
 Procedia Computer Science 70 (2015) 62 – 68

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of ICECCS 2015
doi: 10.1016/j.procs.2015.10.034

ScienceDirect
Available online at www.sciencedirect.com

4thInternational Conference on Eco-friendly Computing and Communication Systems

A Beowulf Cluster for Teaching and Learning

Ahmad A. Datti1, Hadiza A. Umar1 and Jamil Galadanci1*
1Department of Computer Science, Bayero University Kano, Nigeria

Abstract

The use of commodity clusters in academic institutions as a cost effective solution for the study of Parallel & Distributed
Computing is a well-accepted development since the success of the Beowulf Project at NASA. This paper aims explore the
effects of parallel computing on some programs in a Linux based Beowulf Cluster. The research project analyses the
performance of some selected parallel programs on the Cluster in an effort to provide a parallel computing system for
the practical study of Parallel and Distributed computing. The process of assembling the cluster involves setting up a
FastEthernet based LAN of five (5) system units and the installation of Ubuntu-server on them. Compilers were installed for
program execution; MPICH for distributed processing; Secure-Shell (OpenSSH) for remote execution and Network File System
(NFS) for file system sharing. For performance analysis, two sets of parallel programs were executed on the cluster with varying
number of nodes and their respective performance documented. The first was a dense matrix-matrix multiplication program and
the second was a program for finding the number of prime numbers in a given range. It was observed for both programs that the
rate of increase of parallel speedup in these programs gets higher as the problem size increases (parallelism is more pronounced
in larger problem sizes). It was also observed, in both programs, that for too small a problem size, parallelism comes with a
penalty..

© 2014 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of organizing committee of the International Conference on Eco-friendly Computing and
Communication Systems (ICECCS 2015).

Keywords:Beowulf Cluster, Parallel Computing, Distributed Processing

* Corresponding author. Tel.: +234-803-599-3379.
E-mail address:aadatti.cs@buk.edu.ng

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of the Organizing Committee of ICECCS 2015

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.10.034&domain=pdf

63 Ahmad A. Datti et al. / Procedia Computer Science 70 (2015) 62 – 68

1. Introduction

The high cost of supercomputers has made them beyond the reach of universities and other academic institutions
hence crippling the teaching and learning of Parallel and Distributed computing courses in the computer science
curriculum. But thanks to the efforts of researchers at NASA Goddard space station, the Beowulf Cluster was born.
A Beowulf cluster is a distributed computing system made of normal desktop computers that are connected via
commodity network such as Ethernet and are being controlled by free and open source software like Linux. Since
then academic institutions have been building such kinds of parallel computing systems both for teaching and
research. It is within this context, that it has become imperative for universities to support the ‘Parallel and
Distributed Computing’ courses in their Computer Science programmes with practical experiences on these
affordable Beowulf Clusters as cheap alternatives to vendor custom-made Supercomputers in order to support
teaching and spark interest in computational sciences.

2. Previous Works and Motivation

The lack of a parallel computing system that will enable the hands-on learning of the Parallel and
DistributedComputing courses in both the Undergraduate and Postgraduate Computer Science programs in some
universities isone of the detrimental factors hampering the effective teaching and learning of the courses since
inception of theacademic programs.

This research was carried out to address this problem by assembling a simple ‘Proof-of-Concept’ Beowulf Cluster
Prototype using only the available computing and networking resources at the Faculty of Computer Science and
Information Technology, Bayero University Kano (FCSIT-BUK).

The first Beowulf cluster1 (Becker & Sterling 1995) was assembled for scientific research at NASA. But the low
price to performance ratio of such clusters has opened up a new means for academic institutions to build them for
teaching purposes.

Adams and Vos 2 have documented a detailed experience of building a Beowulf cluster at Calvin College, USA.
The cluster was meant for research on object-oriented parallel languages, recursive matrix algorithms, network
protocol optimisation, graphics rendering, modelling of electron behaviour in high energy laser field, modelling of
complex inorganic molecules and modelling the interactions of Saturn's ring and atmosphere. The theoretical peak
performance of the Calvin College cluster was 17Gflops but team optimised and fine tuned the cluster and finally
achieved an aggregate of 10.4Gflops.

Philip R. Prins3 documented a hands-on approach in teaching concepts of parallelism using an inexpensive
Beowulf Cluster. Other researchers that have worked on a similar project were Adams4 and Brown5.

Alfonso and Muttoni6 observed that computing clusters were mainly based on UNIX workstations and Linux PCs
but different implementations of message passing systems were made available also for Microsoft Windows
recently. They tested the performance of two implementations of MPI for Windows platforms, and compared the
results with those obtained from Linux systems. They gathered that Windows performs better than Linux (in terms
of Mop/s) in the implementation of a cluster for scientific HPC but Linux offers more stability and simplicity of
cluster management. For instance, to obtain the said data, more than six months of work were necessary to complete
the executions under Windows, while to obtain all the data under Linux one week was sufficient and it never
crashed.

Stavrakas et al 7 discussed the use of Beowulf clusters in higher education - a case study of the Department
of Electronics Engineering of the Technological Educational Institute of Athens. They discussed their design
methodologies, the performance measurements and the experiments. Their aim was to enable undergraduate and
postgraduate students to study parallel computing.

Adams and Brom 8 developed Microwulf, a Beowulf cluster that cost just $2470 to build,but provides 26.25
GFlops of measured performance, making it the first Beowulf with a price/performance ratiobelow $100/GFlops (for
double-precision operations), an attractive design for most computer science departments.

Ayanda and Adejumo 9 gave attention to commodity cluster computing in public research institutions in
Nigeria by proposing a prototype of Beowulf cluster for Obafemi Awolowo University.

64 Ahmad A. Datti et al. / Procedia Computer Science 70 (2015) 62 – 68

Georgi et al 10 observed that due to a steady increase in the complexity of parallel computer systems there is an
industrial need for employees with skills in practical experiences in the design and administration of HPC systems in
addition to the theoretical fundamentals. But practical approaches were lacking in current curricula. For this reason,
the Technische Universitat Dresden, developed and introduced a course “Linux Cluster in Theory and Practice” into
their Computer Science programme so as to provide background knowledge about the design and administration of
large-scale parallel computer systems and the practical implementation on the available hardware. In their paper,
they analyzed the current variety of courses in the area of parallel computing systems, described the structure and
implementation of LCTP and provided conclusions and an outlook on possible further developments.

Czarnul 11 presented motivations and experiences from using the BeesyCluster middleware for teaching high
performance computing at the Gdansk University of Technology. They pointed out features of BeesyCluster well
suited for conducting courses which include: easy-to-use web interface for application development and running
hiding queuing systems, publishing applications as services and running in a sandbox by novice users, team work
and workflow management environments.

Frinkle and Morris 12 described an approach to designing and implementing a High Performance Computing class
focused on creating competency in building, configuring, programming and benchmarking HPC clusters. By
coordinating with campus services, they were able to avoid additional costs to the students or the university. Their
students built three twelve-unit independently-operating clusters. For evaluation purposes, they illustrated through
pre- and post-course surveys that students gained substantial knowledge in fundamental aspects of HPC through the
hands-on approach of creating their own clusters.

3. System design and Implementation

The building of the B0 Beowulf cluster basically involved the following steps:
i. Physical packing of all nodes into a compact portable form. This was to minimize the space occupied by

these kinds of clusters.
ii. Installation of Ubuntu Server 12.04.2 with having Linux 3.5 kernel at its core on allnodes,

iii. Networking of the all nodes using Fast Ethernet followed by proper configuration of the operating system,
iv. Installation and configuration of additional software packages:

a. OPENSSH-SERVER and OPENSSH-Client. For Remote Connection to enable MPI run the
program in multiple Nodes.

b. NFS-Common.: To enable all compute nodes make use of shared programs and shared files
without the need for duplication on all nodes.

v. Installation and configuration of C, C++ and Fortran Compilers for coding and compilation of programs.
vi. Installation and configuration of MPICH2 as a Message Passing Utility that enables distributed cluster

computing.
vii. Testing the Cluster with simple MPI-Hello World Program

viii. Assessing the performance of a sample parallel program (matrix-matrix multiplication) on the Cluster.

4. Experimental Result

For the performance analysis, two sets of parallel programs were executed on the cluster with varying number of
nodes and varying problem sizes and their respective performance documented.

The first is a dense matrix-matrix multiplication program. The dimensions of the matrix were 500X500,
1000X1000, 1500X1500, 2000X2000, 2500X2500, and 3000X3000. The execution time (for each matrix
dimension) was observed for the program when executed in parallel on 5 Nodes, 4 Nodes, 3 Nodes and 2 Nodes and
then serially on 1 Node.

The second is a program for finding the number of prime numbers in a given range. The ranges were four powers
of 2 as follows: 214 (16,384), 215 (32,768), 216 (65,536) and finally 217 (131,072). The program was executed
seriallyfor each range above and then in parallel on 5 nodes, 4 nodes, 3 nodes, and finally 2 nodes. Execution time
was observed and reported below.NB: All timings were taken using the Linux time command

65 Ahmad A. Datti et al. / Procedia Computer Science 70 (2015) 62 – 68

4.1. Matrix-Matrix Multiplication

Table 1:Average execution time in (seconds) for thedifferent matrix sizes.

 500X500 1000X1000 1500X1500 2000X2000 2500X2500 3000X3000

Serial 0.340 2.145 9.074 16.279 45.190 82.291

2 Nodes 1.235 4.526 12.191 26.523 51.387 86.900

3 Nodes 0.969 3.097 7.550 16.172 29.998 54.237

4 Nodes 0.876 2.599 6.030 13.091 21.613 36.962

5 Nodes 1.034 2.607 5.855 11.720 19.744 33.283

Table 1 above shows the speedup obtained from the matrix multiplication program while figure 1 is the graph of
the parallel speedup against number ofprocessing elements for the different problem sizes.Note thatideal speedup is
obtained when Speedup = Number of Nodes. When running an algorithm with linearspeedup, doubling the number
of processors doubles the speed.

Table 2:Speedup for different matrix sizes

Nodes Ideal 500X500 1000X1000 1500X1500 2000X2000 2500X2500 3000X3000

Serial 1 1 1 1 1 1 1

2 Nodes 2 0.275 0.474 0.744 0.614 0.879 0.947

3 Nodes 3 0.351 0.692 1.202 1.007 1.506 1.517

4 Nodes 4 0.388 0.825 1.505 1.244 2.091 2.226

5 Nodes 5 0.329 0.823 1.550 1.389 2.289 2.472

66 Ahmad A. Datti et al. / Procedia Computer Science 70 (2015) 62 – 68

From the Speedup graph in Figure 1, it could be observed that problem sizes of 500x500 and 1000x1000 were
found to perform slower when parallelized while those showing improvement due to parallelization were of
2000x2000, 1500x1500, 2500x2500 and 3000x3000. It can be generalized that the rate of increase of parallel
speedup in this matrix-matrix multiplication program gets higher as the problem size increases. In plain words,
improvement due to parallelism is more pronounced for larger problems.

It can also be observed that for all problem sizes, the speedup is below 'ideal'. In other words, speedup is sub
linear. Texts on parallel computing have identified the following to be reasons for sub-linear speedup in parallel
algorithms13:

i. Using more than one processor necessitates communication, which is overhead that was not part of the
original serial computation.

ii. Secondly, if the processors do not have exactly the same amount of work to do, they may be idle part of
thetime, lowering the attained speedup.

iii. Finally, program code may have sections that are inherently serial (the famous Amdahl's law).

4.2. Efficiency for the different Matrix Sizes

Table 3 is a graph of the efficiency against number of processing elements obtained for the different problem
sizes.

NOTE: 100% Efficiency is achieved only when speedup is ideal.

Table 3: Efficiency (in percentage) for the different matrix sizes

P Ideal 500X500 1000X1000 1500X1500 2000X2000 2500X2500 3000X3000

1 100.000 100.000 100.000 100.000 100.000 100.000 100.000

2 100.000 13.767 23.693 37.214 30.689 43.970 47.348

3 100.000 11.691 23.083 40.058 33.554 50.214 50.575

4 100.000 9.699 20.626 37.619 31.088 52.272 55.660

5 100.000 6.575 16.454 30.993 27.780 45.775 49.450

Figure 1: Graph depicting speedup for the different matrix sizes Figure 2: Graph depicting efficiency for the different matrix sizes

67 Ahmad A. Datti et al. / Procedia Computer Science 70 (2015) 62 – 68

Figure 2 shows the parallel efficiency for all permutations of matrix sizes and number of nodes. It wasobserved
from the graph of that the permutations of matrix dimension and number of nodes that exhibits the highestefficiency
(49.5%) was found to be when multiplying a 3000X3000 matrix on 4 Nodes.

4.3. Prime number generation

Table 4: Average execution time (in secs) for prime generationTable 5: Speedup for the prime generation program (Tserial/Tparallel)

131072 65536 32768 16384

Serial 12.768 3.470 0.961 0.305

2 Nodes 24.858 4.592 0.834 0.833

3 Nodes 16.226 1.976 1.088 1.129

4 Nodes 11.920 1.512 0.888 0.887

5 Nodes 6.738 1.411 0.939 0.945

Table 6:Parallel efficiency table for the prime generation program

Ideal 131072 65536 32768 16384

Serial 100 100 100 100 100

2 Nodes 100 25.682 37.787 57.630 18.307

3 Nodes 100 26.230 58.545 29.442 9.005

4 Nodes 100 26.780 57.370 27.050 8.598

5 Nodes 100 37.897 49.174 20.456 6.456

From figure 3, it could be observed that largest problem sizes exhibited a more normal speedup curve that
progressively increases with increase in number of nodes while the two smaller problem sizes show curves that
generally decrease with increase in number of nodes. This indicates that parallelism is more pronounced in larger
problem sizes and that for too small a problem size, parallelism comes with a penalty. Secondly, it could be
observed that all problem sizes exhibit a sub-linear speedup.

4.4. Efficiency for prime number generation

Table 6 is detailing the computed efficiency of the Prime generation program for all permutations ofnumber of
nodes and range while figure 4 is a graph of the efficiency against number of nodes.

From figure 4, it could be seen that all efficiencies are below the 'perfect' 100% level and that the only problem
size that shows a progressive increase in efficiency with increase in number of nodes is for 131,072 (217). The
efficiency of all other problem sizes decreases with increase in number of nodes. Highest efficiency (58.5%) was
achieved when finding primes between 2 and 65536 on 3 nodes.

5. Conclusions and recommendations

Parallel and Distributed computing is presently the solution to the ever increasing demand for High Performance
Computing Systems. The study of this field in academic disciplines is only going to be complete and meaningful
with practical heavy sessions where students will physically experience the concepts and ideas and will develop
skills that will prepare them for careers in design and management of High Performance Computing systems.

Ideal 131072 65536 32768 16384

Serial 1 1 1 1 1

2 Nodes 2 0.514 0.756 1.153 0.366

3 Nodes 3 0.787 1.756 0.883 0.270

4 Nodes 4 1.071 2.295 1.082 0.344

 5 Nodes 5 1.895 2.459 1.023 0.323

68 Ahmad A. Datti et al. / Procedia Computer Science 70 (2015) 62 – 68

Researchers are also going to benefit from a parallel computing system for running computation intensive
simulations.

Beowulf Clusters are the cheapest kind of parallel computing systems because they can be built at minimal or
zero cost especially at institutions where computers have been in use for long. It will also help institutions to recycle
their out of used desktop computers.

5.1. The Cluster

This work has successfully built a low cost Beowulf cluster that can be used for the study of Parallel and
Distributed Computing courses at both the undergraduate and postgraduate levels of computer science.

5.2. Performance of the program

i. From observations, it can be concluded that Parallelism is more pronounced for larger problem sizes and
it comes with a penalty for problem sizes that are too small.

ii. It can also be observed that for all problem sizes, the speedup is sub linear.
iii. The size of the problem is a factor of the resource efficiency of the cluster.

For improvements regarding the performance of B0, interested parties should consider using a Gigabit switch
instead of a Fast Ethernet switch. This is because the network of commodity clusters is always the bottleneck for
achieving high performance regardless of the speed of the processor and size of memory.

Secondly, replacing the current nodes in this cluster with faster systems will also significantly improve on the
raw performance of the whole cluster.

For performance analysis, the Linpack benchmark should be run so as to get the actual FLOPs of the cluster. This
will provide a yardstick by which the cluster could be compared to other computing systems.

References

1. Becker, D. J., Sterling, T., Savarese, D., Dorband, J. E., Ranawak, U. A., & Parker, C. V. (1995). Beowulf: A Parallel Workstation for
Scientific Computation. International Conference on Parallel Processing.

2. Adams, J., & Vos, D. (2002). Small-College Supercomputing: Building a Beowulf Cluster at a Comprehensive College. ACM SIGCSE
Bulletin, 34 (1), 411-415.

3. Prins, P. R. (2004). Teaching parallel computing using Beowulf clusters: a laboratory approach. Journal of Computing Sciences in Colleges,
20 (2), 55-61.

4. Adams, J. C. (2011, March). A cluster for CS education in the manycore era. Proceedings of the 42nd ACM technical symposium on
Computer science education, 27-32.

5. Brown, R. G. (2007). Engineering a Beowulf-Style Compute Cluster (0.1 ed.). Durham, North Carolina, United States of America: Robert G.
Brown - Duke University Physics Department.

6. Alfonso, G., & Muttoni, L. (2004). Performance Evaluation of NT based PC Cluster for high performance computing. Journal of Systems
Architecture, 50 (6), 345-359

7. Stavrakas, I. K. (2005). Beowulf Clusters for Parallel Programming Courses. The International Conference on Computer as a Tool. 1, pp.
791-794. IEEE.

8. Joel C. Adams and Tim H. Brom (2008). A Beowulf cluster for every desk. Proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education

9. Ayanda, D. &. Adejumo (2011). A Prototype Model of High Performance Computing Using Beowulf Cluster. International Journal of
Emerging Sciences, 1 (4), 696-705.

10. Georgi, A., Höhlig, S., Geyer, R., & Nagel, W. E. (2011). Linux cluster in theory and practice: A novel approach in teaching cluster
computing based on the Intel atom platform. Procedia Computer Science, (pp. 1917-1926)

11. Czarnul, P. (2014). Teaching High Performance Computing Using BeesyCluster and Relevant Usage Statistics*. Procedia Computer Science,
29, pp. 1458-1467

12. Frinkle, K., & Morris, M. (2015). Frinkle, K., & Morris, M. (2015). Developing a Hands-On Course around Building and Testing High
Performance Computing Clusters. Procedia Computer Science,, 51, pp. 1907-1916

13. Eijkhout, V., Chow, E., & Geijn, R. v. (2011). Introduction to High Performance Scientific Computing (1st Edition ed.). Texas: The Saylor
Foundation.

