
~ Computer Graphics, Volume 22, Number 4, August 1988

A Parallel Algorithm for Polygon Rasterization
J u a n P i n e d a

A p o l l o C o m p u t e r I n c .
C h e l m s f o r d , iVIA 0 1 8 2 4

j u a n @ a p o l l o . u u c p

A b s t r a c t
A parallel algorithm for the rasterization of polygons is presented that
is particularly well suited for 3D Z-buffered graphics
implementations. The algorithm represents each edge of a polygon
by a linear edge funct ion that has a value greater than zero on one
side of the edge and less than zero on the opposite side. The value
of the function can be interpolated with hardware similar to hardware
required to interpolate color and Z pixel values. In addition, the
edge function of adjacent pixels may be easily computed in parallel.
The coefficients of the "Edge function" can be computed from
floating point endpoints in such a way that sub-pixel precision of the
endpoints can be retained in an elegant way.

CR catagories and subject descr iptors : 1.3.1 [Computer Graphics]:
Hardware Architecture - Raster display devices; 1.3.3 [Computer
Graphics]: Picture/Image Generation - Display algorithms.

General terms: Algorithms.

Additional keywords and phrases : Polygon rasterization, sub-pixel
vertices, linear edge function, parallel processing.

1. I n t r o d u c t i o n
The fast rendering of 3D Z-buffered linearly interpolated polygons is
a problem that is fundamental to state of the art workstations. In
general, the problem consists of two parts: 1) the 3D transformation,
projection and light calculation of the vertices, and 2) the
rasterization of the polygon into a frame buffer. This paper deals
with one aspect of the latter problem: the computation of the
boundaries of the polygon.

Traditionally, the edges of a polygon are computed by a line
interpolation algorithm, and each scan line is filled with linearly
interpolated color and Z values [2]. This method is generally scan
line serial, and is consequently not so convenient for frame buffers
with more desirable rectangular word organizations [5].

The "P IXEL-PLANES" [3] system uses a parallel multiplier tree to
simultaenousty compute, for all pixels in the frame buffer, a linear
function which is used to define edges. This method has the nice
property that it is highly parallel, but it has the disadvantage that it
requires dedicated logic for each pixel, and consequently requires
custom memory chips.

The algorithm presented in this paper also uses a linear function to
define polygon edges, but it allows for painting algorithms that are

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and /o r specific permission.

©1988 ACM-0-89791-275-6/88/008/0017 $00.75

better suited to frame buffers using conventional DRAM and VRAM
technology. The algorithm is inherently parallel, so that the
rendering performance is memory bandwidth limited, rather than
computation limited.

The edge funct ion is a linear function which can be used to classify
points on a 2D plane that is subdivided by a line, into three regions:
the points to the "left" of the line, the points to the "right" of the
line, and the points on the line, The function has the property that
points to the "left" of the line have a value greater than zero, points
to the "right" have a value less than zero, and points exactly on the
line have a value of zero. Since the function is linear, it can be
computed incrementally in the same way as color and Z values.

Subdivision of plane by line
through points A and B

Triangle formed by union of
right sides of AB, BC and CA

Figure 1. A Triangle Can be F o r me d by
Combination of Edges

Figure 1 shows how it is possible to define a triangle by the union of
three edges which are specified by edge functions. It is possible to
define more complex polygons by using boolean combinations of
more than three edges. Note that a tie breaker rule must be applied
to the points that lie exactly on any of the edges to determine
whether the points are to be considered interior or exterior to the
polygon.

With this formalism, it is possible to compute at each pixel center on
the plane an n-tupple: (R, G, B, Z, E1. . .En), where R, G, B and Z
components form the fill value, and E1. . .En are the values of the
edge functions which are used to determine whether the pixel is
interior or exterior to the polygon. Given the value of this n- tupple
at a single pixel position, the n- tupple of adjacent pixels can be
computed by simple linear interpolators that require one addition per
component per iteration.

E I . . En can then be used as a "stencil" that allows a pixel to be
modified only if it is interior to the polygon. The process of painting
the polygon can then be reduced to an algorithm that traverses an
area that includes the interior of the triangle, but that does not have

17

f SIGGRAPH '88, Atlanta, August 1-5, 1988

to be particularly careful about the edges because the "stencil" forms
the actual edge. The particular order of traversal is not important,
only that each interior pixel is covered once and only once.

Any traversal algorithm that touches all interior points once and only
once will produce the correct result, but some may be more efficent
than others, depending on how many pixels are covered by the
traversal that are not actually drawn.

The elegance of this approach is in the way that it orthogonalizes and
unifies the traversal of a polygon and the filling of interior pixels.
The orthogonality is convenient for the formulation of efficient
strategies for painting a polygon with the least number of memory
cycles and is especially useful with parallel rectangular memory
organizations.

2. The Edge F u n c t i o n
Consider, as shown in figure 2, a vector defined by two points: (X,Y)
and (X+dX,Y+dY), and the line that passes through both points.
This vector and line can be used to divide the two dimensional space
into three regions: all points to the "left" of, to the "right" of, and
exactly on the line.

~, Y ÷ d Y

dde

Figure 2. An Edge is D e f i n e d by a Vec tor

We define the edge funct ion E(x ,y) as:

E(x ,y) = (x - X) d Y - (y - Y) dX

This function has the useful property that its value is related to the
position of the point (x,y) relative to the edge defined by the points
(X,Y) and (X+dX, Y÷dY):

E(x ,y) > 0 if (x ,y) is to the " r i gh t " s ide
E(x ,y) = 0 if (x ,y) is e x a c t l y on the l ine
E(x ,y) < 0 if (x ,y) is to the " le f t " s ide

To convince oneself that this is true, recognize that the formula given
for E(x,y) is the same as the formula for the magnatude of the cross
product between the vector from (X,Y) to (X+dX, Y+dy), and the
vector from (X,Y) to (x,y). By the well know property of cross
products, the magnatude is zero if the vectors are colinear, and
changes sign as the vectors cross from one side to the other.

This function is convenient for rasterization algorithms, since it can
be computed incrementally by simple addition:

E (x + l , y) = E (x , y) + dV
E (x , y + l) = E (x , y) - dX

The edge function is related to the error value or "draw control
variable" (DCV) in Bresenham line drawing algorithms [1,2]. The
difference is that Bresenham line drawing algorithms maintain the
DCV value only for pixels within 1/2 pixel of the line, while E(x,y) is
defined for all pixels on the plane. In addition, the value of the DCV
at a given point differs from E(x,y) by a constant offset. In any case,
the reason that both algorithms work is fundamentally the same.

As mentioned earlier, this same property of E(x,y) is used by the
"P I XEL- P LANES " [3] graphics system, where this function is
computed in parallel for all pixels in the frame buffer by a multiplier
tree.

3. Incrementa l Class i f icat ion o f Points
a r o u n d a Convex Polygon
Consider a convex polygon defined by the vertices (Xi, Yi) 0< i <=N.
For the convenience of notation, take (X0, Y0) = (XN, YN), and
consider the i 'th edge as the edge between the i ' th and the [i-1]
vertex. The initial values of the edge function interpolators at a
starting point (Xs, Ys) would then be:

dXi = Xi - X [i - 1]
dYi = Yi - Y [i - 1]
E i (Xs , Ys) = (Xs - Xi) dYi - (Ys - Yi) dX i

for O< i <=N

The edge functions may then be computed incrementally for a unit
step in the X or Y direction:

E i (x + l , y) = Ei(x, y) + dYi,
E i (x -1 , y) = Ei(x, y) - dYi,
Ei(x, y + l) = Ei(x, y) - dXi ,
Ei(x, y - l) = Ei(x, y) + dXi.

If we use a tie breaker rule that considers a point on an edge as
interior to the edge, then a point is interior to the convex polygon if:

Ei >= 0 f o r all i : O<i<=N .

4. Traversing the Polygon
Given the initialized edge interpolators, the interpolation coefficients,
the tie breaker rule, and the Boolean function for combining the
edges, we still need to traverse the area of the triangle in order to
paint it.

The polygon can be traversed by any algorithm that is guaranteed to
cover all of the plxeis. Figure 3 shows two simple algorithms. Simply
traversing the bounding box is perhaps the simplest strategy, but
generally not the most efficient. A smarter algorithm would advance
to the next line when it walked off the edge of a triangle.

Traversing the Bounding Box A More Efficient Traversal Al-
gorithm

Figure 3. Simple Traversa l Algor i thms

One complicaton of the smart algorithm is that when it advances to
the next line, it may advance to a point inside the triangle. In that
case, the algorithm must search for the outside of the edge before it
begins the next scan line. An example of this problem is shown on
the top right hand edge of the triangle in figure 4.

18

~ Computer Graphics, Volume 22, Number 4, August 1988

Figu re 4. T r a v e r s a l A l g o r i t h m s M a y
H a v e to Sea rch for E dge

A smarter algori thm is shown in figure 5. It p roceeds down from the
starting point, working its way outward f rom a cen te r line. The
advantage of this algorithm over the simpler algori thm is that it never
has to search for an edge, then double back. T he t radeof f is that the
interpolator state for the cen te r line mus t be saved while traversing
the outer points, since the interpolators mus t be restar ted back at the
cen te r line. Notice tha t at the bot tom, the "center" line shifts over if
it ends up exterior to the triangle.

Figure S. Smarter Algorithm Proceeds
Outward F r o m C e n t e r Line

There are m a n y traversal algori thms possible. T he best algorithm will
d e p e n d on the cos t /per formance tradeoffs in the implementa t ion .

5. Clipping
Left and right clipping can be viewed as addit ional polygon edges tha t
are part of the pixel 's value: (R, G, B, Z, E1. .En, El, Er), where El
and Er represen t the left and right clip "edge funct ions" . If the
traversal algorithm views t h e m as edges, t hen a smart traversal
algori thm will turn back when it crosses a clip bounda ry and it will
no t spend t ime render ing clipped areas of a polygon,

The top clip boundary can be used to control the starting point, while
the bo t tom clip bounda ry can be used to control the last scan line
rendered ,

Figure 6 shows clipping.

Left clip Right clip

T o p c l i p

Bottom c l i p

Figure 6. Clipping a Triangle

6. Sub-pixel Accuracy of Vertices
Typically in 3D graphics render ing, polygon vertices are in floating
poin t format after 3D t ransformat ion and project ion. Some
implementa t ions round the X and Y floating point ordinates to
integer values, so tha t simple integer line algori thms can be u sed
compute the triangle edges. This rounding can leave gaps on the
order of 1/2 pixel wide be tween ad jacent polygons tha t do not share
c o m m o n vertices. Gaps also occur as a result of the finite precis ion
u sed in specifying the endpoints , bu t these gaps are m u c h narrower.
Some implementa t ions a t tempt to eUminate these gaps by growing the
edges of triangles to insure overlap, but these solutions cause o ther
artifacts.

In order to minimize these artifacts, it is desirable to r ende r triangle
edges as close as possible to the real line be tween two vertices. This
is convenient ly done with this algori thm by per forming the
interpolator se tup computa t ions in floating point, and convert ing to
fixed point at the end:

dXi = X i - X [i - 1]
dYi = Yi - Y [i - 1]
Ei(Xs, Ys) = (Xs - Xi) dY i - (Ys - Yi) dXi

dXi ' = FtX(dXi)
dYi ' = FIX(dYi)
El' = FlX(Ei)

Note tha t as in any digital interpolator, the fractional precision used
in the i teration mus t be chosen to give an acceptable error across the
interpolat ion.

While this computa t ion does require five floating point addi t ions and
two floating point multiplies per edge, the cost is small wh en
compared with the other computa t ions required to t r ans fo rm an d set
up a 3D triangle.

Notice that the computa t ion only modifies the setup values of the
El 's , hu t does not require any special t r ea tmen t of the endpoints ,
except to insure that the traversal algori thm covers the entire area
including the endpoints .

7. Parallel Implementa t ion
Since the edge funct ion is linear, it is possible to compu te the value
of the edge funct ion for a pixe! an arbitrary dis tance L away from a
given point (x,y) :

E(x+L, y) = E(x) + L dy

19

SIGGRAPH '88, Atlanta, August 1-5, 1988

This property allows a group of interpolators, each responsible for a
pixel within a block of contiguous pixels, to simultaneously compute
the edge function of an adjacent block in a single cycle. If the blocks
were L pixels wide, then there would be L interpolators. In order to
compute the edge function of the block L pixels away in the ÷x
direction, each interpolator would increment by (L dx).

Since color and Z components are linear as well, they may also be
computed in parallel.

Graphics frame buffers are usually organized to provide simultaneous
access to a block of adjacent pixels [5]. The block is usually called a
word, and the pixels within the block are called interleaves. If a
group of interpolators are dedicated to each interleave, then the
RGBZ value and whether the pixel should be drawn can be
computed in parallel for an entire word, If the interpolator cycle
time is at least as fast as the memory cycle time (which is the case
with current, gate array and DRAM technology), then shaded
triangles can be rendered at the memory cycle time.

p i x e l
d a c c e s s

Figure 7. Covering a Tr iangle by Rec tangula r Accesses

8. F u t u r e W o r k a n d Ex tens ions
The edge functions described in this paper have been linear. It is
possible to compute higher order edge functions. A second order
edge function would yield conic edges such as circles or elipses.
Combined with more interesting Boolean functions, it would be
possible to efficiently compute complex shapes, such as wide lines
with rounded endpoints.

By proper normalization of the partial derivatives and intial value of
E(x,y), it is possible to perform the interpolation of the edge
functions in a floating point like manner, thus maximizing the
precision obtained from a finite width interpolator. This method has
the desirable property that it gradually looses precision as triangles get
larger, rather than abruptly breaking.

Because triangle edges are specified by the coefficients in the edge
function, rather than end points, it is actually possible to transform
the coefficients directly, rather than forming a triangle from the
t ransformed and projected vertices. While this does not directly save
computation, it may reduce some of the computational difficulties
encountered in perspective projection. Specifically, since the objects
being t ransformed are edges rather than points, the precision and
dynamic range problems encountered with perspective projection of
points near the eye point or behind the hither plane can be
eliminated. This means that it may be possible to transform polygons
without the need for exception cases for vertices behind the hither
plane. This property could be useful in pipeline implementations
where the exception case would limit performance.

Since the value of the edge function is proportional to the distance of
a point from the edge, it is possible to use this value to anti-alias
edges. This could be performed using a method proposed by
Fujimoto and Iwata [4]. In this method, the Bresenham DCV value
and increments for a polygon edge are put through a lookup table
that performs a divide and computes a low precision estimate of the
distance of the pixel center from the edge center line. This distance
is then used to adjust the contribution of the fill value to the
background value.

Going one step further with anti-aliasing, it is possible to have the
lookup table produce a crude sub-pixel resolution bitmap for each
edge. The bitmaps of all edges would then be anded together, and
the number of set sub-pixels would be counted to determine the
contribution for that pixel. Since the method aproximates the actual
sub-pixel bitmap for the triangle, it has excellent behavior at
verticies, and at places where edges are less than 1 pixel apart.

9. Conc lus ion
An algorithm for rasterization of polygon edges has been presented.
The algorithm has several useful properties: 1) it can be conveniently
computed in parallel and used with common refresh buffer word
organizations, 2) it can be computed with hardware similar to
hardware required to interpolate color and Z values for 3D solids,
and 3) it elegantly maintains the subpixel accuracy of vertices. These
properties make the algorithm particularly attractive for use in 3D
solid graphics implementations.

10. A c k n o w l e d g e m e n t s
I would like to give special thanks to Bill Brandt for time spent on
numerous discussions during the intial formulation of the ideas
presented here. I would also like to thank Casey Dowdell, Bill
Brandt, John Beck, Jane Critchlow and the conference reviewers for
their time spent reviewing this text and for their helpful suggestions.
Finally, I would like to thank Kathy Ford for help in the preparat ion
of the final copy for publication.

Refe r ences
1. Bresenham, J. Algorithm for Computer Control of Digital Plotter.

IBM Systems Journal 4,1
(1965), 25-30.

2. Foley, J. and A. Van Dam, "Fundamenta ls of Interactive
Computer Graphics."

3. Fuchs, H. and Poulton J. PIXEL-PLANES: A VLSI-Or ien ted
Design for a Raster Graphics Engine.
VLSI DESIGN (Third Quarter 1981), 20-28.

4. Fujimoto, A. and Iwata, K. Jag-Free Images on Raster Displays.
IEEE Computer Graphics and
Applications 3,9 (December 1983), 26-34.

5. Whitton, M. Memory Design for Raster Graphics Displays.
[EEE Computer Graphics and
Applications 4,3 (March 1984), 48-65.

20

