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1. Markov Property

During the course of your studies so far you must have heard at least once that Markov
processes are models for the evolution of random phenomena whose future behaviour is
independent of the past given their current state. In this section we will make precise the
so called Markov property in a very general context although very soon we will restrict our
selves to the class of ‘regular’ Markov processes.

As usual we start with a probability space (Ω,F , P ). Let T = [0,∞) and E be a locally
compact separable metric space. We will denote the Borel σ-field of E with E . Recall that
the d-dimensional Euclidean space Rd is a particular case of E that appears very often in
applications.

For each t ∈ T, let Xt(ω) = X(t, ω) be a function from Ω to E such that it is F/E -
measurable, i.e. X−1

t (A) ∈ F for every A ∈ E . Note that when E = R this corresponds
to the familiar case of Xt being a real random variable for every t ∈ T. Under this setup
X = (Xt)t∈T is called a stochastic process.

We will now define two σ-algebras that are crucial in defining the Markov property. Let

F0
t = σ(Xs; s ≤ t); F ′t = σ(Xu;u ≥ t).

Observe that F0
t contains the history of X until time t while F ′t is the future evolution of X

after time t. Moreover, (F0
t )t∈T is an increasing sequence of σ-algebras, i.e. a filtration. We

will also denote the σ-algebra generated by the past and the future of the process with F0,
i.e. F0 = σ(F0

t ,F ′t).
Before we define the Markov property for X we need a filtration. As in martingales,

specification of a filtration is crucial for the Markov property. We suppose that there exists
a filtration (Ft)t∈T on our probability space such that F0

t ⊂ Ft, for all t ∈ T, i.e. X is
adapted to (Ft).

Definition 1.1. (Xt,Ft)t∈T is a Markov process if

(1.1) P (B|Ft) = P (B|Xt), ∀t ∈ T, B ∈ F ′t.

The above well-known formulation of the Markov property states that given the current
state of X at time t, the future of X is independent of the σ-algebra Ft of events including,
but not limited to, the history of X until time t. The next theorem states two alternative
and useful statements of the Markov property.

Theorem 1.1. For (Xt,Ft)t∈T the condition (1.1) is equivalent to any of the following:

i) ∀t ∈ T, B ∈ F ′t and A ∈ Ft,

P (A ∩B|Xt) = P (A|Xt)P (B|Xt);
1
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ii) ∀t ∈ T, A ∈ Ft,
P (A|F ′t) = P (A|Xt).

Proof. Suppose (1.1) and let’s see that i) holds. Let t ∈ T, B ∈ F ′t and A ∈ Ft. Then,

P (A ∩B|Xt) = E [1AE [1B|Ft] |Xt]

= E[1AP (B|Xt)|Xt] = P (B|Xt)P (A|Xt).

Now suppose that i) holds and let’s try to prove this implies ii). To this end let t ∈ T, A ∈ Ft
and fix an arbitrary B ∈ F ′t. Then, P (A ∩B|Xt) = E[1BP (A|Xt)|Xt] implies that

E[1A1B] = E[1BP (A|Xt)],

which yields the claim.
Finally, let’s suppose ii) holds and try to deduce (1.1). For t ∈ T, A ∈ Ft and B ∈ F ′t,

E[1B1A] = E[1BP (A|Xt)]

= E[P (B|Xt)P (A|Xt)] = E[P (B|Xt)1A],

which is what we wanted to show. �

From now on we will denote the set of bounded and G -measurable functions with bG . The
following result, whose proof is left to the reader, lists yet other equivalent formulations of
the Markov property.

Proposition 1.1. For (Xt,Ft)t∈T the condition (1.1) is equivalent to any of the following:

i) ∀Y ∈ bF ′t
E[Y |Ft] = E[Y |Xt];

ii) ∀u ≥ t, f ∈ bE ,

E[f(Xu)|Ft] = E[f(Xu)|Xt];

iii) ∀u ≥ t, f ∈ Cc(E),

E[f(Xu)|Ft] = E[f(Xu)|Xt],

where Cc(E) is the set of continuous functions on E with compact support.

(Hint: For part ii) first note that f = f+− f− where f+ and f− are bounded, measurable
increasing functions. Then, use the fact that for any positive and measurable g there exists
a sequence of simple measurable functions (gn) with gn ↑ g. Recall that g is said to be simple

measurable if g(x) =
∑k

i=1 gi1Ei(x) for all x ∈ E, where gi ∈ R, k is finite and Ei ∈ E .)

1.1. Transition functions. Our primary goal in this section is to describe the finite-
dimensional distributions of a Markov process.

Definition 1.2. The collection {Ps,t(·, ·); 0 ≤ s < t < ∞} is a Markov transition function
on (E,E ) if ∀s < t < u we have

i) ∀x ∈ E : A 7→ Ps,t(x,A) is a probability measure on E ;
ii) ∀A ∈ E : x 7→ Ps,t(x,A) is E -measurable;
iii) ∀x ∈ E,∀A ∈ E the following Chapman-Kolmogorov equation is satisfied:

Ps,u(x,A) =

∫
E

Ps,t(x, dy)Pt,u(y, A).
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The part iii) (Chapman-Kolmogorov equation) of the above definition is a manifestation
of the Markov property. Indeed, when considering a journey from x to a set A in the interval
[s, u], the first part of the journey until time t is independent of the remaining part, in view
of the Markov property, and the Chapman-Kolmogorov equation states just that!

Example 1.1. (Brownian motion). E = R and E is the Borel σ-algebra on R. For real
x and y and t > s ≥ 0 put

ps,t(x, y) =
1√

2π(t− s)
exp

(
−(x− y)2

2(t− s)

)
,

and define the transition function by setting

Ps,t(x,A) =

∫
A

ps,t(x, y) dy, t > 0.

ps,t(x, y) is called the transition density. Observe that the transition function is time homo-
geneous, i.e. Ps,t(x,A) depends only on t− s for fixed x and A. Also note that in this case
spatial homogeneity holds, too; namely, pt(x, y) is a function of x− y only.

The interpretation of the transition function Ps,t is that Ps,t(x, dy) = P (Xt ∈ dy|Xs = x).
Thus, when X is a Markov process with conditional distribution defined by Ps,t, and initial
distribution µ we can easily write for any f ∈ E n and 0 ≤ t1 < . . . < tn,

E[f(Xt1 , . . . , Xtn)](1.2)

=

∫
E

µ(dx0)

∫
E

Pt0,t1(x0, dx1) . . .

∫
E

Ptn−1,tn(xn−1, dxn)f(x1, . . . , xn)

In particular, if f is the indicator function of A1 × . . .× An, then the above gives the finite
dimensional joint distribution of the process.

For f ∈ bE we will write

Ps,tf(x) = Ps,t(x, f) =

∫
E

Ps,t(x, dy)f(y).

Then, ii) implies that Ps,tf ∈ bE . Similarly, Ps,tf ∈ E+ for every f ∈ E+, where E+ is the
class of positive (extended-valued) E -measurable functions.

Often in applications one is given a transition function, or finite-dimensional distributions
as in (1.2), and wants to construct a Markov process whose finite dimensional disribution
is given by (1.2). This poses us a question of existence. However, in view of Kolmogorov
extension theorem it is possible to construct a stochastic process in the space of all functions
from T to E whose joint distributions agree with (1.2). Thus, whenever we consider a Markov
process with a transition function Ps,t, we will always assume that such a process exists in
our probability space.

The transition function Ps,t has been assumed to be a strict probability kernel, namely,
Ps,t(x,E) = 1 for every x ∈ E and s ∈ T, t ∈ T. We will extend this by allowing

Ps,t(x,E) ≤ 1, ∀x ∈ E, s ∈ T, and t ∈ T.

Such a transition function is called submarkovian and appear naturally when studying
Markov processes killed reaching a certain boundary. When the equality holds in above
we say that the transition function is (strictly) Markovian. We can easily convert the former
case into the latter as follows. We introduce a new ∆ /∈ E and set

E∆ = E ∪ {∆}, E∆ = σ(E , {∆}).
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The new point ∆ may be considered as the point at infinity in the one-point compactification
of E. If E is already compact, ∆ is nevertheless added as an isolated point. We can now
define a new transition function P ′s,t as follows for s < t and A ∈ E :

P ′s.t(x,A) = Ps.t(x,A),

P ′s,t(x, {∆}) = 1− Ps,t(x,E), if x 6= ∆;

P ′s,t(∆,E) = 0, P ′s,t(∆, {∆}) = 1.

It is easy to check that P ′s,t is a Markovian transition function. Moreover, the above sug-
gests that ∆ is an ‘absorbing state’ (or ‘trap’), and after an unessential modification of the
probability space we can assume that

∀ω,∀s ∈ T : {Xs(ω) = ∆} ⊂ {Xt(ω) = ∆ for all t ≥ s}.

Next we define the function ζ : Ω 7→ [0,∞] by

(1.3) ζ(ω) = inf{t ∈ T : Xt(ω) = ∆},

where inf ∅ =∞ by convention. Thus, ζ(ω) =∞ if and only if Xt(ω) ∈ E for all t ∈ T. The
random variable ζ is called the lifetime of X.

Observe that so far we have not defined Pt,t. There are interesting cases when Pt,t(x, ·) is
not the identity operator, then x is called a ‘branching point’. However, for the rest of this
course we will assume that this is not the case and

Pt,t(x, x) = 1, ∀x ∈ E∆,∀t ∈ T.

A particular case of Markov processes occurs when the transition function is time-homogeneous,
i.e. for any x ∈ E∆, A ∈ E∆ and s ≤ t

Ps,t(x,A) = Pt−s(x,A),

for some collection Pt(·, ·). In this case we say that X is a time-homogeneous Markov
process. Conversely, if one is given a transition function Ps,t, then one can construct a
time-homogenous Markov process, namely (t,Xt)t∈T with a time-homogeneous transition
function. This construction is straightforward and left to the reader. From here on, we will
restrict our attention to time-homogeneous Markov processes and their transition functions
of the form Pt(·, ·). The family Pt forms a semigroup which is expressed symbolically by

Pt+s = PtPs.

As a function of x and A, Pt(x,A) is also called a ‘kernel’ on (E∆,E∆).
We now turn to the probability measures generated by the Markov process X. If x is any

point in E and µ = εx (the point mass at x), then the probability measure on F0 generated
by X will be denoted with P x. P x is also said to be the law of X when X0 = x. The
corresponding expectation operator will be denoted with Ex. Thus, e.g., if Y ∈ bF0

Ex[Y ] =

∫
Ω

Y (ω)P x(dω).

If, in particular, Y = 1A(Xt), where A ∈ E∆,

Ex(Y ) = P x(Xt ∈ A) = Pt(x,A).
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As observed before, it is often the case that X0 is random with distributions given by some
µ. Thus, if we want to compute E[Y ], we should compute the integral∫

E∆

Ex[Y ]µ(dx).

However, this requires the function x 7→ Ex[Y ] to be appropriately measurable. The following
proposition establishes this fact.

Proposition 1.2. For each Λ ∈ F0, the function x 7→ P x(Λ) is E∆-measurable.

Note that the above proposition holds when Λ = X−1
t (A) for some A ∈ E∆. The proof

can be completed by an application of the following version of monotone class theorem due
to E. Dynkin.

Theorem 1.2. (Dynkin’s π − λ theorem.) Let S be an arbitrary space and π a class of
subsets of S which is closed under intersection. Let λ be a class of subsets of S such that
S ∈ λ and π ⊂ λ. Furthermore, suppose that λ has the following properties:

i) if An ∈ λ and An ⊂ An+1 for n ≥ 1, then ∪∞n=1An ∈ λ;
ii) if A ⊂ B and A ∈ λ, B ∈ λ, then B\A ∈ λ.

Then, σ(π) ⊂ λ.

In view of the aforementioned alternative formulations, the Markov property (1.1) can
now be rewritten as

(1.4) P (Xs+t ∈ A|Ft) = PXt(Xs ∈ A) = Ps(Xt, A),

for any A ∈ E∆. What we want to do now is to extend (1.4) to sets more general than
[Xs+t ∈ A] = X−1

s+t(A). This will be achieved by introducing a ‘shift’ (θt)t≥0 operator in the
following manner. For each t, let θt : Ω 7→ Ω such that

(1.5) (Xs ◦ θt)(ω) = Xs(θt(ω)) = Xs+t(ω).

With this notation note that

X−1
s+t = θ−1

t X−1
s

so that (1.4) becomes

P (θ−1
t (X−1

s (A))|Ft) = PXt(X−1
s (A)).

Exercise 1.1. Show that if Λ ∈ F0, then θ−1
t (Λ) ∈ F ′t, and that

P (θ−1
t Λ|Ft) = PXt(Λ).

More generally, show that for all Y ∈ bF0

E[Y ◦ θt|Ft] = EXt [Y ].

Note that a shift operator θ exists trivially when Ω is the space of all functions from T
to E∆ as in the construction of the Markov process by Kolmogorov’s extension theorem. In
this case

θt(ω) = X(t+ ·, ω)

where X is the coordinate process. The same is true when Ω is the space of all right
continuous (or continuous) functions. Thus, from now on we will postulate the existence of
a shift operator in our space, and use the implications of (1.5) freely.
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For any probability measure µ on E∆ we can define a new measure on F0 by setting

P µ(Λ) =

∫
E∆

P x(Λ)µ(dx), Λ ∈ F0.

Note that the implications of Exercise 1.1 hold true if P (resp. E) is replaced by P µ (resp. Eµ).
Observe that P µ (in particular P x) is only defined on the σ-field F0 as opposed to P , which
is defined on F . Later we will extend P µ to a larger σ-algebra by completion.

Before proceeding further we give some examples of Markov processes.

Example 1.2. (Markov chain).

E = any countable set, e.g. the set of integers.

E = the set of all subsets of E.

If we write pij(t) = P (Xt = j|X0 = i) for i ∈ E and j ∈ E, then we can define for any
A ⊂ E,

Pt(i, A) =
∑
j∈A

pij(t).

Then, the conditions for P being a transition function are easily seen to be satisfied by Pt.

Example 1.3. (Poisson process). E = N. For n ∈ E and m ∈ E

Pt(n, {m}) =

{
0 if m < n,
e−λt(λt)m−n

(m−n)!
if m ≥ n,

so that we can define a valid transition function on (E,E ) where E is the set of all subsets
of E. Note the spatial homogeneity as in the Example 1.1.

Example 1.4. (Brownian motion killed at 0). Let E = (0,∞), and define for x > 0
and y > 0

qt(x, y) = pt(x, y)− pt(x,−y),

where pt is as in defined in Example 1.1. Let for AE

Qt(x,A) =

∫
A

qt(x, y) dy.

Then, it can be checked that Qt is a submarkovian transition function. Indeed, for t > 0,
Qt(x,E) < 1. This is the transiton density of a Brownian motion starting at a strictly
positive value and killed when it reaches 0. In fact, Qt(x,E) = P x

t (T0 > t) where P x is the
law of standard Brownian motion starting at x > 0, and T0 is its first hitting time of 0. As
killed Brownian motion is a submarkovian process, there exists a finite lifetime associated
with it. In this case

ζ = inf{t > 0 : Xt = 0}
as the probability of hitting ∞ in a finite time is 0. Note that the killed Brownian motion
does not have the spatial homogeneity.

Example 1.5. (3-dimensional Bessel process). E = (0,∞). Note that the transition
density qt defined in Example 1.4 satisfies for any x > 0 and y > 0∫

E

yqt(x, y) dy = x.
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Now, if we define

p
(3)
t (x, y) =

1

x
qt(x, y)y,

and let

P
(3)
t (x,A) =

∫
A

p
(3)
t (x, y) dy,

we can check that P
(3)
t is a Markovian transition function, i.e. P

(3)
t (x,E) = 1 for all t > 0

and x ∈ E. This is the transition density of 3-dimensional Bessel process.

1.2. Optional times. In the next section we will discuss the regularity properties of Markov
processes. However, before we go into the details, we will collect some results from Martingale
Theory.

Definition 1.3. The function T : Ω 7→ [0,∞] is called an optional time relative to (Ft) if
for any t ∈ T, [T < t] ∈ Ft.

Observe that since we have not assumed that the filtration is right-continuous the notion
of optional time is different than that of a stopping time in general. Define

F∞ =
∨
t≥0

Ft;

∀t ∈ (0,∞) : Ft− =
∨

s∈[0,t)

Fs;

∀t ∈ [0,∞) : Ft+ =
∧

s∈(t,∞)

Fs.

Clearly, Ft− ⊂ Ft ⊂ Ft+. We will say that a filtration (Ft) is right-continuous if Ft = Ft+ for
all t ≥ 0. The following proposition shows the relationship between optional and stopping
times.

Proposition 1.3. T is an optional time relative to (Ft) if and only if it is a stopping time
relative to (Ft+).

As an immediate corollary of this proposition we see that optional times and stopping
times are the same notions when the filtration is right-continuous.

Example 1.6. Let X be a Markov process and ζ be its lifetime defined in (1.3). Then, ζ is
an optional time relative to (F0

t ). Indeed, since ∆ is absorbing

[ζ < t] =
⋃

r∈Q∩[0,t)

[Xr = ∆] ∈ F0
t ,

where Q is the set of rationals. Note that the argument we used cannot be applied to show
that the first hitting time of a point is an optional or stopping time.

The next example shows why we cannot avoid the optional times and restrict our attention
to stopping times.

Example 1.7. Suppose that X is right continuous and A is an open set. Let

T = inf{t ≥ 0 : Xt ∈ A}.
Then, T is an optional time relative to F0.
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Example 1.8. Suppose that F0 contains all null sets and ∀t, P (T = t) = 0. Then we have
[T ≤ t]\[T < t] ∈ Ft so that T is an optional time iff it is a stopping time.

Example 1.9. Consider a Poisson process with left-continuous paths, and let T be the first
jump time. Then T is an optional time but not a stopping time. Indeed, [T = t] /∈ Ft but
[T ≤ t] ∈ Ft+.

The following lemma can be proved in the same way to prove the analagous result for
stopping times.

Lemma 1.1. If (Tn)n≥1 are optional, so are supn≥1 Tn, infn≥1 Tn, lim supn→∞ Tn and lim infn→∞ Tn.

Exercise 1.2. Show that T + S is an optional time if T and S are optional times. It is a
stopping time if one of the following holds:

i) S > 0 and T > 0;
ii) T > 0 and T is a stopping time.

Recall that for a stopping time T we can define the σ-algebra of events upto time T as

FT = {A ∈ F∞ : A ∩ [T ≤ t] ∈ Ft,∀t ∈ [0,∞)}.

An analagous set is defined for an optional time.

Definition 1.4. Let T be an optional time. Then,

FT+ = {A ∈ F∞ : A ∩ [T < t] ∈ Ft,∀t ∈ (0,∞]}.

The exercises below motivate the notation FT+ instead of FT .

Exercise 1.3. Let T be an optional time. Show that FT+ is a σ-algebra. Moreover,

FT+ = {A ∈ F∞ : A ∩ [T ≤ t] ∈ Ft+,∀t ∈ [0,∞)}.

Exercise 1.4. Let T be an optional time. Show that FT+ as defined above reduces to Ft+
when T = t, where t is a deterministic constant.

Observe that when T is a stopping time both FT and FT+ are well defined.

Exercise 1.5. If T is a stopping time show that FT ⊂ FT+.

Proposition 1.4. If T is optional and Λ ∈ FT+, define

TΛ(ω) =

{
T (ω), if ω ∈ Λ
∞, if ω ∈ Λc.

Then, TΛ is an optional time.

Proof. For any t <∞, we have

[TΛ < t] = [T < t] ∩ Λ ∈ Ft.

�

Theorem 1.3. (1) If T is optional, then T ∈ FT+.
(2) If S and T are optional such that S ≤ T , then FS+ ⊂ FT+. If, moreover, T is a

stopping time such that S < T on [S <∞], then FS+ ⊂ FT .
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(3) If (Tn)n≥1 are optional times such that Tn ≥ Tn+1 and T = limn→∞ Tn, then

(1.6) FT+ =
∞∧
n=1

FTn+.

In case Tns are stopping times with T < Tn on [T < ∞], for each n ≥ 1, (1.6) still
holds when each FTn+ (but not FT+) is replaced with FTn.)

Proof. The first two statements are left as an exercise. We have seen that T is an optional
time. It follows from Part 2 that FT+ ⊂ FTn+ for each n implying

FT+ ⊂
∞∧
n=1

FTn+.

Suppose that Λ ∈ FTn+ for all n ≥ 1. Then, for each t ∈ (0,∞],

Λ ∩ [T < t] = Λ ∩ (∪∞n=1[Tn < t]) =
∞⋃
n=1

(Λ ∩ [Tn < t]) ∈ Ft,

i.e. Λ ∈ FT+. The case of stopping times are handled similarly in view of Exercise 1.5 and
Part 2. �

Theorem 1.4. Let S and T be two optional times. Then,

[S ≤ T ], [S < T ], and [S = T ]

belong to FS+ ∧ FT+.

Proof. Let Qt denote Q ∩ [0, t]. Then, for each t ∈ (0,∞]

[S < T ] ∩ [T < t] =
⋂
r∈Qt

[S < r ≤ T < t] ∈ Ft,

since [S < r ≤ T < t] = [S < r] ∩ [T < r]c ∩ [T < t] ∈ Ft. Thus, [S < T ] ∈ FT+.
Also,

[S < T ] ∩ [S < t] =
⋂
r∈Qt

[S < r ≤ T ] ∈ Ft,

by the same argument. Thus, [S < T ] ∈ FS+, too, implying [S < T ] ∈ FT+ ∧ FS+. Other
claims can be deduced from [S < T ] ∈ FT+ ∧ FS+. �

Exercise 1.6. Let T be an optional time and consider a sequence of random times (Tn)n≥1

defined by

Tn =
[2nT ]

2n
,

where [x] is the smallest integer larger than x ∈ [0,∞), with the convention [∞] = ∞.
Obviously, Tn ≥ Tn+1 ≥ T . Show that each Tn is a stopping time and that limn→∞ Tn = T .
Moreover, for every Λ ∈ FT+, A ∩ [Tn = k

2n
] ∈ F k

2n
, k ≥ 1.

The next result extend the adaptedness condition Xt ∈ Ft to optional times.

Theorem 1.5. Let X be a measurable process with right limits such that Xt ∈ Ft for each
t. If T is an optional time,

XT+1[T<∞] ∈ FT+,

where XT (ω) = X(T (ω), ω) on [T <∞] for any random time T .
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Proof. Let Tn = [2nT ]
2n

and let’s introduce the ’dyadic set’

D = { k
2n

: k ≥ 1, n ≥ 1}.

Due to Exercise 1.6, we have for each d ∈ D and B ∈ B,

[Tn = d;XTn ∈ B] = [Tn = d,Xd ∈ B] ∈ Fd,
since X is adapted to (Ft). Hence, for each t ∈ (0,∞],

[XTn ∈ B] ∩ [Tn < t] =
⋃
d∈Dt

[Tn = d,Xd ∈ B] ∈ Ft,

where Dt ∈ D ∩ [0, t). This shows that XTn1[Tn<∞] ∈ FTn+ (in fact, XTn1[Tn<∞] ∈ FTn).
Note that

lim
n→∞

XTn1[Tn<∞] ∈
∞∧
n=1

FTn+.

Since
∧∞
n=1FTn+ = FT+ by (1.6), we have

XT+1[T<∞] = lim
n→∞

XTn1[Tn<∞] ∈ FT+.

�

We now want to extend the shift θt to θT for any optional time. At first sight this is no
problem since we can just set

(1.7) Xt(θT (ω)) = Xt+T (ω)(ω) = Xt+T (ω)

for any random time T on [T <∞], thus, we have

Xt ◦ θT = Xt+T

on [T <∞]. Moreover, T + t is optional for any t ≥ 0, and in fact a stopping time for t > 0
by Exercise 1.2. Thus, when X is right-continuous

(1.8) Xt+T1[T<∞] ∈ F(T+t)+,

which will be relevant when we discuss the Strong Markov Property.
This is all good until we want to consider the inverse function θ−1

T . Defining this inverse
only on [T <∞] would be awkward. However, there is a remedy similar to the one used to
convert the submarkovian transition functions to Markovian ones. Set

∀ω ∈ Ω : X∞(ω) = ∆,

and postulate the existence of a ω∆ such that

∀t ∈ T : Xt(ω∆) = ∆.

(If such a point in Ω does not exists, it can be added by enlarging the probability space
without changing the probability structure.) Finally define

∀ω ∈ Ω : θ∞(ω) = ω∆.

After this fix the expression (1.7) makes sense even for t = ∞ or T = ∞, in which case
every term in (1.7) becomes equal to ∆. Moreover, we can remove the term 1[T<∞] in (1.8)
and still have the stated measurability (check the proof of Theorem 1.5 again to convince
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yourself!). Note that (under the assumption that X is right continuous) this measurability
condition is equivalent to

θ−1
T (X−1

t (B)) = θ−1
T (σ(Xt)) ⊂ F(T+t)+.

Since F(T+t)+ is increasing in t, we thus have

(1.9) F(T+t)+ ⊃ θ−1
T (σ(Xs; s ≤ t)) = θ−1

T (F0
t ).

This observation leads to the following important result:

Theorem 1.6. Suppose X is right continuous and let S be an optional time relative to (F0
t )

and T be optional relative to (Ft). Then,

T + S ◦ θT
is an optional time relative to (Ft).

Proof. First observe that for any t ∈ (0,∞]

[S ◦ θT < t] = θ−1
T ([S < t]) ∈ F(T+t)+,

by (1.9). Thus, for any r < t,

[S ◦ θT < t− r] ∈ F(T+t−r)+.

Using the definition of FR+ for any optional time R, we obtain in particular that

[S ◦ θT < t− r] ∩ [T + t− r < t] ∈ Ft,

i.e.

[S ◦ θT < t− r] ∩ [T < r] ∈ Ft,
for any r < t. Since

[T + S ◦ θT < t] =
⋃
r∈Qt

([S ◦ θT < t− r] ∩ [T < r]) ,

claim follows. �

The random variable T +S ◦ θT has a nice interpretation when S is the first entrance time
of a right continuous and adapted stochastic process X into some set A. Suppose that

S = inf{t ≥ 0 : Xt ∈ A}

for some open set A. Then,

T + S ◦ θT = inf{t ≥ T : Xt ∈ A},

in other words it becomes the first entrance time of the same process after time T .

2. Brief review of martingale theory

In this section we will collect some result from martingale theory which will be useful later.
Most of the results will be given without proofs and we emphasize that we do not assume
that the reference filtration (Ft) is satisfying the usual conditions of right continuity and
completeness. Note that the definitions of martingale, supermartingale and submartinagle
are indifferent to the absence of this assumption.
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Theorem 2.1. Let S be a dense subset of T and define

Xt+ = lim
u∈S,u↓t

Xu;

Xt− = lim
s∈S,s↑t

Xs.

When X is a supermartingale, the limits above exist and are finite in a bounded interval.

Proposition 2.1. Suppose X is a supermartingale with right continuous paths. Then, its
left limits exist everywhere in (0,∞), and it is bounded a.s. in each finite interval.

The following is a well-known convergence theorem for supermartingales:

Theorem 2.2. Suppose that X is a right-continuous supermartingale, and either a) Xt ≥ 0
for each t, or b) supt≥0 E|Xt| < ∞. Then, limt→∞Xt exists a.s. and it is an integrable
random variable.

Corollary 2.1. Suppose that X is a right-continuous positive supermartingale. Then X∞ =
limt→∞Xt exists and (Xt,Ft)t∈[0,∞] is a supermartingale.

Moreover, we have the following:

Theorem 2.3. Let X be a supermartingale. Then,

∀t ∈ [0,∞) : Xt ≥ E[Xt+|Ft].
Moreover, (Xt+,Ft+) is a supermartingale. It is a martingale, if (Xt,Ft) is.

Proof. Choose a sequence (tn) ⊂ S such that tn ↓ t and consider the supermartingale (Xs,Fs)
with the index set {t, . . . , tn, . . . , t1}. Then, it follows from the discrete martingale theory
that (Xs) is a uniformly integrable sequence. Thus, by taking the limit of the inequality
Xt ≥ E[Xtn|Ft] we obtain Xt ≥ E[Xt+|Ft].

Next let Λ ∈ Ft+ and un > u > tn > t such that (un) ⊂ S, (tn) ⊂ S and un ↓ u, tn ↓ t.
Since Ft+ ⊂ Ftn ⊂ Fun , one has

E[1ΛXun ] ≤ E[1ΛXtn ],∀n.
Using the aforementioned uniform integrability, we obtain

E[1ΛXu+] ≤ E[1ΛXt+],

i.e. (Xt+,Ft+) is a supermartingale. The case of martingale is handled similarly. �

Without imposing some regularity conditions on the processes, it is almost impossible
to go further with computations. Most of the time right continuity of paths is a desirable
condition. The following theorem will state in particular that one can always have a good
version of a martingale. However, it needs some conditions on the probability space and the
filtration.

Recall that we say X and Y are versions of each other if

∀t ∈ [0,∞) : P(Xt = Yt) = 1.

Consequently, if S ⊂ T is any countable set,

P(Xt = Yt,∀t ∈ S) = 1,

implying that X and Y have the same finite-dimensional distributions.
Note that when the probability space is complete and the filtration is augmented with the

P-null sets, if X is adapted, Y is adapted, too. Moreover, if X is a supermartingale, so is Y .
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Theorem 2.4. Suppose that the probability space (Ω,F ,P) is complete and the filtration (Ft)
satisfies the usual conditions. If (Xt,Ft) is a supermartingale, then the process (Xt) has a
right-continuous version iff

t 7→ E[Xt]

is right-continuous.

Theorem 2.5. (Doob’s Optional Stopping). Suppose that (Xt)t∈[0,∞] is a right-continuous
supermartingale, and let S ≤ T be two bounded optional times relative to (Ft). Then

E[XT |FS+] ≤ XS.

If S is a stopping time, one can replace FS+ with FS. If moreover, X is a martingale,
inequality becomes equality.

Definition 2.1. A potential is a right continuous positive supermartingale X such that
limt→∞ E[Xt] = 0.

Observe that for a potential X, X∞ = limt→∞Xt = 0. However, this does not necessarily
imply that

lim
n→∞

E[XTn ] = 0,

for a sequence of optional times (Tn) with limn→∞ Tn =∞.

Theorem 2.6. Let X be a potential. Then for any sequence of optional times (Tn) with
limn→∞ Tn =∞,

lim
n→∞

E[XTn ] = 0,

iff the set {XT : T is optional} is uniformly integrable.

If a potential X satisfies any of the equivalent conditions in the above theorem, it is said
to be of Class D.

2.1. Martingale connection. Let’s assume that we are given a time homogeneous Markov
process (Xt,Ft) with transition function (Pt). In this section we seek for a class of functions
on E such that (f(Xt),Ft) is a supermartingale.

Definition 2.2. Let f ∈ E be a positive (possibly infinite) function and α ≥ 0. Then f is
α-superaveraging relative to Pt if

(2.1) ∀t ≥ 0 : f ≥ e−αtPtf.

If in addition we have

(2.2) f = lim
t↓0

e−αtPtf,

we say f is α-excessive.

Note that if we apply the operator e−αsPs to both sides of (2.1), we obtain

e−αsPsf ≥ e−α(t+s)PsPtf = e−α(t+s)Pt+sf,

thus, e−αtPtf is decreasing in t so that the limit in (2.2) exists.

Proposition 2.2. If f is α-superaveraging and f(Xt) is integrable for each t ∈ T, then
(e−αtf(Xt),Ft) is a supermartingale.
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Proof. For s ≤ t

f(Xs) ≥ e−αtPtf(Xs) = e−αtEXs [f(Xt)] = e−αtE[f(Xt+s)|Fs],
so that

e−αsf(Xs) ≥ e−α(s+t)E[f(Xt+s|Fs],
which establishes the proposition. �

We will next consider an important class of superaveraging functions.

Definition 2.3. We say that the transition function is Borelian if for any A ∈ E

(t, x) 7→ Pt(x,A)

is B × E -measurable.

The above measurability condition is equivalent to the following:

∀f ∈ bE : (t, x) 7→ Ptf(x)

is B × E -measurable. Thus, if (Xt) is right-continuous, then the map

(t, x) 7→ Ptf(x)

is right continuous in t, therefore it is B × E -measurable. As we will very soon restrict our
attention to right continuous X, we make the following assumption.

Assumption 1. (Pt) is Borelian.

Definition 2.4. Let f ∈ bE , α > 0. Then, the α-potential of f is the function given by

Uαf(x) =

∫ ∞
0

e−αtPtf(x) dt

= Ex

∫ ∞
0

e−αtf(Xt) dt.

Note that the first integral in the definition is well defined due to the Borelian assumption
on (Pt). The second equality follows from Fubini’s theorem. Consequently, Uαf ∈ bE .

Note that if we put the sup norm on the space of continuous functions, then the operator
Uα becomes a bounded operator with operator norm 1

α
. The family of operators {Uα, α > 0}

is also known as the resolvent of the semigroup (Pt).

Proposition 2.3. If f ∈ bE+, then Uαf is α-excessive.

Proof.

e−αtPt(U
αf) =

∫ ∞
0

e−α(t+s)Pt+sf ds =

∫ ∞
t

e−αsPsf ds,

which is less than or equal to ∫ ∞
0

e−αsPsf ds = Uαf,

and converges to Uαf as t converges to 0. �

Proposition 2.4. Suppose (Xt) is progressively measurable. For f ∈ bE+ and α > 0, define

Yt =

∫ t

0

e−αsf(Xs) ds+ e−αtUαf(Xt).

Then, (Yt,Ft) is a progressively measurable martingale.
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Proof. Let

Y∞ =

∫ ∞
0

e−αsf(Xs) ds.

Then,

Ex[Y∞] = Uαf(x),

and

E[Y∞|Ft] =

∫ t

0

e−αsf(Xs) ds+ E

[∫ ∞
t

e−αsf(Xs) ds

∣∣∣∣Ft] .
Moreover,

E

[∫ ∞
t

e−αsf(Xs) ds

∣∣∣∣Ft] = E

[∫ ∞
0

e−α(t+s)f(Xs+t) ds

∣∣∣∣Ft]
= E

[
e−αt

∫ ∞
0

e−αsf(Xs ◦ θt) ds
∣∣∣∣Ft]

= e−αtE[Y∞ ◦ θt|Ft] = e−αtEXt [Y∞] = e−αtUαf(Xt).

Hence,

E[Y∞|Ft] =

∫ t

0

e−αsf(Xs) ds+ e−αtUαf(Xt).

The first term on the right side is progressively measurable being continuous and adapted.
The second term is also progressively measurable since Uαf ∈ E , and X is progressively
measurable. �

If we let

At =

∫ t

0

e−αsf(Xs) ds,

then we have

e−αtUαf(Xt) = E[A∞|Ft]− At,
and this is a simple version of the Doob-Meyer decomposition of a supermartingale into a
uniformly integrable martingale and an increasing predictable process. If we assume that
the filtration is right continuous, the supermartingale has a right-continuous version, which
is in fact a potential of Class D.

3. Feller Processes

Let C denote the class of all continuous functions on E∆. Since E∆ is compact, each f ∈ C
is bounded. Thus, we can define the usual sup-norm on C as follows:

‖f‖ = sup
x∈E∆

|f(x)|.

Let C0 denote the subclass of C vanishing at ∆, and Cc denote the subclass of C0 having
compact supports. It is easy to see that endowed with the sup-norm, C and C0 are Banach
spaces and C0 is the completion of Cc.

Definition 3.1. A Markov process X with a transition function Pt is called a Feller process
if P0 is the identity mapping, and

i) For any f ∈ C, Ptf ∈ C for all t ∈ T;
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ii) For any f ∈ C
(3.1) lim

t→0
‖Ptf − f‖ = 0.

It turns out that under i), the condition in ii) is equivalent to the apparently weaker
condition below:

ii’) For any f ∈ C, x ∈ E∆,

(3.2) lim
t→0

Ptf(x) = f(x).

Remark 1. Since each member of C is the sum of a member of C0 plus a constant, we can
replace C in above conditions with C0 without effecting their strength.

Exercise 3.1. (1) Let f = Uαg where α > 0 and g ∈ C. Show that for such f ∈ C,
(3.1) holds.

(2) Show that for any g ∈ C, α > 0, β > 0,

Uαg − Uβg = (β − α)UαUβg = (β − α)UβUαg.

In particular, show that the range Uα(C) does not depend on α.
(3) By the Riesz representation theorem, dual space of C is the space of finite measures

on E∆. In view of this result, show that Uα(C) is dense in C assuming that the
condition (3.2) holds for any f ∈ C. (Hint: If µ is a finite measure on E∆, first show
that ∫

E∆

f dµ = lim
α→∞

∫
E∆

αUαf dµ.

Thus, if µ vanishes on Uα(C), it must be identically 0.)
(4) Show that (3.2) implies (3.1).

From now on we assume (Pt) is Fellerian.

Theorem 3.1. The function
(t, x, f) 7→ Ptf(x)

on T× E∆ × C is continuous.

Proof. By triangle inequality

|Ptf(x)− Psg(y)| ≤ |Ptf(x)− Ptf(y)|+ |Ptf(y)− Psf(y)|+ |Psf(y)− Psg(y)|.
Since Ptf ∈ C, we have that the first term converges to 0 as y → x. Since P is Markovian,
Ptf = PsPt−sf . Thus,

|Ptf(y)− Psf(y)| = |PsPt−sf(y)− Psf(y)| ≤ ‖Ps‖‖Pt−sf − f‖ = ‖Pt−sf − f‖,
which converges to 0 as s ↑ t. Finally, the last term is bounded by

‖Ps‖‖f − g‖,
which also converges to 0 as g → f in the sup norm. �

A (homogeneous) Markov process (Xt,Ft) on (E∆,E∆) whose semigroup (Pt) has the Feller
property is called a Feller process. We next study its sample function properties.

Proposition 3.1. (Xt)t∈T is stochastically continuous. Namely, for each t ∈ T Xs → Xt in
probability as s→ t, s ∈ T.
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Proof. Let f ∈ C, g ∈ C, then if t ≥ 0 and h > 0 we have

Ex[f(Xt)g(Xt+h)] = Ex[f(Xt)E
Xt [g(Xh)]] = Ex[f(Xt)Psg(Xt)]

by the Markov property. Since Phg ∈ C and Phg → g, we have by the dominated convergence
theorem, as h→ 0:

(3.3) Ex[f(Xt)g(Xt+h)]→ Ex[f(Xt)g(Xt)].

Now, if k is a continuous function on E∆×E∆, then there exists a sequence of functions (kn)

of the form
∑ln

j=1 fnj(x)gnj(y) such that fnj ∈ C, gnj ∈ C and kn → k uniformly by Stone-

Weirstrass Theorem. Now, it follows from this and (3.3) that for any continuous function k
on E∆ × E∆

Ex[k(Xt, Xt+h)]→ Ex[k(Xt, Xt)]

as h→ 0. In particular we can take h to be the metric, d, of the space E∆ so that we have

Ex[d(Xt, Xt+h)]→ Ex[d(Xt, Xt)]

as h→ 0. Since the right side of the above is 0, this shows the convergence of Xt+h to Xt in
probability.

Now, let 0 < h < t, then we have

Ex[f(Xt−h)g(Xt)] = Ex[f(Xt−h)Phg(Xt−h)] = Pt−h(fPhg)(x).

By Theorem 3.1 we see that the last term above converges as h→ 0 to

Pt(fg)(x).

Thus,

Ex[f(Xt−h)g(Xt)]→ Ex[f(Xt)g(Xt)] as h→ 0.

Repeating the argument above we obtain the convergence of Xt−h to Xt in probability. �

Remark 2. Observe that in the proof above we have only proved the convergence in probability
for the measure P x for x ∈ E∆. However, this is enough. Indeed since for the probability
measure P on (Ω,F), we have, for any A ∈ F0,

P (A) =

∫
E∆

µ(dx)P x(A),

so that if N ∈ F0 is a null set for each P x, it is a null set with respect to P , too.

Our goal now is to obtain regularity properties of the paths of X. We will prove this using
the α-potential Uα.

Exercise 3.2. Show that for any f ∈ C, Uα ∈ C and that

lim
α→∞

‖αUαf − f‖ = 0.

A class of functions defined in E∆ is said to separate points if for two disctinct member
x, y of E∆ there exists a function in that class such that f(x) 6= f(y).

Let {On, n ∈ N} be a countable base of the open sets of E∆ and define

∀x ∈ E∆ : ϕn(x) = d(x, Ōn),

where d is the metric on E∆. Note that ϕn ∈ C.
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Proposition 3.2. The following countable subset of C separates points.

D = {Uαϕn : α ∈ N, n ∈ N}.

Proof. For any x 6= y there exists On such that x ∈ Ōn and y /∈ Ōn. Thus, 0 = ϕn(x) < ϕ(y).
Since limα→∞ ‖αUαf − f‖ = 0, we can find a large enough α such that

|αUαϕn(x)− ϕn(x)| <
1

2
ϕn(y)

|αUαϕn(y)− ϕn(y)| <
1

2
ϕn(y).

This implies Uαϕn(x) 6= Uαϕn(y). �

The following analytical lemma will help us prove that we can obtain a version of X with
right and left limits.

Lemma 3.1. Let D be a class of continuous functions from E∆ to R which seperates points.
Let h be any function on R to E∆. Suppose that S is a dense subset of R such that for each
g ∈ D,

(g ◦ h)|S has right and left limits in R.
Then, h|S has right and left limits in R.

Proposition 3.3. Let (Xt,Ft)t∈T be a Feller process, and S be any countable dense subset
of T. Then for almost all ω, the sample function X(·, ω) restricted to S has right limits in
[0,∞) and left limits in (0,∞).

Proof. Let g be a member of of class D defined in Proposition 3.2 so that g = Ukf for
some f ∈ C. Then, by Proposition 2.2, {e−ktg(Xt), t ∈ T} is a supermartingale. Thus, by
Theorem 2.1 it has right and left limits when restricted to S except on a null set which may
depend on g. However, since D is countable, we can choose a null set that work for all g ∈ D.
Thus,

t 7→ g(X(t, ω))

has right and left limits when restricted to S. Lemma 3.1 now implies that X has the same
property. �

In view of the above proposition we can define

∀t ≥ 0 : X̃t(ω) = lim
u∈S,u↓t

Xu(ω); X̂t = lim
s∈S,s↓t

Xs(ω)

whenever ω belong to the set with probability 1 in which the limits exists. X̃ and X̂ can be
defined arbitrarily outside this null set.

Theorem 3.2. Suppose that each Ft is augmented with the P -null sets. Then each of the
process (X̃t) and (X̂t) is a version of (Xt); hence it is a Feller process with the transition
semigroup (Pt) of (Xt).

Proof. Due to stochastic continuity of X in view of Proposition 3.1, for each fixed t there
exsits (un) with un ↓ t such that

lim
n→∞

Xun = Xt, P − a.s..



MARKOV AND FELLER PROPERTY 19

However, this equals X̃t, i.e. X̃ is a version of X. Moreover, X̃ is adapted to (Ft) since the
filtration is augmented. Thus, for any f ∈ C we have

E[f(X̃s+t)|Ft] = E[f(Xs+t)|Ft] = Psf(Xt) = Psf(X̃t).

The same arguments apply to X̂. �

Exercise 3.3. Let (Xt,Ft)t∈T be a Feller process with right continuous paths and let

ζ(ω) = inf{t > 0 : Xt(ω) = ∆ or Xt−(ω) = ∆}

Then we have almost surely X(ζ + t) = ∆ on the set [ζ < ∞]. (Hint: Consider the super-
martingale (e−tU1ϕ(Xt)) where

ϕ(x) = d(x,∆).

Note that ϕ(x) = 0 iff x = ∆ and use the fact that a positive supermartingale stays at 0 if it
or its left limit hits 0.)

In view of the above exercise the following corollary is easy to show:

Corollary 3.1. If (Pt) is strictly Markovian, then almost surely the sample function is
bounded in each finite t-interval. Namely, not only X(t, ω) ∈ E for all t ≥ 0 but also
X(t−, ω) ∈ E for all t ≥ 0.

3.1. Strong Markov Property and Right Continuity of Fields. We proceed to derive
several properties of a Feller process. It is assumed in the following that the sample functions
are right continuous.

Theorem 3.3. For each optional T , we have for each f ∈ C and u > 0:

E[f(XT+u)|FT+] = Puf(XT ).

Proof. Observe that on [T =∞] claim holds trivially. Let

Tn =
[2nT ]

2n
.

We have seen in Chapter 1 that each Tn is a stopping time taking values in the dyadic set
D and Tn decreases to T . Moreover,

FT+ =
∞∧
n=1

FTn .

Thus, if Λ ∈ FT+, then Λd := Λ ∩ [Tn = d] ∈ Fd for every d ∈ D. The Markov property
applied at t = d yields ∫

Λd

f(Xd+u)dP =

∫
Λd

Puf(Xd)dP.

Thus, enumerating the possible values of Tn∫
Λ∩[T<∞]

f(XTn+u)dP =
∑
d∈D

∫
Λd

f(Xd+u)dP

=
∑
d∈D

∫
Λd

Puf(Xd)dP =

∫
Λ∩[T<∞]

Puf(XTn)dP.



20 MARKOV AND FELLER PROPERTY

Since f and Ptf bounded and continuous, by the right continuity of X, we obtain by letting
n→∞ ∫

Λ∩[T<∞]

f(XT+u)dP =

∫
Λ∩[T<∞]

Puf(XT )dP.

�

Proceeding as we did with the Markov property at constant times, we obtain

(3.4) ∀Y ∈ bF0 : E[Y ◦ θT |FT+] = EXT [Y ],

for all optional T . Note that Y ◦ θT ∈ F ′T where

F ′T = σ(XT+t, t ≥ 0).

Definition 3.2. The Markov process (Xt,Ft)t∈T is said to have the strong Markov property
if (3.4) holds for each optional time T .

Thus, Theorem 3.3 is equivalent to the assertion that a Feller process with right continuous
paths have the strong Markov property.

Corollary 3.2. For each optional T , the process (XT+t,FT+t)t∈T is a Markov process with
(Pt) as transition semigroup. Moreover, it has the strong Markov property.

Exercise 3.4. Let T be an optional time and S ≥ T such that S ∈ FT+. Then we have for
each f ∈ C0:

E[f(XS)|FT+] = EXT [f(XS−T )]

where S − T = ∞ whenever S = ∞, and X∞ = ∆ by convention. (Can you relate this to
the reflection principle of Browninan motion?) (Hint: Approximate S − T with the random

times [2n(S−T )]
2n

and proceed as in the proof of Theorem 3.3. Note that S−T is not necessarily
optional.)

We will now prove that the augmented filtration of a strong Markov process is right
continuous. Observe that replacing T with t and shrinking Ft to F0

t we may rewrite (3.4)
as follows:

(3.5) E[f(Xt+s)|F0
t+] = Psf(Xt).

Theorem 3.4. Suppose that F0
0 is augmented, then the family {F0

t , t ∈ T} is right contin-
uous.

Proof. Note that since Psf(Xt) ∈ F0
t , any version of the conditional expectation in (3.5)

belongs to F0
t since F0

t contains all null sets. By a monotone class argument, we can then
conclude that for any Y ∈ bF ′t
(3.6) E[Y |F0

t+] ∈ F0
t .

Let C be the class of sets A in F such that 1A satisfies (3.6). It is easy to check that C is a
sub σ-field of F . We have seen above that F ′t ∈ C. Trivially, F0

t ∈ C, too. This means that
C ⊃ σ(F0

t ,F ′t) = F0. Since F0
t+ ⊂ F0, we have that for any A ∈ F0

t+ 1A satisfies (3.6), i.e.
A ∈ F0

t . Consequently, F0
t = F0

t+ since A was arbitrary and F0
t ⊂ F0

t+ by definition. �

Note that the above theorem does not depend on the initial distribution of X so one can
prove that the natural filtration is right continuous as long as one augments the filtration with
the null sets of the underlying probability measure. However, this filtration will obviously
depend on the probability measure used. One can get around this dependency though.
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Namely, we will introduce a smaller σ-field

F̃ =
∧
µ

Fµ

and correspondingly for each t ≥ 0

F̃t =
∧
µ

Fµt

where µ ranges over all finite measures on E∆ and Fµ (resp. Fµt ) is the completion of F0

(resp. F0
t ) with respect to P µ. By directly computing the intersections we see that

Corollary 3.3. The family (F̃t)t∈T is right continuous, as well as the family (Fµt )t∈T for
each µ.

We have seen before that for any Y ∈ bF0, the function x 7→ Ex[Y ] is a Borel function.

Clearly, it will be too much to ask that this still holds when Y ∈ bF̃ . In order to obtain the
right measurability we need to enlarge the Borel field E as follows:

Ẽ =
∧
µ

E µ

where µ ranges over all finite measures on E∆ and E µ is the completion of E∆ with µ-null
sets. Then we have the following

Theorem 3.5. If Y ∈ bF̃ than the mapping

x 7→ Ex[Y ]

belongs to Ẽ . Also, for each µ and each T , optional relative to (Fµt ), we have

Y ◦ θT ∈ Fµ

and
Eµ[Y ◦ θT |FµT ] = EXT [Y ].

We finish this section with the following important result called Blumenthal’s zero-one
law.

Theorem 3.6. Let Λ ∈ F̃0. Then, for each x we have P x(Λ) = 0 or P x(Λ) = 1.

Proof. First suppose that Λ ∈ F0
0 . Then, Λ = X−1

0 (A) for some A ∈ E . Since P x(X0 = x) =
1, we have

P x(Λ) = P x(X−1
0 (A)) = 1A(x),

which can only take the value 0 or 1. Now, if Λ ∈ F̃0, then for any x Λ ∈ F εx0 ; thus,
there exists some Λx ∈ F0

0 such that (Λ\Λx) ∪ (Λx\Λ) is a P x-null set. This shows that
P x(Λ) = P x(Λx), which is either 0 or 1 as just proved. �
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