
 
 

TRUST BUT VERIFY:  
A GUIDE TO ALGORITHMS AND THE LAW 

 
Deven R. Desai* and Joshua A. Kroll** 

TABLE OF CONTENTS 

I. INTRODUCTION .................................................................................. 2 

II. ALGORITHMS: THE CONCERNS ........................................................ 6 
A. Transparency and Accountability: Two Complementary 

Views .......................................................................................... 7 
B. Algorithms, Public Sector Concerns .......................................... 12 
C. Algorithms, Private Sector Concerns ........................................ 16 

III. ALGORITHMS: A PRIMER .............................................................. 23 

IV. TO HALT OR NOT TO HALT .......................................................... 29 
A. Undecidability and the Halting Problem ................................... 30 
B. The Halting Problem Applied to Algorithmic 

Transparency ........................................................................... 32 

V. PRACTICAL SOLUTIONS FROM COMPUTER SCIENCE ...................... 35 
A. Testing and Evaluating Algorithms ............................................ 36 

1. White-Box Testing .................................................................. 37 
2. Black-Box Testing .................................................................. 38 
3. A Third Way: Ex-Post Analysis and Oversight ...................... 39 

B. Dynamic Systems and the Limits of Ex-Post Testing ................. 41 

VI. A TAXONOMY OF POTENTIAL SOLUTIONS ................................... 42 
A. Public Systems ............................................................................ 43 
B. Private Systems .......................................................................... 45 

1. Explicitly Regulated Industries ............................................... 46 
2. Building Trust: Implicitly Regulated Industries or 

Activities ........................................................................... 48 
3. The Challenge of Dynamic Systems ....................................... 49 

                                                                                                    
* Associate Professor of Law and Ethics, Georgia Institute of Technology, Scheller College 

of Business; J.D., Yale Law School; Affiliated Fellow, Yale Law Information Society Project; 
former Academic Research Counsel, Google, Inc. I, and this Article, have benefitted from dis-
cussions with and input from Solon Barocas, Ariel Feldman, Brett Frischmann, Andrew Selbst, 
and Peter Swire, and from attendees at Privacy Law Scholars Conference, 2016 at George 
Washington University Law and at the Law and Ethics of Big Data Colloquium at University of 
Indiana, Bloomington, Kelley School of Business. I thank Jason Hyatt for excellent research 
assistance. This Article was supported in part by summer research funding from the Scheller 
College of Business and an unrestricted gift to the Georgia Tech Research Institute by Google, 
Inc. The views expressed herein are those of the author alone and do not necessarily reflect the 
view of those who helped with and supported this work. 

** Postdoctoral Research Scholar, UC Berkeley School of Information. 



2  Harvard Journal of Law & Technology [Vol. 31 
 

C. Legislative Changes to Improve Accountability ........................ 55 

VII. CONCLUSION ............................................................................... 63 

I. INTRODUCTION 

ACCORDING TO MY DEFINITION, A NUMBER IS COMPUTABLE IF ITS 
DECIMAL CAN BE WRITTEN DOWN BY A MACHINE.  

— ALAN TURING1 

IN 1953, HENRY RICE PROVED THE FOLLOWING EXTREMELY POWERFUL 
THEOREM, WHICH ESSENTIALLY STATES THAT EVERY INTERESTING 
QUESTION ABOUT THE LANGUAGE ACCEPTED BY A TURING MACHINE IS 
UNDECIDABLE. 

— JEFF ERICKSON2 

THE NEXT TIME YOU HEAR SOMEONE TALKING ABOUT ALGORITHMS, 
REPLACE THE TERM WITH “GOD” AND ASK YOURSELF IF THE MEANING 
CHANGES. OUR SUPPOSEDLY ALGORITHMIC CULTURE IS NOT A 
MATERIAL PHENOMENON SO MUCH AS A DEVOTIONAL ONE, A 
SUPPLICATION MADE TO THE COMPUTERS PEOPLE HAVE ALLOWED TO 
REPLACE GODS IN THEIR MINDS, EVEN AS THEY SIMULTANEOUSLY CLAIM 
THAT SCIENCE HAS MADE US IMPERVIOUS TO RELIGION. 

— IAN BOGOST3 

Someone is denied a job.4 A family cannot get a loan for a car or a 
house.5 Someone else is put on a no-fly list.6 A single mother is denied 
federal benefits.7 None of these people knows why that happened other 
than the decision was processed through some software.8 Someone 
commandeers a car, controls its brakes, and even drives away.9 A car 
                                                                                                    

1. A. M. Turing, On Computable Numbers, with an Application to the Entscheidungsprob-
lem, 42 PROC. LONDON MATHEMATICAL SOC’Y 230, 230 (1936). 

2. JEFF ERICKSON, MODELS OF COMPUTATION 10 (2015) (ebook). 
3. Ian Bogost, The Cathedral of Computation, THE ATLANTIC (Jan. 15, 2015), 

http://www.theatlantic.com/technology/archive/2015/01/the-cathedral-of-computation/384300/ 
[https://perma.cc/AA6T-3FWV]. 

4. See, e.g., FRANK PASQUALE, THE BLACK BOX SOCIETY: THE SECRET ALGORITHMS THAT 
CONTROL MONEY AND INFORMATION 34–35 (2015) (describing use of software and online data 
to make hiring decisions). 

5. See, e.g., id. at 4–5 (discussing use of predictive analytics in credit scoring and loan deci-
sions). 

6. See, e.g., Danielle Keats Citron, Technological Due Process, 85 WASH. U. L. REV. 1249, 
1256–57 (2008). 

7. See, e.g., id. 
8. See, e.g., PASQUALE, supra note 4, at 4–5 (explaining that one “will never understand ex-

actly how [one’s credit score] was calculated”); infra Part II. 
9. At least two groups have shown ways to take over a Tesla and open its doors, open its sun-

roof, and enable keyless driving so the car could be stolen. See Davis Z. Morris, Tesla Stealing 
Hack Is About Much More than Tesla, FORTUNE (Nov. 26, 2016), http://fortune. 



No. 1] Trust But Verify 3 
 
company claims its cars have low emissions, but in fact its cars pollute 
significantly.10 A voting machine is supposed to count votes accurately, 
but no one can tell whether the count is correct.11 A car’s battery seems 
not to have a good range, so its software is updated, but no one knows 
whether the update has fixed the problem or is compliant with govern-
ment regulations.12 Searches for black-sounding names yield ads sugges-
tive of arrest records.13 Why these things happen and whether the 
companies using the software have complied with regulations or used 
software to commit fraud is difficult to determine. In all of these cases, a 
common concern is that the algorithms or, more precisely, the software 
behind the decision or process, are at fault.14 Often the claim is that so-
ciety cannot understand or govern these outcomes because the decision 
process is a black box.15 

A consistent theme is that unaccountable machines have taken cen-
ter stage and now “are used to make decisions for us, about us, or with 
us,”16 in sensitive and subjective areas such as healthcare, employment, 
credit, national security, networked devices, news, and more.17 A more 
recent fear is that the rise of large data sets combined with machine 

                                                                                                    
com/2016/11/26/tesla-stealing-hack/ [https://perma.cc/GQ2N-Y3XC]. In one case, a group took 
over the car’s braking system (and more) from 12 miles away. See Andrea Peterson, Research-
ers Remotely Hack Tesla S, WASH. POST (Sept. 20, 2016), https://www. 
washingtonpost.com/news/the-switch/wp/2016/09/20/researchers-remotely-hack-tesla-model-
s/?utm_term=.7fc39f9f20f9 [https://perma.cc/X3EL-CFZM]. 

10. See, e.g., Russel Hotten, Volkswagen: The Scandal Explained, BBC NEWS (Dec. 10, 
2015), http://www.bbc.com/news/business-34324772 [https://perma.cc/H89Z-LNPC] (explain-
ing how Volkswagen used software to fake emissions results); Alex Davies, Here We Go 
Again: EPA Accuses Fiat Chrysler of Selling Dirty Diesels, WIRED (Jan. 12, 2017, 4:06 PM), 
https://www.wired.com/2017/01/epa-now-accusing-fiat-chrysler-selling-dirty-diesels/ 
[https://perma.cc/5DYJ-NUQC] (noting that EPA accused Fiat Chrysler of installing and not 
disclosing software that hid nitrous oxide emissions in its diesel cars); see also Moritz Contag et 
al., How They Did It: An Analysis of Emission Defeat Devices in Modern Automobiles, 38 IEEE 
SYMP. ON SEC. & PRIVACY 231 (2017) (providing a detailed technical description of the emis-
sions defeating software). For details of the charges against one of the engineers at 
Volkswagen, see Indictment at 15–23, United States v. Liang, No. 2:16-cr-20394, 2016 WL 
5542732 (E.D. Mich. 2016). 

11. See, e.g., J. Alex Halderman, Want to Know if the Election Was Hacked? Look at the Bal-
lots, MEDIUM (Nov. 23, 2016), https://medium.com/@jhalderm/want-to-know-if-the- 
election-was-hacked-look-at-the-ballots-c61a6113b0ba#.gzpyt1dat [https://perma.cc/9M7Y-
PTRR]. 

12. See, e.g., Alex Davies, Tesla’s Plan to Kill Range Anxiety with a Software Update, 
WIRED (Mar. 19, 2015, 2:01 PM), https://www.wired.com/2015/03/teslas-plan-kill-range- 
anxiety/ [https://perma.cc/6YGY-7APR]. 

13. See, e.g., Latanya Sweeney, Discrimination in Online Ad Delivery, 56 COMM. ACM, May 
2013, at 44, 52 (“These findings reject the hypothesis that no difference exists in the delivery of 
ads suggestive of an arrest record based on searches of racially associated names.”).  

14. See infra Part II 
15. See PASQUALE, supra note 4, at 165. 
16. CTR. FOR INTERNET & HUMAN RIGHTS, THE ETHICS OF ALGORITHMS: FROM RADICAL 

CONTENT TO SELF-DRIVING CARS 1 (2015). 
17. See, e.g., PASQUALE, supra note 4, at 4; cf. Bogost, supra note 3 (explaining that defer-

ence to algorithms resembles idolatry rather than following Enlightenment skepticism).  



4  Harvard Journal of Law & Technology [Vol. 31 
 
learning (“ML”) (an area of computer science that uses the automated 
discovery of correlations and patterns to define decision policies) might 
allow those who use such techniques to wield power in ways society 
prohibits or should disfavor, but which society would not be able to de-
tect.18 Further, if a computer yields undesired results, its programmers 
may say that the system was not designed to act that way.19 

The standard solution to this general problem is a call for transpar-
ency, which in this context has been called “algorithmic transparency.”20 
We argue that although the problems are real, the proposed solution will 
not work for important computer science reasons. Nonetheless there is, 
and we offer, a way to mitigate these problems so that society can con-
tinue to benefit from software innovations.  

Put simply, current calls for algorithmic transparency misunderstand 
the nature of computer systems. This misunderstanding may flow in part 
from the religious, devotional culture around algorithms, where algo-
rithms might as well be God.21 Both critics and advocates can stray into 
uncritical deference to the idea that big data and the algorithms used to 
process the data are somehow infallible science. We believe this prob-
lem is aggravated because although algorithms are decidedly not mysti-
cal things or dark magic, algorithms are not well understood outside the 
technical community.22  

Put differently, transparency is a powerful concept and has its place. 
After all, who can argue against sunlight? And yet, to an extent, we do 
exactly that, because from a technical perspective, general calls to ex-
pose algorithms to the sun or to conduct audits will not only fail to de-
liver critics’ desired results but also may create the illusion of clarity in 
                                                                                                    

18. See, e.g., FED. TRADE COMM’N, BIG DATA: A TOOL FOR INCLUSION OR EXCLUSION? 1 
(2016); CTR. FOR INTERNET & HUMAN RIGHTS, supra note 16, at 1; PASQUALE, supra note 4, at 
4.  

19. Cf. Solon Barocas & Andrew D. Selbst, Big Data’s Disparate Impact, 104 CALIF. L. 
REV. 671, 674–75 (2016) (explaining that algorithms may unintentionally increase discrimina-
tion because of problems with data mining). 

20. See, e.g., Katherine Noyes, The FTC Is Worried About Algorithmic Transparency, and 
You Should Be Too, PC WORLD (Apr. 9, 2015, 8:36 AM), http://www.pcworld.com/ 
article/2908372/the-ftc-is-worried-about-algorithmic-transparency-and-you-should-be- 
too.html [https://perma.cc/N3Z2-5M3E] (discussing Christian Sandvig’s view that transparency 
may not be viable because of the complexity of some algorithms and the data needed to test the 
algorithms). For Sandvig’s position on algorithmic transparency, see Christian Sandvig et al., 
Auditing Algorithms: Research Methods for Detecting Discrimination on Internet Plat-
forms, (May 22, 2014), http://www-personal.umich.edu/~csandvig/ 
research/Auditing%20Algorithms%20--%20Sandvig%20--%20ICA%202014% 
20Data%20and%20Discrimination%20Preconference.pdf [https://perma.cc/GJS4-YWP3] (us-
ing “social scientific study” auditing to investigate algorithmically driven platforms). 

21. See Bogost, supra note 3. 
22. See id. (“The next time you hear someone talking about algorithms, replace the term with 

‘God’ and ask yourself if the meaning changes. Our supposedly algorithmic culture is not a 
material phenomenon so much as a devotional one.”); see also Joshua A. Kroll et al., Accounta-
ble Algorithms, 165 U. PA. L. REV. 633, 640 n.14 (2016) (“The term ‘algorithm’ is assigned 
disparate technical meaning in the literatures of computer science and other fields . . . .”). 



No. 1] Trust But Verify 5 
 
cases where clarity is not possible.23 For example, as discussed infra, 
fundamental limitations on the analysis of software meaningfully limit 
the interpretability of even full disclosures of software source code. This 
Article thus examines the idea of algorithmic transparency, offers a pri-
mer on algorithms as a way to bridge this gap, and presents concrete 
options for managing problems automated decision-making presents to 
society. 

This Article begins with a discussion of the law and policy concerns 
over software systems that have been raised so far and some of the pro-
posed approaches to addressing these concerns. This discussion shows 
that there are many different issues at play, and many of those issues are 
proxies for concerns about power and inequality in general, not software 
specifically. After setting out an understanding of the claimed problems, 
the Article turns to some fundamental questions about computer science, 
such as what an algorithm is and whether policy can be general enough 
to cover all software in the same way.24 Having set out a brief primer on 
the underlying computer science, the Article addresses the question of 
determining what a piece of software will do when it is run. It turns out 
that it is impossible to determine this reliably and for all programs. With 
that in mind, the Article reviews the way in which computer scientists 
have addressed this problem. Using that foundation, we offer recom-
mendations on how to regulate public and private sector uses of soft-
ware, and propose a legislative change to protect whistleblowers and 
allow a public interest cause of action as a way to aid in increasing de-
tection of overt misdeeds in designing software. In short, a better under-
standing of how programs work and how computer scientists address the 

                                                                                                    
23. It is common for open-source advocates to cite “Linus’s Law” — the dictum that 

“[g]iven enough eyeballs, all bugs are shallow” — meaning that transparency of code to a suffi-
cient number of experts implies that any problem will seem obvious to someone and can be 
remedied. ERIC S. RAYMOND, THE CATHEDRAL AND THE BAZAAR 9 (1999). However, many 
pieces of open-source software struggle to get the attention of enough skilled reviewers, creat-
ing what has been called a “major eyeball shortage.” Edward W. Felten & Joshua A. Kroll, 
Heartbleed Shows Government Must Lead on Internet Security, SCI. AM. (July 1, 2014), 
https://www.scientificamerican.com/article/heartbleed-shows-government-must-lead- 
on-internet-security1/ [https://perma.cc/X7WD-CUZJ]. The much-publicized “Heartbleed” 
vulnerability provides an object lesson: a trivially simple coding error in a widely used security 
tool exposed the private information of the majority of web servers on the Internet, including 
encryption keys, website passwords, and sensitive user information, for several widely used 
web applications. For a detailed account, see Zakir Durumeric et al., The Matter of Heartbleed, 
14 ACM INTERNET MEASUREMENT CONF. 475 (2014). Contrast the situation in systems that use 
machine learning, where the rule that is being applied by a model may not be understandable, 
even if the system’s developer knows that the model is performing well. See Jatinder Singh et 
al., Responsibility & Machine Learning: Part of a Process, (Oct. 27, 2016), 
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2860048 [https://perma.cc/ 
EDG2-TNTF] (“[A]lgorithmic selection not only impacts the quality of the ML model, but the 
degree to which the inner workings of the ML algorithm and learned model can be interpreted 
and controlled depends on the technique used.” (emphasis omitted)). 

24. See, e.g., Sandvig et al., supra note 20, at 3. 



6  Harvard Journal of Law & Technology [Vol. 31 
 
limits of their field creates tools to manage the evolving world of algo-
rithms and the law. This, in turn, allows society to address justice and 
safety interests while also enabling many actors to use these new tech-
niques to innovate and improve the world in which we live. 

Thus, in contrast to the current approaches to governance by audit-
ing to find unacceptable behaviors, regulation via the law will realize 
four benefits from being informed by the way software and algorithms 
are tested and analyzed for correctness. First, legal regulation can avoid 
the problem of applying inapt approaches from past regulatory regimes 
or demanding outcomes that are not possible. Second, it can address the 
dynamism of the industry and the difficulties of analyzing software by 
providing requirements that technologists and computer scientists under-
stand and can implement. Third, as with past regulation of housing, 
credit, and employment, legal regulation of software and algorithms can 
offer clarity about what is actionable and what must be offered to regula-
tors to show compliance. Fourth, if those who are to be regulated object, 
the burden will be on them to show why proposed, technically-informed 
solutions do not work. And that discussion will use the framework and 
terms within which they already operate, avoiding charges of unachiev-
able mandates. As such, it should be less likely that objections based on 
feasibility will succeed. In short, smart regulation via the law allows the 
many gains from automation to be captured safely while providing the 
assurances of governance necessary to assuage critics. 

II. ALGORITHMS: THE CONCERNS 

Software and algorithms have gained much attention under the 
premise that they “exercise power over us”25 because they “select[] what 
information is considered most relevant to us, a crucial feature of our 
participation in public life,”26 are “powerful entities that govern, judge, 
sort, regulate, classify, influence, or otherwise discipline the world,”27 
and are “black boxes.”28 In short, the general idea that computer systems 
are powerful and opaque has led to claims “that virtually any algorithm 
may deserve scrutiny.”29 Varying reports and studies raise concerns 
about complex systems and point to the more general concern: the pos-
sible powers and avenues of abuse or manipulation that go with practices 

                                                                                                    
25. NICHOLAS DIAKOPOULOUS, ALGORITHMIC ACCOUNTABILITY REPORTING: ON THE 

INVESTIGATION OF BLACK BOXES 2 (2014) (emphasis omitted). 
26. Tarleton Gillespie, The Relevance of Algorithms, in MEDIA TECHNOLOGIES: ESSAYS ON 

COMMUNICATION, MATERIALITY, AND SOCIETY 167, 167 (Tarleton Gillespie et al. eds., 2014).  
27. Solon Barocas, Sophie Hood & Malte Ziewitz, Governing Algorithms: A Provocation 

Piece, GOVERNING ALGORITHMS ¶ 9 (Mar. 29, 2013), http://governingalgorithms.org/ 
resources/provocation-piece/ [https://perma.cc/M8RY-73YX]. 

28. PASQUALE, supra note 4, at 17. 
29. Sandvig et al., supra note 20, at 3. 



No. 1] Trust But Verify 7 
 
that use computers. Despite commenters’ different methods and con-
cerns, transparency is often raised as a key part of managing this new 
order, because one “cannot access critical features of [its] decision-
making processes.”30 And yet consensus on what sort of scrutiny is 
needed, whether different areas affected by computers require different 
solutions, and whether software, other factors, or both are the cause of 
the claimed problems, is lacking. These issues arise in both the public 
and private sector context. We start by examining transparency and ac-
countability from a legal-political view and a computer science view, 
proceed to some examples of the public sector concerns, and then turn to 
private sector ones. 

A. Transparency and Accountability: Two Complementary Views 

Both legal-political and computer science scholars wish to ensure 
that automated decision systems are not enabling misdeeds or generating 
undesired outcomes. Both fields use the terms transparency and account-
ability, but have different meanings and functions for them. This vocab-
ulary clash can muddy the understanding of what is desired as an end 
result and of how to create systems to realize whatever end result is 
agreed upon. As such, this section parses the different, yet related, as-
pects of the terms. 

There is a deep, unstated and powerful view in the law and much of 
society in general; the builder of the proverbial better mousetrap will 
know precisely how it was built and what will happen when one presses 
a trigger or button in the invention.31 The device will do the same thing 
over and over until the springs wear out. The related presumption is that 
if a layperson who did not build the mousetrap has the plans, that person, 
perhaps with the aid of a hired expert, will be able to understand how the 
mousetrap works and probe the plans for flaws.32 The same, so reasons 
the law, must be true of software. As we shall see, in many ways, it is, 
and in some ways, it is not. Nonetheless, the key idea is that seeing the 

                                                                                                    
30. PASQUALE, supra note 4, at 17. The call for or desire to have transparency about the inner 

workings of automated decision systems as a way to resolve issues around outcomes from those 
systems can be strong. For example, Professor Latanya Sweeney has done work on racial dis-
crimination and advertising. See Sweeney, supra note 13. As Professor Cynthia Dwork noted 
when interviewed about that work, “[t]he examples described in that paper raise questions about 
how things are done in practice.” See Claire Cain Miller, Algorithms and Bias, Q&A with Cyn-
thia Dwork, N.Y. TIMES: THE UPSHOT (Aug. 10, 2015), https://www. 
nytimes.com/2015/08/11/upshot/algorithms-and-bias-q-and-a-with-cynthia-dwork.html (last 
visited Dec. 19, 2017). We note this point only to indicate the draw of transparency, not to 
argue that Professor Sweeney advocates one way or the other on that strategy. 

31. Cf. DAVID NYE, TECHNOLOGY MATTERS: QUESTIONS TO LIVE WITH 162 (2006) (“By c. 
1900 [people] increasingly demanded scientific explanations . . . . Engineers could explain how 
a bridge failed or what component of a steam engine was responsible for a burst boiler.”) 

32. Id. (“Formerly inscrutable events became legible to the safety engineer, the tort lawyer, 
the insurance agent, and the judge.”). 



8  Harvard Journal of Law & Technology [Vol. 31 
 
internals of a system leads to understanding of the workings of that sys-
tem and the consequences associated to the system’s operation. This is 
the core of the law’s conception of transparency, and it is deployed to 
serve many goals. 

Transparency has been proposed as a solution to mitigating possible 
undesired outcomes from automated decision-making. Even before to-
day’s fascination with big data, algorithms, and automated systems, legal 
scholars such as Paul Schwartz and Danielle Citron identified important 
ways in which data processing and software used in the administrative 
state can undermine or take away due process rights.33 A related fear is 
that the human designer of a program could have bad intent and seek to 
discriminate, suppress speech, or engage in some other prohibited act.34 
Transparency in this context is the claim that someone “ought to be able 
to ‘look under the hood’ of highly advanced technologies like . . . algo-
rithms”35 as a way to police such behavior.36 It is the idea that with the 
plans to the mousetrap, one can identify flaws, willful errors, and per-
haps ferret out undesired and possibly unintended results such as dis-
crimination in a hiring decision.37 Thus, different critics audit parts of 
systems, decry apparent discrimination, and want to hold someone re-
sponsible for bad outcomes.38 This approach is tantamount to saying that 
the way to get proof that the algorithm is not designed to engage in, nor 
has parts of it that lead to, discrimination or other undesired or prohibit-
ed acts is to review its internals.39 From this proof, then, comes the abil-
ity to hold the system’s creator or operator accountable. 

Put differently, if one can see into the system and identify bad be-
haviors and outcomes, one can hold someone accountable in the legal-
political sense of the word. Accountability as a legal-political concept is 
about openness regarding the way government operates so that the peo-
ple may know what its representatives are doing, hold government re-
sponsible, and participate in government by voting, expressing their 
views to representatives and regulators, or influencing policymaking in a 

                                                                                                    
33. Paul Schwartz, Data Processing and Government Administration: The Failure of the 

American Legal Response to the Computer, 43 HASTINGS L.J. 1321, 1343–74 (1992); Citron, 
supra note 6, at 1281–88 (discussing how automation threatens citizens’ due process rights such 
as notice and opportunity to be heard). 

34. See infra Part II.B. 
35. PASQUALE, supra note 4, at 165; cf. Citron, supra note 6, at 1308 (“Automated systems 

must be designed with transparency and accountability as their primary objectives, so as to 
prevent inadvertent and procedurally defective rulemaking . . . . [V]endors should release sys-
tems’ source codes to the public. Opening up the source code would reveal how a system 
works.”). 

36. But see Noyes, supra note 20. 
37. Cf. Barocas & Selbst, supra note 19, at 694 (arguing that “[c]urrent antidiscrimination 

law is not well equipped to address the cases of discrimination stemming from” data mining and 
related algorithmic practices in employment). 

38. See infra Section II.B. 
39. See infra Section II.B. 



No. 1] Trust But Verify 9 
 
variety of ways.40 As David Levine explored a decade ago, trade se-
crets — such as those surrounding voting machines’ software — clash 
with political accountability.41 If one cannot determine whether rules 
have been followed, one cannot engage through the legal-political sys-
tem to advocate for change. Specifically, one cannot hold someone re-
sponsible through lawsuits or by voting someone out of office. In short, 
accountability about software as conceptualized by law scholars such as 
Schwartz,42 Levine,43 Citron,44 and Pasquale45 is traditionally about ac-
countability that enables holding political and private actors responsible. 

The desire to see how a system works and to understand the system 
relates to more than just the machines used to make or aid in making 
decisions. Entire decision-making processes, whether operated by the 
state or by private entities, fit this view. As Jerry Mashaw has argued for 
administrative state systems, machines that make significant decisions 
should make accurate and cost-effective judgments.46 However, they 
should also give “attention to the dignity of the participants.”47 The dig-
nity element requires that those who are subject to such a process know 
or understand what reasons are behind a decision.48 In that sense, the 
demand for dignity presupposes that one can see how the mousetrap or 
system worked and understand it. The problem is that many recent im-
plementations of decision-making in software — the ones that have 
raised concerns such as the way online ads are delivered, the prices 
online shoppers are shown, and whether a car is performing as prom-
ised49 — do not map well to this assumption. 

Thus, we argue that demands for transparency must confront the re-
alities of computer science considering software. For example, because 
                                                                                                    

40. See David Levine, Secrecy and Accountability: Trade Secrets in Our Public Infrastruc-
ture, 59 FLA. L. REV. 135, 180 (2007); Daniel J. Weitzner et al., Information Accountability, 51 
COMM. ACM, June 2008, at 82, 86 (arguing for a technical architecture that enables holding 
“the individuals and institutions who misuse it accountable for their acts”). 

41. Levine, supra note 40, at 158 (discussing transparency and accountability as foundational 
democratic values in contrast to secrecy). 

42. Schwartz, supra note 33. 
43. Levine, supra note 40. 
44. Citron, supra note 6. 
45. PASQUALE, supra note 4. 
46. JERRY L. MASHAW, BUREAUCRATIC JUSTICE 26 (1983). 
47. Schwartz, supra note 33, at 1348; accord MASHAW, supra note 46, at 95–96. 
48. See Schwartz, supra note 33, at 1349. Respecting and protecting dignity is important as a 

practical matter given the EU’s approach to data processing. The current European Data Protec-
tion Supervisor has stated that dignity must be protected as a fundamental human right in light 
today’s privacy and personal data processing issues. See GIOVANNI BUTTARELLI, TOWARDS A 
NEW DIGITAL ETHICS: DATA, DIGNITY, AND TECHNOLOGY 2 (2015). The European Data Pro-
tection Supervisor is the office responsible “with respect to the processing of personal data . . . 
for ensuring that the fundamental rights and freedoms of natural persons, and in particular their 
right to privacy, are respected by the Community institutions and bodies,” and “for advising 
Community institutions and bodies and data subjects on all matters concerning the processing of 
personal data.” Council Regulation 45/2001, art. 41, 2001 O.J. (L 8) 18.  

49. See infra Section II.C. 



10  Harvard Journal of Law & Technology [Vol. 31 
 
socially important computer systems have a large range of possible in-
puts and outputs, social science auditing methods can only test “a small 
subset of those potential inputs.”50 As a legal matter, using such methods 
to determine whether a prohibited practice has occurred to an actionable 
extent, presents problems, because it is difficult to measure which inputs 
are the important ones to test.51 

In addition, handing over code often will not enable the political ac-
countability results those in favor of so-called algorithmic transparency 
desire.52 For example, simply disclosing or open-sourcing source code 
does nothing to show that the disclosed software was used in any partic-
ular decision unless that decision can be perfectly replicated from the 
disclosures. And that is rarely the case. With this in mind, we turn to the 
computer science view of accountability. 

Computer science accountability, by contrast, is a technical concept 
about making sure that software produces evidence allowing oversight 
and verification of whether it is operating within agreed-upon rules.53 
For example, if one cannot determine whether a credit bureau adhered to 
the Fair Credit Reporting Act’s restrictions on data gathering and use, 
one would have trouble detecting whether the credit bureau disobeyed 
the law.54 Similarly, if one wishes to ensure that a system for counting 
votes or allocating visas in a lottery is doing what it is supposed to do, 
one needs a meaningful technical way to look under the hood.55 Thus, 
“technical accountability” requires that systems generate reliable evi-
dence to verify the system functioned correctly. Such evidence must 
have integrity, which in this context means the production of “a tamper-
evident record that provides non-repudiable evidence” of relevant ac-
tions by the automated system.56 Such evidence would provide records 
of what actions were taken and why, with a focus on how that evidence 
will be used to hold the system’s creators or operators accountable for 
those actions. Of course, evidence that satisfies the requirements of 
technical accountability by itself does not provide legal-political ac-

                                                                                                    
50. Kroll et al., supra note 22, at 650. 
51. See infra Part IV. 
52. See infra Part IV. 
53. See, e.g., Andreas Haeberlen, Petr Kuznetsov & Peter Druschel, PeerReview: Practical 

Accountability for Distributed Systems, 41 ACM SIGOPS OPERATING SYS. REV. 175, 175 
(2007) (“[A]n accountable system maintains a tamper-evident record that provides non-
repudiable evidence of all nodes’ actions. Based on this record, a faulty node whose observable 
behavior deviates from that of a correct node can be detected eventually. At the same time, a 
correct node can defend itself against any false accusations.”); Kroll et al., supra note 22, at 
662–65. 

54. Cf. Daniel J. Weitzner et al., supra note 40, at 86 (advocating for technical architecture 
that enables detecting whether someone has complied with laws governing data use such as in 
the credit bureau context). 

55. See, e.g., Halderman, supra note 11.  
56. Haeberlen et al., supra note 53, at 175. 



No. 1] Trust But Verify 11 
 
countability.57 Rather, technical accountability enables legal-political 
accountability by providing a way to understand whether, how, to what 
extent, and why misdeeds occurred, as well as who (or what part of a 
system) is responsible for them. It is then up to political and legal pro-
cesses to use that evidence to hold actors responsible, meting out pun-
ishments when warranted. And as Kroll et al. note, where rules cannot 
be agreed upon in advance because of the necessary ambiguities in poli-
cymaking, oversight may be necessary as the mechanism for defining the 
specific contours of rules ex post, even as system designers do their best 
to comply with their view of the rules ex ante.58 

In short, technical accountability is a necessary step to enable politi-
cal accountability. For it is only after one has verifiable evidence, rele-
vant to the inquiry at hand, that one can have the possibility of holding 
both public and private actors who use automated systems responsible 
for their actions.59 

None of the above means those who use computerized decision-
making are ungovernable, but it does require that we understand what is 
and is not possible when we seek to regulate or monitor the use of these 
technologies.60 Many of the current calls for transparency as a way to 
regulate automation do not address such limits, and so they may come 
up short on providing the sort of legal-political accountability they de-
sire, and which we also support.61 Instead, as software (and especially 
machine learning systems, which separate the creation of algorithms and 
rules from human design and implementation) continues to grow in im-
portance, society may find, and we argue, that identifying harms, prohib-
iting outcomes, and banning undesirable uses is a more promising 
path.62 In addition, in some cases, we argue that society may require that 
software be built to certain specifications that can be tested or verified. 

                                                                                                    
57. See Weitzner, et al., supra note 40, at 84 (“Transparency and accountability make bad 

acts visible to all concerned. However, visibility alone does not guarantee compliance.”). 
58. Kroll et al., supra note 22, at 678. 
59. See Weitzner, et al., supra note 40, at 84 (“[W]e are all aware that we may be held ac-

countable through a process that looks back through the records of our actions and assesses 
them against the rules.”). 

60. See infra Parts III, IV. 
61. As one group of computer scientists has noted within machine learning, “[s]ome ML al-

gorithms are more amenable to meaningful inspection . . . and management than others.” Singh 
et al., supra note 23, at 4 (offering that decision tree, naïve Bayes, and rule learners were the 
most interpretable, [k-nearest neighbors] was in the middle, and neural networks and support 
vector machines were the least interpretable). 

62. Cf. FED. TRADE COMM’N, supra note 18, at 5–12 (acknowledging potential beneficial and 
negative outcomes from using data analytics and noting that it is the use of data and data analyt-
ics in certain areas such as housing, credit, and employment that triggers concerns and potential 
liability, not the use of data analytics alone). 



12  Harvard Journal of Law & Technology [Vol. 31 
 

B. Algorithms, Public Sector Concerns 

Public sector concerns are about power but involve questions on 
how power is governed that are different from private sector concerns. 
Public sector use of automated decision-making raises larger questions, 
because society regulates public power differently than the way it regu-
lates the private sector.63 Legal scholars have looked at governmental 
use of computerized decision-making and identified that software can 
aid the way the administrative state functions but at the same time run 
afoul of justice and due process requirements.64 

Twenty-five years ago, Schwartz noted that “[c]omputers are now 
an integral part of government administration.”65 Given the rise of the 
administrative state in managing and providing “social services,” the 
state requires “detailed information on the citizen as client, customer, or 
simply person to be controlled. Moreover, the state gathers personal in-
formation to better manage itself.”66 When the state uses data to admin-
ister services, however, we want administration that “carries out 
legislative policy, acts in a just manner, and combats fraud.”67 Schwartz 
examined the Aid to Families with Dependent Children Program and 
Child Support Enforcement programs as exemplars of the administrative 
state, and he argued that the nature of data processing undermined the 
ability to attain bureaucratic justice as developed by Mashaw and the 
ability to protect autonomy.68 In that vision, the system should not only 
make accurate, cost-effective judgments, but also give “attention to the 
dignity of participants.”69 The first two criteria relate to the use of data 

                                                                                                    
63. See EXEC. OFFICE OF THE PRESIDENT, BIG DATA: SEIZING OPPORTUNITIES, PRESERVING 

VALUES 10 (2014) (“Public trust is required for the proper functioning of government, and 
governments must be held to a higher standard for the collection and use of personal data than 
private actors.”). That private actors are taking on government functions in many areas is clear. 
See Curtis Publ’g. Co. v. Butts, 388 U.S. 130, 163 (1967) (Warren, C.J., concurring) (noting 
that policy is set by “a complex array of boards, committees, commissions, corporations, and 
associations, some only loosely connected with the Government” rather than by “formal politi-
cal institutions”); Deven R. Desai, Speech, Citizenry, and the Market: A Corporate Public Fig-
ure Doctrine, 98 MINN. L. REV. 455, 467 (2013) (“[T]he distinction between commercial and 
political has collapsed.”). But whether a specific private actor (or sector) using a given piece of 
software is performing a public function must be determined to see whether they should be held 
to the same standard as the government.  

64. See, e.g., Schwartz, supra note 33, at 1325; Citron, supra note 6, at 1256–57. 
65. Schwartz, supra note 33, at 1322. 
66. Id. at 1332; see also FRANK WEBSTER, THEORIES OF THE INFORMATION SOCIETY 208 

(John Urry ed., 3d ed. 1995) (“If we [as a society] are going to respect and support the individu-
ality of members, then a requisite may be that we know a great deal about them.”); Jack M. 
Balkin, The Constitution in the National Surveillance State, 93 MINN. L. REV. 1, 18 (2008) 
(arguing that government needs to collect information “to ensure efficient government and 
national security” but must have “justifiable reasons” and procedures to protect against abuse of 
data collection and use). 

67. Schwartz, supra note 33, at 1333. 
68. See id. at 1360. 
69. Id. at 1348. 



No. 1] Trust But Verify 13 
 
and data processing in that one needs to show a “connection between a 
particular decision, given the factual context, and the accomplishment of 
one or more of the decision maker’s goals.”70 The dignity element re-
quires that those who are subject to such a process know or understand 
what reasons are behind a decision.71 Without that knowledge or under-
standing those subject to the decision-making process lose self-worth, 
and over time the legitimacy of the system will be in doubt, because of 
the lack of understanding and loss of dignity.72 

Danielle Citron’s work also calls out the way that computers have 
been used in the administrative state, focusing on due process con-
cerns.73 She describes the “automated administrative state”74 as using 
software to determine whether someone should receive “Medicaid, food 
stamp, and welfare” benefits, be on a no fly list, or be identified as ow-
ing child support.75 According to Citron, “[a]utomation jeopardizes the 
due process safeguards owed individuals and destroys the twentieth-
century assumption that policymaking will be channeled through partic-
ipatory procedures that significantly reduce the risk that an arbitrary rule 
will be adopted.”76 

Although these scholars use different metrics to argue that the use of 
software and computers is a problem, both identify the problem sphere 
as the administrative state.77 And both Schwartz and Citron look to 
transparency as part of how to address whether the state uses data and 
software-based processes in a way that hinders the ability to know what 
is happening within the system.78 To be clear, given the nature of the 
administrative state, both scholars are correct that transparency is a nor-
mal, required part of due process. That is why Citron’s point-by-point 
examination of the Administrative Procedure Act (“APA”), the Freedom 

                                                                                                    
70. MASHAW, supra note 46, at 49. 
71. See Schwartz, supra note 33, at 1348–49. 
72. See id. 
73. Citron, supra note 6, at 1256–57.  
74. Id. at 1281. 
75. Id. at 1256–57. 
76. Id. at 1281. 
77. Scholars have examined software and accountability in the computer science context and 

found that the administrative state is a prime example of where algorithmic governance is need-
ed. See Kroll et al., supra note 22 at 674–76 (using government visa lottery programs as an 
example where the use of algorithms intersects with the application of specific rules for deci-
sion-making that affect individual rights); see also Michael Veale, Logics and Practices of 
Transparency and Opacity in Real-World Applications of Public Sector Machine Learning, 4 
WORKSHOP ON FAIRNESS ACCOUNTABILITY & TRANSPARENCY MACHINE LEARNING, at 2 
(2017), https://arxiv.org/pdf/1706.09249.pdf [https://perma.cc/8X2L-RXZE]. (explaining how 
developers of public-sector machine learning tools use transparency and accountability 
measures to build consensus and approval for those tools among both colleagues and people at 
large). 

78. Schwartz, supra note 33, at 1375 (calling for “[t]he maintenance of transparent infor-
mation processing systems”); Citron, supra note 6, at 1295 (noting lack of ability for “meaning-
ful review” of rules and system put in place to deliver administrative state services). 



14  Harvard Journal of Law & Technology [Vol. 31 
 
of Information Act (“FOIA”), and similar state laws is powerful.79 The 
APA requires that new rules undergo notice and comment,80 and FOIA 
requires that the public have access to “basic information about the con-
duct of agencies.”81 But opaque code and the process behind developing 
code challenge the way in which “procedural due process and formal 
and informal rulemaking provided a common structure for debating and 
addressing concerns about the propriety of administrative actions.”82 
Thus, these problems force the question of what is, as Citron puts it, 
“Technological Due Process?” Citron offers that “[a]utomated systems 
must be designed with transparency and accountability as their primary 
objectives, so as to prevent inadvertent and procedurally defective rule-
making.”83 Of late, legislators have started to look to public participation 
before software is built for public systems and to open code to facilitate 
“algorithmic audits” so people can test how an algorithm operates.84  

As discussed infra, we hope to add to the idea of accountability, and 
to what Jenna Burrell has explained are the problems of opacity that 
arise for algorithms that operate at a certain scale of application and the 
limits of interpretability that go with that scale.85 Specifically, we seek 
to challenge whether disclosure of software source code and data alone 
facilitates debating the function of that code. In that sense, Mashaw, 
Schwartz, and Citron, in different, connected ways, raise deep questions 
about whether and how the use of software by the state is compatible 
with due process. 

Two other examples, voting machines and the auto industry, illus-
trate a different, but related, public sector concern: verifying that a sys-
tem is accurate in implementing its goals and works as desired. Voting 
machines track votes, and so the process in which the machines are used 
must be accurate about at least four things. First, the process must be 
accurate about whether someone voted. That is, one might try to hijack 
an election by making it seem like someone, or many people voted, 
when in fact they never voted at all. Typically, humans handle this step 
by asking voters to sign logbooks. Second, voting machines themselves 
need to verify that the person voting was eligible to vote before record-

                                                                                                    
79. Citron, supra note 6, at 1288. 
80. See id. at 1289–91. 
81. Id. at 1291. 
82. Id. at 1252. 
83. Id. at 1308. 
84. See, e.g., Jim Dwyer, Showing the Algorithms Behind New York City Services, N.Y. 

TIMES (Aug. 24, 2017), https://www.nytimes.com/2017/08/24/nyregion/showing-the- 
algorithms-behind-new-york-city-services.html (last visited Dec. 19, 2017) (discussing a New 
York city councilman’s bill to mandate that computer code used for government decision mak-
ing be open for inspection and testing). 

85. Jenna Burrell, How the Machine ‘Thinks’: Understanding Opacity in Machine Learning 
Algorithms, BIG DATA & SOC’Y, Jan.–June 2016, at 5, 9, http://journals.sagepub.com/ 
doi/pdf/10.1177/2053951715622512 [https://perma.cc/UQG8-NL52]. 



No. 1] Trust But Verify 15 
 
ing the voter’s intent. Third, voting machines need to be accurate about 
recording how an eligible voter voted. Finally, the process must be accu-
rate about tallying the set of all properly cast votes. Yet the machines 
and procedures used to make these guarantees are quite susceptible to 
being subverted to give outputs that are not accurate.86 In one example, 
computer scientists showed that they could make a voting machine play 
a video game, Pac-Man, instead of tallying votes.87 The point was not 
that officials would think Pac-Man voted, but that the machine can be 
tampered with, contravening the intuition and presumption at law that 
the machine is specialized for a purpose and cannot be made to do other 
things. Given this flexibility in the machine’s behavior, having a way to 
verify that the system had not been tampered with — or at least that the 
accuracy requirements described above are met — is vital. 

Given the pervasive use of software in industry, almost any industry 
in which devices are regulated and/or must behave in certain ways can 
raise issues about software and verification. The auto industry provides a 
good example. Software has governed the operation of cars for some 
time, but as software grows in importance for cars, so does the im-
portance of technical accountability and analyzability for that software. 
Automobiles are subject to safety and environmental regulation. Part of 
that regulation involves knowing that cars work as claimed by automak-
ers and required by law.88 

Two recent events in the auto industry — one involving 
Volkswagen, the other Tesla — demonstrate the challenge. First, the 
recent fraud by Volkswagen illustrates how software can aid a company 
in evading regulations. Volkswagen used software that allowed the 
company to make its diesel cars seem to have low emissions when in 
fact the cars did not.89 The ability to have technically accountable and 
analyzable algorithms in this sector would aid in detecting such fraud.90 

                                                                                                    
86. It is important to distinguish the very real problem of whether the machines and process-

es in use could be deliberately subverted from the distinct problem, never observed in the real 
world, of whether any elections have actually been subverted in this way. The mere fact that the 
process is subject to corruption is enough to undermine its legitimacy. 

87. See Kim Zetter, Touchscreen E-Voting Machine Reprogrammed to Play Pac-Man, 
WIRED (Aug. 24, 2010, 2:25 PM), https://www.wired.com/2010/08/pac-man/ 
[https://perma.cc/ZWD9-V2PA] (Describing how two computer scientists “swapped out the 
machines PCMCIA card — where the voting software is stored — and replaced it with one 
loaded with Pac-Man. They pulled this off without disturbing the tamper evident seals on the 
machine.”). 

88. As a microcosm of regulating automotive software, the final rule for software-controlled 
brakes and electronic stability control (ESC) systems is fascinating. See 49 C.F.R. §§ 571, 585 
(2007) (establishing Federal Motor Vehicle Safety Standard No. 126 requiring the installation 
of a compliant ESC system in all passenger cars). 

89. See, e.g., Hotten, supra note 10. For a more technical overview, see Contag et al., supra 
note 10; Indictment, supra note 10. 

90. See infra Section V.A.3 (explaining how to build accountable and analyzable algo-
rithms). 



16  Harvard Journal of Law & Technology [Vol. 31 
 

Second, as Tesla and other car makers offer cars that are networked 
so that software can be updated after the car is purchased, the integrity 
and inviolability of software increases in importance. An automaker may 
claim that a car’s logs show that the car performed as promised, but reg-
ulators will need ways to verify that the software and logs have not been 
altered.91 For example, Tesla now updates its cars regularly, claiming 
that these updates improve performance such as the range its cars can 
drive on a full battery charge.92 Whether those updates are accurate, 
comport with the company’s public claims of performance, and whether 
they adhere to safety regulations need to be tracked.93 Furthermore, as 
self-driving or autonomous cars continue to be put on the road and 
evolve, regulating their software will be even more important.94 For ex-
ample, if there is a standard for the way a self-driving car brakes or 
avoids another car or avoids a person, what happens when the automaker 
pushes an update to the fleet? How can regulators be sure that the updat-
ed software complies with the standard? The automaker’s change affects 
not only the user but also others on the road. The automaker may, in 
good faith, assert that the update is within the standards already ap-
proved, but society, and more specifically the regulating agency, needs a 
way to verify that claim. Further, regulators may want to ensure that on-
ly approved, standards-compliant updates can be installed in vehicles 
already on the road. 

C. Algorithms, Private Sector Concerns 

Although the private sector is regulated differently than the public 
sector, calls for transparency as it relates to software-based decision-
making in the private sector abound. For example, in light of the im-
portance of recent technologies, Frank Pasquale has argued that the code 
for important software such as Google’s search algorithm or a broadband 
carrier’s method for network management “should be transparent to 
some entity capable of detecting” the potential misdeeds or harms these 
services may create.95 In the same vein, other studies and investigations 
                                                                                                    

91. See infra Section V.A.3 (explaining audit logs and verification of such logs). 
92. See Davies, supra note 12. 
93. Issues with cars’ software updates and security have been revealed in at least two cases. 

See Morris, supra note 9 (reporting that a security group took over a Tesla, opened its doors, 
opened its sunroof, and enabled keyless driving so the car could be driven away or stolen); 
Peterson, supra note 9 (describing researchers able to take over the braking system and more 
from 12 miles away). 

94. See, e.g., Bryant Walker Smith, Automated Driving and Product Liability, 2017 MICH. 
ST. L. REV. 1, 45–49 (examining product liability and compliance issues raised by software in 
self-driving cars).  

95. Frank Pasquale, Beyond Innovation and Competition: The Need for Qualified Transpar-
ency in Internet Intermediaries, 104 NW. U. L. REV. 1, 166 (2010). Faced with the challenges of 
data processing and computation a quarter century ago, Paul Schwartz argued that a key factor 
in managing problems from those practices required “the establishment of a government body 



No. 1] Trust But Verify 17 
 
have identified a range of examples where software was part of unde-
sired or troubling outcomes and have called for methods to detect such 
issues. 

One important area of concern is whether certain software is ena-
bling or aggravating illegal discrimination on the basis of a protected 
attribute such as race or gender. A study by Professor Latanya Sweeney 
looked at online search and advertising to test whether a search for “ra-
cially associated names” returned “ads suggestive of an arrest record.”96 
The study rejected the hypothesis “that no difference exists” in the de-
livery of such ads because searches for “black-identifying first names” 
yielded an ad for a company that sold public records and included the 
word “arrest” in the ad text for “a greater percentage of ads . . . than 
[searches] for white-identifying first names.”97 According to Sweeney, 
this finding intersects with discrimination problems, because when one 
competes for “an award, a scholarship, an appointment, a promotion, or 
a new job . . . or [is] engaged in any one of hundreds of circumstances 
for which someone wants to learn more about you,” ads appear in online 
searches.98 Another study by Datta et al. on searches, webpage visitation 
history, and advertising found that when ad preference settings were set 
to female, a user saw “fewer instances of an ad related to high-paying 
jobs than [when preferences were set] . . . to male.”99 The specific ad 
was for a career coaching service promising to aid someone in obtaining 
a job that paid more than $200,000 a year.100 These studies have identi-
fied some outcomes that may not meet the legal101 or normative defini-

                                                                                                    
capable of studying the effects and implications [of software-based decisions].” Schwartz, su-
pra note 33, at 1379. That approach was part of addressing state actions, and the approach 
looked at transparency as a feature to limit government action and to make the system “open 
and understandable to the data subject.” Id. at 1376. The connection between Pasquale and 
Schwartz is conceptual: both seek transparency as a way to enable a third party to aid in scruti-
ny and to aid the ability to challenge a practice.  

96. Sweeney, supra note 13, at 52. 
97. Id. at 51. 
98. Id. at 44. 
99. Amit Datta, Michael Carl Tschantz & Anupam Datta, Automated Experiments on Ad Pri-

vacy Settings, PROC. ON PRIVACY ENHANCING TECHS., Apr. 2015, at 92, 92. 
100. Id. at 102. 
101. As Peter Swire has observed in an initial investigation of online, data-driven marketing, 

several statutes prohibit discrimination in specific sectors such as lending, housing, and em-
ployment. PETER SWIRE, LESSONS FROM FAIR LENDING FOR FAIR MARKETING AND BIG DATA 
1–4 (2014). These statutes apply to online practices but how they apply for each sector and 
which practices within each sector are prohibited is not settled. See id. at 8–10. Sweeney’s study 
may not fit into these sectoral approaches as they appear to be about an indirect, yet possibly 
powerful, way to affect hiring decisions. That is, the ads at issue in Sweeney’s study are not 
about an employment opportunity; rather they may affect an employer’s impression of or deci-
sion about someone without being the explicit criteria on which the decision is made. In con-
trast, the employment ads in the other study fall under Title VII, which governs employment 
ads. Yet, as Swire explains even when an advertisement falls under a statute, “what would meet 
the statutory requirement that the advertisement ‘indicates any preference, limitation, or dis-
crimination’ concerning a protected class” is unclear. Id. at 9 (quoting 42 U.S.C. § 3604(c) 



18  Harvard Journal of Law & Technology [Vol. 31 
 
tion of discrimination, but raise questions about “the pervasive structural 
nature of . . . discrimination in society at large.”102 

The studies cannot, however, find one party to blame, in part be-
cause of the many factors at play.103 As Sweeney states, “Why is this 
discrimination occurring? Is [the ad buyer, the ad seller,] or society to 
blame? We do not yet know.”104 The Datta study also admitted that it 
could not determine whether the cause of the outcomes were from the 
advertising network (Google), “the advertiser, or complex interactions 
among them and others.”105 As such, Sweeney turns to technical solu-
tions to address the issues and argues that “we can use the mechanics 
and legal criteria described [in her paper] to build technology that dis-
tinguishes between desirable and undesirable discrimination in ad deliv-
ery.”106 The Datta study offers a tool to allow the ad network and the 
advertiser “to audit [each] other” to detect undesired ad behaviors.107 
The study suggests that in the future there may be “machine learning 
algorithms that automatically avoid discriminating against users in unac-
ceptable ways and automatically provide transparency to users.”108 Of 
course, it remains to be seen whether these techniques will be convinc-
ing to users, will require their own audits, or will be capable of the 
promised auditing. Insofar as the techniques are based on machine learn-
ing, the irony may be that the techniques will be as inscrutable as the 
systems they mean to analyze and thus will fall short of providing tech-
nical accountability. In that case, as a response to the tools proposed to 
be used to police the suspect sector, that sector could make the same 

                                                                                                    
(1988)). Thus, for example, as online advertising improves its ability to target advertising, 
whether the Act will apply for ad purchases that “will reach members of a protected class far 
more or less often than other demographic groups,” it becomes important to know “whether and 
when the Act covers” such practices. Id. 

102. Datta et al., supra note 99, at 105. In addition, advertisers and marketers can be deemed 
credit reporting agencies under the Fair Credit Reporting Act. The FTC has brought claims for 
violating the Fair Credit Reporting Act against at least two companies that used data profiles 
from a range of sources for marketing and advertising activities. See Consent Decree, United 
States v. Spokeo, Inc., No. 2:12-cv-05001 (C.D. Cal. June 12, 2012); Consent Order, United 
States v. Instant Checkmate, Inc., No. 3:14-cv-00675-H-JMA (S.D. Cal. Apr. 1, 2014); see also 
Spokeo to Pay $800,000 to Settle FTC Charges Company Allegedly Marketed Information to 
Employers and Recruiters in Violation of FCRA, FED. TRADE COMM’N (June 12, 2012), 
http://www.ftc.gov/news-events/press-releases/2012/06/spokeo-pay- 
800000-settle-ftc-charges-company-allegedly-marketed [https://perma.cc/UXP7-TVYL]; Two 
Data Brokers Settle FTC Charges That They Sold Consumer Data without Complying with 
Protections Required under the Fair Credit Reporting Act, FED. TRADE COMM’N (Apr. 9, 
2014), https://www.ftc.gov/news-events/press-releases/2014/04/two-data-brokers-settle- 
ftc-charges-they-sold-consumer-data [https://perma.cc/ZU8F-4FTL]. 

103. See, e.g., Datta et al., supra note 99, at 105 (“[B]laming one party may ignore context 
and correlations that make avoiding such discrimination difficult.”). 

104. Sweeney, supra note 13, at 52. 
105. Datta et al., supra note 99, at 105. 
106. Sweeney, supra note 13, at 53. 
107. Datta et al., supra note 99, at 106.  
108. Id. 



No. 1] Trust But Verify 19 
 
critiques about opacity, fairness, and due process as those who currently 
question the use of algorithms make. 

Academics are not the only ones to think about software and society. 
Journalists have also investigated the use of automation with similar re-
sults and conclusions. Rather than investigating questions about ad net-
works, where several actors are involved, and each may or may not be 
responsible for outcomes, journalists and computer scientists have 
looked at personalization of commerce and search features to see wheth-
er a single actor’s implementation of an algorithm poses problems. 

An investigation by Wall Street Journal reporters found that the e-
commerce they examined lends itself to a legal practice known to econ-
omists as price discrimination — the practice of trying to match the price 
for a good or service to specific market segments or people.109 Several 
companies “were consistently adjusting prices and displaying different 
product offers based on a range of characteristics that could be discov-
ered about the user.”110 For example, Staples, Inc., the office supply 
company, charged different prices for the same item depending on where 
Staples thought the consumer was.111 Although the practice of altering 
prices based on the geography of the shopper or whether a good is 
online or in-store is common, the practice can reinforce inequality if it 
allows retailers to charge lower prices to those who live in ZIP codes 
with higher weighted average income and charge higher prices to those 
in ZIP codes with lower weighted average income.112 Even if one ac-
cepts the argument that a retailer accounts for different costs at local, 
physical stores, costs associated with physical retail stores should not be 
an issue if the orders are fulfilled and shipped from a central warehouse. 
Although the outcomes of price discrimination would seem to indicate 
that inequality could be reinforced, price discrimination is not illegal. If 
personalization is used, however, by a credit card or other regulated fi-
nancial company to steer people to more expensive financial services 
based on race, gender, or other protected class status, price discrimina-
tion becomes prohibited discrimination.113 As such regulation is trig-
gered, it becomes necessary to understand the system. 
                                                                                                    

109. Jennifer Valentino-Devries, Jeremy Singer-Vine & Ashkan Soltani, Websites Vary Pric-
es, Deals Based on Users’ Information, WALL ST. J. (Dec. 24, 2012), 
http://www.wsj.com/news/articles/SB10001424127887323777204578189391813881534 (last 
visited Dec. 19, 2017). 

110. Id. (“The Journal identified several companies, including Staples, Discover Financial 
Services, Rosetta Stone Inc. and Home Depot Inc., that [engaged in such activities].”). 

111. Id. 
112. Id. 
113. See SWIRE, supra note 101, at 7–8 (discussing Fair Housing Act prohibition on “steer-

ing”). Steering is the practice of “deliberately guiding loan applicants or potential purchasers 
toward or away from certain types of loans or geographic areas because of race.” FED. RESERVE 
BD., FEDERAL FAIR LENDING REGULATIONS AND STATUTES: FAIR HOUSING ACT 3 (2016), 
https://www.federalreserve.gov/boarddocs/supmanual/cch/fair_lend_fhact.pdf  
[https://perma.cc/UB2T-ZGS8]. 



20  Harvard Journal of Law & Technology [Vol. 31 
 

Another investigation by Nicholas Diakopoulos tried to test the al-
gorithms behind the autocomplete feature for Google and Bing’s search 
services to see how each one handled searches for sensitive topics such 
as “illicit sex” and “violence.”114 At the time of the report, Bing’s auto-
complete did not offer autocomplete suggestions for “homosexual,” and 
both Bing and Google did not offer autocomplete suggestions for a large 
number of “110 sex-related words.”115 According to the author, this 
point raises the specter of censorship, because “we look to algorithms to 
enforce morality.”116 

This position is puzzling because whether society should look to al-
gorithms or to a company’s manual choice over a blacklist for morality 
enforcement is answered, “No,” by most who discuss the issue, includ-
ing us.117 In addition, whether society truly “look[s] to algorithms to 
enforce morality” is unclear.118 One may believe algorithms should be 
constructed to provide moral guidance or enforce a given morality. Al-
ternatively, one may claim that moral choices are vested with a system’s 
users and that the system itself should be neutral, allowing all types of 
use.119 Either position demands certain outcomes from computer systems 
such as search engines, and so defers to algorithms. That is the mistake. 
In this context, the platforms at issue exercise discretion in organizing 
and displaying information, and that organization flows from tools — 
algorithms, blacklists, human moderators, and more — used in combina-
tion. In that sense, looking to algorithms or vesting agency with the 
range of tools platforms use to enforce morality is a type of “worship” 
that reverses the skepticism of the Enlightenment.120 Asking algorithms 
to enforce morality is not only a type of idolatry; it also presumes we 
know whose morality they enforce and can define what moral outcomes 

                                                                                                    
114. Nicholas Diakopoulos, Sex, Violence, and Autocomplete Algorithms, SLATE (Aug. 2, 

2013, 11:43 AM), http://www.slate.com/articles/technology/future_tense/2013/08/ 
words_banned_from_bing_and_google_s_autocomplete_algorithms.html (last visited Dec. 19, 
2017).  

115. Id.  
116. Id.  
117. See, e.g., Bogost, supra note 3; Deven R. Desai, Exploration and Exploitation: An Es-

say on (Machine) Learning, Algorithms, and Information Provision, 47 LOY. U. CHI. L.J. 541, 
578 (2015). 

118. Diakopolous, supra note 114. 
119. The debates around hate speech and filter bubbles capture this problem, as one has to 

choose what to show or not show. See Desai, supra note 117, at 561–62 (discussing difficulties 
of determining who gets to decide what information users see). The same applies to the move to 
have platforms such as Facebook regulate fake news or hate speech as shown by Germany’s 
recent law that requires firms to remove and block such content or face fines up to fifty million 
Euros. See Germany Approves Plans to Fine Social Media Firms up to €50m, THE GUARDIAN 
(June 30, 2017, 7:14 AM), https://www.theguardian.com/media/ 
2017/jun/30/germany-approves-plans-to-fine-social-media-firms-up-to-50m 
[https://perma.cc/SK9D-V43W]. 

120. See Bogost, supra note 3. 



No. 1] Trust But Verify 21 
 
are sought.121 That is another path to censorship and control.122 None-
theless, in its best light, the argument seems to be that people might de-
fer in a default way to such enforcement by algorithm; and so we must 
cope with that fact. And a problem is that those algorithms will not be 
perfect because “filtering algorithms will always have some error margin 
where they let through things we might still find objectionable.”123 We 
would add the system can also block content that someone or some 
groups do not find objectionable. Either way, the logic is that because 
people sometimes look to algorithms to enforce morality, we must police 
those algorithms; and that “with some vigilance, we can hold such algo-
rithms accountable and better understand the underlying human (and 
corporate) criteria that drive such algorithms’ moralizing.”124 This posi-
tion merely substitutes one type of deference for another without 
acknowledgement. Even if such deference is inevitable — as the study 
seems to believe — the critique does not explain exactly what sort of 
accountability and understanding is possible. 

These investigations also assume that the personalization is well-
controlled by the party personalizing the content, but that is not always 
the case. As one group of computer scientists has noted regarding the 
use of machine learning algorithms, the notion of what constitutes con-
trol and transparency varies depending on a range of factors.125 As the 
authors explain, a given application of machine learning is better under-
stood as consisting of machine learning techniques, training and opera-
tional data, machine learning outputs, and “the broader systems context; 
i.e., the workflows, processes, and system supply chains surrounding and 
integrating the ML” working together as a system, and so each compo-
nent offers different possibilities for control and responsibility.126 

Focusing on only one part of such a system, the data, shows the 
ways that the idea of control becomes nuanced. Using “data in the 
wild” — that is deploying a system that may have been accurate and 
useful when built — requires ongoing monitoring and evaluation to en-
sure the model remains accurate given that the real world changes.127 
These changes can create what is called “concept drift” where the “once 

                                                                                                    
121. Cf. Desai, supra note 117, at 571–73 (explaining the difficulty for online information 

providers to show a given user a “good” song or to show a correct entry for a term such as Dar-
win because of the range of users and each one’s view of what a correct result is). 

122. See id. at 561–62 (noting that someone has to choose what to show users and the history 
of politicians using media content rules to filter information rather than expand access to it). 

123. Diakopoulos, supra note 114.  
124. Id. 
125. See Singh et al., supra note 23, at 3–4. Singh et al. also discuss how using data in the 

wild requires ongoing monitoring and evaluation to ensure the model remains accurate given 
that real world changes and that input in the wild can lead a benign program to render undesired 
outputs. 

126. Id. at 3. 
127. Id. at 11–12. 



22  Harvard Journal of Law & Technology [Vol. 31 
 
accurate model [becomes] obsolete.”128 The change may be because of a 
general change in the world, or because of active work to defeat the 
model, such as in “spam, intrusion and fraud detection.”129 Inputs can 
also lead a benign program to render undesired outputs such as what 
happened with Microsoft’s Twitter bot, Tay. That system was designed 
to have a teenage millennial persona and use slang, but when it was fed 
data by Internet trolls it became “foul-mouthed and racist”130 — an out-
come quite different than intended or expected. 

Computer scientists have also looked at personalization and docu-
mented the ability for a third-party to launch a “pollution attack,” which 
“allows third parties to alter the customized content the services return to 
users who have visited a page containing the exploit.”131 The study ex-
amined Amazon, Google, and YouTube’s personalization offerings and 
showed that they were vulnerable to such an attack. In the specific cases, 
one could increase the visibility of YouTube channels, “dramatically 
increase the [Google] ranking of most websites in the short term” and 
manipulate Amazon recommendations to display “reasonably popular 
products of the attacker’s choosing.”132 Although the attack was not 
“powerful, broadly applicable, or hard to defeat,” the larger implication 
is that other sites that use personalization could be vulnerable in similar 
ways.133 As the authors put it, “[w]ith increasingly complex algorithms 
and data collection mechanisms aiming for ever higher financial stakes, 
there are bound to be vulnerabilities that will be exploited by motivated 
attackers. The age of innocence for personalization is over; we must now 
face the challenge of securing it.”134 

To summarize, there are broad descriptive claims of a range of dif-
fering problems appearing in the public and private sectors and flowing 
from a range of applications of software techniques. Some of these criti-
cisms assume more control over the systems at issue than may exist. All 
of these criticisms converge on the notion of transparency as a viable 
solution and yet have different visions of what the term entails and how 
it would work in practice. In contrast, we argue that whether transparen-
cy is a viable solution turns on the context of a given automated process 
at issue. The next section addresses the nature of the algorithms — or 
rather the nature of the software — underlying these systems as a step to 
show why that is so. 

                                                                                                    
128. Id. at 11.  
129. Id. 
130. Id.  
131. Xinyu Xing et al., Take This Personally: Pollution Attacks on Personalized Services, 22 

USENIX SEC. SYMP. 671, 671 (2013). 
132. Id. at 672. 
133. Id. at 671. 
134. Id. at 684. 



No. 1] Trust But Verify 23 
 

III. ALGORITHMS: A PRIMER 

The word “algorithm” conjures thoughts of dark wizardry because 
algorithms are not well understood outside the technical community, not 
because they are a dark art.135 Some algorithms are simple, and some are 
complex.136 Regardless, an algorithm is a step-by-step process and “each 
of the steps must be absolutely precise, requiring no human intuition or 
guesswork.”137 Thus, we can call the steps for brushing teeth an algo-
rithm. However, most of the time, including the issues addressed in this 
work and in most of the works we describe, we are concerned not with 
the conceptual steps but with their reduction to practice as an implemen-
tation in computer code. Indeed, there is a difference between when a 
human follows a set of instructions and when a computer does.138 Hu-
mans “might be able to tolerate it when an algorithm is imprecisely de-
scribed, but a computer cannot.”139 

The idea of an algorithm as a recipe shows the problem. Recipes 
seem to be quite precise, but they are not.140 As Brian Kernighan ex-
plains, “Joy of Cooking says that to poach an egg, ‘Put in a small bowl: 1 
egg’ but fails to specify that the egg should be broken and the shell re-
moved first.”141 Humans can handle this ambiguity because humans can 
fill in details or otherwise guess at what to do when presented with a 
partially specified process, while a computer is a machine that can only 
follow precise instructions contained in its software.142 As Cormen puts 

                                                                                                    
135. See Bogost, supra note 3 (“The next time you hear someone talking about algorithms, 

replace the term with ‘God’ and ask yourself if the meaning changes. Our supposedly algorith-
mic culture is not a material phenomenon so much as a devotional one.”); see also Kroll et al., 
supra note 22, at 640 n.14 (“The term ‘algorithm’ is assigned disparate technical meanings in 
the literatures of computer science and other fields.”). 

136. Bogost has pointed out that just as manufacturing seems “automated” but requires “con-
fluence” of raw materials, machines, human labor, and transportation to reach consumers, algo-
rithms such as Google’s search are a “confluence of physical, virtual, computational, and non-
computational stuffs — electricity, data centers, servers, air conditioners, security guards, fi-
nancial markets.” Bogost, supra note 3.  

137. JOHN MACCORMICK, NINE ALGORITHMS THAT CHANGED THE FUTURE 3 (Vickie Kearn 
ed., 2012); accord THOMAS H. CORMEN, ALGORITHMS UNLOCKED 1 (Jim DeWolf ed., 2013). 

138. CORMEN, supra note 137, at 1. 
139. Id. As Cormen puts it, “[w]e want two things from a computer algorithm: given an input 

to a problem, it should always produce a correct solution to the problem, and it should use com-
putational resources efficiently while doing so.” Id. at 2. 

140. Cf. PEDRO DOMINGOS, THE MASTER ALGORITHM 3 (2015) (“[A] cooking recipe is not 
an algorithm because it doesn’t exactly specify what order to do things in or exactly what each 
step is.”). 

141. BRIAN W. KERNIGHAN, D IS FOR DIGITAL 53 (2012). 
142. An irony is that the machine learning and neural network technologies driving many cri-

tiques of algorithms arguably came about because of the specification problem. Specification, 
until recently, was a wall to advances in artificial intelligence. For example, humans are rather 
good at making visual distinctions such as between a dog and a cat and between one type of cat 
and another. Computer software was limited in such tasks in part because specifying such fine 
distinctions precisely for each instance (e.g. for each picture of a cat) in such a way that soft-



24  Harvard Journal of Law & Technology [Vol. 31 
 
it, “given an input to a problem, [a computer algorithm] should always 
produce a correct solution to the problem.”143 In other words, a recipe is 
not an algorithm because a computer would not break the egg and so not 
produce the correct result. 

Correctness, however, is not so simple; an algorithm’s correctness 
can only be established relative to a specification of its behavior.144 This 
point raises two issues. One can fail to choose as one’s specification the 
correct solution to one’s problem or one might fail to implement the so-
lution faithfully. This distinction is analogous to building a house: a 
house may be built incorrectly because the builder failed to follow the 
blueprints (analogous to software failing to meet its specification) or the 
blueprints themselves may not describe the correct way to build the 
house (analogous to software faithfully implementing an incorrect speci-
fication). How GPS systems provide directions illustrates the problem 
for software. 

If one thinks of a GPS navigation system giving a route, there may 
be several criteria for what the correct route should be.145 Although peo-
ple may not often alter how their GPS computes routes, many GPS sys-
tems allow one to do so, and in that sense, accommodate the driver’s 
preferred approach to determining the correct route. A driver may want 
the fastest route, the shortest route by distance (which may not be the 
fastest), or the fastest or shortest route that also avoids highways and toll 
roads.146 Regardless, all correct routes will connect the origin to the des-
tination. 

Yet, after choosing from the above options, the user runs into a new 
problem. Suppose the user chooses the “fastest route” criterion as her 
definition of the correct route. The algorithm must have a way to deter-
mine whether one route is faster than another, which means without con-
sidering the current traffic conditions, the algorithm and its outputs will 
be incorrect.147 Suppose that, instead of real-time traffic data, the user 
provides as input to the algorithm traffic data from the day before. Some 

                                                                                                    
ware could process well proved too complex a feat of engineering. Recent advances in machine 
learning use statistical methods and allow software systems to take less precise “objectives” that 
allow the technologies to discover the precise (if complex) rule by examining large data sets. 
Surprisingly, these less precise approaches have been the key to building systems that can ac-
complish the distinction task almost as well as a human can.  

143. CORMEN, supra note 137, at 2. To be clear, Cormen’s full point is that we want a com-
puter algorithm to be correct and efficient, but correctness is the key concern for our discussion 
here. Id. (stating that we want an algorithm to “use computational resources efficiently” while 
reaching the correct solution). 

144. See, e.g., Douglas D. Dunlop & Victor R. Basili, A Comparative Analysis of Functional 
Correctness, 14 ACM COMPUTING SURVS. 229, 229 (1982) (defining functional correctness as 
“a methodology for verifying that a program is correct with respect to an abstract specification 
function”). 

145. CORMEN, supra note 137, at 2.  
146. Id. 
147. Id. 



No. 1] Trust But Verify 25 
 
of the time, changes in traffic will mean that the algorithm gives a result 
which is not actually the fastest route. The algorithm is nonetheless cor-
rect given the input it had.148 The routing algorithm itself is correct, even 
if it does not return the fastest result because “even if the input to the 
algorithm is not [correct]; for the input given to the routing algorithm, 
the algorithm produces the fastest route.”149 Thus, the algorithm itself is 
correct regarding the specification, which in this case is to produce the 
fastest route given geography and traffic data. However, given incorrect 
input data, the correct algorithm may produce an incorrect output. 

Software can also have bugs as it implements an algorithm. Staying 
with our GPS example, suppose that the software sometimes returned the 
shortest route by distance instead of the fastest route given traffic. Here, 
the specification is precise and correct (we want the system to return the 
fastest route, taking traffic conditions into account), and the algorithm 
we have chosen to implement that specification is correct (it produces 
the fastest route given traffic data), but the software itself is incorrect 
with respect to the specification (it occasionally gives an incorrect an-
swer, namely a shorter distance route that was slower because of traffic, 
because of a bug). Thus, software can be incorrect either because the 
approach is incorrect (e.g., the programmer thought her approach would 
produce the fastest route, but it does not always do so) or because a pro-
grammer introduced a bug when converting it to computer code. There-
fore, we must ask both whether a solution has been specified correctly 
and whether that specification has been correctly reduced to practice. In 
sum, correctness is not as precise as policy critics would like. 

As such, to ask that an algorithm not discriminate or yield some oth-
er result prohibited by law, requires that a specification be provided so 
that the request is workable for computer scientists.150 It also requires 
that the data used be accurate. And yet the policy process is rarely pre-
pared to provide a complete specification for any rule, let alone thorny 
questions such as what constitutes discrimination (or even to answer the 
simpler question of whether a specific behavior is or is not acceptable or 
legal).151 Even in the possibly simpler realm of administrative law where 
                                                                                                    

148. Id. 
149. Id. 
150. The need for a specification further shows that algorithms are not recipes. See supra 

notes 140–142 and accompanying text. As Kroll et al. put it, “In technical approaches, it is 
traditional to have a detailed, well-defined specification of the behavior of a system for all types 
of situations.” Kroll et al., supra note 22, at 695. The demand for specification allows an algo-
rithm to work. In contrast, the law is more like a recipe where one may interpret instructions. Id. 
(“In lawmaking and the application of public policy, it is normal, and even encouraged, for 
rules to be left open to interpretation, with details filled by human judgment emerging from 
disputes in specific cases that are resolved after the fact.”).  

151. Although some rules, such as the 80/20 rule for employment discrimination, may be 
precise enough to be a workable specification, it is not clear that other areas of discrimination 
are as precise. In addition, when one considers claims of censorship versus free speech or 
whether posting a video clip is fair use, rules or tests are broad and imprecise. Nonetheless, 



26  Harvard Journal of Law & Technology [Vol. 31 
 
rules abound, the administrator “faces decisions for which external 
standards provide no binding, perhaps no relevant, guidelines.”152 Thus, 
some argue that the “administrative process, like the judicial and legisla-
tive processes, [is] somehow in pursuit of justice and the general wel-
fare; [and] ‘administration,’ like ‘democracy’ and the ‘rule of law,’ 
[should be understood] as a motivating ideal.”153 In short, there are ide-
als that guide the law, but the precise way those ideals manifest them-
selves is a bit messy and particular to a given application. The same is 
true for software correctness, but the particulars of correctness in a given 
application will emerge from the messy governance processes around 
that application. 

The idea that all computer systems are designed by deciding on a 
precise set of steps, which are completely specified, is wrong. Many sys-
tems spring more simply informal or notional specifications, where de-
velopers work from a poorly specified goal rather than a clear set of 
requirements. But this is not only a problem of insufficient precision — 
it can be quite desirable to build systems this way. Instead of a single 
formula that can set out or describe a specific result (e.g., E=MC2), large 
modern computer systems often rely on high-level goals that generally 
describe how to solve a problem in cases where the solution is unknown 
in advance or benefits from exploration and testing in the real world. For 
example, it would be difficult or impossible to write a complete recipe 
for serving a targeted advertisement or arranging posts on a social net-
work timeline. While, at base, these activities are executed by well-
specified mechanized processes — similar to administrative law as put 
into practice — the outcomes came to be through abstract and messy 
processes that are often reflected in their complexity and in unexpected, 
unplanned behaviors.154 And so instead, developers experiment with 
likely approaches, measure their progress, and slowly optimize systems 

                                                                                                    
when the state sets a clear rule, we can ask whether that rule is faithfully reflected in software. 
See infra Section VI.A. Even simple rules, such as rules about how to record and count votes, 
can be subject to interpretation and challenge, and do not lend themselves to precise specifica-
tion in all scenarios. 

152. MASHAW, supra note 46, at 16. 
153. Id. at 14. 
154. As Singh et al. offer, “large-scale computing environments, for example IoT-enabled 

smart cities . . . entail ‘systems of systems’. Such environments have many ‘moving parts’ — 
including a range of different software, services, agents (and people!) — all of which might use 
or be affected by a range of ML models.” Singh et al., supra note 23, at 15 (citation omitted). 
These overlapping factors create “feedback loops between systems, where the outputs/actions of 
one system can feed into others in real-time. The interactions can be direct, e.g. competing for 
resources, or more indirect, through ‘butterfly effects’, where (subtle) actions of a system can 
(potentially dramatically) affect others.” Id. In that sense, large-scale computing environments 
face problems similar to what Mashaw described for the administrative state — rules that are 
more like ideals and complications flowing from imprecision and human factors in understand-
ing and applying the rules. MASHAW, supra note 46, at 14–16. 



No. 1] Trust But Verify 27 
 
to find the algorithms which maximize revenue, user engagement, or 
whatever metrics are most relevant to a given problem. 

As a colleague in robotics and machine learning put it to one of us, 
imagine engineers building a robotic arm. Part of the approach applies 
physics and mechanical engineering to figure out how to drive the arm. 
But for the arm to work well in the field, where its movements are not 
precisely determined ahead of time, other engineers and computer scien-
tists apply machine learning and develop models of movement — dis-
covering a specific algorithmic approach to solving the underspecified 
problem of controlling the arm’s movements outside the lab. 

The algorithms and models define a rule for how to move, but it is a 
rule that is not coded directly by a programmer or designed with the in-
tent to reach the precise rule discovered. The arm movement is not cod-
ed based only on a simple equation about force, mass, and acceleration. 
Instead, a model of the arm’s movement is derived either by the use of 
machine learning or simply by capturing sequences of movements of the 
actuators when controlled by a human directly. This model then defines 
the control of the arm, in place of a precisely specified algorithm. This 
lack of direct coding is especially necessary if the arm is to move and 
interact within a dynamic environment.155 None of which is to say that 
the underlying physics do not matter and are not used to control the arm. 
In practice, the physics provide the scaffolding for the arm’s movements, 
defining how settings of the actuators within the arm will change its po-
sition or cause it to move, while learned models provide finesse, control, 
and intelligence to achieve goals. The arm’s movements are a combina-
tion of formulaic physics and models that do not correspond to a pre-
written formula, but rather are extracted by discovering patterns in large 
sets of data. 

The key is to optimize the arm’s movement, which is done by learn-
ing.156 The arm starts with a model that has unknown parameters. The 
initial parameters might be set to a good guess of the final model, or they 
might be chosen at random. The goal of learning, then, is to find the op-
timal parameters. But as conditions change, the model encounters situa-
tions that it cannot yet handle. When the model gives less than optimal 
results, a learning algorithm will modify the model’s parameters and 
measure whether that modification improves performance in that situa-
tion. Key to the learning process is the mathematical definition of how 
(quantitatively) good a particular set of parameters is. Machine learning 
is the process of finding the choice of parameters that optimize this ob-
jective. To achieve this, machine learning methods usually have a way 

                                                                                                    
155. Cf. Kroll et al., supra note 22, at 650. 
156. There are several different approaches to machine learning. For a short overview of the 

approaches, see Singh et al., supra note 23, at 4–9. For a thorough treatment, see DOMINGOS, 
supra note 140 (explaining the current, major approaches to machine learning). 



28  Harvard Journal of Law & Technology [Vol. 31 
 
of updating a set of parameters to improve performance with respect to 
the objective. Overall, models are developed by guessing parameters at 
random and testing the model’s performance according to the objective. 
In a well-defined problem, the random choices made initially will not 
matter and the learning process will “converge” to the same answer 
when run repeatedly. However, it can also be beneficial to incorporate 
randomness into a system’s rules to address the limits of a static sys-
tem.157 

Thus, not all algorithms are fixed and complete designs specified 
when a programmer chooses a precise set of steps. While the steps for 
training the model and for computing its predictions are precisely speci-
fied, the model’s parameters, which control what guidance it gives, are 
not specified directly by a programmer. Rather, they are optimized given 
a set of training data.158 In effect, the ultimate algorithm that controls the 
arm’s movement is discovered from data by the learning algorithm (us-
ing the objective to determine how effective any proffered solution is 
and using the learning algorithm to decide which possible solution to 
test next). But while the control algorithm is not developed by a human, 
the learning algorithm, the data, and any necessary guiding hints are. 
That is, the discovery process is controlled by methods, data, an objec-
tive, and often many implementation choices, each of which is con-
trolled by a programmer. And the resulting discovered rule is still an 
algorithm, a precise rule which can be applied repeatedly to achieve the 
same result. 

Even the environment of a program, such as the specific hardware 
configuration it is running on (e.g., the processor, the type of disk, the 
type of network interface) or how many other programs are running on 
that same hardware, matters for examining how that program operates. 
Suppose we have a program that measures how long it takes for some 
function to run. Let us say we wish to use this program to test how long 
an algorithm that sorts a large list of numbers takes to run. To test the 
performance of this sorting function, the program implementing the sort-
ing algorithm starts a timer before running the algorithm to sort a large 
list of numbers and then checks how much time has elapsed when the 
sort is complete. Now, suppose this timing program is run on two com-
puters, one on which it is the only program running and one on which 
there are one thousand other programs running, all of which are demand-
ing many resources and reading/writing the disk heavily. We would ex-

                                                                                                    
157. See Kroll et al., supra note 22, at 655 (noting if one “hard-coded” the movement of a 

robot like the Roomba vacuum, “an unusual furniture configuration” might cause the device to 
become trapped in a corner but “randomized motion allows it to escape these patterns and work 
more effectively”). 

158. See Singh et al., supra note 23, at 9 (“ML is data driven: (1) the data involved in the 
training/learning phases determines the model, and (2) the live data on which the model is ap-
plied determines the results/outcomes.”). 



No. 1] Trust But Verify 29 
 
pect the program to take much longer to complete its task in the second 
scenario, even though we would expect it to complete the task success-
fully and correctly in both. In short, the same program will behave in 
two very different ways depending on its environment. 

Another feature of algorithms and software that might surprise poli-
cymakers is that even if we can posit that both a precise specification 
and a complete system are available for review, it can nonetheless be 
impossible to analyze or test whether the system will yield a certain out-
come. Although a program is a precise description of its own behavior, it 
can nonetheless be impossible to build tools that will, in all cases, inter-
pret from a description of a disclosed program or even its full source 
code whether it has specific behaviors such as granting or denying loans 
to a specific class of consumers or managing emissions in a required 
way. That is not to say that determining such things is impossible, mere-
ly that it cannot be guaranteed. This fact runs contrary to the law’s 
mechanistic, Newtonian view of engineering, making it critical to policy 
discussions about governing algorithms. At a high level, recognizing 
these boundaries will clear cognitive dissonance between computer sci-
entists and non-computer scientists about the nature of the practices un-
der scrutiny. With such an understanding in hand, critics will be better 
placed to offer concerns and solutions that computer scientists appreciate 
as based in sound science. As a practical matter, this fact implies that an 
evaluation program (whether a kind of supervisory software or a process 
applied by humans) that tests whether other programs discriminate or 
yield some other prohibited result is not workable. To support this ar-
gument, we turn in Part IV to a core part of mathematical theory having 
to do with decidability and computer science known as the halting prob-
lem. 

IV. TO HALT OR NOT TO HALT 

The halting problem implies that some interesting problems are im-
possible to solve because of fundamental limits that challenge many as-
pects of computer science. These limits indicate that insofar as law and 
policy seeks a general transparency tool that analyzes all disclosed algo-
rithms for compliance with desired norms, such a tool will not be possi-
ble.159 This complicates the classic view of policymakers that disclosure 

                                                                                                    
159. When one discusses the idea of algorithmic transparency with computer scientists, there 

can be a palpable rejection of the idea. The law professor author of this paper encountered ver-
sions of this response numerous times. The core of the response was an almost mantra-like 
invocation: the idea that one cannot have algorithmic transparency of this sort because it will 
not provide transparency for any non-trivial semantic determination. As we will discuss, deep 
and important ideas from computer science limit what it is possible to guarantee that disclosures 
alone will reveal. This standard response was part of what stimulated one author’s interest in 
this project. 



30  Harvard Journal of Law & Technology [Vol. 31 
 
of a system’s internals will, of necessity, lead to a complete understand-
ing of its behavior. The halting problem does not mean algorithms can-
not be governed. Rather, understanding these limits enables 
policymakers to craft demands that technologists can understand and 
that are workable. 

A. Undecidability and the Halting Problem 

There are certain questions for which there is no algorithm. That is, 
“there are problems for which it is provably impossible to create an algo-
rithm that always gives a correct answer.”160 These problems are called 
“undecidable.” It is possible to prove that such problems exist because 
computer science at its core is a kind of “mathematical reasoning.”161 In 
that sense, the deepest ideas in computer science are not about pro-
gramming software or hardware design, but abstract concepts and issues 
that exist beyond software and hardware.162 As such, understanding 
what can and cannot be computed gives insight as to why demanding 
software code to test for hidden agendas or prohibited outcomes will not 
work in at least some cases, perhaps important ones. 

A more general framing of this problem, and a more powerful theo-
rem about what is undecidable, originates in work by Alan Turing and is 
known as the halting problem.163 Turing, often considered “the founder 
of theoretical computer science” was not writing software or testing for 
bugs as “no electronic computer had even been built yet.”164 When Tu-
ring discovered the proof in 1937, he was “interested in whether or not a 
given computer program would eventually produce an answer.”165 Spe-
cifically, he was interested in determining what was computable, or pos-
sible to generate with a computer. Because Turing’s work applies to 
what can be known about algorithms in general, it matters to those who 
wish to regulate them. 

Turing offered an idealized machine that can stand in for any “digi-
tal computer” as a way to answer whether there are numbers that are 
“nameable, definable, and not computable.”166 Turing’s machine, called 

                                                                                                    
160. CORMEN, supra note 137, at 210 (emphasis added). 
161. MACCORMICK, supra note 137, at 176. 
162. Id. at 4. 
163. Id. at 195. Turing began this avenue of his work asking whether a “given computer pro-

gram would eventually produce an answer.” Id. A related questions asks whether a given com-
puter program will “ever terminate — or, alternatively, will it go on computing forever, without 
producing an answer?” Id. Another way to ask this question is “whether a given computer pro-
gram will eventually terminate, or ‘halt,’ [and] is known as the Halting Problem. Turing’s great 
achievement was to prove that his variant of the Halting Problem is what computer scientists 
call ‘undecidable.’” Id. 

164. Id. 
165. Id. 
166. JAMES GLEICK, THE INFORMATION: A HISTORY, A THEORY, A FLOOD 207, 210 (2011). 



No. 1] Trust But Verify 31 
 
U, as in Universal, represents a simple yet powerful model of computing 
machines.167 In short, “[a] Turing machine can do everything that a real 
computer can do.”168 

By connecting the idea of “writing down by machine” and creating 
the Universal Machine, Turing gave a definition of computation and 
related it to the definition of algorithm used in computer science. In fact, 
a Turing machine “capture[s] all algorithms.”169 By extension, whatever 
applies to Turing machines and the algorithms they can run also applies 
to the real-world software and hardware at issue here. Because Turing 
machines completely encompass the functionality of real computers, 
anything a Turing machine cannot do is also a limitation on real com-
puters.170 That is, Turing machines define the limits of all real comput-
ers. Because there are abstract limits on what a Turing machine can do, 
these limits cannot be circumvented by building a bigger or more power-
ful computer or writing better software.171 The limit we care about here 
is called the halting problem. 

The halting problem captures the issue of decidability for software, 
answering the question of whether all problem statements which have 
answers also have the property that those answers can be computed algo-
rithmically. Specifically, the halting problem is an example of a well-
defined problem for which no algorithm can find the answer. The halting 
problem asks whether there is some method which analyzes a given pro-
gram running on a certain input and determines whether the input pro-
gram “halts” or “run[s] to completion”; Turing proved that no such 
method exists.172 As Turing explained, there is no general tool or evalua-
tor we can use to test a set of instructions (the “Standard Descrip-

                                                                                                    
167. Turing, supra note 1, at 241–43; accord MICHAEL SIPSER, INTRODUCTION TO THE 

THEORY OF COMPUTATION 202 (3d ed. 2013) (“The Turing machine U is interesting in its own 
right. It is an example of the universal Turing machine first proposed by Alan Turing in 1936. 
This machine is called universal because it capable of simulating any other Turing machine 
from the description of the machine.”). 

168. SIPSER, supra note 167, at 165. A Turing machine has “unlimited and unrestricted 
memory,” and “is a much more accurate model of a general purpose computer” than earlier 
models had been. Id. In particular, Turing machines are a more similar theoretical model to 
modern electronic computers than even equivalent earlier logical models. See id.; GLEICK, 
supra note 166, at 211 (“No matter how complex a digital computer may grow, its description 
can still be encoded on tape to be read by U. If a problem can be solved by any digital comput-
er — encoded in symbols and solved algorithmically — the universal machine can solve it as 
well.”). 

169. SIPSER, supra note 167, at 184; see also GLEICK, supra note 166, at 208 (Turing “de-
fined calculation as a mechanical procedure, an algorithm.” (emphasis omitted)). 

170. See SIPSER, supra note 167, at 165 (“[E]ven a Turing machine cannot solve certain 
problems. In a very real sense, these problems are beyond the theoretical limits of computa-
tion.”). 

171. See id. 
172. CORMEN, supra note 137, at 210. See SIPSER, supra note 167, at 216–17, for an outline 

of a proof of this result. 



32  Harvard Journal of Law & Technology [Vol. 31 
 
tion”173) on a Machine and see whether a specific outcome will occur.174 
Cormen illustrates the problem this way: 

In the halting problem, the input is a computer pro-
gram A and the input x to A. The goal is to determine 
whether program A, running on input x, ever halts. 
That is, does A with input x run to completion? 

Perhaps you’re thinking that you could write a pro-
gram — let’s call it program B — that reads in pro-
gram A, reads in x, and simulates A running with input 
x. That’s fine if A on input x actually does run to com-
pletion. What if it doesn’t? How would program B 
know when to declare that A will never halt? Couldn’t 
B check for A getting into some sort of infinite loop? 
The answer is that although you could write B to check 
for some cases in which A doesn’t halt, it is provably 
impossible to write program B so that it always halts 
and tells you correctly whether A on input x halts.175 

We can now apply Turing’s halting problem to the problems pro-
posed to be cured by the idea of algorithmic transparency. To do so, we 
can consider the sort of misbehavior we are concerned with, such as un-
lawful discrimination, as a kind of crash, and ask whether it will occur. 

B. The Halting Problem Applied to Algorithmic Transparency 

By thinking of prohibited outcomes such as unlawful discrimination 
as crashes, we can define such outcomes as problems any programmer 
wishes to avoid.176 That is, “[v]ery occasionally, even high-quality, well-
written software can do something it was not intended to do.”177 That 
unintended outcome can be thought of as a crash, whether it actually 
terminates the program or not. Therefore, if in fact we can detect when a 
program is discriminating, any program can be turned into one that 
crashes when it discriminates simply by running a routine that detects 
discrimination and then crashes if that routine finds discrimination. 

                                                                                                    
173. Turing, supra note 1, at 240 (defining “S.D [sic]” as “standard description”).  
174. See id. at 248. In Turing’s more general language, “[w]e can show further that there can 

be no machine E which, when supplied with the S.D [sic] of an arbitrary machine M, will de-
termine whether M ever prints a given symbol (0 say).” Id. (emphasis omitted). See SIPSER, 
supra note 167, at 201–09, for a detailed description of the theorem of undecidability and step-
by-step ideas that lead to the proof. 

175. CORMEN, supra note 137, at 210; accord SIPSER, supra note 167, at 216–17.  
176. See MACCORMICK, supra note 137, at 175. 
177. Id. 



No. 1] Trust But Verify 33 
 
Then, to ask if the original program discriminates, we would only have 
to ask whether the modified program crashes. 

One might guess that it would be possible to write an analytic tool 
that could find just these sorts of bugs. But that hope is a false dream. It 
is possible to write bug-free programs using advanced technical tools 
that prevent programmers from writing bugs in the first place.178 And 
software testing has improved such that today many bugs are caught, but 
it is still impossible to catch all bugs after a program is written.179 In all 
of these techniques, verification is with respect to a well-defined specifi-
cation. For problems that are not amenable to clear, complete specifica-
tion of a “correct” answer, such as the placement of advertisements, the 
ranking of web pages and social media posts, or the determination of 
whether a news story is a hoax, these techniques are difficult or impossi-
ble to apply. 

Indeed, for the question of whether a program has bugs that will 
cause it to crash, society desires the precision of the physicist, mathema-
tician, logician, and critic of the power of algorithms. However, one pre-
cise thing that can be shown is that we cannot show certain things about 
software programs. In the specific case of software, detecting a potential 
crash is an undecidable problem,180 meaning that “it is provably impos-
sible for any software-checking tool to detect all possible crashes in all 
programs.”181 In other words, an analysis that will always correctly iden-
tify the misbehavior we wish to limit simply by reviewing an algorithm’s 
source code and inputs does not exist. Yet when advocates of transpar-

                                                                                                    
178. See generally BENJAMIN C. PIERCE ET AL., PROGRAMMING LANGUAGE FOUNDATIONS 

(2017) (ebook) (providing an overview of one such technology); BENJAMIN C. PIERCE, TYPES 
AND PROGRAMMING LANGUAGES (2002). This is only one of the common approaches in soft-
ware verification, the area of computer science concerned with the development of bug-free 
software. For an overview of the area and how it fits into the practice of software engineering, 
see CARLO GHEZZI, MEHDI JAZAYERI & DINO MANDRIOLI, FUNDAMENTALS OF SOFTWARE 
ENGINEERING 269–73 (2d ed. 2002). Another approach is to design the program so that it is 
possible to test exhaustively all of the states it can ever take and to evaluate the desired property 
in each of these states, rejecting the program as buggy if the desired property is ever untrue. 
This technique is known as “model checking.” A detailed overview of this technique can be 
found in EDMUND M. CLARKE, JR., ORNA GRUMBERG & DORON A. PELED, MODEL CHECKING 
(1999). 

179. See MACCORMICK, supra note 137, at 175 (“[W]ill the automated software-checking 
tools ever . . . [be able to] detect all potential problems in all computer programs? This would 
certainly be nice, since it would eliminate the possibility of software crashes . . . . The remarka-
ble thing . . . is that this software nirvana will never be attained.”); SIPSER, supra note 167, at 
201 (“The general problem of software verification is not solvable by computer.”). However, 
there are approaches to building software such that it has no bugs in the first place. While it is 
provably impossible to detect all bugs in an existing program, it is demonstrably possible to 
build programs that have no bugs at all. 

180. See MACCORMICK, supra note 137, at 195–96 (“We proved the undecidability of the 
Crashing Problem, but you can use essentially the same technique to prove the halting problem 
is also undecidable. And, as you might guess, there are many other problems in computer sci-
ence that are undecidable.”). 

181. Id. at 175–76.  



34  Harvard Journal of Law & Technology [Vol. 31 
 
ency demand disclosure, so that someone can “look under the hood” of 
an algorithm, they assume that such disclosures will of necessity always 
make plain the misbehavior of interest. As our analysis shows, there is 
no standard of review that is guaranteed to accomplish this for all dis-
closed programs. 

Put more simply, if the goal or dream is to test, for example, an 
online ad network, and see whether a specific outcome — like race or 
gender discrimination — will occur, there is no analysis that will always 
determine that. At this point, it might seem that the author of a piece of 
software could say that any outcome is unintended, and they could not 
have done anything to predict that outcome. That is not so. 

In the Cormen example, B is an analysis program that simulates in-
put program A on its input x. If A halts, B can just report that. But if A 
does not halt, B does not know when to declare that A is stuck and will 
never halt, or whether it is making progress towards an answer, but 
slowly. B is not necessarily hopeless, but there is always some input pair 
(A, x) about which B will be confused. That is, the system for represent-
ing programs and describing their behavior is rich enough to provide a 
representation that is always inscrutable in this particular way. Turing’s 
theorem says that such a program-input pair exists. And that is a very 
different proposition from the theorem saying that no analysis can be 
done. Rather, the point is just that any analysis will not work in general. 
That is, any sufficiently complicated analysis182 will be wrong (or una-
ble to reach a conclusion) at least some of the time. Thus, as Cormen 
puts it, as a general matter we cannot create a program “that determines 
whether another program meets its specification.”183 

Computer science has met this reality by looking for weaker tools 
that are still useful. Although we cannot compute certain things, we can 
estimate those things in a way that will be wrong some of the time. In 
particular, we can limit the failures of analysis methods in two ways. 
First, we can demand that the analysis be “complete,” meaning that the 
analysis will detect all cases of a particular misbehavior. Because the 
analysis must be wrong some of the time, any complete analysis of an 
undecidable problem will have “false positives,” or cases where it re-
ports misbehavior where there is none. False positives can cause users of 
such a tool to become frustrated with it, so minimizing the number of 
false positives is of paramount importance when building such unsound 

                                                                                                    
182. Observe that “any sufficiently complicated analysis” might include a combination of 

analytic approaches, such that the switching to a different analysis if one’s preferred standard 
cannot reach a conclusion does not sidestep this fundamental problem. 

183. CORMEN, supra note 137, at 210. A related undecidable problem comes from Rice’s 
theorem, which states that “determining any property of the languages recognized by Turing 
machines is undecidable.” SIPSER, supra note 167, at 219. For Rice’s paper, see H. G. Rice, 
Classes of Recursively Enumerable Sets and Their Decision Problems, 74 TRANSACTIONS AM. 
MATHEMATICAL SOC’Y 358 (1953).  



No. 1] Trust But Verify 35 
 
analyses. Second, we can demand the property of “soundness,” which 
says that any reported misbehavior truly will be misbehavior. Sound 
undecidable analyses methods will, of necessity, miss some cases of 
misbehavior. No undecidable problem has an analysis that is both sound 
and complete; however, many sound and complete analysis methods 
may exist for problems which are computable.184 It is therefore im-
portant to understand whether a property of policy interest is computable 
since it will affect whether that property can be established based on the 
disclosure of software source code. 

Put differently, despite the halting problem and issues of undecida-
bility, all is not lost. It is possible to write programs (and their specifica-
tions) in sufficiently restricted languages that it is possible to prove that 
such programs meet their specifications. That is, although we cannot 
guarantee that we can always analyze programs for correctness, we can 
guarantee that properly designed programs are correct. This supports 
arguments for capturing important values in software at the point of de-
sign and construction. In short, computer science has found ways to con-
trol for the effect of the limits we have described both in theory and in 
applications. The next section draws on the stable of techniques with 
which computer scientists address these challenges to see what policy 
can learn from those methods and how those solutions can address the 
regulatory issues critics have raised. 

V. PRACTICAL SOLUTIONS FROM COMPUTER SCIENCE 

Returning to the idea of software misbehavior as a crash, that is, a 
result that we do not want, we can use computer science methods to mit-
igate such outcomes. On the one hand, one might ask for a guarantee 
that certain software was built to meet a specific standard and to have a 
way to verify that promise. As one of the authors has argued, one can 
keep that promise if one starts with the goal of building programs that 
can be analyzed for the particular property of interest.185 That is, one 
must build software with an eye to what must be analyzed, and by 

                                                                                                    
184. For example, it is undecidable in general to determine if a program has the security 

property of memory safety, which says that it will never make memory accesses beyond those 
which are intended, even when presented with adversarial inputs. However, programs written in 
restricted languages or modified in particular ways can be easily analyzed for memory safety. 
See Stephen McCamant & Greg Morrisett, Evaluating SFI for a CISC Architecture, 15 
USENIX SEC. SYMP. 209 (2006) (describing a method for modifying a program to make it 
amenable to memory safety analysis). Google Chrome uses this technology to enable security 
analysis of programs efficiently enough to allow the execution of unvetted programs over the 
internet. See Bennet Yee et al., Native client: A Sandbox for Portable, Untrusted x86 Native 
Code, 30 IEEE SYMP. ON SEC. & PRIVACY 79 (2009). 

185. See Kroll et al., supra note 22, at 652–53 (explaining that software design principles al-
low programs to satisfy guarantees convincingly, sidestepping the analytical difficulties created 
by the halting problem). 



36  Harvard Journal of Law & Technology [Vol. 31 
 
whom, because it may be impossible, difficult, or unconvincing to show 
those things otherwise. With a design that enables analysis, computer 
science can offer ways to give a complete guarantee that something is 
true about a piece of software under certain circumstances. The problem 
is that one cannot have such certainty for software that shows up from an 
unknown source, such as malware or software disclosed under a trans-
parency regime. In addition, although one cannot discover 100% of bugs 
in existing software, one can write software that provably meets a speci-
fication and is therefore provably faithful to a stated goal. Further, one 
may be able to achieve high confidence outcomes for properties that are 
difficult or expensive to specify — such as the high availability or relia-
bility guarantees software companies now offer in some areas.186 Either 
of these options should work to address many concerns about software, 
and we argue these goals are the ones law and policy should pursue 
when appropriate. 

Nonetheless, these options may still not satisfy critics who worry 
that a computer system will be able to avoid using a specific, prohibited 
method such as using gender or race in a hiring decision — and so meet 
the high threshold for legal compliance — and yet still discriminate or 
otherwise generate unacceptable outcomes. Such critics may desire, and 
try, to audit software systems and the algorithms underlying them using 
social science methods after the systems are deployed to test whether 
these systems generate undesired outcomes.187 Although these methods 
have a history of uncovering discrimination or at least signs of disparate 
impact that require an explanation, reliance on these methods faces some 
difficulties when applied to computer systems. This section explains 
when and how certain testing methods can allow someone to test a given 
software and the limits — technical and practical — of those techniques. 

A. Testing and Evaluating Algorithms 

The practical issues computer scientists face in evaluating software 
and algorithms show the limits of transparency188 and that different it-
erations and applications of algorithms require different approaches to 
regulation. There are two common settings in which one tests software: 
white-box and black-box. In white-box settings, the analyst has access to 
the source code. That may seem to be the dream for some transparency 
advocates, but that approach still has limits. Black-box settings, in which 
the analyst is restricted to only see the inputs and outputs of the system 
but not its internal operation, pose more problems. Some limitations ap-
                                                                                                    

186. Cf. CORMEN, supra note 137, at 197 (“[U]ndecidability has limited practical effects: it 
turns out that we can often do a good job of solving undecidable problems most of the time.”). 

187. See Sandvig et al., supra note 20, at 5–6. 
188. This discussion is indebted to and draws on Kroll et al.’s paper. Kroll et al., supra note 

22. In addition, we offer thanks to Ariel Feldman, for his generosity in exploring these issues. 



No. 1] Trust But Verify 37 
 
ply in both settings. In either setting, there are two categories of analy-
sis: static analysis, which examines the program’s structure or code 
without actually running it; and dynamic analysis, which runs the pro-
gram and observes its behavior on certain inputs. 

Dynamic analysis is only as good as the number of input-output 
pairs that are available to be observed or tested.189 Once one considers 
that many of the algorithms of concern can operate across a massive 
number of inputs, it becomes apparent that one can only test a (perhaps 
insignificantly) small subset of those inputs.190 And the inputs and out-
puts available for review or considered by such testing may or may not 
match the set of inputs and outputs that matter for policy analysis. 

1. White-Box Testing 

White-box testing is commonly done during the development of 
software systems. Kroll et al. describe the ways one may test a program 
in a white-box setting: 

Computer scientists evaluate programs using two test-
ing methodologies: (1) static methods, which look at 
the code without running the program; and (2) dynam-
ic methods, which run the program and assess the out-
puts for particular inputs or the state of the program as 
it is running. Dynamic methods can be divided into (a) 
observational methods in which an analyst can see 
how the program runs in the field with its natural in-
puts; and (b) testing methods, which are more power-
ful, where an analyst chooses inputs and submits them 
to the program.191 

Although powerful, these testing and analysis methods do not solve 
all the issues around algorithmic transparency. Static methods are not 
perfect. Experts can easily miss simple problems hidden in complicated 
code, and there is a theoretical limit on all program analysis, both static 
and dynamic, that the halting problem implies: one cannot always pre-
dict whether a certain outcome will occur or whether a program has a 
certain type of bug.192 Since nearly any interesting static analysis193 is 

                                                                                                    
189. See id. at 650. 
190. See id. 
191. Id. at 646–47 (citation omitted). 
192. See id. at 650. 
193. Roughly speaking, Rice’s theorem defines non-trivial properties of programs as proper-

ties that are true of some programs but not others. For example, the property “this program 
outputs 0 regardless of its input” is a non-trivial property. It is easy to see that properties of 
interest to public policy will always be non-trivial. 



38  Harvard Journal of Law & Technology [Vol. 31 
 
not computable, most static analysis used in practice is either unsound or 
incomplete, as described above. 

In addition, while white-box testing is more powerful than black-
box testing (since any black-box test can also be run in a white-box set-
ting), it may not be obvious which input-output pairs will provide the 
most information to a dynamic analysis. Software is discrete — it can 
exhibit wildly different outputs or behaviors for different inputs, and can 
even carve out exceptions that apply only for specific inputs. So, testing 
what happens for an input x tells you essentially nothing about what 
happens for input y — it might be completely, radically different. For 
this reason, it is generally necessary and considered to be good practice 
when developing software to limit the scope of what inputs a program 
will allow, if only to make that program more easily testable (but also to 
make it more robust and secure).194 

However, by combining simple properties determined by static 
analysis, it may be possible to establish ranges or classes of inputs for 
which output behavior can be generalized. In this way, transparency in 
the form of source code disclosure can prove useful to an analyst. How-
ever, transparency is often impossible or undesirable in practice. With-
out such additional knowledge, the analyst will have to test all possible 
inputs, which is rarely feasible for programs of interest.195 In addition, 
even analysis using sophisticated automated systems, such as those we 
wish to interrogate, will run into the limits of software bug testing.196 
These problems increase with black-box testing. 

2. Black-Box Testing 

As Kroll et al. explain, black-box testing poses large challenges as a 
basis for analyzing software systems. To start, there are a “finite number 
of inputs that can be tested or outputs that can be observed. This is im-
portant because decision policies tend to have many more possible in-
puts than a dynamic analysis can observe or test.”197 In other words, 
“Dynamic methods, including structured auditing of possible inputs, can 
explore only a small subset of those potential inputs. Therefore, no 
amount of dynamic testing can make an observer certain that he or she 
knows what the computer would do in some other situation that has yet 
to be tested.198 Even if one combined static and dynamic testing meth-
                                                                                                    

194. A common aphorism in system design is to “be conservative in what you do, be liberal 
in what you accept from others.” INFO. SCI. INST., TRANSMISSION CONTROL PROTOCOL 13 (Jon 
Postel ed., Jan. 1981). Sometimes called the Robustness Principle, this saying is often attributed 
to Jon Postel as “Postel’s Law.” 

195. Still, this approach is sometimes done in the form of “model checking.” See Kroll et al., 
supra note 22, at 664 n.102. 

196. See id. at 650. 
197. Id. 
198. Id. (footnote omitted). 



No. 1] Trust But Verify 39 
 
ods, not every algorithm will be able to be fully analyzed.199 As Kroll et 
al. note, if an algorithm was not “designed with future evaluation and 
accountability in mind,” no amount of software testing — even aided by 
total transparency — will always work to elucidate any particular ques-
tion.200 To combat the problems and limits of transparency and black-
box testing, Kroll et al. offer a different solution, but it, too, has limits. 

3. A Third Way: Ex-Post Analysis and Oversight 

In simple terms, one goal of those in favor of algorithmic transpar-
ency or regulatory agencies who need to govern industries that use algo-
rithms is to review a software-driven action after the fact of the action. 
That goal runs into the problems of transparency and software testing, as 
well as the problem of determining whether the action originated from a 
specific piece of software. There are many options to meet those chal-
lenges. One option is full transparency. A computer is, after all, a precise 
machine, and with a full understanding of its construction and operating 
state, we can reproduce its actions. Full transparency, including trans-
parency of a program’s operating environment, can yield complete ex-
planations for a system’s behavior (or at least be able to reliably 
reproduce that behavior simply by running the disclosed system again). 
But such complete transparency is rarely possible or desirable.201 Often 
such systems may be subject to trade secret or other concerns that run 
counter to full transparency. And here we run into the limits discussed in 
Part III, supra, for full transparency supporting reproducibility will in 
many cases require disclosing significant detail about a program’s oper-
ating environment, such as the full contents of databases with which a 
program interacts and information about other programs running on the 
same computer.202 Again, such detail is rarely desirable, or even feasi-
ble, to disclose. But we may not need such detail to achieve the out-
comes full transparency advocates seek. 

Insofar as testing an outcome after the fact is about technical ac-
countability and the ability to evaluate properties of the software being 
used, we do not need full transparency. Instead, as Kroll et al. point out, 
one can use a suite of technical tools including cryptographic commit-

                                                                                                    
199. Indeed, Rice’s Theorem holds that most interesting program analysis is undecidable. In-

formally, the theorem states that computing any non-trivial property of a program is undecida-
ble. See SIPSER, supra note 167, at 219. For a statement of the theorem, see id. at 241 (problem 
5.28). For an outline of the proof, see id. at 243 (solution 5.28). For Rice’s paper, see Rice, 
supra note 183. 

200. Kroll et al., supra note 22, at 659. 
201. Kroll et al. also note that transparency alone is often also insufficient to support govern-

ance inquiries, as systems can often exhibit behaviors or investigators may take interest in prop-
erties that are not meaningfully explained by any disclosures. See id. at 658–59. 

202. See supra Part III. 



40  Harvard Journal of Law & Technology [Vol. 31 
 
ments203 and zero-knowledge proofs204 to allow for an automated deci-
sion process to be used and at the same time “provide accountability” in 
the sense that a reviewer can check that even these undisclosed elements 
are duly recorded, or are consistent among decision subjects as appropri-
ate (e.g., all decisions are rendered from the same decision policy).205 
These techniques can allow for ex-post verification even when the entire 
system is not transparent, functioning as a kind of agent-less software 
escrow.206 Skeptical decision subjects, oversight entities, and concerned 
citizens can later verify that the software which was meant to be used 
and committed to — or, in the escrow analogy, deposited into escrow — 
was actually used for a decision.207 Further, they allow selective trans-
parency: a system may not need to be transparent to everyone, so long as 
members of the public are confident that the system’s decisions about 
them correspond to the version of the system reviewed by an analyst 
with the authority to compel transparency — and again, in the escrow 
analogy, a trusted agent could determine that these conditions were met 
without actually disclosing the escrowed software. Thus, oversight ex 
post can compel the release of protected materials under a suitable pro-
tective regime, analogous to a court ordering an escrow agent to turn 
over the escrowed information. 

For example, if one wants to review an action after the fact, one 
needs an audit log or audit trail, a time-stamped record that documents 
actions that affect an operation, procedure, or event.208 If one wants to 
know that the audit log corresponds to what actually happened, one can 
either re-run the entire system and compare the inputs and outputs or one 

                                                                                                    
203. See Kroll et al., supra note 22, at 665. As Kroll et al. explain, a cryptographic commit-

ment “is the digital equivalent of a sealed document held by a third party or in a safe place.” Id. 
Such commitments act like a “promise that binds the committer to a specific value for the object 
being committed to (i.e., the object inside the envelope) such that the object can later be re-
vealed and anyone can verify that the commitment corresponds to that digital object.” Id. 

204. Id. at 668. A zero-knowledge proof works as part of a cryptographic commitment. Id. It 
“allows a decisionmaker . . . to prove that the decision policy that was actually used (or the 
particular decision reached in a certain case) has a certain property, but without having to reveal 
either how that property is known or what the decision policy actually is.” Id. (emphasis omit-
ted). 

205. Id. at 662.  
206. This escrow is a simulated one, rather than a full deposit of a given system’s code such 

as Pasquale has called for. Pasquale, supra note 95, at 166. And we believe aids in achieving 
some of Pasquale’s goals without the problems of a full escrow.  

207. This approach thus helps address concerns Levine has raised about the tensions between 
a third-party verification system and trade secret protection. David Levine, Trade Secrets in Our 
Public Infrastructure, 59 FLA. L. REV. 135, 187 (2007).  

208. The reliance on such trails is known and used in the law. For example, the Food and 
Drug Administration requires the use of such trails in electronic record keeping. See 21 C.F.R. 
§ 11.10 (1997). In addition, Securities and Exchange Commission Rule 613 requires a “com-
prehensive consolidated audit trail” that “allows regulators to efficiently and accurately track all 
activity in . . . securities through the U.S. markets.” SEC Rule 613, 17 C.F.R. Parts 242 (Octo-
ber 1, 2012), https://www.sec.gov/rules/final/2012/34-67457.pdf [https://perma.cc/ 
8U78-ZB44]. 



No. 1] Trust But Verify 41 
 
can use these cryptographic methods. Even a passive observer who is a 
member of the public (and not just privileged regulators with the power 
to compel disclosure of all or parts of the system) can determine that the 
audit log is correct if it is created properly at the time the decision is 
made. Further, with sufficient evidence, an observer will be able to de-
termine that the actions recorded in the audit log correspond to the sys-
tem disclosed to a regulator. These methods can also show an outsider 
that the audit log corresponds to a process with certain desirable proper-
ties, e.g., showing that the same decision policy was applied in all cases. 

B. Dynamic Systems and the Limits of Ex-Post Testing 

Although the above techniques hold promise for many areas of con-
cern, they do not cover all problems that might undermine public trust in 
computer systems. Dynamic systems that change over time pose two 
problems for analysis based on the creation of audit logs. First, if a sys-
tem changes over time, it is necessary to determine which version was in 
effect for any decision of interest. If such systems are created with the 
above requirements for the creation of reviewable evidence in mind, 
whatever analysis is possible may aid in determining whether, when, and 
how things changed or could be used to isolate the effects of changes. 
But how well these approaches could aid such analysis remains an open 
research area. Second, dynamic systems already in place, especially 
highly dynamic systems, that are not designed for evaluation pose per-
haps a larger problem, as it is not clear the extent to which even weaker 
methods such as auditing provide meaningful information about their 
operation. 

The systems that cause much concern — those that govern “search 
engine rankings, spam filters, intrusion detection systems, . . . website 
ads, . . . [and which] social media posts to display to users”209 — that is, 
software that uses certain types of machine learning or is modified fre-
quently by its operators to respond and adapt to dynamic inputs and user 
behavior, are not addressed well by the solutions presented in §§ V.A.1–
3, supra. Many systems change often, either because of regular changes 
by designers or because they use automated processes such as online 
machine learning models which “can update their . . . predictions after 
each decision, incorporating each new observation as part of their train-
ing data.”210 The approach of creating an audit log showing that every-
one is subject to the same decision policy is less useful when systems are 
dynamic and change over time because the system may (desirably) 
change between decisions. 

                                                                                                    
209. Kroll et al., supra note 22, at 659–60 (citations omitted). 
210. Id. at 660.  



42  Harvard Journal of Law & Technology [Vol. 31 
 

As a general matter, Kroll et al. call for a design-based approach, 
which necessarily addresses issues looking forward. While Kroll et al. 
specifically consider ex-post review and oversight, it is primarily as a 
mechanism for updating policies for future decisions or redressing defi-
ciencies in past decisions. Specifically, Kroll et al.’s call to use commit-
ments requires that a single policy to be decided on and published in 
advance of making any decisions. These methods, at least as described, 
do not directly apply to situations where the decision policy changes 
often. Instead, these methods must be adapted to address the idea that 
the decision policy changes over time, as we discuss below in Section 
VI.3, infra. 

Algorithms and the software systems that bring them to the real 
world vary, and regulatory approaches to controlling their power must 
be shaped by who uses them, how they are used, and for what purpose 
they are fielded. As such, we next look at the sort of systems and con-
texts where the approaches offered by Kroll et al. fit well and then turn 
to the open questions of systems already in place or that may be less 
amenable to these approaches. 

VI. A TAXONOMY OF POTENTIAL SOLUTIONS 

Given that software-based decision-making appears to be here to 
stay and that there are limits to traditional transparency solutions for 
such decision-making, this section sets out a taxonomy of when certain 
approaches for accountable algorithms work well from both a technical 
and legal standpoint. The nature of the appropriate mechanism for tech-
nical accountability will depend on the nature of the software system at 
issue. Whether stringent measures guaranteeing technical accountability 
are needed may turn on whether the use of such systems is regulated. In 
some cases, robust technical accountability will be a requirement; in 
others, building technical accountability into software systems will be a 
best practice, at least under current policy.211 We begin this Part by 
looking at public sector decision-making and explain why technical ac-
countability is necessary as a matter of due process. We then turn to pri-
vate sector, regulated industries which also require technical 
accountability. Next, we examine unregulated industries and offer best 
practices for technical accountability. In addition, we offer a possible 
statutory change — the passage of law to encourage and protect whistle-
blowers who know of prohibited practices — to aid in policing the use 
of software in decision-making. 

                                                                                                    
211. Cf. Citron, supra note 6, at 1309. 



No. 1] Trust But Verify 43 
 

A. Public Systems 

We start with the easier case, public systems. As described, society 
generally needs and wants accountable public systems, and by extension 
society needs some ability to verify that certain systems operate in a cer-
tain way. Recall that a large barrier to technical accountability occurs 
when a system is built without an eye from the start to what evidence is 
necessary to review its actions and hold it to account. One proffered so-
lution is that when the government chooses to use or purchase software, 
it must use software that meets the standards set by the government, and 
the standards should include full transparency.212 But as we have argued, 
this approach simultaneously demands too much disclosure without as-
surance that these disclosures in fact cover what is needed.213 

We offer instead that when the state is using software for sensitive 
decision-making that raises due process concerns or where the integrity 
of the state’s process may be questioned (e.g., when using voting ma-
chines), the state must use software that allows for the evaluation of rel-
evant guarantees214 and thus open the door to political accountability.215 
The state may build such software in-house or buy it, but the require-
ment applies in both cases. The government, especially at the state or 
local level, may not be able to build the software it needs. Yet when us-
ing outside vendors to provide the software or software-based analysis, 
the government can and should, set requirements that promote technical 
accountability. Specifically, the contract can require that the creation of 
relevant evidence be a property of the system. That is, the evidence 
should explain both the goals of the system and the fact that it meets 
those goals, and should be evident to a curious and competent observ-
er.216 

Given that the government already vets software for security and 
privacy issues among other criteria, demanding the creation of certain 
types of evidence is not peculiar. Private sector companies build soft-
ware with similar requirements for both internal use and for sale to cus-
tomers. In addition, enterprise software providers often create custom 
software for clients. The government is a large, albeit somewhat special, 
customer. It is nonetheless a customer that can list its needs for the mar-

                                                                                                    
212. See id. at 1308 (arguing that source code should be released to the public because open-

ing source code “would reveal how a system works”). 
213. See, e.g., Dwyer, supra note 84 (noting a New York legislator’s call for software trans-

parency). 
214. See Citron, supra note 6, at 1310. 
215. Id. at 1297 (“Encoded rules that change established policy cannot be understood by af-

fected individuals or reviewed by more democratically accountable superiors.”). 
216. Citron has argued that agencies using software “should be required to test a system’s 

software.” Id. at 1310. We seek to add to that insight ways to meet that requirement, noting that 
evidence may be produced directly via software or it may come from process controls outside 
automated processing. 



44  Harvard Journal of Law & Technology [Vol. 31 
 
ket to meet.217 Indeed, at least one agency, the Food and Drug Admin-
istration, sets out technical requirements by requiring those who “create, 
modify, maintain, or transmit electronic records shall employ procedures 
and controls designed to ensure the authenticity, integrity, and, when 
appropriate, the confidentiality of electronic records, and to ensure that 
the signer cannot readily repudiate the signed record as not genuine.”218 
The FDA also specifies that audit trails be a part of “such procedures 
and controls.”219 Our argument is that technical accountability via Kroll 
et al.’s approach enhances such requirements, by helping to ensure that 
the audit trails have not been tampered with or faked and tying the evi-
dence in them to the actual decisions made. Those assurances help to 
fulfill Mashaw’s three demands for bureaucratic justice. 

Thus, we argue the state must still adhere to Mashaw’s three points, 
as described by Schwartz: making accurate and cost-efficient judgments, 
while giving “attention to the dignity of participants.”220 

A modification of the demands of dignity is, however, needed. Alt-
hough the subject of such a process may not have the literal ability to 
know or understand what reasons are behind a decision,221 when a sensi-
tive decision is being made — or as Mashaw, Schwartz, and Citron have 
stated in different ways, when the state is making decisions that raise 
due process concerns — the state must use software that furnishes rele-
vant evidence to support evaluation and hence allow for technical ac-
countability. In general, this requirement assures that the subject of any 
such processes can determine that the rules and procedures have been 
followed. Thus, even if a subject cannot know or fully understand the 
software and data behind a process, she can know and understand the 
rules and procedures were followed in a way that protects her dignity as 
Mashaw has developed that idea. 

Examining an application of this approach further illustrates its ben-
efits. At the general level, software firms will have a requirement that 
they can build — furnish the evidence necessary to enable oversight en-
tities (and ultimately end users, decision subjects, and passive observers) 
to review the correct operation of the system as a whole. Insofar as the 
government is the one claiming that a process uses certain methods, 

                                                                                                    
217. See id. (“Federal procurement regulations could require contracts to specify that deci-

sion systems pass testing suites before states can accept systems from vendors.”). 
218. 21 C.F.R. § 11.10. 
219. Id. (“Such procedures and controls shall include the following: . . . Use of secure, com-

puter-generated, time-stamped audit trails to independently record the date and time of operator 
entries and actions that create, modify, or delete electronic records. Record changes shall not 
obscure previously recorded information.”). The code also makes sure that the records are kept 
so that agency review is possible. See id. (“[A]udit trail documentation shall be retained for a 
period at least as long as that required for the subject electronic records and shall be available 
for agency review and copying.”). 

220. Schwartz, supra note 33, at 1348. 
221. See id. at 1349. 



No. 1] Trust But Verify 45 
 
meets certain legal requirements, etc., the government can try to offer 
specifications that a vendor can implement. Government programs that 
Schwartz and Citron critiqued or that Kroll et al. offer as good cases for 
requiring technical accountability have set parameters about what factors 
they can and cannot consider and about the methods they can use to 
make a decision. When an agency is deciding who should receive certain 
welfare benefits, whether someone should be on a no-fly list, who 
should be identified as owing child support,222 who should be granted a 
visa, whom to audit for tax compliance, whom to search for security 
checks at airports, and so on, it can set out what criteria were expected to 
be used and must be able to show that in fact it used those criteria, 
whether or not software was part of the decision-making. 

Of course, many decisions in this area involve the discretion of 
someone in an agency, but that does not change the need for having ro-
bust evidence throughout the decision process.223 Insofar as the parame-
ters allow for little discretion, when they are set out and applied via 
software with audit-logs and the sort of technical accountability Kroll et 
al. describe, society can have better assurance that the decision-maker 
followed the parameters. Even if the decision-maker has discretion, if 
software was used to process data under certain criteria and upon which 
a decision was made, the decision-maker can show that the stages up to 
her discretionary decision adhered to required criteria, and thus meet the 
demands of due process. Further, the decision-maker can record in an 
audit log what information was present at the stage where discretion was 
applied, and any details about how and why discretion was applied. Lat-
er, this information can be used to adjudicate any dispute about the ap-
propriate application of discretion in a particular case. 

B. Private Systems 

Although due process concerns explain why we would require the 
creation of robust trails of evidence for software-driven decision pro-
cesses in government, whether the same is true for private sector uses 
turns on the nature of the private activity at issue. Private sector actors 
may want to offer evidence of the correctness of their decision processes 
as matter of trust, but whether a given actor or area of industry will be 
required by law to do so varies depending on the actor or industry. 

Whether the creation of such evidence is required for private sector 
use of software turns on a few issues. If the private sector industry in 
question is regulated, such as the auto or pharmaceutical industry, evi-
                                                                                                    

222. Citron has identified these as examples of automated decision-making systems that “of-
fend basic norms of due process by failing to provide both notice of the basis of their decisions 
and the means to review them.” Citron, supra note 6, at 1256–57. 

223. See supra notes 152–153, and accompanying text (noting difference between exact rules 
and demands of justice for administrative law). 



46  Harvard Journal of Law & Technology [Vol. 31 
 
dence of correctness can naturally become a requirement. If the sector in 
question is not regulated, it would seem that building software to pro-
duce the evidence necessary to facilitate technical accountability is not 
required, but it is certainly a useful best practice and may be a de facto 
requirement under current policy. Given that the Federal Trade Commis-
sion or other consumer protection agencies may have questions about 
how a process worked or the truthfulness of a claim about the quality of 
an offering, we argue that any company should consider their require-
ments for demonstrating the correctness of their automated decision-
making as a best practice, since it will enable trust in their products and 
services. In addition, we offer that such an approach can allow commu-
nity feedback and encourage the identification of unexpected errors in 
ways that can help companies, much as bug testing challenges currently 
help discover problems in existing software. Last, we offer that whistle-
blower protection may be useful to aid in revealing whether a company 
is intentionally and overtly using prohibited discriminatory methods 
such as criteria based on race or gender in its software. 

1. Explicitly Regulated Industries 

The use of software by the private sector in regulated industries 
raises a tension between trade secrets and the need to know whether a 
system adheres to agreed-upon or required standards. The recent discov-
ery that Volkswagen used software so that its cars passed emissions tests 
but performed differently on the road is one example of a problem where 
evidence of correctness would have assisted compliance and enforce-
ment. An automaker could be required to provide the software to a gov-
ernment tester. The software could be required to be designed to provide 
evidence that supports analysis of its compliance with relevant stand-
ards. Using Kroll et al.’s ideas about zero-knowledge proofs, the au-
tomaker could keep proprietary methods secret, yet still be required to 
commit to using certain methods and to keep audit logs so that testers 
could verify that the system performed as promised in the field. 

A larger problem arises with networked systems, which turn almost 
anything into a PC or browser that can be updated often, if not daily. For 
example, Tesla announced it would address issues about the range its 
cars can travel on one battery charge by a software update. The update is 
designed to allow the range meter (which indicates how far one can go 
before needing to recharge the battery) to be more accurate by account-
ing for real-time driving conditions such as terrain and wind and by 
checking the distance from a charging station to let drivers know wheth-
er they are moving out of range of a station.224 And while that new func-

                                                                                                    
224. See Davies, supra note 12.  



No. 1] Trust But Verify 47 
 
tionality is important and useful, updates can radically change the behav-
ior, and therefore compliance, of a computer system. 

The key point is that Tesla and other automakers pursuing the next 
generation of auto making are treating the car more like a PC than any 
car made to date. Tesla alone is poised to issue updates every few 
months, has issued updates to improve 0-to-60 performance and that add 
“active safety features like automatic emergency braking, blind spot 
warning, and side collision warning” on models that have the hardware 
needed for the systems to work.225 Other updates claim to improve radio 
reception and create a guest or valet driver mode to limit the way the car 
can be driven and access to confidential information.226 The so-called 
auto-pilot mode was delivered as a software upgrade as well.227 Future 
Teslas, Volkswagens, and likely almost all other automakers’ cars will 
rely more and more on software for controlling most of the ways in 
which their cars operate, and on network connections to the world out-
side the vehicle for updates and real-time data. This point calls out a 
problem for any networked, software-driven device — what one could 
put under the idea of the Internet of Things228 — that requires some ap-
proval before being deployed, since software-driven features of such 
devices can change radically when the software is updated. 

Insofar as any item makes a claim about performance or adds a fea-
ture in a regulated context, that feature must be tested before being put 
into the stream of commerce and should be built to provide the requisite 
evidence of how will operate and did operate once in the field. If a com-
pany wants to update systems that normally undergo review by a regula-
tory agency such as NHTSA or FDA, it may not be allowed to push the 
update until the agency has analyzed the changes and verified the con-
tinued compliance of the updated device, subject to the original, ap-
proved parameters. This includes verifying that sufficient procedures are 
in place to allow the agencies to review the operation of devices in the 
field (if this is necessary). One ancillary benefit of carefully defining 
evidence for showing key compliance properties of a piece of software is 
that — unless an update alters the agreed upon original testing parame-
ters — companies can update rapidly as long as they can demonstrate 

                                                                                                    
225. Id. 
226. See id. 
227. See Neal E. Boudette, Tesla Makes Safety Upgrade in Autopilot, to Cars Already on the 

Road, N.Y. TIMES, Sept. 24, 2016, at B3, https://www.nytimes.com/2016/09/24/ 
business/tesla-upgrades-autopilot-in-cars-on-the-road.html (last accessed Dec. 19, 2017).  

228. The Internet of Things refers to the way in which low-power sensors and networked de-
vices together mean that almost any physical thing can gather information and be on the Inter-
net. See 2013: The Year of the Internet of Things, MIT TECH. REV. (Jan. 4, 2013), 
https://www.technologyreview.com/s/509546/2013-the-year-of-the-internet-of-things/ 
[https://perma.cc/NZ59-EZC4]. Perhaps now familiar examples are public transit cars and buses 
with sensors that let operators and riders know vehicles’ statuses, the spread of personal health 
monitors such as Fitbits, and smart home technology. See id. 



48  Harvard Journal of Law & Technology [Vol. 31 
 
that their update falls within those parameters. With guarantees from a 
company in place, an agency may be able to test and approve updates 
faster than it could where every product revision had to be reviewed de 
novo. Thus, updates could be pushed out more quickly, because over-
sight bodies will have the technical evidence showing whether the prod-
uct was still within the regulations, or has changed sufficiently to require 
a more robust period of testing and approval. 

2. Building Trust: Implicitly Regulated Industries or Activities 

Battery life for cell phones shows how the question of transparency 
shifts in unregulated sectors. Like a car battery range indicator, the 
charge indicator on a cell phone is based on an algorithm,229 rather than 
reporting a measurement determined in hardware. Like a car battery 
charge, the way one uses the device affects the length of the charge. As a 
general matter, we want to know whether the indicator is accurate within 
certain parameters, and we may want a way to check the truthfulness of 
the indicator as part of consumer protection. As with the Tesla example, 
if a company makes a claim about the length of time a charge lasts, the 
more third parties that can verify the claim, the better. Again, insofar as 
a system is somewhat unchanging and the public wishes to know wheth-
er the system adheres to certain methods and practices, Kroll et al.’s ap-
proach of requiring public commitments to the software used coupled 
with proofs that the software referenced by the commitment was in use 
in practice should work well, save for the fact that battery indicators 
likely change too often to justify the overhead of these techniques in 
practice. If a company wishes to update or enhance a feature that does 
not require government testing and approval before launch, and the 
company wishes later to argue that its logs and data indicate all was well 
with a system or operation under scrutiny, it will need to offer a way for 
third parties to verify that the logs are as they were when the issue arose, 
and have not been doctored. 

Thus, as software is developed and deployed, starting with the ques-
tion of what evidence should be created to afford evaluation of the be-
havior of that software to facilitate technical accountability for its 
outputs aids a company in two ways. First, the approach allows a com-
pany to address allegations that the software did not function in the ex-
pected way, because there will be evidence with which to rebut such 
claims in public (or simply to deter spurious claims in the first place). 
Second, should criticisms catch the attention of an agency like the FTC, 
or a class action suit be filed, companies will be in a better place to re-

                                                                                                    
229. See Wen-Yeau Chang, The State of Charge Estimating Methods for Battery: A Review, 

2013 ISRN APPLIED MATHEMATICS, at 1, https://www.hindawi.com/ 
journals/isrn/2013/953792/ [https://perma.cc/YM2Y-ZLHG]. 



No. 1] Trust But Verify 49 
 
spond to legitimate inquiries without having to stick their head in the 
technical sand.230 They will be able to claim that trade secret, complexi-
ty, technical infeasibility, or some combination of these issues means the 
government and society must simply defer to and trust the company that 
they are being honest and obeying rules. 

Although designing software that facilitates evaluation through the 
creation of evidence is a powerful solution to problems stemming from 
software-based decision-making, two issues pose a problem for this ap-
proach. We turn to those next. 

3. The Challenge of Dynamic Systems 

At this point we must turn to a problem that affects both public and 
private sector uses of software: highly dynamic systems, especially those 
relying on online machine learning techniques, may not be amenable to 
the evidentiary criteria for which we argue. As above, whether such sys-
tems should be allowed or in what way they may be used turns on 
whether the public or private sector is using such systems and the pur-
pose for which they are deployed. 

The baseline reasons for requiring that systems produce the neces-
sary evidence to enable the evaluation and analysis that supports tech-
nical accountability for public sector use of software mean that the 
government may not be allowed to use such dynamic systems for certain 
purposes.231 Regardless of whether the government builds or outsources 
the creation of the software in question, unless evaluations supported by 
technical accountability are possible and the software adequately ad-
dresses compliance requirements, due process, participation, and justice 
concerns indicate that such systems cannot be used.  

Some may argue that preventing the government from using the lat-
est and greatest techniques in machine learning means that government 

                                                                                                    
230. Cf. Deven R. Desai, Beyond Location: Data Security in the 21st Century, 56 COMM. 

ACM 34, 36 (2013). 
231. Even if one meets the criteria for technical accountability as we have described it, there 

are reasons that the government should not be allowed to use certain techniques when due pro-
cess and justice are at stake. For example, on November 16, 2017, a group of fifty-four leading 
AI researchers (including the computer scientist author of this paper) released an open letter to 
the Acting Secretary of Homeland Security arguing that a proposed procurement for a machine 
learning system that seeks to make “determinations through automation” as to whether an indi-
vidual seeking a visa for entry to the United States will be a “positively contributing member of 
society”, will “contribute to the national interests”, or “intends to commit” criminal or terrorist 
acts, is not viable because “no computational methods can provide reliable or objective assess-
ments of the traits that ICE seeks to measure. [And in] all likelihood, the proposed system 
would be inaccurate and biased.” Hal Abelson et al., Technology Experts Letter to DHS Oppos-
ing the Extreme Vetting Initiative, BRENNAN CENTER (Nov. 16, 2017), 
https://www.brennancenter.org/sites/default/files/Technology%20Experts%20Letter 
%20to%20DHS%20Opposing%20the%20Extreme%20Vetting%20Initiative%20-%2011. 
15.17.pdf [https://perma.cc/VTC7-EWFG]. 



50  Harvard Journal of Law & Technology [Vol. 31 
 
is hampered and will be unable to do its job well. That view is, of 
course, an overstatement. It also misses the point of Mashaw’s triumvi-
rate for government decision-making. Decisions must strive to be accu-
rate, to be cost-effective, and to give attention to the dignity of the 
subject, and although those three criteria may “compete with one anoth-
er, . . . bureaucratic justice becomes impossible without respect for all 
three of them.”232 Sometimes, ongoing modification of a rule is desirable 
and falls within the requirements of bureaucratic justice.  

Thinking about airlines and anti-terrorist safety measures shows the 
problem. Other than perpetrators, no one is in favor of hijacking or 
blowing up a plane, and a goal of national security efforts is to prevent 
such actions by perhaps detecting radicalization. New online machine 
learning techniques may be better than humans alone at detecting pat-
terns of radicalization that indicate someone may be considering violent 
or terrorist acts. Such a system might create or take as input from human 
analysts a list of suspect people, either for enhanced security review or 
to be banned from flying. On the one hand, the process must be cost-
effective. Given the billions of people who are online and who use social 
media, the vast number of posts, and the nuances of each language used 
in a post, having humans try to cull through and understand all of the 
posts would be an enormous task. Even if society had enough people to 
do that work, it is unlikely that they could be trained to pick up patterns, 
do so consistently, and do so fast enough that the pattern found is still 
the one at work the next day or week. In addition, the raw dollar cost of 
such manual review would be quite high. If we further desire to cross-
reference the paper trail with pubic online social media posts, facial 
recognition, and more, we see that the task is not a good one for humans, 
but is an excellent candidate for automation. In particular, such a task 
seems well suited for a machine learning system. But if such a list of 
suspected people is generated, and yet no one can explain how the list 
came to be, and indeed no “ground truth” exists for the criterion of the 
list (an unmeasurable risk), testing whether the list is accurate becomes 
an open question. Furthermore, if someone is on the list, believes that 
she should not be, and wants to challenge the choice, the lack of inter-
pretability from being denied the purchase of an airline ticket or the abil-
ity to board a flight undermines the dignity interest that completes 
Mashaw’s triumvirate. Thus, government should not be able to use a 
technique that does not meet the three criteria, and by extension, a tech-
nique that does not allow for technical accountability, evaluation, and 
redress to subjects of incorrect decisions. 

Although a system that created a dynamic rule for selecting passen-
gers would facially raise concerns about the dignity of screened passen-
gers, it could conceivably be constrained to update its rule in a way that 
                                                                                                    

232. Schwartz, supra note 33, at 1349.  



No. 1] Trust But Verify 51 
 
ensures desirable properties. For example, a system might guarantee that 
the chance of having to undergo more stringent security procedures was 
independent of certain protected statuses, such as age, gender, or ethnici-
ty. As long as updates to the rule do not violate this requirement and do 
not stray outside the envelope defined by a sufficient rulemaking, small 
updates to the rule to detect new patterns indicating risk might be allow-
able. Similarly, systems could be designed to support the legitimate ac-
tivities of law enforcement officers, making determinations more 
efficient and cost-effective within the context of existing, constrained 
bureaucratic processes. 

Private sector uses of such systems will run into problems insofar as 
they are regulated or need to show that they adhere to a certain set of 
rules or procedures. This is especially true of the many systems under 
scrutiny which are already built, in place, and working. Four areas — 
social networking, search, online news, and online advertising — have 
come under sustained criticism for several years and reveal the problem. 
We will not restate the claims, as they are varied and have differing 
amounts of accuracy and substance to their objections. For the purposes 
of this Article, we remark only that companies in any of these areas have 
been accused of misdeeds, and a key question in all the cases is whether 
a given system behaves in a certain way. This question highlights the 
problem with online machine learning techniques because those tech-
niques evolve the rule in effect for any given decision. That is, whether a 
company using dynamic systems will be able to work within the tech-
nical accountability and evaluation criteria for which we have called will 
depend on precisely how and when the decision rules are updated. 

As in the public-sector example, so long as decision rule updates 
can be shown not to change an acceptable rule into an unacceptable one, 
or to change a rule too fast for others to adapt to, rule changes may be 
acceptable and even desirable. For example, information providers such 
as search engines and social networks often change their ranking algo-
rithms to combat abuse by low-quality sites or posts that want to show 
up higher in the results.233 These changes benefit both users, who see 
better results, and legitimate site owners or posters, who need not worry 
that their place will be usurped by dint of others’ bad behavior. Howev-
er, large changes to the ranking algorithms invariably demote some le-
gitimate sites which were better suited to the rules prior to the changes. 
In search, because many websites use advertising as their primary reve-
nue source, large changes in traffic can have commensurate effects on 
sites’ bottom lines. Sites which are demoted in ranking updates suffer 
corresponding decreases in the number of visitors they see, and thus 

                                                                                                    
233. See, e.g., Google Algorithm Change History, MOZ, https://moz.com/google- 

algorithm-change [https://perma.cc/BJ3Y-P9U9] (displaying a database of major Google 
 algorithm changes). 



52  Harvard Journal of Law & Technology [Vol. 31 
 
generate less revenue for their owners. Website operators therefore often 
see large rule changes as arbitrary and capricious. For social networks, 
many users may believe their posts ought to be seen by all their friends 
and followers, and so changes which rank posts based on how interest-
ing they will be to readers can alter that expectation. Changes can raise 
questions about fake news or bias about which news or posts are pro-
moted. If, however, the changes by information providers happened in 
small steps over time or could be shown to limit the number of demoted 
sites or posts, or the severity of any demotion, rule changes would be 
more palatable and could be weighed against the surplus created by 
changing the rule. 

Until recently the need to assess such systems has not been urgent, 
but as they become more common, society is demanding some sort of 
ability to assess them. In addition, many of the systems at issue use ma-
chine learning. The term “machine learning” suffers from a problem 
similar to the term algorithm: there is an almost mystical or monolithic 
view of what the term means.234 Yet machine learning as a field employs 
many specific, non-mysterious algorithmic tools such as decision trees, 
rule learners, classification techniques, such as naïve Bayes or nearest-
neighbor classification, neural networks, and support vector machines235 
because “[i]n practice, . . . each of these algorithms is good for some 
things but not others.”236 As a general matter, one group of computer 
scientists has noted within machine learning “[s]ome . . . algorithms are 
more amenable to meaningful inspection and management than oth-
ers.”237 Decision trees, naïve Bayes classification, and rule learners were 
the most interpretable, kNN was in the middle, and neural networks and 
support vector machines were the least interpretable.238 But interpreta-
bility is not the only challenge or goal when using these approaches. 

A study looking at which method was best to use for medical predic-
tions explains that different approaches offer trade-offs because some 
“are very accurate, but unfortunately also relatively unintelligible” and 
others are intelligible but less accurate.239 Recent new techniques “are 
very accurate, but unfortunately also relatively unintelligible such as 
boosted trees, random forests, bagged trees, kernelized-SVMs, neural 
nets, deep neural nets, and ensembles of these methods.”240 That study 

                                                                                                    
234. See Bogost, supra note 3. 
235. See Singh et al., supra note 23, at 4. A full explanation of these techniques is beyond 

the scope of this paper. For a general background on these techniques and their limits, see 
DOMINGOS, supra note 140. 

236. DOMINGOS, supra note 140, at xvii. 
237. Singh et al., supra note 23, at 4. 
238. See id. 
239. Rich Caruana et al., Intelligible Models for HealthCare: Predicting Pneumonia Risk 

and Hospital 30-day Readmission, 21 PROC. ACM SIGKDD INT’L CONF. ON KNOWLEDGE 
DISCOVERY & DATA MINING 1721, 1722 (2015). 

240. Id.  



No. 1] Trust But Verify 53 
 
showed that one method — high-performance generalized additive mod-
els with pairwise interactions (“GA2M”) — allowed for high accuracy 
and intelligibility.241 The study was looking, however, at only 46 fea-
tures (in simpler terms, factors used to make the prediction),242 and so 
the suggested methods may not work in other areas of information pro-
vision such as search, online ad delivery, and online news where hun-
dreds if not thousands of features are used.243 In addition, even for the 
smaller feature set, the explanation does not tell why the decision rule 
was chosen or that it is the correct one; it only shows that the rule has 
high utility.244 As such, we offer generally that machine learning sys-
tems need not be inscrutable, but the context of their application such as 
the number of features used and what one is trying to do governs how 
intelligible and accurate a given machine learning technique will be.245 

Even if a system was not built from the start to facilitate technical 
accountability, there are ways to mitigate this fact. Any company using a 
given machine learning approach needs to understand how that system 
works so that the company can manage the system and see how it per-
forms in the field. This need can facilitate technical accountability in 
practice because analysis of a system’s behavior that must be created to 
support the requirements of the system’s creators and operators will of-
ten also help oversight processes. Beyond this, much technical work 
looks to make machine learning interpretable,246 or attempts to provide 
explanations of what an inscrutable model is doing and why.247 Such 
approaches aim to find ways to make simple models perform as well as 
complex ones, and to provide additional information along with the pre-
dictions of a complex machine learning model that either describes or 
justifies its predictions. Another area of research aims to solve the prob-
lem of “attributing the prediction of a deep network to its input fea-

                                                                                                    
241. See id. at 1730. 
242. Id. at 1722.  
243. See Burrell, supra note 85, at 9 (“With greater computational resources, and many tera-

bytes of data to mine . . . the number of possible features to include in a classifier rapidly grows 
way beyond what can be easily grasped by a reasoning human.”).  

244. See id. (noting that giving up on answering why an algorithm gave a result in favor of 
evaluating the outcomes as fair or desired is an option when facing opacity problems).  

245. Michael Veale has shown that public contractors and vendors are sensitive to the 
tradeoff between transparency and opacity. Veale, supra note 77. 

246. For a summary of the area, see Finale Doshi-Velez & Been Kim, Towards a Rigorous 
Science of Interpretable Machine Learning, ARXIV (Mar. 2, 2017), https://arxiv.org/ 
pdf/1702.08608.pdf [https://perma.cc/M576-9FJE] (laying out the field of machine learning 
interpretability and a framework for future research).  

247. See, e.g., Marco Tulio Ribeiro, Sameer Singh & Carlos Guestrin, “Why Should I Trust 
You?”: Explaining the Predictions of Any Classifier, 22 PROC. ACM SIGKDD INT’L CONF. ON 
KNOWLEDGE DISCOVERY & DATA MINING 1135, 1135 (2016) (describing Local Interpretable 
Model Explanations, a technique that purports to explain any model, no matter how complex, 
by considering its behavior for inputs similar to a test input). 



54  Harvard Journal of Law & Technology [Vol. 31 
 
tures,”248 meaning to assess the extent to which portions of the input 
affected the output. Researchers argue that if one can “understand the 
input-output behavior of the deep network, [that] gives us the ability to 
improve it. Such understandability is critical to all computer programs, 
including machine learning models.”249 

However, the usefulness of such technologies can be limited. After 
all, explanations can easily justify wrong answers or lend credence to 
uncertainty. Rather, understanding the nature of the problem that a soft-
ware system is trying to solve (and thereby what evidence is necessary to 
convince different stakeholders that the system is actually solving that 
problem) is a more promising approach. Further, it is this understanding 
that promotes consistency with social, political, and legal norms. Inter-
pretation or explanation of the behavior of a machine learning system 
can help the developers of such systems interrogate whether the systems 
are correctly reflecting the world in certain cases, but not without an 
understanding of what that reflection should look like. Regardless, con-
vincing those outside the creation of the system that it is operating cor-
rectly is necessary, and explanations do not provide the evidence 
required for this. And indeed, the utility of interpretability for facilitating 
understanding in legal and policy contexts has been questioned.250 

In addition, companies are constantly updating and building their 
software systems, and that provides the chance to build the creation of 
relevant evidence of operation into the software as it evolves. Even 
when that is not possible, insofar as a company may need to explain 
what its system does, it can make use of these explanation approaches, 
supplemented by evidence appropriate to the context of the system in 
question and the problem that system is trying to solve, to provide lim-
ited insight into the system’s operation. 

There is an additional reason companies should offer ways for third 
parties to test and understand a company’s software and its outputs. It 
may be that a dynamic system designed in the best of faith will yield an 
undesired result. If, however, a company finds ways for third parties to 
test its software and offers bounties for finding such outcomes251 rather 
                                                                                                    

248. Mukund Sundararajan, Ankur Taly & Qiqi Yan, Axiomatic Attribution for Deep Net-
works, 34 PROC. INT’L CONF. ON MACHINE LEARNING, at 1 (2017), http:// 
proceedings.mlr.press/v70/sundararajan17a/sundararajan17a.pdf [https://perma.cc/D6SD-
P7KA]. For an approach to examining the influence of inputs on outputs, see Anupam Datta, 
Shayak Sen & Yair Zick, Algorithmic Transparency via Quantitative Input Influence: Theory 
and Experiments with Learning Systems, 37 IEEE SYMP. ON SEC. & PRIVACY 598 (2016). 

249. Sundararajan et al., supra note 248, at 1 (emphasis added). 
250. See Lilian Edwards & Michael Veale, Slave to the Algorithm? Why a ‘Right to an Ex-

planation’ Is Probably Not the Remedy You Are Looking For, 16 DUKE L. & TECH. REV. 18 
(2017) (arguing that explanations do not yield the sort of understanding required by legal and 
policy processes). 

251. This is commonly done with software security bugs. These programs date to the mid-
1990s. See Netscape Announces ‘Netscape Bugs Bounty’ with Release of Netscape Navigator 
2.0 Beta, PR NEWSWIRE (Oct. 10, 1995), https://www.thefreelibrary.com/ 



No. 1] Trust But Verify 55 
 
than an antagonistic policing game of “Gotcha!,” in which critics cry 
foul in public, a more constructive system of helping improve the soft-
ware could emerge. For example, one popular image sharing site acci-
dentally classified photos of African Americans under the tag “gorillas” 
using an automated system intended to determine the contents of a pho-
tograph.252 A system of testing and bounties could help ferret out such 
problems before they become problematic product issues and negative 
news stories. 

Of course, even when a company offers evidence that a system is 
working well, skeptics may believe that the company designed its soft-
ware to have discriminatory or illegal outcomes in the hope that prob-
lems would be missed in review of the evidence or that, on being 
discovered, it could deny that intent. For that possibility we propose that 
a whistleblower and public interest right of action law may be needed. 

C. Legislative Changes to Improve Accountability 

Even with robust technical controls, some may still believe that 
companies using software-driven decision-making will have designed 
the software to cause negative, discriminatory, or unfair outcomes or to 
evade regulatory law while hoping that no one would know or that the 
perpetrators could deny that intent.253 A perhaps more likely problem 
would be software that was not designed to discriminate or, for example, 
misreport emissions, but testing and evaluation during development or 
after software is released shows such outcomes. A firm may try to ignore 
or hide such knowledge, but an employee may know of the problem and 
wish to report it. Thus, we offer that, in addition to technical measures, 
policy-based controls are appropriate. In particular, we propose recent 
changes in trade secrecy law to protect whistleblowers, protection from 
employers who retaliate against whistleblowers, and a new public inter-
est cause of action law would improve legal-political accountability.254 

                                                                                                    
NETSCAPE+ANNOUNCES+’NETSCAPE+BUGS+BOUNTY’+WITH+RELEASE+OF+NET
SCAPE...-a017551947 [https://perma.cc/3KFP-R8R4]; Casey Ellis, Bug Bounty Model Cele-
brates 21st Birthday!, BUGCROWD BLOG, (Oct. 20, 2016, 10:15:00 AM), 
https://blog.bugcrowd.com/bug-bounty-21st-birthday [https://perma.cc/QAW6-NFG4]. 

252. See, e.g., Alastair Barr, Google Mistakenly Tags Black People as ‘Gorillas,’ Showing 
Limits of Algorithms, WALL ST. J. (July 1, 2015, 3:40 PM), http://blogs.wsj.com/ 
digits/2015/07/01/google-mistakenly-tags-black-people-as-gorillas-showing-limits-of-
algorithms/ (last visited Dec. 19, 2017). 

253. See Barocas & Selbst, supra note 19, at 674.  
254. The ideas for this section came to one of the authors as he noticed a parallel to problems 

he had written about concerning the private military industry. See Deven R. Desai, Have Your 
Cake and Eat It Too, 39 UNIV. S.F. L. REV. 825, 861–64 (2005). While this Article was being 
written, Professor Peter Menell wrote about the problems with trade secret law, the public inter-
est, and the lack of whistleblower protection for whistleblowers who need to use trade secrets to 
alert authorities to wrong-doing. Peter S. Menell, Tailoring a Public Policy Exception to Trade 
Secret Protection, 105 CALIF. L. REV. 1 (2017). Professor Menell’s argument was adopted as 



56  Harvard Journal of Law & Technology [Vol. 31 
 
Taken together, enhanced whistleblower protection and enabling a pri-
vate right of action would help build a legal system to manage the prob-
lem of intentional, yet difficult to detect, discrimination or other illegal 
acts via software. 

Because software and data can be treated as trade secrets, trade se-
cret law clashes with the ability to know whether software is operating 
as it should and by extension trade secret law can interfere with legal-
political accountability,255 but that does not have to be so. Trade secret 
law began as, and is part of, commercial morality.256 Trade secret law 
has another guiding principle, protecting technological progress.257 By 
protecting any information, “including a formula, pattern, compilation, 
program, device, method, technique, or process,” as long as such infor-
mation creates economic value by not being public and the holder of the 
information takes reasonable steps to keep it secret,258 the Uniform 
Trade Secret Act (“UTSA”) addresses the “contemporary business envi-
ronment marked by high employee mobility and cybercrime.”259 The 
adoption of the UTSA in forty-seven states and the District of Columbia 
and the requirement that one take reasonable steps to protect a trade se-
cret, means that companies have embraced the use of Non-Disclosure 
Agreements (“NDA”) with employees and required that all trade secret 
material be returned when the employee leaves the company.260 But as 
Professor Menell puts it, “uncritical protection of all secret business in-
formation can conflict with effective law enforcement.”261 As stated dur-
ing the passage of the Sarbanes-Oxley Act of 2002 (“SOX”), “[w]ith an 
unprecedented portion of the American public investing in [publicly-
traded] companies and depending upon their honesty, . . . [the lack of 
whistleblower protection for private-sector whistleblowers did] not serve 
the public good.”262 Similarly, with an unprecedented portion of deci-

                                                                                                    
part of the Defend Trade Secrets Act of 2016. Id. at 62. As such, we are grateful for Professor 
Menell’s work and draw on it in the final version of this Article. In addition, we are indebted to 
Professor Sonia Katyal whose email to one of us and forthcoming paper on civil rights and 
algorithms alerted us to Professor Menell’s work. Sonia K. Katyal, Algorithmic Civil Rights, 
103 IOWA L. REV. (forthcoming 2017). This section adds to Professor Menell’s and now the 
law’s whistleblower protection by arguing for the public interest cause of action. 

255. See Menell, supra note 254, at 29 (“The routine use of blanket NDAs [key mechanisms 
in protecting trade secrets] by a broad swath of enterprises throughout the economy undermines 
society’s interest in reporting illegal activity.”). 

256. See, e.g., MELVIN F. JAGER, TRADE SECRETS LAW § 1:3 (2013) (noting commercial mo-
rality origins of trade secret law); Eastman Co. v. Reichenbach, 20 N.Y.S. 110, 116 (N.Y. Sup. 
Ct. 1892), aff’d sub nom. Eastman Kodak Co. v. Reighenbach, 29 N.Y.S. 1143 (N.Y. Gen. 
Term 1894). On the general history of these origins, see Menell, supra note 254, at 14–15. 

257. See Menell, supra note 254, at 14–15. 
258. UNIF. TRADE SECRETS ACT § 1(4) (NAT’L CONF. OF COMM’RS ON UNIF. STATE LAWS 

1985). 
259. Menell, supra note 254, at 18. 
260. See id. at 16–17. 
261. Id. at 18. 
262. 148 CONG. REC. S7418-01, S7420 (daily ed. July 26, 2002) (statement of Sen. Leahy). 



No. 1] Trust But Verify 57 
 
sion-making with due process and vital verification interests at stake 
being processed through software, protection for employees who blow 
the whistle on software companies who knowingly violate the law is 
vital. In other words, the government needs private actors to aid in law 
enforcement, and there is a long history of private citizens aiding in law 
enforcement by providing support to public prosecution and through 
“private enforcement and private evidence gathering.”263 

Whistleblowing plays a large part of such efforts,264 but if the perti-
nent information is a trade secret and the evidence is covered by an 
NDA and an agreement not to take trade secret documents, a potential 
whistleblower, and by extension the government, cannot investigate “il-
legal conduct, . . . [such as acts that] undermin[e] civil rights, public 
health, environmental protection, and compliance with government con-
tracts.”265 Laws such as SOX and the Dodd-Frank Wall Street Reform 
and Consumer Protection Act (Dodd-Frank) provide whistleblower pro-
tection to aid in detecting illegal activity in the financial sector.266 The 
IRS also has a whistleblower program and offers incentives to whistle-
blowers.267 The passage of the Environmental Protection Act led to fol-
low up acts to protect whistleblowers who reported violations related to 
safe drinking water, toxic substances, and clean air.268 In addition, the 
Defend Trade Secrets Act of 2016 (“DTSA”) has a whistleblower provi-
sion regarding the use of trade secrets modeled on Professor Menell’s 
approach.269 

The approach addresses whistleblower protection well, but we offer 
that additional protection from employer retaliation and a new private 
right of action would improve the system. Under the DTSA, a potential 
whistleblower has immunity so long as she makes trade secret disclo-
sures in confidence or under seal: 

 
An individual shall not be held criminally or civilly li-
able under any Federal or State trade secret law for the 
disclosure of a trade secret that — 

(A) is made — 
(i) in confidence to a Federal, State, 
or local government official, either 

                                                                                                    
263. Menell, supra note 254, at 22. 
264. See id. at 24. 
265. Id. at 18. 
266. Sarbanes-Oxley Act of 2002, Pub. L. No. 107-204 § 806, 116 Stat. 745, 802 (2002); 

Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010, Pub. L. No. 111-203, 
§§ 748, 922, 124 Stat. 1376, 1739, 1841 (2010). 

267. See 26 U.S.C. § 7623 (2012). 
268. See Menell, supra note 254, at 20; Richard E. Condit, Providing Environmental Whis-

tleblowers with Twenty-First Century Protections, 2 AM. U. LAB. & EMP. L.F. 31, 39 (2011) 
(detailing the numerous whistleblower provisions).  

269. See Menell, supra note 254, at 62. 



58  Harvard Journal of Law & Technology [Vol. 31 
 

directly or indirectly, or to an attor-
ney; and  
(ii) solely for the purpose of report-
ing or investigating a suspected vio-
lation of law; or  

(B) is made in a complaint or other document 
filed in lawsuit or other proceeding, if such 
filing is made under seal.270 

This part of the approach has several benefits. First, just as financial 
services companies can and do work across borders and set up subsidiar-
ies or use other structures to shield against liabilities or prosecution, so 
too for software companies. Because the DTSA is a federal law, the po-
tential whistleblower no longer has to navigate whether they are gov-
erned by whatever law, or lack of law, addresses the action in a given 
state or country. Second, a potential whistleblower must make the sub-
mission “in confidence.”271 This provision addresses many, but not all, 
of the concerns about the trade secret being disclosed because the trade 
secret is not widely shared.272 Instead, it is under seal or shared with 
attorneys, both of which maintain confidentiality of the information.273 
Disclosure to the press would not be covered unless the government has 
found that the information is not secret.274 Third, the immunity applies 
for “a suspected violation of law.”275 As such whether the public or pri-
vate sector develops software, someone who suspects a violation of law 
would be able to report that suspicion. Fourth, it provides civil and crim-
inal immunity for the whistleblower, which means neither private con-
tracts, such as NDAs, nor criminal sanctions that may apply could be 
used to go after, and so deter, the potential whistleblower. Fifth, another 
related protection is that if the whistleblower follows the immunity rules, 
she can use the information as part of her defense to a retaliation lawsuit. 
Although anti-retaliation protection of this type is important, unlike the 
False Claims Act (“FCA”), SOX, and Dodd-Frank, the DTSA appears to 
lack a provision to protect whistleblowers against such employment 
suits.276 In addition, there is not yet a qui tam or bounty program — as 

                                                                                                    
270. 18 U.S.C. § 1833(b)(1) (2016). 
271. Id. § 1833(b)(1)(A)(i). 
272. See Menell, supra note 254, at 59–60 (discussing limits of the approach such as possible 

misconduct by “government agencies or officers”). 
273. See id. at 47–48. 
274. See id. at 47. 
275. 18 U.S.C. § 1833(b)(1)(A)(ii). 
276. See Menell, supra note 254, at 26–29 (tracing the history of anti-retaliation as part of 

whistleblowing). As Menell notes, other acts protect against retaliation as well. Id. at 31 (citing 
Clean Water Act of 1972 § 507(a), 33 U.S.C. § 1367(a) (1972); American Recovery and Rein-
vestment Act of 2009, Pub. L. No. 111-5, § 1553(a), 123 Stat. 115, 297 (2009); Pipeline Safety 
Improvement Act of 2002, Pub. L. No. 107-355 § 6, 116 Stat. 2985, 2989 (2002)). 



No. 1] Trust But Verify 59 
 
the FCA, SOX, Dodd-Frank, and the IRS whistleblower program 
have — to encourage reporting of illegal conduct.277 

Making retaliation for disclosure of trade secrets a felony under the 
DTSA and providing a public interest right of action similar to the FCA 
or similar state laws would add to the way the DTSA encourages private 
help in enforcing the law in the software context. By making retaliation 
a felony there would be greater protection for whistleblowers.278 That 
protection will not prevent negative repercussions such as blacklisting, 
but it may be possible to set up a bounty system so that a whistleblower 
will be able to cope with the difficulty of getting a new job after blowing 
the whistle.279 Issues of civil rights, due process, and the integrity of our 
democratic systems affect the United States government in at least two 
important ways. First, there can be a direct harm to the government’s 
pocketbook because the government would have paid for illegal soft-
ware, lost time and money, and have to remedy the failure. Second, there 
is a general harm to the government’s perception with U.S. citizens and 
even people around the world because people need to trust that the gov-
ernment is using sound and fair systems. Protecting whistleblowers in 
these ways at a federal level shows a commitment by the government to 
take these issues seriously and to stop them. 

On top of whistleblower protection, we think a public interest cause 
of action that balances the government’s interest in pursuing a case 
against a private citizen’s ability to do so, would aid in building a system 
to govern the use of software.280 Our model derives from qui tam actions 

                                                                                                    
277. See Menell, supra note 254, at 24–29 (tracing the history of qui tam laws as part of 

whistleblowing). Bounties are one way to provide incentives to whistleblowers; the main point 
is that money helps motivate whistleblowers, in part, because whistleblowers want the income 
and in part because financial incentives help mitigate repercussions from whistleblowing. See 
Stavros Gadinis & Colby Mangels, Collaborative Gatekeepers, 73 WASH. & LEE L. REV. 797, 
828–29 (2016) (explaining the problems of blacklisting and Dodd-Frank bounty system design 
as a way to mitigate that problem). Although the IRS does not use a bounty system in the qui 
tam style, the IRS does provide a monetary incentive. See Karie Davis-Nozemack & Sarah 
Webber, Paying the IRS Whistleblower: A Critical Analysis of Collected Proceeds, 32 VA. TAX 
REV. 77, 82 (2012). The point is that an incentive must be in place and somewhat certain to be 
paid. Thus, as Professors Davis-Nozemack and Webber explain, although the IRS’s Whistle-
blower Program was changed to increase payments and thus increase tips, the way in which the 
Whistleblower Program interpreted “collected proceeds” — the pool of money from which a 
whistleblower would be paid — hindered and reduced payments. See id. at 78. They suggested 
changes to the way collected proceeds were defined and paid out as way to improve certainty 
for potential whistleblowers and increase long-term willingness to use the program. See id. at 
130–32. 

278. This is similar to the anti-retaliation protection afforded to witnesses, victims, and gov-
ernment informants. See 18 U.S.C. § 1513 (2008) (making it a felony to kill, attempt to kill, or 
cause bodily injury to a witness who testifies at an official proceeding). 

279. See Gadinis & Mangels, supra note 277, at 829. 
280. Some argue that such an approach causes a “gold rush” effect on litigation, but a recent 

empirical study indicates such claims are overstated. See David Freeman Engstrom, Private 
Enforcement’s Pathways: Lessons from Qui Tam Litigation, 114 COLUM. L. REV. 1913, 1922 
(2014).  



60  Harvard Journal of Law & Technology [Vol. 31 
 
under the FCA, which dates back to 1863,281 which allows “any person 
to prosecute a civil fraud — in the name of the United States — against 
any person who allegedly makes a false claim to the United States gov-
ernment”282 and California’s Safe Drinking Water and Toxic Enforce-
ment Act of 1986 (“Proposition 65” or “Act”), which addresses 
environmental concerns by allowing a public interest cause of action 
balanced against governmental interests in pursuing such matters.283 To 
work for software, this model would have to be precise about what 
would be subject to the public cause of action, provide for the ability to 
file suit, and set out the procedure under which such a suit would be 
filed. We think that the clearest examples of when a public cause of ac-
tion should be allowed would be in public sector use of vendor software 
and regulated private sector cases.284 

Voting machines and software in cars are excellent examples of 
software systems that need to be trusted and tested to ensure that they 
function as desired. A public interest cause of action statute to govern 
either industry would enable government and private oversight by in-
cluding injunctive remedies, specific and daily civil penalties, detailed 
notice and minimum threshold requirements for private action, and time 
limits to allow a public monitoring function to exist while maintaining 

                                                                                                    
281. See Julie Anne Ross, Comment, Citizen Suits: California’s Proposition 65 and the 

Lawyer’s Ethical Duty to the Public Interest, 29 U.S.F. L. REV. 809, 810 n.4 (1995) (noting 
relationship of qui tam to “modern day citizen suit”); see also Michael Ray Harris, Promoting 
Corporate Self-Compliance: An Examination of the Debate Over Legal Protection for Envi-
ronmental Audits, 23 ECOLOGY L.Q. 663, 710 n.317 (“A growing trend in environmental law is 
the use of the qui tam provisions of the False Claims Act of 1863 (FCA) to force corporations to 
abide by environmental reporting requirements.”). It should be noted that the use of qui tam 
actions is subject to some debate and criticism. See Trevor W. Morrison, Private Attorneys 
General and the First Amendment, 103 MICH. L. REV. 589, 607–18 (2005) (examining private 
attorney general actions and describing pro-qui tam arguments — “private attorneys general are 
a cost-effective means of both pursuing the public welfare and returning power to the people 
themselves. For legislatures that value cheap, robust regulatory enforcement, private attorneys 
general may present an attractive option.”). Arguments against include: private attorneys may 
be self-interested and motivated by financial gain, may free-ride by waiting to follow the gov-
ernment’s lead for opportunistic litigation rather than being true investigators, may accept set-
tlements too easily, and may undermine the provision of consistent agency or government 
enforcement. See id. at 610–18 (finding “no definitive resolution to the policy debate over pri-
vate attorneys general” and that legislatures resolve the matter differently based on context); see 
also John Beisner, Matthew Shors & Jessica Davidson Miller, Class Action ‘Cops’: Public 
Servants or Private Entrepreneurs?, 57 STAN. L. REV. 1441, 1457–60 (2005) (comparing class 
action private attorney general actions to qui tam suits and noting that though qui tam actions 
may allow citizens to bring suits that abuse or are not part of the policy objectives behind the 
act enabling a given suit, as opposed to class actions, the legislature can alter the parameters of 
the enabling act to prevent such abuses). 

282. Saikrishna Prakash, The Chief Prosecutor, 73 GEO. WASH. L. REV. 521, 531 (2005). 
283. See CAL. HEALTH & SAFETY CODE § 25249.7 (2009). 
284. If the government built its software, there may be sovereign immunity issues that pre-

vent the lawsuit by private citizens. That would not undermine a legislature requiring software 
that is analyzable and that permits accountability; just this option to police the software. 



No. 1] Trust But Verify 61 
 
the government’s ability to pursue cases.285 The California approach sets 
the penalty at $2,500 per violation as some statutory amount is needed 
because of the lack of money at issue under California law for the be-
havior in question. We do not take a position on the correct amount for 
software. Rather we note that the amount must be large enough to pro-
vide an incentive for the action. Staying with our example industries, 
given the number of voting machines in use and autos on the road, 
$2,500 may be sufficient, but where important yet lower scale use of 
software is at issue, the statute may need to set a higher amount. Regard-
less of the amount set, with civil penalties, courts would look at: 

(A) The nature and extent of the violation; (B) The 
number of, and severity of, the violations; (C) The 
economic effect of the penalty on the violator; (D) 
Whether the violator took good faith measures to com-
ply with this chapter and the time these measures were 
taken; (E) The willfulness of the violator’s miscon-
duct; (F) The deterrent effect that the imposition of the 
penalty would have on both the violator and the regu-
lated community as a whole; (G) Any other factor that 
justice may require.286 

Given the concentration of software companies in California and 
Washington, either state could pass a state law and have a large effect on 
the software industry.287 But if the statute is passed by a state, as a way 
to limit frivolous suits, only an “Attorney General . . . a district attorney, 
[or] a city attorney of a city [with] a population in excess of 750,000 

                                                                                                    
285. See id. (using the same levers for environmental protection). 
286. Id. Given the importance of context for such a piece of legislation, it is beyond the 

scope of this Article to set out what is correct in all cases. But as an example, if one had a cause 
of action to allow a suit against a maker of voting machines that failed to follow specified soft-
ware requirements, one could choose to assess the penalty based on the number of machines as 
we have noted. Yet given that voter trust in the system is vital to voting and enfranchisement, 
one might wish to base the penalty on the number of voters who used the machines in question. 

287. For example, because California is a large market for autos, the California Air Re-
sources Board has affected national practices for emissions. See Paul Rogers, California’s 
‘Clean Car’ Rules Help Remake Auto Industry, YALE ENV’T 360 (Feb. 8, 2012), 
http://e360.yale.edu/features/californias_clean_car_rules_help_remake_us_auto_industry 
[https://perma.cc/5MMF-JDAT]. But see Hiroko Tabuchi, California Upholds Auto Emissions 
Standards, Setting Up Face-Off With Trump, N.Y. TIMES (Mar. 24, 2017), 
https://www.nytimes.com/2017/03/24/business/energy-environment/california-upholds-
emissions-standards-setting-up-face-off-with-trump.html?mcubz=3 (last visited Dec. 19, 2017) 
(noting that California requires a waiver from the federal government for California emissions 
rules and that the Trump administration opposes such strict emission standards). State executive 
branches can also be effective in changing policy. For example, state attorneys general have 
used their offices to experiment and expand different ways to protect privacy. See generally 
Danielle Keats Citron, The Privacy Policymaking of State Attorneys General, 92 NOTRE DAME 
L. REV. 747 (2016). 



62  Harvard Journal of Law & Technology [Vol. 31 
 
[people]” could bring a suit on their own.288 Government attorneys in 
smaller jurisdictions could bring suits provided they receive permission 
from their district attorney.289 

Under this approach, non-governmental actors could bring an action 
in the public interest under certain conditions.290 To start, the potential 
plaintiff would have to give notice to the government attorney with ju-
risdiction over the potential case and to the alleged violator of the Act 
and wait sixty days as with the California law before bringing the suit.291 
The waiting period could be shorter or longer, but it would allow the 
state to decide whether to act. If the State picked up the case and was 
“diligently prosecuting” it, the private action would no longer be al-
lowed.292 

As another way to limit frivolous lawsuits, the person bringing the 
suit would have to provide a certificate of merit which would verify that: 

[T]he person executing the certificate has consulted 
with one or more persons with relevant and appropriate 
experience or expertise who has reviewed facts, stud-
ies, or other data regarding the [claimed violation] that 
is the subject of the action, and that, based on that in-
formation, the person executing the certificate believes 
there is a reasonable and meritorious case for the pri-
vate action.293 

Furthermore, “[f]actual information sufficient to establish the basis 
of the certificate of merit . . . [would be required to] be attached to the 
certificate of merit that is served on the Attorney General.”294 Insofar as 
such material is covered by a trade secret, the DTSA now enables a po-
tential whistleblower to provide the information. The factual material in 
the certificate would not be discoverable unless it was “relevant to the 
subject matter of the action and is otherwise discoverable,”295 which 
would help protect potential whistleblowers who might provide such 
material. 

After a case is over, however, the alleged violator could move for, 
or the court of its own volition could conduct, an in camera review of the 
certificate of merit and the legal theories of the plaintiff to see whether 
the basis was real. 296 If the court deems the basis to be false, it could 
                                                                                                    

288. See HEALTH & SAFETY § 25249.7(c). 
289. See id. 
290. See id. § 25249.7(d). 
291. See id. § 25249.7(d)(1). 
292. See id. § 25249.7(d)(2). 
293. Id. § 25249.7(d)(1). 
294. Id. 
295. Id. § 25249.7(h)(1). 
296. See id. § 25249.7(h)(2). 



No. 1] Trust But Verify 63 
 
bring sanctions for a frivolous lawsuit.297 California’s provision on 
which we draw states, “[i]f the court finds that there was no credible 
factual basis for the certifier’s belief that an exposure to a listed chemi-
cal had occurred or was threatened, then the action shall be deemed friv-
olous within the meaning of Section 128.7 of the Code of Civil 
Procedure.”298 These two sections and their adaptation to our approach 
are vital, because one section allows the court to order the bringer of the 
frivolous lawsuit to pay attorney’s fees and reasonable expenses,299 and 
the other section provides authorization for the court to impose sanctions 
and punitive damages including but not limited to attorney’s fees with 
the stated goal of having the sanctions deter frivolous suits.300 A height-
ened pleading requirement or procedural limit, such as exhausting cer-
tain remedies, might be incorporated to limit further concerns regarding 
an explosion of suits. In addition, the statute could require a certain level 
of pattern and practice before such a suit would be allowed thereby pre-
venting numerous small-scale, nuisance suits and focusing on larger 
scale systemic issues. 

VII. CONCLUSION 

During the Cold War, Ronald Reagan liked to use a Russian prov-
erb, “trust but verify,” as a way to describe his approach to U.S.-Soviet 
relations; today we need to trust automated systems to make many criti-
cal decisions, but must also verify that big data and sophisticated tech-
nologies do not raise new problems for those subject to automation. We 
can and should trust that many computer scientists and engineers wish to 
use their skills to improve the world. Yet, in the public sector, difficulty 
in understanding how and why decisions are made — especially in the 
occasional cases where no answer is available — fuels distrust. In addi-
tion, just the specter of the lack of integrity of voting machine counts 
undermines faith in the political process. In the private sector, evidence 
of misuse of software by the auto industry, such as with Volkswagen and 
recently at Fiat-Chrysler, erodes trust and increases general fears about 
software. In addition, while experiments have tested how news or so-
called fake news is promoted on social networks and how online ads 
may be targeted in ways that are discriminatory or illegal, those tests 
cannot find a consistent or clear answer as how or why the results oc-
curred. That, too, eats away at the public’s ability to trust these systems. 
The classic response to these types of problems is a demand for trans-
                                                                                                    

297. See id. 
298. Id. (emphasis added). 
299. See CAL. CODE CIV. PROC. § 128.6(a) (2005). 
300. Id. § 128.7(d)–(h) (“It is the intent of the Legislature that courts shall vigorously use its 

sanctions authority to deter that improper conduct or comparable conduct by others similarly 
situated.”).  



64  Harvard Journal of Law & Technology [Vol. 31 
 
parency. Although such an approach seems reasonable — once one can 
see all that went on in the process, one can root out bad behavior and 
verify that rules have been followed — it cannot function alone to meet 
the goals its proponents wish to advance. As we have shown, transpar-
ency is a useful goal, and will in many cases be necessary at some level, 
but it does not solve these problems. 

Instead, by understanding what can and cannot be done when evalu-
ating software systems, and by demanding convincing evidence that sys-
tems are operating correctly and within the bounds set by law, society 
can allow the use of sophisticated software techniques to thrive while 
also having meaningful ways to ensure that these systems are governa-
ble. In some cases, determining compliance and effecting governance 
will require oversight by a competent authority, in which case software 
systems must create sufficient audit trails to support that oversight. As 
we have shown, although current software systems pose large challenges 
for those who wish to understand how they operated, computer science 
offers a way out for software engineered to provide such assurances. 
One can require that software be built to allow for analyzability and 
technical accountability. Or rather, software can be built so that we can 
trust, but verify. 


