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A b s t r a c t  
A parallel algorithm for the rasterization of polygons is presented that 
is particularly well suited for 3D Z-buffered  graphics 
implementations. The algorithm represents each edge of a polygon 
by a linear edge funct ion that has a value greater than zero on one 
side of the edge and less than zero on the opposite side. The value 
of the function can be interpolated with hardware similar to hardware 
required to interpolate color and Z pixel values. In addition, the 
edge function of adjacent pixels may be easily computed in parallel. 
The coefficients of the "Edge function" can be computed from 
floating point endpoints in such a way that sub-pixel precision of the 
endpoints can be retained in an elegant way. 

CR catagories and subject  descr iptors :  1.3.1 [Computer Graphics]: 
Hardware Architecture - Raster display devices; 1.3.3 [Computer 
Graphics]: Picture/Image Generation - Display algorithms. 

General terms:  Algorithms. 

Additional keywords and phrases :  Polygon rasterization, sub-pixel 
vertices, linear edge function, parallel processing. 

1. I n t r o d u c t i o n  
The fast rendering of 3D Z-buffered linearly interpolated polygons is 
a problem that is fundamental to state of the art workstations. In 
general, the problem consists of two parts: 1) the 3D transformation, 
projection and light calculation of the vertices, and 2) the 
rasterization of the polygon into a frame buffer. This paper  deals 
with one aspect of the latter problem: the computation of the 
boundaries of the polygon. 

Traditionally, the edges of a polygon are computed by a line 
interpolation algorithm, and each scan line is filled with linearly 
interpolated color and Z values [2]. This method is generally scan 
line serial, and is consequently not so convenient for frame buffers 
with more desirable rectangular word organizations [5]. 

The "P IXEL-PLANES"  [3] system uses a parallel multiplier tree to 
simultaenousty compute, for all pixels in the frame buffer, a linear 
function which is used to define edges. This method has the nice 
property that it is highly parallel, but it has the disadvantage that it 
requires dedicated logic for each pixel, and consequently requires 
custom memory chips. 

The algorithm presented in this paper  also uses a linear function to 
define polygon edges, but it allows for painting algorithms that are 
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better suited to frame buffers using conventional DRAM and VRAM 
technology. The algorithm is inherently parallel, so that the 
rendering performance is memory bandwidth limited, rather than 
computation limited. 

The edge funct ion is a linear function which can be used to classify 
points on a 2D plane that is subdivided by a line, into three regions: 
the points to the "left" of the line, the points to the "right" of the 
line, and the points on the line, The function has the property that 
points to the "left" of the line have a value greater than zero, points 
to the "right" have a value less than zero, and points exactly on the 
line have a value of zero. Since the function is linear, it can be 
computed incrementally in the same way as color and Z values. 

Subdivision of plane by line 
through points A and B 

Triangle formed by union of 
right sides of AB, BC and CA 

Figure 1. A Triangle  Can be F o r me d  by 
Combination of Edges  

Figure 1 shows how it is possible to define a triangle by the union of 
three edges which are specified by edge functions. It is possible to 
define more complex polygons by using boolean combinations of 
more than three edges. Note that a tie breaker  rule must be applied 
to the points that lie exactly on any of the edges to determine 
whether the points are to be considered interior or exterior to the 
polygon. 

With this formalism, it is possible to compute at each pixel center on 
the plane an n-tupple:  (R, G, B, Z, E1. . .En),  where R, G, B and Z 
components  form the fill value, and E1. . .En are the values of the 
edge functions which are used to determine whether the pixel is 
interior or exterior to the polygon. Given the value of this n- tupple  
at a single pixel position, the n- tupple  of adjacent pixels can be 
computed by simple linear interpolators that require one addition per 
component  per  iteration. 

E I . . En  can then be used as a "stencil" that allows a pixel to be 
modified only if it is interior to the polygon. The process of painting 
the polygon can then be reduced to an algorithm that traverses an 
area that includes the interior of the triangle, but that does not have 
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to be particularly careful about the edges because the "stencil" forms 
the actual edge. The particular order of traversal is not important, 
only that each interior pixel is covered once and only once. 

Any traversal algorithm that touches all interior points once and only 
once will produce the correct result, but some may be more  efficent 
than others, depending on how many pixels are covered by the 
traversal that are not actually drawn. 

The elegance of this approach is in the way that it orthogonalizes and 
unifies the traversal of a polygon and the filling of interior pixels. 
The orthogonality is convenient for the formulation of efficient 
strategies for painting a polygon with the least number  of memory 
cycles and is especially useful with parallel rectangular memory 
organizations. 

2. The Edge F u n c t i o n  
Consider, as shown in figure 2, a vector defined by two points: (X,Y) 
and (X+dX,Y+dY), and the line that passes through both points. 
This vector and line can be used to divide the two dimensional space 
into three regions: all points to the "left" of, to the "right" of, and 
exactly on the line. 

~, Y ÷ d Y  

dde 

Figure  2. An Edge  is D e f i n e d  by a Vec tor  

We define the edge  funct ion  E(x ,y)  as: 

E(x ,y )  = ( x - X )  d Y -  ( y - Y )  dX 

This function has the useful property that its value is related to the 
position of the point (x,y) relative to the edge defined by the points 
(X,Y) and (X+dX, Y÷dY): 

E(x ,y )  > 0 if (x ,y)  is to  the  " r i gh t "  s ide  
E(x ,y )  = 0 if (x ,y)  is e x a c t l y  on the  l ine 
E(x ,y )  < 0 if (x ,y)  is to  the  " le f t  " s ide  

To convince oneself that this is true, recognize that the formula given 
for E(x,y) is the same as the formula for the magnatude of the cross 
product between the vector from (X,Y) to (X+dX, Y+dy), and the 
vector from (X,Y) to (x,y). By the well know property of cross 
products, the magnatude is zero if the vectors are colinear, and 
changes sign as the vectors cross from one side to the other. 

This function is convenient for rasterization algorithms, since it can 
be computed incrementally by simple addition: 

E ( x + l , y )  = E (x , y )  + dV 
E ( x , y + l )  = E (x , y )  - dX  

The edge function is related to the error value or "draw control 
variable" (DCV) in Bresenham line drawing algorithms [1,2]. The 
difference is that Bresenham line drawing algorithms maintain the 
DCV value only for pixels within 1/2 pixel of the line, while E(x,y) is 
defined for all pixels on the plane. In addition, the value of the DCV 
at a given point differs from E(x,y) by a constant offset. In any case, 
the reason that both algorithms work is fundamentally the same. 

As mentioned earlier, this same property of E(x,y) is used by the 
"P I XEL- P LANES "  [3] graphics system, where this function is 
computed in parallel for all pixels in the frame buffer by a multiplier 
tree. 

3. Incrementa l  Class i f icat ion o f  Points  
a r o u n d  a Convex Polygon 
Consider a convex polygon defined by the vertices (Xi, Yi) 0< i <=N. 
For the convenience of notation, take (X0, Y0) = (XN, YN), and 
consider the i 'th edge as the edge between the i ' th and the [i-1] 
vertex. The initial values of the edge function interpolators at a 
starting point (Xs, Ys) would then be: 

dXi  = Xi - X [ i - 1 ]  
dYi = Yi - Y [ i - 1 ]  
E i (Xs ,  Ys) = (Xs - Xi) dYi - (Ys - Yi) dX i  

for O< i <=N 

The edge functions may then be computed incrementally for a unit 
step in the X or Y direction: 

E i ( x + l ,  y) = Ei(x,  y) + dYi, 
E i ( x -1 ,  y)  = Ei(x,  y) - dYi, 
Ei(x,  y + l )  = Ei(x,  y) - dXi ,  
Ei(x,  y - l )  = Ei(x,  y) + dXi.  

If we use a tie breaker  rule that considers a point on an edge as 
interior to the edge, then a point is interior to the convex polygon if: 

Ei >= 0 f o r  all i : O<i<=N . 

4. Traversing the  Polygon 
Given the initialized edge interpolators, the interpolation coefficients, 
the tie breaker  rule, and the Boolean function for combining the 
edges, we still need to traverse the area of the triangle in order  to 
paint it. 

The polygon can be traversed by any algorithm that is guaranteed to 
cover all of the plxeis. Figure 3 shows two simple algorithms. Simply 
traversing the bounding box is perhaps the simplest strategy, but 
generally not the most efficient. A smarter algorithm would advance 
to the next line when it walked off the edge of a triangle. 

Traversing the Bounding Box A More Efficient Traversal Al- 
gorithm 

Figure  3. Simple Traversa l  Algor i thms  

One complicaton of the smart algorithm is that when it advances to 
the next line, it may advance to a point inside the triangle. In that 
case, the algorithm must search for the outside of the edge before it 
begins the next scan line. An example of this problem is shown on 
the top right hand edge of the triangle in figure 4. 
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Figu re  4. T r a v e r s a l  A l g o r i t h m s  M a y  
H a v e  to Sea rch  for  E dge  

A smarter  algori thm is shown in figure 5. It p roceeds  down from the  
starting point,  working its way outward f rom a cen te r  line. The  
advantage  of this algorithm over  the  simpler algori thm is that  it never  
has  to search  for an  edge,  then  double back.  T he  t radeof f  is that  the  
interpolator state for the  cen te r  line mus t  be saved while traversing 
the  outer  points,  since the  interpolators mus t  be restar ted back  at the  
cen te r  line. Notice tha t  at the  bot tom,  the  "center"  line shifts over if 
it ends  up  exterior to the  triangle. 

Figure S. Smarter Algorithm Proceeds 
Outward F r o m  C e n t e r  Line 

There  are m a n y  traversal algori thms possible. T he  best  algorithm will 
d e p e n d  on the  cos t /per formance  tradeoffs  in the  implementa t ion .  

5. Clipping 
Left  and  right clipping can  be  viewed as addit ional  polygon edges tha t  
are part  of  the  pixel 's  value: (R, G, B, Z,  E1. .En,  El, Er), where  El 
and  Er represen t  the  left and  right clip "edge funct ions" .  If the  
traversal algorithm views t h e m  as edges,  t hen  a smart  traversal 
algori thm will turn  back  when  it crosses a clip bounda ry  and  it will 
no t  spend  t ime render ing  clipped areas  of  a polygon, 

The  top clip boundary  can  be used  to control  the  starting point,  while 
the  bo t tom clip bounda ry  can be  used  to control  the  last scan  line 
rendered ,  

Figure 6 shows clipping. 

Left clip Right clip 

T o p  c l i p  

Bottom c l i p  

Figure 6. Clipping a Triangle 

6. Sub-pixel Accuracy of Vertices 
Typically in 3D graphics render ing,  polygon vertices are  in floating 
poin t  format  after 3D t ransformat ion  and  project ion.  Some 
implementa t ions  round  the  X and  Y floating point  ordinates  to 
integer values, so tha t  simple integer line algori thms can  be  u sed  
compute  the  triangle edges. This  rounding  can leave gaps on  the  
order  of 1/2 pixel wide be tween ad jacent  polygons tha t  do not  share  
c o m m o n  vertices. Gaps  also occur  as a result  of  the  finite precis ion 
u sed  in specifying the  endpoints ,  bu t  these  gaps are  m u c h  narrower.  
Some implementa t ions  a t tempt  to eUminate these  gaps by growing the  
edges of triangles to insure overlap, but  these  solutions cause  o ther  
artifacts. 

In order  to minimize these  artifacts, it is desirable to r ende r  triangle 
edges as close as possible to the  real line be tween two vertices. This  
is convenient ly  done  with this algori thm by per forming  the  
interpolator se tup computa t ions  in floating point,  and  convert ing to 
fixed point  at the  end:  

dXi = X i  - X [ i - 1 ]  
dYi = Yi - Y [ i - 1 ]  
Ei(Xs, Ys) = (Xs -  Xi) dY i -  (Ys -  Yi) dXi 

dXi '  = FtX(dXi) 
dYi '  = FIX(dYi) 
El' = FlX(Ei) 

Note tha t  as in any  digital interpolator,  the  fractional precision used  
in the  i teration mus t  be chosen  to give an acceptable  error  across the  
interpolat ion.  

While  this computa t ion  does  require  five floating point  addi t ions and  
two floating point  multiplies per  edge, the  cost is small  wh en  
compared  with the  other  computa t ions  required to t r ans fo rm an d  set 
up  a 3D triangle. 

Notice that  the  computa t ion  only modifies the  setup values of  the  
El 's ,  hu t  does  not  require any special t r ea tmen t  of  the  endpoints ,  
except  to insure that  the  traversal  algori thm covers the  entire area  
including the  endpoints .  

7. Parallel Implementa t ion  
Since the  edge funct ion is linear, it is possible to compu te  the  value 
of the  edge funct ion for a pixe! an  arbitrary dis tance L away from a 
given point  (x,y) : 

E(x+L, y) = E(x) + L dy  
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This property allows a group of interpolators, each responsible for a 
pixel within a block of contiguous pixels, to simultaneously compute 
the edge function of an adjacent block in a single cycle. If the blocks 
were L pixels wide, then there would be L interpolators. In order  to 
compute the edge function of the block L pixels away in the ÷x 
direction, each interpolator would increment by (L dx). 

Since color and Z components  are linear as well, they may also be 
computed in parallel. 

Graphics frame buffers are usually organized to provide simultaneous 
access to a block of adjacent pixels [5]. The block is usually called a 
word, and the pixels within the block are called interleaves. If a 
group of interpolators are dedicated to each interleave, then the 
RGBZ value and whether  the pixel should be drawn can be 
computed in parallel for an entire word, If the interpolator cycle 
time is at least as fast as the memory cycle time (which is the case 
with current, gate array and DRAM technology), then shaded 
triangles can be rendered at the memory  cycle time. 

p i x e l  
d a c c e s s  

Figure  7. Covering a Tr iangle  by Rec tangula r  Accesses 

8. F u t u r e  W o r k  a n d  Ex tens ions  
The edge functions described in this paper  have been linear. It is 
possible to compute higher order edge functions. A second order 
edge function would yield conic edges such as circles or elipses. 
Combined with more interesting Boolean functions, it would be 
possible to efficiently compute complex shapes, such as wide lines 
with rounded endpoints. 

By proper  normalization of the partial derivatives and intial value of 
E(x,y),  it is possible to perform the interpolation of the edge 
functions in a floating point like manner,  thus maximizing the 
precision obtained from a finite width interpolator. This method has 
the desirable property that it gradually looses precision as triangles get 
larger, rather than abruptly breaking. 

Because triangle edges are specified by the coefficients in the edge 
function, rather than end points, it is actually possible to transform 
the coefficients directly, rather  than forming a triangle from the 
t ransformed and projected vertices. While this does not directly save 
computation, it may reduce some of the computational difficulties 
encountered in perspective projection. Specifically, since the objects 
being t ransformed are edges rather than points, the precision and 
dynamic range problems encountered with perspective projection of 
points near  the eye point or behind the hither plane can be 
eliminated. This means that it may be possible to transform polygons 
without the need for exception cases for vertices behind the hither 
plane. This property could be useful in pipeline implementations 
where the exception case would limit performance.  

Since the value of the edge function is proportional to the distance of 
a point from the edge, it is possible to use this value to anti-alias 
edges. This could be performed using a method proposed by 
Fujimoto and Iwata [4]. In this method,  the Bresenham DCV value 
and increments for a polygon edge are put through a lookup table 
that performs a divide and computes a low precision estimate of the 
distance of the pixel center from the edge center line. This distance 
is then used to adjust the contribution of the fill value to the 
background value. 

Going one step further with anti-aliasing, it is possible to have the 
lookup table produce a crude sub-pixel resolution bitmap for each 
edge. The bitmaps of all edges would then be anded together, and 
the number  of set sub-pixels would be counted to determine the 
contribution for that pixel. Since the method aproximates the actual 
sub-pixel bitmap for the triangle, it has excellent behavior at 
verticies, and at places where edges are less than 1 pixel apart. 

9. Conc lus ion  
An algorithm for rasterization of polygon edges has been presented. 
The algorithm has several useful properties: 1) it can be conveniently 
computed in parallel and used with common refresh buffer  word 
organizations, 2) it can be computed with hardware similar to 
hardware required to interpolate color and Z values for 3D solids, 
and 3) it elegantly maintains the subpixel accuracy of vertices. These 
properties make the algorithm particularly attractive for use in 3D 
solid graphics implementations. 

10. A c k n o w l e d g e m e n t s  
I would like to give special thanks to Bill Brandt for time spent on 
numerous  discussions during the intial formulation of the ideas 
presented here. I would also like to thank Casey Dowdell, Bill 
Brandt, John Beck, Jane Critchlow and the conference reviewers for 
their time spent reviewing this text and for their helpful suggestions. 
Finally, I would like to thank Kathy Ford for help in the preparat ion 
of the final copy for publication. 

Refe r ences  
1. Bresenham, J. Algorithm for Computer  Control of Digital Plotter. 

IBM Systems Journal 4,1 
(1965), 25-30. 

2. Foley, J. and A. Van Dam, "Fundamenta ls  of Interactive 
Computer  Graphics." 

3. Fuchs, H. and Poulton J. PIXEL-PLANES:  A VLSI-Or ien ted  
Design for a Raster Graphics Engine. 
VLSI DESIGN (Third Quarter 1981), 20-28.  

4. Fujimoto, A. and Iwata, K. Jag-Free  Images on Raster Displays. 
IEEE Computer Graphics and 
Applications 3,9 (December 1983), 26-34. 

5. Whitton, M. Memory Design for Raster Graphics Displays. 
[EEE Computer Graphics and 
Applications 4,3 (March 1984), 48-65.  

20 


