
Sumit Gulwani

Spreadsheet

Programming using Examples

Keynote at SEMS

July 2016

Motivation

99% of computer users cannot program!

They struggle with simple repetitive tasks.

1

Programming by examples (PBE)

can revolutionize this landscape!

Spreadsheet help forums

2

Typical help-forum interaction

300_w5_aniSh_c1_b  w5

=MID(B1,5,2)

300_w30_aniSh_c1_b  w30

=MID(B1,FIND(“_”,$B:$B)+1,

FIND(“_”,REPLACE($B:$B,1,FIND(“_”,$B:$B), “”))-1)

=MID(B1,5,2)

3

Flash Fill (Excel 2013 feature) demo

“Automating string processing in spreadsheets using input-output examples”;

POPL 2011; Sumit Gulwani
4

Input Output

(Nearest lower half hour)

0d 5h 26m 5:00

0d 4h 57m 4:30

0d 4h 27m 4:00

0d 3h 57m 3:30

5

Number Transformations

Synthesizing Number Transformations from Input-Output Examples;

CAV 2012; Singh, Gulwani

Input Output

(Round to 2 decimal places)

123.4567 123.46

123.4 123.40

78.234 78.23

Excel/C#:

Python/C:

Java:

#.00

.2f

#.##

6

Semantic String Transformations

Input v1 Input v2 Output

(Price + Markup*Price)

Stroller 10/12/2010 $145.67 + 0.30*145.67

Bib 23/12/2010 $3.56 + 0.45*3.56

Diapers 21/1/2011

Wipes 2/4/2009

Aspirator 23/2/2010

Id Name Markup

S33 Stroller 30%

B56 Bib 45%

D32 Diapers 35%

W98 Wipes 40%

A46 Aspirator 30%

Id Date Price

S33 12/2010 $145.67

S33 11/2010 $142.38

B56 12/2010 $3.56

D32 1/2011 $21.45

W98 4/2009 $5.12

CostRec Table

MarkupRec Table

Learning Semantic String Transformations from Examples;

VLDB 2012; Singh, Gulwani

To get Started!

Data Science Class Assignment

7

Ships inside two Microsoft products:

8

“FlashExtract: A Framework for data extraction by examples”;

PLDI 2014; Vu Le, Sumit Gulwani

ConvertFrom-String cmdlet

Custom Log,
Custom Field

FlashExtract Demo

Powershell

Layout Transformations

9
Flashrelate: extracting relational data from semi-structured spreadsheets using examples;

PLDI 2014; Barowy, Gulwani, Hart, Zorn

Input Table Output Table

PBE allows creation of output table from couple of example tuples.

Programming-by-Examples Architecture

Example-based

Intent Program set

(a sub-DSL of D)

DSL D

Program

Synthesizer

10

• Balanced Expressiveness

– Expressive enough to cover wide range of tasks

– Restricted enough to enable efficient search

• Restricted set of operators

– those with small inverse sets

• Restricted syntactic composition of those operators

• Natural computation patterns

– Increased user understanding/confidence

– Enables selection between programs, editing

11

Domain-specific Language (DSL)

Flash Fill DSL (String Transformations)

𝑇𝑢𝑝𝑙𝑒 𝑆𝑡𝑟𝑖𝑛𝑔 𝑥1, … , 𝑆𝑡𝑟𝑖𝑛𝑔 𝑥𝑛 → 𝑆𝑡𝑟𝑖𝑛𝑔

top-level expr if-then-else

condition-free expr

atomic expression

ConstantString

input string

position expression

| Pos

Boolean expression

Concatenate(A,C)

SubStr(X,P,P)

Kth position in X whose left/right side

matches with R1/R2.

Programming-by-Examples Architecture

Example-based

Intent Program set

(a sub-DSL of D)

DSL D

Program

Synthesizer

13

Goal: Set of program expr of kind 𝑒 that satisfies spec 𝜙

[denoted 𝑒 ⊨ 𝜙]

𝑒: DSL (top-level) expression

𝜙: Conjunction of (input state 𝜎 ⇝ output value 𝑣)

Methodology: Based on divide-and-conquer style problem

decomposition.

• 𝑒 ⊨ 𝜙 is reduced to simpler problems (over sub-expressions

of e or sub-constraints of 𝜙).

• Top-down (as opposed to bottom-up enumerative search).

14

Search Methodology

“FlashMeta: A Framework for Inductive Program Synthesis”;

OOPSLA 2015; Alex Polozov, Sumit Gulwani

Let 𝑒 be a non-terminal defined as 𝑒 ≔ 𝑒1 | 𝑒2

𝑒 ⊨ 𝜙 =

15

Problem Reduction Rules

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝑒 ⊨ 𝜙1 , 𝑒 ⊨ 𝜙2)

𝑈𝑛𝑖𝑜𝑛(𝑒1 ⊨ 𝜙 , 𝑒2 ⊨ 𝜙)

𝐹𝑖𝑙𝑡𝑒𝑟(𝑒 ⊨ 𝜙1 , 𝜙2)

𝑒 ⊨ 𝜙1 ∧ 𝜙2 =

𝑒 ⊨ 𝜙1 ∧ 𝜙2 =

An alternative strategy:

Inverse Set: Let F be an n-ary operator.

𝐹−1 𝑣 = 𝑢1, … , 𝑢𝑛 𝐹 𝑢1, … , 𝑢𝑛 = 𝑣}

16

Problem Reduction Rules

𝐶𝑜𝑛𝑐𝑎𝑡−1 "Abc" =

[𝐶𝑜𝑛𝑐𝑎𝑡 𝑋, 𝑌 ⊨ (𝜎 ⇝ "Abc")] = Union({
𝐶𝑜𝑛𝑐𝑎𝑡(𝑋 ⊨ 𝜎 ⇝ "Abc" , 𝑌 ⊨ 𝜎 ⇝ 𝜖),
𝐶𝑜𝑛𝑐𝑎𝑡 𝑋 ⊨ 𝜎 ⇝ "Ab" , 𝑌 ⊨ 𝜎 ⇝ "𝑐" ,
𝐶𝑜𝑛𝑐𝑎𝑡 𝑋 ⊨ 𝜎 ⇝ "A" , 𝑌 ⊨ 𝜎 ⇝ "𝑏𝑐" ,
𝐶𝑜𝑛𝑐𝑎𝑡 𝑋 ⊨ 𝜎 ⇝ ϵ , 𝑌 ⊨ 𝜎 ⇝ "𝐴𝑏𝑐" })

{ "Abc",ϵ , ("𝐴𝑏","c"), ("A","bc"), (ϵ, "Abc")}

𝐹 𝑒1, … , 𝑒𝑛 ⊨ 𝜎 ⇝ 𝑣 =

𝑈𝑛𝑖𝑜𝑛({F e1 ⊨ 𝜎 ⇝ 𝑢1 , … , 𝑒𝑛 ⊨ 𝜎 ⇝ 𝑢𝑛 | 𝑢1, … , 𝑢𝑛 ∈ 𝐹−1 𝑣 }

𝐹 𝑆1, … , 𝑆𝑛 denotes 𝐹 𝑒1, … , 𝑒𝑛 𝑒1 ∈ 𝑆1, … , 𝑒𝑛 ∈ 𝑆𝑛}

Programming-by-Examples Architecture

Example-based

Intent
Program set

(a sub-DSL of D)

DSL DRanking fn

Program

Synthesizer

17

Ranked Program set

(a sub-DSL of D)

Prefer simpler programs

• Fewer constants.

• Smaller constants.

18

Ranking scheme: Program features

Input Output

Rishabh Singh Rishabh

Ben Zorn Ben

• 1st Word

• If (input = “Rishabh Singh”) then “Rishabh” else “Ben”

• “Rishabh”

“Predicting a correct program in Programming by Example”;

[CAV 2015] Rishabh Singh, Sumit Gulwani

Prefer simpler programs

• Fewer constants.

• Smaller constants.

19

Ranking scheme: Data features

How to select between programs with

same number of same-sized constants?

Input Output

Missing page numbers, 1993 1993

64-67, 1995 1995

• 1st Number from the beginning

• 1st Number from the end

Prefer programs that generate more uniform output.

• Core Synthesis Architecture

– Domain-specific Language

– Search methodology

– Ranking function

 Next generation Synthesis

– Interactive

– Predictive

– Adaptive

20

Outline

Programming-by-Examples Architecture

Example

based

Intent

Ranked Program set

(a sub-DSL of D)

DSL D
Test inputs

Intended
Program in D

Intended Program in
R/Python/C#/C++/…

Translator

Ranking fn

Program

Synthesizer Debugging

Refined Intent

21

Incrementality

Interactive Debugging

22

• Intended programs can sometimes be synthesized from just

the input.

– Tabular data extraction, Sort, Join

• Can save large amount of user effort.

– User need not provide examples for each of tens of columns.

23

Predictive

Programming-by-Examples Architecture

Example

based

Intent

Ranked Program set

(a sub-DSL of D)

DSL D
Test inputs

Intended
Program in D

Intended Program in
R/Python/C#/C++/…

Translator

Ranking fn

Program

Synthesizer Debugging

Refined Intent

Incrementality

24

• Learn from past interactions

– of the same user (personalized experience).

– of other users in the enterprise/cloud.

• The synthesis sessions now require less interaction.

25

Adaptive

Programming-by-Examples Architecture

Example

based

Intent

Ranked Program set

(a sub-DSL of D)

DSL D

Interaction history

Test inputs

Intended
Program in D

Intended Program in
R/Python/C#/C++/…

Translator

Learner

Ranking fn

Program

Synthesizer Debugging

Refined Intent

Incrementality

26

https://microsoft.github.io/prose

• Efficient implementation of the generic search methodology.

• Provides a library of reduction rules.

Role of synthesis designer

• Implement a DSL and provide reduction rules for new operators.

• Provide ranking strategy.

• Can specify tactics to resolve non-determinism in search.

27

PROSE Framework

Vu Le

The PROSE Team

Sumit

Gulwani

Daniel

Perelman

Danny

Simmons

Adam

Smith
Mohammad

Raza

Abhishek

Udupa

Allen

Cypher
Ranvijay

Kumar

Alex

Polozov

We are hiring interns/full-time!

• Learn from usage data

• Probabilistic noise handling

• Programming using natural language

• Application to robotics

29

Future Directions

• PBE can enable easier & faster data wrangling.

– 99% of computer users are non-programmers.

– Data scientists spend 80% time cleaning data.

• Algorithmic search

– Domain-specific language

– Deductive methodology based on back-propagation

• Ambiguity resolution

– Ranking

– Interactivity

30

Conclusion

Reference: “Programming by Examples (and its applications in Data Wrangling)”,

In Verification and Synthesis of Correct and Secure Systems; IOS Press; 2016

[based on Marktoberdorf Summer School 2015 Lecture Notes]

