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Abstract

We present a computational method for extracting simple descriptions of high dimensional data sets in the form

of simplicial complexes. Our method, called Mapper, is based on the idea of partial clustering of the data guided

by a set of functions defined on the data. The proposed method is not dependent on any particular clustering

algorithm, i.e. any clustering algorithm may be used with Mapper. We implement this method and present a few

sample applications in which simple descriptions of the data present important information about its structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modelling.

1. Introduction

The purpose of this paper is to introduce a new method for

the qualitative analysis, simplification and visualization of

high dimensional data sets, as well as the qualitative analysis

of functions on these data sets. In many cases, data coming

from real applications is massive and it is not possible to vi-

sualize and discern structure even in low dimensional projec-

tions. As a motivating example consider the data being col-

lected by the Oceanic Metagenomics collection [DAG∗07],

[SGD∗07], which has many millions of protein sequences

which are very difficult to analyze due to the volume of the

data. Another example is the database of patches in natural

images studied in [LPM03]. This data set also has millions

of points and is known to have a simple structure which is

obscured due to its immense size.

We propose a method which can be used to reduce high di-

mensional data sets into simplicial complexes with far fewer

points which can capture topological and geometric infor-

mation at a specified resolution. We refer to our method as

Mapper in the rest of the paper. The idea is to provide an-

other tool for a generalized notion of coordinatization for

† All authors supported by DARPA grant HR0011-05-1-0007. GC

additionally supported by NSF DMS 0354543.

high dimensional data sets. Coordinatization can of course

refer to a choice of real valued coordinate functions on a data

set, but other notions of geometric representation (e.g., the

Reeb graph [Ree46]) are often useful and reflect interesting

information more directly. Our construction provides a co-

ordinatization not by using real valued coordinate functions,

but by providing a more discrete and combinatorial object,

a simplicial complex, to which the data set maps and which

can represent the data set in a useful way. This representation

is demonstrated in Section 5.1, where this method is applied

to a data set of diabetes patients. Our construction is more

general than the Reeb graph and can also represent higher

dimensional objects, such as spheres, tori, etc. In the sim-

plest case one can imagine reducing high dimensional data

sets to a graph which has nodes corresponding to clusters in

the data. We begin by introducing a few general properties

of Mapper.

Our method is based on topological ideas, by which we

roughly mean that it preserves a notion of nearness, but can

distort large scale distances. This is often a desirable prop-

erty, because while distance functions often encode a notion

of similarity or nearness, the large scale distances often carry

little meaning.

The method begins with a data set X and a real valued func-

tion f : X → R, to produce a graph. This function can be a
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function which reflects geometric properties of the data set,

such as the result of a density estimator, or can be a user

defined function, which reflects properties of the data being

studied. In the first case, one is attempting to obtain infor-

mation about the qualitative properties of the data set itself,

and in the second case one is trying to understand how these

properties interact with interesting functions on the data set.

The functions determine the space to which we produce a

map. The method can easily be modified to deal with maps

to parameter spaces other than R, such as R
2 or the unit

circle S1 in the plane. In the first of these cases, one pro-

duces a two dimensional simplicial complex, together with

a natural map from the data set to it. In the second case, one

constructs a graph with a map from the graph to a circle.

In the case where the target parameter space is R, our con-

struction amounts to a stochastic version of the Reeb graph

(see [Ree46]) associated with the filter function. If the cov-

ering of R is too coarse, we will be constructing an image of

the Reeb graph of the function, while if it is fine enough we

will recover the Reeb graph precisely.

The basic idea can be referred to as partial clustering, in

that a key step is to apply standard clustering algorithms to

subsets of the original data set, and then to understand the

interaction of the partial clusters formed in this way with

each other. That is, if U and V are subsets of the data set,

and U ∩V is non-empty, then the clusters obtained from U

and V respectively may have non-empty intersections, and

these intersections are used in building a simplicial complex.

This construction produces a “multiresolution" or “multi-

scale" image of the data set. One can actually construct

a family of simplicial complexes (graphs in the case of a

one-dimensional parameter space), which are viewed as im-

ages at varying levels of coarseness, and maps between them

moving from a complex at one resolution to one of coarser

resolution. This fact allows one to assess the extent to which

features are “real" as opposed to “artifacts", since features

which persist over a range of values of the coarseness would

be viewed as being less likely to be artifacts.

We do not attempt to obtain a fully accurate representation

of a data set, but rather a low-dimensional image which is

easy to understand, and which can point to areas of interest.

Note that it is implicit in the method that one fixes a param-

eter space, and its dimension will be an upper bound on the

dimension of the simplicial complex one studies. As such, it

is in a certain way analogous to the idea of a Postnikov tower

or the coskeletal filtration in algebraic topology [Hat02].

1.1. Previous work

We now summarize the relationships between our method

and existing methods for the analysis and visualization of

high-dimensional data sets. The projection pursuit method

(see [Hub85]) determines the linear projection on two or

three dimensional space which optimizes a certain heuristic

criterion. It is frequently very successful, and when it suc-

ceeds it produces a set in R
2 or R

3 which readily visualiz-

able. Other methods (Isomap [TSL00], locally linear embed-

ding [RS00], multidimensional scaling [Abd07]) attempt to

find non-linear maps to Euclidean space which preserve the

distance functions on the data set to as high a degree as pos-

sible. They also produce useful two and three dimensional

versions of data sets when they succeed. All three of these

constructions are quite sensitive to distance metric chosen,

and their output is a subset of Euclidean space. Also these

methods cannot produce simplicial complexes directly. One

could use a further stage which uses the output of the MDS

algorithm for producing a simplicial complex. However, in

contrast with mapper, the size of the resulting simplicial

complexes is at least as large as the original dataset, thus not

achieving any simplification. In contrast, Mapper is able to

achieve substantial simplifications and at the same time that

the resulting simplicial complex preservs certain topological

structures from the original datset. In the domain of Shape

Comparison and Matching, ideas with some similarity to our

were presented in [BFS00].

1.2. Our work

We present a method which is less sensitive to the metric,

and produces a combinatorial object (a simplicial complex),

whose interconnections reflect some aspects of the metric

structure. It is not required to be embedded in Euclidean

space, although in the case of a one-dimensional complex,

it can always be embedded in R
3. Also, the Mapper con-

struction produces a multiresolution representation, which

produces images of the data set at various levels of resolu-

tion. There are other constructions which also produce com-

binatorial rather than Euclidean output, notably disconnec-

tivity graphs [BK97] and cluster trees. These constructions

could in principle also be used to provide multiresolution

output, but they are limited to dimension one output, and al-

ways produce trees. As we have indicated, our output can

be based not only on maps to R, but to higher dimensional

spaces or to the circle, producing either higher dimensional

complexes or graphs which can potentially have cycles. The

graphs may display cycles even in the case when the param-

eter space is R, as we will demonstrate in our examples.

1.3. Outline

The rest of this paper is organized as follows. Section 2

describes the underlying theoretical framework which sup-

ports Mapper. We will outline the topological construction

which provides the motivation for the construction and give

the construction in detail. Section 3 is a description of the

algorithm and implementation details. Section 4 describes

a few natural functions which can be used to explore data

sets with Mapper. We illustrate the use of Mapper in a

few sample applications in Section 5 including an example
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of application of Mapper to shape comparison. In Section

6, we conclude with a discussion.

2. Construction

Although the interest in this construction comes from apply-

ing it to point cloud data and functions on point cloud data,

it is motivated by well known constructions in topology. In

the interest of clarity, we will introduce this theoretical con-

struction first, and then proceed to develop the analogous

construction for point cloud data. We will refer to the the-

oretical construction as the topological version and to the

point cloud analogue as the statistical version.

2.1. Topological background and motivation

The construction in this paper is motivated by the following

construction. See [Mun99] for background on topological

spaces, and [Hat02] for information about simplicial com-

plexes. Given a finite covering U = {Uα}α∈A of a space X ,

we define the nerve of the covering U to be the simplicial

complex N(U) whose vertex set is the indexing set A, and

where a family {α0,α1, . . . ,αk} spans a k-simplex in N(U)
if and only if Uα0 ∩Uα1 ∩ . . .∩Uαk 6= ∅. Given an additional

piece of information, a partition of unity, one can obtain a

map from X to N(U). A partition of unity subordinate to the

finite open covering U is a family of real valued functions

{ϕα∈A}α∈A with the following properties.

• 0 ≤ ϕα(x) ≤ 1 for all α ∈ A and x ∈ X .

• ∑α∈A ϕα(x) = 1 for all x ∈ X .

• The closure of the set {x ∈ X |ϕα(x) > 0} is contained in

the open set Uα.

We recall that if {v0,v1, . . . ,vk} are the vertices of a sim-

plex, then the points v in the simplex correspond in a one-to-

one and onto way to the set of ordered k-tuples of real num-

bers (r0,r1, . . . ,rk) which satisfy 0 ≤ ri ≤ 1 and ∑
k
i=0 ri = 1.

This correspondence is called the barycentric coordinatiza-

tion, and the numbers ri are referred to as the barycentric

coordinates of the point v. Next, for any point x ∈ X , we

let T (x) ⊆ A be the set of all α so that x ∈ Uα. We now

define ρ(x) ∈ N(U) to be the point in the simplex spanned

by the vertices α ∈ T (x), whose barycentric coordinates

are (ϕα0(x),ϕα1(x), . . . ,ϕαl (x)), where {α0,α1, . . . ,αl} is

an enumeration of the set T (x). The map ρ can easily be

checked to be continuous, and provides a kind of partial co-

ordinatization of X , with values in the simplicial complex

N(U).

Now suppose that we are given a space equipped with a con-

tinuous map f : X → Z to a parameter space Z, and that

the space Z is equipped with a covering U = {Uα}α∈A,

again for some finite indexing set A. Since f is continu-

ous, the sets f−1(Uα) also form an open covering of X .

For each α, we can now consider the decomposition of

f−1(Uα) into its path connected components, so we write

f−1(Uα) =
S jα

i=1 V (α, i), where jα is the number of con-

nected components in f−1(Uα). We write U for the covering

of X obtained this way from the covering U of Z.

2.2. Multiresolution structure

If we have two coverings U = {Uα}α∈A and V = {Vβ}β∈B

of a space X , a map of coverings from U to V is a function

f : A → B so that for all α ∈ A, we have Uα ⊆ V f (α) for all

α ∈ A.

Example 2.1 Let X = [0,N] ⊆ R, and let ε > 0. The sets

Iε
l = (l − ε, l + 1 + ε)∩ X, for l = 0,1, . . . ,N − 1 form an

open covering Iε of X. All the coverings Iε for the different

values of ε have the same indexing set, and for ε ≤ ε′, the

identity map on this indexing set is a map of coverings, since

Iε
l ⊆ Iε

l .

Example 2.2 Let X = [0,2N] again, and let Iε
l be as above,

for l = 0,1, . . . ,2N − 1, and let Jε
m = (2m − ε,2m + 2 +

ε)∩ X. Let Jε denote the covering {Jε
0,Jε

1, . . . ,Jε
N−1}. Let

f : {0,1, . . . ,2N − 1} → {0,1, . . . ,N − 1} be the function

f (l) = ⌊ l
2⌋. Then f gives a map of coverings Iε → Jε′

whenever ε ≤ ε′.

Example 2.3 Let X = [0,N]× [0,N] ⊆ R
2. Given ε > 0, we

let Bε(i, j) be the set (i−ε, i+1+ε)× ( j−ε, j+1+ε). The

collection {Bε(i, j)} for 0 ≤ i, j ≤ N−1 provides a covering

Bε of X, and the identity map on the indexing set {(i, j)|0 ≤
i, j ≤ N −1} is a map of coverings Bε →Bε′ whenever ε ≤
ε′. A doubling strategy such as the one described in Example

2.2 above also works here.

We next observe that if we are given a map of coverings

from U = {Uα}α∈A to V = {Vβ}β∈B, i.e. a map of sets f :

A → B satisfying the conditions above, there is an induced

map of simplicial complexes N( f ) : N(U)→N(V), given on

vertices by the map f . Consequently, if we have a family of

coverings Ui, i = 0,1, . . . ,n, and maps of coverings fi : Ui →
Ui+1 for each i, we obtain a diagram of simplicial complexes

and simplicial maps

N(U0)
N( f0)
→ N(U1)

N( f1)
→ ·· ·

N( fn−1)
→ N(UN)

When we consider a space X equipped with a f : X → Z

to a parameter space Z, and we are given a map of coverings

U →V , there is a corresponding map of coverings U →V of

the space X . To see this, we only need to note that if U ⊆V ,

then of course f−1U →֒ f−1(V ), and consequently it is clear

that each connected component of f−1(U) is included in

exactly one connected component of f−1(V ). So, the map

of coverings from U to V is given by requiring that the set

Uα(i) is sent to the unique set of the form V f (β)( j) so that

Uα(i) ⊆V f (β)( j).
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2.3. Examples

We illustrate how the methods work for the topological ver-

sion.

Example 2.4 Consider the situation where X is [−M,M] ⊆
R, the parameter space is [0,+∞), and the function f : X →
R is the probability density function for a Gaussian distri-

bution, given by f (x) = 1

σ
√

2π
e
− x2

2σ2 . The covering U of Z

consists of the 4 subsets {[0,5),(4,10),(9,15),(14,+∞)},

and we assume that N is so large that f (N) > 14. One notes

that f−1([0,5)) consists of a single component, but that

f−1((4,10)), f−1((9,15), and f−1((14,+∞)) all consist

of two distinct components, one on the positive half line and

the other on the negative half line. The associated simplicial

complex now looks as follows.

It is useful to label the nodes of the simplicial complex by

color and size. The color of a node indicates the value of the

function f (red being high and blue being low) at a repre-

sentative point in the corresponding set of the cover U , or

perhaps by a suitable average taken over the set. The size of

a node indicates the number of points in the set represented

by the node. In this way, the complex provides information

about the nature of the function.

Example 2.5 Let X = R
2, and let the map be given by apply-

ing the Gaussian density function from the previous example

to r =
√

x2 + y2. We use the same covering U as in the pre-

vious example. We now find that all the sets f−1U, for all

U ∈ U , are connected, so the simplicial complex will have

only four vertices, and will look like this.

When we color label the nodes, we see that this situation is

essentially different from that in the previous example.

Example 2.6 Consider the situation where we are given a

rooted tree X, where Z is again the non-negative real line,

and where the function f (x) is defined to be the distance from

the root to the point x in a suitably defined tree distance. In

this case, when suitable choices of the parameter values are

made, the method will recover a homeomorphic version of

the tree.

Example 2.7 Let X denote the unit circle {(x,y)|x2 +y2 = 1}
in the Euclidean plane, let Z denote [−1,1], and let f (x,y) =
y. Let U be the covering {[−1,− 2

3 ),(− 1
2 ,

1
2 ),( 2

3 ,1]}. Then

the associated covering U is now pictured as follows. We

note that f−1([−1,− 2
3 )) and f−1(( 2

3 ,1]) both consist of

one connected component, while f−1((− 1
2 ,

1
2 )) consists of

two connected components. It is now easy to see that the

simplicial complex will have four vertices, and will look as

follows:

3. Implementation

In this section, we describe the implementation of a statisti-

cal version of Mapper which we have developed for point

cloud data. The main idea in passing from the topological

version to the statistical version is that clustering should be

regarded as the statistical version of the geometric notion of

partitioning a space into its connected components. We as-

sume that the point cloud contains N points x ∈ X , and that

we have a function f : X → R whose value is known for the

N data points. We call this function a filter. Also, we assume

that it is possible to compute inter-point distances between

the points in the data. Specifically, it should be possible to

construct a distance matrix of inter-point distances between

sets of points.

We begin by finding the range of the function (I) restricted

to the given points. To find a covering of the given data, we

divide this range into a set of smaller intervals (S) which

overlap. This gives us two parameters which can be used to

control resolution namely the length of the smaller intervals

(l) and the percentage overlap between successive intervals

(p).

Example 3.1 Let I = [0− 2], l = 1 and p = 2
3 . The set S

would then be S = {[0,1], [0.33,1.33], [0.66,1.66], [1,2]}

Now, for each interval I j ∈ S, we find the set X j = {x| f (x)∈
I j} of points which form its domain. Clearly the set {X j}
forms a cover of X , and X ⊆

S

j X j. For each smaller set X j

we find clusters {X jk}. We treat each cluster as a vertex in

our complex and draw an edge between vertices whenever

X jk ∩Xlm 6= ∅ i.e. the clusters corresponding to the vertices

have non-empty intersection.

Example 3.2 Consider point cloud data which is sampled

from a noisy circle in R
2, and the filter f (x) = ||x − p||2,

where p is the left most point in the data (refer to Figure 1).

We cover this data set by a set of 5 intervals, and for each

interval we find its clustering. As we move from the low end

of the filter to the high end, we see that the number of clusters

changes from 1 to 2 and then back to 1, which are connected

as shown in Figure 1.

3.1. Clustering

Finding a good clustering of the points is a fundamental is-

sue in computing a representative simplicial complex. Map-

per does not place any conditions on the clustering algo-

rithm. Thus any domain-specific clustering algorithm can be

used.

We implemented a clustering algorithm for testing the ideas

c© The Eurographics Association 2007.



Gurjeet Singh , Facundo Mémoli & Gunnar Carlsson / Topological Methods

Figure 1: Refer to Example 3.2. The data is sampled from a

noisy circle, and the filter used is f (x) = ||x− p||2, where p

is the left most point in the data. The data set is shown on the

top left, colored by the value of the filter. We divide the range

of the filter into 5 intervals which have length 1 and a 20%

overlap. For each interval we compute the clustering of the

points lying within the domain of the filter restricted to the

interval, and connect the clusters whenever they have non

empty intersection. At the bottom is the simplicial complex

which we recover whose vertices are colored by the average

filter value.

presented here. The desired characteristics of the clustering

were:

1. Take the inter-point distance matrix (D∈R
N×N ) as an in-

put. We did not want to be restricted to data in Euclidean

Space.

2. Do not require specifying the number of clusters before-

hand.

We have implemented an algorithm based on single-linkage

clustering [Joh67], [JD88]. This algorithm returns a vector

C ∈ R
N−1 which holds the length of the edge which was

added to reduce the number of clusters by one at each step

in the algorithm.

Now, to find the number of clusters we use the edge length

at which each cluster was merged. The heuristic is that the

inter-point distance within each cluster would be smaller

than the distance between clusters, so shorter edges are re-

quired to connect points within each cluster, but relatively

longer edges are required to merge the clusters. If we look at

the histogram of edge lengths in C, it is observed experimen-

tally, that shorter edges which connect points within each

cluster have a relatively smooth distribution and the edges

which are required to merge the clusters are disjoint from

this in the histogram. If we determine the histogram of C

using k intervals, then we expect to find a set of empty in-

terval(s) after which the edges which are required to merge

the clusters appear. If we allow all edges of length shorter

than the length at which we observe the empty interval in

the histogram, then we can recover a clustering of the data.

Increasing k will increase the number of clusters we observe

and decreasing k will reduce it. Although this heuristic has

worked well for many datasets that we have tried, it suffers

from the following limitations: (1) If the clusters have very

different densities, it will tend to pick out clusters of high

density only. (2) It is possible to construct examples where

the clusters are distributed in such a way such that we re-

cover the incorrect clustering. Due to such limitations, this

part of the procedure is open to exploration and change in

the future.

3.2. Higher Dimensional Parameter Spaces

Using a single function as a filter we get as output a com-

plex in which the highest dimension of simplices is 1 (edges

in a graph). Qualitatively, the only information we get out of

this is the number of components, the number of loops and

knowledge about structure of the component flares etc.). To

get information about higher dimensional voids in the data

one would need to build a higher dimensional complex us-

ing more functions on the data. In general, the Mapper con-

struction requires as input: (a) A Parameter space defined by

the functions and (b) a covering of this space. Note that any

covering of the parameter space may be used. As an exam-

ple of the parameter space S1, consider a parameter space

defined by two functions f and g which are related such that

f 2 +g2 = 1. A very simple covering for such a space is gen-

erated by considering overlapping angular intervals.

One natural way of building higher dimensional complexes

is to associate many functions with each data point instead

of just one. If we used M functions and let R
M to be our

parameter space, then we would have to find a covering of

an M dimensional hypercube which is defined by the ranges

of the M functions.

Example 3.3 Consider using two functions f and g which

are defined for each data point (refer to Figure 2). We need

to define a covering of the rectangle R= [min f ,max f ]×
[ming,maxg]. This covering defines constraints on values

of f and g within each region, which enables us to select

subsets of the data. As in the case of covering an interval,

the regions which cover R must overlap. Now, if we cover

R using hexagons then we can adjust the size and overlap of

hexagons such that a maximum of three hexagons intersect.

Thus, the dimension of simplices which we use to construct

the complex will always be 3 or less. On the other hand if

we cover R using rectangles, there will be regions where

four rectangles intersect. Thus, the dimension of simplices

which we use to construct the complex will be 4 or less.

We now describe the Mapper algorithm using two func-

tions and the parameter space R
2. Consider two functions

on each data point, and the range of these being cov-

ered by rectangles. Define a region R= [min f1,max f1]×
[min f2,max f2]. Now say we have a covering ∪i, jAi j such
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Figure 2: Covering the range of two functions f and g.

The area which needs to be covered is [min f ,max f ] ×
[ming,maxg]. On the left is a covering using rectangles and

on the right is a covering using hexagons. The constraints on

the smaller regions (rectangles or hexagons) define the in-

dices of data which we pick. The red dots in each represent

the center of the region. Refer to Example 3.3 for details.

Please refer to the electronic version for color image.

that each Ai, j,Ai+1, j intersect and each Ai, j,Ai, j+1 intersect.

An algorithm for building a reduced simplicial complex is:

1. For each i, j, select all data points for which the function

values of f1 and f2 lie within Ai, j. Find a clustering of

points for this set and consider each cluster to represent

a 0 dimensional simplex (referred to as a vertex in this

algorithm). Also, maintain a list of vertices for each Ai, j

and a set of indices of the data points (the cluster mem-

bers) associated with each vertex.

2. For all vertices in the sets {Ai, j,Ai+1, j,Ai, j+1,Ai+1, j+1},

if the intersection of the cluster associated with the ver-

tices is non-empty then add a 1-simplex (referred to as an

edge in this algorithm).

3. Whenever clusters corresponding to any three vertices

have non empty intersection, add a corresponding 2 sim-

plex (referred to as a triangle in this algorithm) with the

three vertices forming its vertex set.

4. Whenever clusters corresponding to any four vertices

have non-empty intersection, add a 3 simplex (referred

to as tetrahedron in this algorithm) with the four vertices

forming its vertex set.

It is very easy to extend Mapper to the parameter space R
M

in a similar fashion.

Example 3.4 Consider the unit sphere in R
3. Refer to Fig-

ure 3. The functions are f1(x) = x3 and f2(x) = x1, where

x = (x1,x2,x3). As intervals in the range of f1 and f2 are

scanned, we select points from the dataset whose function

values lie in both the intervals and then perform clustering.

In case of a sphere, clearly only three possibilities exist:

1. The intersection is empty, and we get no clusters.

2. The intersection contains only one cluster.

3. The intersection contains two clusters.

After finding clusters for the covering, we form higher di-

mensional simplices as described above. We then used the

Figure 3: Refer to Example 3.4 for details. Let the filter-

ing functions be f1(x) = x3, f2(x) = x1, where xi is the

ith coordinate. The top two images just show the contours

of the function f1 and f2 respectively. The three images

in the middle row illustrate the possible clusterings as the

ranges of f1 and f2 are scanned. The image in the bot-

tom row shows the number of clusters as each region in

the range( f1)× range( f2) is considered. Please refer to the

electronic version for color image.

homology detection software PLEX ( [PdS]) to analyze the

resulting complex and to verify that this procedure recovers

the correct Betti numbers: β0 = 1,β1 = 0,β2 = 1.

4. Functions

The outcome of Mapper is highly dependent on the func-

tion(s) chosen to partition (filter) the data set. In this sec-

tion we identify a few functions which carry interesting geo-

metric information about data sets in general. The functions

which are introduced below rely on the ability to compute

distances between points. We assume that we are given a col-

lection of N points as a point cloud data X together with a

distance function d(x,y) which denotes the distance between

x,y ∈ X .

4.1. Density

Density estimation is a highly developed area within statis-

tics. See [Sil86], for a thorough treatment. In particular for

ε > 0 consider estimating density using a Gaussian kernel

as:

fε(x) = Cε ∑
y

exp

(
−d(x,y)2

ε

)

where x,y ∈ X and Cε is a constant such that
R

fε(x)dx = 1.

In this formulation ε controls the smoothness of the estimate

of the density function on the data set, estimators using large

values of ε correspond to smoothed out versions of the es-

timator using smaller values of this parameter. A number of

other interesting methods are presented in [Sil86] and many

of them depend only the ability to compute distance between

members of the point cloud. As such, they yield functions

which carry information about the geometry of the data set.
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4.2. Eccentricity

This is a family of functions which also carry information

about the geometry of the data set. The basic idea is to iden-

tify points which are, in an intuitive sense, far from the cen-

ter, without actually identifying an actual center point. Given

p with 1 ≤ p < +∞, we set

Ep(x) =

(
∑y∈X d(x,y)p

N

) 1
p

(4–1)

where x,y ∈ X . We may extend the definition to p = +∞
by setting E∞(x) = maxx′∈X d(x,x′). In the case of a Gaus-

sian distribution, this function is clearly negatively corre-

lated with density. In general, it tends to take larger values

on points which are far removed from a “center”.

4.3. Graph Laplacians

This family of functions originates from considering a

Laplacian operator on a graph defined as follows (See

[LL06] for a thorough treatment). The vertex set of this

graph is the set of all points in the point cloud data X , and

the weight of the edge between points x,y ∈ X is:

w(x,y) = k(d(x,y))

where d denotes the distance function in the point cloud data

and k is, roughly, a “smoothing kernel” such as a Gaussian

kernel. A (normalized) graph Laplacian matrix is computed

as:

L(x,y) =
w(x,y)√

∑z w(x,z)
√

∑z w(y,z)

Now, the eigenvectors of the normalized graph Laplacian

matrix gives us a set of orthogonal vectors which encode

interesting geometric information, [LL06] and can be used

as filter functions on the data.

5. Sample Applications

In this section, we discuss a few applications of the Mapper

algorithm using our implementation. Our aim is to demon-

strate the usefulness of reducing a point cloud to a much

smaller simplicial complex in synthetic examples and some

real data sets.

We have implemented the Mapper algorithm for comput-

ing and visualizing a representative graph (derived using

one function on the data) and the algorithm for computing

a higher order complex using multiple functions on the data.

Our implementation is in MATLAB and utilizes GraphViz

for visualization of the reduced graphs.

We use the following definitions in this section. Mapper

reduces an input point cloud Y to a simplicial complex C. Let

the vertex set of this complex be X , and the 1-skeleton of C
be G. All vertices in the set X represent clusters of data. Let

Figure 4: Refer to Section 5.1 for details. Three dimensional

projection of the diabetes data obtained using projection and

pursuit.

Ci be the cluster of points in Y associated with Xi. Let Ni be

the cardinality of the cluster associated with Xi. Recall from

Section 3.1, that we have a distance matrix D for points in

the set Y . By using it, we can also associate a metric between

the members of X . We define two notions of distance as:

• DH(Xi,X j) = max
(

∑y minx d(x,y)
N j

,
∑x miny d(x,y)

Ni

)
, where x ∈

Ci,y ∈ C j. Informally, this is a smooth approximation to

the Hausdorff distance between two sets.

• We construct an adjacency matrix A for G, where A(i, j) =
DH(Xi,X j) if there is an edge between Xi and X j in G.

Now, computing graph distance using Dijkstra’s algo-

rithm gives us an “intrinsic” distance on the output. Let

this be DI .

We scale both DH and DI such that the maximum distance

is 1 so as to normalize them.

5.1. The Miller-Reaven diabetes study

In [Mil85], G. M. Reaven and R.G.Miller describe the re-

sults they obtain by applying the projection pursuit method

[Hub85] to data [AH85] obtained from a study performed at

Stanford University in the 1970’s. 145 patients who had di-

abetes, a family history of diabetes, who wanted a physical

examination, or to participate in a scientific study partici-

pated in the study. For each patient, six quantities were mea-

sured: age, relative weight, fasting plasma glucose, area un-

der the plasma glucose curve for the three hour glucose tol-

erance test (OGTT), area under the plasma insulin curve for

the (OGTT), and steady state plasma glucose response. This

created a 6 dimensional data set, which was studied using

projection pursuit methods, obtaining a projection into three

dimensional Euclidean space, under which the data set ap-

pears as in Figure 4. Miller and Reaven noted that the data set

consisted of a central core, and two “flares" emanating from

it. The patients in each of the flares were regarded as suffer-

ing from essentially different diseases, which correspond to

the division of diabetes into the adult onset and juvenile on-

set forms. One way in which we wish to use Mapper is as

an automatic tool for detecting such flares in the data, even

in situations where projections into two or three dimensional
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Figure 5: Refer to Section 5.1 for details. On the left is a

“low-resolution” Mapper output which was computed us-

ing 3 intervals in the range of the filter with a 50% overlap.

On the right is a “high-resolution” Mapper output com-

puted using 4 intervals in the range of the filter with a 50%

overlap. The colors encode the density values, with red in-

dicative of high density, and blue of low. The size of the node

and the number in it indicate the size of the cluster. The low

density ends reflect type I and type II diabetes. The flares

occurring in Figure 4 occur here as flares with blue ends.

Please refer to the electronic version for color image.

space do not provide such a good image. Figure 5 shows the

results obtained by applying Mapper to this same data set,

using density estimated by a kernel estimator. We show two

different resolutions.

5.2. Mapper on Torus

We generated 1500 points evenly sampled on the surface of

a two dimensional torus (with inner radius 0.5 and exterior

radius 1) in R
3. We embedded this torus into R

30 by first

padding dimensions 4 to 30 with zeros and then applying a

random rotation to the resulting point cloud. We computed

the first two non-trivial eigenfunctions of the Laplacian, f1
and f2 (see Section 4.3) and used them as filter functions

for Mapper. Other parameters for the procedure were as

follows. The number of intervals in the range of f1 and f2
was 8 and any two adjacent intervals in the range of fi had

50% overlap. The output was a set of 325 (clusters of) points

together with a four dimensional simplicial complex. The

3-D visualization shown in Figure 6 was obtained by first

endowing the output points with the metric DH as defined

above and using Matlab’s MDS function mdscale and then

attaching 1 and 2-simplices inferred from the four dimen-

sional simplicial complex returned by Mapper. The three-

dimensional renderings of the 2-skeleton are colored by the

functions f1 and f2. These experiments were performed only

to verify that the embedding produced by using the inferred

distance metric actually looked like a torus and to demon-

strate that the abstract simplicial complex returned by Map-

per has the correct Betti numbers: β0 = 1,β1 = 2,β2 = 1

(as computed using PLEX).

Figure 6: Refer to Section 5.2 for details. Please refer to the

electronic version for color image.

Figure 7: Refer to Section 5.3 for details. The top row shows

the rendering of one model from each of the 7 classes. The

bottom row shows the same model colored by the E1 func-

tion (setting p = 1 in equation 4–1) computed on the mesh.

Please refer to the electronic version for color image.

5.3. Mapper on 3D Shape Database

In this section we apply Mapper to a collection of 3D

shapes from a publicly available database of objects [SP].

These shapes correspond to seven different classes of objects

(camels, cats, elephants, faces, heads, horses and lions). For

each class there are between 9 and 11 objects, which are dif-

ferent poses of the same shape, see Figure 7.

This repository contains many 3D shapes in the form of tri-

angulated meshes. We preprocessed the shapes as follows.

Let the set of points be P. From these points, we selected

4000 landmark points using a Euclidean maxmin procedure

as described in [dSVG04]. Let this set be Y = {Pi, i ∈ L},

where L is the set of indices of the landmarks.

In order to use this as the point cloud input to Mapper, we

computed distances between the points in Y as follows. First,

we computed the adjacency matrix A for the set P by using

the mesh information e.g. if Pi and Pj were connected on

the given mesh, then A(i, j) = d(Pi,Pj), where d(x,y) is the

Euclidean distance between x,y ∈ P. Finally, the matrix of

distances D between points of Y was computed using Dijk-

stra’s algorithm on the graph specified by A.

In order to apply Mapper to this set of shapes we chose

to use E1(x) as our filter function (setting p = 1 in equation

4–1), see Figure 7. In order to minimize the effect of bias due

to the distribution of local features we used a global thresh-

old for the clustering within all intervals which was deter-

mined as follows. We found the threshold for each interval

by the histogram heuristic described in Section 3.1, and used

the median of these thresholds as the global threshold.

The output of Mapper in this case (single filter function) is

a graph. We use GraphViz to produce a visualization of this

graph. Mapper results on a few shapes from the database
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are presented in Figure 9. A few things to note in these re-

sults are:

1. Mapper is able to recover the graph representing the

skeleton of the shape with fair accuracy. As an exam-

ple, consider the horse shapes. In both cases, the three

branches at the bottom of the recovered graph represent

the font two legs and the neck. The blue colored sec-

tion of the graph represents the torso and the top three

branches represent the hind legs and the tail. In these ex-

amples, endowing the nodes of the recovered graph with

the mean position of the clusters they represent would re-

cover a skeleton.

2. Different poses of the same shape have qualitatively sim-

ilar Mapper results however different shapes produce

significantly different results. This suggests that certain

intrinsic information about the shapes, which is invariant

to pose, is being retained by our procedure.

The behaviour exhibited by Mapper (using E1 as filter) sug-

gest it may be useful as a tool for simplifying shapes and

subsequently performing database query and (pose invari-

ant) shape comparison tasks. We briefly explore this possi-

bility in the next section.

5.4. Shape Comparison Example

In this section we show how Mapper’s ability to meaning-

fully simplify data sets could be used for facilitating Shape

Comparison/Matching tasks. We use the output of Mapper

as simplified objects/shapes on which we will be performing

a shape discrimination task.

Following the same procedure detailed in the Section 5.3, we

reduce an input shape (Y ) to a graph (G). Let the vertex set of

this graph be X and the adjacency matrix by A. For each Xi,

we define µi = Ni

∑ j N j
to be used later as a weight associated

with each point of the simplified shape.

Each simplified object is then specified as a triple

{(X ,DX ,µX )}, where DX is a distance matrix which is com-

puted using one of the choices DH or DI as defined earlier

and µX is the set of weights for X . We used the method de-

scribed in [Mem07] to estimate a measure of dissimilarity

between all the shapes. The point to make here is that the

clustering procedure underlying the Mapper construction

provides us with not only a distance between clusters but

also with a natural notion of weight for each point (cluster)

in the simplified models, where both encode interesting in-

formation about the shape. The comparison method takes as

input both the distance matrix between all pairs of points in

the simplified model and the weight for each point. It then

proceeds to compute an Lp version of the Gromov-Hausdorff

distance. The output of this stage is a dissimilarity matrix D
where element D(X ,Z) expresses the dissimilarity between

(simplified) objects X and Z.

Figure 8: Refer to Section 5.4 for details. Comparing dis-

similarity matrices D: (a) This dissimilarity matrix was

computed using DH . (b) This dissimilarity matrix was com-

puted using DI . Clearly DH is much better at clustering var-

ious poses of the same shape together. Please refer to the

electronic version for color image.

We tried this method on two different constructions for the

simplified sets. The first construction estimated the metric

DX of simplified model X as DH defined above. The sec-

ond construction estimates the metric as DI defined above.

Figure 8 depicts the resulting dissimilarity matrices for all

simplified models, for both methods of construction. Note

the clear discrimination in case (a).

We quantified the ability to discriminate different classes

of shapes by computing a probability of error in classifi-

cation. Let CX denote the class to which the shape X be-

longs. From each class of shapes Ci we randomly pick a

landmark pose Li to represent that class. We have 7 classes

in the data, so our landmark set is L = {Li, i = 1 . . .7}. Now,

to each shape X , we assign the implied class ĈX = CY where

Y = argminZ∈LD(X ,Z). Note that ĈX depends on the choice

of the landmark set L. We define the per class probability of

error for a particular choice of L as:

P
(L)
Ci

=
#
(
{X |ĈX 6= Ci}∩{X |CX = Ci}

)

#({X |CX = Ci})

Now, the probability of error for a particular choice of L

is P(L) = ∑i P
(L)
Ci

PCi
where PCi

=
#({X|CX =Ci})

∑i #({X|CX =Ci})
. Since the

choice of L is random, we repeat the above procedure M

times and find the probability of error as P = ∑
M
i=1

P(Li)

M .

We calculated the probability of error for the two cases: (a)

When DH is used to find D and (b) when DI is used to find

D. In the former case P was found to be 3.03% and in the

latter case P was found to be 23.41%. In both cases we used

M = 100000. Note that despite having reduced a shape with

4000 points to less than 100 for most classes, the procedure

manages to classify shapes with a low error probability.

The idea of using topological methods associated with the

filtering functions for simplifying shape comparison has

been considered before, e.g. [BFS00]. Our approach natu-

rally offers more information as it provides a measure of im-
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portance of the the vertices of the resulting simplicial com-

plex (simplified shape).

6. Conclusions

We have devised a method for constructing useful combi-

natorial representations of geometric information about high

dimensional point cloud data. Instead of acting directly on

the data set, it assumes a choice of a filter or combination

of filters, which can be viewed as a map to a metric space,

and builds an informative representation based on cluster-

ing the various subsets of the data set associated the choices

of filter values. The target space may be Euclidean space,

but it might also be a circle, a torus, a tree, or other metric

space. The input requires only knowledge of the distances

between points and a choice of combination of filters, and

produces a multiresolution representation based on that fil-

ter. The method provides a common framework which in-

cludes the notions of density clustering trees, disconnectivity

graphs, and Reeb graphs, but which substantially generalizes

all three. We have also demonstrated how the method could

be used to provide an effective shape discriminator when ap-

plied to interesting families of shapes. An important direc-

tion for future work on the method is improving the method

for performing the partial clustering, specifically for choos-

ing a reasonable scale on the clusters. Our current method,

while ad hoc, performs reasonably well in the examples we

study, but a more principled method, perhaps including some

local adaptivity, would doubtlessly improve the results.
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Figure 9: Refer to Section 5.3 for details. Each row of this image shows two poses of the same shape along with the Mapper

result which is computed as described in Section 5.3. For each Mapper computation, we used 15 intervals in the range of the

filter with a 50% overlap.
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