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Abstract—In this paper, kinematic modeling and singularity and stiffness analysis of a 3-d.o.f.
redundant parallel manipulator have been elaborated in detail. It is known that, contrary to series
manipulators, the forward kinematic map of parallel manipulators involves highly coupled non-linear
equations, whose closed-form solution derivation is a real challenge. This issue is of great importance
noting that the forward kinematics solution is a key element in closed-loop position control of parallel
manipulators. Using the idea of inherent kinematic chains formed in parallel manipulators, both
inverse and forward kinematics of the redundant parallel manipulator are fully developed, and a
closed-form solution for the forward kinematic map of the parallel manipulator is derived. The closed-
form solution is also obtained in detail for the Jacobian of the mechanism and singularity analysis of
the manipulator is performed based on the computed Jacobian. Finally, as the first step to develop a
control topology based on the overall stiffness property of the manipulator, the stiffness mapping of
the manipulator is derived and its configuration dependence is analyzed. It is observed that the actuator
redundancy in the mechanism is the major element to improve the Cartesian stiffness and, hence, the
dexterity of the hydraulic shoulder. Moreover, loosing one limb actuation reduces the stiffness of the
manipulator significantly.

Keywords: Parallel manipulator; kinematic modeling; forward kinematics; Jacobian analysis; stiffness
mapping.

1. INTRODUCTION

Over the last two decades parallel manipulators have been among the most impor-
tant research topics in the field of robotics. A parallel manipulator typically consists
of a moving platform that is connected to a fixed base by several limbs. The number
of limbs is at least equal to the number of degrees of freedom (d.o.f.) of the mov-
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ing platform so that no more than one actuator drives each limb and all actuators
can be mounted on or near the fixed base. These robots are now used in real-life
applications such as force-sensing robots, fine-positioning devices and medical ma-
nipulators [1, 2]. In the literature, mostly 6-d.o.f. parallel mechanisms based on the
Stewart–Gough platform are analyzed [3]. However, parallel manipulators with 3
d.o.f. have been also implemented for applications where 6 d.o.f. are not required,
such as high-speed machine tools. Recently, 3-d.o.f. parallel manipulators with
more than three limbs have been among the investigated mechanisms, in which the
additional limb is introduced to avoid singular configurations at the cost of increased
mechanical complexity [4]. Complete kinematic modeling and Jacobian analysis of
such mechanisms have not received much attention so far, and is still regarded as an
interesting problem in parallel robotics research.

It is known that unlike serial manipulators, inverse position kinematics for parallel
robots is usually simple and straightforward. In most cases joint variables may be
computed independently using the given pose of the moving platform. The solution
to this problem in most cases is uniquely determined. However, forward kinematics
of parallel manipulators is generally very complicated. Its solution usually involves
systems of non-linear equations, which are highly coupled, and in general have
no closed-form and unique solution. Different approaches are provided in the
literature to solve this problem either in general or in special cases. There are
also several cases in which the solution to this problem is obtained for a special
or novel architecture [5–9]. Two such special 3-d.o.f. constrained mechanisms
have been studied in Refs [10, 11], where kinematics, Jacobian and dynamics have
been considered for such manipulators. Joshi and Tsai [4] performed a detailed
comparison between a 3-UPU and the so-called Tricept manipulator regarding
the kinematic, workspace and stiffness properties of the mechanisms. In general,
different solutions to the forward kinematics problem of parallel manipulators can
be found using numerical or analytical approaches, or a closed-form solution for
special architectures [12, 13].

In this paper, complete kinematic modeling for a 3-d.o.f. actuator redundant
hydraulic parallel manipulator has been performed and a closed-form forward
kinematics solution is obtained. The mechanism is designed by Hayward [14–16],
borrowing design ideas from biological manipulators, particularly the biological
shoulder. The interesting features of this mechanism and its similarity to the
human shoulder have made its design unique, which can serve as a basis for a
good experimental setup for parallel robotics research. This design is different
from the usual Tricepts-type parallel manipulators, since it incorporates redundancy
in manipulator actuation. In a former study by the authors, different numerical
approaches have been used to solve the forward kinematic map of this manipulator
[17]. The numerical approaches are an alternative to estimate the forward kinematic
solution, in case such solutions cannot be obtained in closed form. In this paper,
however, the idea of kinematic chains developed for parallel manipulators structures
[10, 11] is applied for the manipulator and it is observed that the closed-form
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kinematic solution for this manipulator can be obtained in detail in a systematic
manner. Using the closed-form forward kinematic map of the manipulator, a
kinematic analysis for the manipulator is performed on the Jacobians, singularities
and stiffness mapping. The Jacobian matrix of the manipulator is derived through
a complete velocity analysis of the mechanism and a thorough singularity analysis
is performed using the configuration-dependent Jacobian. Through this analysis the
original claim of the mechanism designer, that the mechanism is singularity free,
is verified. Finally, the stiffness analysis of the mechanism has been elaborated,
resulting in the stiffness matrix, and the minimum and maximum stiffness mappings
of the hydraulic shoulder. This analysis is the base of proposing control topologies
on the mechanism based on the stiffness mappings.

2. MECHANISM DESCRIPTION

A schematic of the mechanism currently under experimental studies in the ARAS
Robotics Laboratory is shown in Fig. 1. The mobile platform is constrained to
spherical motions. Four high-performance hydraulic piston actuators are used to
give 3 d.o.f. in the mobile platform.

Each actuator includes a position sensor of the LVDT type and an embedded
Hall effect force sensor. The four limbs share an identical kinematic structure.
A passive limb connects the fixed base to the moving platform by a spherical joint,
which suppresses the pure translations of the moving platform. Simple elements
like spherical and universal joints are used in the structure. From the structural
point of view, the shoulder mechanism, which from now on we call ‘the hydraulic
shoulder’, falls into an important class of robotic mechanisms called parallel robots.

Figure 1. A schematic of the hydraulic shoulder manipulator.
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Figure 2. The hydraulic shoulder in movement.

In these robots, the end-effector is connected to the base through several closed
kinematic chains. The motivation behind using these types of robot manipulators
was to compensate for the shortcomings of conventional serial manipulators such
as low precision, stiffness and load-carrying capability. However, they have
their own disadvantages, which are mainly smaller workspace and many singular
configurations. The hydraulic shoulder, having a parallel structure, has the general
features of these structures. It can be considered as a shoulder for a lightweight
7-d.o.f. robotic arm, which can carry loads several times its own weight. Simple
elements, used in this design, add to its lightness and simplicity. The workspace of
such a mechanism can be considered as part of a spherical surface. The orientation
angles are limited to vary between −π/6 and π/6.

Figure 2 shows the hydraulic shoulder in a twisted configuration. No sensors are
available for measuring the orientation angles of the moving platform. This fact
justifies the importance of the forward kinematic map as a key element in feedback
position control of the shoulder with the LVDT position sensors used as the only
source of measurement in such a control scheme. A complete analysis of such a
carefully designed mechanism will provide the required means to better understand
the characteristics of the structure, the required performance and the corresponding
control algorithms.

3. KINEMATICS

Figure 3 depicts a geometric model for the hydraulic shoulder manipulator, which
will be used for its kinematics derivation. The parameters used in kinematics can
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Figure 3. A geometric model for the hydraulic shoulder manipulator.

be defined as:

lb = ∥
∥
−−→
CAi

∥
∥, lp = ∥

∥
−→
CP

∥
∥, ld = ∥

∥
−→
PPi

∥
∥

y4
, lk = ∥

∥
−→
PPi

∥
∥

z4
,

where α is the angle between CA4 and y0, C is the center of the reference frame, P
is the center of the moving plate, li are actuator lengths, Pi are moving endpoints
of the actuators and Ai are fixed endpoints of the actuators. Two coordinate frames
are defined for the purpose of analysis. The base coordinate frame {A}: x0y0z0 is
attached to the fixed base at point C (rotation center) with its z0-axis perpendicular
to the plane defined by the actuator base points A1A2A3A4 and an x0-axis parallel to
the bisector of angle � A1CA4. The second coordinate frame {B}: x4y4z4 is attached
to the center of the moving platform P with its z-axis perpendicular to the line
defined by the actuators moving end points (P1P2) along the passive limb. Note
that we have assumed that the actuator fixed endpoints lie on the same plane as the
rotation center C. The position of the moving platform center P is defined by:

Ap = [px, py, pz]T. (1)

Also, a rotation matrix ARB is used to define the orientation of the moving platform
with respect to the base frame:

ARB = Rz(θz)Ry(θy)Rx(θx)

=





cθzcθy cθzsθysθx − sθzcθx cθzsθycθx + sθzsθx

sθzcθy sθzsθysθx + cθzcθx sθzsθycθx − cθzsθx

−sθy cθysθx cθycθx




 , (2)
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where θx , θy and θz are the orientation angles of the moving platform denoting
rotations of the moving frame about the fixed x-, y- and z-axes, respectively. Also
cθ and sθ denote cos(θ) and sin(θ), respectively.

With the above definitions, the 4 × 4 transformation matrix ATB is easily found
to be:

ATB =
[

ARB
Ap

0 1

]

. (3)

Hence, the position and orientation of the moving platform are completely defined
by six variables, from which only three orientation angles θx , θy and θz are
independently specified as the task space variables of the hydraulic shoulder.

3.1. Inverse kinematics

In modeling the inverse kinematics of the hydraulic shoulder we must determine
actuator lengths (li) as the actuator space variables given the task space variables
θx , θy and θz as the orientation angles of the moving platform. First, note that the
passive limb connecting the center of the rotation to the moving platform can be
viewed as a 3-d.o.f. open-loop chain by defining three joint variables θ1, θ2 and θ3

as the joint space variables of the hydraulic shoulder. Hence, applying the Denavit–
Hartenberg (D–H) convention, the transformation ATB can also be written as:

ATB = AT1(θ1) · 1T2(θ2) · 2T3(θ3) · 3TB. (4)

The D–H transformation matrices iTj are computed using the coordinate systems
for the passive limb in Fig. 4, according to the D–H convention. As shown in Fig. 4,
the x0-axis of frame {A} points along the first joint axis of the passive limb, the first

Figure 4. D–H Frame attachments for the passive supporting limb.
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Table 1.
D–H parameters for the passive supporting limb

i αi−1 ai−1 di θi

1 90◦ 0 0 θ1
2 90◦ 0 0 θ2
3 90◦ 0 0 θ3
B 0 0 lp 0

link frame is attached to the first moving link with its x1-axis pointing along the
second joint axis of the passive limb, the second link frame is attached to the second
moving link with its x2-axis pointing along the third joint axis of the passive limb
and the third link frame is attached to the moving platform in accordance with the
D–H convention. Using the above frames, the D–H parameters of the passive limb
are found as in Table 1.

Using the D–H parameters in Table 1, the D–H transformation matrices in (4) can
be found as:

AT1 =








cθ1 −sθ1 0 0

0 0 −1 0

sθ1 cθ1 0 0

0 0 0 1








, 1T2 =








cθ2 −sθ2 0 0

0 0 −1 0

sθ2 cθ2 0 0

0 0 0 1








,

(5)

2T3 =








cθ3 −sθ3 0 0

0 0 −1 0

sθ3 cθ3 0 0

0 0 0 1








, 3TB =








1 0 0 0

0 1 0 0

0 0 1 lp

0 0 0 1








.

Substituting (5) into (4) yields:

ATB =
[

ARB
Ap

0 1

]

, (6)

where:

ARB =




cθ1cθ2cθ3 + sθ1sθ3 −cθ1cθ2sθ3 + sθ1cθ3 cθ1sθ2

−sθ2cθ3 sθ2sθ3 cθ2

sθ1cθ2cθ3 − cθ1sθ3 −sθ1cθ2sθ3 − cθ1cθ3 sθ1sθ2



 , (7)

and

Ap = [

lpcθ1sθ2 lpcθ2 lpsθ1sθ2
]T

. (8)

For the inverse kinematics, the three independent orientation angles in (2) are given.
Hence, equating (2)–(7) yields:

θ2 = cos−1
(

ARB(2,3)

) = cos−1(sθzsθycθx − cθzsθx). (9)
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Once θ2 is known, we can solve for θ1 and θ3 as:

θ1 = A tan 2

(ARB(3,3)

sθ2
,

ARB(1,3)

sθ2

)

, (10)

and:

θ3 = A tan 2

(ARB(2,2)

sθ2
,
−ARB(2,1)

sθ2

)

, (11)

provided that sθ2 �= 0. Having the joint space variables θ1, θ2 and θ3 in hand, we can
easily solve for the position of the moving platform using (8). Now, in order to find
the actuator lengths, we write a kinematic vector-loop equation for each actuated
limb as:

Li = li · si = Ap + ARB
Bpi − ai, (12)

where li is the length of the ith actuated limb and si is a unit vector pointing along
the direction of the ith actuated limb. Also, Ap is the position vector of the moving
platform and ARB is its rotation matrix. Vectors ai and Bpi denote the fixed end
points of the actuators (Ai) in the base frame and the moving end points of the
actuators respectively, written as:

a1 = AA1 = ( lbsin α −lbcos α 0 )T

a2 = AA2 = (−lbsin α −lbcos α 0 )T

a3 = AA3 = (−lbsin α lbcos α 0 )T

a4 = AA4 = ( lbsin α lbcos α 0 )T,

(13)

and
Bp1 = (0 −ld −lk )T

Bp2 = (0 ld −lk )T.
(14)

Hence, the actuator lengths li can be easily computed by dot multiplying (12) with
itself to yield:

LT
i .Li = l2

i = [
Ap + ARB

Bpi − ai

]T[
Ap + ARB

Bpi − ai

]

. (15)

Writing (15) four times with the corresponding parameters given in (7), (8), (13)
and (14), and simplifying the results yields:

l2
1 = k1 + k2cθ2 + k3cθ1sθ2 + k4(sθ1cθ3 − cθ1cθ2sθ3) + k5sθ2sθ3 (16a)

l2
2 = k1 + k2cθ2 − k3cθ1sθ2 − k4(sθ1cθ3 − cθ1cθ2sθ3) + k5sθ2sθ3 (16b)

l2
3 = k1 − k2cθ2 − k3cθ1sθ2 + k4(sθ1cθ3 − cθ1cθ2sθ3) + k5sθ2sθ3 (16c)

l2
4 = k1 − k2cθ2 + k3cθ1sθ2 − k4(sθ1cθ3 − cθ1cθ2sθ3) + k5sθ2sθ3, (16d)
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where:

k1 = l2
b + l2

d + (lp − lk)
2

k2 = 2lb(lp − lk) cos(α)

k3 = −2lb(lp − lk) sin(α)

k4 = 2lbld sin(α)

k5 = −2lbld cos(α).

(17)

Finally, the actuator lengths are given by the square roots of (16), yielding actuator
space variables as the unknowns of the inverse kinematics problem.

3.2. Forward kinematics

Forward kinematics is undoubtedly a basic element in modeling and control of the
manipulator. In forward kinematic analysis of the hydraulic shoulder, we shall find
all the possible orientations of the moving platform for a given set of actuated limb
lengths. Equation (16) can also be used for the forward kinematics of the hydraulic
shoulder, but with the actuator lengths as the input variables. In fact, we have
four non-linear equations to solve for three unknowns. First, we try to express
the moving platform position and orientation in terms of the joint variables θ1, θ2

and θ3 using (7) and (8). As is obvious from (16), the only unknowns are the joint
variables θ1, θ2 and θ3, since actuator lengths are given and all other parameters are
determined by the geometry of the manipulator. Hence, we must solve the equations
for six unknowns from which only three are independent. Summing (16a) and (16b)
we get:

l2
1 + l2

2 = 2k1 + 2k2cθ2 + 2k5sθ2sθ3. (18)

Similarly adding (16c) and (16d) yields:

l2
3 + l2

4 = 2k1 − 2k2cθ2 + 2k5sθ2sθ3. (19)

Subtracting (19) from (18), we can solve for cθ2 as:

cθ2 = l2
1 + l2

2 − l2
3 − l2

4

4k2
. (20)

Substituting (20) into the trigonometric identity sθ2
2 + cθ2

2 = 1, we get:

sθ2 = ±
√

1 − cθ2
2 . (21)

Having sθ2 and cθ2 in hand, we can solve for sθ3 from (18) as:

sθ3 = l2
1 + l2

2 − 2k1 − 2k2cθ2

2k5sθ2
. (22)

Similarly:

cθ3 = ±
√

1 − sθ2
3 . (23)
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To solve for the remaining unknowns, cθ1 and sθ1, we sum (16b) and (16c) to get:

l2
2 + l2

3 = 2k1 − 2k3cθ1sθ2 + 2k5sθ2sθ3. (24)

Having computed sθ2 and sθ3, we obtain:

cθ1 = 2k1 + 2k5sθ2sθ3 − l2
2 − l2

3

2k3sθ2
. (25)

Finally:

sθ1 = ±
√

1 − cθ2
1 . (26)

Hence, the joint space variables are given by:

θ1 = A tan 2(sθ1, cθ1), θ2 = A tan 2(sθ2, cθ2), θ3 = A tan 2(sθ3, cθ3). (27)

Also, the moving platform position Ap and orientation ARB are found using (7)
and (8). The final step is to solve for the orientation angles θx , θy and θz using (3)
which completes the solution process to the forward kinematics of the hydraulic
shoulder. It should be noted that there are some additional erroneous solutions
to the forward kinematics as stated above due to several square roots involved in
the process. These solutions must be identified and omitted. Another important
assumption made in our solution procedure was that all four actuator fixed endpoints
are coplanar, just as the actuator moving endpoints.

4. MECHANISM JACOBIAN

The Jacobian matrix of a 3-d.o.f. parallel manipulator relates the task space linear or
angular velocity to the vector of actuated joint rates in a way that it corresponds to
the inverse Jacobian of a serial manipulator. In this section, we derive the Jacobian
for the hydraulic shoulder as a basic requirement for singularity analysis, stiffness
analysis and position control of this manipulator. For the Jacobian analysis of the
hydraulic shoulder, we must find a relationship between the angular velocity of the
moving platform, ω, and the vector of limb rates as the actuator space variables,
l̇ = [l̇1 l̇2 l̇3 l̇4]T, so that:

l̇ = Jω. (28)

From the above definition, it is easily observed that the Jacobian for the hydraulic
shoulder will be a 4 × 3 rectangular matrix as expected, regarding the mechanism
as an actuator redundant manipulator. Using the same idea of mapping between
actuator, joint and task space, we find that the Jacobian depends on the actuated
limbs, as well as the passive supporting limb. Therefore, we first derive a 4 × 6
Jacobian, Jl, relating the six-dimensional velocity of the moving platform, v, to the
vector of actuated limb rates, l̇. Then, we find the 6 × 3 Jacobian of the passive
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supporting limb, Jp. The Jacobian of the hydraulic shoulder will be finally derived
as:

J = JlJp. (29)

4.1. Jacobian of the actuated limbs

The Jacobian of the actuated limbs, Jl, relates the six-dimensional velocity of the
moving platform, v, to the vector of actuated limb rates, l̇, such that:

l̇ = Jlv. (30)

We can write the six-dimensional moving platform velocity as:

v =
[

Aṗ

ω

]

= [

ṗx ṗy ṗz ωx ωy ωz

]T
, (31)

where Aṗ is the velocity of the moving platform center and ω is the angular velocity
of the moving platform. Differentiating the kinematic vector-loop equation (12)
with respect to time we get:

l̇i si + (ωi × si)li = Aṗ + ω × ARB
Bpi, (32)

where ωi is the angular velocity of the ith limb written in the base frame. Dot
multiplying (32) by si we have:

l̇i = sT
i · Aṗ + (ARB

Bpi × si)
Tω, (33)

writing the above equation four times for each actuated limb and comparing the
result to (30) gives the actuated limbs Jacobian as:

Jl =









sT
1

(
ARB

Bp1 × s1
)T

sT
2

(
ARB

Bp2 × s2
)T

sT
3

(
ARB

Bp1 × s3
)T

sT
4

(
ARB

Bp2 × s4
)T









4×6

. (34)

4.2. Jacobian of the passive limb

In order to find the manipulator Jacobian, we need to find a relationship between
the six-dimensional velocity vector of the moving platform, v, and the angular
velocity of the moving platform, ω. First, by differentiating (8) with respect to time
we get:

Aṗ =




−lpsθ1sθ2 lpcθ1cθ2 0
0 −lpsθ2 0

lpcθ1sθ2 lpsθ1cθ2 0



 θ̇ , (35)
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where θ̇ = [ θ̇1 θ̇2 θ̇3 ]T is the vector of the passive joint rates. The angular
velocity of the moving platform can also be expressed as:

ω = AṘB
AR−1

B . (36)

Substituting ARB from (7) and computing (36), we have:

ω =




0 sθ1 cθ1sθ2

−1 0 cθ2

0 −cθ1 sθ1sθ2



 θ̇ . (37)

Solving (37) for θ̇ and substituting it in (35) yields:

Aṗ =




0 lpsθ1sθ2 −lpcθ2

−lpsθ1sθ2 0 lpcθ1sθ2

lpcθ2 −lpcθ1sθ2 0



 ω. (38)

Complementing (38) with the identity map ω = I3ω, we finally obtain:

v =
[

Aṗ

ω

]

= Jpω, (39)

where:

Jp =











0 lpsθ1sθ2 −lpcθ2

−lpsθ1sθ2 0 lpcθ1sθ2

lpcθ2 −lpcθ1sθ2 0
1 0 0
0 1 0
0 0 1











6×3

. (40)

Having Jl and Jp in hand, the hydraulic shoulder Jacobian J4×3 will be easily found
using (29).

5. SINGULARITY ANALYSIS

In this section, singularity analysis of the hydraulic shoulder is performed, based on
the Jacobian of the manipulator. A singular configuration describes a manipulator
posture that results in an instantaneous change in the mobility of the manipulator.
These are undesirable postures that should be recognized and avoided during the
design, planning and control. Researchers have introduced various approaches
to determine and classify the singularities of parallel manipulators. All of these
approaches are mostly based on a Jacobian analysis, since the Jacobian degenerates
when the manipulator is in a singular configuration. Gosselin and Angeles [18] were
perhaps the first to define and study singularities of closed kinematic chains [19].
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According to their classification, singularities for parallel manipulators can be
categorized into three types.

The first type of singularity (an inverse kinematic singularity) occurs at the
workspace boundaries and can be avoided by motion planning. The second type of
singularity (a direct kinematic singularity) results in additional degrees of freedom
at the end-effector and the mechanism cannot maintain its static equilibrium upon
external forces. Singularity of the third type occurs when the manipulator is in a
posture that produces a singularity of the first and the second type simultaneously.
Generally, this type of singularity can occur only in manipulators with special
kinematic architecture and should be avoided in the design stage. Hence, the
direct kinematic singularity is the only type that lies within the workspace of the
manipulator and should be carefully avoided. For a redundant parallel manipulator,
in general, singularities will occur if the Jacobian rank is lower than m, the number
of d.o.f. of the moving platform, or equivalently if:

det(M) = 0, ∀M ∈ {m × m submatrices of J }. (41)

It should be noted that only n−m+1 conditions from (41) are independent, where n

is the number of actuated joints. Hence, singularities are found at the intersection of
n−m+1 hypersurfaces resulting in a lower dimensional manifold with a dimension
of m − (n − m + 1) = m − 1 − nR in the task space, where nR is the number of
redundant actuators. Thus, actuator redundancy can be effectively used to reduce or
even eliminate the singularities in the workspace.

For the hydraulic shoulder manipulator, as shown in the previous section, the lin-
ear velocities of the actuators l̇ are related to the angular velocity of the moving
platform ω by (28), in which J was the Jacobian matrix of the hydraulic shoulder.
Thus singularities are characterized by the rank deficiency of J . Such a case oc-
curs only if the determinants of all 3 × 3 minors of J are identically zero. These
square minors correspond to the Jacobian matrices of the hydraulic shoulder with
one of the actuating limbs removed. Therefore, the redundant manipulator will be
in a singular configuration only if all the non-redundant structures resulted by sup-
pressing one of the actuating limbs are in a singular configuration. Such a case will
not occur in the workspace of the hydraulic shoulder owing to the specific design
of the mechanism [14]. In fact, one of the remarkable features of adding the fourth
actuator is the elimination of the loci of singularities. Figure 5 shows the deter-
minants of the four minor Jacobian matrices, computed in the workspace of the
manipulator, defined as DM1–DM4. It should be noted, that in computing DM1,
DM2, DM3 and DM4, limbs 4, 3, 2 and 1 were removed, respectively, to obtain
the corresponding non-redundant structure. As it is shown in Fig. 5, the values of
the minor Jacobian matrices vary throughout the spherical surface of the workspace
of the manipulator. However, they do not reach to a minimum simultaneously at
a particular configuration. To see this more clearly in Fig. 5, notice that, for ex-
ample, at the configurations where DM2 becomes minimum (red) DM1 and DM3
get their mid-value (cyan–yellow), and DM4 possess its high value (blue). Further-
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Figure 5. Minor determinants for the non-redundant structures; in computing DM1–DM4, limbs 4,
3, 2 and 1 were removed, respectively.

more, similar patterns can be observed at configurations where the other Jacobian
minors becomes minimum. Therefore, there exists no configuration throughout the
entire workspace of the hydraulic shoulder where all minor Jacobian matrices reach
their minimum simultaneously. Moreover, the possibility of getting into a singular
configuration is increased when one of the redundant actuators is removed. Hence,
the designer’s claim that the mechanism is singularity-free throughout its whole
workspace is verified. Note that although this analysis is performed for our spe-
cific parallel manipulator, minor Jacobian matrices can be used in a similar fash-
ion for singularity analysis of other parallel manipulators. In cases where there is
no redundancy in actuation, similar analysis can be performed to obtain singular
configurations and in case one of the actuators malfunctions in a redundant ma-
nipulator, its effect on the singularity of the manipulator can be examined in de-
tail.

6. STIFFNESS ANALYSIS

The stiffness of a parallel manipulator at a given point of its workspace can be
characterized by its stiffness matrix, which relates the forces and torques applied to
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the moving platform in the Cartesian space to the corresponding linear and angular
Cartesian displacements. The stiffness of a manipulator is known to have a direct
impact on its position accuracy, and generally depends on several factors like the
limbs size and material, actuators, and the control system [20]. Several researchers
have studied the stiffness of parallel manipulators regarding either the stiffness
properties of a specific design or different approaches of compliance control of
parallel manipulators [21, 22].

In this section, a detail Cartesian stiffness analysis is performed for the hydraulic
shoulder resulting in the stiffness matrix of the mechanism as the basis for
developing relating control strategies. In fact, this analysis could be a critical
starting point for further research in this field such as accurate position control or
the problem of controlling the manipulator in an environment with kinematic and
force constraints, in which a desired and appropriate stiffness should be synthesized
to be used in various schemes of stiffness control. Furthermore, the stiffness matrix
gives information on some important kinematic properties of the manipulator such
as dexterity or manipulability [21]. The analysis of the Cartesian stiffness is based
on the definition described in Ref. [23]. Actuator stiffness has been considered as
the main source of stiffness.

Let f = [f1 f2 f3 f4]T be the vector of actuated joint forces and �� =
[��1 ��2 ��3 ��4]T be the corresponding vector of virtual displacements of
actuated joints. Then, we can relate �� to f by a n × n diagonal matrix Ka =
diag[k1, . . . , kn], as follows:

f = Ka��. (42)

In fact, for the hydraulic shoulder, Ka is a 4 × 4 diagonal matrix with actuators
stiffness constants on its main diagonal elements. From the definition of the
Jacobian in (28), we have:

�� = J�θ, (43)

in which �θ = [�θx �θy �θz]T is the vector of the virtual angular displacement
of the moving platform. Also, the three-dimensional vector of end-effector output
forces, τ = [τx τy τz]T is related to the vector of actuated joint forces by the
principle of virtual work as:

τ = J Tf. (44)

Substituting (43) into (42) we obtain:

f = KaJ�θ. (45)

Finally, substituting (45) into (44), yields:

τ = K�θ, (46)
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Figure 6. Minimum and maximum stiffness mappings.

where:

K = J TKaJ, (47)

is called the stiffness matrix of the hydraulic shoulder manipulator. As it is obvious
from (47), the stiffness matrix is configuration dependent. For a given configuration
of the moving platform the eigenvalue of the stiffness matrix will represent the
stiffness of the hydraulic shoulder in the corresponding eigenvector direction. Twist
vectors in fact represent these directions. Similarly, minimum and maximum
stiffness mappings could be obtained using the corresponding eigenvalues and
eigenvectors. These maps are shown in Fig. 6, assuming equal stiffness constants
of 105 N/m for all the actuators modeled as linear springs. Moreover, the square
root of the ratio of the smallest eigenvalue to the largest one indicates the reciprocal
of the condition number of the Jacobian matrix, which is also a measure of the
dexterity of the manipulator. It is observed that actuator redundancy has improved
the Cartesian stiffness of the hydraulic shoulder. This is shown in Fig. 7, where the
Euclidean norms of the stiffness matrix are computed for the redundant and non-
redundant manipulator by suppressing one of the limbs. It is clearly observed in
Fig. 7 that loosing one limb actuation significantly reduces the Cartesian stiffness
of the manipulator.
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Figure 7. Comparison of Cartesian stiffness for the redundant and non-redundant structure.

7. CONCLUSIONS

In this paper, kinematic modeling, and singularity and stiffness analysis of a 3-d.o.f.
redundant parallel manipulator has been performed in detail. Using the idea of
inherent kinematic chains formed in parallel manipulators, both inverse and forward
kinematics of the hydraulic shoulder are fully developed, and a closed-form solution
for the forward kinematic map is derived as a basic need for closed-loop position
control of the manipulator. Furthermore, the closed form of the mechanism Jacobian
is derived and a singularity analysis is performed based on the computed Jacobian.
In this study the determinant of the minor Jacobian matrices are used as a measure
of singularity, in which this is computed from the non-redundant structures by
removing the redundant actuator. It is observed that the values of the determinant
of the minor Jacobian matrices do not reach their minimum simultaneously at a
particular configuration and, hence, the hydraulic shoulder workspace is singular
free. Moreover, removing one of the redundant actuators increases the possibility
of getting into a singular configuration. Finally, the stiffness mapping of the
manipulator is derived and its configuration dependence is analyzed. It is shown
that the actuator redundancy in the mechanism is the major element to improve the
Cartesian stiffness of the hydraulic shoulder and by loosing one limb actuation the
stiffness of the manipulator reduces significantly.
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