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Fig. 1. Cruise control system with proportional control

Saturation and bias term

The error between the desired set point and the actual
output is defined as

e(t) = r(t)− y(t) (1)

where r(t) is the desired set point. The set point can be
constant or time varying. Consider the example of cruise
control shown in figure 1 where u is the throttle signal
adjusting the flow of fuel to the engine. Assume that the
desired speed is 65. Under proportional control, we have

u(t) = Kp(r(t)− y(t)) (2)

If the output is also 65, there is no action by the controller
since u = 0. Therefore, it is not possible to achieve zero
steady state error using the control law of equation 2. A
small modification is needed as follows

u(t) = u0 +Kpe(t) (3)

where u0 is called the bias or null value. It can be defined
as the value of u that cause y = r when there is no
disturbance. This bias is not always needed, but there are
situations where it is necessary. For digital controllers, u is
usually expressed as a percentage.

Saturation is a nonlinear phenomenon. It is in general a
characteristic of the physical limitations of the hardware. For
example a valve cannot be more open that its max value
and a motor cannot rotate more than its maximum rated

Fig. 2. Proportional control with and without saturation

speed. These limitations need to be taken into account. The
proportional controller with saturation and bias is illustrated
in figure 2. The saturation shown in the figure is an important
limitation that needs to be taken into account.

Standard PID form

The PID control given by

u(t) = Kp +Ki

∫
e(t)dt+Kd

e(t)

dt
(4)

is called ideal parallel form. Another form called the standard
form is widely used in industry. The standard form is
discussed below.

PI control under standard form

The proportional integral control is widely used because
of its important practical advantage: it eliminates the steady
state error. The continuous time standard form transfer
function of a PI controller is

Kp(1 +
1

τIs
) (5)

PD control under standard form

PD control has two terms, a proportional term and a
derivative term. This controller is also called rate action,
pre–act control and anticipatory control. The PD continuous
time standard form transfer function is

Kp(1 + τDs) (6)
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Proportional, integral and derivative under standard form.

PI and PID control have been dominant control algorithms
for process control for decades (about 95% of process
controllers utilize some form of PID). The continuous time
standard form transfer function for PID controller is given by

Kp(1 +
1

τIs
+ τDs) (7)

Position and velocity algorithms for digital controllers

There exist several variants of PID control. Three different
variants are discussed below.

Position algorithm

The discrete time equation for the digital PID controller
output is given by

u(k) = u0+Kp

e(k) +
T

τI

k∑
j=1

e(j) +
τD
T

(e(k)− e(k − 1))


(8)

where T is the sampling time. This form is called position
algorithm.

Velocity algorithm

In the position PID control, we calculated the actual value
of the PID controller output. In the velocity form we calculate
the change in the controller output. The velocity form can
be derived from the position form as follows:

u(k − 1) = u0 +Kp

e(k − 1) +
T

τI

k−1∑
j=1

e(j)

 (9)

+Kp

[τD
T

(e(k − 1)− e(k − 2))
]

(10)

The velocity form is based on the difference given by

∆u = u(k)− u(k − 1) (11)

and therefore

∆u = Kp

[
e(k)− e(k − 1) +

T

τI
e(k)

]
(12)

+Kp

[τD
T

(e(k)− 2e(k − 1) + e(k − 2))
]

(13)

It is possible to obtain an explicit formula for the controller
as follows

u(k) = u(k − 1) +Kp

[
e(k)− e(k − 1) +

T

τI
e(k)

]
(14)

+Kp

[τD
T

(e(k)− 2e(k − 1) + e(k − 2))
]

(15)

PID with set point weighting

The input is weighted as follows:

u = Kp(αr − y) +Ki

∫ ∞
0

(r(τ)− y(τ)dτ +Kd(β
dr

dt
− dy

dt
)

(16)
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Fig. 3. Illustration of integral wind up. Top: sign of the error alternates,
positive and negative values cancel out. Bottom: error sign is always
positive, saturation is more likely to happen

where α and β are small constants. They are called set
point weights.

Problems with PID controllers: Derivative kick and integral
windup

A sudden change in the error that usually results from
the change in the set point will cause the derivative part to
become very large. This spike is undesirable. One way to
solve this issue is by using −dydt instead of dedt . Integral wind
up (or reset wind up) is another problem that happens when
the integral output becomes large and the controller output
becomes saturated. The build up of the integral terms is
called integral windup. Consider the time response of figure
3. In figure 3–top, the integral term initially increases but
begins decreasing again when the error changes sign. The
positive and negative terms cancel out and the controller
moves away from the saturation point. In figure 3–bottom,
the integral term keeps increasing and this may result in in
integral wind up. The PID velocity form is called anti-integral
wind up because the summation is eliminated.

Performance criteria for closed loop systems

The performance criteria are as follows

• The closed loop system is stable
• Steady state error is eliminated
• Desired transient response
• Robust, the closed loop system is insensitive to

changes in the plant conditions and molding inaccu-
racies.

• Disturbance rejection

It is not possible to achieve all these goals simultaneously
because of the conflicts and trade offs that may exist.
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Fig. 4. Illustration of the continuous cycling method

PID control design methods

Several techniques are used

• Model based design methods
• Computer simulations
• Online tuning

Model and simulation-based methods use approximation of
the plant model. Online tuning methods are experimental.
Methods based on the plant model allow for initial setting
of the controller. Computer simulation (Matlab, Labview and
many other platforms) allow for comparison between the
different alternatives.

Experimental online tuning

Experimental online tuning is also called field tuning. It
is based on testing, trial and error. Having a good initial
model can be very helpful in experimental tuning because
it makes the tuning process more straightforward and less
time consuming. Here we focus our discussions on the
continuous cycling and the step reactive curve methods.

Continuous cycling

Introduced by Ziegler and Nichols in 1942, it is based on
trial and error. After the system has reached its steady state,
the integral and proportional actions are eliminated. The
experiment’s configuration is shown in figure 4-top. The gain
Kp is set to a small value and then increased slowly until
sustained oscillations with constant amplitude occur. The
numerical value of the gain for which sustained oscillations
with constant amplitude occur is called the ultimate gain
(Kpu), its corresponding period is called the ultimate period
(Pu). Once Kpu and Pu are determined, the table below
is used to calculate the PID parameters. Illustration of the
continuous cycling method is shown in figure 4.
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Fig. 5. Sustained oscillations for the continuous cycling method


Ziegler −Nichols Kp τI τD

P 0.5Kpu −−− −−−
PI 0.45Kpu 0.83Pu −−−
PID 0.6Kpu 0.5Pu 0.125Pu

 (17)

Example

Design a PID control for the system whose response
is shown in figure 5. The ultimate gain for the sustained
oscillations is 6.

It is clear from the oscillations that Pu = 3.68s. Therefore

Kp = 0.6Kpu = 3.6 (18)

τI = Pu/2 = 1.8 (19)

τD = Pu/8 = 0.45 (20)

The main drawback of this method is that it pushes the
system to the limit of stability, which can result in hazardous
situations.

Astrom and Hagglund tuning method

This method is an effective alternative to the continuous
cycling method. It uses an on-off controller with dead–
zone. After the on-off controller is connected to the plant,
the closed loop system exhibits sustained oscillations. The
principle of the method is illustrated in figure 6. Astrom and
Hagglund derived an approximation of the ultimate gain as
follows

Kpu =
4d

πa
(21)

where a, d are shown in figure 7. Once Kpu, Pu are deter-
mined, the Ziegler–Nichols table (17) can be used to cal-
culate the controller parameters. One important advantage
of the Astrom and Hagglund method is that it can be easily
automated.
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Fig. 6. Top: Astrom and Hagglund tuning method and bottom: step test
method
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Fig. 7. Top: on–off controller output signal and bottom: sustained oscilla-
tions response

Step test method

This is another method proposed by Ziegler and Nichols in
1942. This method is also called the plant reaction curve or
Ziegler and Nichols open loop method. After the system has
reached its steady state, a small step change is introduced,
the plant reaction curve is obtained as shown in figure 8-
bottom. The controller parameters are derived based on
the reaction curve parameters using table 24. The open
loop transfer function whose response is shown in figure
8-bottom is

G̃ =
Ke−θs

τzns+ 1
(22)

Fig. 8. Experiment setting and step response reaction curve

where K, τzn, θ can be obtained form the reaction curve.
Let us define

K0 =
τzn
Kθ

(23)

The PID parameters can be determined from the table below
Ziegler −Nichols Kp τI τD

P K0 −−− −−−
PI 0.9K0 3.3θ −−−
PID 1.2K0 2θ 0.5θ

 (24)

Example

Consider the reaction curve shown in figure 9. The goal
is derive the PID control parameters. From the graph we
have: K = 3, θ = 2, τzn = 1, from which we get

Kp = 0.2 (25)

τI = 4 (26)

τD = 1 (27)

Additional reading

Model based design methods

Two methods are discussed here: the direct synthesis
method and the internal model control.

Direct synthesis method

The controller is designed based on the desired closed
loop transfer function. The method can be used to design
but not limited to PID controllers. The closed loop transfer
function is given by

Y (s)

R(s)
=

Gc(s)G(s)

1 +Gc(s)G(s)
(28)

where
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Fig. 9. Step test reaction curve

• Gc(s) is the controller transfer function
• G(s) is the open loop transfer function.

Rearranging the terms and solving for the controller transfer
function yields the following equation

Gc(s) =
1

G(s)

Y (s)
R(s)

1− Y (s)
R(s)

(29)

In order to solve for the controller’s transfer function we need
to know:

• the desired closed loop transfer function
• the open loop transfer function.

We can define a desired closed loop transfer function based
on the desired characteristics of the system. We call this
function (

Y (s)

R(s)

)
d

(30)

Assuming we can determine an approximation G̃ of the open
loop transfer function, the controller equation becomes

Gc(s) =
1

G̃(s)

(
Y (s)
R(s)

)
d

1−
(
Y (s)
R(s)

)
d

(31)

Several possibilities exist for the desired closed loop system,
Ideally we want the closed loop response to be equal to the
input, that is (

Y (s)

R(s)

)
d

= 1 (32)

This is too perfect and is not possible in practice. A more
realistic approach is to use a first order system.

First order system

In this case the desired closed loop system is a simple
first order system (

Y (s)

R(s)

)
d

=
1

τcs+ 1
(33)

where τc is the closed loop time constant. The controller
equation is reduced to the following equation

Gc =
1

G̃(s)

1

τcs
(34)

If the process has a delay, we can use the closed loop
transfer function with delay(

Y (s)

R(s)

)
d

=
e−θs

τcs+ 1
(35)

where θ is a time delay. The equation for the controller is

Gc =
1

G̃(s)

e−θs

τcs+ 1 + e−θs
(36)

Assuming a small delay, the delay can be approximated as

e−θs = 1− θs (37)

and the controller as

Gc =
1

G̃(s)

e−θs

(τc + θ)s
(38)

Clearly, equations (34) and (38) depend on the approxima-
tion of the open loop system. This discussed below.

A. Open loop transfer function approximation

Several methods exist to approximate the open loop
transfer function such as the step response and the fre-
quency response. Here we consider first and second order
approximations with delay.

B. First order approximation

The open loop system is approximated by a first order
transfer function as follows

G̃(s) =
Ke−θs

(τs+ 1)
(39)

where τ is the open loop time constant. Using equation (38)
and knowing that the controller’s equation is

Gc = Kp(1 +
1

τIs
) (40)

we get

Kp =
τ

K(τc + θ)
(41)

τI = τ (42)

C. Second order approximation

The transfer function is approximated by a second order
transfer function as follows
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Fig. 10. Closed loop response for different values of the time constant

G̃(s) =
Ke−θs

(τ1s+ 1)(τ2s+ 1)
(43)

By substituting in the controller equation we get

Kp =
τ1 + τ2
K(τc + θ)

(44)

τI = τ1 + τ2 (45)

τD =
τ1τ2
τ1 + τ2

(46)

where
Gc = Kp(1 +

1

τIs
+ τDs) (47)

Example

Consider the following approximation of the open loop
transfer function

G̃(s) =
2e−1s

(10s+ 1)(5s+ 1)
(48)

Design a PID controller when τc = 1s, 3s, 10s and simulate
the system behavior.

• τc = 1s⇒ Kp = 3.7500, τI = 15; τD = 3.3333
• τc = 3s⇒ Kp = 1.8750, τI = 15; τD = 3.3333
• τc = 10s⇒ Kp = 0.68, τI = 15; τD = 3.3333

A simulation is shown in shown in figure 10

Internal Model Control

The IMC method uses a simplified model of the control
loop where another controller called IMC controller is intro-
duced. The standard control loop and the IMC model are
shown in figure 11. The IMC controller is denoted by G∗c .
The first step is to establish the relationship between the two

Fig. 11. Standard and IMC models

controllers. Assuming the block diagrams are equivalent, it
is possible to write

Gc =
G∗c

1−G∗cG̃
(49)

There is one to one relationship between Gc and G∗c . This
implies that for each IMC controller thre is a corresponding
standard controller. The IMC method first finds an expres-
sion for G∗c and then derives an equation for Gc. This is
done in two steps:

• Step 1: The open loop model is written as

G̃ = (G̃+)(G̃−) (50)

where G̃+ contains any time delays and right half plane
zeros.

• Step 2: The IMC controller is derived using the following
equation

G̃∗c =
1

(G̃−)(τcs+ 1)r
(51)

where τc is the closed loop time constant and r is a
positive integer that characterizes the system order

Example

Use IMC to design a PID controller for the following
system

G̃(s) =
Ke−1s(−1 + s)

(0.5s+ 1)(3s+ 1)
(52)

We have

G̃−(s) =
K

(0.5s+ 1)(3s+ 1)
(53)

for r = 1, we have

G∗c(s) =
(0.5s+ 1)(3s+ 1)

K(τcs+ 1)
(54)
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After rearranging the terms, we get

Kp =
13

K(4τc + 1)
(55)

τI = 3.5 (56)

τD = 3/13 (57)

It is important to note that the choice of τc plays an important
role. High values of τc result in a more conservative con-
troller and low values result in more aggressive controller.
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