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Abstract

Objective

To evaluate the effects of Process-Reengineering interventions on the Electronic Health

Records (EHR) of a hospital over 7 years.

Materials and methods

Temporal Variability Assessment (TVA) based on probabilistic data quality assessment was

applied to the historic monthly-batched admission data of Hospital La Fe Valencia, Spain

from 2010 to 2016. Routine healthcare data with a complete EHR was expanded by pro-

cessed variables such as the Charlson Comorbidity Index.

Results

Four Process-Reengineering interventions were detected by quantifiable effects on the

EHR: (1) the hospital relocation in 2011 involved progressive reduction of admissions during

the next four months, (2) the hospital services re-configuration incremented the number of

inter-services transfers, (3) the care-services re-distribution led to transfers between facili-

ties (4) the assignment to the hospital of a new area with 80,000 patients in 2015 inspired

the discharge to home for follow up and the update of the pre-surgery planned admissions

protocol that produced a significant decrease of the patient length of stay.

Discussion

TVA provides an indicator of the effect of process re-engineering interventions on health-

care practice. Evaluating the effect of facilities’ relocation and increment of citizens (findings

1, 3–4), the impact of strategies (findings 2–3), and gradual changes in protocols (finding 4)
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may help on the hospital management by optimizing interventions based on their effect on

EHRs or on data reuse.

Conclusions

The effects on hospitals EHR due to process re-engineering interventions can be evaluated

using the TVA methodology. Being aware of conditioned variations in EHR is of the utmost

importance for the reliable reuse of routine hospitalization data.

Background and significance

Introduction

A business process is defined as a structured set of activities performed in any organization for

the description of the logical order and dependence of the processes carried out [1]. In health-

care organizations, business Process Reengineering means improving organizational perfor-

mance by process or information system redesign, covering the needs of healthcare

institutions [2–7]. Business process redesign has been applied in many healthcare systems

such as pharmacies [8] and emergency departments [9] to increase their efficiency since they

are now under pressure all over the world [10]. The authors of the review [11] showed that

many of the studies that address the promotion of business process reengineering in the health

sector are related to the reduction in the length of hospitalization or the help with organiza-

tional change and how this promotion may drive the development of similar actions, that seek

to improve the quality of the services offered, in other organizations.

The data used to evaluate the population’s health underlies the effects of the decision-mak-

ing processes that rely upon these data [12]. When assessing data quality in health systems,

one of the most commonly examined dimensions is timeliness [12,13], which are considered

to be an extrinsic data quality concept influencing fitness-to-use features [14,15].

Our aim was to make a descriptive and retrospective analysis about the process reengineer-

ing interventions influence on EHR, and to analyze how these interventions might have influ-

enced hospital activities focusing on the potential technical knowledge which may be extracted

from data. The TVA methodology was applied to a database that collects information on

admissions to the Hospital Universitario y Politécnico La Fe (HFE) in Valencia between Janu-

ary 2010 and December 2016.

As will be discussed in Section Discussion, many works in recent literature are usually cen-

tered in one process and measures how well the intervention is working. Meanwhile, this

study count on the main objective of applying a well-documented methodology for the evalua-

tion of temporal variability [16–20] based on Information Geometry, not only to measure the

influence of one process reengineering intervention but also to automatically detect interven-

tions through data distributions.

Materials and methods

Ethics

This study did not involve any risk or changes to the healthcare services to patients and did

not alter their regular intervention and treatment. Only authorized persons obtained data

from electronic health records. They maintained the privacy and security of patients’ personal

information by encoding their identity with dissociated non-traceable codes. This research
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was carried out in accordance with the International Guideline for Ethical Review of Epidemi-

ological Studies [21] and the Biomedical Research Ethics Committee of the HFE [22], which

approved the study protocol on October 10th, 2017 under the name “ANÁLISIS DE LA CALI-

DAD Y VARIABILIDAD DE DATOS MÉDICOS” (Registration Number 2017/0482).

Materials

The study considered the hospitalization data repository of the HFE, in Valencia, Spain,

including 108,347 admissions from 2010 to 2016. The HFE coordinates all public healthcare

services provided by La Fe Valencian Health Department, from primary to tertiary care, cover-

ing 300,000 inhabitants directly and adding up to 515,000 persons from the catchment area.

The HFE is the biggest reference hospital in the Comunitat Valenciana and the fifth largest in

Spain. The HFE department is composed by the HFE (with 1,000 beds approx.), the health

center of Campanar, located in the old facilities of the HFE, the specialty center Ricardo

Trénor Palavicino and 20 primary health centers. The health department is met by a team of

more than 7,000 people, that includes more than 1,100 doctors, 400 Internal medicine resi-

dents, 3,800 positions of different nursing areas and 1,500 people for management and general

services.

The repository includes healthcare information on each hospital admission of the overall

population during the aforementioned period. After gathering the data, we excluded the epi-

sodes of isolated patients, i.e. those who did not belong to the HFE department (for example

tourists who are visiting the city), because of the possibility of missing significant information

for the study, such as 30-day unplanned readmission or the diagnosis of chronic diseases prior

to the date of admission.

Before conducting the TVA, a preprocess was carried out on some administrative and clini-

cal variables. The original dataset was completed with some aggregate and processed variables,

including the age of the patient which was computed as the difference between the admission

date and their birth date, the Charlson comorbidity index score[23] that was calculated using

updated weights from Schneeweiss, [24] and the ICD-9-CM coding, as proposed by Quan,

[25]. This score was calculated by adding 1 point for the patient’s history of acute myocardial

infarction, peripheral vascular disease, cerebrovascular disease and diabetes without complica-

tions; 2 points for congestive heart failure, chronic obstructive pulmonary disease, mild liver

disease, diabetes with complications and malignancy; 3 points for dementia and renal disease;

4 points for moderate-to-severe liver disease and HIV infection; and 6 points for metastatic

cancer. This score was calculated using another repository that included the ICD-9-CM code

for each diagnosis of chronic disease recorded in the HFE.

The list of variables considered is shown in Table 1. Extra information on the materials can

be found in the S1 Appendix.

Methods

Theoretical background. A systematic TVA methodology based on probabilistic data

quality control was applied [19,20,26]. This methodology uses methods based on Information

Geometry [27,28] which provide a way for the comparison of dissimilarities between probabil-

ity distributions of different temporal data batches.

It firstly consists of modeling Probability Density Functions (PDF’s) -in our case, it was

made by the use of Kernel Density Estimation [29]-. The Jensen-Shannon distance (JSD),

which is a symmetrized and smoothed version of the Kullback-Leibler divergence [30,31], pro-

vides a way to measure how different the non-parametric PDF’s are.
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The space in which each point represents one PDF and the distance between two points is

that defined by the aforementioned distance, forms a simplex and is known as statistical mani-

fold and possesses good mathematical properties [27].

This function representation allows us, for example, to compute the centroid of the PDF’s

and to apply projection methods, such as Principal Component analysis [32] or Multidimen-

sional Scaling [33,34]. These artifacts, as can be seen in Fig 1 where a short artificial experiment

was driven to yield a simple proof of concept, give us the possibility of quantifying the disper-

sion and making space representations as a graphical way to detect variability. The exploratory

methods provided by the methodology are:

• Information Geometry Temporal (IGT) plot: This presents a visualization of the temporal

evolution of data. Temporal batches are laid out as a 2D plot while conserving the dissimilar-

ities among their distributions. The IGT plot helps to reveal temporal trends in the data (as a

continuous flow of points), abrupt changes (as an abrupt break in the flow of points), recur-

rent changes (as a recursive flow through specific areas), conceptually related time periods

(as grouped points) and punctual anomalies (as isolated outlying points). Temporal batches

are also labeled to show their date. They give seasonal information by means of colored labels

(warm colors for summer and cool colors for winter) and are supported by a smoothed time-

line path joining them [26]. The Density-based spatial clustering of applications with noise

Table 1. List of variables contained in the study case.

Variable Description Type (values/format)

Sex Sex of the person Discrete (Male, Female)

Age Age in years at the time of the admission Numerical Integer

AdmissionServiceCode Code of the service of hospitalization Discrete 4-length alphanumeric

code

RealServiceCode Code of the service related to the episode Discrete 4-length alphanumeric

code

DischargeServiceCode Code of the service which discharged the patient Discrete 4-length alphanumeric

code

AdmissionTurn[1,2,3] Admission shift Discrete

AdmissionReason Reason for hospital admission Discrete (See S1 Appendix)

DischargeDate Date of patient discharge Date (yyyy/mm/dd)

DischargeTurn[1,2,3] Discharge shift Discrete

DischargeReason Reason for patient discharge Discrete (See S1 Appendix)

DischargeDestination Destination after patient discharge Discrete (See S1 Appendix)

DischargeBefore12 Discharge before 12:00 noon Discrete (Yes, No)

Exitus Death of the patient during hospitalization Discrete (Yes, No)

Exitus 48 Death of the patient within two days after hospitalization Discrete (Yes, No)

Hospital Transfer Existence of hospital transfer Discrete (See S1 Appendix)

LengthOfStay Length of stay of hospitalization episode. It is measured by the number of nights that the patient was

admitted.

Numerical Integer

Intervention Surgical Intervention Discrete (Yes, No)

PreoperatoryStay Length of stay before the intervention Numerical Integer

Readmission30 Was the patient readmitted during the 30 days after discharge? Discrete (Yes, No)

CharlsonIndex Charlson comorbidity index for hospitalization Numerical Integer

The shift in which the patient is admitted and discharged is coded as 1 for the morning (from 8:00 am to 3:59 pm), 2 for the evening (from 4:00 pm to 11:59 pm) and 3

for the night (from 0:00 am to 7:59 am)

https://doi.org/10.1371/journal.pone.0220369.t001
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(DBScan) [35], was applied to the IGT plot using the median of the JSDs as grouping coeffi-

cient in order to automatically find temporal groups.

• Probabilistic Statistical Process Control (PDF-SPC) algorithm: The purpose of PDF-SPC

is to monitor the degree of change in data variability distributions throughout consecutive

temporal batches (in our case months), to a moving reference distribution -initially the first

batch. According to the magnitude of the current change, measured by the JSD with respect

to the reference distribution, the degree of change of the repository is classified into three

states: in-control (distributions are stable), warning (distributions are changing), and out-of-

control (recent distributions are significantly dissimilar to the reference, leading to an unsta-

ble state and yielding a change in the reference distribution). When an out-of-control state is

reached, a significant change is confirmed and the reference distribution is set to the current

one for subsequent comparisons. The warning and out-of-control states are represented as

broken and continuous vertical lines, respectively.

• Temporal Heat Maps: Temporal Heat maps show the absolute or relative frequencies over

time. The Temporal Heat map of a variable is a 2D plot in which the X-axis represents the

Fig 1. Technical diagram. The TVA methodology is based on information geometry. A short artificial experiment taking 4 temporal batches (only 4 batches were taken

to ensure that the simplex could be represented in three dimensions) was drawn with the purpose of clarifying the concept. A) represents the generated artificial

database in which binary, quantitative and continuous variables cope with. B) is the PDF representation. C) shows the simplex in which each point represents the PDF of

one batch and the bigger black point represent the centroid of the simplex (the distance from each batch to the centroid serves as a dispersion measure). D) is the IGT-

plot, in studies with more batches is one way to graphically represent the variability among the batches and to apply clustering methods to automatically detect temporal

patterns, it must be noted that the color changes from previous representations to simulate the seasonal color mapping. E) shows the PDF-SPC, since the database was

designed to present high variability, all the batches are “out-of-control”. Finally, F) presents the heatmap of the concatenated batches distributions which allows

monitoring temporal pattern changes.

https://doi.org/10.1371/journal.pone.0220369.g001
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time, the Y-axis represents a possible data value or range of values of the variable, and the

color of the pixel at a given (X, Y) position indicates the frequency at which value Y was

observed on date X. These heat maps facilitate a rapid broad visualization of the evolution

over time of the values of the given variable.

The TVA methodology consists of using these methods iteratively. In a top-down approach,

we start by analyzing the temporal variability of the complete monthly-batched data set. We

then drill down to the specific variables or groups of variables which best explain the variability

detected, according to the results of the analysis and prior knowledge of the repository.

Working methodology. This study was carried out by a multidisciplinary team of profes-

sionals from various fields: the technical background was provided by a computer scientist, a

statistician, a mathematician, and specialist physicians whose expertise is the PR and the man-

agement of the hospital.

The study protocol was divided into two stages: in the first changes were detected and in

the second one, they were analyzed and their causes were searched.

An overview of the study protocol is shown in Fig 2, in which the iterative protocol used for

the detection of process reengineering interventions is described.

Following the previously described TVA methodology, we start by considering the whole

multivariate dataset grouped by monthly batches under the assumption that PR interventions

may imply an impact on EHR. This is intended to detect different data behavior patterns (see

A) in Fig 2). Secondly, the same methodology was applied to the detected temporal data

changes with a univariate approach to identify the variable, or set of variables, that could have

influenced the observed global change. Subsequent automatic iterations for each variable may

identify more univariate pattern changes which could have been smoothed due to multivariate

batches with a greater global impact. These iterations can also detect interactions in the vari-

ables produced by changes in one variable (see B) in Fig 2).

Results

We provide the description of how the proposed methodology was able to detect the effects,

through data analysis, of the process reengineering interventions which will be shown in Sec-

tion Process reengineering interventions. The list of findings mapped to the PR interventions

carried out in the hospital in that period is shown in Table 2 in which the numerical evidence

was added.

Findings

We define finding as a data-driven change. An observed finding in the data leads to the search

for its cause and the assessment of these causes by hospital managers may identify future lines

of work in terms of PR.

As can be seen in Fig 3, relevant findings were detected by multivariate analysis. It is worth

mentioning that seasonality in the data may be identified by the sinusoidal shape of the color

map border.

In Fig 3 it can also be seen that the HFE probably suffered at least one important change in

late 2010 (F1) and early 2011 (F2) that caused an abrupt change in all the monthly variable dis-

tributions, another significant event can be detected at mid-2013 (F3) where a density conden-

sation may be observed on the top of the maximum-frequency band. Finally, at the beginning

of 2014 (F4), an atypical month is detected, this month is followed by temporal patterns that

Temporal variability of EHRs due to hospital process reengineering
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had not been observed before and that led to an increment of the frequency from early 2015,

2015 January is detected as an outlier in the right down picture in Fig 3.

Fig 2. Work-flow diagram. Multivariate analysis is able to discover changes driven by the global probabilistic variability A). The obtained findings drive us to make the

univariate analysis with the purpose of explaining the aforementioned changes B). It is worth mentioning that this step detects smoothed changes which had been

covered by more abrupt global differences. Step C) is the evaluation of the interventions which provoked the data change and their implications. Finally, this evaluation

could serve as the starting point for the implementation of PR D).

https://doi.org/10.1371/journal.pone.0220369.g002
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The univariate methodology was used in pursuit of an explanation for these changes. The

changes can be explained by almost all the variables.

Fig 4 shows that the variables which store the admission, real and discharge service of each

hospital episode explain F1 and F2. The configuration of the hospital services may also explain

Finding F3. The PDF-SPC’s of the services configuration is shown in this figure.

After removing the cases prior to March 2011, the same methodology was applied in order

to avoid the non-detection of findings by the smoothing, which could have caused the abrupt

changes prior to this date. As already mentioned, the changes previous to March 2011 had an

impact on the whole set of variables.

Fig 5 shows the PDF-SPC, IGT Plot and its DBscan clustering for the variable Discharge-

Destination, showing the change of the discharge policy introduced between early-mid 2013

and mid-2016 which will be discussed in the next Section. This change is probably related to

Finding F3 and will be referred to as Finding F5 (F5 is a new milestone -understanding

Table 2. Findings.

Finding Intervention Evidence

F1 I1—Hospital relocation ➢ IGT-plot and its DBScan clustering show differences between 2010 and the rest of the years of the

study (Fig 3) (Multivariate JSD(10D, 11Jan) = 0.74, 2010 belongs to the green cluster and the rest of

years belong to the blue cluster).

➢ Heat map of the PCA dimension reduction of the multivariate analysis offers an absolutely different

pattern during the months of 2010 (Fig 3).

➢ PDF-SPC of AdmissionService, DischargeService, and RealService show the abrupt change detected

at the end of 2010 (Fig 4). (AdmissionService univariate JSD(10Jan, 11Jan) = 0.26, DischargeService

univariate, JSD(10Jan, 11Jan) = 0.26 and RealService univariate JSD(10Jan, 11Jan) = 0.25)

F2 I2—Services reconfiguration ➢ The heat map shows a trend of refinement of the red central band in the closest months to February

2011 (Fig 3).

➢ February 2011 is detected as an outlier by the IGT-plot and its DBScan clustering (Fig 3)

(Multivariate JSD(11Jan, 11F) = 0.41 and Multivariate JSD(11F, 11m) = 0.73, besides DBScan did not

assign to any cluster).

➢ PDF-SPC of AdmissionService, DischargeService, and RealService show the abrupt change detected

at the beginning of 2011 (Fig 4). (AdmissionService univariate JSD(11Jan, 11m) = 0.33,

DischargeService univariate, JSD(11Jan, 11m) = 0.29 and RealService univariate JSD(11Jan, 11m) =

0.29)

F3 a I3—Care services reconfiguration ➢ Heat map marks a different pattern of three months in mid-2013 (Fig 3).

➢ PDF-SPC of AdmissionService, DischargeService and RealService show the abrupt change detected

in mid-2013 (Fig 4). (AdmissionService univariate JSD(13M, 11m) = 0.34, DischargeService

univariate, JSD(13M, 11m) = 0.34 and RealService univariate JSD(13M, 11m) = 0.34)

➢ PDF-SPC, IGT-Plot and its DBScan clustering display an abrupt change in mid-2013 (Fig 5).

(DischargeDestination univariate JSD(11a, 13m) = 0.29, two clusters well-defined of months prior to

March 2013 and the rest).

F4 I4—Inclusion of 80,000 patients. The update of the

pre-surgery admission protocol

➢ DBScan applied to IGT-plot warns of the existence of a month–January 2014- with an atypical

behavior (Fig 3) (Unassigned month).

➢ This atypical month is also detected by the Heat map (Fig 3).

➢ PDF-SPC, IGT-Plot and its DBScan clustering show that a change occurred in early 2014 (Fig 6).

(DischargeDestination univariate JSD(11m, 14F) = 0.22, two clusters well-defined of months prior to

February 2014 and the rest)

➢ January 2015 is also detected as an atypical month by IGT-plot and its DBScan clustering (Fig 3).

(Unassigned month)

➢ The Heat map analysis reveals that the number of hospitalizations increased from this month. It can

be seen thanks to the width of the red band and is supported by the increment of admissions detected

in 2015 (Table 2).

F5 a I3 ➢ PDF-SPC, IGT-Plot and its DBScan clustering show an abrupt change in mid-2016 (Fig 5)

(DischargeDestination univariate JSD(14F, 16M) = 0.24).

These findings were directly observed from data after the application of the methodology described in Section Methods.
a The finding F5 was a direct cause of the intervention carried out and detected by the finding F3 (it will be discussed after).

https://doi.org/10.1371/journal.pone.0220369.t002
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milestone as different data distribution pattern- detected by applying the univariate methodol-

ogy. The emergence of new milestones can be seen in Fig 2). Two temporal clusters were

found.

The exploratory PDF-SPC visualizations, IGT Plot and its DBscan clustering for the

LengthOfStay variable are shown in Fig 6, where a variation in the patients’ average length of

stay in early 2014 can be seen correlated with Finding F4. The histograms of this variable show

an increase of 1-day stays with respect to 2 and 3-day stays (see S7 Fig).

Fig 3. Multivariate analysis of hospitalizations in HFE. Four findings were detected. The top figure presents the heat map of the temporal multivariate data

distribution, down left figure shows the IGT plot where the whole set of variables were considered and finally the DBScan clustering of IGT plot is exhibited in right

down figure. F1 is correlated with the difference between 2010 and the rest of the years; F2 is aligned to data changes in early 2011; F3 stands for three months in mid

2013 with atypical patterns; F4 refers to January 2014, which is quite different from other months and introduce the beginning of an atypical pattern; the outlier detected

in January 2015 is the precursor of the increase of frequency observed in the subsequent months. By analyzing the IGT-Plot and its clustering, we discovered that the

heat map of the one dimensional PCA presented temporal color patterns.

https://doi.org/10.1371/journal.pone.0220369.g003

Fig 4. PDF-SPC of the three variables related to services configuration (Admission, Real and Discharge Service). Findings F1, F2, and F3 are detected in the three

variables by out-of-control states.

https://doi.org/10.1371/journal.pone.0220369.g004
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The number of annual hospital admissions is shown in Table 3. It can be seen that the num-

ber of patients increased significantly from 2015 and this could have caused the change

detected in the multivariate analysis (see Fig 3).

Discussion

Healthcare organizations are constantly forced to increase the quality of care while maintain-

ing an optimum use of resources [2,5]. Therefore, managerial decisions, which are routinely

taken in a business environment, are constantly influencing data distributions. These decisions

may imply temporal variability inherent to the data. In this field, the impact may not only be

on the hospital management, but also on the regular population health and on the perception

of its quality [36–39].

There exist some approaches to carry out the assessment of process reengineering interven-

tions on literature. The authors of [40] propose a methodology based on process-mining to

measure the organizational changes in the stroke emergency process. The assessment was per-

formed by the use of PALIA [41]. One of the most powerful tools for process-mining is PROM

[42] which covers a wide range of process-mining algorithms such as α-algorithm [43], genetic

process-mining [44] or Heuristic Miner [45].

The present study searches something similar but is based on a consistent methodology

driven by the variations of PDF applied to a health service dataset with the purpose of studying

the effect of PR interventions on data. This methodology is used to monitor data distributions

through time, becoming a way for “real-time” detection of the impact of management

Fig 5. PDF-SPC (top figure), IGT plot (left down figure) and its clustering by DBScan (right down figure) of the variable which records the method of patient

follow-up after discharge (DischargeDestination).The analysis of this variable shows new evidence for Finding F3 as well as a new Finding F5 (a new milestone is

detected as mentioned in Fig 1) which probably was not detected by the multivariate analysis due to the higher hospitalizations from 2015 January.

https://doi.org/10.1371/journal.pone.0220369.g005
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decisions and process reengineering interventions on hospital activities as well as finding

undesired factors or effects [46]. We think that the principal Impact of our methodology is its

global applicability when compared to the aforementioned approaches. These approaches are

usually centered on one process and measures how well the intervention is working. Mean-

while, the proposed methodology provides the capability of detecting the own interventions by

the multivariate iteration and its influence (not only direct but also indirect) in other related

processes by the univariate iteration.

Besides, another contribution is that the detection of data distribution changes can lead to

the improvement of future decisions and research work, for instance, a 30-day readmission

model or the development of longitudinal studies could be better built from the prior knowl-

edge of the findings of our study.

Fig 6. PDF-SPC (top figure), IGT plot (left down figure) and its clustering by DBScan (right down figure) of the variable which measures the number of

hospitalization days (LengthOfStay). A change in the length of stay occurred in early 2014, related to Finding F4 was discovered in the multivariate analysis.

https://doi.org/10.1371/journal.pone.0220369.g006

Table 3. Hospital admissions inflow.

Year Number of admissions

2010 14,706

2011 12,969

2012 14,212

2013 14,459

2014 14,295

2015 18,063

2016 19,643

Total 108,347

Number of patients admitted per year

https://doi.org/10.1371/journal.pone.0220369.t003
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Although some of the milestones that have been detected are not the result of process re-

engineering, but rather are specific daily situations that influence the operation of the hospital.

These milestones have been taught because we believe that these situations could motivate one

or more interventions in terms of process re-engineering. We also remark that HFE experts in

PR analyze the impact on hospital management as well as on the regular patient population’s

health by exploring the reasons and the effects on hospital activities of decisions already taken

(see C) in Fig 2). Although the following is outside the scope of this work, the results of this

analysis may help to identify indicators which could be the input for further PR decisions (see

D) in Fig 2).

A list of the process reengineering interventions, contributions, limitations and lines of

future work are given below.

Process reengineering interventions

The process reengineering interventions carried out by the hospital managers and their moti-

vation are presented in chronological order with the purpose of correctly interpreting the find-

ings, shown in Section Results, that the exploratory method applied was able to detect.

Hospital relocation (I1). The HFE relocated to new facilities between December 2010

and February 2011, which involved a progressive reduction of admissions that lasted while the

intervention finished, the time when hospital activity recovered. The relocation protocol was

the following:

• The Outpatient Department was relocated on November 2010. The first allergy, dermatol-

ogy, internal medicine, and infectious disease consultations took place on November 29th

(finding F1).

The remaining areas were progressively moved from lower to higher logistical complexity.

Finishing with the transfer of the most delicate areas as follow:

• Maternity and Child Health was transferred on February 13th, 2011, moving 81 children and

premature babies and 11 pregnant women and recently delivered mothers (finding F2).

• The adult hospitalizations area was relocated on February 20th, 2011, with 158 adults (find-

ing F2).

Consequently, after December the admission-patient typology became urgent profiles (see

S1 and S2 Figs). The admission of patients with a higher age and comorbidity index was caused

by the relocation since this type of patient frequently has a serious illness and requires more

urgent resources. The number of interventions decreased, as allowed for in the managers’

planning (see S2 Fig). After opening the new facilities, more hospital transfers were (see S3

Fig) needed and the information system was changed. The admission planning taken by the

hospital management for the relocation was quite similar to the interventions adopted during

the summer months, in order to allow for staff holidays, which can also be detected by the sea-

sonality in the data.

Services re-configuration (I2). At the beginning of 2011 (Finding F2) and closely related

to the previous point, the services were restructured (see S4 Fig) when the old facilities com-

posed of four hospital centers were combined into one. The services were reorganized into

clinical management areas and a committee for the approval or rejection of changes in service

configuration was created.

Care services distribution (I3). Despite the abovementioned relocation, some of the

patients were still treated in the old facilities, as in the case of chronic patients, since it was

decided to send them to the old facilities for patient follow-up at the beginning of 2013. This

Temporal variability of EHRs due to hospital process reengineering
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intervention involved a new service re-structuring and a higher percentage of patients were

sent to their general practitioner in detriment of those discharged home for follow-up (finding

F3, see Table 2). This situation was temporary due to the closure of the previous chronic unit

in mid-2016 (finding F5, see Table 2), which meant more patients were monitored at home. A

higher quantity of resources, therefore, had to be allocated to this end (see S5 Fig). Fig 3 served

to detect this intervention and allowed us to suspect that a new cluster would probably have

appeared from mid-2016 if the following months had been added to the dataset.

Changes in the pre-surgery admission protocol due to the inclusion of patients from

another hospital (I4). Another important intervention adopted by the hospital management

in 2015 was due to prior knowledge of the assignment to the HFE of approximately 80,000

patients (now the hospital covers around 280,000 inhabitants when before were approximately

200,000 citizens) previously assigned to another Valencian Hospital, the Hospital Doctor Peset
(finding F4). The uptake of this population was expected to initially cause an increase of 50

daily urgent admissions, progressively rising to 70. For this reason, three actions were taken, in

which we can also find some of the findings previously detected by the methodology:

• A new surgical admissions unit was created to assess patients to be hospitalized.

• The number of beds assigned to home hospitalization was increased (see S6 Fig) to cover

two more areas (Pediatrics and Neonatology) (previously chronic, mental health and pediat-

ric oncology patients).

The pre-surgery planned-admission protocol was updated in early 2014. Whereas before

this intervention, patients were admitted the night previous to surgery, they were now admit-

ted on the morning of the intervention and they had a bed ready at midday after daily patient

discharges. This meant an increase of the daily bed-occupation in the hospital and also on

patient satisfaction, due to the shortening of the stay. The isolation of January 2014 in the mul-

tivariate analysis (see Fig 3) was probably caused by this change.

Discoveries and possible particular contributions. Time is a factor which has been stud-

ied as part of data quality dimension, generally leading to dimensions such as timeliness, cur-

rency, volatility, concordance or comparability [47–51]. Some of the data quality dimensions

are used for validation of the quality of care [52]. The general contribution obtained by the

TVA proposed is the use of the assessment of a data quality dimension in the monitoring of

the interventions carried out by the hospital. For each intervention we want to highlight:

• I1. The relocation of the hospital. More than 1,800 professionals were involved in the opera-

tion and 40 ambulances were needed for the transfer. The data suffered a great impact, both

multivariate and univariate (see Section Findings. and S1–S3 Figs) and the impact on the

whole set of variables was monitored by the TVA proposed in the present study. The impact

on the variables was produced not only in the expected ones. In this sense, the TVA monitor-

ing may provide an added value when is used as a tool for “real-time” detection.

• I2. Services reconfiguration due to changes in hospital management policies by logistic relo-

cations (see Section Services re-configuration). Some changes in services and treatment

areas occurred during the study period. In addition to its capacity for management process

control, our proposed methodology can reveal information and subsequent considerations

to help in data reuse, for example for prediction purposes as well as for observational studies

involving the comparison of different services during a period of reduced data quality.

• I3. Reconfiguration of care areas due to PR decisions (See Section Care services distribution).

After a logistic relocation, the hospital activity probably suffered several unexpected difficul-

ties. These difficulties led to PR decision-making that can be monitored by the proposed
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TVA which may be useful to create “PR effectiveness indicators” to be used as a background

for future interventions.

• I4. The inclusion of 80,000 patients from another Valencian Hospital. It would have produced

a hospital overcrowding if the interventions (detected by the proposed approach) had not been

taken. The most important intervention produced an increase in the percentage of surgeries

carried out on the day of admission, rising from 0% to 75%, avoiding a collapse due to an

increase in the percentage of beds occupied, which rose to 97% from the previous 82%. It is

worth mentioning that one of the challenges in the rise in the number of patients was the inte-

gration of computer data into the Business Intelligence used by the hospital. The knowledge of

both the increased population assigned to the HFE and the pre-surgery planned-admission

protocol change may influence the corresponding data for descriptive or research purposes.

Limitations

One of the principal advantages of the TVA methodology used here is its capacity to analyze a

great number of variables in a single iteration. This may also influence the loss of information

about what is happening and where at a higher granularity, implying the need for knowledge

in the field of study. For instance, finding 4 presented in Section Results firstly was considered

as two findings, the hospital PR expertise was needed to understand the scope of the interven-

tion associated with this finding.

Using a single-component PCA reduces the dimensionality of the iteration of the multivari-

ate analysis and may smooth other discoveries with less impact in global terms, making the

univariate iteration necessary not only to explain but also to detect. The use of other non-linear

reduction methods such as t-distributed Stochastic Neighbor Embedding [53] or machine

learning approaches [54,55] may have a better fit in certain cases and also contribute in the

pursuit of interactions between variables.

Faulty healthcare processes are one of the main causes of practitioners making technical

mistakes [56], can compromise patient safety and even cost lives [57]. However, in this study,

we did not focus our attention on detecting processes for improvement, which is another pos-

sible application of the methodology for healthcare management.

Future work

In line with the present study, and to overcome the limitation mentioned above, we aim to

develop an automated algorithm that can suggest the origin of the multivariate changes in

terms of a set of implicated variables or their interactions.

Conclusions

Temporal variability in EHR may be considered as an intrinsic data quality feature due to its

implications for data reuse. In this work, we have demonstrated how data changes over time

and how the statistical distributions of EHR are biased by clinical and management PR inter-

ventions in the case of a Valencian hospital over seven years. Analyzing the temporal data vari-

ability by means of TVA has the potential not only to detect but also to monitor Big Data

hospitalization resources, in order to improve the assessment of PR in healthcare systems.

Acronyms for months

Jan: January, F: February, m: March, a: April, M: May, j: June, J: July, A: August, S: September,

O: October, N: November, D: December.

Temporal variability of EHRs due to hospital process reengineering

PLOS ONE | https://doi.org/10.1371/journal.pone.0220369 August 7, 2019 14 / 19

https://doi.org/10.1371/journal.pone.0220369


Supporting information

S1 Appendix. Data base description. Consort diagram and description of categorical vari-

ables.

(DOCX)

S1 Fig. Supplementary evidence for I1. PDF-SPC, IGT plot, its clustering by DBscan and

Heat Map for the variable DischargeReason. An abrupt change is detected at the end of 2010

when the hospital relocation took place. The admittance of patients in delicate health states

reduced the number of discharges under “Healing or improvement”.

(TIF)

S2 Fig. Supplementary evidence for I1 and I2. The color density in February 2011 band

shows the increase in the percentage due to the last month of the relocation. The lower number

of observed hospitalizations implies a lower number of interventions and an increase in urgent

admissions.

(TIF)

S3 Fig. Supplementary evidence for I1 and I2. PDF-SPC of HospitalTransfer. The abrupt

changes detected in late 2010 and early 2011 are the results of the hospital relocation.

(TIF)

S4 Fig. Supplementary evidence for I2. IGT Plot and Temporal Heat Maps for the Service

configurations.

(TIF)

S5 Fig. Supplementary evidence for I3. PDF-SPC for the HospitalTransfer variable. The

change caused by a) the opening of the chronic patient’s area in the old facilities in early 2013,

and b) the new readmittance to the new facilities in early 2016. The changes were detected

after removing the cases prior to March 2011 –with the purpose of avoiding the loss of change

detection due to the high impact of the hospital relocation-.

(TIF)

S6 Fig. Supplementary evidence for I4. Temporal absolute count for the discharge destina-

tion variable. Since the opening of the chronic service in the old hospital facilities, a new code–

in which patients who would be treated in the chronic area were included- was created “Out-

patient care”. This implies a decrease in the number of patients who were sent home until 2016

when the chronic area was closed.

(TIF)

S7 Fig. Supplementary evidence for I4. Temporal relative count for the variable which rec-

ords the length–in days- of the stay for each hospitalization. This image shows that the per-

centage of 1-day stays increases in detriment of 2-days stays. This shows that the aim of

reducing the length of stay, as described in M4, was successful.

(TIF)
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Supervision: Carlos Sáez, J. Alberto Conejero, Salvador Tortajada, Juan M. Garcı́a-Gómez.
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