
Strong Rules for Discarding Predictors in Lasso-type Prob-
lems

Robert Tibshirani, Jacob Bien, Jerome Friedman, Trevor Hastie, Noah Simon, Jonathan Tay-
lor, and Ryan J. Tibshirani

Departments of Statistics and Health Research and Policy, Stanford University, Stanford CA 94305,
USA. Email: tibs@stanford.edu.

Summary. We consider rules for discarding predictors in lasso regression and related problems, for
computational efficiency. El Ghaoui et al. (2010) propose “SAFE” rules, based on univariate inner
products between each predictor and the outcome, that guarantee a coefficient will be zero in the
solution vector. This provides a reduction in the number of variables that need to be entered into
the optimization. In this paper, we propose strong rules that are very simple and yet screen out far
more predictors than the SAFE rules. This great practical improvement comes at a price: the strong
rules are not foolproof and can mistakenly discard active predictors, that is, ones that have nonzero
coefficients in the solution. We therefore combine them with simple checks of the Karush-Kuhn-Tucker
(KKT) conditions to ensure that the exact solution to the convex problem is delivered. Of course, any
(approximate) screening method can be combined with the KKT conditions to ensure the exact solution;
the strength of the strong rules lies in the fact that, in practice, they discard a very large number of the
inactive predictors and almost never commit mistakes. We also derive conditions under which they are
foolproof. Strong rules provide a substantial savings in computational time for a variety of statistical
optimization problems.

1. Introduction

Our focus here is statistical models fit using ℓ1 penalization, starting with penalized linear regression.
Consider a problem with N observations and p predictors. Let y denote the N -vector of outcomes,
and X be the N × p matrix of predictors, with ith row xi and jth column xj . For a set of indices
A = {j1, . . . jk}, we write XA to denote the N × k submatrix XA = [xj1 , . . .xjk], and we write
bA = (bj1 , . . . bjk) for a vector b. We assume that the predictors and outcome have been centered,
so that we can omit an intercept term from the model. The lasso (Tibshirani (1996), Chen et al.
(1998)) optimization problem is

β̂ = argmin
β∈Rp

1

2
‖y −Xβ‖22 + λ‖β‖1, (1)

where λ ≥ 0 is a tuning parameter.
There has been considerable work in the past few years deriving fast algorithms for this problem,

especially for large values of N and p. A main reason for using the lasso is that the ℓ1 penalty tends
to set some entries of β̂ to exactly zero, and therefore it performs a kind of variable selection. Now
suppose we knew, a priori to solving (1), that a subset of the variables D ⊆ {1, . . . p} will be inactive
at the solution, that is, they will have zero coefficients: β̂D = 0.† Then we could discard the

†If X does not have full column rank, which is necessarily the case when p > N , then there may not be
a unique lasso solution; we don’t pay special attention to this issue, and will write “the solution” when we
really mean “a solution”.

2 Tibshirani and Bien and Friedman and Hastie and Simon and Taylor and Tibshirani

variables in D from the optimization, replacing the design matrix in (1) by XDc , Dc = {1, . . . p}\D,
and just solve for the remaining coefficients β̂Dc . For a relatively large set D, this would result in
a substantial computational savings.

El Ghaoui et al. (2010) construct such a set of discarded variables by looking at the univariate
inner products of each predictor with the response. Namely, their “SAFE” rule discards the jth
variable if

|xT
j y| < λ− ‖x‖2‖y‖2

λmax − λ

λmax

, (2)

where λmax = maxi |xT
i y| is the smallest tuning parameter value for which all coefficients in the

solution are zero. In deriving this rule, the authors prove that any predictor satisfying (2) must be

inactive at the solution; said differently, condition (2) implies that β̂j = 0. (Their proof relies on
the dual of problem (1); it has nothing to do with the rest of this paper, but we summarize it in the
Appendix because we find it interesting.) The authors then show that applying the SAFE rule (2)
to discard predictors can save both time and memory in the overall computation, and also derive
analogous rules for ℓ1-penalized logistic regression and ℓ1-penalized support vector machines.

The existence of any such rule is surprising (at least to us), and the work presented here was
inspired by the SAFE work. In this paper, we propose strong rules for discarding predictors in the
lasso and other problems that involve lasso-type penalties. The basic strong rule for the lasso looks
like a modification of (2), with ‖xj‖2‖y‖2/λmax replaced by 1: it discards the jth variable if

|xT
j y| < λ− (λmax − λ) = 2λ− λmax. (3)

The strong rule (3) tends to discard more predictors than the SAFE rule (2). For standardized
predictors (‖xj‖2 = 1 for all j), this will always be the case, as ‖y‖2/λmax ≥ 1 by the Cauchy–
Schwartz inequality. However, the strong rule (3) can erroneously discard active predictors, ones
that have nonzero coefficients in the solution. Therefore we rely on the Karush-Kuhn-Tucker (KKT)
conditions to ensure that we are indeed computing the correct coefficients in the end. A simple
strategy would be to add the variables that fail a KKT check back into the optimization. We
discuss more sophisticated implementation techniques, specifically in the context of our glmnet

algorithm, in Section 7 at the end of the paper.
The most important contribution of this paper is a version of the strong rules that can be used

when solving the lasso and lasso-type problems over a grid of tuning parameter values λ1 ≥ λ2 ≥
. . . ≥ λm. We call these the sequential strong rules. For the lasso, having already computed the
solution β̂(λk−1) at λk−1, the sequential strong rule discards the jth predictor from the optimization
problem at λk if

∣

∣xT
j

(

y −Xβ̂(λk−1)
)∣

∣ < 2λk − λk−1. (4)

The sequential rule (4) performs much better than both the basic rule (3) and the SAFE rule (2), as
we demonstrate in Section 2. El Ghaoui et al. (2011) also propose a version of the SAFE rule that
can be used when considering multiple tuning parameter values, called “recursive SAFE”, but it
too is clearly outperformed by the sequential strong rule. Like its basic counterpart, the sequential
strong rule can mistakenly discard active predictors, so it must be combined with a check of the
KKT conditions (see Section 7 for details).

At this point, the reader may wonder: any approximate or non-exact rule for discarding predic-
tors can be combined with a check of the KKT conditions to ensure the exact solution—so what
makes the sequential strong rule worthwhile? Our answer is twofold:

(a) In practice, the sequential strong rule is able to discard a very large proportion of inactive
predictors, and rarely commits mistakes by discarding active predictors. In other words, it
serves as a very effective heuristic.

Strong rules 3

(b) The motivating arguments behind the sequential strong rule are quite simple and the same
logic can be used to derive rules for ℓ1-penalized logistic regression, the graphical lasso, the
group lasso, and others.

The mistakes mentioned in (a) are so rare that for a while a group of us were trying to prove that the
sequential strong rule for the lasso was foolproof, while others were trying to find counterexamples
(hence the large number of coauthors!). We finally did find some counterexamples of the sequential
strong rule and one such counterexample is given in Section 3, along with some analysis of rule
violations in the lasso case. Furthermore, despite the similarities in appearance of the basic strong
rule (3) to the SAFE rule (2), the arguments motivating the strong rules (3) and (4) are entirely
different, and rely on a simple underlying principle. In Section 4 we derive analogous rules for the
elastic net, and in Section 5 we derive rules for ℓ1-penalized logistic regression. We give a version for
more general convex problems in Section 6, covering the graphical lasso and group lasso as examples.

Lastly, we mention some related work. Wu et al. (2009) study ℓ1 penalized logistic regression
and build a set D to discard based on the inner products between the outcome and each feature. As
with the strong rules, their construction does not guarantee that the variables in D actually have
zero coefficients in the solution, and so after fitting on XDc , the authors check the KKT optimality
conditions for violations. In the case of violations, they weaken their set D, and repeat this process.
Also, Fan & Lv (2008) study the screening of variables based on their inner products in the lasso and
related problems, but not from an optimization point of view; their screening rules may again set
coefficients to zero that are nonzero in the solution, however, the authors argue that under certain
situations this can lead to better performance in terms of estimation risk.

2. Strong rules for the lasso

2.1. Definitions and simulation studies
As defined in the introduction, the basic strong rule for the lasso discards the jth predictor from
the optimization problem if

|xT
j y| < 2λ− λmax, (5)

where λmax = maxj |xT
j y| is the smallest tuning parameter value such that β̂(λmax) = 0. If we are

interested in the solution at many values λ1 ≥ . . . ≥ λm, then having computed the solution β̂(λk−1)
at λk−1, the sequential strong rule discards the jth predictor from the optimization problem at λk

if
∣

∣xT
j

(

y −Xβ̂(λk−1)
)

| < 2λk − λk−1. (6)

Here we take λ0 = λmax. As β̂(λmax) = 0, the basic strong rule (5) is a special case of the sequential
rule (6).

First of all, how does the basic strong rule compare to the basic SAFE rule (2)? When the
predictors are standardized (meaning that ‖xi‖2 = 1 for every i), it is easy to see that the basic
strong bound is always larger than the basic SAFE bound, because ‖y‖2/λmax ≥ 1 by the Cauchy-
Schwartz inequality. When the predictors are not standardized, the ordering between the two bounds
is not as clear, but in practice the basic strong rule still tends to discard more predictors unless the
marginal variances of the predictors are wildly different (by factors of say 10 or more). Figure 1
demonstrates the bounds for a simple example.

More importantly, how do the rules perform in practice? Figures 2 and 3 attempt to answer
this question by examining several simulated data sets. (A few real data sets are considered later
in Section 3.2.) In Figure 2, we compare the performance of the basic SAFE rule, recursive SAFE

4 Tibshirani and Bien and Friedman and Hastie and Simon and Taylor and Tibshirani

0.00 0.05 0.10 0.15 0.20 0.25

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

1

2

3

4

5

6

7

8

9

10

Basic SAFE bound

Basic strong bound

Basic SAFE bound

Basic strong bound

λ

x
T j

(

y
−
X
β̂
(λ
))

Fig. 1. Basic SAFE and basic strong bounds in a simple example with 10 predictors, labelled at the right. The
plot shows the inner product of each predictor with the current residual, xT

j

(

y − Xβ̂(λ)
)

, as a function of λ.
The predictors that are in the model are those with maximal (absolute) inner product, equal to ±λ. The blue
dotted vertical line is drawn at λmax; the black dotted vertical line is drawn at some value λ = λ′ at which we
want to discard predictors. The basic strong rule keeps only predictor number 3, while the basic SAFE rule
keeps numbers 8 and 1 as well.

rule, basic strong rule, and sequential strong rule in discarding predictors for the lasso problem
along a sequence of 100 tuning parameter values, equally spaced on the log scale. The three panels
correspond to different scenarios for the model matrix X; in each we plot the number of active
predictors in the lasso solution on the x-axis, and the number of predictors left after filtering with
the proposed rules (i.e. after discarding variables) on the y-axis. Shown are the basic SAFE rule,
the recursive SAFE rule, the global strong rule and the sequential strong rule. The details of the
data generation are given in the Figure caption. The sequential strong rule is remarkably effective.

It is common practice to standardize the predictors before applying the lasso, so that the penalty
term makes sense. This is what was done in the examples of Figure 2. But in some instances, one
might not want to standardize the predictors, and so in Figure 3 we investigate the performance of
the rules in this case. In the left panel the population variance of each predictor is the same; in the
right panel it varies by a factor of 50. We see that in the latter case the SAFE rules outperform the
basic strong rule, but the sequential strong rule is still the clear winner. There were no violations
of either of the strong rules in either panel.

After seeing the performance of the sequential strong rule, it might seem like a good idea to
combine the basic SAFE rule with the sequential strategy; this yields the sequential SAFE rule,

Strong rules 5

11

1

1

1

11

0 50 100 200

0
10

00
20

00
30

00
40

00
50

00

Number of predictors in model

N
um

be
r

of
 p

re
di

ct
or

s
le

ft
af

te
r

fil
te

rin
g

222
2
2
2
2

2

2

2

2

2

2

2

222

3333
3
3
3
3

3

3

3

3

3

3

3

33

44
4444444444444444444

0 0.32 0.7 0.9 0.98

1
2
3
4

SAFE
Rec SAFE
Basic strong
Seq strong

No correlation

1
1

1

1

11

0 50 100 150 200

0
10

00
20

00
30

00
40

00
50

00

Number of predictors in model

N
um

be
r

of
 p

re
di

ct
or

s
le

ft
af

te
r

fil
te

rin
g

2
2
2
2
2
2
2
2
2
2
2
22
22
2222222222222222222222

2
2

2

2

2

2

222

33

3

3

3

3
33

4444
444

444
4444

0 0.56 0.8 0.95 0.99

Positive correlation

11
1

1

1

1

11111111 1111111111 111

0 50 100 150 200

0
10

00
20

00
30

00
40

00
50

00

Number of predictors in model

N
um

be
r

of
 p

re
di

ct
or

s
le

ft
af

te
r

fil
te

rin
g

22222
22

2
2

2

2

2

2

2

2

2

22222222 222

33333
3
3
3

3

3

3

3

3

3

3

333333333 333

44444444444444 4444444444 444
444444

0 0.35 0.73 0.9 1

Negative correlation

Fig. 2. Lasso regression: results of different rules applied to three different scenarios. Shown are the number
of predictors left after screening at each stage, plotted against the number of predictors in the model for a
given value of λ. The value of λ is decreasing as we move from left to right. There are three scenarios
with various values of N and p; in the first two panels the X matrix entries are i.i.d. standard Gaussian with
pairwise correlation zero (left), and 0.5 (middle). In the right panel, one quarter of the pairs of features (chosen
at random) had correlation -0.8. In the plots, we are fitting along a path of 100 decreasing λ values equally
spaced on the log-scale, A broken line with unit slope is added for reference. The proportion of variance
explained by the model is shown along the top of the plot. There were no violations of either of the strong
rules any of the three scenarios.

6 Tibshirani and Bien and Friedman and Hastie and Simon and Taylor and Tibshirani

111

1

1

1

111 111 1111 1111 11 111 11

0 50 100 150 200

0
10

00
20

00
30

00
40

00
50

00

Number of predictors in model

N
um

be
r

of
 p

re
di

ct
or

s
le

ft
af

te
r

fil
te

rin
g

2222222
2
2

2
2

2

2

2

2

2

2

2
22 22 222 22

333333
3
3
3

3

3

3

3

3

3

3 3333 33 333 33

444444444 444 4444 4444 44 444 44

0 0.22 0.57 0.76 0.9 0.97 1

1
2
3
4

SAFE
Rec SAFE
Basic strong
Seq strong

Equal population variance

1111
1

1

1

1

1

1
1
1
1
1111111 111 1 111 1111 11

0 50 100 150 200
0

10
00

20
00

30
00

40
00

50
00

Number of predictors in model

N
um

be
r

of
 p

re
di

ct
or

s
le

ft
af

te
r

fil
te

rin
g

2222222222
22
22

2
2
2
2
2

2
2
2
2

2
2

2
2

22
22 222

22
22222

2222222
2222222222

2222222222222
22222222222

222222222222222

33333333
3
3
3
3

3

3

3

33333 333 3 333 3333 33

44444444444444444444 444 4 444 4444 44

0 0.28 0.5 0.7 0.9 0.97 1 1

Unequal population variance

Fig. 3. Lasso regression: results of different rules when the predictors are not standardized. The scenario in
the left panel is the same as in the top left panel of Figure 2, except that the features are not standardized
before fitting the lasso. In the data generation for the right panel, each feature is scaled by a random factor
between 1 and 50, and again, no standardization is done.

which discards the jth predictor at the parameter value λk if

∣

∣xT
j

(

y −Xβ̂(λk−1)
)∣

∣ < λk − ‖xj‖2‖y −Xβ̂(λk−1)‖2
λk−1 − λk

λk−1

. (7)

We believe that this rule is not foolproof, in the same way that the sequential strong rule is not
foolproof, but have not yet found an example in which it fails. In addition, while (7) outperforms
the basic and recursive SAFE rules, we have found that it is not nearly as effective as the sequential
strong rule at discarding predictors and hence we do not consider it further.

2.2. Motivation for the strong rules
We now give some motivation for the sequential strong rule (6). The same motivation also applies
to the basic strong rule (5), recalling that the basic rule corresponds to the special case λ0 = λmax

and β̂(λmax) = 0.
We start with the KKT conditions for the lasso problem (1). These are

xT
j (y −Xβ̂) = λγj for j = 1, . . . p, (8)

where γj is the jth component of the subgradient of ‖β̂‖1:

γj ∈











{+1} if β̂j > 0

{−1} if β̂j < 0

[−1, 1] if β̂j = 0.

(9)

Strong rules 7

Let cj(λ) = xT
j (y −Xβ̂(λ)), where we emphasize the dependence on λ. The key idea behind the

strong rules is to assume that each cj(λ) is non-expansive in λ, that is,

|cj(λ)− cj(λ̃)| ≤ |λ− λ̃| for any λ, λ̃, and j = 1, . . . p. (10)

This condition is equivalent to cj(λ) being differentiable almost everywhere, and satisfying |c′j(λ)| ≤
1 wherever this derivative exists, for j = 1, . . . p. Hence we call (10) the “unit slope” bound.

Using condition (10), if we have |cj(λk−1)| < 2λk − λk−1, then

|cj(λk)| ≤ |cj(λk)− cj(λk−1)|+ |cj(λk−1)|
< (λk−1 − λk) + (2λk − λk−1)

= λk,

which implies that β̂j(λk) = 0 by the KKT conditions (8) and (9). But this is exactly the sequential

strong rule (6), because cj(λk) = xT
j (y − Xβ̂(λk)). In words: assuming that we can bound the

amount that cj(λ) changes as we move from λk−1 to λk, if the initial inner product cj(λk−1) is too
small, then it cannot “catch up” in time. An illustration is given in Figure 4.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

c j
(λ
)
=

x
T j

(

y
−
X
β̂
(λ
))

λk−1−λk

λk λk−1

Fig. 4. Illustration of the slope bound (10) leading to the strong rules (5) and (6). The inner product cj is
plotted in red as a function of λ, restricted to only one predictor for simplicity. The slope of cj between λk−1

and λk is bounded in absolute value by 1 (black line), so the most it can rise over this interval is λk−1 − λk.
Therefore, if it starts below λk − (λk−1 − λk) = 2λk − λk−1, it cannot possibly reach the critical level by λk.

8 Tibshirani and Bien and Friedman and Hastie and Simon and Taylor and Tibshirani

The arguments up until this point do not really depend on the Gaussian lasso problem in any
critical way, and similar arguments can be made to derive strong rules for ℓ1-penalized logistic
regression and more general convex problems. But in the specific context of the lasso, the strong
rules, and especially the unit slope assumption (10), can be explained more concretely. For simplicity,
the arguments provided here assume that rank(X) = p, so that necessarily p ≤ N , although similar
arguments can be used motivate the p > N case. Let A denote the set of active variables in the
lasso solution,

A = {j : β̂j 6= 0}.

Also let s = sign(β̂A). Note that A, s are implicitly functions of λ. It turns out that we can express
the lasso solution entirely in terms of A and s:

β̂A(λ) = (XT
AXA)

−1(XT
Ay − λs) (11)

β̂Ac(λ) = 0, (12)

where we write XT
A to mean (XA)

T . On an interval of λ in which the active set doesn’t change, the
solution (11), (12) is just linear in λ. Also, the solution (11), (12) is continuous at all values of λ
at which the active set does change. (For a reference, see Efron et al. (2004).) Therefore the lasso

solution is a continuous, piecewise linear function of λ, as is cj(λ) = xT
j (y −Xβ̂(λ)). The critical

points, or changes in slope, occur whenever a variable enters or leaves the active set. Each cj(λ) is
differentiable at all values of λ that are not critical points, which means it is differentiable almost
everywhere (since the set of critical points is countable and hence has measure zero). Further, c′j(λ)
is just the slope of the piecewise linear path at λ, and hence (10) is really just a slope bound. By
expanding (11), (12) in the definition of cj(λ), it is not hard to see that the slope at λ is

c′j(λ) =

{

sj for j ∈ A
xT
j XA(X

T
AXA)

−1s for j /∈ A.
(13)

Therefore the slope condition |c′j(λ)| ≤ 1 is satisfied for all active variables j ∈ A. For inactive
variables it can fail, but is unlikely to fail if the correlation between the variables in A and Ac is
small (thinking of standardized variables). From (13), we can rewrite the slope bound (10) as

‖XT
AcXA(X

T
AXA)

−1sign(β̂A(λ))‖∞ ≤ 1 for all λ. (14)

In this form, the condition looks like the well-known “irrepresentable condition”, which we discuss
in the next section.

2.3. Connection to the irrepresentable condition
A common condition appearing in work about model selection properties of lasso is the “irrepre-
sentable condition” Zhao & Yu (2006), Wainwright (2006), Candes & Plan (2009), which is closely re-
lated to the concept of “mutual incoherence” Fuchs (2005), Tropp (2006), Meinhausen & Buhlmann
(2006). If T is the set of variables present in the true (underlying) linear model, that is

y = XT β
∗
T + z

where β∗
T ∈ R|T | is the true coefficient vector and z ∈ Rn is noise, then the irrepresentable condition

is that
‖XT

T cXT (X
T
T XT)

−1sign(β∗
T)‖∞ ≤ 1− ǫ (15)

Strong rules 9

for some 0 < ǫ ≤ 1.
The conditions (15) and (14) appear extremely similar, but a key difference between the two is

that the former pertains to the true coefficients generating the data, while the latter pertains to
those found by the lasso optimization problem. Because T is associated with the true model, we
can put a probability distribution on it and a probability distribution on sign(β∗

T), and then show
that with high probability, certain design matrices X satisfy (15). For example, Candes & Plan
(2009) show that if |T | is small, T is drawn from the uniform distribution on |T |-sized subsets of
{1, . . . p}, and each entry of sign(β∗

T) is equal to ±1 with equal probability, then designs X with
maxj 6=k |xT

j xk| = O(1/ log p) satisfy the irrepresentable condition (15) with very high probability.
Unfortunately the same types of arguments cannot be applied directly to (14). A distribution on

T and sign(β∗
T) induces a different distribution on A and sign(β̂A), via the lasso optimization

procedure. Even if the distributions of T and sign(β∗
T) are very simple, the distributions of A and

sign(β̂A) are likely to be complicated.
Under the same assumptions as those described above, and an additional assumption that the

signal-to-noise ratio is high, Candes & Plan (2009) prove that for λ = 2
√
2 log p the lasso solution

satisfies

A = T and sign(β̂A) = sign(β∗
T)

with high probability. In this event, conditions (14) and (15) identical; therefore the work of Candes
& Plan (2009) proves that (14) also holds with high probability, under the stated assumptions and
only when λ = 2

√
2 log p. For our purposes, this is not incredibly useful because we want the slope

bound to hold along the entire path, that is, for all λ. But still, it seems reasonable that confidence
in (15) should translate to some amount of confidence in (14). And luckily for us, we do not need
the slope bound (14) to hold exactly or with any specified level of probability, because we are using
it as a computational tool and revert to checking the KKT conditions when it fails.

3. Violations of the strong rules

3.1. A simple counterexample
Here we demonstrate a counterexample of both the slope bound (10) and the sequential strong rule
(6). We chose N = 50 and p = 30, with the entries of y and X drawn independently from a standard
normal distribution. Then we centered y and the columns of X, and scaled the columns of X to
have unit norm. As Figure 5 shows, for predictor j = 2, the slope of cj(λ) = xT

j (y − Xβ̂(λ)) is
c′j(λ) = −1.586 for all λ ∈ [λ2, λ1], where λ2 = 0.0244, λ1 = 0.0259. Moreover, if we were to use the
solution at λ1 to eliminate predictors for the fit at λ2, then we would eliminate the 2nd predictor
based on the bound (6). But this is clearly a problem, because the 2nd predictor enters the model
at λ2. By continuity, we can choose λ2 in an interval around 0.0244 and λ1 in an interval around
0.0259, and still break the sequential strong rule (6).

We believe that a counterexample of the basic strong rule (5) can also be constructed, but we
have not yet found one. Such an example is somewhat more difficult to construct because it would
require that the average slope exceed 1 from λmax to λ, rather than exceeding 1 for short stretches
of λ values.

3.2. Numerical investigation of violations
We generated Gaussian data with N = 100, and we let the number predictors p vary over the set
{20, 50, 100, 500, 1000}. The predictors had pairwise correlation 0.5. (With zero pairwise correlation,
XTX would be orthogonal in the population and hence “close to” orthogonal in the sample, making

10 Tibshirani and Bien and Friedman and Hastie and Simon and Taylor and Tibshirani

0.000 0.005 0.010 0.015 0.020 0.025

−
0.

03
−

0.
02

−
0.

01
0.

00
0.

01
0.

02
0.

03

2

3

5

6

10

12

13

18

λ

c j
(λ
)
=

x
T j

(

y
−
X
β̂
(λ
))

2λ2 − λ1

λ2 λ1

Fig. 5. Example of a violation of the slope bound (10), which breaks the sequential strong rule (6). The
entries of y and X were generated as independent, standard normal random variables with N = 50 and
p = 30. (Hence there is no underlying signal.) The lines with slopes ±λ are the envelopes of maximal inner
products achieved by predictors in the model for each λ. For clarity we only show a short stretch of the solution
path. The blue dashed vertical line is drawn at λ1, and we are considering the the solution at a new value
λ2 < λ1, the black dashed vertical line to its left. The dotted horizontal line is the bound (6). In the top right
part of the plot, the inner product path for the predictor j = 2 is drawn in red, and starts below the bound, but
enters the model at λ2. The slope of the red segment between λ1 and λ2 is -1.586. A gray line of slope -1 is
drawn beside the red segment for reference. The plot contains other examples of large slopes leading to rule
violations, for example, around λ = 0.007.

Strong rules 11

it easier for the strong rules to hold—see the next section. Therefore we chose pairwise correlation
0.5 in order to challenge the rules.) For each value of p, we chose one quarter variables uniformly at
random, assigned them coefficient values equal to ±2 with equal probability, and added Gaussian
noise to the true signal to generate y. Then we standardized y and the columns of X. We ran the
R package glmnet version 1.5, which uses a path of 100 values of λ spanning the entire operating
range, equally spaced on a log scale. This was used to determine the exact solutions, and then we
recorded the number of violations of the sequential strong rule.

Figure 6 shows the results averaged over 100 draws of the simulated data. We plot the percent
variance explained on the x-axis (instead of λ, since the former is more meaningful), and the total
number of violations (out of p predictors) the y-axis. We see that violations are quite rare, in
general never averaging more than 0.3 erroneously discarded predictors! They are more common
at the unregularized (small λ) end of the path and also tend to occur when p is fairly close to N .‡
When p≫ N (p = 500 or 1000 here), there were no violations in any of 100 the simulated data sets.
It is perhaps not surprisingly, then, that there were no violations in the examples shown in Figures
2 and 3 since there we had p≫ N as well.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Percent variance explained

To
ta

l n
um

be
r

of
 v

io
la

tio
ns

11111111111111111111
1
1111111111111111111111122222222222222222222222222222222222

22222

2

2
2222

22
2
2

2

22
2

22

22222222

2

222233
333

3

3
3

33

3

3

3

3

3
3

3

3

3

3

3

3

334455

1
2
3
4
5

p=20
p=50
p=100
p=500
p=1000

Fig. 6. Total number of violations (out of p predictors) of the sequential strong rule, for simulated data with
N = 100 and different values of p. A sequence of models is fit, over 100 decreasing values of λ as we move
from left to right. The features are drawn from a Gaussian distribution with pairwise correlation 0.5. The
results are averages over 100 draws of the simulated data.

In Table 1 we applied the strong rules to three large datasets from the UCI machine learning
repository, and a standard microarray dataset. As before, we applied glmnet along a path of about
100 values of λ values. There were no violations of the rule in any of the solution paths, and a large
fraction of the predictors were successfully discarded. We investigate the computational savings
that result from the strong rule in Section 7.

‡When p = N , the model is able to produce a saturated fit, but only “just”. So for this scenario, the
coefficient paths are somewhat erratic near the end of the path.

12 Tibshirani and Bien and Friedman and Hastie and Simon and Taylor and Tibshirani

3.3. A sufficient condition for the slope bound
Tibshirani & Taylor (2011) prove a general result that can be used to give the following sufficient
condition for the unit slope bound (10). Under this condition, both basic and sequential strong
rules will never discard active predictors. Recall that an m×m matrix A is diagonally dominant if
|Aii| ≥

∑

j 6=i |Aij | for all i = 1, . . .m. Their result gives us the following:

Theorem 1. Suppose that X has full column rank, that is, rank(X) = p. If

(XTX)−1 is diagonally dominant, (16)

then the slope bound (10) holds, and hence the strong rules (5), (6) never produce violations.

Proof. Tibshirani & Taylor (2011) consider a problem

α̂ = argmin
α∈Rn

1

2
‖y −α‖22 + λ‖Dα‖1, (17)

where D is a general m × n penalty matrix. They derive the dual problem corresponding to (17),
which has a dual solution û(λ) relating to the primal solution α̂(λ) by

α̂(λ) = y −DT û(λ).

In the proof of their “boundary lemma”, Lemma 1, they show that if DDT is diagonally dominant,
then the dual solution satisfies

|ûj(λ)− ûj(λ̃)| ≤ |λ− λ̃| for any λ, λ̃ and j = 1, . . .m. (18)

Now we show that when rank(X) = p, we can transform the lasso problem (1) into a problem
of the form (17), and apply this lemma to get the desired result. First, we let α = Xβ and
D = (XTX)−1XT . Then the lasso problem (1) can be solved by instead solving

α̂ = argmin
α∈Rn

1

2
‖y −α‖22 + λ‖Dα‖1 subject to α ∈ col(X), (19)

and taking β̂ = (XTX)−1XT α̂. For the original lasso problem (1), we may assume without a loss of
a generality that y ∈ col(X), because otherwise we can replace y by y′, its projection onto col(X),
and the loss term decouples: ‖y −Xβ‖22 = ‖y − y′‖22 + ‖y′ −Xβ‖22. Therefore we can drop the
constraint α ∈ col(X) in (19), because by writing α = α′ + α′′ for α′ ∈ col(X) and α′′ ⊥ col(X),
we see that the loss term is minimized when α′′ = 0 and the penalty term is unaffected by α′′, as
Dα′′ = (XTX)−1XTα′′ = 0. Hence we have shown that the lasso problem (1) can be solved by

solving (17) with D = (XTX)−1XT (and taking β̂ = (XTX)−1XT α̂).
Now, the solution û(λ) of the dual problem corresponding to (17) satisfies

α̂(λ) = y −X(XTX)−1û(λ),

and so

û(λ) = XT (y − α̂) = XT
(

y −Xβ̂(λ)
)

.

Thus we have exactly ûj(λ) = cj(λ) for j = 1, . . . p, and applying the boundary lemma (18) completes
the proof.

Strong rules 13

We note a similarity between condition (16) and the positive cone condition used in Efron et al.
(2004). It is not difficult to see that the positive cone condition implies (16), and actually (16) is
easier to verify because it doesn’t require looking at every possible subset of columns.

A simple model in which diagonal dominance holds is when the columns of X are orthonormal,
because then XTX = I. But the diagonal dominance condition (16) certainly holds outside of the
orthonormal design case. We finish this section by giving two such examples below.

• Equi-correlation model. Suppose that ‖xj‖2 = 1 for all j = 1, . . . p, and xT
j xk = τ for all

j 6= k. Then the inverse of XTX is

(XTX)−1 =
1

1− τ

(

I − τ

1 + τ(p− 1)
11T

)

where 1 ∈ Rp is the vector of all ones. This is diagonally dominant as along as τ ≥ 0.

• Haar basis model. Suppose that

X =











1 0 . . . 0
1 1 . . . 0
...
1 1 . . . 1











, (20)

the lower triangular matrix of ones. Then (XTX)−1 is diagonally dominant. This arises, for
example, in the one-dimensional fused lasso where we solve

argmin
β∈Rn

1

2

N
∑

i=1

(yi − βi)
2 + λ

N
∑

i=2

|βi − βi−1|.

If we transform this problem to the parameters α1 = 1, αi = βi − βi−1 for i = 2, . . .N , then
we get a lasso with design X as in (20).

4. Strong rules for the elastic net

In the elastic net (Zou & Hastie (2005)) we solve the problem§

β̂ = argmin
β∈Rp

1

2
‖y−Xβ‖22 + λ1‖|β‖1 +

1

2
λ2‖β‖22. (21)

Letting

X̃ =

(

X√
λ2 · I

)

, ỹ =

(

y

0

)

,

we can rewrite (21) as

β̂ = argmin
β∈Rp

1

2
‖ỹ− X̃β‖22 + λ1‖β‖1. (22)

§This is the original form of the “naive” elastic net proposed in Zou & Hastie (2005), with additional the
factors of 1/2, just for notational convenience.

14 Tibshirani and Bien and Friedman and Hastie and Simon and Taylor and Tibshirani

In this (standard lasso) form we can apply SAFE and strong rules to discard predictors. Notice
|x̃T

j ỹ| = |xT
j y|, ‖x̃j‖2 =

√

‖xj‖22 + λ2, ‖ỹ‖2 = ‖y‖2. Hence the basic SAFE rule for discarding
predictor j is

|xT
j y| < λ1 − ‖y‖2 ·

√

‖xj‖22 + λ2 ·
λ1,max − λ1

λ1,max

.

The glmnet package uses the parametrization (αλ, (1−α)λ) instead of (λ1, λ2). With this parametriza-
tion the basic SAFE rule has the form

|xT
j y| < αλ− ‖y‖2 ·

√

‖xj‖2 + (1− α)λ · λmax − λ

λmax

. (23)

The strong screening rules have a simple form under the glmnet parametrization for the elastic net.
The basic strong rule for discarding predictor j is

|xT
j y| < α(2λ− λmax), (24)

while the sequential strong rule is

|xT
j

(

y −Xβ̂(λk−1)
)∣

∣ < α(2λk − λk−1). (25)

Figure 7 shows results for the elastic net with standard independent Gaussian data withN = 100,
p = 1000, for three values of α. There were no violations in any of these figures, that is, no predictor
was discarded that had a nonzero coefficient at the actual solution. Again we see that the strong
sequential rule performs extremely well, leaving only a small number of excess predictors at each
stage.

5. Strong rules for logistic regression

In this setting, we have a binary response yi ∈ {0, 1} and we assume the logistic model

Pr(Y = 1|x) = p(β0,β) = 1/(1 + exp(−β0 − xTβ)).

Letting pi = Pr(Y = 1|xi), we seek the coefficient vector β̂ that minimizes the penalized (negative)
log-likelihood,

β̂0, β̂ = argmin
β0∈R,β∈Rp

−
n
∑

i=1

(

yi log pi + (1− yi) log(1− pi)
)

+ λ‖β‖1. (26)

(We typically do not penalize the intercept β̂0.) El Ghaoui et al. (2010) derive a SAFE rule for
discarding predictors in this problem, based on the inner products between y and each predictor,
and derived using similar arguments to those given in the Gaussian case.

Here we investigate the analogue of the strong rules (5) and (6). The KKT conditions for problem
(26) are

xT
j

(

y − p(β̂0, β̂)
)

= λγj for j = 1, . . . p, (27)

where γj is the jth component of the subgradient of ‖β̂‖1, the same as in (9). Immediately we

can see the similarity between (8) and (9). Now we define cj(λ) = xT
j

(

y − p(β̂(λ))
)

, and again we
assume (10). This leads to the basic strong rule, which discards predictor j if

|xT
j (y − p̄)| < 2λ− λmax, (28)

Strong rules 15

1

111

0 200 400 600

0
20

0
40

0
60

0
80

0
10

00

Number of predictors in model

N
um

be
r

of
 p

re
di

ct
or

s
le

ft
af

te
r

fil
te

rin
g

222222
22
2
2
2
2
2

2
2

2

2

2

2

2

2

2

22

333333333
333

33
333

33
33

33
3333

33
333

333
333

333
3333

333
3333

33333333
333333333

3333333333
333333333
33333333333

0 0.14 0.4 0.66 0.95

1
2
3

SAFE
Basic strong
Seq strong 1

111111111111111111111111111 11

0 50 150 250

0
20

0
40

0
60

0
80

0
10

00

Number of predictors in model

N
um

be
r

of
 p

re
di

ct
or

s
le

ft
af

te
r

fil
te

rin
g

22222
2
2
2
2

2

2

2

2

2

2

2

2
22222222222 22

333333333
333

33333333
33333

333 33333333333
33333333333

3333333
33333333333333

33333333333333333333333333

0 0.26 0.64 0.86 1

11

1

1

1

11

0 50 100 150

0
20

0
40

0
60

0
80

0
10

00

Number of predictors in model

N
um

be
r

of
 p

re
di

ct
or

s
le

ft
af

te
r

fil
te

rin
g

2222
2
2
2
2

2

2

2

2

2

2

2

22

3333333333
3333

33333333333333333
3333333333333333333333

33333333333333333333333333333
3333333333

0 0.36 0.65 0.9 1

α = 0.1 α = 0.5 α = 0.9

Fig. 7. Elastic net: results for the different screening rules (23), (24), (25) for three different values of the
mixing parameter α. In the plots, we are fitting along a path of decreasing λ values and the plots show the
number of predictors left after screening at each stage. The proportion of variance explained by the model is
shown along the top of the plot. There were no violations of any of the rules in the 3 scenarios.

16 Tibshirani and Bien and Friedman and Hastie and Simon and Taylor and Tibshirani

where p̄ = 1ȳ and λmax = maxi |xT
i (y− p̄)|. It also leads to the sequential strong rule, which starts

with the fit p(β̂0(λk−1), β̂(λk−1)) at λk−1, and discards predictor j if

∣

∣

∣x
T
j

(

y − p(β̂0

(

λk−1), β̂(λk−1)
)

)∣

∣

∣ < 2λ− λ0. (29)

Figure 8 shows the result of applying these rules to the newsgroup document classification
problem (Lang 1995). We used the training set cultured from these data by Koh et al. (2007). The
response is binary, and indicates a subclass of topics; the predictors are binary, and indicate the
presence of particular tri-gram sequences. The predictor matrix has 0.05% nonzero values. Results
are shown for the basic strong rule (28) and the sequential strong rule (29). We were unable to
compute the basic SAFE rule for penalized logistic regression for this example, as this had a very
long computation time, using our R language implementation. But in smaller examples it performed
much like the basic SAFE rule in the Gaussian case. Again we see that the sequential strong rule
(29), after computing the inner product of the residuals with all predictors at each stage, allows us
to discard the vast majority of the predictors before fitting. There were no violations of either rule
in this example.

0 20 40 60 80 100

1e
+

01
1e

+
03

1e
+

05

Number of predictors in model

N
um

be
r

of
 p

re
di

ct
or

s
le

ft
af

te
r

fil
te

rin
g

1
11
111
1
1

1

11 1 11 11111 1 1 111 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1

2222222
2222222222222222222
222222222
2222222222222222 2 22 22222 2 2 222 2 2 2 2 2 2 2 222 2 2 2 2 2 2 2 2 2

1
2

Basic strong
Seq strong

Newsgroup data

Fig. 8. Penalized logistic regression: results for newsgroup example, using the basic strong rule (28) the
strong sequential strong rule (29). The broken curve is the 1-1 line, drawn on the log scale.

Some approaches to penalized logistic regression such as the glmnet package use a weighted least
squares iteration within a Newton step. For these algorithms, an alternative approach to discarding
predictors would be to apply one of the Gaussian rules within the weighted least squares iteration.
However we have found rule (29) to be more effective for glmnet.

Finally, it is interesting to note a connection to the work of Wu et al. (2009). These authors
used |xT

j (y− p̄)| to screen predictors (SNPs) in genome-wide association studies, where the number
of variables can exceed a million. Since they only anticipated models with say k ≤ 15 terms, they

Strong rules 17

selected a small multiple, say 10k, of SNPs and computed the lasso solution path to k terms. All
the screened SNPs could then be checked for violations to verify that the solution found was global.

6. Strong rules for general problems

Suppose that we are interested in a convex problem of the form

β̂ = argmin
β

f(β) + λ
r

∑

j=1

cj‖βj‖pj
. (30)

Here f is a convex and differentiable function, and β = (β1,β2, . . .βr) with each βj being a scalar
or a vector. Also λ ≥ 0, and cj ≥ 0, pj ≥ 1 for each j = 1, . . . r. The KKT conditions for problem
(30) are

−∇jf(β̂) = λcjθj for j = 1, . . . r, (31)

where ∇jf(β̂) = (∂f(β̂)/∂βj1 , . . . ∂f(β̂)/∂βjm) if βj = (βj1 , . . . βjm) (and if βj is a scalar, it is

simply the jth partial derivative). Above, θj is a subgradient of ‖β̂j‖pj
, and satisfies ‖θj‖qj ≤ 1,

where 1/pj + 1/qj = 1. In other words, ‖ · ‖pj
and ‖ · ‖qj are dual norms. Furthermore, ‖θj‖qj < 1

implies that β̂j = 0.

The strong rules can be derived by starting with the assumption that each ∇jf(β̂(λ)) is a
Lipschitz function of λ with respect to the ℓqj norm, that is,

∥

∥∇jf
(

β̂(λ)
)

−∇jf
(

β̂(λ̃)
)∥

∥

qj
≤ cj|λ− λ̃| for any λ, λ̃ and j = 1, . . . r. (32)

Now the sequential strong rule can be derived just as before: suppose that we know the solution
β̂(λk−1) at λk−1, and are interested in discarding predictors for the optimization problem (30) at
λk < λk−1. Observe that for each j, by the triangle inequality,

∥

∥∇jf
(

β̂(λk)
)∥

∥

qj
≤

∥

∥∇jf
(

β̂(λk−1)
)∥

∥

qj
+
∥

∥∇jf
(

β̂(λk)
)

−∇jf
(

β̂(λk−1)
)∥

∥

qj

<
∥

∥∇jf
(

β̂(λk−1)
)∥

∥

qj
+ cj(λk−1 − λk), (33)

the second line following from the assumption (32). The sequential strong rule for discarding
predictor j is therefore

∥

∥∇jf
(

β̂(λk−1)
)∥

∥

qj
< cj(2λk − λk−1). (34)

Why? Using (33), the above inequality implies that

∥

∥∇jf
(

β̂(λk)
)∥

∥

qj
< cj(2λk − λk−1) + cj(λk−1 − λk) = cjλk,

hence ‖θj‖qj < 1, and β̂j = 0. The basic strong rule follows from (34) by taking λk−1 = λmax =
maxi{‖∇if(0)‖qi/ci}, the smallest value of the tuning parameter for which the solution is exactly
zero.

The rule (34) has many potential applications. For example, in the graphical lasso for sparse
inverse covariance estimation (Friedman et al. 2007), we observeN multivariate normal observations
of dimension p, with mean 0 and covariance Σ. Let S be the observed empirical covariance matrix,
and Θ = Σ−1. The problem is to minimize the penalized (negative) log-likelihood over nonnegative
definite matrices Θ,

Θ̂ = argmin
Θ�0

− log detΘ+ tr(SΘ) + λ‖Θ‖1. (35)

18 Tibshirani and Bien and Friedman and Hastie and Simon and Taylor and Tibshirani

The penalty ‖Θ‖1 sums the absolute values of the entries of Θ; we assume that the diagonal is not
penalized. The KKT conditions for (35) can be written in matrix form as

Σ̂− S = λΓ, (36)

where Γij is the (i, j)th component of the subgradient of ‖Θ̂‖1. Depending on how we choose to
make (36) fit into the general KKT conditions framework (31), we can obtain different sequential
strong rules from (34). For example, by treating everything elementwise we obtain the rule: |Sij −
Σ̂ij(λk−1)| < 2λk − λk−1, and this would be useful for an optimization method that operates
elementwise. However, the graphical lasso algorithm proceeds in a blockwise fashion, optimizing
over one whole row and column at a time. In this case, it is more effective to discard entire rows
and columns at once. For a row i, let s12, σ12, and Γ12 denote Si,−i, Σi,−i, and Γi,−i, respectively.
Then the KKT conditions for one row can be written as

σ12 − s12 = λΓ12. (37)

Now given two values λk < λk−1, and the solution Σ̂(λk−1) at λk−1, we have the sequential strong
rule

‖σ̂12(λk−1)− s12‖∞ < 2λk − λk−1. (38)

If this rule is satisfied, then we discard the entire ith row and column of Θ, and hence set them to
zero (but retain the ith diagonal element). Figure 9 shows an example with N = 100, p = 300, and
standard independent Gaussian variates. No violations of the rule occurred.

0 50 100 150 200 250 300

0
50

10
0

15
0

20
0

25
0

30
0

Number rows/cols in model

N
um

be
r

ro
w

s/
co

ls
 le

ft
af

te
r

fil
te

rin
g

11
11

1

1

1

1

1

1
1 1 1 1 1 1 1 1 1 1 1 1 1111111111111111111111111111

22
2222

2
2

2
2

2
2

2

2

2

2
2

2

2 2
2

2 2222222222222222222222222222

1
2

Basic strong
Seq strong

Fig. 9. Graphical lasso: results for applying the basic and sequential strong rules (38). A broken line with unit
slope is added for reference.

After this article was completed, a better screening rule for the graphical lasso was discovered
by both Witten et al. (2011) and Mazumder & Hastie (2012) independently. It has the simple form

‖s12‖∞ < λ. (39)

Strong rules 19

In other words, we discard a row and column if all elements in that row and column are less than
λ. This simple rule is safe: it never discards predictors erroneously.

As a final example, the group lasso (Yuan & Lin 2007) solves the optimization problem

β̂ = argmin
β∈Rp

1

2

∥

∥

∥y −
G
∑

g=1

Xgβg

∥

∥

∥

2

2

+ λ

G
∑

g=1

√
ng‖βg‖2, (40)

where Xg is the N × ng data matrix for the gth group. The KKT conditions for (40) are

XT
g

(

y −
G
∑

ℓ=1

Xℓβ̂ℓ

)

= λ
√
ngθg for g = 1, 2, . . .G,

where θg is a subgradient of ‖β̂g‖2. Hence, given the solution β̂(λk−1) at λk−1, and considering a
tuning parameter value λk < λk−1, the sequential strong rule discards the gth group of coefficients
entirely (that is, it sets β̂g(λk) = 0) if

∥

∥

∥X
T
g

(

y −
G
∑

ℓ=1

Xℓβ̂ℓ(λk−1)
)∥

∥

∥

2

<
√
ng(2λk − λk−1).

7. Implementation and numerical studies

The strong sequential rule (34) can be used to provide potential speed improvements in convex
optimization problems. Generically, given a solution at λ0 and considering a new value λ < λ0, let
S(λ) be the indices of the predictors that survive the screening rule (34): we call this the strong set.
Denote by E the eligible set of predictors. Then a useful strategy would be

(a) Set E = S(λ).
(b) Solve the problem at value λ using only the predictors in E .
(c) Check the KKT conditions at this solution for all predictors. If there are no violations, we are

done. Otherwise add the predictors that violate the KKT conditions to the set E , and repeat
steps (b) and (c).

Depending on how the optimization is done in step (b), this could be quite effective.
First we consider a generalized gradient procedure for fitting the lasso. The basic iteration is

β̂ ← Stλ

(

β̂ + t ·XT (y −Xβ̂)
)

where Stλ(x) = sgn(x)(|x| − tλ)+ is the soft-threshold operator, and t is a stepsize. When p > N ,
the strong rule reduces the Np operations per iteration to ≈ N2. As an example, we applied the
generalized gradient algorithm with approximate backtracking to the lasso with N = 100, over a
path of 100 values of λ spanning the entire relevant range. The results in Table 3 show the potential
for a significant speedup.

Next we consider the glmnet procedure, in which coordinate descent is used, with warm starts
over a grid of decreasing values of λ. In addition, an “ever-active” set of predictors A(λ) is main-
tained, consisting of the indices of all predictors that have had a nonzero coefficient for some λ′

greater than the current value λ under consideration. The solution is first found for this set, then

20 Tibshirani and Bien and Friedman and Hastie and Simon and Taylor and Tibshirani

0 50 100 150 200

0
50

00
15

00
0

Number of predictors in model

N
um

be
r

of
 p

re
di

ct
or

s

111 1111 11 1111111 111111111 11 11111111111111111112

2
22
222 2222 22 2222222 222222222 22 2222222222222222222

1
2

Ever active
Basic strong

Full scale

0 50 100 150 200

0
10

00
30

00
50

00

Number of predictors in model
N

um
be

r
of

 p
re

di
ct

or
s

111 1111 11 1111111 111111111 11 1111111111111111111
2

2

2

2222
2
2
2
2
2
2
2
2

2
2
2
2
22222222222222222222222222222222222222 2222 22 2222222 222222222 22 2222222222222222222

Zoomed version

Fig. 10. Gaussian lasso setting, N = 200, p = 20, 000, pairwise correlation between features of 0.7. The first
50 predictors have positive, decreasing coefficients. Shown are the number of predictors left after applying
the strong sequential rule (6) and the number that have ever been active (that is, had a nonzero coefficient in
the solution) for values of λ larger than the current value. A broken line with unit slope is added for reference.
The right-hand plot is a zoomed version of the left plot.

the KKT conditions are checked for all predictors. If there are no violations, then we have the
solution at λ; otherwise we add the violators into the active set and repeat.

The existing glmnet strategy and the strategy outlined above are very similar, with one using the
ever-active set A(λ) and the other using the strong set S(λ). Figure 10 shows the active and strong
sets for an example. Although the strong rule greatly reduces the total number of predictors, it
contains more predictors than the ever-active set; accordingly, the ever-active set incorrectly excludes
predictors more often than the strong set. This effect is due to the high correlation between features
and the fact that the signal variables have coefficients of the same sign. It also occurs with logistic
regression with lower correlations, say 0.2.

In light of this, we find that using both A(λ) and S(λ) can be advantageous. For glmnet we
adopt the following combined strategy:

(a) Set E = A(λ).
(b) Solve the problem at value λ using only the predictors in E .
(c) Check the KKT conditions at this solution for all predictors in S(λ). If there are violations,

add these predictors into E , and go back to step (a) using the current solution as a warm start.
(d) Check the KKT conditions for all predictors. If there are no violations, we are done. Otherwise

add these violators into A(λ), recompute S(λ) and go back to step (a) using the current
solution as a warm start.

Note that violations in step (c) are fairly common, while those in step (d) are rare. Hence the fact
that the size of S(λ) is ≪ p makes this an effective strategy.

We implemented this strategy and compare it to the standard glmnet algorithm in a variety of
problems, shown in Tables 2 and 4. We see that the new strategy offers a speedup factor of 20 or
more in some cases, and never seems to slow the computations substantially.

Strong rules 21

The strong sequential rules also have the potential for space savings. With a large dataset, one
could compute the inner products with the residual offline to determine the strong set of predictors,
and then carry out the intensive optimization steps in memory using just this subset of the predictors.

The newest versions of the glmnet package, available on the CRAN archive, incorporate the
strong rules discussed in this paper. In addition, R language scripts for the examples in this paper
will be made freely available at http://www-stat.stanford.edu/~tibs/strong.

8. Discussion

The global strong rule (3) and especially the sequential strong rule (4) are extremely useful heuristics
for discarding predictors in lasso-type problems. In this paper we have shown how to combine these
rules with simple checks of the Karush-Kuhn-Tucker (KKT) conditions to ensure that the exact
solution to the convex problem is delivered, while providing a substantial reduction in computation
time. We have also derived more general forms of these rules for logistic regression, the elastic net,
group lasso, graphical lasso, and general additive p-norm regularization. In future work it would be
important to understand why these rules work so well (rarely make errors) when p≫ N .

Acknowledgements

We thank Stephen Boyd for his comments, and Laurent El Ghaoui and his coauthors for sharing
their paper with us before publication and for their helpful feedback on their work. We also thank
the referees and editors for constructive suggestions that substantially improved this work. Robert
Tibshirani was supported by National Science Foundation Grant DMS-9971405 and National Insti-
tutes of Health Contract N01-HV-28183. Jonathan Taylor and Ryan Tibshirani were supported by
National Science Foundation Grant DMS-0906801.

References

Candes, E. J. & Plan, Y. (2009), ‘Near-ideal model selection by ℓ1 minimization’, Annals of Statistics
37(5), 2145–2177.

Chen, S., Donoho, D. & Saunders, M. (1998), ‘Atomic decomposition for basis pursuit’, SIAM

Journal on Scientific Computing 20(1), 33–61.

Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. (2004), ‘Least angle regression’, Annals of

Statistics 32(2), 407–499.

El Ghaoui, L., Viallon, V. & Rabbani, T. (2010), Safe feature elimination in sparse supervised
learning, Technical Report UC/EECS-2010-126, EECS Dept., University of California at Berkeley.

El Ghaoui, L., Viallon, V. & Rabbani, T. (2011), Safe feature elimination for the lasso and sparse
supervised learning. Submitted.

Fan, J. & Lv, J. (2008), ‘Sure independence screening for ultra-high dimensional feature space’,
Journal of the Royal Statistical Society Series B, to appear .

Friedman, J., Hastie, T., Hoefling, H. & Tibshirani, R. (2007), ‘Pathwise coordinate optimization’,
Annals of Applied Statistics 2(1), 302–332.

22 Tibshirani and Bien and Friedman and Hastie and Simon and Taylor and Tibshirani

Fuchs, J. (2005), ‘Recovery of exact sparse representations in the presense of noise’, IEEE Transac-

tions on Information Theory 51(10), 3601–3608.

Koh, K., Kim, S.-J. & Boyd, S. (2007), ‘An interior-point method for large-scale l1-regularized
logistic regression’, Journal of Machine Learning Research 8, 1519–1555.

Lang, K. (1995), Newsweeder: Learning to filter netnews., in ‘Proceedings of the Twenty-First
International Conference on Machine Learning (ICML)’, pp. 331–339. Available as a saved R
data object at http://www-stat.stanford.edu/~hastie/glmnet.

Mazumder, R. & Hastie, T. (2012), ‘Exact covariance thresholding into connected components for
large-scale graphical lasso’, Journal of Machine Learning Research 13, 723–736.

Meinhausen, N. & Buhlmann, P. (2006), ‘High-dimensional graphs and variable selection with the
lasso’, Annals of Statistics 34, 1436–1462.

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’, Journal of the Royal Sta-

tistical Society Series B 58(1), 267–288.

Tibshirani, R. J. & Taylor, J. (2011), ‘The solution path of the generalized lasso’, Annals of Statistics
39(3), 1335–1371.

Tropp, J. (2006), ‘Just relax: Convex programming methods for identifying sparse signals in noise’,
IEEE Transactions on Information Theory 3(52), 1030–1051.

Wainwright, M. (2006), Sharp thresholds for high-dimensional and noisy sparsity recovery using
ℓ1-constrained quadratic programming (lasso), Technical report, Statistics and EECS Depts.,
University of California at Berkeley.

Witten, D., Friedman, J. & Simon, N. (2011), ‘New insights and faster computations for the graph-
ical lasso’, Journal of Computational and Graphical Statistics 20(4), 892–900.

Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E. & Lange, K. (2009), ‘Genomewide association analysis
by lasso penalized logistic regression’, Bioinformatics 25(6), 714–721.

Yuan, M. & Lin, Y. (2007), ‘Model selection and estimation in regression with grouped variables’,
Journal of the Royal Statistical Society, Series B 68(1), 49–67.

Zhao, P. & Yu, B. (2006), ‘On model selection consistency of the lasso’, Journal of Machine Learning

Research 7, 2541–2563.

Zou, H. & Hastie, T. (2005), ‘Regularization and variable selection via the elastic net’, Journal of
the Royal Statistical Society Series B. 67(2), 301–320.

Strong rules 23

Appendix: Derivation of the SAFE rule

The basic SAFE rule of El Ghaoui et al. (2010) for the lasso is defined as follows: fitting at λ, we
discard predictor j if

|xT
j y| < λ− ‖xj‖2‖y‖2

λmax − λ

λmax

, (41)

where λmax = maxj |xT
j y| is the smallest λ for which all coefficients are zero. The authors derive

this bound by looking at a dual of the lasso problem (1). This dual has the following form. Let
G(θ) = 1

2
‖y‖22 − 1

2
‖y + θ‖22. Then the dual problem is

θ̂ = argmax
θ

G(θ) subject to |xT
j θ| ≤ λ for j = 1, . . . p. (42)

The relationship between the primal and dual solutions is θ̂ = Xβ̂ − y, and

xT
j θ̂ ∈











{+λ} if β̂j > 0

{−λ} if β̂j < 0

[−λ, λ] if β̂j = 0

(43)

for each j = 1, . . . p.
Here is the argument that leads to (41). Suppose that we have a dual feasible point θ0: that

is, |xT
j θ| ≤ λ for j = 1, 2, . . . p. Below we discuss specific choices for θ0. Let γ = G(θ0) Hence γ

represents a lower bound for the value of G at the solution θ̂. Therefore we can add the constraint
G(θ) ≥ γ to the dual problem (42) and problem is changed. Then for each predictor j, we find

mj = max
θ
|xT

j θ| subject to G(θ) ≥ γ. (44)

If mj < λ (note the strict inequality), then we know that at the solution |xT
j θ̂| < λ, which implies

that β̂j = 0 by (43). In other words, if the inner product |xT
j θ| never reaches the level λ over the

set feasible set G(θ) ≥ γ, then the coefficient β̂j must equal zero.
Now for a given lower bound γ, the problem (44) can be solved explicitly, and this gives mj =

|xT
j y| +

√

yTy − 2γ · ||xj ||2. Then the rule mj < λ is equivalent to

|xT
j y| < λ−

√

yTy − 2γ · ||xj ||2 (45)

To make this usable in practice, we need to find a dual feasible point θ0 and substitute the resulting
lower bound γ = G(θ0) into expression (45). A simple dual feasible point is θ0 = y · (λ/λmax) and
this yields γ = (1/2)yTy(1− (1−λ/λmax)

2); substituting into expression (45) gives the basic SAFE
rule (41).

A better feasible point θ0 (that is, giving a higher lower bound) will yield a rule in (45) that

discards more predictors. For example, the recursive SAFE rule starts with a solution β̂(λ0) for

some λ0 > λ and the corresponding dual point θ0 = Xβ̂(λ0) − y. Then θ0 is scaled by the factor
λ/λ0 to make it dual feasible and this leads to the recursive SAFE rule of the form

|xT
j y| < λ− c (46)

where c is a function of y, λ, λ0 and θ0. Although the recursive SAFE rule has the same flavor as
the sequential strong rule, it is interesting that it involves the inner products xT

j y rather than xT
j r,

with r = y −Xβ̂(λ0) being the residual. Perhaps as a result, it discards far fewer predictors than
the sequential strong rule.

24 Tibshirani and Bien and Friedman and Hastie and Simon and Taylor and Tibshirani

Table 1. Results for sequential strong rule on three large classification datasets from the UCI
machine learning repository (http: // archive. ics. uci. edu/ ml/), and a standard microarray
dataset. glmnet was run with the default path of 100 λ values, in both regression and classifica-
tion mode. Shown are the average number of predictors left after screening by the strong rule,
(averaged over the path of λ values). There were no violations of the screening rule in any of the
runs.

Dataset Model N p Average number remaining Number of violations
after screening

Arcene Gaussian 100 10, 000 189.8 0
Logistic 153.4 0

Dorothea Gaussian 800 100, 000 292.4 0
Logistic 162.0 0

Gisette Gaussian 6000 5000 1987.3 0
Logistic 622.5 0

Golub Gaussian 38 7129 60.8 0
Logistic 125.5 0

Table 2. Glmnet timings (seconds) for the datasets of Table 1.

Dataset N p Model Without strong rule With strong rule

Arcene 100 10, 000 Gaussian 0.32 0.25
Binomial 0.84 0.31

Gisette 6000 5000 Gaussian 129.88 132.38
Binomial 70.91 69.72

Dorothea 800 100, 000 Gaussian 24.58 11.14
Binomial 55.00 11.39

Golub 38 7129 Gaussian 0.09 0.08
Binomial 0.23 0.35

Table 3. Timings (seconds) for the generalized gradi-
ent procedure for solving the lasso (Gaussian case).
N = 100 samples are generated in each case, with
all entries N(0, 1) and no signal (regression coeffi-
cients are zero). A path of 100 λ values are used,
spanning the entire operating range. Values shown
are the mean and standard deviation of the mean,
over 20 simulations. The times are somewhat large,
because the programs were written in the R lan-
guage, which is much slower than C or Fortran. How-
ever the relative timings are informative.

p Without strong rule With strong rule

200 10.37 (0.38) 5.50 (0.26)
500 23.21 (0.69) 7.38 (0.28)
1000 43.34 (0.85) 8.94 (0.22)
2000 88.58 (2.73) 12.02 (0.39)

Strong rules 25

Table 4. Glmnet timings (seconds) for fitting a lasso problem in differ-
ent settings. There are p = 20, 000 predictors, N = 200 observations.
Values shown are mean and standard error of the mean over 20 simu-
lations. For the Gaussian model the data were generated as standard
Gaussian with pairwise correlation 0 or 0.4, and the first 20 regression
coefficients equalled to 20, 19, . . . 1 (the rest being zero). Gaussian noise
was added to the linear predictor so that the signal-to-noise ratio was
about 3.0. For the logistic model, the outcome variable y was gener-
ated as above, and then transformed to (sign(y) + 1)/2. For the sur-
vival model, the survival time was taken to be the outcome y from the
Gaussian model above and all observations were considered to be un-
censored.

Setting Correlation Without strong rule With strong rule

Gaussian 0 0.99 (0.02) 1.04 (0.02)
0.4 2.87 (0.08) 1.29 (0.01)

Binomial 0 3.04 (0.11) 1.24 (0.01)
0.4 3.25 (0.12) 1.23 (0.02)

Cox 0 178.74 (5.97) 7.90 (0.13)
0.4 120.32 (3.61) 8.09 (0.19)

Poisson 0 142.10 (6.67) 4.19 (0.17)
0.4 74.20 (3.10) 1.74 (0.07)

