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ABSTRACT: This is the first in a series of arti-

cles dealing with machine learning in asset manage-

ment. Asset management can be broken into the 

following tasks: (1) portfolio construction, (2) risk 

management, (3) capital management, (4) infra-

structure and deployment, and (5) sales and mar-

keting. This article focuses on portfolio construction 

using machine learning. Historically, algorithmic 

trading could be more narrowly defined as the auto-

mation of sell-side trade execution, but since the 

introduction of more advanced algorithms, the defi-

nition has grown to include idea generation, alpha 

factor design, asset allocation, position sizing, and 

the testing of strategies. Machine learning, from 

the vantage of a decision-making tool, can help in 

all these areas.

TOPICS: Big data/machine learning, analysis 

of individual factors/risk premia, portfolio 

construction, performance measurement*

F
inancial machine learning research 

can loosely be divided into four 

streams. The f irst concerns asset 

price prediction where researchers 

attempt to predict the future value of securi-

ties using a machine learning methodology. 

The second stream involves the prediction 

of hard or soft financial events like earnings 

surprises, regime changes, corporate defaults, 

and mergers and acquisitions. The third 

stream entails the prediction and/or estima-

tion of values that are not directly related to 

the price of a security, such as future revenue, 

volatility, firm valuation, credit ratings, and 

factor quantiles. The fourth and last stream 

comprises the use of machine learning tech-

niques to solve traditional optimization and 

simulation problems in finance like optimal 

execution, position sizing, and portfolio 

optimization.

The first three streams are concerned 

with the creation of trading strategies,  

• Machine learning can help with most portfolio construction tasks like idea generation, 

alpha factor design, asset allocation, weight optimization, position sizing, and the testing 

of strategies.

• This is the first in a series of articles dealing with machine learning in asset management 

and more narrowly on trading strategies equipped with machine-learning technologies.

• Each trading strategy can end up using multiple machine learning frameworks. The author 

highlights nine different trading varieties each making use of a reinforcement-, supervised-, 

or unsupervised-learning framework or a combination of these learning frameworks.

KEY FINDINGS
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and the last stream is concerned with everything else, 

like weight optimization, optimal execution, risk 

management, and capital management. Within these 

streams we can make use various machine learning 

techniques. These techniques can be broken into 

the following: (1) processing of unstructured data, 

(2) supervised learning, (3) validation techniques,  

(4) unsupervised learning, and (5) reinforcement 

learning. Every machine learning solution is constructed 

out of a mixture of these. In this series, we look at the 

application of these techniques in asset management.

Exhibit 1 outlines a few different ways in which 

machine learning can be used in portfolio construc-

tion. Portfolio construction can broadly be broken into 

trading strategies1 and weight optimization. In the first 

part of this series we look at trading strategies and 

1 This article’s primary focus is on showing how machine 

learning can be used to develop trading strategies as opposed to the 

performance of the trading strategies.

in the second part we look at weight optimization. 

The trading strategy styles in the first three streams of 

f inancial machine learning research, price, event, and 

value, can be split into unique trading themes depending 

on the data used and the outcome one is trying to pre-

dict. Price strategies include technical, systematic global 

macro, and statistical arbitrage, because of the central 

role price has to play in the input data and predicted 

outcomes. Event strategies include trend, soft-event, 

and hard-event themes, because of the need to predict 

a change. Value strategies include risk parity, factor 

investing, and fundamental themes, because these mea-

sures estimate intermediary values not directly related 

to the asset price.

Each trading theme can end up using different 

machine learning frameworks. For example, technical 

and statistical arbitrage strategies can use a supervised- 

or reinforcement-learning approach or a combination of 

both, and factor investing strategies can use a supervised-

or unsupervised-learning approach. The best labeling 

E X H I B I T  1

Financial Machine Learning in Portfolio Construction
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practice or naming convention for machine learning 

trading strategies would be a combination of the 

trading theme, the method, and the submethod used. 

The submethod drives one level deeper than the 

machine learning framework; for a reinforcement-

learning framework, the submethod would for example 

be policy optimization, Q-learning, or model-based 

approaches. In this article, I will not provide informa-

tion on data-processing techniques like natural language 

processing, image and voice processing, and feature gen-

eration; however, it should be noted that these tech-

niques can form part of reinforcement-, supervised-, 

and unsupervised-learning frameworks.

It is necessary to define the difference between 

the aforementioned themes. Technical trading is the use 

of market data and its transformations to predict the 

future price of an asset. Trend trading involves strate-

gies where one takes a position in the asset only after 

predicting a change in trend. Statistical arbitrage seeks 

mispricing by detecting asset relationships and/or 

potential anomalies, believing the anomaly will return 

to normal. Risk parity strategies diversif ies across assets 

according to the volatility they exhibit; when one asset 

class’s volatility exceeds another rebalancing can occur 

by selecting individual units within each asset class 

or simply by using leverage. Event trading involves the 

prediction of hard or soft f inancial events like corpo-

rate defaults, mergers and acquisitions, and earnings 

surprises. Factor investing attempts to buy assets that 

exhibit a trait historically associated with promising 

investment returns. Systematic global macro relies on 

macroeconomic principles to trade across asset classes 

and countries. Fundamental trading relies on the use of 

accounting, management, and sentiment data to predict 

whether a stock is over or undervalued. In this section, 

I will provide machine learning applications for some 

of these trading themes.

As soon as you have trained your machine 

learning model, you can decide whether you want to 

use the model as part of a greater ensemble of models 

to create an improved f inal prediction model that 

would be used for trading purposes. This ensemble of 

models can additionally pass through a second super-

vised machine learning model that would decide on the 

most profitable model weighting scheme; this is known 

as a stacked model. Once you have devised a few inde-

pendently stacked trading models, you can pass the 

proprietary model returns to an unsupervised-learning 

portfolio-weight–optimization scheme like hierar-

chical risk parity for the f inal strategy allocation. It 

is currently feasible to substitute a large portion of 

traditional algorithmic trading techniques with their 

machine learning equivalents.

It is possible to construct a strategy that learns all 

the way down. For example, although one can create 

one reinforcement-learning agent that is able to ingest a 

lot of data and make profitable decisions inside an envi-

ronment, you are often better off to create more simple 

agents at the lower level while pyramiding additional 

decision-making responsibilities upward. Lower-level 

agents can look at pricing and fundamental and limited 

capital market data, whereas a meta-agent can select or 

combine strategies based on potential regime shifts that 

happen at the economic level and only make the trading 

decisions then.2

A meta-learner can choose between a few hun-

dred models based on the current macro-regime. At 

the end, all the meta learners, or depending on how 

deep you go, meta-cubed learners, should form part 

of the overall portfolio. The core function is to carry 

our portfolio-level statistical arbitrage to the outmost 

extreme using all the tools available financial or oth-

erwise. You need not use an additional level of rein-

forcement- or supervised-learning algorithms; you can 

also use unsupervised clustering algorithms. You can 

discover multiple economic regimes by using k-nearest 

neighbors (KNN) clustering, an unsupervised-learning 

technique, to select the potential regime of the last 30 

days. Then one can select strategy by looking at the 

historic success across all regime types.3

Machine learning is limitless in the sense that 

you can tweak it endlessly to achieve some converging 

performance ceiling. Some of these tweaks include the 

different methods to perform validation, hyperparam-

eter selection, up-and down sampling, outlier removal, 

data replacement, and so on. Features can also be trans-

formed in myriad ways; the dimensions of features 

can be reduced or inf lated; variables can be generated 

through numerous unsupervised methods; variables can 

2 As a result, it is not always necessary, or optimal, to include 

all the data at the lower modeling level, and it therefore becomes 

an optimization question in itself to decide at what modeling level 

to use the data in your hierarchical modeling structure.
3 While doing this, pay attention to the stability of clusters. 

The assignments might not persist in time series; mini-batch and 

ward clustering algorithms tend to be more persistent.
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also be combined, added, or removed; models can be 

fed into models; and on top of that it is possible to use 

all machine-learning frameworks (i.e., supervised, rein-

forcement, and unsupervised learning) within a single 

prediction problem. The only way to know whether any 

of these adjustments are beneficial is to test it empirically 

on validation data.

How do we know if any of these adjustments 

would lead to a better model? Most of the time we can 

use proxies for potential performance like the Akaike 

information criterion (AIC) or feature–target correla-

tion. These approaches get us halfway toward a good 

outcome. The best approach is to retest the model each 

time a new adjustment is introduced. The tests should 

not be performed on the data that would be used in 

testing the performance of the model (i.e., the holdout 

set); instead a separate validation set should be speci-

fied for this purpose. It is also preferable to change the 

validation data after each new empirical test to ensure 

that these adjustments do not overfit the validation set; 

one such approach is known as K-fold cross-validation, 

where the validation set is randomly partitioned into K 

equal-sized subsamples for each test.

In this article, we survey a few ways in which 

machine learning can be used to enhance or even create 

trading strategies. As stated, we are only limited by our 

imagination when devising machine learning strategies. 

In this section, we highlight nine different trading vari-

eties that make use of a reinforcement-, supervised-, 

or unsupervised-learning framework or a combina-

tion of learning frameworks. I named these strategies 

Tiny RL, Tiny VIX CMF, Agent Strategy, Industry 

Factor, Global Oil, Earnings Surprise Prediction, Deep 

Trading, Stacked Trading, and Pairs Trading. I orga-

nized them according to machine-learning framework, 

and each strategy is titled by name, theme, method, and 

submethod.

REINFORCEMENT LEARNING

Reinforcement learning (RL) in finance comprises 

the use of an agent that learns how to take actions in an 

environment to maximize some notion of cumulative 

reward. We have an agent that exists in a predefined 

environment; the agent receives as input the current state 

St and is asked to take an action At to receive a reward 

Rt+1, the information of which can be used to identify 

the next optimal action, At+1, given the new state St+1.  

The f inal objective function can be the realized/

unrealized prof it and loss and even a risk-adjusted 

performance measure like the Sharpe ratio.

Tiny RL—Technical/RL/Policy

In this example we will make use of gradient descent 

to maximize a reward function.4 The Sharpe ratio will 

be used as the reward function. The Sharpe ratio is used 

as an indicator to measure the risk-adjusted performance 

of an investment over time. Assuming a risk-free rate of 

zero, the Sharpe ratio can be written as

 =
−

S A

B A
T 2

 (1)

Further, to know what percentage of the portfolio 

should buy the asset in a long-only strategy, we can 

specify the following function, which will generate a 

value between 0 and 1:

 = θF tanh xt

T

t( )  (2)

The input vector is xt = [1, rt–M, …, Ft–1] where rt is 

the percent change between the asset at time t and t – 1 

and M is the number of time-series inputs. This means 

that at every step the model will be fed its last position 

and a series of historical price changes that are used to 

calculate the next position. Once we have a position at 

each time step, we can calculate our returns R at each 

time step using the following formula. In this example, 

δ is the transaction cost:

 = − δ −
− −

R F r F Ft t t t t1 1  (3)

To perform gradient descent, one must compute 

the derivative of the Sharpe ratio with respect to theta, 

or θ
dS

d
T  using the chain rule and the previous formula. 

It can be written as

 ∑θ
= +

θ




 θ

+
θ





= −

−dS

d

dS

dA

dA

dR

dS

dB

dB

d

dR

dF

dF

d

dR

dF

dF

d
T

t

T
T

t

T t

t

t

t

t.
 

1 1

1

  

 

 

(4)

Please see the online supplement for the code.

4 Thank you to Teddy Koker for developing this easy-to-

follow method.
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Tiny VIX CMF—StatArb/RL/Policy

CBOE Volatility Index (VIX) and Futures on 

the Euro STOXX 50 Volatility Index (VSTOXX) are 

liquid and so are exchange-traded notes/exchange-

traded funds (ETNs/ETFs) on VIX and VSTOXX.5 

Prior research has shown that the future curves exhibit 

stationary behavior with mean reversion toward a con-

tango. First, one can imitate the futures curves and ETN 

price histories by building a model to manage the nega-

tive roll yield. The constant-maturity futures (CMF) can 

be specified as follows:

Denote θ = T – t to have constant maturity,

=
θ

+V Ft t t, 0, for t ≤ T1 ≤ t + θ ≤ T2 define

 =
− − θ

−
a t

T t

T T
( )  

( )2

2 1

 (5)

Note that:

• 0 ≤ a(t) ≤ 1

• a(T1 − θ) = 1 and a(T2 − θ) = 0

• linear in t

The CMF is the interpolation,

 = + −
θV a t F a t Ft t

T

t

T( ) (1 ( ))1 2  (6)

where θVt  is a stationary time series.

One can then go on to define the value of the ETN 

so that you take the roll yield into account. I wanted to 

focus on maturity and instrument selection and therefore 

ignored the roll yield and simply focused on the CMFs. 

But, if you are interested, the value of the ETN can be 

obtained as follows:

 =
+ −

+ −
+

dl

l

a t dF a t dF

a t F a t F
rdtt

t

t

T

t

T

t

T

t

T
 
( ) (1 ( ))

( ) (1 ( ))

1 2

1 2
 (7)

where r is the interest rate.

Unlike the Tiny VIX CMF approach, this strategy 

makes use of numerical analyses before a reinforcement 

learning step. First, out of all seven securities (  J), estab-

lish a matrix of 1 and 0 combinations for simulation 

purpose to obtain a matrix of 27 − 2 = 126 combinations. 

5 Thank you to Andrew Papanicolaou at NYU for his initial 

assistance to develop this method.

Then use a standard normal distribution to randomly 

assign weights to each value in the matrix. Create an 

inverse matrix and do the same. Now normalize the 

matrix so that each row equals 1 to force neutral portfo-

lios. The next part of the strategy is to run this random-

weight assignment simulation N (600) number of times, 

depending on your memory capacity, because this whole 

trading strategy is serialized. Thus, each iteration (N ) 

produces normally distributed long and short weights 

(W ) that have been calibrated to initial position neu-

trality (long weights = short weights); the final result is 

15,600 trading strategies.

The next part of this system is to filter out strate-

gies with the following criteria. Select the top X% of 

strategies for their highest median cumulative sum over 

the period. From that selection, select the top Y% for 

the lowest standard deviation. Of that group, select Z% 

again for the highest median cumulative sum strate-

gies. X, Y, and Z are risk–return parameters that can 

be adjusted to suit your investment preferences. In this 

example, they are set at 5%, 40%, and 25% respectively. 

It is possible to eff iciently select these parameters by 

adding them to the reinforcement learning action space. 

Of the remaining strategies, iteratively remove highly 

correlated strategies until only 10 (S) strategies remain. 

With those remaining 10 strategies, which have all been 

selected using only training data, use the training data 

again to formulize a reinforcement learning strategy 

using a simple multilayer perceptron (MLP) neural net-

work with two hidden layers to select the best strategy 

for the specific month by looking at the last 6 months 

returns of all the strategies (i.e., 60 features in total). 

Finally test the results on an out of sample test set. Note 

in this strategy no hyperparameters selection was done 

on a development set, as a result, it is expected that 

results can further be improved.

Please see the online supplement for the code.

Agent Strategy—Price/RL/ 

Various Submethods

Here, more than 20 reinforcement-learning sub-

methods are developed using different algorithms. 

The first three in the code supplement do not make 

use of RL; their rules are determined by arbitrary 

inputs. This includes a turtle-trading agent, a moving-

average agent, and a signal-rolling agent. The rest of 

the coding notebook contains progressively more 
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involved reinforcement-learning agents. The notebook 

investigates, among others, policy-gradient agents, 

Q-learning agents, actor–critic agents, and some neuro-

evolution agents and their variants. With enough time, 

all these agents can be initialized, trained, and measured 

for performance. Each agent individually generates a 

chart that contains some of the performance informa-

tion, as shown in Exhibit 2.

In this section we will look at three of the most 

popular methods, Q-learning, policy gradient, and 

actor–critic. Some quick mathematical notes: s = states, 

a = actions, r = rewards. In addition, action-value func-

tions Q, state-value functions V, and advantage func-

tions A are defined as

 ( , )   [ ( , )| , ]∑=
π

′=

π ′ ′θ
Q s a E r s a s at t

t t

T

t t t t  (8)

 =
π

π

π

θ

V s E Q s at a a s t tt t t
( ) [ ( , )] ~ ( | )  (9)

 = −
π π πA s a Q s a V st t t t t( , ) ( , ) ( )  (10)

Then, 
∅

πV st( )  is the fitted value function for V π(St).

Q-Learning is an online action-value func-

tion learning with an exploration policy, such as 

epsilon–greedy.6 You take an action, observe, maximize, 

adjust policy and do it all again.

Take some action ai and observe ( , , , )′s a s ri i i i :

 ( , ) max ( , )
a

= + γ ′ ′
′

θy r s a Q s ai i i i i  (11)

∅ ← ∅ − α
∅

−
∅

θ

dQ

d
s a Q s a yi i i i i( , )( ( , ) )

Then explore with the epsilon–greedy policy:

 ( | )
1     ( , )

/( 1) 
π =

− =

−







θ
a a

if a argmax Q s a

A otherwise
t t

t a t tt
ε

ε

 
(12)

With policy gradients, you maximize the rewards 

by taking actions where higher rewards are more likely.

 

Sample { } from ( | )

( ) ( | ) ( , )

( )

∑∑ ∑( )( )
τ π

∇ θ ≈ ∇ π

θ ← θ + α∇ θ

θ

θ θ θ

θ

a s

J log a s r s a

J

I

t t

t

i

t

i

ii i t

i

t

i  

(13)

6 Epsilon–greedy is very simple: Keep track of the average 

payout of each strategy and select the strategy with the highest 

current average payout. It is therefore an exploitive as opposed to 

an explorative policy.

E X H I B I T  2

Example of a Reinforcement Learning Strategy’s Performance

120
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Total gains –796.679978, Total Investment –7.966800%
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Actor–critic is a combination of policy-gradient 

and value-function learning. In this example, I focus on 

the online as opposed to the batch model.

       

Take action ~ ( | ), get( , , , )

Update using target   ( )

Evaluate ( , ) ( , ) ( ) ( )

( ) ( | ) ( , )

( )

π ′

+ γ ′

= + γ ′ −

∇ θ ≈ ∇ π

θ ← θ + α∇ θ

θ

∅
π

∅
π

π
∅
π

∅
π

θ θ θ
π

θ

a s s a s r

V r V s

A s a r s a V s V s

J log a s A s a

J

� �

��

�

�  

(14)

Please see the online supplement for the code.

SUPERVISED LEARNING

Supervised-learning (SL) techniques are used to 

learn the relationship between independent attributes 

and a designated dependent attribute. SL refers to the 

mathematical structure describing how to make a pre-

diction yi given xi. Instead of learning from the envi-

ronment like RL, SL methods learn the relationships 

in data. All supervised learning tasks are divided into 

classification or regression tasks. Classification models 

are used to predict discrete responses (e.g., binary  

1, 0; multiclass 1, 2, 3). Regression is used for predicting 

continuous responses (e.g., 3.5%, 35 times, $35,000).  

In the examples that follow, we will use both classifica-

tion and regression models.

Industry Factor—Factor/SL/LASSO

In this example, we will look at the use of machine 

learning tools to analyze industry return predictability 

based on lagged industry returns across the economy 

(Rapach et al. 2019). A strategy that longs the highest 

and shorts the lowest predicted returns returns an alpha  

of 8%. In this approach, one has to be careful about 

multiple testing and postselection bias. A LASSO (Least 

Absolute Shrinkage and Selection Operator) regression7 

is eventually used in a machine-learning format to weight 

industry importance, but before that we should first for-

mulate a standard predictive regression framework:

     1, , ,y Xbi T i

*

iγγ εε= + + = …
∗a for i Ni  (15)

7 LASSO regressions shrink regression coeff icients toward 

zero to encourage simple sparse models.

where

 

y r r X x x

x r r for j N

b b b

[ ]; [ ];

[ ]  1, ,

[ ]; [ ] 

i i T N

j i i T

i i i N i i i T

,1 , 1

,0 , 1

*

,1

*

,

*

,1 ,
ε ε ε

= … = …

= … = …

= … = …

−

 
(16)

In addition, the LASSO objective (γT) can be 

expressed as follows, where ϑi is the regularisation 

parameter.

 arg
1

2
y

2

2

1
, 

i

1

Xb b
R

T i i
γγ− − + ϑ



∈ ∈

min
T

a
a b R

i i

i
N

 (17)

The LASSO regression generally performs well 

in selecting the most relevant predictor variables. Some 

argue that the LASSO penalty term overshrinks the 

coefficient for the selected predictors. In that scenario, 

one can use the selected predictors and re-estimate 

the coeff icients using ordinary least squares (OLS).  

This submodel—an OLS regression model in this 

case—can be replaced by any other machine-learning 

regressor. In fact, the main model and submodel can 

both be machine-learning regressors, the first selecting 

the features and second predicting the response variable 

based on those features.

Please see the online supplement for the code.

Global Oil—Systematic Macro/SL/Elastic Net

When oil exits a bear market, the currency of 

oil-producing nations should also rebound. With this 

strategy, we will investigate the effect the price of 

oil has on the Norwegian krone (NOK) and identify 

whether a profitable trading strategy can be executed. 

To start we need a stabilizer currency to regress against. 

The currency should be unrelated to the currency under 

investigation. Something like the Japanese yen ( JPY) 

is a good candidate. From here on, one would use the 

price of the NOK and Brent as measured against JPY 

to identify whether the Norwegian currency is under- 

or overvalued. We will use an elastic net regression as 

the machine-learning technique. It is a good tool when 

multicollinearity is an issue.
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An elastic net is a regularized8 regression method 

that combines both L1 (LASSO) and L2 (Ridge) pen-

alties.9 The estimates from the elastic net method are 

defined by

 β = − β + λ β + λ
β

argmin y X Bˆ ( )
2

2

2

1 1
 (18)

The loss function becomes strongly convex as 

a result of the quadratic penalty term, therefore pro-

viding a unique minimum. Now that the predictors are 

in place, one has to set up a pricing signal; one sigma 

two-sided is the common practice in arbitrage. We short 

if it spikes above the upper threshold and long on the 

lower threshold. The stop-loss will be set at two standard 

deviations. At that point, one can expect the interpreta-

tion of the underlying model to be wrong and therefore 

choose to exit the position.

Please see the online supplement for the code.

Earnings Surprise Prediction— 

Soft-Event/SL/Gradient Boosting Machines

Here we investigate an earnings prediction strategy. 

It is a classification task where the response variable for 

the machine-learning model is the occurrence of an 

earnings surprise. An earnings surprise is simply defined 

as a percentage change from the analyst’s earnings per 

share (EPS) expectation and the actual EPS that crosses 

a predefined threshold s. The percentage threshold, s, 

expresses the magnitude of the surprise.

 =
−

−X
EPSAC EPSAN

EPSAN
it it

it

 
1  (19)

 = < −SURP where X Sitsx 0,  ,Negative  (20)

 = − ≤ ≤SURP where S X Sitsx  1,  , Neutral  (21)

 = >SURP where X Sitsx 2,  , Positive  (22) 

8 Regularization is any method that decreases the com-

plexity of the model with the hope of improving its out-of-sample 

performance.
9 The biggest difference between L1 and L2 is that L1’s penalty is 

equal to the absolute value of the coefficient and L2’s penalty is equal 

to the square of the magnitude; as a result, L1 can eliminate coeffi-

cients and L2 can only shrink coefficients without eliminating them.

To provide some clarity, i is the ith firm in the 

sample, t is the time of the quarterly earnings announce-

ment, s is the respective constant surprise threshold, x is a 

constant percentage of the sample of earnings announce-

ments sorted by date, EPSAN is analyst earnings per 

share consensus forecast, and EPSAC is the actual earn-

ings per share as reported by the firm.

Following is high-level pseudo-code to provide 

a better understanding of some of the core concepts of 

the developed black-box model and its relationship with 

the training set, test set, prediction values, and metrics:

1. Classifier = XGBoostTreeClassifier (TrainX, SURPits(0:x),  

Valid, Param)

2. PredSURPith = Classifier(TestX)

3. Metrics = Functions(SURPits(x:1), PredSURPith)

Using the predictions PredSURP ith, you can 

expresses a simple strategy by going long (short) on stocks 

that are expected to experience a positive (negative) 

surprise tomorrow (t), at closing today (t − 1), and liqui-

dating the stocks at closing tomorrow (t). The stocks are 

equally weighted to maintain well-diversified returns 

for the day because there are, on average, only four firms 

in a portfolio of expected surprises, but there can be as 

few as one firm in a portfolio. For each day, we form 

stocks into positive and negative surprise prediction 

portfolios for surprises that deviate from −50% to 50% 

to select the best performing threshold. The preferred 

threshold is selected based on tests done against a valida-

tion set. The results in the validation set show that the 

best trading strategies exist between 5%–20%, with 15% 

being the optimal trading strategy for positive surprises.

The strategies recommended in this section fully 

invest all capital in each event. It is therefore important 

to include some sort of loss minimization strategy. As a 

result, one strategy incorporates a stop-loss for stocks that 

fell more than 10%. Here 10% is only the trigger, and a 

conservative loss of 20% is used to simulate the slippage:

   
( )

,   
 

10%,  20%
, 1

, 1

, 1

, 1

=
− −

< − = −
( )

( )

( )

( )

−
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−

−

R
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S
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Sl S

S
Rit

it i t

i t
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(23)

The equal weighted return of a portfolio of surprise 

firms is then calculated as

  
1

, 0, ,
1

∑= = =

=

R
n

R where n R Rpt

i

n

it pt Mt

pt

 (24)
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In this equation, i is all the firms that experience 

surprises on date t. Therefore, Rit is the return on the 

common stock of firm i on date t and npt is the number 

of f irms in portfolio p at the close of the trading on  

date t − 1. RMt is the market return rate.

Exhibit 3 reports the cumulative portfolio returns 

of buying and holding positive and negative surprises 

predictions for all firms with a market value of $10 billion 

or more. On average, there are about four firms for each 

portfolio day. On days where no trading surprises occur, 

a position in the market is taken. The band in the middle 

is the 99% significance band obtained from 1,000 Monte 

Carlo simulations that randomly take a position in firms 

before an earnings announcement. In total there are 

2,944 trading days for the long strategy; 215 of these days 

are returns from earnings surprises comprising 774 firms, 

and the rest are simple market return days.

Deep Trading—Technical/SL/Various DL

There are 30 different neural network submethods 

investigated here.10 This includes Vanilla RNN, GRU, 

10 None of the supervised learning strategies have been turned 

into trading strategies yet. Here we are simply predicting the price 

of the stock a few days in advance, so the models can easily be trans-

formed into directional trading strategies from this point.

LSTM, Attention, DNC, Byte-net, Fairseq, and CNN 

methods.11 The mathematics of the different frameworks 

are vast and would take too much space to include here. 

None of these methods have been turned into trading 

strategies yet. Here, we are simply predicting the future 

price of the stock, so the models can easily be trans-

formed into directional trading strategies from this 

point. You can construct the trading policies by hand 

or rely on reinforcement learning strategies to develop 

the best trading policies.

Exhibit 4 can help us to understand the major 

differences between the submethods. A Vanilla RNN 

uses the simple multiplication of inputs (xt) and previous 

outputs (ht–1) passed through a tanh activation function. 

A GRU introduces the additional concept of a gate 

that decides whether to pass a previous output (ht–1) to a 

next cell in an attempt to solve the vanishing gradient 

problem.12 It is simply an additional mathematical opera-

tion performed on the same inputs. With the LSTM 

an additional gate is introduced to the GRU method. 

11 Listed in order: RNN = recurrent neural network, 

GRU = gated recurrent unit, LSTM = long short-term memory, 

Attention = attention mechanism, DNC = differentiable neural 

computer, CNN = convolutional neural network.
12 A diff iculty found in artif icial neural networks that may 

completely stop the neural network from training further.

E X H I B I T  3

Portfolio Value 15% Surprise Prediction Strategy
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Again, these are additional mathematical operations on 

the same inputs. Moving from RNN to LSTM we are 

simply introducing more control knobs for the f low 

and mixing of input data to establish the final weights. 

The LSTM method is designed to focus on establishing 

weights that maintain information that persist for longer 

periods. The codes of these three methods and many 

others are available in the online supplement.

Please see the online supplement for the code.

Stacked Trading—Technical/SL/Stacked

Stacked trading is purely experimental; it involves 

the training of multiple models (base learners or level 

1 models), after which they are weighted using an 

extreme gradient-boosting model (metamodel or level 

2 model). In the first stacked model, which I will refer 

to as EXGBEF, we use autoencoders to create additional 

features. In the second model, DFNNARX, autoen-

coders are used to reduce the dimensions of existing 

features. In the second model, I include additional eco-

nomic (130+ time series) and fund variables to the stock 

price variables. Similar to the deep trading example, 

we have price movement predictions, but we have not 

developed a trading policy yet. Exhibit 5 graphically 

shows the concept of stacking.

The training data X has m observations and n 

features. There are M different models that are trained on 

X. Each model provides predictions y ˆ for the outcome y, 

which are then cast into second-level training data X(l2), 

which is now m × M sized. The M predictions become 

features for this second-level data. A second-level model 

(or models) can then be trained on these data to produce 

the final outcomes y ̂  
fin

, which will be used for predic-

tions. With stacking it can help to use out-of-sample 

training data at each modeling level; otherwise the nth 

level model will be biased to use only the best-performing 

model in the previous modeling level.

Please see the online supplement for the code.

UNSUPERVISED LEARNING

Unlike SL, which finds patterns using both input 

data and output data, unsupervised learning (UL) methods 

finds patterns using only input data. An unsupervised-

learning framework is useful when you are not quite sure 

what to look for. It is often used for the exploratory anal-

ysis of raw data and for problem discovery purposes. Most 

UL techniques take the form of dimensionality reduction 

or cluster analysis where you group data items that have 

some measure of similarity based on characteristic values. 

Two of the most important techniques are K-means clus-

tering and principal component analysis (PCA).

PCA attempts to reduce the number of features 

while preserving the variance, whereas clustering 

reduces the number of data points by summarizing them 

according to their mean expectations. However, those 

clusters assignments can also be used to label each data 

point with its assigned cluster, leading to a dimension-

ality reduction toward only one feature. K-means and 

PCA in some sense maximize a similar objective func-

tion with K-means having an additional categorical 

constraint. The only requirement to be called an unsu-

pervised learning strategy is to learn a new feature space 

that captures the characteristics of the original space by 

maximizing some objective function.13

13 Inherent to the PCA is the maximization of variance 

through a simple linear algebra operation by taking the eigenvectors 

of a covariance matrix of features.

E X H I B I T  4

Architecture of RNN, GRU, and LTSM Cells
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Pairs Trading—StatArb/UL/K-Means

Pairs trading is a simple statistical arbitrage strategy 

that finds pairs that exhibit similar historic price behavior 

and then, once they diverge, betting on the expectation 

that they will converge. With unsupervised-learning 

methods, we can add an extra safeguard by selecting 

stocks that are structurally similar. In a universe of assets 

over time, Xt, identify Kt features that help to define 

the characteristic of the company. One can use features 

such as the price-to-earnings ratio, dividend yield, and 

return on assets, as well as some market-based data like 

lagged returns and technical indicators.

You can then use the data to perform K-mean clus-

tering to reduce the distance between data points around 

a predefined number of clusters. Within each cluster pick 

the respective assets X t

x, so that corr X Xt

x

t

x( , )1 2  exceeds 

some threshold P. We can let X t

1 and X t

2 denote the prices 

of two correlated stocks, if we believe in the mean-

reverting nature and the ground truth of the shared 

correlation, we can initiate a mean-reverting process 

(Zt) as follow, = −Z X K Xt t t

1

0

2, where K0, is a positive 

scalar such that at initiation Zt = 0.

This mean reverting process, i.e., the change in 

mean, is governed by dZt = a(b – Zt)dt + σdWt, Z0 = 0, 

where a > 0 is the rate of reversion, b the equilibrium 

level, σ > 0 the volatility, and Wt the standard Brownian 

motion. This Brownian motion exists within the mean-

reverting process; hence it cannot have drift. Zt is thus 

the pairs position: 1 share long in X t

1 and K0 shares short 

in X t

2; and dZt describes the underlying dynamic under 

strict mathematical assumptions.

Given the construction, we expect the prices of 

assets to revert to normal. For all the clustered pairs, we 

can specify an easy and arbitrary trading rule, which spec-

ifies that if ( )/( [ ]) 0.1,1

0

2 1
1

1

0

2
− Σ − >

=
abs X K X abs X K Xt t n t

n

t t  

then you sell the high-priced asset and buy the low-

priced asset, and you do the reverse as soon as the for-

mula hits 0.5, whereby you assume that this might be 

the new natural relational equilibrium. In practice we 

also impose additional state constraints—for example, 

we require, Zt ≥ M, where M is the stop-loss level in 

place for unforeseeable events and to satisfy a margin 

call; further alterations should include transaction and 

borrowing costs.

Pair selection and trading logic can be much more 

involved than what we just described. Instead of using 

simple trading rules, dynamic model-based approaches 

can be used to define the trading logic. The previously 

mentioned mean reversion process can be discretized 

into an AR process where the parameters can be esti-

mated iteratively and be used in the trading rule. This is 

called the stochastic spread method.

In addition, instead of performing the final pair 

selection using distance, rolling OLS cointegration or 

Kalman f ilter cointegration, unsupervised-learning 

methods like hierarchical clustering, K-means, varia-

tional autoencoder embedding, or DBSCAN14 can be 

14 DBSCAN = density-based spatial clustering of applications 

with noise.
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Architecture of Stacked Models
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used. Although an unsupervised-learning method might 

not be the best method to directly select pairs, it is a good 

intermediate step to create clusters with K-means out of 

which traditional pairs selection strategies can be used.

SUPERVISED LEARNING VERSUS 

REINFORCEMENT LEARNING

The general pipeline for supervised machine-learning 

trading involves the acquisition of data, processing of data, 

prediction, policy development, backtesting, parameter 

optimization, live paper simulation, and finally live trading 

of the strategy. The basic supervised learning task involves 

some form of price prediction. This includes regressors 

that predict the price level and classifiers that predict price 

direction and magnitude in predefined classifications for 

future time steps. Supervised machine-learning models, 

especially neural networks, can keep up with changing 

market regimes as long as they are able to do online 

training.15 The reason supervised-learning processes tend 

to fail is because the iterative steps from ML prediction 

through to policy development, backtesting, and param-

eter optimization are fragile, slow, and prone to error.  

A further issue is that the performance simulation turns 

up too late in the game after much hard work has been 

done. Also, the policy does not develop intelligently with 

the machine-learning model.

The benef it of reinforcement-learning algo-

rithms is that the final objective function can be the 

realized/unrealized profit and loss but also values like 

the Sharpe ratio, maximum drawdown, and value-at-

risk measures. Reinforcement learning only has four or 

so steps as opposed to the seven or eight of supervised 

learning. RL allows for end-to-end optimization on 

what maximizes rewards. The RL algorithm directly 

learns a policy. RL has to take an action in an interac-

tive environment. Compared with supervised learning, 

which answers the question Will the asset increase in price 

tomorrow? reinforcement learning answers the question 

Should I buy the asset today? The reinforcement-learning 

algorithm is therefore already packaged as a trading 

strategy. This does not mean that it is necessarily hard 

to create a trading strategy out of a supervised-learning 

task; for example, one can simply buy all assets that are 

predicted to increase in price tomorrow.

15 A learning framework that constantly updates the model as 

new data is made available.

Therefore, the reinforcement learning process 

draws on a larger process of automation. Similar to 

supervised strategy development, you still have to ensure 

that the model works, but here instead of backtesting 

you use a simulated environment or paper trading. 

Remember that the focus should remain on out-of-

sample performance at the end of the day, so be sure to 

def late your performance metrics appropriately to con-

trol for multiple testing. In a nutshell, RL comprises data 

analysis, agents training in a simulated environment, 

paper trading, and then finally live trading. In each of 

the last three steps the agent gets exposed to an envi-

ronment. The simplest RL approach is a discrete action 

space with three actions: buy, hold, and sell. Unlike 

supervised models, reinforcement models specify an 

action as opposed to a prediction; however, the deci-

sion masks an underlying prediction.

So, if RL provides all these miraculous benefits, 

why is it barely used in industry? Well, even though 

RL can lead to a great strategy in fewer steps with less 

human involvement, it takes longer to train and is very 

computationally intensive. RL needs a lot of data, even 

more so than supervised machine learning. It can also 

be expensive to test if you cannot reconstruct a good 

simulated environment. In finance this is generally not 

a big issue, but it does become an issue when accurate 

environment feedback is necessary, in which case you 

might have to revert to the real environment when the 

simulated environment will not cut it; this can become 

very expensive. Lastly, the bigger the action space, the 

harder it is to optimize an RL agent.16

It is likely that supervised learning will still rule 

the pack in the foreseeable future. Supervised learning 

is already quite f lexible, and we should expect to see 

a lot of innovations to bring the experience of devel-

oping strategies closer to that of reinforcement learning 

without forsaking the benefits of supervised learning. 

For example, researchers in SL for a long time have 

looked at embedding policy decisions into SL algorithms. 

Researchers in finance have also written about creating 

models that predict the best position sizes and entry and 

exit points (de Prado 2018), bringing the trading policy 

and rules closer to the ML model and closer to a form 

of automated intelligence.

Let us consider a few more disadvantages of 

reinforcement learning. First, RL’s convergence to an 

16 Not to mention the ridiculously slow optimization for 

continuous as opposed to discrete action space.
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optimal value is not guaranteed; the famous Bellman 

update can only guarantee the optimal value if every 

state is visited an infinite number of times and every 

action is tried an infinite amount of times within each 

state, so essentially never. You of course do not need 

a truly optimal value; approximate optimality is fine. 

The big issue is that the sample size, needed to obtain 

a good level of approximate optimality, increases with 

the size of the state and action space. Further, without 

any assumptions there is no better way than to explore 

the space randomly, so progress at first is small and slow. 

Continuous states and actions are a serious problem; 

how are we supposed to visit an infinite number of states 

an infinite number of times for an infinite number of 

continuous values with small and slow time steps?

Some of the best approximations can only be done 

through the generalized nature of supervised learning. 

Generalization can also be adopted in RL using func-

tion approximation as opposed to storing infinite values 

in an infinitely large table. It is worth nothing that this 

function approximation is still orders of magnitude 

harder than normal supervised learning problems, the 

reason being that you start off the model with no data, 

and as you collect data the action value changes and the 

ground truth labels also remain unfixed; a point pre-

viously labeled as good, might look bad in the longer 

run. To get closer to the true function, the agent has to 

keep exploring. This exploration in uncertain dynamics 

means that RL is way more sensitive to hyper-parameters 

and random seeds than SL because it does not train on 

a fixed data set and is dependent on network output, 

exploration mechanism, and environment randomness. 

Thus, the same run can produce different results. But 

do notice how great it is that you are never given any 

samples from the true target function, yet you are able 

to learn by optimizing on a goal. That is why RL is 

so popular as a concept.

We simultaneously expect to see a lot of improve-

ment on the RL trading front, so that RL adopts the 

advantages of SL trading methods while not forgoing 

its own strengths. Conceptually RL offers a kind of 

paradigm shift where we are not overtly focused on 

predictive power, which is an auxiliary task, but rather 

the optimization of actions, which is and has always been 

the primary goal. SL and RL algorithms indirectly pick 

up on well-known trading strategies without having to 

predefine and identify them. For example, the gradient 

step that leads the machine agent to buy more of what 

did the best yesterday is indirectly creating a momentum 

investing strategy. We can expect machine learning 

to become part of the toolkit of all asset managers in 

the future.

CONCLUSIONS

Around 40 years ago Richard Dennis and William 

Eckhardt put systematic trend-following systems on a 

roll; 15 years later, statistical arbitrage made its way 

onto the scene; 10 years later, high-frequency trading 

started to stick its head out. In the meantime, machine-

learning tools were introduced to make statistical arbi-

trage much easier and more accurate. Machine learning 

today, among other things, assists investment managers 

to ref ine the accuracy of their predictions by using 

supervised learning, improve the quality of their deci-

sions by using reinforcement learning, and enhance their 

problem discovery skills by using unsupervised learning.

Technological adoption within portfolio manage-

ment moves fast, and over the decades we have seen 

technologies come and go. It is likely that this cycle in 

quantitative finance will persist and that it also applies to 

machine learning in asset management, with one caveat: 

Machine learning is also practically revolutionary; instead 

of just maximizing alpha, it also minimizes overheard 

costs. Machine learning is already having large economic 

effects on many financial domains, and it is poised to 

grow further. Advanced machine-learning models 

present myriad advantages in f lexibility, efficiency, and 

enhanced prediction quality.

In this article we have paid special attention to 

how machine learning can be used to improve various 

types of trading strategies. We started by identifying 

important components to asset management in the 

context of machine learning, one of which is portfolio 

construction, which itself was divided into trading and 

weight optimization sections. The trading strategies 

were classif ied according their respective machine-

learning frameworks (i.e., reinforcement, supervised 

and unsupervised learning). The article finished with a 

section explaining the difference between reinforcement 

learning and supervised learning, both conceptually and 

in relation to their respective advantages and disadvan-

tages. The next article in this series discusses weight 

optimization strategies.
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ABSTRACT: The rate of failure in quantitative finance is high, 

particularly in financial machine learning applications. The few 

managers who succeed amass a large amount of assets and deliver 

consistently exceptional performance to their investors. However, that 

is a rare outcome, for reasons that the author explains in this article.  

In the author’s experience, 10 critical mistakes underlie those failures.
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ABSTRACT: In this article, the author introduces the Hierar-

chical Risk Parity (HRP) approach to address three major concerns 

of quadratic optimizers, in general, and Markowitz’s critical line 

algorithm (CLA), in particular: instability, concentration, and under-

performance. HRP applies modern mathematics (graph theory and 

machine-learning techniques) to build a diversified portfolio based 

on the information contained in the covariance matrix. However, 

unlike quadratic optimizers, HRP does not require the invertibility 

of the covariance matrix. In fact, HRP can compute a portfolio 

on an ill-degenerated or even a singular covariance matrix—an 

impossible feat for quadratic optimizers. Monte Carlo experiments 

show that HRP delivers lower out-of-sample variance than CLA, 

even though minimum variance is CLA’s optimization objective.  

HRP also produces less risky portfolios out of sample compared to 

traditional risk parity methods.
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ZHOU
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ABSTRACT: In this article, the authors use machine learning 

tools to analyze industry return predictability based on the informa-

tion in lagged industry returns. Controlling for post-selection infer-

ence and multiple testing, they find significant in-sample evidence of 

industry return predictability. Lagged returns for the financial sector 

and commodity- and material-producing industries exhibit widespread 

predictive ability, consistent with the gradual diffusion of information 

across economically linked industries. Out-of-sample industry return 

forecasts that incorporate the information in lagged industry returns 

are economically valuable: Controlling for systematic risk using leading 

multifactor models from the literature, an industry-rotation portfolio 

that goes long (short) industries with the highest (lowest) forecasted 

returns delivers an annualized alpha of over 8%. The industry-

rotation portfolio also generates substantial gains during economic 

downturns, including the Great Recession.
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