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Motivation

99% of computer users cannot program! 

They struggle with simple repetitive tasks.
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Programming by examples (PBE) 

can revolutionize this landscape!



Spreadsheet help forums
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Typical help-forum interaction

300_w5_aniSh_c1_b  w5

=MID(B1,5,2)

300_w30_aniSh_c1_b  w30

=MID(B1,FIND(“_”,$B:$B)+1, 

FIND(“_”,REPLACE($B:$B,1,FIND(“_”,$B:$B), “”))-1)

=MID(B1,5,2)
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Flash Fill (Excel 2013 feature) demo

“Automating string processing in spreadsheets using input-output examples”;

POPL 2011; Sumit Gulwani
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Input Output 

(Nearest lower half hour)

0d 5h 26m 5:00

0d 4h 57m 4:30

0d 4h 27m 4:00

0d 3h 57m 3:30
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Number Transformations

Synthesizing Number Transformations from Input-Output Examples; 

CAV 2012; Singh, Gulwani

Input Output 

(Round to 2 decimal places)

123.4567 123.46

123.4 123.40

78.234 78.23

Excel/C#:

Python/C: 

Java:

#.00

.2f

#.##
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Semantic String Transformations

Input v1 Input v2 Output 

(Price + Markup*Price)

Stroller 10/12/2010 $145.67 + 0.30*145.67

Bib 23/12/2010 $3.56 + 0.45*3.56

Diapers 21/1/2011

Wipes 2/4/2009

Aspirator 23/2/2010

Id Name Markup

S33 Stroller 30%

B56 Bib 45%

D32 Diapers 35%

W98 Wipes 40%

A46 Aspirator 30%

Id Date Price

S33 12/2010 $145.67

S33 11/2010 $142.38

B56 12/2010 $3.56

D32 1/2011 $21.45

W98 4/2009 $5.12

CostRec Table

MarkupRec Table

Learning Semantic String Transformations from Examples; 

VLDB 2012; Singh, Gulwani



To get Started!

Data Science Class Assignment
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Ships inside two Microsoft products:

8

“FlashExtract: A Framework for data extraction by examples”; 

PLDI 2014; Vu Le, Sumit Gulwani

ConvertFrom-String cmdlet

Custom Log, 
Custom Field

FlashExtract Demo

Powershell



Layout Transformations
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Flashrelate: extracting relational data from semi-structured spreadsheets using examples; 

PLDI 2014; Barowy, Gulwani, Hart, Zorn

Input Table Output Table

PBE allows creation of output table from couple of example tuples.



Programming-by-Examples Architecture

Example-based 

Intent Program set 

(a sub-DSL of D)

DSL D

Program 

Synthesizer
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• Balanced Expressiveness

– Expressive enough to cover wide range of tasks

– Restricted enough to enable efficient search

• Restricted set of operators 

– those with small inverse sets

• Restricted syntactic composition of those operators 

• Natural computation patterns

– Increased user understanding/confidence

– Enables selection between programs, editing
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Domain-specific Language (DSL)



Flash Fill DSL (String Transformations)

𝑇𝑢𝑝𝑙𝑒 𝑆𝑡𝑟𝑖𝑛𝑔 𝑥1, … , 𝑆𝑡𝑟𝑖𝑛𝑔 𝑥𝑛 → 𝑆𝑡𝑟𝑖𝑛𝑔

top-level expr if-then-else

condition-free expr 

atomic expression 

ConstantString

input string 

position expression 

| Pos

Boolean expression 

Concatenate(A,C)

SubStr(X,P,P)

Kth position in X whose left/right   side 

matches with R1/R2.



Programming-by-Examples Architecture

Example-based 

Intent Program set 

(a sub-DSL of D)

DSL D

Program 

Synthesizer
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Goal: Set of program expr of kind 𝑒 that satisfies spec 𝜙

[denoted 𝑒 ⊨ 𝜙 ]

𝑒: DSL (top-level) expression 

𝜙: Conjunction of (input state 𝜎 ⇝ output value 𝑣) 

Methodology: Based on divide-and-conquer style problem 

decomposition.

• 𝑒 ⊨ 𝜙 is reduced to simpler problems (over sub-expressions 

of e or sub-constraints of 𝜙).

• Top-down (as opposed to bottom-up enumerative search).
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Search Methodology

“FlashMeta: A Framework for Inductive Program Synthesis”;

OOPSLA 2015; Alex Polozov, Sumit Gulwani



Let 𝑒 be a non-terminal defined as 𝑒 ≔ 𝑒1 | 𝑒2

𝑒 ⊨ 𝜙 =
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Problem Reduction Rules

𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡( 𝑒 ⊨ 𝜙1 , 𝑒 ⊨ 𝜙2 )

𝑈𝑛𝑖𝑜𝑛( 𝑒1 ⊨ 𝜙 , 𝑒2 ⊨ 𝜙 )

𝐹𝑖𝑙𝑡𝑒𝑟( 𝑒 ⊨ 𝜙1 , 𝜙2)

𝑒 ⊨ 𝜙1 ∧ 𝜙2 =

𝑒 ⊨ 𝜙1 ∧ 𝜙2 =

An alternative strategy: 



Inverse Set:  Let F be an n-ary operator.

𝐹−1 𝑣 = 𝑢1, … , 𝑢𝑛 𝐹 𝑢1, … , 𝑢𝑛 = 𝑣}
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Problem Reduction Rules

𝐶𝑜𝑛𝑐𝑎𝑡−1 "Abc" =

[𝐶𝑜𝑛𝑐𝑎𝑡 𝑋, 𝑌 ⊨ (𝜎 ⇝ "Abc")] = Union({
𝐶𝑜𝑛𝑐𝑎𝑡( 𝑋 ⊨ 𝜎 ⇝ "Abc" , 𝑌 ⊨ 𝜎 ⇝ 𝜖 ), 
𝐶𝑜𝑛𝑐𝑎𝑡 𝑋 ⊨ 𝜎 ⇝ "Ab" , 𝑌 ⊨ 𝜎 ⇝ "𝑐" ,
𝐶𝑜𝑛𝑐𝑎𝑡 𝑋 ⊨ 𝜎 ⇝ "A" , 𝑌 ⊨ 𝜎 ⇝ "𝑏𝑐" ,
𝐶𝑜𝑛𝑐𝑎𝑡 𝑋 ⊨ 𝜎 ⇝ ϵ , 𝑌 ⊨ 𝜎 ⇝ "𝐴𝑏𝑐" })

{ "Abc",ϵ , ("𝐴𝑏","c"), ("A","bc"), (ϵ, "Abc")}

𝐹 𝑒1, … , 𝑒𝑛 ⊨ 𝜎 ⇝ 𝑣 =

𝑈𝑛𝑖𝑜𝑛({F e1 ⊨ 𝜎 ⇝ 𝑢1 , … , 𝑒𝑛 ⊨ 𝜎 ⇝ 𝑢𝑛 | 𝑢1, … , 𝑢𝑛 ∈ 𝐹−1 𝑣 }

𝐹 𝑆1, … , 𝑆𝑛 denotes 𝐹 𝑒1, … , 𝑒𝑛 𝑒1 ∈ 𝑆1, … , 𝑒𝑛 ∈ 𝑆𝑛}



Programming-by-Examples Architecture

Example-based 

Intent
Program set 

(a sub-DSL of D)

DSL DRanking fn

Program 

Synthesizer
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Ranked Program set 

(a sub-DSL of D)



Prefer simpler programs

• Fewer constants.

• Smaller constants.
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Ranking scheme: Program features

Input Output

Rishabh Singh Rishabh

Ben Zorn Ben

• 1st Word

• If (input = “Rishabh Singh”) then “Rishabh” else “Ben”

• “Rishabh”

“Predicting a correct program in Programming by Example”;

[CAV 2015] Rishabh Singh, Sumit Gulwani



Prefer simpler programs

• Fewer constants.

• Smaller constants.

19

Ranking scheme: Data features

How to select between programs with

same number of same-sized constants?

Input Output

Missing page numbers, 1993 1993

64-67, 1995 1995

• 1st Number from the beginning

• 1st Number from the end

Prefer programs that generate more uniform output.



• Core Synthesis Architecture

– Domain-specific Language

– Search methodology

– Ranking function

 Next generation Synthesis

– Interactive

– Predictive

– Adaptive
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Outline



Programming-by-Examples Architecture

Example 

based 

Intent

Ranked Program set 

(a sub-DSL of D)

DSL D
Test inputs

Intended 
Program in D

Intended Program in 
R/Python/C#/C++/…

Translator

Ranking fn

Program 

Synthesizer Debugging

Refined Intent
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Incrementality



Interactive Debugging
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• Intended programs can sometimes be synthesized from just 

the input. 

– Tabular data extraction, Sort, Join 

• Can save large amount of user effort. 

– User need not provide examples for each of tens of columns.
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Predictive



Programming-by-Examples Architecture

Example 

based 

Intent

Ranked Program set 

(a sub-DSL of D)

DSL D
Test inputs

Intended 
Program in D

Intended Program in 
R/Python/C#/C++/…

Translator

Ranking fn

Program 

Synthesizer Debugging

Refined Intent

Incrementality
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• Learn from past interactions 

– of the same user (personalized experience). 

– of other users in the enterprise/cloud.

• The synthesis sessions now require less interaction.
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Adaptive



Programming-by-Examples Architecture

Example 

based 

Intent

Ranked Program set 

(a sub-DSL of D)

DSL D

Interaction history

Test inputs

Intended 
Program in D

Intended Program in 
R/Python/C#/C++/…

Translator

Learner

Ranking fn

Program 

Synthesizer Debugging

Refined Intent

Incrementality
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https://microsoft.github.io/prose

• Efficient implementation of the generic search methodology.

• Provides a library of reduction rules.

Role of synthesis designer

• Implement a DSL and provide reduction rules for new operators.

• Provide ranking strategy.

• Can specify tactics to resolve non-determinism in search.
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PROSE Framework



Vu Le

The PROSE Team

Sumit 

Gulwani

Daniel 

Perelman

Danny 

Simmons

Adam 

Smith
Mohammad 

Raza

Abhishek 

Udupa

Allen 

Cypher
Ranvijay 

Kumar

Alex 

Polozov

We are hiring interns/full-time!



• Learn from usage data

• Probabilistic noise handling

• Programming using natural language

• Application to robotics
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Future Directions



• PBE can enable easier & faster data wrangling.

– 99% of computer users are non-programmers.

– Data scientists spend 80% time cleaning data.

• Algorithmic search

– Domain-specific language

– Deductive methodology based on back-propagation

• Ambiguity resolution

– Ranking

– Interactivity
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Conclusion

Reference: “Programming by Examples (and its applications in Data Wrangling)”, 

In Verification and Synthesis of Correct and Secure Systems; IOS Press; 2016

[based on Marktoberdorf Summer School 2015 Lecture Notes]


