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Abstract—We present a generic tool, Kartograph, that lifts

the fog of war in online real-time strategy games by snooping
on the memory used by the game. Kartograph is passive and
cannot be detected remotely. Motivated by these passive attacks,
we present secure protocols for distributing game state among
players so that each client only has data it is allowed to see. Our
system, OpenConflict, runs real-time games with distributed
state. To support our claim that OpenConflict is sufficiently
fast for real-time strategy games, we show the results of an
extensive study of 1000 replays of Starcraft II games between
expert players. At the peak of a typical game, OpenConflict
needs only 22 milliseconds on one CPU core each time state is
synchronized.

I. INTRODUCTION

The online game industry is now among the largest
entertainment industries in the world. According to the
Entertainment Software Association[1], 67% of American
households play video games, and computer games represent
a 9.9 billion dollar market. Online gaming includes 64% of
gamers. Among the many types of online games, real-time
strategy (RTS) games are by far the most popular category,
representing 35.5% of the PC game market (the second
most popular category, first person shooters, only accounts
for 10.1% of the market). Popular real-time strategy games
include Starcraft II, Supreme Commander 2 and Age of
Empires III.

The growing popularity of RTS games gave rise to global
competitive video gaming. In 2010 the Electronic Sports
World Cup attracted 500 professional players from around
the world, and players could win up to $36,000 in cash
prizes. Major tournaments, such as Major League Gaming
(MLG), are held online with no direct supervision over
competitors.

The competitive nature of the sport and the lack of direct
supervision provides strong incentives to cheat. While active
cheating, such as DDoS-ing an opponent, is easily detected
and penalized, passive cheating is rampant. Cheating tools are
often created by a laborious process of reverse engineering
the client and changing it for the benefit of the player.

RTS games. In a typical real-time strategy game, player
compete on a two-dimensional map divided into cells. A
typical Starcraft II game, for example, is played on a map

containing between 24000 and 36000 cells. Since RTS games
are real-time (as opposed to turn-based), players compete
on thinking speed as well as strategy. Each player gather
resources in order to build structures and units as visible
in Figure 1. As units move across the map, they encounter
other players’ units and may fight or collaborate with them.
Most RTS games simulate a fog of war meaning that only
certain parts of the map are visible at any moment (Figure 2).
Areas of the map where the player has no units are hidden
and the player cannot tell what is in those cells. The winner
is the player who is able to destroy his opponent’s base, or
who achieves some other objective such as capturing flags.
RTS games typically move quickly and finish in under an
hour. Due to their fast pace, most RTS games are peer to
peer: a central server may be used to set up the game, but
the game itself is played over a direct network connection
between the players. The lack of a central server to manage
the game state makes it much harder to prevent client-side
cheating.

Our contribution. We begin by presenting a generic attack
tool, Kartograph, that among other things enables players
to view the entire map by passively lifting the fog of war.
Kartograph exploits the fact that RTS games store the entire
game state on every player’s computer, but only display
information that players are allowed to see. Kartograph is a
semi-automated tool that peeks into the game’s memory and
quickly discovers the game’s internal memory layout. Once
the game’s memory layout is known, Kartograph extracts
all information about the opponents and shows it to the
cheating player. We emphasize the Kartograph is a generic
tool that operates with no prior information about the game.
We tested Kartograph against many popular RTS games,
and were able to quickly lift the fog of war in all of them.
This attack, called map hacking, is completely passive and
cannot be detected by a remote observer.

Motivated by these attacks, we set out to design a generic
defense against such passive attacks in RTS games. Our goal
is to distribute the state of the game among the players so that
each machine has only the part of the state it is allowed to
know, and yet jointly the game proceeds as before. In theory,
this can be done using a generic cryptographic protocol for
secure multiparty computation [12]: on every state update, the
players engage in a cryptographic protocol that implements



Figure 1. Structure of Real Time Strategy game

the game’s rules.
At the end of the protocol every player has part of the

state it is allowed to see and knows nothing else about
the rest of the game. Unfortunately, since state updates in
RTS games happen dozens of times per second, generic
protocols for secure multiparty computation are far too slow
for this purpose. Instead, we show that many RTS games
can be efficiently implemented with distributed state using a
suitably optimized protocol for private set intersection [10].
This approach virtually eliminates all information leakage
about unit locations that can be gleaned from map-hacking.

To determine the performance requirements for running
RTS games with distributed state we analyzed 1000 Star-
craft II top player games and present the results in Section VI.
The analysis shows, among other things, the board size,
number of units, and number of actions per second for top
players. In Section VIII we discuss the performance of our
approach in light of the analysis of top Starcraft II games.
We show that distributing state in RTS games is currently
feasible, at least when the players have moderately high-end
machines.

II. BACKGROUND

Cheating in real time strategy games typically falls into
three categories: abusing the resource system, tampering with
units and tampering with the map visibility.

Abusing the resource system. Hacking the resource system
gives the cheater more resources. The simplest approach is
to find the location of resource values in memory and either
freeze or increase them. Many games protect against this by
obfuscating these values. For instance, Age of Empires III
xors resource values with a “secret key.”
Other ways to cheat include reducing the price of units

Figure 2. The zone that players can’t see is called the fog of war

by changing their cost in memory and having units gather
resources more quickly.

Hacking the unit list. Hacking the unit list allows the
attacker to overpower his opponent with units that are
stronger, faster or tougher than ordinary units. This type
of attack is often done by tampering with the unit’s baseline
statistics. In a peer-to-peer game this can detected by the
opponent since the game state becomes inconsistent among
the players. Another approach is to build units more quickly
by tampering with unit build times, in order to overwhelm
the opponent with a bigger army.

Before After

Figure 3. Map hacking Age of Empires 3 using Kartograph

Tampering with the map visibility. The last type of cheating
involves tampering with the visibility restrictions enforced
by the game. This type of attack, known as map hacking
(figure 3), is the hardest to detect because it is fully passive.
Of these three attacks, map hacking is also the hardest to
perform because it requires a deep understanding of how
the game works, and in particular how map information is
stored. Map hacking is frequently performed by injecting at
run-time a DLL that overrides the functions responsible for
enforcing the fog of war. Anecdotally, a creative map hack



for Warhammer II fooled the game into running in replay
mode, causing it to display the entire map to the cheating
player.

III. A GENERIC TOOL FOR MAP HACKING

In this section we describe our Adversarial Game
Instrumentation (AGI) techniques that we use to perform
memory attacks on virtually every game. We implemented
these techniques in a tool called Kartograph written in C#.
Kartograph only runs on 64-bit Windows because it needs
more than 4 GB of memory to analyze modern games.

Before describing how Kartograph works, we first review
why the opposing player’s information is always present in
memory. In a peer-to-peer game, the easiest way to keep
game data in sync between players is for each client to
broadcast its entire state (units, buildings, etc) to all other
game clients. We call this the push approach. As far as we
know, this is the only approach used in practice because
it minimizes latency and code complexity. However, the
opponents’ game clients must be trusted to enforce visibility
restrictions, and as we will see they may not always deserve
that trust. An alternative approach, the pull approach, has
players request their opponents’ data only as needed. This
approach adds complexity and network latency, and when
applied straightforwardly its security benefits are limited: the
requests themselves still leak enough information to give a
cheater a considerable advantage. We discuss how to mitigate
this information leak through cryptography in section VII.

screen memory

Figure 4. Memory representation of a visibility map structure

As explained earlier, memory attacks manipulate the
game’s memory structures rather than changing its data
files. To perform a memory-based map hack, the hacker first
needs to find the memory structures used to render the map,
as shown in figure 5. In the easiest case all the information
needed is stored in a single 2D array called the visibility
map (figure 4). In practice, however, many games store
their map data in multiple memory structures, which makes
the attack slightly more complicated. However, the same
techniques still apply, so we will assume for illustrative

purposes that the goal is to find and reverse-engineer a
single visibility map and a single unit list.

Reducing 
memory space

Finding
the structure

Understanding
the structure

Figure 5. Memory-based hacking overview

Our approach to memory map hacking has three steps
summarized in figure 5. First, we need to narrow down
the memory range in which we will search for the map
data. Narrowing down the memory location of the map
is mandatory because the game memory is too vast to
explore. For example, Starcraft II uses 850 MB of memory
and Supreme Commander 2 uses over 1 GB (see table II).
Second, once the search space is reduced, we need to
identify the map structures. Finally we need to understand
how these structures work in order to extract the relevant
information. Past approaches would use a debugger and a
decompiler for each step, but this is very tedious. Furthermore,
using a debugger on the game is likely to trip its security
mechanisms such as the Blizzard Warden [26]. Instead, we
simply snoop on the game’s memory while playing it in a
manner that will leak the information we need. We call this
technique Adversarial Game Instrumentation as we exploit
game functionalities to leak the information we need. We
now describe in detail how we perform each of the three
steps.
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Figure 6. Reducing memory space via Adversarial Game Instrumentation

Reducing the memory space. In general, the memory that
contains unit positions only changes when units move, and
likewise the visibility map changes only when the visible
region changes. To force the game to leak the location of



the visibility map, we perform the four-step procedure in
Figure 6.

In the first step, we launch the game and read all the
memory space where the map might possibly be. This
includes all the memory pages of the process’s main
module that are marked as ReadWrite, Commit and
Private: ReadWrite because visibility changes during the
game, Commit because the map has changed since being
allocated, and Private because visibility is not mapped
from a file. Second, we move the camera around and trigger
as many actions as we can without discovering any new
parts of the map. The goal is to change as much of the
game memory as possible, other than the map data. After
a minute or so, we ask Kartograph to eliminate all the
memory blocks that changed since launch time. Third, we
discover a portion of the map by using a unit to “scout” an
unknown area. Because we are going to use visualization
techniques to find the map, we need to create a “nonlinear”
scouting pattern, like the one visible in figure 13, that is
easy to spot. This time we ask Kartograph to keep only the
memory blocks that changed. Because the game’s memory
contains a large amount of constant data, this step gives the
biggest reduction in search space. Table II shows that in
practice this step is able to reduces the memory space by
as much as a factor of 250. Finally, we again play without
changing the map and ask Kartograph to remove the pages
that have changed. While this step might appear redundant
with the second step, in practice it helps considerably. In
particular, it consistently halves the search space in Supreme
Commander 2 (see table II).

Finding the visibility map. Once we have narrowed down
the potential locations of the visibility map to a manageable
size, we find the map by looking for our scouting pattern in
memory. We do so by generating a heat map representation
of memory, as shown in Figure 7. Each color represents
a different memory value. Black represents gaps in a
compressed fashion, as they can be tens of megabytes wide.
One difficulty of using the heat map visualization to find the
map structure is that different games use different data types
for the visibility map. It is often necessary to test bytes, shorts
and ints separately. Therefore, we designed Kartograph to
switch from one representation to another seamlessly. The
other difficulty is that memory structures are not properly
aligned and then appear skewed in the visualization as shown
in Figure 8.

Nevertheless, the map data is quick and easy to find with
minimal experience. For example, we used the heat map
visualization to create a map hack for Age of Empires III in
under 5 minutes while demoing Kartograph at the Defcon
2010. Kartograph makes this visualization technique easier
by using frequency analysis that removes all the zones that

Figure 7. Kartograph heat map visualization of the reduced memory space.
Possible map structures are circled in red.

Figure 8. Example of a misaligned visibility map for Age of Empire III

do not contain repetitive data. While this technique works
well for the visibility map, it is not efficient for finding unit
structures, which are an order of magnitude smaller and have
a less recognizable shapes. Accordingly, we use a different
technique to locate the unit list, as described in the next
section.

Understanding the visibility map. The final step to build a
map hack is to understand how the visibility map works so
we can extract and interpret the information contained in it.
To understand how the structure works we perform what we
call a diff-map analysis: First Kartograph takes a snapshot
of the memory blocks that we believe to be the visibility
map. Then we move a unit, and Kartograph generates a
bi-color diff-map, where the red pixels represent the memory
blocks that changed and the blue pixel represent the block
that didn’t change (Figure 9). If we are indeed looking at the
visibility map, the diff-map will contain either a shape that
represents the part of the map that the unit discovered (e.g.
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Figure 9. Diff-map visualization of adversarial game instrumentation

Age of Empires III – figure 13) or two shapes corresponding
to the unit’s previous and current position (e.g. Supreme
Commander 2 – figure 14). Finally we try to understand the
map’s structure by looking at the values that have changed.
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memory space
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Figure 10. Finding unit structure using Adversarial Game Instrumentation
and in-memory shape analysis

Finding the unit list. Finding the unit list is more challeng-
ing than finding a map because it is a much smaller (1.5KB
vs. 500KB) and more complex structure. To find the unit list
we use the procedure summarized in Figure 10. We build five
units in a row and have Kartograph eliminates all memory
blocks that violate the following criterion between each unit
construction:

1) The memory block must have changed or a contiguous
block must have been allocated. We must consider

changing blocks as a valid candidates because in some
games, such as Warcraft III and Starcraft II, the unit
list is pre-allocated.

2) The newly allocated block must be larger than 64
bits or contain a valid pointer address. To test that
a 64-bit value is a valid pointer, we perform a
pointer dereferencing analysis and verify that the value
points to a valid memory block with the correct flags
(ReadWrite, Commit and Private).

Game Unit 1 Unit 2 Unit 3 Unit 4 Unit 5
Supreme Commander 2 176454 13546 428 55 12
Age of Empires 3 3443 177 48 29 10

Table I
NUMBER OF POSSIBLE LOCATIONS FOR THE UNIT LIST

Table I shows that in practice we can usually find the
unit list after building 5 units, even if we start with a lot of
candidates. Once we have isolated the unit list, Kartograph
uses a pointer analysis to help visualize the list. Once again
we analyze the result of precise game actions to understand
how the unit’s map coordinates, health, mana etc. are stored
and obfuscated. For example, we move the unit to find its
coordinates, damage it to find its health, and have it cast
spells to find its mana. After several experiments, we have
all the data we need to reverse-engineer the useful part of the
unit’s structure. If the opponents’ units are stored separately,
we can perform the same technique by playing against a
friend.

Network analysis. To help us find the location of the
opponents units in memory, Kartograph correlates memory
changes with received packets. Kartograph intercepts and
manipulates network packets using a layered service provider
in the Winsock stack. A similar approach was used before
by Levin [21].

Kartograph network engine’s visualization is shown in
figure 11. It first divides packets into buckets based on size,
and then shows for each bucket a visualization that combines
a heat-map and a diff-map. The heat map represents the
packets stacked in the order of arrival, with the first packet at
the bottom and the most recent on top. The width of the heat
map represents offsets in bytes. The Figure 11 shows that if
a given position holds a constant (e.g. a command id) then
we observe a monochrome stripe. If it holds a counter, we
see a gradient and if it is an arbitrary, random or encrypted
value we see a scrambled list of colors. At the very top of
the heat-map, Kartograph draws a diff-map that summarizes
which offsets of the packet changed across time. The constant
offsets are blue and the changing ones are red.

IV. GAME HACKING IN PRACTICE WITH Kartograph

In this section we describe some of the issues we came
across while using Kartograph against popular games. We



also discuss the effectiveness of our memory space reduction
techniques on practical examples. We plan to release
Kartograph at the same time as our cryptographic library
used to defend against it. We analyzed many games, listed in
table II: old games such as Command and Conquer Tiberian
Sun (1999), more recent games such as Wacraft III (2003)
and Age of Empires III (2005), and the most recent games
such as Supreme Commander 2 (2010) and Starcraft II
(2010).

Game Launch Play Discover Play more
Starcraft II 850M 725M 2M 1.3M
C&C Tiberium Sun 75M 73M 400K 400K
C&C Red Alert 2 101M 100M 935K 915K
C&C Red Alert 3 660M 635M 4.4M 1.6M
Age of Empire III 245M 243M 2.7M 2.5M
Supreme Commander 2 1.2G 629M 2.5M 1.5M
Civilization IV + ext 340M 293M 2M 1.9M
Anno 1701 432M 413M 1.9M 1.8M
Warcraft III 129M 124M 1.9M 1.8M

Table II
MAP SIZE REDUCTION

A. The visibility map structure

One of the most fascinating things when reverse-
engineering a game is to uncover which data structures
it uses. Each of the 15 games we analyzed had unique
structures and data representations. In particular we analyzed
the Command and Conquer (C&C) series to see if we could
find a pattern, but it turned out that that these structures
changed radically from one opus to another, probably due
to big changes in the game engine. Overall we found that

Figure 11. Kartograph network visualization and manipulation UI

the representation of map information falls into two broad
categories:

• a bitmap representation with an array that corresponds
directly to map data, or

• a composite representation that stores map data in
different structures and combines them during rendering.

In either case, as shown in table II, our reduction algorithm
works well and quickly narrows down the map structures
location. In practice narrowing down the map location can be
accomplished under 2 minutes. There are two difficulties with
this method. First, on modern games this approach requires
a lot of memory because we need to snapshot the entire
main module’s memory. This requires twice its memory
size because we need to store each memory address and
each memory value. As a result, for games like Supreme
Commander 3, we need 1.2 GB for the game and 2.4 GB for
Kartograph. That is why Kartograph was designed to only
work on 64-bit Windows. The second issue is the way the
game allocates resources. In some cases, memory is allocated
in 64 MB chunks, which causes the heat-map to take a very
long time to render. The fact that games use so much memory
makes real-time visualization of the memory very difficult.
We are experimenting with real-time visualization techniques
using Direct3D to speed up the visualization process.

User Vision Memory structure

Figure 12. Heatmap view of the Warcraft 3 map structure

The bitmap representation. An example of the bitmap
representation used by Warcraft III is shown in figure 12. It is
easily seen that the information stored in the bitmap contains
the opponents’ buildings, which are filtered out before being
displayed to the player.

Composite representations. In our experience, composite
representations are more common than simple bitmap rep-
resentations. These representations are more difficult, both
because the map data is stored in multiple data structures,
and because these structures vary wildly from one game to
another. The following examples illustrate how diverse the
data structure are:

• Age of Empires III As shown in figure 13, Age of
Empires III uses separate structures to store resource
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Figure 13. Heatmap view of some of the Age of Empire 3 map structures

information and visibility information. The information
visible for each player is encoded using a bit fields.

• Civilization IV uses a filter-based approach: its visibil-
ity map contains for each cell a color that is applied
by the game to create the fog of war. Each cell’s color
filter is encoded as a 32-bit integer, with its 8 most
significant bits used for alpha. Unexplored cells contain
a straight black mask (0xFF000000), and explored
but currently unobserved cells are masked with a gray
mask (0xFF6D6D6D).

• Supreme Commander 2 encodes the visibility as a
short integer, representing how many units are able
to see a given cell of the map. An example of this
cumulative visibility map is visible in figure 14.

User Vision Memory structure

Figure 14. Heatmap view of the Supreme Commander 2 cumulative
visibility map

B. Unit analysis

While the unit list is an order of magnitude smaller than
the map, it is still possible to quickly narrow down its
location as shown in Table I. As we find more units the
number of possible locations for the unit list decreases
rapidly. At first we expected to see units stored in a linked
list, which is far from trivial to reverse-engineer. However,

in practice most games use a stack, either with pointers to
units (e.g. Warcraft III and Starcraft II), or with a pointer
and a unit ID (e.g. Age of Empires III).

Consequently, instead of using the complex linked-list
analysis algorithm we originally developed, we ended up
using the simplified algorithm described in the previous
section. The last point worth mentioning is that unit hit points
are often obfuscated. This is done to prevent an attacker from
searching memory for the hit point value shown on screen.
However, our Adversarial Game Instrumentation technique
nullifies this defense, allowing us to quickly reverse-engineer
unit structures despite simple obfuscation.

C. Using the game as a map hack

Since we know the map structures’ locations and format,
we can take Kartograph one step further and trick the game
into displaying the entire map and lifting the fog of war. For
example, in Supreme Commander 2 we can lift off all the
visibility restrictions by changing all the 0’s in the cumulative
game map to a positive number. Because with Kartograph
we are able to precisely rewrite the map structure with a
meaningful value, we can not only turn the game into a map
hack but also create all sorts of strange effects. For instance,
by re-writing only part of the Civilization visibility filter map,
we can selectively reveal only a portion of the map, as shown
in figure 15. During online play, some games check visibility
map consistency. In this case, we must either rewrite network
packets, or write the map hack as an external program that
overlays itself on top of the game.

Figure 15. Partial rewrite of the Civilization 4 visibility filter map. The
white rectangle is the allowed visibility region while the thick visibility
rectangle was added by Kartograph.



V. PREVENTING PASSIVE MAP HACKS

We now turn to defending against Kartograph and other
passive information extraction attacks. We first define
the passive eavesdropper threat model and then describe
OpenConflict, our system that defends against such attacks.
We discuss active attacks in section IX.

Some attacks in the previous section display information
about the opponent by removing the fog of war mask from
the game. While this kind of attack actively changes data in
game memory, we still treat it as a passive attack. Indeed,
removing the fog of war is simply a clever trick for showing
the player data about the opponent. We don’t change the
game state or network traffic. We could have just as easily
left the fog of war unchanged and presented this data in a
side panel.

A. Threat model: passive eavesdropping adversaries

We assume the attacker (i.e. a cheating player) has
complete control of his machine and can run arbitrary
privileged software in parallel to the game. In particular,
the attacker can run software that constantly takes memory
snapshots of the game’s internal memory. We assume that
the attacker has a complete understanding of the game’s
memory layout and can identify and parse all data structures
stored in memory. Armed with these tools, the attacker
runs a program P that takes a memory snapshot every
few milliseconds, parses all data structures and extracts
information about the opponents’ units. If successful this
information is displayed to the attacker. We say that a
passive attacker defeats the game if the attacker can write
a program P that reveals information about the opponent
beyond what is allowed by the game’s rules. Otherwise we
say that the game is secure against a passive adversary.

We assume that the game has a peer-to-peer architecture,
as is the case for Starcraft II and most other fast paced
online games. That is, each party communicates directly
with the others without using a central server to manage the
game state. In slower games like World of Warcraft, where a
central server runs the game, security against passive attacks
is straightforward since the server only tells each client
precisely what the client is allowed to know. As we will see,
security in fast peer-to-peer games is much harder.

B. Challenge

To build secure games we will make use of certain
multi-party cryptographic protocols. Our challenge is to
design sufficiently fast protocols so that the added game
latency is imperceptible to the players.

VI. CASE STUDY STARCRAFT II

Before describing our solution, we analyze the scale of
the problem by measuring how many units and how many
map cells each player sees in Starcraft II. To obtain these
numbers we analyzed 1000 Starcraft II replays from top
players. At the end of a Starcraft II game players have the
option to save their game and re-watch it later. Replay files
are commonly posted online for other players to comment
and learn. Another source of replay files is tournaments like
the Global Starcraft II League (GSL). As a result, there is a
large pool of real Starcraft II replay files for us to analyze.

Methodology. Top players in games like Starcraft II tend
to have a high number of actions per minute (APM). These
high-APM games are a good stress test of our system. We
selected 1000 replays with APM over 120 which is at the very
high end of the replays available. While this corpus of games
gives us statistics that are higher than for average players, we
will show that our system handles these high-APM games
with little latency.

Analyzing Replays. The replay file format, .mpq, is partially
documented and is interpreted by the game engine as it
replays the game. To mine these replay files we wrote a crude
“game engine” that replays games. Our game engine uses
the standard initial Starcraft II unit statistics, such as speed,
visibility, range, and hit-points. Since the engine ignores
collisions and does crude fight reconstruction, it outputs an
over-approximation of the data generated during the game.
For example, when in doubt it leaves units alive and over-
estimates the number of cells visible to players. Consequently,
while the results below are not 100% accurate, they represent
a conservative estimate of the amount of data generated
during the game.

Mini map memory structure

Playable zone

Figure 16. Starcraft II mini map memory structure heatmap visualization

Map size vs. playable size. Every replay file contains
information about the map played. Two important data for us
are the total number of cells in the map and the number of
cells in the playable area of the map, namely where players
can move their units. The difference between the two is
obvious when the Starcraft II mini map memory structure is
visualized with Kartograph (Figure 16).



For our 1000 games, the map size is between 24320 and
36864 cells and the playable size is between 15180 and
24640 cells. While these numbers are an upper bound on
each player’s visibility, we show below that in reality visibility
is far less because the game mechanics favor players that
keep their units in a small number of clusters.
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Figure 17. Starcraft II game duration cumulative value (10-second buckets)

Game duration. Figure 17 shows the cumulative number of
game that last more than X seconds. After 6 minutes the
number of games still in progress drops quickly and after
30 minutes (1800 seconds) most of the games are finished.
An important consequence is that our solutions need only
secure data for at most a few hours. For fast-paced games like
Starcraft II, the value of the data quickly becomes worthless,
so preserving secrecy for a few minutes is sufficient. Hence,
there is no need to use traditional cryptographic strength and
we can get away with using smaller parameters everywhere.

Ac
tio

ns
 p

er
 s

ec
on

d

0

1

2

3

4

5

6

duration (sec)
200 400 600 800 1000 1200 1400 1600 1800

Game related actions
Camera related actions
Total actions

Figure 18. Starcraft II action per second breakdown (10-second buckets)

Actions per second. In order to fix accurate performance
requirements, we measured the rate at which players act.
Figure 18 shows that an average top player does about 1.6
game-related actions per second. The remaining actions are
camera moves (changing view point) which have no impact
on game state. The figure shows that as games draw to a
close payers fatigue and mostly focus on marching to their
opponents bases.
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Figure 19. Starcraft II number of units by time (10-second buckets)

Visibility. As the game progresses players acquire more units.
Figure 19 shows the number of units for one player as a
function of time. Players typically never have more than
150 units, including buildings. We stopped plotting after 900
seconds since very few games last that long.
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Figure 20. Starcraft II number of visible cells by time (10-second buckets)

Figure 20 shows an over-approximation of how many
map cells are visible to each player as the game progresses.
Since players tend to keep their units in a few clusters, the
number of visible cells grows slower than the number of
units. Players typically do not see more than 4500 cells
at a given time, which is about 33% of the total map. In
computing these estimates, we ignored occlusion due to
terrain height. We also ignored extra visibility from the
game’s Xel’Naga watchtowers, but as we see later, these
towers actually decrease OpenConflict’s workload.

VII. DEFENDING AGAINST MAP HACKING

We now describe our approach to prevent the passive
map-hack attacks described in section III. Since the attacker
(i.e. a malicious player) can peek into the game’s memory
on his machine, our goal is to convert the game into one
where each player’s machine only stores information that
the player is authorized to see.



For each pair of opposing players (let’s call them Alice
and Bob), Alice can see some of Bob’s units (those close to
her own units), but not others. We want Bob to send Alice
data on those units that she can see, but not on those units
that she cannot see. The problem is that Bob doesn’t know,
and shouldn’t be allowed to know, which of his units Alice
can see. A solution to this problem is to use an oblivious
intersection protocol.

A. Oblivious Set Intersection

Let M be the set of all cells on the map. Each cell may
contain units, buildings and other objects; we will refer
to these generically as “units”. Alice has units scattered
across the map and each unit has a visibility radius. Taking
the union of all of Alice’s visibility regions gives the set
VA ⊆ M of cells that Alice can see. Let UB ⊆ M denote
the set of map cells containing Bob’s units.

The game needs to show Alice all the units belonging to
any player within her visibility region. To get Bob’s data,
Alice’s machine needs to determine VA ∩ UB subject to two
constraints stated informally as:

1) Bob should learn nothing about VA (so that he learns
nothing about the location of Alice’s units), and

2) Alice should learn nothing about UB other than VA ∩
UB (so that she learns nothing about the location of
Bob’s units).

Given VA ∩ UB Alice’s machine can correctly render the
cells in VA, as required. Likewise, we want Bob to learn
VB ∩ UA, namely Alice’s units in Bob’s visibility regions,
and this will be accomplished by running the protocol in
the reverse direction.

The problem of computing VA ∩ UB subject to the two
constraints above is called oblivious set intersection and
many protocols for this problem have been proposed [10],
[20], [14], [5], [13], [17], [18], [8], as discussed in Section X.
For each cell in the intersection, Alice wants to learn
information about Bob’s units in that cell. We encapsulate
this as a function fB : UB → D for some data domain D.
We would like a protocol whereby Alice learns the value of
fB on VA ∩ UB but not anything about UB\VA, and Bob
learns nothing about Alice’s units.

Since we are mostly concerned with eavesdropping attacks
we will assume a passive threat model (a.k.a. honest but
curious) meaning that Alice and Bob will execute the protocol
faithfully, but they wish to gain information by looking at
the flows. Formally, the security requirement is that

1) Given UB there is a simulator that simulates Bob’s
view of the protocol (and therefore Bob learns nothing
from the interaction with Alice), and

2) Given VA and VA ∩ UB there is a simulator that
simulates Alice’s view of the protocol (and therefore
Alice learns nothing from the interaction other than
VA ∩ UB).

A protocol satisfying these two requirement is said to be
private for passive adversaries.

B. Oblivious Function Evaluation

We found that a good starting point for our settings is an
oblivious intersection protocol due to Jarecki and Liu [18]
which uses oblivious function evaluation as a sub-protocol
(a related protocol is presented in [8]). We describe the
protocol while adapting and optimizing it to our settings.

Oblivious function evaluation is defined with respect to
a keyed function ok(v) that uses a secret key k to map a
value v to some domain. Bob holds the secret key k. An
oblivious function evaluation protocol is a way for Alice
to learn {ok(v) : v ∈ VA}, without learning ok(w) for any
w /∈ VA, and without Bob learning anything about VA.

For our function ok(v), we choose a group G of prime
order q (in particular, a subgroup of the points on an elliptic
curve) and a hash function H1 : M → G\{1}. Bob’s key k
is a random integer in [1, q − 1], and the function ok(·) is
defined as:

ok(v) := H1(v)
k ∈ G .

Now, the oblivious function evaluation protocol runs as
follows:

• Alice chooses a random integer r ∈ [1, q − 1]
and sends x := H1(v)

r to Bob;
• Bob responds with y := xk = H1(v)

rk;
• Alice computes ok(v) = yr

−1

.

Simple variants of this can be more efficient for certain
groups G. For example, Alice can blind v in step (1) as
H1(v) · gr for some generator g. She unblinds y in step (3)
as yr

−1

/gr. This variant improves efficiency of step (1) since
Alice’s exponentiations are relative to a fixed base g.

Theorem 7.1: If the Computational Diffie-Hellman (CDH)
assumption holds in G then the protocol above is a secure
oblivious function evaluation protocol when H1 is modeled
as a random oracle.

Proof: Bob sees only one random group element from
Alice, so his view of the interaction can be simulated by
choosing a random element in G. Hence, Bob learns nothing
from the interaction. Now, suppose Alice and Bob run the
protocol on VA so that Alice learns {ok(v) : v ∈ VA}.
Suppose Alice can find some w 6∈ VA so that she can compute
ok(w). We show how to use Alice to solve a CDH challenge,
which is compute hk given g, gk, h. We run a simulation
with the random oracle rigged to give gsv on v ∈ VA and
hsw on w ∈M\VA, where the simulator knows the values
sv and sw.



Then Alice’s queries grsv can be answered with gkrsv , but if
Alice computes ok(w) = hksw then hk = ok(w)

s−1
w solves

the CDH challenge.

This simple proof works only because Alice is honest.
Jarecki and Liu show how to handle a dishonest Alice, but
at the cost of a much stronger assumption than CDH [18].

C. The Basic Oblivious Set Intersection Protocol
To compute VA ∩ UB Alice and Bob now do the following,
as shown in Figure 21:

1) Bob first chooses a random key k ∈ {1, . . . , q − 1}.
2) For each u ∈ UB Bob locally does the following:

a) He computes a key ku as ku ← H2(ok(u)) where
H2 is a hash function.

b) He encrypts the message fB(u) using the key
ku in a symmetric encryption scheme providing
authenticated encryption (e.g. where ciphertexts
include a MAC).

Bob sends the list of resulting ciphertexts to Alice.
Note that we must ensure that the length of the
encryption of fB(u) not leak information about fB(u).
Our system ensures this by breaking fB(u) into fixed
sized chunks (possibly padding the last chunk) and
encrypting each chunk separately. The chunks from all
|UB | ciphertexts are then sent to Alice in a random
permuted order.

3) Alice engages in the oblivious function evaluation
protocol with Bob to obtain yv := ok(v) for all v ∈ VA.
Note that Bob learns nothing about VA.

4) For each yv Alice computes kv ← H2(yv) and tests
if one of the ciphertexts received from Bob decrypts
correctly under yv (i.e. the decryption algorithm does
not return ⊥). If so then v ∈ VA ∩ UB and she learns
fB(v), as required.

D. Chaff
The basic protocol leaks to Bob the number of cells in

Alice’s visibility set VA. It leaks to Alice the sum of the
lengths of fB(u) for u ∈ UB which reveals information
about the total number of units that Bob has. While Bob
cannot completely hide the total number of his units, he
can reduce the amount of information that Alice infers by
adding a chaff in the form of random, meaningless data
chunks. Alice can’t tell the difference between these random
chunks and units that she can’t see, so she only knows an
upper bound of the number of Bob’s units. Since these
chunks are random, they cost almost nothing other than the
bandwidth they consume.

Conversely, Alice can hide the size of her visibility map by
sending meaningless, random queries. Bob won’t be able to
tell the difference between these random queries and Alice’s
real visibility queries. However, Bob must respond to all
queries, so the chaff increases his workload.

E. Hypergrids
Visibility regions are almost always large, continuous

shapes rather than disconnected point sets. To take advantage
of this property, we can construct multiple levels of grid cells
(“hypergrids”), each one coarser than the last. For example,
we could divide the grid into 1× 1, 2× 2, 4× 4 and 8× 8
tiles. Then Alice can decompose VA into a union of grid
cells and hypergrid cells in order to minimize computation
and bandwidth consumption. That is, if Alice can see all
the tiles in some hypergrid cell, she sends a query for the
entire cell instead of for each of the tiles inside it. As a
result, Alice will send a number of queries proportional to
the perimeter of VA rather than its area. Figure 22 shows how
hypergrids reduce the number of elements in the visibility
set by a factor of 6 during the game. The top line refers to
the total number of visible cells. The bottom line shows that
number of visible hypergrid cells where each tile contains a
number of adjacent cells.
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Figure 22. Starcraft 2 visible cells vs. hypergrid cells (10 second buckets)

With a straightforward implementation, Bob would need to
encrypt all his units’ data for each level of the hypergrid. But
this is not necessary. For each non-empty hypergrid cell, Bob
simply encrypts the keys for the grid cells containing those
units. Furthermore, Bob’s units are likely to be clustered
together, so they will occupy relatively few hypergrid cells.
Even though we increase the expense of units, hypergrids
are almost always a worthwhile trade-off: players will have
vision of more tiles than they have units in, and sending data
for a unit is less expensive than querying ok. The hypergrid
technique works especially well if there are small areas of
the map that provide great visibility, such as StarCraft II’s
Xel’naga towers (figure 23. By making the tower’s radius a
hypergrid cell, Alice will only need to send one query for
all the territory revealed by the tower.

Figure 23. A Starcraft II Xel’naga watch tower screenshot
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Figure 21. Computing VA ∩ UB where VA = {v1, . . . , vn}

F. Multiplayer

When there are more than two players, the cost of
the protocol remains reasonable. The queries H1(v)

r are
independent of the player being queried, so Alice can
broadcast them to all players at once. Similarly, Bob’s data
sections are independent of the player who is querying, so
Bob can also broadcast them. The only per-opponent work
that Bob needs to do is to compute ok, and the only per-
opponent work that Alice needs to do is to unblind and
interpret the results.

VIII. OPENCONFLICT

We built a prototype of the system described in the
previous section called OpenConflict. Our prototype does
not yet incorporate all the optimizations described in the
previous section, but it is enough to demonstrate that the
technique is feasible in modern real-time games.

We first implemented OpenConflict using standard
cryptographic components, and benchmarked it on a
Core i5 660 dual-core hyperthreaded processor running at
3.33 GHz. With the standard NIST elliptic curves, a single
exponentiation took on the order of a millisecond. With 200
visibility hypertiles and 150 units per player, each player
would take approximately 750 milliseconds just for the
exponentiations – completely unacceptable.

Many newer elliptic-curve implementations are available
that reduce exponentiation times by an order of magnitude
or more, which is beginning to become feasible. However,
we realized that we do not need the security level that these
implementations provide, and could reduce the running times
by another factor of 5 or so by using smaller parameters.
Taking a hint from Dan Bernstein’s Curve25519 software [3],
we chose to use the Montgomery curve

y2 = x3 + ax2 + x (mod p)

where a := 6366 and p := 2127 − 1.

The cardinality of this curve is 16·qcurve, where qcurve is a
prime slightly larger than 2123, and the cardinality of its twist
is 16·qtwist, where qtwist is a prime slightly smaller than 2123.

Because p is a Mersenne prime, this curve supports a
very efficient implementation; exponentiations on it take only
11-12µs. Because it is a Montgomery curve, exponentiations
are computed using the x-coordinate only, which simplifies
the implementation and saves bandwidth. Whether a point
is on the curve or on the twist gives away information, so
we decided arbitrarily to hash points to the twist. In order to
implement the map from grid cells to points on the twist, we
first map the points to a number k /∈ {−1, 0, 1} mod 2127−1.
We then compute

x :=
a

k2 − 1
and w := −a− x =

−k2a
k2 − 1

Note that w2 + aw + 1 = x2 + ax+ 1, so that

(x3 + ax2 + x)(w3 + aw2 + w)
= xw(x2 + ax+ 1)2

= −
(

ka(x2+ax+1)
k2−1

)2

Since −1 is not square mod p, either x3 + ax2 + x or
w3 + aw2 + w must be square and the other non-square
(neither one can be 0, because x 6= 0, w 6= 0 and a2 − 4 is
not square mod p). Therefore either x or w is on the curve,
and the other is on the twist. Since this map is invertible with
constant probability, it can be substituted for the random-
oracle hash in the previous section without damaging the
security proof. To avoid leaking information from the cofactor
of 16, we multiply r, r−1 and k by 16 before using them.
This results in uniformly random points on the prime-order
subgroup of the twist. For the stream cipher and to generate
random numbers, we used ChaCha/12 [2]. This cipher is
extremely fast and adds negligibly to the runtime. For hashing,
we used SHA256.

A. Security
OpenConflict cryptographic primitives need to remain

secure for the duration of a game, which is about an
hour. Consequenetly, low-security parameters are sufficient.
OpenConflict uses elliptic curves defined over a field
of size 2127 − 1. To assess the viability of these weak
parameters, we implemented a curve of approximately 258

points over the Mersenne prime 261 − 1. This prime is the
largest Mersenne prime where products require a single
64-by-64-bit multiplication.



The best known algorithms take O(
√
q) time to solve

discrete logarithms, so this curve should be in reach. We
implemented a simple multithreaded baby-step/giant-step
cracker for this curve, and found that after precomputation,
the median time to find discrete logs using our test machine
was 12 seconds. This is clearly too weak, but it allows us to
estimate cracking times for curves over 289−1 and 2127−1 at
72 machine-days and 3,200 machine-years, respectively. Thus
an attacker willing to devote 1,000 times as much compute
power to the task will have at most a 1-in-28,000 chance of
breaking the key within an hour. We are confident that even
the wealthiest, most brazen cheater would not consider this a
worthwhile attack, so that curves over 2127 − 1 are presently
sufficient to keep game state secure for the duration of the
game. Curves over 289 − 1 would speed up OpenConflict by
about 33%, but a cheater with a cluster of machines could
could possibly break a key over the course of a game.

B. Measurements

We benchmarked the software on a Core i5 660 at
3.33 GHz, a dual-core hyperthreaded processor. We only
used a single core, expecting that the other cores would
be taken up by game logic; however, we observed that the
code threads and hyper-threads very well, so a game which
is willing to devote more cores to cryptography would see
considerable speedups, and in particular reduced latency.

v ↓ u → 100 200 300 400 500
100 5ms 6ms 8ms 9ms 11ms
200 8ms 9ms 11ms 12ms 14ms
300 11ms 13ms 14ms 16ms 17ms
400 14ms 16ms 17ms 19ms 20ms
500 17ms 19ms 20ms 22ms 24ms

Table III
OPENCONFLICT RUNTIMES

The benchmarks in table III show timings for the entire
OpenConflict protocol for different numbers u of units and v
of visible grid hypertiles. We see that units cost about 15µs,
and visibility tiles cost about 30µs. This time is distributed
across Alice and Bob’s CPUs, so with careful pipelining the
latency may be less than the numbers shown.

IX. DISCUSSION: PREVENTING ACTIVE ATTACKS

So far we have only considered defenses against passive
eavesdropping attacks, which is a must in online game
security. The next step is defending against active attacks,
where a malicious player interferes with the in-memory state
of the game to add units or resources. Preventing active
attacks as they occur is quite difficult: all players would
have to verify (in zero-knowledge) the actions of all other
players. However, detecting active attacks after the game is
over is far simpler.

One approach is as follows: during the game every client
signs all its network traffic, and periodically (e.g. once every
ten seconds) sends to all other players a signed commitment
to (a hash of) all its actions that affected the state of the
game. These commitments reveal nothing about the user’s
actions to the other users. At the end of the game, all users
upload the commitments they received to a central server
along with a cleartext trace of their actions during the game.
The central server can verify that the transcript is consistent
with the rules of the game and with the commitments
generated during the game. An active attack would, by
definition, show up as an inconsistency with the rules of
the game at some point during the game. Since the state is
signed, no player can frame another player and consequently,
the central server knows exactly which player cheated.

When active cheating is detected after the game is over,
the central server does not credit the “win” to the winning
party. As a result, the winning player does not advance in the
rankings and may be penalized for his actions. One difficulty
with this approach is the randomness used by game clients
during the game. Active attackers can control their client’s
random number generator and bias the game in their favor.
One solution is to require each client to commit to a seed
for a pseudorandom generator at the beginning of the game
so that no more true random bits are generated during the
game. The actual randomness used during the game is the
xor of all the players’ pseudorandom sequences, which is
revealed as needed. At the end of the game the central server
checks that each client contributed the correct pseudorandom
bit at every step. Similarly, each client can commit to the
seed of the pseudorandom generator it used in the oblivious
set intersection protocol, and reveal the seed at the end of
the game, so that the server can check that this has been
done honestly. There are many challenges to overcome in
implementing this high-level outline; we leave them as an
area for fruitful future work.

X. ADDITIONAL RELATED WORK

Set intersection protocols. Generally speaking, set intersec-
tion protocols fall into two categories:

• The first approach makes use of an additively homo-
morphic encryption scheme and is based on evaluating
polynomials given their encrypted coefficients [10], [20],
[14], [5].

• The second approach makes use of Oblivious PRFs
(OPRFs) [13], [17] or unpredictable functions [18], [8].

While we do not discuss these techniques in detail here, we
mention that protocols in the second category tend to be
more efficient and simpler than protocols in the first category.
In this paper we used an adaption of the protocol due to
Jarecki and Liu [18].



Game security. So far most of the work on improving game
security focused on detecting bots. In [11] the authors show
how to use machine learning algorithm to detect bots based
on players sequence of action. In [9] the authors propose
to use tamper-resistant hardware to detect cheaters. In [6]
provide an empirical study of online game cheating. On the
attack side, in [15], presents ”The Supervisor, a kernel-level
rootkit made specifically to bypass The Warden, Blizzard
Entertainments anti-cheating technology. In the Defcon talk
”So Many Ways to Slap A Yo-Ho: Xploiting Yoville and
Facebook for Fun and Profit” [24] the authors showed how
to cheat on the Yoville game. The most popular tool to
tampers with game memory is called cheat engine [7]. This
program only allows to manipulate memory block by block
and do not offers any of the visualization techniques and
advanced features provided by Kartograph. Many game
hacking techniques are discussed in [16].

Visualization. Visualization techniques to reverse engineer-
ing binary and data files was successfully applied in[4].
Heatmap visualization where successfully applied to find
RC4 anomaly in [23]

Securely outsourcing computations. Attesting to games is
closely related to the problem of outsourcing computation to
untrusted clients [22] which have been extensively studied
for network clients [19] and more recently for Web applica-
tions [25].

XI. CONCLUSIONS

We presented two systems: an attack tool called Kar-
tograph that is capable of lifting the fog of war in online
games and a defense system called OpenConflict that prevents
passive attacks by distributing game state among the players.
OpenConflict is an elegant real-world application of private
set intersection protocols. We showed that an optimized
protocol is sufficiently fast to be used in a real game. In
addition to the tools, we also performed an analysis of 1000
Starcraft II games to establish performance requirements for
OpenConflict. Security in online games is a fruitful area of
research. While this paper explored defenses against passive
map hack attacks, much work remains in defending against
active attacks.
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