A Super Brief, Yet Super Awesome, LaTeX
Cheat Sheet

Richard (Rick) G. Freedman, WakeForest-Hniversity University of Massachusetts Amhe
Philip (Phil) Thomas, University of Massachusetts Amherst

6-February204t 14 June 2013

Contents

1 A Brief Introduction 1
1.1 What You Will Need to Get Started 1

2 Special Symbols and Their Uses 2

3 Formatting Commands 2
3.1 In-Line Formatting Commands 2

3.2 \begin...\end Formatting Commands (Also Called Environments) 3

4 Math Mode Commands 4
5 Tables 6
6 More Stuff 6
6.1 Sections and Subsections 6
6.2 To Make Quoted Text Look Good 7
6.3 Packages. 7
6.4 Other Useful Commands 7
6.5 References and Citations 8
6.6 Compiling via Command Line 8
6.7 This Is Only the Beginning 10

1 A Brief Introduction

LaTeX is a programming language that can be used for writing documents. It
is especially useful for the mathematics and sciences fields due to its ease of
writing special symbols and equations while also making them look good. Most
textbooks are actually written in LaTeX. Due to the programming aspect, writ-
ing documents in LaTeX allows a lot more freedom to format how the document
should look. However, it is important to learn how these formatting techniques

function in order to know what to expect (did you notice how Rick’s school
affilitation goes off the page?).

In this cheat sheet, we discuss some of the basics for writing documents in
LaTeX. We hope it can help you get started with learning this useful language
- LaTeX will make writing homework assignments, publications, posters, and
many other documents far easier. For additional practice, the actual .tex file is
included for you to see what we did. Feel free to modify it and see how your
changes affect this document.

1.1 What You Will Need to Get Started

In order to write documents in LaTeX, you will need to download the standard
LaTeX packages and compilers. There are a lot of packages and several com-
pilers, and we barely scratch the surface about a few of them in Sections 6.3
and 6.6. Don’t worry about finding all of them scattered across the internet;
the essentials can all be found in one place. For Windows users, we suggest
downloading MikTex. For Linux (and other *nix) users, we highly recommend
TexLive. You can write your code in any text editor as well as any LaTeX IDE.
Many of them are out there for free; so play with them and find what you like.
We personally use TexMaker.

2 Special Symbols and Their Uses

To write a comment like the one at the top of the .tex file, use the percent sign
(%). To place symbols like the percent sign into the compiled paper, use the
escape character before the symbol (it is the forward slash (\) found above the
ENTER key on the keyboard).

In fact, the escape character is used to begin any command in LaTeX. For
example, to start this new paragraph, the command \par was written. However,
if you looked at the .tex file itself, you would see that we are writing the escape
character for the compiled paper as $ \setminus $§. This is because two escapes
characters in a row indicates a line break
that forces us onto the next line as just happened here. However, most journals
request that the command \newline is used instead as done
here. They look similar in this document, but a journal’s style file can modify
how the \newline command looks. The two escape character version is unmod-
ifiable.

So the next question is probably “Why the dollar signs ($)?” They place us
into a special thing called “Math Mode.” We will explain it later, but it is good
to know that the dollar sign is also a special symbol. Other special symbols are
the curly braces ({ and }) which contain parameters for commands, tilde (~)
which generates a unit of whitespace that cannot be broken between two lines
for word wrapping, carrot (5 which is used for superscripting in math mode, and
underscore (-) which is used for subscripting in math mode. The ampersand
(&) and pound (#) are also special symbols, but their uses vary by the context

of the document. Just remember to escape these characters (or use $ \sim $ for
the tilde) when trying to print them in the document; we have done so in the
.tex file if you read this paragraph.

3 Formatting Commands

Many commands in LaTeX will format the compiled paper. In order to under-
stand what is formatted, it is usually bounded in some way just as Math Mode
applies to anything between two dollar signs. In particular, there are two ways
formatting is done:

3.1 In-Line Formatting Commands

These format only a little bit of text at a time. Because they only affect a small
amount of text, these commands are a single command that receives the text
in curly braces ({ and }) afterwards. Some important examples we will use are
below. To show what they do, the actual command is used on the text in curly
braces.

e \textbf{Text to write in bold}
o \textit{ Text to write in italics}

e \underline{Text to underline}

o \sout{Fext—tostrike—out} You will need to use the ulem package (see
Section 6.3)

e \textsc{TEXT TO WRITE IN ALL CAPITAL LETTERS WITHOUT ‘SHOUT-
ING’}

Best of all, these can be placed within each other (like nested blocks of code).
That is why this sentence is written in bold, italics, and underlined!

3.2 \begin...\end Formatting Commands (Also Called En-
vironments)

When a large amount of text is formatted at one time with a command, it
is easier to not have to contain it within brackets. This is why some format-
ting commands have two pairs of commands: \begin{format command} and
\end{format command}. Think of them as the left and right curly braces of the
in-line formatting commands. Anything between a \begin and \end with the
same format command will be formatted. Some examples include:

{center} centers the text

{flushright} moves the text to the right side

{flushleft} moves the text to the left side

\{verbatim\} types everything character for character, including commands.

This is great for typing program code since there are so many special symbols
that would have been escaped. Notice that we should not have escaped the curly
braces around the word ‘verbatim’ and been more careful with margins.

iy e o UEE } €nlarges the font
to a really large size

Besides formatting commands, \begin and \end are used for special segments
of the document as well. These (which are far more useful) include:

e Creating lists. Each entry is indicated by the \item command. There are
many types of lists including:

1. {itemize} Bulleted lists
2. {enumerate} Numbered lists

3. {description} Labelled lists where each item starts with an empha-
sized word provided in brackets like \item[word]. Here’s a secret:
the brackets after the command \item can be used for the other list
environments. Try them out and see how it looks different from the
description environment.

e The paper itself is bounded between \begin{document} and \end{document}
and THIS IS A REQUIRED ENVIRONMENT

e {tabular} creates a table after providing a little more information. We
will briefly explain them in Section 5.

e {displaymath} will also put us in a special Math Mode that gets its own
line that can present larger symbols. For example, in-line Math Mode’s
sum symbol looks like Y% f (i) while displaymath Math Mode’s sum
symbol looks less squished

n
f (@)

i=0

(the shortcut for the displaymath environment is two consecutive dollar

signs $$... $$ as seen in the .tex file).

The only warning with all these commands is that any \end must have the same
command as the most recently unmatched \begin in the file. This will line them
up so that they match like the in-line brackets.

4 Math Mode Commands

Anything between dollar signs $... $ is written in math mode. It will accept
many commands that are otherwise not available and formats the text to look
“mathy” (so sentences should not go here). Since it is so straightforward, we
will just list some commands used in Math Mode for common symbols:

e any text is anytext (Note that spaces are ignored in Math Mode since text
is assumed to be a string of variables)

e \leq is <
e \geqis >
e \neq is #

o \(Greek letter) makes the Greek letter. Capitalizing the first letter deter-
mines whether or not the Greek letter is capital. For example, \Omega
is and \alpha is a. Not all of them are available, though. Some have
alternative designs such as \phi (¢) and \varphi (¢)

e \inis €

e \subset is C

e \subseteq is C

e \cup is U

e \cap is N

e \veeis V

e \wedge is A

e \neg is —

e \ldots is . ..

e \cdots is - - -

e \cdot is -

e \infty is co

e \sum is Y (use superscript and subscript for indexing)
e \prod is [] (use superscript and subscript for indexing)
e \int is [(use superscript and subscript for limits of integration)
e \partial is 9

e \mid is |

e \leftarrow is «— (guess what happens if you replace ‘left’ with ‘up,” ‘down,’
‘right,” or ‘leftright’)

e \Leftarrow is < (guess what happens if you replace ‘Left’ with ‘Up,’
‘Down,” ‘Right,” or ‘Leftright’)

e \; adds extra white space to better separate symbols

\not preceding another Math Mode command slashes through it to get things
like ‘not divisible by:” |/ Also, to help keep track of the left and right grouping
symbols, \left and \right may precede parentheses, brackets, curly braces (which
must be written as \leftbrace and \rightbrace), vertical bars (above the ENTER
key), floor functions (written \lfloor and \rfloor), ceiling functions (written \lceil
and \rceil), and period for nothing (which is useful in set notation, conditional
probability, and piecewise functions). Another benefit of \left and \right is that
they adjust their size appropriately in the displaymath environment: compare

(a+ 9] with (a + 9]
c c

which also shows that the symbols do not need to match up. This is the pur-
pose of the period when only one symbol is needed on one side to scale in the
displaymath environment. The compiler will complain if the commands \left
and \right do not match up correctly.

There are also some in-line formatting commands for Math Mode. The more
useful ones are:

e ~ {The text to superscript such as 2 in 22}
o _{The text to subscript such as 0 in o}
e \frac{numerator}{denominator} makes a fraction like & when given {x}{y}

e \textnormal{any text} will print the text as though Math Mode is not in
use

Notice that the superscript and subscript commands DO NOT have an escape
character in front of them!

5 Tables

To create a table, you will have an extra argument to give when defining
\begin{tabular}{layout}. The layout argument will specify how many columns
there are, where the text is placed in each column, and if a line separates the
columns. A layout example is {|c|c|lr|c|c} which will have 6 columns: a line of
separation, a centered column, a line of separation, a centered column, a line
of separation, a left column (no line of separation), a right column, a line of
separation, a centered column, a line of separation, and a centered column (no
line of separation).

When filling in the table, each line is an individual row (columns are sep-
arated by ampersands (&)) and they are separated by the \\ line breaks. To
place a horizontal line of separtion, use the \hline command. It may be good to
look at the table below both in the compiled document and in the .tex file. It
will show the correlation between making the table and its code. You will need
to start it on a new line (we use \par to do it here).

Hello there person reading this !

This column is | So is this | But here it is And here it is | Now we are again | As we also are
centered one left right centered here
Above is 2 columns. | But we did not separate with | \hline! How cool is that?!

You can also have a blank column that is empty

We must be careful. As seen above, the table can be made longer than the page.
This is when compiling and editing will become a trial and error task. When
in the displaymath environment (see Section 3.2), the environment name is
changed from tabular to array, but everything else remains the same.

6 More Stuff

6.1 Sections and Subsections

This whole document has been organized by “chapters” that have their own
numbers and titles. They are generated by two particular commands:

\section{title} These are the larger sections. They have a single number and
the title. “More Stuff” is a section.

\subsection{title} These are the smaller sections within the section most
recently declared in the .tex file. They have two numbers separated by a
period (.). “Sections and Subsections” is a subsection of “More Stuff.”

6.2 To Make Quoted Text Look Good

)

LaTeX prints the quote symbols as ” and ’. These only look good when placed
at the end of the text. To get good quotation marks at the beginning of the text,
use the backtick ‘ located below the ESCAPE key on the keyboard. ‘Thank you
very much!’

6.3 Packages

Like in any programming language, other people have made things that can
improve our coding lives. Many of these packages already come with a standard
LaTeX install (Miktex for Windows and TexLive for Linux), and other ones can
be downloaded and placed in the same directory as the .tex file. To use the
package in a document, the command \usepackage{packageName} must appear
after the \documentclass command. Some packages have special parameters
that appear in brackets before the package name. Some common packages to
include are:

\usepackage{amsmath}, \usepackage{amsfonts}, and \usepackage{amssymb}
form the set of AMS (American Mathematics Society) packages that the
TexMaker IDE always suggests. With these three packages, almost every
math symbol is available.

o \usepackage[margin=XX]{geometry} can cheat the margins when you want
to save trees or specify particular guidelines. Replace XX with a floating-
point number followed by a unit of measurement such as ‘in’ or ‘cm’ (no
space between the number and unit).

o \usepackage{graphicx} allows graphics to be rendered in the document.
It is a necessary evil in LaTeX.

o \usepackage{epsfig} allows PostScript images to be rendered in the docu-
ment. It is a slightly less evil in LaTeX since the bounding boxes can be
computed for you.

e \usepackage[normalem|{ulem} allows some other emphasis in-line format-
ting commands such as \sout.

6.4 Other Useful Commands

Some commands for formatting look very different from traditional in-line for-
matting and environments. In particular, they are constants whose values are
set such as \parindent=XX for how much to indent paragraphs (with the \par
command) and \parskip=XX for how much space to leave between consecutive
paragraphs. In both cases, XX is replaced with a floating point and unit as
done for the geometry package (see Section 6.3).

Also, some documents are better with a tabel of contents and title section
(like this one). The command \tableofcontents will generate a table of contents
where the command is specified and \maketitle will generate a title section
with a given title (use command \title{title} beforehand), authors (use com-
mand \author{author(s)} beforehand), and the date of compilation (unless the
command \date{date} is specified beforehand).

Footnotes can be made using the command \footnote{Text to appear in
footnote}. They are numbered in order and placed at the bottom of the page
during compilation. A variation of footnotes that is sometimes used for author
information when generating the title section is the command \thanks{Author
Information}.

6.5 References and Citations

When revising a document, it can be common to reorder sections, figures, and
tables as well as edit the bibliography. Rather than have to change all the
references and citations each time, LaTeX keeps track of them for you! When
creating a section or caption, include the command \label{labelName} before
ending it (as we have done for all sections in the .tex file). Then in the doc-
ument, feel free to always write Section/Figure/Table~ \ref{labelName} and

the compiler will fill in the appropriate name in place of the \ref command.
The tilde (~) is a special character that makes sure that the number is not
separated from the word preceding it. Likewise, the bibtex file’s names for each
bibliographic entry may be cited in this way in case the reference list changes.
Simply use the command \cite{bibitemName}.

6.6 Compiling via Command Line

For Linux users who want to compile LaTeX documents without the IDE (espe-
cially if you code in a text editor instead), there are two paths to take depending
on the file format of figures (if no images of either format, then both work). If a
compiler error occurs, the best thing to do is make the specified change (warn-
ing: LaTeX gives bad error messages) in the .tex file, type a capital ‘R’ in the
command line menu, and press ENTER; this terminates the compilation and
spits out a lot of text, but avoiding the compiler’s debug menu is worth it:

PostScript (.eps and/or .ps) First, compile the .tex file with latez in order to
get a .dvi file. If you have referenced sections, then a second compilation
will be necessary due to the one-pass compiler missing the label of later
sections:

> latex myfile.tex
> #It doesn’t hurt to compile again if there are references
> latex myfile.tex

If you have a bibtex file to also compile, then now is the time to synchronize
them (since all the other steps convert the .dvi file). When compiling, an
auxiliary .aux file is generated that lists which references are cited in each
.Jbib file (since that information is in the .tex file). So synchronize the
auxiliary file with the bibtex file:

> bibtex myfile.aux

Now recompile the document TWICE. The first time generates the bibli-
ography section and a list of citation information (such as ‘Author Year’),
and the second time fills in the \cite commands with this information
obtained from the previous compilation. Note that if the bibliography
(not the in-text citations) changes, then synchronization needs to be done
again by DELETING THE AUXILIARY FILE and then starting over the entire
compilation process.

> latex myfile.tex
> latex myfile.tex

Second, convert the .dvi file into a .ps file using dvips which is ‘dvi’ followed
by ‘ps:’

> dvips myfile.dvi
Lastly, convert the .ps file into a .pdf file using ps2pdf:
> ps2pdf myfile.ps

The .pdf file is now ready, and the PostScript images are properly ren-
dered.

PDF First, compile the .tex file with pdfiater in order to get a .pdf file. If you
have referenced sections, then a second compilation will be necessary due
to the one-pass compiler missing the label of later sections:

> pdflatex myfile.tex
> #It doesn’t hurt to compile again if there are references
> pdflatex myfile.tex

If you have a bibtex file to also compile, then now is the time to synchronize
them. When compiling, an auxiliary .aux file is generated that lists which
references are cited in each .bib file (since that information is in the .tex
file). So synchronize the auxiliary file with the bibtex file:

> bibtex myfile.aux

Now recompile the document TWICE. The first time generates the bibli-
ography section and a list of citation information (such as ‘Author Year’),
and the second time fills in the \cite commands with this information
obtained from the previous compilation. Note that if the bibliography
(not the in-text citations) changes, then synchronization needs to be done
again by DELETING THE AUXILIARY FILE and then starting over the entire
compilation process.

> pdflatex myfile.tex
> pdflatex myfile.tex

The .pdf file is now ready with all PDF images included.

6.7 This Is Only the Beginning

LaTeX can do far, far more than these things. However, this should be enough to
understand the basics. We can discuss other commands if we need them later,
but they will be similar in syntax to the commands discussed above. Enjoy!
Happy LaTeX’ing!

10

