 0.5 units. This
is particularly a problem if the distance between two
customers is less than 0.5, because then these cus-
tomers can appear on the same vehicle in the wrong
order, creating credibility problems with drivers. Op-
timizing with real costs avoids this problem.

6. EXTENSIONS

The K-tree approach generalizes quite readily to
incorporate some complications commonly found in
real vehicle routing problems. We will describe some
of these extensions. How well the extended algorithm
would perform computationally is an open question at
this point.

Suppose that vehicle capacity is defined by m di-
mensions. For example, if m = 2 the dimensions of
capacity might be weight and volume. Let ag be
the size of customer order j in dimension € and b, the
capacity of a vehicle in dimension €. A set S of
customers assigned to a vehicle must satisfy ;<
ag < by, € = 1,..., m. To accommodate this
variation, simply redefine r(s) = max, [Z,E sa e]»/be]
in constraint (3).
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We next show how to extend our method for vehi-
cle routing problems with asymmetric costs and time
windows. Asymmetric costs and time windows are
natural to treat together, because both extensions
require that we now consider the direction in which a
route is driven.

Define

¢, = the cost of direct travel from point i to point j;

t, = the time required for direct travel from i to j;

e, = the earliest time that a delivery can begin at
customer i (e, is the earliest time a vehicle
can leave the depot);

¢, = the latest time that a delivery can begin at

customer i (€, is the latest time a vehicle can
return to the depot).

Define the variables

_ {1, a vehicle travels directly from i to j
Y4 =0, otherwise;

_{1, ify;ory,=1
T = o, otherwise;

Y={y:y, =0or1}
X ={x:x; =0 or 1 and x is the incidence vector
of a K-tree with degree 2K on the depot}.

We can represent the asymmetric time window rout-
ing problem as

Z* = min 2 CyYi (8)

XEX,YEY 1,;ENg 1)

subject to
x;=yy +y, foraly 9)
K, ifj=0
i =13 . 10
,ENE(,:,.=jy” {1, JEN (10)
K, ifi=0
y =11 11
jEN§j=i y'l {1, IEN ( )
S 2 x; = 2r(S) forall S CN with |S]| > 2(12)
€S je §
mp—1
> Y., Smp—2 for any time window
j=1
violating directed path
P=(i1, o0 im,). (13)
In this formulation, the path P = (i;, ++- , im,) iS
time window violating if the start times T, = e; and
T,=max(e,, ,1+ ,1,1,)’1'2 .,mphas

T, > € for at least one j. The quantity r(S) is the
tlghtest "lower bound we are able to compute on
the number of vehicles required to service the cus-

tomers in set S.

Clearly, r(S) 2 [a(S)/b]. The time window con-
straints can be used to tighten this lower bound. For
example, if a(S) < b and |S] is sufficiently small to
enumerate all sequences, we can determine whether
there is a time window feasible route for the custom-
ersin S and set r(S) = 2 if none exists. We also know
that 7(S) 2 2 if a(S) =< b the length of a minimum
spanning tree of S with respect to the #; exceeds
max,cg €, — mins e,.

Let ul, u?, v s» and wp denote dual variables for
(10)-(13), respectively, and P(ij) denote the set of
time window violating paths P that contain nodes i
and j with i/ immediately preceding j. Then we can
define the Lagrangian relaxation

> (ul+ud) + K + up)

i=1

+ 2

SCN,[S|>2
- Y wp(mp - 2)
7

ZD(u9 v, W) =

(vs)r(S)

+ min 2 Cuyi
XEX,YEY 1 JEN, 1]

subject to x; = y,; + yj; for all ij where

&y =cy —ul —ul- > vs+ Y wp.
§ such that PEP(y)
1€85,)€ §

or
i€ §,jes

We can choose optimaly givenx by settingy,; ory;,
to x,,, depending on whether &, or &, is smaller.
Optimization of the Lagrangian problem then reduces
to min,ex %,; €,X,, where &,; = min{¢;;, ;,}. This is
a degree-constrained K-tree problem that can be
solved using the algorithm in Fisher (1994).

Now consider a symmetric vehicle routing problem
with a nonuniform fleet. Let b, denote the capacity of
vehicle k and assume thatb, = b, 2 2 b,. In this
case, we can define r(S) by X757 b, < a(S) < 2/
b,. Constraints (3) are now necessary, but not suffi-
cient to impose vehicle capacity feasibility. Still, they
may be adequate in some cases to obtain reasonable
lower bounds. If not, we can reformulate the problem

as follows. Let
_ {1, if customer i is assigned to vehicle &

Y& =10, otherwise.

1, wvehicle k travels directly between
Xijk customers  and j

0, otherwise.

Letx be a vector of the x,, variables. As before, we

can define a correspondence betweenx values and the
selection of edges in a complete graph on the node set
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Ny. In this case, we assume there are K edges joining
nodes: andj, and let X_, X, denote the number of
edges selected between nodes i and j. Let X denote
the set of x values corresponding to a K-tree with
degree 2K on the depot. Then we can model the
nonuniform fleet vehicle routing problem as

K
min z E CyXyk (14)
*XEX k=1 yeE(Ny)
XX =2yy foriENandk=1,...,K (15)
JEN
=
2 yu=1 iEN (16)
k
2 ayxsby k=1,..., K. (17)
EN

Dualizing (15) and (16) gives a Lagrangian problem
consisting of a K-tree problem and a knapsack prob-
lem. In the K-tree problem, we have K edges between
every pair of points, but we always choose the edge
with the currently smallest reduced cost, so we obtain
a K-tree problem of the form discussed previously.

Finally, the K-tree approach can be adapted to a
problem in which some customer deliveries can be
omitted at a penalty cost by using the algorithm in
Tang (1989) for a minimum spanning tree problem
in which some points may be omitted at a cost.

APPENDIX
Data for New Problems and Solutions

Tables IV-VI contain the data for problems 10-12 as
well as the optimal solutions for problems 10-11 and
a feasible solution with value 1163.599 for problem 12.
These problems are planar and the columns labeled X
and Y give the coordinates of each customer. The cost
¢, of travel between customers i and j is the
Euclidean distance between the customers. The col-
umn labeled Demand gives a, for each customer.
Because problems 7-9 are nonplanar, the input data
are too voluminous to include, but are available on
request from the author. Table VII gives the optimal
solution to problem 6 with value 819.56. In reporting
solutions, we assume that customers are indexed in
the order they appear in the data.
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Table IV
Data and Optimal Solution for Problem 10
(n =44, K = 4, b = 2,010,
depot coordinates 0.00 and 0.00)

X Y Demand
3 5 33
2.5 9 15

48 16 10

48 17 40

69 16 15

70 16 5

64 13 77
3 -22 435
2.5 1 165

-13 11.5 120
-20 45 65

-9 52 23

-8.5 53 18

-8 52 550
2 2 78

-2 9 627

-10 20 9
-20 19 96
-15 -21 116
-5 -9 116
—-4.5 -9 83
=52 -36 41
-53 -36 645
0 0.01 694
-30 -18 573
-51 -35 1

81 9 181

84 -99 106

82 -6 52

40 -12 117

50 -7 52

51 -8 1300

63 -17 57

45 -1 28

54 8.5 84

29 4 1

21 3 54

22 2 19

39 -3 88

39.5 -3 41

40 -11 238

28 -2 66

24 —-18 44

24 -19 42

Route 1: 241621159

Route 2: 81922 23 26 25 20 21

Route 3: 43442833292765735341413 1211 18
17 10

Route 4: 37 38 36 39 40 34 31 32 30 41 42

Galeener of Exxon Corporation for providing the data
used in problem 11, and to Julien Bramel and David
Simchi-Levi for applying their algorithm to obtain
feasible solutions for problems 7-12. The extension to
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Table V Table VI
Data and Optimal Solution for Problem 11 Data and Optimal Solution for Problem 12
(n =71, K = 4, b = 30,000, (n=134,K =7, b = 2,210,
depot coordinates 0.00 and 0.00) depot coordinates —6 and 15)

X Y Demand X Y Demand
-12 -6 7,063 3.2 5.1 30
-15 -5 51 24.6 8.3 226

-1 -18 23 33 1.3 37

2 -21 3,074 27.8 8.3 2
-1 -17 349 29.0 8.0 36
-9 -12 1,047 310 8.0 1

2 -2 698 3.5 10.5 31

1 -2t 3,001 30.0 10.5 2

7 -25 31 29.0 10.0 30

-7 -17 1,135 26.5 11.7 24
-11 -5 21,611 283 143 24
-14 -9 57 27.0 14.3 32
-14 -8 51 23.5 19.0 4
~11 -2 551 26.0 20.0 24
-14 -5 179 25.0 20.0 19
-1s -9 6 205 19.0 24
-1s -8 528 -20.0 13.0 18

-9 -6 2,832 -21.0 14.0 36
-14 -4 1,514 -30.0 30.0 115

3 6 889 -5.0 30.0 24

5 9 2,554 1.3 17.8 24

5 10 1,215 1.8 13.8 61

2 8 1,810 1.8 13.1 71

1 9 3,050 2.0 13.6 36

1 10 4 4.8 17.0 18

2 9 1,563 7.0 15.0 30

6 14 741 9.8 16.6 31

5 12 1,532 11.4 14.5 36

3 7 709 14.4 11.3 18

4 8 1,022 11.0 12.0 1,004

-6 1 883 9.3 10.7 18

-6 2 1,689 0.6 2.8 34

-8 -2 10,235 ~30.0 -10.0 504

-7 2 29 2.0 0.0 18

-7 -3 2,894 14.5 1.0 39

-7 -2 450 15.0 1.8 24
~20 12 411 17.2 2.4 37
-20 13 207 17.2 42 2
-12 10 496 18.2 4.4 99
-20 15 1,021 203 2.1 24

-6 8 117 2.8 3.1 2

2 21 46 3.0 4.0 36

2 2 8 208 4.0 30

1 21 18 20.8 4.0 25
-1 24 561 185 6.4 2

1 2 1,877 -14.0 16.0 122

-2 20 3,542 -0.5 6.9 196

-2 21 801 3.2 2.8 229

-4 18 967 5.6 1.8 83

-4 19 62 8.7 2.8 18

-5 18 1,366 9.0 33 24

-5 26 230 9.0 3.5 306

1 3 4 11.2 3.3 18

-6 5 12 10.8 4.7 20

-6 6 145 11.5 4.6 18

-9 6 7,149 12.3 4.7 2%

-9 7 2,250 12.3 5.5 2
-12 5 383 11.2 6.9 2
-12 6 134 6.5 9.7 18
-11 3 1,947 5.8 8.5 18
-11 4 182 7.2 6.0 24
-14 4 3,934 7.2 4.0 2
-14 5 468 -4.0 -4.0 30
-15 4 18 -3.0 1.2 24
-15 5 133 -40.0 49.0 40
-16 7 2,340 -15.0 10.0 166
-16 8 754 -11.0 -10.0 254
-15 10 1,264 -25.0 -20.0 187
-20 10 806 ~25.0 -35.0 94

-5 19 3,665 -24.0 -35.0 17

-9 -1 2,452 -18.0 10.0 285

-2.0 10.0 24

Route 1: 20 29 30 21 22 28 27 42 43 44 46 53 45 52 48 47 50 70 51 49 -4.0 8.0 24

252426 23 -3.0 5.0 205

Route 2: 3518 11 19 14 36 2.1 6.2 23

Route 33 9748351067112161713215133 -1.7 3.0 28

Route 4 54 55 41 56 57 39 68 40 38 37 69 67 66 65 64 62 63 59 58 61 ~3.0 2.0 51
60 34 32 31 (Table continued)
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Table VI Table VII
(Continued) Optimal Solution for Problem 6

X Y Demand Route Solution

10 2.0 5 1 7512469118735
vy iy 2 2 55 54 53 56 58 60 59 57
-62.0 -10.0 120 3 98 96 95 94 92 93 97 100 99

B oo 28 4 32 33 31 35 37 38 39 36 34

10.0 52.0 38 5 20 24 25 27 29 30 28 26 23 22 21

10.0 52.0 18 6 67 65 63 74 62 66

1.9 00 2 7 47 49 52 50 51 48 46 45 44 40 41 42 43

26.0 21.0 12 8 817876 7170 73 77 79 80 72 61 64 68 69

16.0 %ég g 9 101214161519 1817 13

B o 2 10 90 87 86 83 82 84 85 88 89 91

17.2 14.3 18

16.5 7.8 12

16.9 7.7 20

19 20 g DEDICATION

. 0 36 . . . .

g.g g.o 12 This paper is dedicated to the memory of Darwin

148 g:g 4 Klingman whose untimely death was a great loss, not

i%g %’8 gz only to our profession but personally to those who

12.0 4.0 137 knew him as a friend. His colorful and enthusiastic

128 3¢ 1z approach to life was an inspiration; his intellectual
~150.0 8.0 %(7)6 innovations will influence the style of our research for
:}2%;8 (1):8 482 many years. This paper both draws on his published
Ry Ry s work and benefits from personal comments provided
-780 -18.0 135 near the end of his life.
~78.0 -17.0 135
~80.0 -14.0 373
-118.0 2.0 535
-107.0 0.0 2 REFERENCES
-78.0 ig:8 1;2 ARAQUE, J. R. 1989. Contributions to the Polyhedral
:5:8 32.0 18 Approach to Vehicle Routing. Ph.D. Thesis, SUNY
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~79.0 ~190 23 ARAQUE, J. R., L. A. HaLL anD T. L. MaGNANTI. 1990.
-e Ty 13 Capacitated Trees, Capacitated Routing, and Asso-
780 ~175 51 ciated Polyhedra. OR Center Report 232-90,
~79.0 -17.0 43 Massachusetts Institute of Technology, Cambridge,
~80.0 -17.0 79
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