
Storytelling in Heterogeneous Twitter Entity
Network based on Hierarchical Cluster Routing

Xuchao Zhang1, Zhiqian Chen1, Weisheng Zhong1, Arnold P. Boedihardjo2, Chang-Tien Lu1
1Virginia Tech, Falls Church, VA, USA

2U. S. Army Corps of Engineers, Alexandria, VA, USA
1{xuczhang, czq, zwscn123, ctlu}@vt.edu, 2arnold.p.boedihardjo@usace.army.mil

Abstract—Connecting the dots between diverse entities
such as people and organizations is a vital task for forming
hypotheses and uncovering latent relationships among
complex and large datasets. Most existing approaches are
designed to address the relationship of entities in news
reports, documents and abstracts, but such approaches
are not suitable for Twitter data streams due to their
unstructured languages, short-length messages, heteroge-
neous features and massive size. The sheer size of Twitter
data requires more efficient algorithms to connect the dots
within a short period of time. We present a system that
automatically constructs stories by connecting entities in
Twitter datasets. An entity similarity model is designed
that combines both traditional entity-related features and
social network attributes and a novel story generation
algorithm applied on the similarity model is proposed
to cope with the massive Twitter datasets. Extensive
experimental evaluations were conducted to demonstrate
the effectiveness of this new approach.

I. INTRODUCTION

Social media such as Twitter has become a real-time “news
press” for disseminating information at both the global and
community scales. Hundreds of millions of users post tweets
every minute, discussing contents ranging from their opinions
about social events to their observations on the street. Com-
pared to traditional media, Twitter has a number of interesting
features including: 1) Promptness. Unlike traditional media,
which may take hours or even days to publish, tweets can be
posted instantly using portable mobile devices; 2) Freedom
of expression. In contrast to the censorship often imposed on
traditional media, tweets can more freely express idiosyncratic
views and inconvenient facts; and 3) Social properties [1][2].
Compared to the flat information presented in traditional
media, Twitter adds value through its ability to link users to
their personal networks where their social information such
as friends and geo-locations are held. Recent research have
revealed the power of connecting the entities in traditional
documents to help uncover important relationships between
two concepts which are not readily observable [3]. For exam-
ple, the Mexican election of its president Enrique Peña Nieto
was marred by media bias and an alleged record fee charged
by Televisa, the largest Mexican multimedia company. The
connection between the Mexican president and the multimedia

company Televisa is shown in Figure 1, where related persons
and organizations are linked with junction points such as
common Twitter followers, related tweets and links. In the
storyline, some key persons related to the event are revealed.
For instance, Carlos Loret, the news anchor who confirmed
that the station’s Corporate Vice President of Marketing is
linked to Peña Nieto during his administration, which is
supported by the tweet ”Carlos Loret confirmed the Peña-
Televisa alliance news from his former collaborator Laura
Barranco. #Saltillo”1.

Techniques to connect the dots in news reports [4][5],
documents [6] and abstracts [7] have been well studied, but all
these methods are based on a strong assumption that the textual
contents are robust and well presented. This is not always
the case for social media; analyzing entity relationships in a
Twitter dataset requires specific techniques to address its un-
structured language, short-length message, and heterogeneous
elements. Therefore, existing approaches that focus solely
on traditional documents cannot be applied to Twitter data
because many of the features in Twitter, such as followers and
mentions, cannot be dealt with using traditional methods. This
poses two challenges: 1) Modeling heterogeneous features
in Twitter. Twitter data contains various features, including
hashtags, mentions and links. Entities extracted from tweets
can also be mapped to Twitter users, from which follower and
geo-location information can be obtained. Joint consideration
of these heterogeneous Twitter features is crucial; and 2)
Handling large data size. Hundreds of millions of tweets are
generated daily from Twitter. An efficient story generation
algorithm is required to handle this massive data.

In this paper, we present a method to model these hetero-
geneous features in a bipartite graph and generate an entity
similarity graph for story modeling. A novel story generation
algorithm based on hierarchical cluster is also proposed to
handle the massive Twitter datasets. The key contributions of
this research are summarized as follows:

• Novel method to model Twitter heterogeneous feature
similarity. An entity similarity model was proposed to
combine heterogeneous features of Twitter data in a
bipartite graph and generate an entity similarity graph
with a random walk algorithm. Existence of a unique sta-

1Translated by original spanish tweet: “Carlos Loret confirmó a Laura Bar-
ranco ex colaboradora de primero noticias la alianza Peña-Televisa #Saltillo”

Luis VidegarayLaura Barranco Carlos Loret Javier Duarte Peña NietoTelevisa

@Carlos

Loret

@CarlosLoret Laura Barranco refutes and confirms Televisa-EPN filtrates "The Guardian"

http://
youtube.com

Alejandro

Quintero

tweet

@Apoyoa

Barranco
Peña Nieto

Carlos Loret confirmó a Laura Barranco ex colaboradora de primero noticias la alianza Peña-Televisa #Saltillo

tweet
http://
sopitas

Gabino

Cué

#medueles

veracruz

http://
proceso.mx

http://
ndmx.co

http://
veracruz.mx

Eruviel

Ávila

Emilio

 Chuayffet

Rafael
Moreno

Gabino

Cué

http://bnam-

ericas.com

http://mexico-

dailyreview.mx

Liébano

Saénz

Fig. 1. Case Study of Media Bias in 2012 Mexico President Election

tionary distribution guarantees the convergence of entity
similarity calculation.

• Innovative story generation algorithm based on hi-
erarchical clustering. Utilizing on the entity similarity
graph generated by our model, we have designed a novel
story generation algorithm that efficiently prunes the
data and finds a story by dividing the search space into
hierarchical partitions. Linear scalability is achieved by
utilizing finer partition granularity .

• System to connect different entities in Twitter using
above proposed model. A new system was developed to
connect related entities given a set of Twitter data, which
contains the following steps: (i) data preprocessing, (ii)
entity similarity modeling, and (iii) story generation.

• Extensive experimental performance evaluations. The
experiments on different types of data sets presented here
demonstrated that our proposed approach outperformed
existing state-of-the-art algorithms. Sensitivity analyses
were conducted on 10 different data sets.

The remainder of this paper is organized as follows. Section
II describes the related work on entity similarity calculations
and connecting the dots problems. Section III provides the
problem formulation and overall architecture. Section IV and
Section V study the detailed techniques involved in the entity
similarity model and story generation, respectively. In Section
VI, the extensive experimental results are analyzed. The paper
concludes by summarizing the important findings of the study
in Section VII.

II. RELATED WORK

This section summarizes the current state of research in
entity similarity modeling, microblog summarization, and con-
necting the dots. Both methods based on entity networks [8]
and document collections [9][10][7] are discussed.

A. Entity Similarity Modeling

There is a large body of work that focuses on the analysis
of semantic [11][12], syntactic [13][14] and spatio-temporal
[15][16] entity similarity. All of these papers analyze the
relationship between entities by utilizing their semantic con-
text and/or spatial locations. Entity similarity methods are
also used in story generation. Hossain et al. [3] proposed a
method to compute entity similarity by combining Soergel

Distance and a k-Clique nearest neighbor approach; Shahaf
and Guestrin [6] used a linear program method to measure
words coherence between documents; Dos Santos et al. [1]
suggested a ConceptRank method and spatial closeness to
infer relationships to entities in Twitter data; and Goel et al.
[17] employed a regression model to compute Twitter users’
similarity based on their common followers, pagerank score
and historic follow-through rate. However, these methods can
only uncover similarities in traditional documents or specific
Twitter features individually and are unable to consider their
features in combination.

B. Microblog Summarization

Although document summarization [18][19] has been stud-
ied for years, microblog summarization is still in its infancy.
Sharifi et al. proposed the Phrase Reinforcement algorithm
[20] to create a summary of microblog posts related to user
defined terms and Inouye et al. [21] proposed both Hybrid
TF-IDF and cluster classifier methods to generate multiple
post summaries, while Harabagiu et al. [22] introduced a
framework to synthesize multiple microblog posts on the same
topic into a prose summary. Takamura et al. [23] took the
posted time of microblogs into consideration, proposing a
summarization model based on the p-median problem for a
stream of microblog posts along a timeline. Later, Lidan et al.
[24] proposed an online tweet stream clustering algorithm and
TCV-Rank summarization method for tweet streams. All the
above methods aim to extract semantic meaning from Twitter,
but none of them consider the relationship between entities.

C. Connecting the dots

Connecting the dots methods have received a lot of attention
in recent years. Hossain et al. [3] proposed a method using
A* searching algorithm to construct a shortest path between
entities based on the concept lattice network, while Dos Santos
et al. [1] connected entities via a greedy approach using entity
semantic, spatial, and temporal ordering. Despite considering
Twitter metadata such as hashtags, and mentions, following
and follower relationships, their storyline focus on reflecting
temporal sequences within a predefined spatial area. Zhu [10]
took a different approach, connecting documents by applying
a divide-conquer algorithm to append a median node with

maximum transition probability between nodes in each itera-
tion. Faloutsos et al. [8] proposed a method to find connected
subgraphs that maximized the delivered electric current using
a dynamic programming algorithm. Shahaf and Gustrin [6]
proposed finding a story by maximizing its weakest edge with
a fixed story length. Most of the aforementioned techniques
seek to identify ways to connect entities in traditional doc-
uments, but cannot directly be applied to heterogeneous and
massive Twitter data.

Our work differs from most previous works in two major as-
pects, namely our use of entity similarity model that combines
heterogeneous features of Twitter and the novel hierarchical
routing algorithm with unconstrained layers in entity similarity
network that we apply to generate story lines efficiently and
effectively.

III. OVERVIEW AND PROBLEM FORMULATION

In this section, we formally define the problem of story-
telling in a Twitter entity network and present the main steps
required to solve the problem, along with some key definitions
and the concepts involved.

A. Problem Setting

Our goal is to reveal valuable relationships between two
entities via a sequence of intermediate entities in Twitter
dataset. Formally, given two entities vs and vt, our task
is to connect them together using a sequence of entities
v1, v2, ..., vk in a set of tweets T . Given the Twitter dataset T ,
relationships between entities can be formulated as an Entity
similarity graph GT :

Definition 1. Entity Similarity Graph: Given a set of tweets
T , an entity similarity graph is defined as an undirected graph
GT = (V, E)T , where V denotes entities in Twitter dataset
T and E denotes edges between entities with their similarity
weights.

Generally, the coherence between entities in a storyline is
evaluated by three metrics: 1) Average edge weight, 2) Disper-
sion Coefficient [3] and 3) Minimum edge weight [9]. Average
edge weight is defined as the average similarity between each
connected entities in a story. The drawback of using AvgEdge
to evaluate a storyline is as follows: the average edge weight
can only evaluate the whole storyline, ignoring the individual
edges. Suppose one edge in the middle of a storyline is much
lower than others. Here, the story is interrupted and split
into two parts. The Dispersion Coefficient is a matrix that
evaluates all story nodes rather than simply the conjunctive
ones. A storyline that contains n entities v0, v1, . . . , vn−1 is
quantified as: ν = 1− 1

n−2
∑n−3
i=0

∑n−1
j=i+2 disp(vi, vj), where

disp(vi, vj) equals to 1
n+i−j if S(vi, vj) < θ, otherwise it

equals to zero. In the equation, S(vi, vj) is the similarity
between entity vi and vj ; and disp(vi,vj) is used to evaluate the
dispersion between entity vi and vj . If the similarity between
the two non-consecutive entities is larger than some predefined
threshold θ, its dispersion is zero. The intuition involved in
using the Dispersion Coefficient is analogous to finding a

community rather than a storyline, but the threshold parameter
θ is difficult to define.

The rationale for the Minimum edge weight matrix comes
from Liebig’s law [25]. Drawing an analogy between a story
line and a piece of string: in general the strength of the string is
not determined by its strongest part but its weakest. Formally,
this is defined as:

Definition 2. MinEdge: Given a storyline s = {v1, v2, . . . ,
vt}, MinEdge is defined as the minimum edge between each
connected entity in s:

MinEdge ≡ min{ei|∀ei ∈ E} (1)

where E is the set of edges in story line s.

The MinEdge weight has a close relationship with the other
two metrics in the two aspects: 1) MinEdge is the infimum
of AvgEdge. Maximizing MinEdge weight can improve the
AvgEdge weight. 2) MinEdge not only controls conjunctive
nodes, but also the nodes throughout the whole storyline.

Based on these observations, we define our entity-based
storytelling task as follows:

Definition 3. Storytelling in Entity Network: Given an entity
similarity graph GT = (V, E)T , find a story chain of entities
s = {v1, v2, . . . , vt} which satisfies:

argmax
s∈S

f(s) = {s|f(s) = MinEdge(s)} (2)

where S is the set of all possible stories starting from v1 to
vt.

B. Architecture Overview

To achieve this goal, our task can be divided into three major
parts, as shown in figure 2: 1)Data Preprocessing, 2)Entity
Similarity Modeling, and 3)Story Generation.

Dynamic Query Expansion

Entity Extraction

Twitter User Mapping

Twitter Heterogeneous

Network Generation

Entity Similarity Graph

Generation

Data Preprocessing Entity Similarity Modeling

 Cluster Hierarchy

Generation

 Cluster Hierarchical

Routing

Story Generation

Fig. 2. System Architecture

Data Preprocessing phase retrieves Twitter data and entities
within a targeted domain, which is used as the input for further
steps. Here, data preprocessing consists of the following steps:

(1) Query Expansion: Searching in a uncategorized Twitter
dataset2 that contains a large amount of irrelevant information,
is computationally impractical. Therefore, Dynamic Query Ex-
pansion [2](DQE), an unsupervised approach to automatically
expand seed query in targeted domains is used to retrieve a
subset of tweets in a specific targeted domain of our interest.

2The Twitter data used in this paper was purchased from Datasift Inc
(http://datasift.com/). All analyses here are done in compliance with the
Twitter and Datasift terms of use. Twitter data is available through either
the public Twitter API (https://dev.twitter.com) or through authorized resellers
such as Gnip.com and Datasift.com.

02c4d9574d
A

@vanguardiamx

#YoSoy132

http://t.co/

Alejandro
Poiré

18SUJ1012
80761520

120507

B

C

D

#YoSoy132 Enrique Peña Nieto

@vanguardiamx

Elecciones 2012 no suelta a

Vanguardia: http://t.co/myXbWfcg via

E

Twitter User
Features

Entity-Tweet
Features

Entity

tweet

@mention

#hashtag

link

common
follower

Spatio-temporal
Coherence

Alejandro Poiré

1
8

SU
J10128

07615
2

0
1

2
0

5
0

7

Common Followers

Spatio-temporal
Coherence

Fig. 3. Sample of Twitter Information Heterogeneous Network. In this
graph, entities are linked to six different Twitter features: tweets, mentions,
hashtags, links, common followers, and spatio-temporal coherence. All of
these features belong to two main categories: Entity-Tweet feature and Twitter
user features.

(2) Entity Extraction: In this step, our purpose is to extract
person and organization entities from the Twitter dataset
filtered by DQE. We chose a state-of-the-art method, the
Stanford Named Entity Recognizer [26], to extract entities.
The Stanford Deterministic Coreference Resolution System
[27] is also applied to avoid duplicate entities when two
or more expressions in a text refer to the same person or
organization.

(3) Twitter User Mapping: The purpose of Twitter user
mapping is to map the extracted entities to Twitter users. For
example, the entity “Barack Obama” will be mapped in tweets
to the Twitter user @BarackObama. Given the popularity
of Twitter, most of the entities extracted from recent tweets
have active Twitter accounts, especially for celebrities. One
direct way to accomplish this task is to search for specific
user names using Twitter REST API3. However, in most
circumstances, the API returns a long list of users who have
the same name and it is impossible to identify each individual
mapping. Therefore, we designed a method to map entities
to a specified Twitter user pool, which is iteratively increased
by the followers of newly mapped Twitter users. The detailed
approach is as follows:

1) Initialize Twitter user pool Φ0 as official authenticated
users4 and E0 as retrieved entity set.

2) Find a mapping between entity set Emk ⊆ Ek and Twitter
user set Φmk ⊆ Φk ∪ Φ

′

k where Ek is current entity set
and Φ

′

k is the follower user set of current Twitter user
set Φk. The mapping is based on Twitter user description
name and their profile information.

3) Set Φk+1 ← Φk ∪ Φmk and Ek+1 ← Ek \ Emk
4) Repeat step 2 and step 3 until Φk+1 = Φk or an iteration

threshold is reached.
Entity Similarity Modeling: Given a set of tweets T , the

entity similarity model constructs the Twitter Heterogeneous

3https://dev.twitter.com/rest/public
4All officially authenticated Twitter accounts are followed by Twitter user

@verified.

Information Network, which is defined as follows:

Definition 4. Twitter Heterogeneous Information Network:
Given a Twitter subcollection, a Twitter heterogeneous infor-
mation network is defined as an undirected bipartite graph
HT = (F ,V, E), where F denotes the node set of Twit-
ter’s heterogenous features, such as “tweets”, “hashtags”, and
“mentions”. V and E denote entities and edges between entities
and features, respectively.

Figure 3 depicts a sample Twitter Heterogeneous Informa-
tion Network in which entities are connected to six different
Twitter features. Based on the bipartite graph network, the
similarity can be calculated by a random walk algorithm. Then,
an entity similarity graph GT can be generated by using the
similarity as the edge weight between two entities.

More details of the entity similarity model and random walk
algorithm will be presented in Section IV. After the entity
similarity graph has been constructed, the problem of finding
a story can then be modeled as a path-searching problem in
the graph.

Storyline Generation phase performs directed exploration
toward a desired entity through an entity similarity graph GT .
However, direct permutations of all the possible story lines
of GT with thousands of entities and edges to find a story
with maximum MinEdge is clearly impractical. Instead, our
proposed εCluster story generation algorithm divides the graph
into smaller partitions. Within each partition, any two entities
can be connected with a line whose MinEdge is larger than a
predefined ε threshold but the MinEdge cross different parti-
tion is less than the threshold. Partitioning the Entity Similarity
Graph removes many of the candidate nodes from the search
space. The addition of graph partitioning in hierarchical layers
can further improve the search performance.

IV. ENTITY SIMILARITY MODEL

In this section, different features of a Twitter Heterogeneous
Network are firstly discussed, after which a random walk
based similarity calculation method in a Twitter heterogeneous
network is presented.

A. Twitter Heterogeneous Network Generation

A Twitter heterogeneous network is an undirected bipartite
graph constructed by using entities and their corresponding
Twitter features. Both entity-tweet features and Twitter user
related features are included as follows:

Entity-tweet features:
(a) Tweets. If two entities exist in the same tweet, the tweet

will be added as a feature into the Twitter Heterogeneous
Information network and the edges between the tweet and
the entities are also appended. Note that if only one entity
exists in a tweet, the tweet is not allowed to be added as
a feature because no other entity can be traversed via the
tweet. In the example shown in Figure 3, entity A(Peña
Nieto) and entity B(Vanguardia) are both connected to
tweet “02c4d9574d” as they appear in the same tweet.

(b) #Hashtags. Hashtags connect all entities related to same
tags; if an entity exists in a tweet that contains a hashtag,
the hashtag and edges between the hashtag and entities
will be added to the bipartite graph. As with the tweet
feature, entity A and B in figure 3 are both connected to
hashtag #YoSoy132.

(c) @Mentions. Given that the mentioned user is also an
entity, we can now connect the entity to all the features
in the tweet, including the mention feature itself. Fig-
ure 3 shows how entity B(Vanguardia) connects to all
the entity-tweet features, including the mention @van-
guardiamx itself.

(d) Tweet Links. Sometimes, tweets contain additional links
to other web resources such as news articles or videos.
After extracting entities contained in these resources, we
connect the entities that also belong to entities in the
Twitter dataset to the link.

Twitter user features:
(a) Common Followers. Common Followers [17] are an

important feature for evaluating users’ similarity and can
also be used to recommend similar users in Twitter user
recommendation systems [17]. In our bipartite graph,
avoiding using all the common followers between two
users, we selectively choose the common followers who
are also entities in our dataset. This approach has the
following two properties: (i) Computational Efficiency.
Millions of Twitter users follow well-known people, so
it is clearly impractical to include all of them in our
bipartite graph. (ii) Noise Removal. Well-known people
are often followed by irrelevant people such as fans.
These unrelated users are not of interest and should
therefore not be included in a story.

(b) Spatial attribution. Geo-location data is recorded when
a Twitter user posts a tweet with location information.
This information can be used to analyze the user’s
spatio-temporal similarity with other users. However,
geo-location coverage of tweets is sparse: only 15% of
tweets in our data collection are associated with geo-
location information. To solve this problem, we can
use Carmen [28] to enrich the geo-location data using
the user’s profile and the “Place” object from tweets.
Nearly 40% of the tweets can be tagged with geo-
location information after the enrichment process. The
Military Grid Reference System(MGRS) [29] is used to
represent a spatial location, allowing nearby locations to
be combined for the analysis. Figure 3 shows an example
for spatial position 18SUJ1012807615 on March 7, 2012.

B. Entity Similarity Graph Generation
A random walk based similarity computation method can

be used to generate the similarity between each entities based
on the Twitter heterogeneous network. Before introducing the
similarity calculation, some of the terms used in this section
will be defined.
• Edge Weight. We use the symbol li,j to represent the

edge between entity ei and feature fj . αfj represents the

weight for the jth feature. Edge weight wei,fj is used to
represent the weighted link frequency between ei and fj .

wei,fj =
∑
l

1(li,j between ei, fj)× αfj (3)

• Transition Probability. Transition Probability represents
the probability of transferring from one node to another.
The transition probability from entity ei to feature fj is
expressed as: P (ei → fj) =

wei,fj∑
k wei,fk

. Similarly, the
transition probability from feature fi to ej is expressed
as: P (fi → ej) =

wfi,ej∑
k wfi,ek

.

To capture the similarity between two entities, we use
the probability of a random walker passing through the two
entities on the bipartite graph to represent their similarity
value. In other words, the higher the probability that a random
walker will pass from one entity to another, the more similar
they become. Yildirim and Coscia [30] proposed a method to
compute an exact stationary distribution after infinite random
walking. We will apply this method to our Twitter heteroge-
neous network to compute the similarity between entities.

First of all, the probability between entity ei and ei′ is the
summation of all paths from ei to ei′ that pass through all the
linked features between ei and ei′ :

P (ei → ei′) =
∑
j

P (ei → fj → ei′)

=
∑
j

P (ei → fj)× P (fj → ei′)

=
∑
j

wei,fj∑
j′∈J wei,fj′

wei′ ,fj∑
i′′∈I wei′′ ,fj

(4)

Based on the previous definition, the transition probability
between entities can be restated in terms of a Markov transition
matrix T in which Ti,i′ = P (i → i′). The Perron-Frobenius
theorem guarantees the existence of a unique stationary dis-
tribution if the transition matrix T has the following three
properties:

1) Right-stochastic: Transition matrix T is a right-stochastic
matrix5. According to the attributes of the bipartite graph,
this property is satisfied.

2) Irreducible: every node can communicate with each of the
others within finite step. To satisfy this property, a breadth
first search can be applied to the bipartite graph G to
identify its connected components, with each connected
component being treated as a different bipartite graph Gi.
G is thus divided into a set of sub-graphs G = (G1 . . .Gn)
and any entity in one subgraph is not reachable by an
entity in another subgraphs.

3) Aperiodic: there is no ~x and integer m > 1 such that
~xTm = ~x but ~x 6= T~x. As we only work with bipartite
graphs with non-directed edges, the aperiodicity property
is satisfied.

Given that transition matrix T has these three properties, the
Perron-Frobenius theorem guarantees that a unique stationary

5right-stochastic matrix’s elements are non-negative and sum of rows is 1.

distribution exists when the eigenvalue is 1: ~πT = ~π. After
an infinite period of random walking, the similarity between
nodes i and i′ converges to: Si,i′ = πiTi,i′ , where πi is the
ith element in the stationary distribution ~π. The advantage of
this model is that it avoids saturation issues such as those
that occur when an additional shared entity node between two
feature nodes that share only one entity node has more effect
than that between two nodes who already share 100 entity
nodes.

V. STORY GENERATION ALGORITHM

This section details the core of the storytelling technique,
εCluster, a hierarchical routing algorithm that can efficiently
be executed on a large network.

A. εCluster Preliminary

To partition a large entity similarity graph into smaller
subgraphs, the whole graph must first be divided into different
layers. These layers are called εCluster layers. The layer itself
is an undirected graph Gl=(Ψ,Π, S, E), where Ψ refers to
a set of clusters, and Π represents the vertices within each
cluster. These vertices are also clusters belonging to lower
layer. S⊆Ψ×Ψ represents the set of edges between clusters
and E ⊆ Π×Π refers to the set of edges within clusters. The
edge between two cluster vertices ψi, ψj ∈ Ψ is denoted as sij
and the edge between vertices πi, πj ∈ Π within a cluster as
eij . The inter-cluster edge sij is represented as the maximum
edge connected by vertices from different clusters. Suppose
ε is a predefined threshold for edges in each cluster layer k,
si,j and ei,j satisfy the following properties: (1) ∀ψi, ψj ∈
Ψ, si,j < εk. (2) ∀πi, πj ∈ Π, ei,j ≥ εk. In the example of
Figure 4(a), s1,2 < εk and e4,5 ≥ εk. Signal ψ(i) is used to
represent the cluster of vertex πi, where subscript (i) refers
to the id of the cluster. Thus, s(i),(j) refers to the cluster
edge linked between vertex πi and πj . Figure 4(a) shows an
example of an εCluster Layer, in which Ψ = {ψ1, ψ2, ψ3},
Π={π1, π2, . . . , π12}, ψ(4) = ψ2 = {π4, π5, π6, π7, π8}, s(1),(4)
= s1,2. Finally, εCluster Hierarchy H = 〈G1, G2, . . . , GK〉 is
defined as a sequence of εCluster layers in ascending order.
Note that the layer number of an εCluster Hierarchy is a
predefined parameter. Generally, the εCluster story generation
algorithm becomes faster as more layers are constructed.

B. εCluster Hierarchy Generation

εCluster Hierarchy Generation aims to build a hierarchical
cluster structure whose edges between or within clusters sat-
isfy a specified threshold in order to decrease the computation
cost. The detailed algorithm is shown in Algorithm 1. The
major components of the algorithm are described below.

Initialization. Given an entity set Π1 with a similarity edges
set E1, each entity vertex in Π1 is assigned a unique cluster
based on the vertex only. Edges of clusters S1 are the same
as the edges set E1.

Layer Generation. During the process of layer generation,
all the cluster edges in the lower layer are iterated. For each
edge, if it is greater than some predefined ε value in the current

Algorithm 1: GENERATE εCLUSTER HIERARCHY

Input: Entity set Π1; Edge set E1 between entities; a sequence
of threshold set ε=〈ε1, ε2, . . . , εK〉 for a K-layer
hierarchy

Output: εCluster hierarchy with K layers
// initialize the first layer

1 for each πi ∈ Π1 do
2 assign πi to a stand-alone cluster ψi in G1

3 S1 ← E1 // initialize 1st layer edge set

4 k ← 2
5 while k ≤ |ε| do
6 Sk ← ∅ ; Ek ← ∅ // initialize cluster edge sets
7 while Sk−1 6= ∅ do
8 ei,j ← pop Sk−1

9 if ei,j ≥ εk then
10 if (i) 6= (j) then
11 ψ(i) ← ψ(i) ∪ψ(j) // merge cluster ψ(i) and ψ(j)

12 for each ψm ∈ Ψ do
13 if (i) 6=m and (j)6=m and s(i),m < s(j),m

then
14 s(i),m ← s(j),m // update cluster edge

15 else
16 Ek = Ek ∪ ei,j // add ei,j to cluster edges

17 else
18 if ei,j < εk and s(i),(j) < ei,j then
19 s(i),(j) ← ei,j
20 Sk ← Sk ∪ s(i),(j)

21 k ← k + 1

layer, we can link the two entities together and merge the two
clusters if they are in separate clusters. If the edge is less
than ε and links different clusters, we compare the maximum
edge between the two clusters. If the edge is greater than
the maximum edge, we use the current edge value to replace
the existing one. If they are in the same cluster, the edge is
ignored.

Hierarchy Generation. Based on the layer number and ε
values for each layer, all the layers are generated to construct
an εCluster hierarchy. Rather than connecting all the layers
together, a hierarchy also stores the following information:
(i) Record the mapping relation of upper layer cluster id to
its lower layer cluster id set. (ii) Store the mapping from
lower layer cluster id to its upper layer cluster id. (iii)
Establish the mapping relationship between the entity id and
its lowest cluster id. Notice that the layer number and ε
values determine how the original entity similarity graph is
partitioned; generally, the graph will be more finely partitioned
if using a larger layer number.

C. εCluster Hierarchical Routing

The εCluster hierarchical routing algorithm identifies the
story line with the maximum MinEdge based on the εCluster
hierarchy introduced in section V-B. Pruning most of the
irrelevant edges in each εCluster hierarchy layer accelerates
the computation process dramatically. Overall, this storyline
generation method based on cluster hierarchy is a divide
and conquer algorithm. The detailed algorithm is shown in

(a) εCluster Layer Graph Sample (b) εCluster Storyline Generation Sample

Fig. 4. εCluster algorithm sample. (a) shows a sample layer of an εCluster hierarchy; (b) depicts a story generation sample based on a three-layer εCluster
hierarchy.

Algorithm 2 and Figure 4(b) depicts an example based on a
three-layer hierarchy.

Signal ψ(i)j represents the cluster in the jth upper layer.
For example, ψ(i)4 refers to the cluster in the 4th upper layer
of πi, and ψ(i)1 is equivalent to ψ(i). Meanwhile, |H| refers
to the layer number of hierarchies H. We define two types
of entity vertex: the output vertex from one cluster π[ψi],ψj

and the input vertex to one cluster πψi,[ψj]. Considering the
example in Figure 4(b), the green vertex in cluster ψ3 is the
output vertex π[ψ3],ψ4

≡ π10 and the green vertex in cluster
ψ4 is the input vertex πψ3,[ψ4] ≡ π11. The lower cluster of
entity πi is denoted as ψbic, which means that ψb10c ≡ ψ7 in
the example of Figure 4(b).

The story line search within a cluster is performed by
findOptimalChain()(abbreviated as foc()), where we use the
same algorithm as that presented by Shahaf and Guestrin
[9]. τ is the parameter applied to restrict the length of story
chain within a cluster. Let us now consider the εCluster
algorithm based on the example of story from vertex π16
to π44 shown in Figure 4(b). From the top layer, layer 3, a
sequential chain 〈ψ1, ψ2〉 is found, after which the problem
is transferred to finding optimal chains in ψb1c ≡ ψ3 and
ψb2c ≡ ψ4. The edge between the two clusters is connected
by the edge between the output vertex of cluster ψ3 and the
input vertex of cluster ψ4. For the starting cluster ψ3, the
chain begins with the start vertex π4 and proceeds to the
output vertex π10. Similarly, for the ending cluster ψ4, the
chain runs from the input vertex π11 to the end vertex π15.
For the median clusters, for example, cluster ψ7, the chain
runs from the input vertex π27 to output vertex π33. Finally, a
storyline with sequential entity vertex in Layer 1 is generated
as 〈π16, . . . , π22, π23, π26, π27, . . . π33, π34, π39, π40, π44〉.

VI. EXPERIMENTAL RESULTS

In this section, the performance of εCluster is evaluated.
We begin by evaluating the εCluster hierarchy construction
performance and story generation throughput of εCluster on
real-world data sets, after which, the effectiveness of εCluster
against existing state-of-the-art methods in connecting-the-dots
tasks is compared. Finally, an empirical case study of an event

Algorithm 2: GENERATE εCLUSTER STORYLINE

Input: Cluster Hierarchy H; Start entity πs and end entity πt;
Story length τ restricted within clusters

Output: a sequence of entities C = 〈π1, π2, . . . , πn〉
1 k ← |H| // assign k to layer number of hierarchy
2 C ← ∅ // initialize result set
3 while k ≥ 1 do
4 C′ ← ∅ // initialize story chain in current layer
5 if |C| == 1 then

// find chain from start to end vertex
6 C ← C′∪ foc(Gk, πs, πt, τ)
7 k ← k − 1
8 continue

// find chain from start to output vertex in 1st cluster
9 πout′ ← π[C1],C2

10 C′ ← C′∪ foc(Gk, πs, πout′ , τ)
11 i ← 2
12 while i < |C| do
13 πin ← πCi−1,[Ci] // find chain from input to output vertex
14 πout ← π[Ci],Ci+1

15 C′ ← C′∪ foc(Gk, πin, πout, τ)
16 i← i+ 1

// find chain from input in last cluster to end vertex
17 πin′ ← πC|C|−1,[C|C|]

18 C ← C′∪ foc(Gk, πin′ , πt, τ)
19 k ← k − 1

associated with the Mexico presidential election is used to
demonstrate the utility of the new system. All the experiments
presented in this paper were conducted on a 64-bit machine
with Intel Xeon CPU E5-1603 @2.80GHz and 64GB physical
memory.

A. Experiment Setup

To comprehensively evaluate both the performance and
applicability of the new εCluster algorithm, two different
types of datasets were selected: (i) GDelt6. The GDelt dataset
was retrieved from Google GDelt Service using keyword
MH370 for the period from March 8, 2014 to April 8, 2014,
and contains 6,729 documents and 3,850 entities. (ii) Twitter

6Supported by Google Ideas, the project monitors the world’s broadcast,
print, and web news all over the world

(a) Hierarchy building time of different layers (b) Hierarchy building time of different data size

Fig. 5. εCluster Hierarchy Generation Performance. (a) shows the hierarchy building time based on different layer number from 1 to 100. (b) depicts the
hierarchy building time on different data size from 1K to 1000K entity links.

civil unrest dataset7. This data set was obtained by randomly
sampling 10%(by volume) of the civil unrest Twitter data from
July 2012 to December 2012 in 4 countries in Latin America:
Brazil, Paraguay, Mexico, and Venezuela. Here, 51,000 entities
and 448,000 tweets are included. For this evaluation of the
performance of the εCluster hierarchy constructed in this
research, we compared ten different sized datasets ranging
from 100,000 to 1 million entity edges.

To evaluate the effectiveness and efficiency of our approach,
we compared the results obtained with those generated by
two other baseline methods on connecting-the-dots tasks. The
implementation and parameters settings are listed below:

Connect-the-dots(CTD): The Connect-the-dots [9] algo-
rithm finds storylines based on MinEdge. The process begins
by predefining a parameter for storyline length K. For each
iterated entity, the algorithm will iterate across all its neighbors
that can be reached in less than K steps. As the algorithm
becomes very time-consuming with increasing story length,
we set K = 5 as the maximum value due to the limitations of
our available equipment.

Local Optimal-MinEdge(LOME): This method [10] is
a divide and conquer algorithm that iteratively inserts in-
termediate node di′ between two connected nodes di and
di+1 with an objective function. The function can be
defined as follows if applied to the MinEdge objective:
di′ = arg maxdi min{s(di, di′), s(di+1, di′)}, where s(·) is
the function of similarity between two entities. Similar to
Connect-the-dots method, story length is required to be given
as a parameter.
εCluster(EC20, EC50, EC100): For the εCluster algo-

rithm, we define a hierarchy of n layers in which ε is defined
as an arithmetic progression from 1 to 0 whose common dif-
ference is 1

n . Here, the evaluations of hierarchies consisting of
20(EC20), 50(EC50) and 100(EC100) layers were performed.

B. εCluster Algorithm Performance
To show the efficiency of εCluster algorithm, the perfor-

mance of εCluster hierarchy generation and εCluster story
generation is evaluated separately.

For εCluster hierarchy generation, we calculated the hierar-
chy building time by computing ten different layer hierarchies

7Purchased from Datasift Inc

on ten different sized datasets. Figure 5(a) shows that the
hierarchy building time increases linearly as the layer number
of hierarchies increases from one to one hundred. Figure 5(b)
shows that as the data size increases, the hierarchy building
time also increases linearly in different εCluster layers from
EC10 to EC100. The edges between entities are used to
represent the complexity of entity similarity graph. A dataset
from one thousand to one million edges is selected. Given that
greater layer hierarchies are more efficient in large datasets,
as shown in section VI-B, these properties allow us to choose
more layers for the hierarchy as the data size increases, making
the new εCluster hierarchy approach a very practical solution
for large sized datasets.

The goal of εCluster story generation experiment is to
assess the performance of different baseline algorithms. For
this purpose, we use (i) Average Time, (ii) Average Time
per length of story and (iii) the number of nodes explored
to compare the performance of diverse methods. To compare
these for the same story length, diverse lengths of story lines
generated by all the algorithms from 10,000 randomly selected
story pairs were collected, and categorized in terms of their
story length, from 3 to 12. As Figure 6(a) and 6(b) show, the
εCluster algorithm has the most efficient running time. The
average runtime trends shown in Figure 6(a) approximately
mirror the number of nodes explored in Figure 6(c) because
running time depends on the number of nodes iterated. One
exception to this rule is that even though EC100 iterates less
nodes, it spends slightly more time than EC50 due to the
additional time required to traverse between layers. Also, the
performance results for the Twitter dataset are almost the same
as for the GDelt dataset, except that more time is taken and
more nodes are iterated. It is also worth mentioning that the
εCluster with more layers performs faster than those with
fewer layers as the size of the dataset increases; Figure 6(e)
shows that EC100 is capable of processing the stories more
rapidly than EC50.

C. Story Quality Evaluation

Despite the different path objectives of the story generation
algorithms, we can still use them as baselines to numerically
assess the story quality of the new εCluster algorithm. The
pairwise entity edge similarity is determined using the three

(a) GDelt AvgTime (b) GDelt AvgTime/Length (c) GDelt Iterated Nodes

(d) Twitter AvgTime (e) Twitter AvgTime/Length (f) Twitter Iterated Nodes

Fig. 6. εCluster Performance Evaluation based on GDelt and Twitter data. (a) and (d) compare the average running time, (b) and (e) the average running
time per story length and (c) and (f) the number of iterated nodes between the new algorithm and the baseline algorithms.

metrics discussed in section III: (i) MinEdge (ii)Average Edge
and (iii) Dispersion Coefficient. Since the main purpose of
our approach is to optimize MinEdge, the AvgEdge or the
Dispersion Coefficient metrics are listed for reference purpose.

To evaluate the story using the three metrics, we used both
the GDelt dataset and Twitter dataset and aimed to generate
10, 000 stories between randomly selected entity pairs. Table
I depicts the results of the successful searches. As the table
shows, the εCluster methods were competitive, outperforming
the other methods in both data sets. Although the CTD method
is designed to find an optimal MinEdge storyline, in practice
a maximum story length that can be computed by our test
machine is 5, making its MinEdge score lower than expected.
Table I also shows that both EC50 and EC100 have higher
MinEdge scores than EC20 in larger sized datasets due to
their finer-grained cluster having less impact on the limitation
on the number of searching steps within a cluster. Last but
not least, εCluster algorithm also outperforms other methods
in AvgEdge and the Dispersion Coefficient metrics. Although
our method does not aim at optimizing these two metrics, the
result shows that MinEdge can fairly improve both of them.

D. Case Study

During the experiment, a number of interesting story lines
were observed using the proposed approach, one of which was
from the Mexican presidential election in 2012. As reported8,

8http://www.theguardian.com/commentisfree/2012/jul/09/irregularities-
reveal-mexico-election-far-from-fair

TABLE I
STORYLINE QUALITY COMPARISON.

GDelt Dataset Twitter Dataset

Min. Edge Avg. Edge Disp. Min. Edge Avg. Edge Disp.

CTD 0.223 0.243 0.742 0.099 0.126 0.574
LOME 0.241 0.380 0.863 0.103 0.253 0.862
EC20 0.312 0.461 0.899 0.165 0.413 0.864
EC50 0.312 0.459 0.898 0.168 0.410 0.866

EC100 0.312 0.459 0.898 0.168 0.414 0.866

the election of Enrique Peña Nieto9 was marred by media
bias and voter fraud. A secret file10 revealed an alleged record
of fees apparently charged by Televisa, the largest Mexican
multimedia company, for raising Peña Nieto’s profile. To
discover the relationship between Televisa and Peña Nieto,
we generated a story line between them, shown in Figure 1,
where the junction points are related features, namely tweets,
links and common followers. The storyline constructed reveals
several key persons related to the event: (i) Laura Barranco,
a journalist working on the news team of Carlos Loret in
Televisa, who revealed that Carlos confirmed the transaction
between Televisa and Peña Nieto in an internal chat; and (ii)
Carlos Loret, a popular news anchor in Mexico, who con-
firmed that Alejandro Quintero, the station’s Corporate Vice
President of Marketing, is linked to Peña Nieto in the scandal.

9Current president of Mexico, candidate of Institutional Revolutionary
Party(PRI)

10http://www.theguardian.com/world/interactive/2012/jun/08/mexico-
media-scandal-televisa-pena-nieto-claims

(iii) Javier Duarte, the Governor of Veracruz, is also linked
with Carlos Loret because Carlos revealed that 11 journalists
had been murdered during his administration since 2010.
The event is categorized as #MeDuelesVeracruz in Twitter.
(iv) Luis Videgaray, who serves as the Secretary of Finance
and Public Credit in the cabinet of Enrique Peña Nieto, has
the same ties as Peña Nieto with the company Higa Group,
one of several companies winning government contracts. The
case shows the ability of our system to help users extract
hidden connections between entities from thousands of tweets,
#hashtags, @mentions, and coherent locations, which is very
time-consuming to handle it manually.

VII. CONCLUSION

This paper presents a novel approach to storytelling in large
Twitter data sets that enables analysts to gain deep insights
into individual entities and their relationships. The new entity
similarity model uncovers the underlying relationships be-
tween entities based on their heterogeneous features in Twitter,
supported by a hierarchical cluster routing algorithm that
generates storylines with competitive performance and quality.
The extensive experimental results for the various datasets
tested clearly demonstrate the effectiveness and efficiency of
our new approach through a comparison with four state-of-
the-art methods.

REFERENCES

[1] Raimundo F Dos Santos Jr, Sumit Shah, Feng Chen, Arnold Boedi-
hardjo, Patrick Butler, Chang-Tien Lu, and Naren Ramakrishnan. Spatio-
temporal storytelling on twitter. 2013.

[2] Liang Zhao, Feng Chen, Jing Dai, Ting Hua, Chang-Tien Lu, and Naren
Ramakrishnan. Unsupervised spatial event detection in targeted domains
with applications to civil unrest modeling. PLoS ONE, 9(10):e110206,
10 2014.

[3] M. Shahriar Hossain, Patrick Butler, Arnold P. Boedihardjo, and Naren
Ramakrishnan. Storytelling in entity networks to support intelligence
analysts. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’12, pages
1375–1383, New York, NY, USA, 2012. ACM.

[4] EricA. Bier, EdwardW. Ishak, and Ed Chi. Entity workspace: An
evidence file that aids memory, inference, and reading. In Sharad
Mehrotra, DanielD. Zeng, Hsinchun Chen, Bhavani Thuraisingham, and
Fei-Yue Wang, editors, Intelligence and Security Informatics, volume
3975 of Lecture Notes in Computer Science, pages 466–472. Springer
Berlin Heidelberg, 2006.

[5] Hyunmo Kang, C. Plaisant, Bongshin Lee, and B.B. Bederson. Netlens:
Iterative exploration of content-actor network data. In Visual Analytics
Science And Technology, 2006 IEEE Symposium On, pages 91–98, Oct
2006.

[6] Dafna Shahaf and Carlos Guestrin. Connecting the dots between
news articles. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’10, pages
623–632, New York, NY, USA, 2010. ACM.

[7] M. Shahriar Hossain, Joseph Gresock, Yvette Edmonds, Richard Helm,
Malcolm Potts, and Naren Ramakrishnan. Connecting the dots between
pubmed abstracts. PLoS ONE, 7(1):e29509, 01 2012.

[8] Christos Faloutsos, Kevin S. McCurley, and Andrew Tomkins. Fast
discovery of connection subgraphs. In Proceedings of the Tenth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’04, pages 118–127, New York, NY, USA, 2004. ACM.

[9] Dafna Shahaf and Carlos Guestrin. Connecting two (or less) dots:
Discovering structure in news articles. ACM Trans. Knowl. Discov. Data,
5(4):24:1–24:31, February 2012.

[10] Xianshu Zhu. Finding Story Chains and Story Maps in Newswire
Articles. PhD thesis, Catonsville, MD, USA, 2013. AAI3610054.

[11] M Andrea Rodrı́guez and Max J Egenhofer. Determining semantic
similarity among entity classes from different ontologies. Knowledge
and Data Engineering, IEEE Transactions on, 15(2):442–456, 2003.

[12] Rubén Tous and Jaime Delgado. A vector space model for semantic
similarity calculation and owl ontology alignment. In Database and
Expert Systems Applications, pages 307–316. Springer, 2006.

[13] Petko Bogdanov and Ambuj Singh. Accurate and scalable nearest neigh-
bors in large networks based on effective importance. In Proceedings of
the 22nd ACM international conference on Conference on information
& knowledge management, pages 1009–1018. ACM, 2013.

[14] Dan Klein and Christopher D Manning. Corpus-based induction of
syntactic structure: Models of dependency and constituency. In Pro-
ceedings of the 42nd Annual Meeting on Association for Computational
Linguistics, page 478. Association for Computational Linguistics, 2004.

[15] Quannan Li, Yu Zheng, Xing Xie, Yukun Chen, Wenyu Liu, and
Wei-Ying Ma. Mining user similarity based on location history. In
Proceedings of the 16th ACM SIGSPATIAL international conference on
Advances in geographic information systems, page 34. ACM, 2008.

[16] Josh Jia-Ching Ying, Eric Hsueh-Chan Lu, Wang-Chien Lee, Tz-Chiao
Weng, and Vincent S Tseng. Mining user similarity from semantic
trajectories. In Proceedings of the 2nd ACM SIGSPATIAL International
Workshop on Location Based Social Networks, pages 19–26. ACM,
2010.

[17] Ashish Goel, Aneesh Sharma, Dong Wang, and Zhijun Yin. Discovering
similar users on twitter. In 11th Workshop on Mining and Learning with
Graphs, 2013.

[18] Xiaojun Wan and Jianwu Yang. Multi-document summarization us-
ing cluster-based link analysis. In Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in
information retrieval, pages 299–306. ACM, 2008.

[19] Wen-tau Yih, Joshua Goodman, Lucy Vanderwende, and Hisami Suzuki.
Multi-document summarization by maximizing informative content-
words. In IJCAI, volume 7, pages 1776–1782, 2007.

[20] Beaux Sharifi, Mark-Anthony Hutton, and Jugal Kalita. Summarizing
microblogs automatically. In Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association
for Computational Linguistics, pages 685–688. Association for Compu-
tational Linguistics, 2010.

[21] David Inouye and Jugal K Kalita. Comparing twitter summarization
algorithms for multiple post summaries. In Privacy, Security, Risk and
Trust (PASSAT) and 2011 IEEE Third Inernational Conference on Social
Computing (SocialCom), 2011 IEEE Third International Conference on,
pages 298–306. IEEE, 2011.

[22] Sanda Harabagiu and Andrew Hickl. Relevance modeling for microblog
summarization. In Fifth International AAAI Conference on Weblogs and
Social Media, 2011.

[23] Hiroya Takamura, Hikaru Yokono, and Manabu Okumura. Summarizing
a document stream. In Advances in Information Retrieval, pages 177–
188. Springer, 2011.

[24] Lidan Shou, Zhenhua Wang, Ke Chen, and Gang Chen. Sumblr:
continuous summarization of evolving tweet streams. In Proceedings
of the 36th international ACM SIGIR conference on Research and
development in information retrieval, pages 533–542. ACM, 2013.

[25] HJW De Baar. von liebig’s law of the minimum and plankton ecology
(1899–1991). Progress in Oceanography, 33(4):347–386, 1994.

[26] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incor-
porating non-local information into information extraction systems by
gibbs sampling. In In ACL, pages 363–370, 2005.

[27] Heeyoung Lee, Yves Peirsman, Angel Chang, Nathanael Chambers, Mi-
hai Surdeanu, and Dan Jurafsky. Stanford’s multi-pass sieve coreference
resolution system at the conll-2011 shared task. In Proceedings of the
Fifteenth Conference on Computational Natural Language Learning:
Shared Task, pages 28–34. Association for Computational Linguistics,
2011.

[28] Mark Dredze, Michael J Paul, Shane Bergsma, and Hieu Tran. Carmen:
A twitter geolocation system with applications to public health. In AAAI
Workshop on Expanding the Boundaries of Health Informatics Using AI
(HIAI), pages 20–24. Citeseer, 2013.

[29] Thomas D’Roza and George Bilchev. An overview of location-based
services. BT Technology Journal, 21(1):20–27, 2003.

[30] Muhammed A. Yildirim and Michele Coscia. Using random walks to
generate associations between objects. PLoS ONE, 9(8):e104813, 08
2014.

