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Abstract

Over the past decade, low temperature detectors have been of great interest to the astronomy
community. These detectors work at very low temperatures, usually well below 1 K. Their ultra-high
sensitivity has brought astronomers revolutionary new observational capabilities and led to many
great discoveries, such as the demonstration that the geometry of the universe is flat[T},[2]. Although a
single low temperature detector has very impressive sensitivity, a large array of them would be much
more powerful and are highly demanded for the study of more difficult and fundamental problems
in astronomy. However, current detector technologies, such as transition edge sensors (TESs) and
superconducting tunnel junction (STJ) detectors, are difficult to integrate into a large array. When
the pixel count becomes relatively large (> 1000), great technical challenges are encountered in
fabricating and in reading out these detectors.

The microwave kinetic inductance detector (MKID) is a promising new detector technology
invented at Caltech and JPL which provides both high sensitivity and an easy solution to the
integration of detectors into a large array. It operates on the principle that the surface impedance
of a superconductor changes as incoming photons break Cooper pairs. This change is read out
by using high-Q superconducting microwave resonators capacitively coupled to a common feedline.
This architecture allows thousands of detectors (resonators) to be easily integrated through passive
frequency domain multiplexing. In addition, MKIDs are easy to fabricate and require minimal
cryogenic electronics support (a single HEMT amplifier can potentially multiplex 10® —10* MKIDs).

In this thesis we will explore the rich and interesting physics behind these superconducting
microwave resonators used in MKIDs. This study was carried out around two main topics, the
responsivity and the noise of MKIDs.

In the discussion of the responsivity, the following physics are visited:

1. How does the surface impedance of a superconductor change with quasiparticle density?
2. What fraction of the distributed inductance of a superconducting transmission line is
contributed by superconductor’s kinetic inductance?

3. What is the static and dynamic response of the microwave resonant circuit used in MKIDs?

The first question is answered in Chapter [2] by applying the Mattis-Bardeen theory to bulk and

thin-film superconductors. The second question is answered in Chapter [3 by solving the quasi-TEM
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mode of the coplanar wave guide (CPW) using the tool of conformal mapping. The third question
is answered in Chapter @ by applying the network theory to the readout circuit.

The experimental study of the noise is presented in Chapter B which is the focus of this thesis.
Before noise was measured on the first MKID, the fundamental noise limit was understood to be the
quasi-particle generation-recombination noise. Unexpectedly, a significant amount of excess noise
was observed. From a large number of experiments, we have found this excess noise to be pure
frequency noise (equivalent to a jitter in the resonance frequency), with the noise level depending on
the microwave power, the bath temperature, the superconductor/substrate materials combination,
and the geometry of the resonator. The observed noise properties suggest that the excess noise is
not related to the superconductor but is caused by the two-level systems (TLS) in the dielectric
materials in the resonator. TLS are tunneling states which exist in amorphous solids and cause the
anomalous properties of these solids at low temperatures. Several special experiments were designed
to test the TLS hypothesis. From these experiments, we find that the effects of the TLS on the
resonance frequency and the quality factor of the resonators are in good agreement with the TLS
theory. In an important experiment we explored the geometrical scaling of TLS-induced frequency
shift and noise. The results give direct experimental evidence that the TLS, responsible for the
low temperature resonance frequency shift, dissipation, and frequency noise, are distributed on the
surface of the resonator, but not in the bulk substrate. Guided by the measured noise scaling with
geometry and power, we have come up with a semi-empirical noise model which assumes a surface
distribution of independent TLS fluctuators. With this knowledge about TLS and excess noise, we
propose a number of methods that can potentially reduce the excess noise.

Parallel to the experimental study, we have also taken great effort in working toward a theoretical
model of the noise. It is likely that the noise is related to the dielectric constant fluctuation caused by
the state switching (by absorption or emission of thermal phonons) or the energy level fluctuations
of the TLS. However, at the time this thesis was finished, we still do not have a complete theory
that can quantitatively explain all the experimental observations, and therefore the detailed physical
noise mechanism is still not clear.

With the theoretical results of the responsivity and the semi-empirical model of the noise estab-
lished in this thesis, a prediction of the detector sensitivity (noise equivalent power, NEP) and an

optimization of MKID design are now possible, which was the original motivation of this thesis.
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Chapter 1

Introduction

1.1 Microwave kinetic inductance detectors

1.1.1 Introduction to low temperature detectors

Over the past decade, low temperature detectors have been of great interest to the astronomy
community. These detectors work at very low temperatures, usually well below 1 K. Their ultra-
high sensitivity have brought astronomers with revolutionary new observational capabilities and led
to many great discoveries throughout a broad wavelength range—from submillimiter, optical/UV to
X-ray and gamma-ray.

The basic idea behind a traditional low temperature detector is quite simple [3]. It’s well known
that the heat capacity of an insulating crystal (or a superconducting metal well below its transition
temperature T,.) decreases as T°. Therefore at a sufficient low temperature, any small amount of
heat (energy) deposited in a crystal would be in principle resolvable by using a thermometer. A
straightforward implementation of this idea, which a large family of low temperature detectors work
on today, is an absorber-thermometer scheme: an absorber is connected to a heat bath through a
weak heat link and a thermometer of some kind, attached to the absorber, is used to measure the
temperature change, from which the absorbed energy can be calculated.

Several types of thermometers have been developed and used in different applications. Neutron-
transmutation-doped (NTD) Ge thermistors were among the earliest developed detectors[4], and
are used in the Bolocam, a mm-wave camera at the Caltech Submillimeter Observatory (CSO)[5].
To make these thermistors, semiconductor Ge is irradiated with slow neutrons. After irradiation,
transmutation occurs and the radioactive nuclei decay into a mixing of n and p impurities. Because
of the high impedance of the NTD-Ge thermistor, low noise JFET amplifiers cooled down to 100 K
are usually used to read out these detectors.

A second type of thermometer, which make the most sensitive low temperature detectors of today

at almost all wavelengths, is the transition edge sensor (TES)[6] [7, 8, [, [T0]. These sensors use a thin
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strip of superconductor and operate at a temperature right on the superconducting transition edge
(T = T.), where the slope dR/dT is extremely steep. Due to the low impedance, and for stability
considerations, TES is usually voltage biased, and the current flowing through the sensor is usually
measured by using a superconducting quantum interference device (SQUID), which serves as a cold
low noise amplifier.

More recently, magnetic microcalorimeters (MMCs) have emerged as an alternative to TES for
some applications[IT]. In a MMC, rare earth ions are embedded in a metal and the magnetization
of the metal in an external magnetic field sensitively changes with temperature. The magnetization
is again measured with a SQUID.

There is another category of low temperature detectors called quasiparticle detectors that do
not operate on the absorber-thermometer scheme. Instead of measuring the temperature change of
the absorber caused by the energy deposited by a photon, it directly measures the quasiparticles
created when a photon breaks Cooper pairs in a superconductor. Superconducting tunnel junction
(STJ)[12, 13] detectors and kinetic inductance detectors (MKIDs) are two examples in this category.
STJs use a superconductor-insulator-superconductor (SIS) junction, which has a very thin insulating
tunnel barrier in between the two superconducting electrodes. Under a dc voltage bias, the tunneling
current changes when excess quasiparticles are generated in one of the electrodes. STJs have a
comparably high dynamic resistance and capacitance, and can be read out with FET-based low-
noise preamplifiers operated at room temperature. In addition, a magnetic field must be applied to
STJs to suppress the Josephson current.

Although a single low temperature detector has demonstrated very impressive sensitivity, a large
array of them would be much more powerful and are highly demanded for the study of more difficult
and fundamental problems in astronomy, with the cosmic microwave background (CMB) polarization
problem being one example. Although researchers are working on increasing the pixel count of all
type of low temperature detectors introduced above (NTD-Ge, TES, MMC, STJ), great technical
challenges exist in building and reading out these detectors when the pixel count becomes relatively
large (2 1000).

MKID is a promising detector technology invented in Caltech and JPL which provides both high
sensitivity and an easy solution to the integration of these detectors into a large pixel array[14, 15,
16|, 17, [18]. A brief introduction of MKID will be given in the following sections of this chapter, and
the physics behind these detectors will be explored in the rest of this thesis.

1.1.2 Principle of operation

In order to understand the principle of operation of MKID, let’s first explain the concept of kinetic
inductance of a superconductor. It is well known that a superconductor has zero dc resistance

(0dc — o0) at T < T,. This is because the supercurrent is carried by pairs of electrons—the Cooper
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Figure 1.1: Detection principle of MKIDs. a) A photon with energy hv > 2A breaks Cooper pairs
and creates quasiparticles in a superconducting strip cooled to T < T,. b) The superconducting strip
is used as an inductive element with a variable kinetic inductance Lj; and a fixed inductance L,, in a
microwave resonant circuit. The increase in the quasiparticle density changes the surface impedance
Zs (mainly surface inductance L;) which leads to a change in Lg;. ¢) The transmission through
the resonant circuit has a narrow dip at the resonance frequency f,, which moves when Lyj; changes.
d) The microwave probe signal acquires a phase shift when f, changes. e) Schematic illustration
(not to scale) of the coplanar waveguide resonator and feedline which implement the LC resonant
circuit of (b). Blue represents the superconducting film and white represents bare substrate. f) A
cross-sectional view of the coplanar waveguide geometry

pairs which can move freely in the superconductor without being scattered.

However, because Cooper pairs have inertia, superconductors have a nonzero ac impedance. The
effect of the inertia of the electrons to the conductivity is included in Drude’s model and the ac
conductivity o(w) is given by:

Odc
=9 1.1
7(w) 1+ jwr (L)

where w is the frequency, 7 is the scattering time, and the jwr term arises from the phase lag
between the current and the electric field due to the inertia of the electrons. In a normal metal
at room temperature, the electron scattering time 7 is very short, on the order of 10714 s. So up
to the microwave frequencies, wr < 1 and the conductivity appears almost purely resistive. In
a superconductor at T < T, both g4 — 00 and wT — oo, but the ratio o4./wr remains finite.
As a result, the ac conductivity o(w) of a superconductor is almost purely inductive, which gives
rise to a surface impedance Z, = |E|/| J Jdz| = R, + jwL, (see Chapter ) that is also almost

purely inductive, wLs > Rs. When a superconductor is used as a component in an ac circuit, the
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surface inductance L, will contribute an inductance Ly; called kinetic inductance, in addition to the
conventional magnetic inductance L,,. From an energy point of view, the inductance Lj; accounts
for the energy stored in the supercurrent as the kinetic energy of the Coopers.

Cooper pairs are bound together by the electron-phonon interaction, with a binding energy
2A =~ 3.52kT,[19]. At finite temperature T' > 0, a small fraction of electrons are thermally excited
from the Cooper pair state. These excitations are called “quasiparticles” which are responsible for
small ac losses and a nonzero surface resistance Ry of the superconductor.

Photons with sufficient energy (hv > 2A) may also break apart one or more Cooper pairs
(Fig. [LTIh). These “excess” quasiparticles will subsequently recombine into Cooper pairs on time
scales g, ~ 1073 — 1075 s. During this time period, the quasiparticle density will be increased
by a small amount dng, above its thermal equilibrium value, resulting in a change in the surface
impedance §Zs. Although §Z; is quite small, it may be sensitively measured by using a resonant
circuit (Fig. [ Ib). Changes in Ly and R affect the frequency and the width of the resonance,
respectively, changing the amplitude and phase of a microwave signal transmitted through the circuit
(Fig. Ik and Fig. [LI4).

Although the schematic depicted in Fig. [[Ib directly suggests a lumped-element implementa-
tion, a distributed resonant circuit with a quarter wavelength coplanar waveguide (CPW) resonator
capacitively coupled to a CPW feedline (Fig. [LTf) is mostly used in MKIDs, due to the technical

advantages that will be discussed shortly.

1.1.3 Technical advantages
MKIDs have several technical advantages:

e The fundamental noise in MKIDs is limited by the fluctuations in the quasiparticle density
caused by the random breaking of Cooper pairs into quasiparticles and recombination of quasi-
particles into Cooper pairs by thermal phonons. Because of the Poisson nature of these two
processes, this generation-recombination noise (g-r noise) is proportional to the quasiparticle
density itself, which decreases as exp(—A/kT) when T goes to zero. Therefore, by operating
at T' <« T, in theory MKIDs can achieve a very high detector sensitivity.

e The CPW resonators are a simple planar structure that can be easily fabricated by standard
lithography from a single layer of superconducting film. Because it has no junctions, bilayers
or other difficult structures to make, even the fabrication of a large detector array is straight-
forward. Therefore, MKIDs have the advantages of low cost, high yield, and good uniformity

for the fabrication of a large detector array.

e The most attractive aspect of MKIDs is its capability for large scale frequency domain mul-

tiplexing. In MKIDs, an array of resonators, each with a different resonance frequency, are
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coupled to a common feedline. The detectors are read out by sending a probe microwave signal
containing a comb of frequencies tuned to the unique resonance frequency of each resonator,
amplifying the transmitted signal with a cryogenic high electron mobility transistor (HEMT)
amplifier, and demultiplexing the signal at room temperature. Only one input and output
transmission line (coaxial cable) and a single HEMT is needed for the readout of the entire
array, which largely simplifies the design of readout circuits and reduces the power dissipation
at the cold stage. In contrast, the direct multiplexing of TES or STJ detectors requires several

biasing wires per detector be made and one amplifier per detector be deployed.

Recent advances in the software defined radio (SDR) technology have provided a more elegant
solution for the readout of large MKID arrays[20]. On the transmitter side, the microwave
probe signal consisting of multiple tones can be generated by upconverting (mixing an IF
signal with an local microwave oscillation signal) an IF signal, which is produced by playing a
preprogrammed waveform stored in the computer memory through a fast D/A card. On the
receiver side, the transmitted microwave signal is first downconverted and then digitized by
a fast A/D card. The demodulation can be done digitally using signal processing algorithms

operating a field programmable gate array (FPGA).

1.1.4 Applications and ongoing projects
1.1.4.1 Antenna-coupled MKIDs for millimeter and submillimeter imaging

One of the ongoing projects in our group is the development of MKIDCam[21] 22], a MKID camera
with 600 pixels, each sensing 4 colors at mm/submm wavelength (see Table [6.1]), which is to be
installed at CSO in 2010.

Fig. illustrates the design concept of a single pixel in the array. Each pixel consists of a single
slot antenna, a band-pass filter and a quarter-wave CPW resonator coupled to the feedline. The
mm/submm radiation is first collected by the slot antenna. One can think of a lot of voltage sources
being placed at the points where the microstrip lines run over across the slots. These small voltage
signals are combined by the binary microstrip summing network to deliver a stronger signal to the
filter. The path lengths between the root of the summing tree and the microstrip crossing point of
each slot are designed to be the same, which ensures that only plane waves normally incident onto
the antenna will be coherently added up, thus defineing the directionality of the antenna. The band-
pass filters used here are superconducting filters which are a compact on-chip implementation of the
lumped-element LC filter networks. Both the antenna and the filters are made of superconductor
Nb, which has a T. = 9.2 K and gives very small loss for the mm/submm wave. The desired in-band
mm/submm signal is selected by the filter and delivered to the CPW resonator by a Nb microstrip

overlapping with the center strip of the CPW resonator near its shorted end. Because the center



Figure 1.2: An illustration of the pixel design in an antenna-coupled submm MKIDs array. The slot
antenna, on-chip filter, CPW resonator, and feedline are shown in this illustration. This pixel uses
a single slot antenna and has one filter, which is able to sense one polarization at one wavelength
(color). The actual pixel used in the MKIDCam has four filters, each followed by one CPW resonator.

strip is made of superconductor Al (7. = 1.2 K), the submm/mm wave from the Nb microstrip will
break Cooper pairs in the Al strip in the overlapping region, change the local surface impedance Z;,
and be sensed by the resonator readout circuit.

The pixel design shown in Fig. is slightly different from the actual pixel design used in the
MKIDCam array. The pixel shown here uses one filter and can therefore sense only one color, while
the pixel in MKIDCam uses 4 filters to sense the 4 colors, with each filter followed by a CPW
resonator. In Fig. [[2] the entire CPW resonator as well as the feedline are made of Al, while in
a MKIDCam pixel only the center strip near the shorted end, where the microstrip overlaps with
CPW, is made of Al, and the remaining part is made of Nb. This “hybrid” resonator design helps to
confine Al quasiparticles in a small sensitive region and increase the quality factor of the resonator.

More discussions on the hybrid mm/submm MKIDs will be given in Chapter @l and Chapter [6l

1.1.4.2 MKID strip detectors for optical/X-ray

Also under development in our group is the MKID detector array for optical and X-ray detection[23].
The optical and X-ray MKIDs share a common position-sensitive strip detector design as shown in
Fig. [[3] which is borrowed from a scheme originally used by the STJ detectors. In this scheme,
an absorber strip made of a higher-gap superconductor with a large atomic number, usually Ta
(T, = 4.4 K and Z = 181), is used to absorb the optical/X-ray photons. These high energy photons

break Cooper pairs and generate quasiparticles in the Ta absorber. The Ta quasiparticles (with
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Figure 1.3: An illustration of the strip detector design used in Optical/X-ray MKIDs. The optical/X-
ray photon breaks Cooper pairs and generates quasiparticles in the Ta absorber. The Ta quasipar-
ticles (with energy ~ Ar,) diffuse to the edges of the absorber and are down-converted to Al
quasiparticles (with energy ~ Ap)) in the Al sensor strips attached to the Ta absorber. Because
Apl < Am,, the Al quasiparticles are trapped in the sensor strip and cause a change in the Al
quasiparticle density, which is sensed by the resonator circuit.

energy ~ 2Ar,) diffuse to the edges of the absorber and are downconverted (by breaking Cooper
pairs with lower gap energy) to Al quasiparticles (with energy ~ 2A4;) in the Al sensor strips that
are attached to the absorber on both edges. Because Ap) < Ar,, a natural quasiparticle trap forms
which prevent the Al quasiparticles from leaving the Al sensor strip. These excess quasiparticles
change the Al quasiparticle density, which is sensed by the resonator circuit. Each single photon
absorbed will give rise to two correlated pulses in the readout signals from the two resonators. The
energy deposited by the photon can be resolved by looking at the sum of the two pulse heights,
while the position where the photon is absorbed can be resolved by examining the ratio between
the two pulse heights, or the arrival time difference between the two pulses. Therefore, this scheme
makes a position-sensitive spectrometer. A X-ray MKID strip detector with an energy resolution of

dFE = 62 eV at 5.899 keV has been demonstrated|24].

1.1.4.3 MKID phonon sensor for dark matter search

Dark matter, the unknown form of matter that accounts for 25 percent of the entire mass of the
universe, has long been a fascinating problem to the theoretical physicists and astrophysicists, while
the search for dark matter has been one of the most challenging experiments to the experimentalists.
Weakly interacting massive particles (WIMPs) are leading candidates for the building blocks of
dark matter. These particles have mass and interact with gravity, but do not have electromagnetic
interaction with normal matter.

It is predicted that WIMP dark matter may be directly detected through its elastic-scattering

interaction with nuclei. One of the popular detection schemes, which sets the lowest constraint for
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Figure 1.4: A proposed detector scheme of kinetic inductance phonon sensor for dark matter detec-
tion using CPW ground plane trapping. (a) Cross-sectional view and (b) top view of the detector

[25].

the WIMP-nucleon cross section today, is to jointly measure the effects of ionization and lattice
vibrations (or phonons) caused by the nuclear recoil from a WIMP impact event, using a crystalline
Ge or Si absorber (also called a target). By examining the ionization signal and the phonon signal,
WIMP events can be discriminated from non-WIMP events.

Currently the Cryogenic Dark Matter Search (CDMS) experiment uses 19 Ge targets (a total
mass of 4.75 kg) and 11 Si targets (a total mass of 1.1 kg), with TES phonon sensors covering the
surface of each target. As the total target mass will be significantly increased (> 100 kg) in the
next generation of CDMS experiments, how to instrument such a large target at low cost while
maintaining a high sensitivity becomes a big challenge.

MKID phonon sensors offer an interesting solution to this scaling problem. Fig. [[.4] shows a
detector scheme proposed by Golwala[25]. In this scheme, the surface of the target is covered by
frequency domain multiplexed CPW resonators. Phonons generated by the nuclear recoil arrive at
the surface and break Cooper pairs mostly in the Al ground planes. The Al quasiparticles then
diffuse to the edges of the CPW ground plane, where a narrow strip of lower gap superconductor
(Ti or W) overlaps with the Al ground planes. The Al quasiparticles will be downconverted Ti or
W quasiparticles which are trapped in the edge region and sensed by the resonator.

In another scheme proposed by the CDMS group in UC Berkeley[26], Nb strip resonators are
placed in a separate wafer as shown in Fig. The Ge target is first coated with a thin Al film on
the surface serving as a ground plane. The strip resonators are then suspended over the ground plane
at the desired separation using spacers. The structure becomes a air-gapped microstrip (inverted

microstrip). The quasiparticles are generated in the Al ground plane and are sensed when they
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Figure 1.5: The detector scheme of the kinetic inductance phonon sensor using air-gapped microstrip
resonators for dark matter detection. (a) Separation of function: resonators are patterned onto a
standard sized wafer, which is then affixed to the thick absorber. The absorber receives minimal
processing. (b) Cross-sectional view of kinetic inductance phonon sensor test device. The probe
wafer, containing the resonators, is suspended above the absorber using metal foil spacers. Figure

from [26]

diffuse to the region underneath the top Nb strip. One of the advantages of this scheme is that no
lithography is required on the large target, because of the separation of resonator wafer from the

target. Fairly high-Q resonators (Q, ~ 40,000) using this structure have been demonstrated[26].

1.2 Other applications of superconducting microwave res-
onators

Ever since the original work on MKIDs was started, superconducting microwave resonators have
attracted great attention both inside and outside the low temperature detector community. The
following shows a number of successful applications of superconducting microwave resonators, which

have been inspired by MKIDs.

1.2.1 Microwave frequency domain multiplexing of SQUIDs

The traditional time domain multiplexing of SQUID uses switching circuit to periodically select a
sensor in an array for readout. This scheme is still rather complicated in terms of fabrication and
operation. Recently, researchers in NIST[27, 28] and JPL[29, [30] are investigating the frequency
domain multiplexing of SQUIDs using superconducting resonators.

The circuit schematic of the SQUID multiplexer developed in NIST is illustrated in Fig. The

quarterwave resonator is terminated with a single junction SQUID loop, instead of being directly
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Figure 1.6: Schematic of the SQUID multiplexer using the quarterwave CPW resonators (modeled
as parallel LC resonators). Figure from [28§]
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Figure 1.7: Integrated circuit for cavity QED. Panel A, B, and C show the entire device consisting of
the CPW resonator and the feedline, the coupling capacitor, and the Cooper pair box, respectively.
Figure from [31]

short circuited as in MKIDs. Because of the flux-dependent Josephson inductance, the SQUID loop
acts as a flux-variable inductor. Therefore a change of the flux in the SQUID loop will modify the
total inductance, leading to a resonance frequency shift that can be read out. A prototype of this

multiplexer with high-Q (~ 18,000) resonators has been demonstrated by the NIST group.

1.2.2 Coupling superconducting qubits to microwave resonators

The cavity quantum electrodynamic (CQED) experiments, which study the interaction between
photons and atoms (light and matter), are usually performed with laser and two-level atoms in an
optical cavity. For the first time, Wallraff et al.[3I] have demonstrated that these experiments can
also be carried out with microwave photons and superconducting qubits (Cooper pair box) in a
superconducting microwave resonator. They call it “circuit QED”.

A picture of such a device is shown in Fig. [[7 In this device, a full-wave Nb CPW resonator is
capacitively coupled to the input and output transmission lines. A Cooper pair box is fabricated in

the gap between the center strip and the ground planes and in the middle of the full-wave resonator,
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Figure 1.8: (a) Device drawing showing frequency multiplexed quarterwave CPW resonators. (b)
A zoom-in view of a suspended nanomechanical beam clamped on both ends (with Si substrate
underneath etched off) and electrically connected to the center strip of the CPW. Figure from [36]

where the electric field is maximal, allowing a strong coupling between the qubit and the cavity. The
two Josephson tunnel junctions are formed at the overlap between the long thin island parallel to
the center conductor and the fingers extending from the much larger reservoir coupled to the ground
plane.

The coupled circuit of qubit and resonator can be described by the well-known Jaynes-Cummings
Hamiltonian[32]. It can be shown that for weak coupling g or large detuning A = ¢/h — f, (¢ is
the two-level energy of the qubit and f, is the resonance frequency), g < A, the reactive loading
effect of the qubit will cause the resonator frequency to shift by +¢/A depending on the quantum
state of the qubit. This shift can be measured by a weak microwave probe signal. Therefore, this
dispersive measurement scheme performs a quantum non-demolition read-out of the qubit state.

Circuit-QED opens up a new path to perform quantum optics and quantum computing exper-

iments in a solid state system. Currently, circuit-QED has become a very hot area of quantum

computing research[33] 34} B5].

1.2.3 Coupling nanomechanical resonators to microwave resonators

A superconducting microwave resonator is also used in an recent experiment to read out the motion
of a nanomechanical beam, or the quantum mechanical state of a mechanical harmonic oscillator[36].
The device used for this experiment is shown in Fig. A nanomechanical beam (50 pm long with

a 100 nm by 130 nm crosssection) is formed by electron beam lithography of an Al film deposited on
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a Si substrate. The beam is suspended by etching off the Si substrate underneath it. Because the Al
beam is electrically connected to the center strip, the local centerstrip-to-ground capacitance depends
on the position of the beam. If the beam has a displacement or deformation, it will cause a shift in
the resonance frequency, which can be read out from the transmission measurement. In addition to
the detection of the nanomechanical motion, researchers are working on cooling the nanomechanical

resonators towards their ground state, by making use of the radiation pressure effect.
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Chapter 2

Surface impedance of
superconductor

2.1 Non-local electrodynamics of superconductor and the

Mattis-Bardeen theory

It is well known that an electromagnetic field penetrates into the normal metal with a finite skin
depth 0. The skin depth can be calculated using Maxwell’s equations and Ohm’s law, which expresses

a local relationship between the current density Jo, and the electric field E in the normal metal:

E(@) , (2.1)

where 4. is the DC conductivity and 7 is the relaxation time of the electrous, related by 7 = 1/vg
to the mean free path [ and the Fermi velocity vg. Because 7 is usually below a picosecond at room
temperature, the condition wr < 1 holds at microwave frequency wr < 1, and so 0 = oq.. The skin
depth ¢ is derived to be

2

0= , 2.2
WHOdc ( )

where p is the magnetic permeability of the metal; usually p ~ pp.

The local relationship Eq. 2l and the classic skin depth (Eq.[2.2]) are valid when the electric field
E varies little within a radius [ around some point 7, which translates to | < 4. Because § decreases
at higher frequencies and [ increases at lower temperatures, a non-local relationship between J;
and E may occur at high enough frequency or low enough temperature. A non-local relationship

replacing Eq. [Z1] was proposed by Chambers[37]:

d (2.3)

R ’

. . 304 [ RR-E()e B/
Jn(’r): 47TZC/V
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where R = 7 — 7. Eq. 23] is non-local because J; at point 7 depends on E not just at that point,
but is instead a weighted average of E in a volume around 7. If E varies little in the vicinity of 7 so
that E can be taken out of the integral, Eq. 23] returns to the local relationship.

Due to the Meissner effect, an electromagnetic field also penetrates into a superconductor over
a distance called the penetration depth A. Similar to the classical skin effect, in the calculation of A
both local and non-local behavior may occur. Equations reflecting a local relationship between the
supercurrent Js (assuming the two fluid model with J= JZ + fn) and the fields were proposed by

London[38] (known as the famous London equations):

o - E

95 7 2.4

ot foAT 24
VxlJ =44, (2.5)

where po is the vacuum permeability, H is the magnetic field, and Ay is the London penetration

depth. At zero temperature, the London penetration depth Arg is given by

m
ALo =/ ——= 2.6
LO /Lon627 ( )

where m, n, and e are the mass, density, and charge of the electron, respectively. In the London

gauge V - A= 0, the second London equation can be written a:

. 1 -
J. = -3z A. (2.7)
L
These equations apply to superconductors where the local condition is satisfied. In general, a
non-local relationship is more appropriate, because the mean free path [ may become large in high
quality superconductors at low temperatures. Based on the observation of increasing penetration

depth with increasing impurity density or decreasing mean free path, Pippard proposed an empirical

non-local equation [41]:

— —

- 3 RR-A(7)e B/E
Js(7) = “Imeon? /v Ji dr (2.8)
with
1 1 1
e 2.9
€ S ol (29)

where &g, £ are the coherence lengths of the pure and impure superconductor and «,, is an empirical

IThroughout this thesis, the magnetic vector potential is defined as H=Vx fT, which is used by Mattis and
Bardeen[39] and Popel[40].
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constant. The coherence length & is related to vy and Ag by

h’UO

§o = Ay (2.10)

where A is the gap parameter at zero temperature introduced by the BCS theory[42]. The coherence
length & may be thought as the minimum size of a Cooper pair as dictated by the Heisenburg
uncertainty principle.

From the BCS theory, Mattis and Bardeen have derived a non-local equation between the total

current density J (including the supercurrent and the normal current) and the vector potential

A39):

- 3 RR - A(@)I(w,R,T)e B/t
J(r) = d 2.11
") = Twme, / R ' (2.11)
with
A .
Iw,R,T)= - ]w/ [1—2f(E + hw)][g(E) cos aly — jsin aly]e’* 1 dE
A—hw
- jTr/ [1—2f(E + hw)][g(E) cos alg — jsin aly]e’*AdE
A
+ jTr/ (1 —2f(E))[g(E) cos al; + jsinal|e 14224,
A
and
VE?—-A?2 | |E|>A E? + A? + hwE
Ar = P> 2 o= JETR =R, gy = TR o (),
VAT EZ, |E|<A A1z
(2.12)
where A = A(T) is the gap parameter at temperature 7' and f(E) is the Fermi distribution function
given by
1
f(E) = = (2.13)
14 ewr

The function I(w, R,T) decays on a characteristic length scale R ~ &, which arises from the
fact that the superconducting electron density cannot change considerably within a distance of the
coherence length. Eq.[2IT]is consistent (qualitatively) with Eq. 28 because both the Pippard kernel
e’t/€ and the full Mattis-Bardeen kernel T (w, R, T)eR/ ! express a decaying profile with a characteristic
length dictated by the smaller of [ and &.

In the next section of this chapter, we will start from Eq.[2Z.11and evaluate the surface impedance

of superconductor step by step.
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Figure 2.1: Configuration of a plane wave incident onto a bulk superconductor
2.2 Surface impedance of bulk superconductor

2.2.1 Solution of the Mattis-Bardeen kernel K(q)

Consider the problem of a plane wave incident onto a bulk superconductor as illustrated in Fig. 2.1
The bulk superconductor has its surface in the  — y plane and fills the half space of z > 0. The
plane wave E= E.(2)% is polarized in the x direction and is only a function of z, as are the vector
potential A = A, (2)& and current density J = J,(2)%.

By introducing the one-dimensional Fourier transform of J,(z) and A, (z):

+oo
Jo(z) = / T4 () dq

“+00
Ag(z) = / Ay (q)e’Pdg , (2.14)

Eq. 211} which takes a form of spatial convolution, can be converted into a product in Fourier

domain:

Jz(q) = —K(q)Ax(q) (2.15)

with the Mattis-Bardeen kernel (see Appendix [A)):

3 * sinx cosx
K(q) = — - I T)e */4q 2.1
@ = | 5~ S a/0. Ty (216)

where = = qR.

When further simplifying K(g), one will encounter the following integrals:

/0 e_bm[% - cox%] cos(ax)dx = R(a,b) (2.17)
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/ e_b’”[w - w] sin(az)dx = S(a,b). (2.18)
0

3 2

These integrals can be worked out by the method of Laplace transformation. The result is:
. ) s 1., 1
W(s=0b—ja) = R(a,b) + jS(a,b) = —3 + 5(3 + 1) arctan —.
s

The derivation and the detailed expressions of R(a,b) and S(a,b) are given in Appendix [Al
Finally, the kernel K (q) works out to be

3
Re{K(q)} = TvorZoq -
4 E?+ A? + hwE
{ /max{AmA}[l 2B+ R e 1)+ (a1 +D)B
—A
w5 [ 2B RN B) + 1188~ 9(E) ~ US(a"b))aB
A—hw
= [ 0= 1)~ hlo(B) - 1S (" b)aE
4 /Oo[f(E) —f(E+hw)][g(E)+1]S(a,b)dE} (2.19)
A
Im{K(q)} = ﬁl x

-A
{‘% / (1 —2f(E+ hw)|{[g(E) + 1]R(a",b) + [¢(E) — 1]R(a*,b)}dE
A—hw

+ /:o[f(E) — [(E+ hw)|{[g(E) + 1]R(a”,b) + [9(E) — 1]R(a™, b)}dE} (2.20)

where b = 1/qgl, a™ = a1 +az, a~ = az — a1, a1 = A1/(hwoq), and as = Ay /(hwgg). When hw < 2A,
the first integrals in both the real and the imaginary parts of K(g) vanish. Physically, these two
integrals represent the breaking of Cooper pairs that have a binding energy of 2A with photons of
energy hw.

2.2.2 Asymptotic behavior of K(q)

It can be shown from Eq. [2.19] that to the lowest order

|s| =0

W(s) = (2.21)

€f|>—l ENE

|s| — o0
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and thus
R(a, b) = % S(a, b) = a+ 52 =0 (2.22)
B b _ a 9 .9
R(a, b) = S0 S(a, b) = 3@+ 57 a® +b° — oo. (2.23)

The asymptotic behavior of K(¢) at ¢ — 0 and ¢ — oo can be derived from the asymptotic form of
2.2.2.1 K(q— 0)

In this limit, we have
aw—w——>oo(a=a1,a2,a+,(f),bw—l—>oo. (2.24)

Thus a? 4+ b?> — oo is satisfied and from Eq.

a

R(a, b) = W

xgq, S(a, b) = x q. (2.25)

b
3(a? + b?)

It turns out that the terms of R and S in Eq. 2.191and Eq. 220 cancel the factor 1/q in front of the
integrals. The result is that K(q) approaches a constant as ¢ goes to zero. Because the condition

a? 4+ b2 > 1 requires either argument be large, we arrive at the following conclusion:
1 1
K(q) = Ko(&0,1,T), q< max{g—, 7} (2.26)
0
where Ky (&o,!,T) is a constant dependent on the parameters such as &g, I, and 7'

2.2.2.2 K(q— 00)

In this limit, we have

1
a~— —0(a=ay,az,a",a7), b~ = —0. 2.27
€0 ( v ) ql (2.27)

Thus a? + b? — 0 is satisfied. Inserting Eq. 222 into Eq. 219, we find that K(q) goes as 1/q as q
becomes very large. Because the condition a? + b? < 1 requires both arguments be small, we arrive

at the following conclusion:

K(q) = w > max{gio, %} (2.28)

where K (&o,1,T) is another constant.
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a¥

Figure 2.2: A sketch of K(q)

2.2.2.3 A sketch of K(q)

Fig. depicts the general behavior of K(q), which divides into three regimes. In regime I, where
g < max{gio, 1}, K(q) approaches the constant Ko(,!,T). In regime III, where ¢ > max{gio,%
K(q) goes as K (£,1,T)/q. Regime 1II is the transition regime.

The behavior of K(g) shown in Fig. agrees with our earlier discussion of the spatial domain
Mattis-Bardeen kernel I(w, R, T')e~#/!. Because the kernel I(w, R, T)e~ /! decays on a characteristic

length of R ~ min{&o, !}, its Fourier transform K (q) will span a width of ¢ ~ max{1/&,,1/l}.

2.2.3 Surface impedance 7, and effective penetration depth \.s for spec-

ular and diffusive surface scattering
The surface impedance Z is usually defined as the ratio between the transverse components of E
field and H field on the surface of the metal. In our configuration, as shown in Fig. ]

(2.29)

In the following, we will derive expressions which relate Z; to the Fourier domain Mattis-Bardeen
kernel function K (q).

From the Maxwell equation V X E=— jwuofl and the relationship H =V x ff, we find for our
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configuration

Ew (Z) = _jw/'LOALE (2)
zZ, - 4:(2) (2.30)

TR AL () dz |,

Using another Maxwell Equation V x H= jweOE +J and neglecting the displacement current term

(which is much smaller than J in metal), we get

2 V4
J(z) = —%;(). (2.31)

On the other hand, we have derived in Appendix[A] the one-dimensional form of the Mattis-Bardeen
equation equivalent to Eq. 211k

() = / K(n) Ay (+)d2’
1

3 e 1
= — - = —Inlu/l
K) = g [ = )l e (2:32)

with n = 2/ — z. Here K (n) is the inverse Fourier transform of —K(q) discussed in Section 22211

There is some subtlety in combining Eq. 2Z.31] and Eq. to obtain a workable equation for
Az (z). It turns out that how the electrons scatter from the surface matters, because we are studying
the current distribution in a region very close to the surface. The usual assumption is that a portion
p of the electrons reflect from the surface specularly (after reflection, the normal component of the
momentum of the electron flips its sign) and the remaining portion 1 — p of the electrons scatter
diffusively (after scattering the momentum of the electron is randomized)[43].

For the perfect specular scattering case (p = 1), one can make a even continuation of the field
and current into the z < 0 space which leads to the following integro-differential equation:

_d 2122 / K(n)Aq(2)d7 . (2.33)

For the perfect diffusive scattering case (p = 0), one can derive another integro-differential

equation:

_ A / K(n)Ag(2)dz'. (2.34)

sz

A complete solution of the equation is not necessary for the purpose of evaluating the surface

impedance, because only the ratio of A and its derivative on the surface is needed, according to
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Eq. 230 However, even solving for this ratio from the two integro-differential equations is non-

trivial. The solution is obtained in Fourier domain, and only the ultimate results are quoted here:

. Jhow [ dgq
Perfect specular scattering: Z, = _— 2.35
P & ™ /m ¢* + K(q) (2.35)

JpowT

2.36
JoZ (1 + £6)dg (2:36)

Perfect diffusive scattering: Z5; =

where K (q) is the one-dimensional Mattis-Bardeen kernel in Fourier space. Please refer to Reuter
and Sondheimer [43] and Hook [44] for the detailed derivations of these two equations.

Although formula for the specular scattering case is mathematically simpler than the diffusive
scattering case, the latter is considered to better represent the real situation of electron scattering
at the metal surface and is more widely used. In this thesis, we adopt the diffusive scattering
assumption and use Eq. to evaluate surface impedance.

The surface impedance Z; generally has a real and imaginary part

Zy=Rs+jX, =R+ jwL, = Ry + jwpoles (2.37)

where Rs, X, and L, are called surface resistance, surface reactance, and surface inductance,
respectively, and Aeg is called the effective penetration depth. For temperature much lower than
T., usually R, < X,. If we assume that J,(z), Hy(z), and A, (z) all decay into the superconductor

—2/Xett and ignoring R, we can immediately see from Eq. 230 that

exponentially as e

Zs & JwloAef - (2.38)

For diffusive scattering, according to Eq. 236l Acg can be calculated by

T
At = (2.39)
Re [f(;’o (1 + £@)aq
2.2.4 Surface impedance in two limits
It is useful to rewrite Eq. into the following form
ZS = j/l,ow)\Lo il (240)

fooo ln(l + AiOK(QQg/)\LO))dQ

where Q = gAro, and both A\? K (Q/Ar0) and Q are dimensionless.
According to Eq. and Eq. 228 K(Q/ALo) has the following asymptotic behavior for small
and large Q:
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Regime I: Q < max{32, 20}, K(Q/Aro) = Ko(é0, 1, T) (2.41)

Regime ITI: Q > max{3e, 22} K(Q/ALo) = AoKoo(&0,1,T)/Q- (2.42)

2.2.4.1 Extreme anomalous limit

In the extreme anomalous approximation, one assumes that Regime III holds for all @ of importance

in the integral in Eq. [2Z40] so K(Q) can be replaced by its asymptotic form of Eq. 242

) T
Zs = JHowArLo— 2o Koo (E0.0,T)
Jo In(1+ %)d@
VB _
= 0wl Keo(§0,1.T) "] (2:43)
i = Re|Vro (el 1)V (2.44)
where [ In(1+ 1/2%)dx = 27/v/3 is used.
According to Eq.[2.42] the condition for the extreme anomalous limit is
Eo > ALo AND I > App. (2.45)
In fact, this condition can be relaxed to
& > det AND 1> Aeg. (2.46)

This is because the lower limit of the integral [ In(141/2%)dz can be set to a small number € instead
of 0 without significant error. For qualitative discussion, let’s take ¢ = 1, which corresponds to a
lower limit of Q; & /A (Koo (0,1, T) ~ ALo/ et in the integral of Eq. For self consistency,
K(Q) for @ > @, must be all in Regime IIT and therefore @; must satisfy the condition Q; =~
AL/ et > max{%, %}, which leads to the condition Eq.

According to the condition given by Eq. 246 the extreme anomalous limit occurs when the
effective penetration depth Aeg, which is the characteristic length scale of the penetrating magnetic
field, is much less than the the smaller of §, and [, which is the decay length of the Mattis-Bardeen
kernel. Extreme anomalous effect may also occur in a normal metal at high frequency and low

temperature, when the classical skin depth d becomes shorter than the scattering length I.
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2.2.4.2 Local limit

In the local approximation, one assumes that Regime I holds for all ) of importance in the integral

in Eq.[Z40F K(Q) can be replaced by its asymptotic form in Eq. 2411

) o
Zs = jHowAro—= X2, Ko(£0,,T)
Jo (1 4 Fe=F5mm=)dQ
= j/,LouJ[KO(§07laT)_l/2]
)\eﬂ‘ — Re [Ko(go,l,T)_1/2i| (247)

where [ In(1 + 1/2?)dz = 7 is used.
The condition for this approximation to be valid, according to Eq. .41l is

& < Ao ORI < Apo. (2.48)
Similar to the extreme anomalous case, this condition can be relaxed to
&0 < det ORI < Aegtr. (2.49)
Another widely used definition of local (or dirty) limit in the literature is
1 < & AND | < Aogp (2.50)

which is stronger than condition of Eq. So the local approximation and result of effective
penetration Eq. 247 is guaranteed to be valid in such defined local limit.

According to the condition given by Eq.[2.48], the local limit occurs when the characteristic length
scale of the Mattis-Bardeen kernel (the smaller of & and [) is much smaller than the length scale of
the penetrating magnetic field (Aegr). Therefore, the vector potential A,(z') = A;(z) can be taken
out of the integral in Eq. as a constant, leading to a local equation. The local equation can be
expressed in terms of Ko(&o,!,T). With K(q) = Ky(&o,1,T) for all ¢, K(n) = Ko(£0,1,T)d(n). The
one-dimensional Eq. reduces to

_ Ko(gov lvT)

Jm(z) = _K0(§0717T)A1(2) j,[t()w

E.(2). (2.51)

If a complex conductivity
o= KO(€07 lv T)

- 2.52
JHow ( )

is defined, the problem can be solved by using Ohm’s law J = ¢ F, as if it were a normal metal with

conductivity o. This complex conductivity will be discussed in more detail later in this chapter.
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2.2.5 Numerical approach

Analytical formulas for Z; may be derived for a few special cases under certain approximations,
which will be discussed later in this chapter. In general, Zs has to be evaluated by numerical
approach. The task for such a numerical program is to calculate a two-fold integral: for a given ¢
the evaluation of K (g) involves 6 energy integrals for hw > 2A or 4 integrals for hw < 2A, according
to Eq. and Eq. 220 then an integral of K (q) over ¢ gives Z, as defined in Eq. To carry
out these numerical integrals efficiently and robustly, a few tactics have been used, which are briefly

discussed in Appendix [Bl

2.2.6 Numerical results

A numerical program “surimp” was developed in the C++ language to implement the theory and
algorithm discussed above. To calculate the surface impedance, the program takes frequency w and
temperature T" as two independent variables, and requires five material-dependent parameters to be
specified: the transition temperature T, the energy gap at zero temperature Ay (or the ratio of
Ay to kT), the London penetration depth at zero temperature Ao, the mean free path [ and the
coherence length & (or the Fermi velocity vg).

In addition, the temperature dependent gap function A(T') is calculated using a subroutine
borrowed from the “Supermix” software, a package developed at Caltech originally for the super-
conducting SIS mixer design[45]. In “Supermix”, the reduced energy gap A(T)/Ay as a function of
T/T. is interpolated from a table of experimentally measured values given by Muhlschlegel[46] for
T/T. > 0.18, and from the low temperature approximate expression (see Eq. 288

AT) o [2RT B
A, P Ay CPUTRT

)] = exp[—V3.562z exp(—1.764/x)] (2.53)

for x = T/T, < 0.18, where the BCS value Ay = 1.764kT, is assumed in the right-hand side of
Eq.

2.2.6.1 ).z of Al and Nb at zero temperature

As a first application of the program “surimp”, we calculate the surface impedance Z; of Al and Nb
at T =0 K and f = 6 GHz. The material parameters are taken from Popel [40] and are listed in
Table BII except that the BCS ratio of Ag/kT = 1.76 is used. The program gives Aeg = 51.4 nm
for Al and Aeg = 63.5 nm for Nb. From the listed material dependent parameters, we see that Al is

in the extreme anomalous limit case while Nb is in the local limit case.
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Table 2.1: Aeg of bulk Al and Nb.

Al Nb

T, [K] 1.2 9.2
)\LQ [nm] 15.4 33.3
vo [10% m/s] 1.34  0.28
&o [nm] 1729 39

[ [nm] 10000 20
Ay [meV] 0.182 1.395
Ao 1.76  1.76

kT,
At (0K, 6 GHz) [nm] 514 635
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Figure 2.3: Surface resistance R, and surface reactance X, of aluminum as a function of temperature
T. The material parameters used in the calculation are from Table 2]

2.2.6.2 Temperature dependence of Z;

In this example, we use the program “surimp” to calculate the temperature dependence of surface
impedance. The surface resistance Ry and surface inductance X (or the real and imaginary part
of Z;) of Al are calculated for T from 0 to 1.15 K (slightly below T, = 1.2K) and the results are
plotted in Fig. 2.3l As expected from the theory, we see that R, goes to zero as T — 0 while X
approaches a nonzero finite value X,(0).

The temperature dependence of Z; predicted by “surimp” can be tested by fitting it to the data
of variation of resonance frequency f,. and quality factor @, of a superconducting resonators as a

function of bath temperature. The relationships between f,., Q, and X, R, are

% _ f’I‘(T)_f’I‘(O) :_gXS(T)_Xs(O) :_gé)\eﬂr
fr 1-(0) 2 X;(0) 2 Aot
1 | 1 Ry(T) — R (0)

oo N /3 B N (1) R o () (2.54)
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Figure 2.4: Fractional resonance frequency shift and change in inverse quality factor ¢ oo Vs
temperature T'. Data measured from a Al resonator with film thickness d = 220 nm, center strlp
width s = 3 pm, gap width ¢ = 2 pm, f. = 6.911 GHz, @, = 68000, and T, = 1.25 K. Ay =
0.181 meV and o = 0.07 is obtained from the best fit. Other material-related parameters are from
Table 211
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where « is the kinetic inductance fraction. Eq.[2.54] will be derived in the next two chapters. The
measured d f,./ f- and §1/Q, can be fitted to the calculated § X,/ X and 0 Rs/ X with a simple linear
fitting model according to Eq. 254 The energy gap Ag and the kinetic inductance fraction « are
taken as two fitting parameters. T, can be measured by experiment. Other parameters are taken
from the literature and set fixed. The data of f.(T) and @, (T) from an Al resonator is fitted in this

way and the result is shown in Fig.[2.4] which shows a good agreement between data and calculation.

2.2.6.3 Frequency dependence of Z;

90

30 ‘ ‘ ‘
0 2 4 6 8

hf/kT c

Figure 2.5: Frequency dependance of the effective penetration depth Aeg of an Al bulk supercon-
ductor. The material parameters are from Table 2] except A¢ = 1.70kT¢.

The frequency dependance of effective penetration depth of Al is calculated and plotted in
Fig. As a verification of our calculation, we use exactly the same material parameters used
by Popel in Fig. 15 of Ref. [40]. Comparing Fig. to Fig. 15 of Ref. [40], we find that the

frequency dependence calculated by “surimp” is identical to that calculated by Popel.

2.3 Surface impedance of superconducting thin films

2.3.1 Equations for specular and diffusive surface scattering

One can also apply the Mattis-Bardeen equations to the case of thin films. Consider a plane super-
conductor with thickness d as shown in Fig. If the film is thin enough, the magnetic field can
penetrate through the film and both H and J can be nonzero inside the film, which is different from

the bulk case.
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— X .
Figure 2.7: Field configuration used by Srid-
har to calculate Z; of a thin film assuming

Figure 2.6: Configuration of a plane wave inci- specular scattering boundary condition at

dent onto a superconducting thin film both interfaces

Again, to apply the Mattis-Bardeen equations one has to assume either specular scattering or
diffusive scattering at the surface. For specular scattering boundary at both sides of the film, the
problem can be solved by mirroring the field and current repeatedly to fill the entire space (see

Fig. 271) and applying the equation
d2A
/ KA (2")d2', n=2"—2z (2.55)

which can easily be solved in a similar manner as in the bulk case. The result is derived by Sridhar[47]

to be
Jlow <= 1
Zs = 2.56
d n;m an + K(qn) (2:56)

where g, = nm/d. Comparing Eq. [250 to Eq. 2238 we see that the only change is that the integral
in the bulk case has been replace by an infinite series in the thin film case.

For the diffusive scattering boundary condition, the equation is
d2A
/ KA (2")d2', n=2"—2 (2.57)

and unfortunately has to be solved numerically.
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2.3.2 Numerical approach

There are two tasks in the numerical calculation of surface impedance of a thin film: evaluating the

kernel function K (n) and solving the integro-differential equation of Eq. 257

2.3.2.1 Implementing the finite difference method

Z= A=
A d An
(N-1)t Ay

[ ]

°

q °
2t Ao
A t A1

\ \/

0 Ao

t

Figure 2.8: Thin film divided into N slices

The integro-differential equation of Eq. can be solved numerically by the finite difference
method (FD). To implement FD method, we first divide the film into NV thin slices of equal thickness
t=d/N (see Fig.[28). Then we follow the standard procedures to convert Eq. into a discrete
FD equation. On the left-hand side, we employ the simple three-point approximation formula

d?A,(2)

ey (Apy1 — 24, + Ap1) /12 (2.58)

On the right-hand side, we apply the simple extended trapezoidal rule to approximate the integral

as a sum
/ K(n Ndz' ~t Z Kot A (2.59)
n'=0
where
1K(In—n'|t) ifn’"=0o0r N
Ko = {1 41/t K(lnt —2'|)dz’ if '’ =n . (2.60)

t Jn—1/2)t
K(ln—n'|t) otherwise
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So we get the following FD equations

N
A1 =245+ Ap 1 = =12 > KpwA(n'), n=1,...,N - 1. (2.61)

n’=0
2.3.2.2 Boundary condition

Eq. 26T provides N — 1 linear equations with N + 1 unknowns (Ag ... Ayx), so two more equations
are needed. The two additional equations come from the boundary conditions at the interfaces at
z =0 and z = d. In the configuration of Fig. 2.6l both sides of the film are connected to free space
and the electromagnetic wave is incident from z = 0 into the film. In this case, at z = 0 one can

assume either boundary conditions of the first kind

A@Z)],_g=1=>Ag =1 (2.62)
or of the second kind
dA
H,(0) = G T R (2.63)
dz z=0

where a two point formula for dA(z)/dz is used. Physically, the former specifies a vector potential
and the latter specifies a magnetic field on the z = 0 surface.

At the interface of z = d, one usually assumes that the transmitted wave sees the free space

impedance
. Az jw
ZO = _-]w'uo—dA((z)) = (1 + %t)AN - ANfl = 0; (264)
dz z=d

Because the free space impedance Zy = 377 €2 is usually much larger than the surface impedance of

the film, boundary condition Eq. [2.64 is virtually equivalent to

z=d

which physically forces a zero magnetic field on the z = d surface.

2.3.2.3 Retrieving the results

With proper boundary conditions, the FD problem is ready to solve. The N + 1 linear equations
can easily be solved with standard numerical algorithms. Unfortunately, we can not utilize a sparse
algorithm to accelerate the calculation.

For thin films, the transmitted wave is often important and can not be neglected. In these cases,

it is often not enough to consider only the surface impedance at the surface z = 0. We can generalize
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the concept of surface impedance and define a pair of impedances for the thin film

Ez(o) . Az(z)|z:0 . AO
7 = = jopg—22 =0 it 20 2.66
11 ,(0) J uodAz(z)/dz|z:0 JwWHo A, — A ( )
Ew(d) . Am(2)|z:d . AN
7 — = jopg—ENe=d i BN 2.67
21 ,(0) J uodAz(z)/dz|z:0 JwWHo A, — A ( )

Instead of returning one impedance, both Z1; and Z5; are calculated from the solution and reported
by our numerical program.

In the case that the electromagnetic wave is incident from one side of the thin film (d < Aesr),
with the other side exposed to the free space, we have Hy(d) ~ 0 (see the previous discussion of
Eq. 2Z65) and H,(0) = K = fod Jydz according to Ampere’s law, where K represents the sheet
current (current flowing in the entire film thickness). Therefore the electric fields at the two surfaces
are given by

E.(0) = Z1 K, E,(d) = Zn K. (2.68)

In the anti-symmetric excitation case, as in a TEM mode of a superconducting coplanar waveg-
uide (discussed in more detail in the next chapter), the electromagnetic wave is incident from both
sides of the film with H,(0) = —H,(d). One can decompose this problem into two problems, each

with a wave incident from one side. It can be shown that in this anti-symmetric excitation case,

Hy(o) = _Hy(d):K/2

E,(0) = Eu(d) = (211 + Z21)K/2. (2.69)

2.3.3 Numerical results

With slight modification to “surimp”, a program “surimpfilm” is developed to calculate the surface
impedance of a superconducting thin film. The program takes w and T as independent variables
and the same 5 material parameters. It takes the film thickness d and the number of subdivisions
to the film N as two additional parameters. Besides, all 3 types of boundary conditions (specifying
value of A, value of H or the load impedance Z) can be applied to both the top side and the bottom
side of the film. The values of generalized surface impedance Z1; and Z;2 are returned from the

program.

2.3.3.1 JAcg of Al thin film

We use “surimpfilm” to calculate the thickness dependence of surface impedance for Al at T'=0 K
and f = 6 GHz. The result is shown in Fig. We see that Z;; approaches its bulk value when the
thickness is large compared to the bulk penetration depth (roughly d > 3Aeg) and Zi2 goes to zero,
implying no magnetic field penetrates through. As the thickness of the film is reduced, both Z;
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Figure 2.9: Effective penetration depth of Al thin film vs. thickness. f = 6 GHz, T' = 0 K, and
other material related parameters are from Table 2.1l except that the mean free path [ is set to the
film thickness d. In the calculation, N = 400 division is used. The two effective penetration depths

Zi1 Zo1
are defined as Ae1 = o and Moo = oo

and Zs; increase. Ultimately when the film is very thin, Z1; and Zs; become equal, which implies
that the film is completely penetrated. We also notice that the impedance goes as 1/d?, which will

be explained later in this chapter.

2.4 Complex conductivity ¢ = 01 — joo

The concept of complex conductivity o = o1 — joa was first introduced by Glover and Tinkham[48§]

for the superconding states. o1 and og are expressed by two integrals[39)

SEg. E+M)](E2+A2+ME)
On hw/ \/E2 A2 /(B 1 ho)? _ A dE
_A ) )
1 2f(E+ﬁw)](E + A? 4 hwE)
+hw A—hw \/E2 — \/(E 4 hu))2 — A2 (2.70)
oo 1 [1—2f(E+ hw)](E® + A” + hwE)
On W Jmax(ahw—ay VAT = E2\/(E + hw)? — A2 dE. (2.71)

The second integral in Eq. vanishes when 7w < 2A.

We recall that the expression for K (q) in Eq. and Eq. generally has 4 integrals in the
real part and 2 integrals in the imaginary part. We will show that under certain conditions some of
the integrals vanish and the total 6 integrals reduce to the 3 integrals of o1 and 2. In these cases,

Zs and Aeg have simplified expressions in terms of o7 and os.
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2.4.1 Surface impedance 7, in various limits expressed by ¢; and o,
2.4.1.1 Thick film, extreme anomalous limit

In the extreme anomalous limit, both Z; and A.g are related only to the value of K. (&,!,T)
according to Eq.[Z44l It can be shown by comparing the asymptotic expression of K(q) at ¢ — oo
to the expression of o in Eq. 270 and 2.71] that

3rtw o9+ joi
Ko (60,1, T) = 41}0)\%07- (2.72)

Thus

V3

3rw o9+ joi —1/3
2 ] '

4’00 )‘iO On

(2.73)

2.4.1.2 Thick film, local limit

In the local limit, both Z; and Aeg are related only to the value of Ky(&y,1,T) according to Eq. 2247
It can be shown by comparing the asymptotic expression of K (q) at ¢ — 0 to the expression of ¢ in

Eq. and 271 that

wl o9+ jo
Ko(&,1,T) = - % (2.74)
LO n

From Eq. and the expression of o,

on = (2.75)

where n, e, and m are the density, charge, and mass of the electron, respectively, it can be derived

[
ALo = . (2.76)
Ho0no

Inserting Eq. 2770 into Eq. 2774 we get another equivalent expression of Ko (&o,!,T')

that

Ko(&o,0,T) = jwpo(or —joz) (2.77)

which is consistent with Eq. It follows from Eq. 247 that

wl o9 +j0'1]71/2
UO)\%O On

Z, = | 2R (2.78)
01 —]02

Zs = jMOW[

or
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We again see that Z, of a superconductor in the local limit can be directly obtained by substi-

tuting ¢ = 01 — joo for g, in the corresponding classical formulas.

2.4.1.3 Thin film

If the film thickness ¢ is smaller than the electron mean free path in the bulk case [, [ will be
limited by surface scattering and [ ~ d. If in addition the local condition | < &y and | < Ay are
satisfied, the local equation J=0oE applies. Moreover, if the film thickness satisfies d < Aogr, the
field penetrates through the entire film and the current distribution is almost uniform across the
film with J,(z) ~ J;(0), as is the electric field E,(z) =~ E,(0). The following expression of Z; can
be derived

E,(0) 1

[T (z)de (o1 —io2)d (2.79)

Ly =Z11 = 4o =

where Z1; and Z15 are defined in Eq. and 267 Because o goes as 1/l ~ 1/d, Z, has a 1/d?

dependence on the film thickness d.

2.4.2 Change in the complex conductivity o due to temperature change

and pair breaking
2.4.2.1 Relating 0Z; to o

MKIDs operate on a principle that the surface impedance Zs of a superconducting film changes
when photons break Cooper pairs and generate quasiparticles (QPs)[14}, [I6]. The responsivity of
MKIDs is related to dZs/dngp, where ng, is the QP density.

It follows from the discussion in the previous section that the change in Z; is related to the

change in o by

—1/2 Thick film, local limit

o
=150 7= L /3 Thick film, extreme anomalous limit . (2.80)
-1 Thin film, local limit

Thus, do/dng, becomes an important quantity in discussing responsivity of MKIDs.

2.4.2.2 Effective chemical potential u*

One straightforward way of calculating do/dng, is through do/dng, = % (the ratio between

the change in the conductivity and the change in the quasiparticle density, both caused by a change
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in the bath temperature) from Eq. 270, Eq. 271 and

o 1
Ngp = 4N0/ 5 de, e =/ E? — A? (2.81)
0o 1l+ewr

where Ny is the single spin density of states. The result from such a calculation gives do due to a
change in thermal QP density from a change in bath temperature, which does not directly apply
to excess QPs from pair breaking. To account for excess QPs, we adopt Owen and Scalapino’s

treatment[49] and introduce an effective chemical potential p* to the Fermi distribution function

1

fE P T) = ——F—=. (2.82)
1+ e w7

Physically, Eq. treats the QPs as a Fermi gas with a thermal equilibrium distribution char-
acterized by the chemical potential p* and the temperature 7. This assumption is valid because at
low temperatures, phonons with energy less than 2A (under-gap phonons) are much more abundant
than the phonons with energy larger than 2A (over-gap phonons); therefore the time scale 7; for
excess QPs to thermalize with the lattice (phonon) temperature T (assisted by under-gap phonons)
is much shorter than the time scale 7, for excess QPs to recombine (assisted by over-gap phonons);
as a result, during the time 7; < t < 74p, the QPs may be described using the Fermi function given
by Eq.

With the introduction of p*, the total QP density ng, (including both thermal and excess
QPs), the superconducting gap A, and the complex conductivity o can be rederived by substi-
tuting f(E;p*,T) for f(E;T) in the corresponding BCS formula and the Mattis-Bardeen formula.

The relevant equations now modify to (for the case hw < A of our interest)

° 1
Ngp = 4N0/ 7E—M*d67 €= E?2 — A2 (283)
0

1+ %t
1 Pwe tanh 2
N~ /0 —— 2 de (2.84)
o i/w [(Bsp*, T) = J(E+ hoy i, T)|(E? + A? + WwE) |
On hw J A VE? — A2\ /(E + hw)? — AZ
(2.85)
A _ PR 2 2
o 1 1 —2f(B 4 hwyp* T)(E* + A + wE) (2.86)

On E A—hw \/A2 - E2\/(E + hw)2 - A?
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2.4.2.3 Approximate formulas of A, ng,, o, and do/dng,

Under the condition that fiw < A (Cond. 1), kT < A (Cond. 2) and e~“F#— < 1 (Cond. 3),
Eq. have the following analytical approximate formula[50]:

ng = 2NoV2mkIAe “it (2.87)
AAO _ 272“%—%—#*:1_2%1 (2.88)
Z—:l = %e_%sinh@)ffo(@ag:% (2.89)
2 R 15) (2.90)

where I, K, are the nth order modified Bessel function of the first and second kind, respectively

The first two conditions (Cond. 1 and Cond. 2) are apparently satisfied by a typical Al MKID
with T, = 1.2 K and microwave frequency w/2m below 10 GHz. Meanwhile, the QP density due to
pair breaking from a photon with energy hv is estimated by ng, ~ ﬁ—"’,. Assuming a sensing volume
V ~ 3 pum x 0.2 um x 100 pm (center strip width x film thickness x quasiparticle diffusion length)
and taking T7=0.1 K, Ny = 1.72 x 10'° zm—3eV ™! and A = 0.18 meV for Al, e~ ZF is estimated
from Eq. 287 to be 0.1 for a 6 keV photon and 1.4 x 1075 for a 1 eV photon, both much less than
1. Thus for Al MKIDs up to X-ray band, the third condition (Cond. 3) is also satisfied.

Now we are ready to derive ¢ and its derivative for the two cases.
Case 1: thermal QPs due to temperature change

In Eq. 2.87TH2.90, only two of the four variables A, ngp, p*, and T are independent. By taking
p* and T as independent variables, setting u* = 0, and keeping only the lowest-order terms in

Eq. 287THZ90, we arrive at the following results

"L(T) = %e*% sinh(€) Ko (€) (2.91)

oo(T A 2kT ¢ _ A
i‘(n) = MOU—,/ A e 2T €16(¢)) (2.92)

ngp(T) = 2Nov/20kT Age™ 7+ (2.93)

Ag cosh(&) Ki(¢)
doy 1 2A0 . kT — gsinh(f) + fKO(E)
- o h(&) K, 2.94
dngp 7 Nohw V wkT sinh(§) Ko(€){ % T % } ( )
Ao 1. (€)
dors T 2o - R 1G]
o ! (O 2.95
dngp 7 2Noﬁw[ + 7T]€Te 0(E1 % T % }] ( )
where the directives are evaluated by do/dng, = %.

Case 2: excess QPs due to pair breaking
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Using Eq. 287 to suppress the explicit dependence of p*, taking ng, and T as independent
variables and keeping the lowest-order terms in Eq. 2.88HZ.90, we arrive at the following result

Ul(%ﬁm - %Ow%ﬂsmh(&)%(é) (2.96)
D) TBoy w2 ey o) (207
jyjq; - (’”NOL;—M %Sinh(ﬁ)ffo(ﬁ) (2.98)
j:—; - _U"QNZMH""\/E‘?_&IO(@] (2.99)

where the directives are evaluated by do/dng, = 0o (ngp, T)/Ongp. In this case, we find that o is a

linear function of ny, and

_ el 1 2 . .
Kk = A 7TkTAOsmh(é)Ko(ﬁ)4-172NOA0[1+ —7¢ Io(6)].  (2.100)

It can be derived from Eq. [2.80 that

07,
—— = k|y|0ngp. 2.101
|Zs| |FY| qp ( )
We see from Eq. 2.101] that both the surface resistance Ry and the surface reactance X, increases

with quasiparticle density ngp, which has been shown in Fig. 2.3

2.4.2.4 Equivalence between thermal quasiparticles and excess quasiparticles from pair

breaking

Comparing Eq. 2.94] and Eq. to Eq. and Eq. 299, we find the two cases only differ from
each other by the factors inside the curly brackets, which are found to be close to unity over the
temperature and frequency range that MKIDs operate in.

The values of do/dng, of the two cases are evaluated for Al and plotted in Fig. We see
that the thermal QP curves (solid lines) separates very little from the excess QP curves (dashed
lines), which means that adding a thermal quasiparticle (by slightly changing the temperature) and
adding a non-thermal quasiparticle (by breaking Cooper pairs) have the same effect on changing
the complex conductivity. The equivalence between thermal and excess QPs allows us to use bath

temperature sweep to calibrate the responsivity of MKIDs instead of using a external source.
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Figure 2.10: do/dng, vs. T calculated for two cases. ggp((TT))/ /%TT and ;;qi((TT))/ /%TT are plotted by
the upper and lower solid lines, aalézzzj) and 802§ZZ£’T) by dashed lines. Other parameters are

f =6 GHz, Ny =1.72 x 1010um’3eV71, and Ag = 0.18 meV for Al
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Chapter 3

Kinetic inductance fraction of
superconducting CPW

3.1 Theoretical calculation of a from quasi-static analysis
and conformal mapping technique

In Chapter 2l we discussed how the electromagnetic properties of a superconductor changes with
temperature or external Cooper-pair breaking. The topic of this chapter is how such a change will
affect the transmission properties of a superconducting transmission line.

In this chapter, we first introduce and validate the quasi-static assumption for the supercon-
ducting CPW (SCPW). Under this assumption, the SCPW is fully characterized by its distributed
inductance L and capacitance C according to the transmission line theory. As a common prac-
tice, we first treat the SCPW as a perfect-conductor CPW and calculate its geometric inductance
Ly,. The effect of superconductivity is then included perturbatively as an additional inductance Ly;
called kinetic inductance. The ratio of Ly; to the total inductance L = L, + Ly; is called the kinetic
inductance fraction «, which is an important parameter related to the MKID responsivity.

This chapter is divided into two parts. The first half mainly discusses the theoretical calculation of
«, including the calculation of L,,, C, and a geometrical factor g which relates Ly; to the penetration
depth Aegr. Throughout these calculations, the powerful tool of conformal mapping is widely applied
and both analytical formulas and numerical methods are derived. The second half of this chapter
discusses the experimental technique used to determine «. The experimental results are compared
to the theoretical calculations. Both thick film and thin film cases are covered in the theory part as

well as in the experimental part.
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Figure 3.1: Coplanar waveguide geometry

3.1.1 Quasi-TEM mode of CPW

Consider an electromagnetic wave propagating on a transmission line along the z—axis. The field
quantities E , H , and the current density J can be written in a general form as (with a harmonic

time dependence e/“! omitted):

—

X(x,y,2) = [ft(x,y)—l—xz(x,y)é]e_jﬁz (3.1)

where (3 is the propagation constant and the vector X is decomposed into its transverse component
Z; and longitudinal component z, 2.

The solutions to Maxwell’s equations show that a CPW made of perfect conductor (perfect
CPW) immersed in a homogenous media can support a TEM mode. In this “pure” TEM mode, the
longitudinal components of E and H vanish while the transverse component of current density J

vanishes:
e, =0, h, =0, 5. =0. (3.2)

A superconducting CPW differs from the above case in two aspects. First, a conventional CPW
is usually made on a substrate (see Fig. [B.]), so the regions on the top and bottom of the CPW
are filled with media of different dielectric constants. This inhomogeneity gives rise to longitudinal
components e,, h, and transverse component j;. Second, the superconductor has a finite surface
impedance which gives rise to longitudinal components e, on the surface. The conclusion is that a
superconducting CPW cannot support a pure TEM mode.

However, both theory and lab measurements show that the propagation mode in a supercon-
ducting CPW is quasi-TEM, where non-TEM field components are much smaller than the TEM

components. For instance, j; contributed by the inhomogeneity from the substrate/air interface is
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estimated to be on the order of (see Appendix [C)

Jo _w
EA Ry 3.3
J: A (3:3)
where w is the transverse dimension of the transmission line and ) is the actual wavelength of the
wave in propagation. A lithographed CPW line used in MKIDs usually has a transverse dimension of
10-100 pm (the distance between the two ground planes) while the wavelength is usually thousands
of microns. Thus, j;/j. ~ 1% and j; is indeed small as compared to j,.

On the other hand, according to the definition of surface impedance, superconductor contributes

an e, on the metal surface that is estimated by

e, s
= 3.4
A (3.4)

where Z, is the surface impedance and Zj is the characteristic impedance of the transmission line.
For CPW made of superconducting Al, Z, is on the order of mQ (e.g., surface reactance X ~ 2 m{}
for T=0 K, f=5 GHz, and Aeg = 50 nm) and Zy = 50 Q. Thus, e,/e; ~ 107* in our case. Even for
a normal metal, Z; is usually much smaller than Z; and so e, is always much smaller than e;.

It can be shown [5I] that for the quasi-TEM mode of CPW, the transverse fields €; and hy
are solutions to two-dimensional static problems, from which the distributed capacitance C and
inductance L can be derived.

In the electrostatic problem, because €; quickly attenuates to zero over the Thomas- Fermi length
(on the order of one A, which is always much smaller than the film thickness that we use) into the
superconductor, the electric energy inside the superconductor has a negligible contribution to the
capacitance C' and the electric field €; outside the superconductor is almost identical to that for
a perfect conductor. Therefore, é; can be solved with the introduction of an electric potential ®,
which satisfies the Laplace’s equation

V20 =0 (3.5)

outside the superconductor, and has constant values at the surfaces of the superconductors which
are now treated as perfect conductors. For a CPW, we assume ® = V on the center strip and ® =0
on the two ground planes. é; is given by €; = —V®. The distributed capacitance C' can be obtained
either from C' = Q/V where Q is the total charge on the center strip, or from C = 2w./V? where
we is the total electric energy (per unit length).

In the magnetostatic problem, hy penetrates into the superconductor by a distance given by the
effective penetration depth Aeg. In general, the magnetic field can be derived by solving the Maxwell

equations together with the Mattis-Bardeen equation (Eq. [ZTT]). This leads to the following two
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equations of the vector potential A, (z,y):

VZA, =0 outside the superconductor (3.6)
V2A, = [K(z — ',y —y)A.(2/,y/)dz'dy’  inside the superconductor .

where K(z —2’,y —y') is the Mattis-Bardeen kernel appropriate for the two dimensional problems.
To join these two equations, we require Bt to be continuous at the superconductor surfaces.
Similar to the electrostatic problem, if the penetration depth is much smaller than the film
thickness, Ao < t, the magnetic field outside the superconductor is almost identical to that for a
perfect conductor. Therefore, Bt can be solved from the first Laplace equation in Eq. 3.6l with the
perfect conductor boundary condition—A, is constant at superconductor surfaces or th is parallel to
the surfaces, and with the constraint that a total current I is flowing in the center strip and returns
in the two ground planes for a CPW. The transverse field i_it can be obtained from i_it =VxA,.
The (distributed) geometric inductance L,, can be obtained either from L, = ¢/I where ¢ is the
total magnetic flux per unit length going through the gap between the center strip and the ground
planes, or from L,, = 2w,,/I? where w,, is the total magnetic energy. To account for the stored
energy and dissipation inside the superconductor, we use the surface current derived for the perfect
conductor (equal to Bt on the surface) and apply the surface impedance Z of the superconductor
to the calculation of the (distributed) kinetic inductance Ly; and (distributed) resistance R.
However, if the penetration depth is much larger than the film thickness, Aeg > ¢, so that the
film is fully penetrated by the magnetic field, the perfect-conductor approximation for the surface
current and the near magnetic field outside the superconductor is no longer a good approximation,
because the perfect-conductor boundary condition—h; parallel to the superconductor surfaces—
fails at the edges of the superconducting film; as the film becomes thinner and thinner, the surface
current derived for a perfect conductor will become more and more singular at these edges, while
in fact both the magnetic field and current density will become less and less singular due to the
longer penetration. In this case, one has to solve faithfully the two equations in Eq. However,
for Aeg > t, the relationship between .J and A becomes local (see Section [Z4L3) and the second

equation in Eq. can be replaced by the London equation:

1

V2A, = —
AR

A, (3.7)
which is easier to solve than the original differential-integral equation.

So far the electrostatic problem and the magnetostatic problem are independent, which is enough
in many cases where only the distributed parameters L and C, or the characteristic impedance Zy =
v/ L/C and the phase velocity v, = 1/v/ LC are required. The two static problems can be further

linked by applying the relationships between the voltage and current given by the transmission line
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Figure 3.2: Schwarz-Christoffel mapping

equations.

3.1.2 Calculation of geometric capacitance and inductance of CPW using

conformal mapping technique

A powerful tool for solving a two-dimensional static problem is the conformal mapping technique.

Consider a potential problem
0’ 0?0
— 4+ ===0 3.8
ou?  Ov? (38)

in domain W with spatial coordinates (u, v). A complex function
2= fw), =1+ v,z =3+ jy (3.9)

maps (u, v) to a new domain Z with coordinates (z, y). The theory of complex analysis tells us
if the mapping function f is analytical, it is also conformal (or angle-preserving), and so Laplace’s

equation is invariant: , ,

(27? + 27? =0. (3.10)
Often Laplace’s equation is difficult to solve in the original domain but relatively easy in the other
domain that is specially chosen.

A type of conformal mapping that is particularly useful in microwave engineering is called the
Schwarz-Christoffel mapping (SC-mapping),and maps a half of the complex plane into the interior of
a polygon. Fig. shows the general configuration of SC mapping. The required mapping function
is

wn—1

z = f(w) = f(wo) +¢ (W' —w;)* tdw' (3.11)

wo =1

<.

where maj,j = 1,...,n—1 are the internal angles of the polygon. As we can see in Fig.[3.2] the points
w; on the real axis, the real axis itself, and the entire upper plane are mapped into the vertices z;,

the boundary, and the interior of the polygon, respectively. We will use SC-mapping technique to
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solve the transverse fields of CPW and calculate L and C.

3.1.2.1 Zero thickness

jv

W-plane
-0 A B C D 0
P u
-b -a a b
(-1/k) -1 (1) (1/K)
(a)
in
A
- ° (—plane
K
A - 00| o D
B C
> O
-K K

Figure 3.3: SC-mapping of the cross section of a CPW with zero thickness into a parallel-plate
capacitor

We begin with a CPW line with zero thickness as shown in Fig. The center strip has a
width of 2a and the separation between the two ground planes is 2b. Because we only care about
the capacitance and inductance, the only relevant parameter is the ratio k = a/b. Without affecting
L and C, we first normalize the CPW dimensions by a so that the center strip width becomes 2 and
the ground-plane separation becomes 2/k, which are also indicated in Fig.

The upper half of the W-plane can be mapped into the interior of the rectangle in the &-plane
as shown in Fig. According to Eq. BI1] the mapping function with the points {—1/k, -1, 1,

1/k} mapping into the four corners of the rectangle is given by

dw' (3.12)

v 1
{= A/O \/(1 _ w/2)(1 _ ka’Q)

where A is an unimportant factor that scales the size of the rectangle. By setting A = 1, the width
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and height of the CPW can be expressed in terms of a special function K (k) called the complete
elliptic integral of the first kind [52]:

! 1
K=K(k) = /O N T kzxz)d:c (3.13)

1/k
K =KW= [ e 1)1(1 = (3.14)

(3.15)

where k' = /1 — k2.
Now the capacitance C' between the center strip and the ground planes through upper half plane
in free space can be easily obtained from the capacitance of the parallel-plate capacitor in the &

plane:

01/2 = 260 (316)

Kk’

Due to the symmetry, the lower half CPW filled with the substrate which has a dielectric constant
€r, will contribute a capacitance €,.C/o. Thus, the total capacitance of a zero-thickness CPW line

is

1+e€ 4K(k)

C= (1 + ET)Cl/Q = 5 €0 K(k/) . (317)
The factor
1+er
ot — J;E (3.18)

is often referred to as the effective dielectric constant, because the presence of the substrate effectively
increases the total capacitance by a factor of e.g, as if the CPW were immersed in a homogenous
medium with a dielectric constant of eqg.

Similarly, the total inductance for a zero-thickness CPW line is

K (k)

L1/2 = Mom (3'19)
L= L12/2 = “ng(lzk))' (3.20)

We note that the presence of the substrate does not affect the inductance, because both air and the

substrate have p = 1, and the magnetostatic problem does not see the substrate.
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Figure 3.4: SC-mapping of the cross section of a CPW with finite thickness ¢ into a parallel plate
capacitor

3.1.2.2 Finite thickness with ¢t < a

We now consider a CPW line with finite thickness ¢ as shown in Fig. B4l The center-strip width
and the separation between ground planes are still 2a and 2b as before. The strategy here is to
“flatten” the structure into a zero-thickness CPW and calculate L and C from the derived formula.
The upper half CPW in the Z-plane can be mapped into a zero-thickness CPW in the W-plane with
the following mapping function (see Fig. B.4I):

/ /2_“/22)d ¢ 3.21
R—Y w' - j (3.21)

where the four points wuy, u}, u2, u) on the real axis which defines the mapping have to be derived

from the following equations:

a= / " Gy (3.22)

0
t= /m G(w")dw' (3.23)
b—a= /“2 G(w")dw' (3.24)
t = / " Gy (3.25)

with

—u! — u/?
\/‘ 5 ul — u‘;‘)) : (3.26)
1) 2

These non-linear equations have no analytical solutions in general. When the thickness is very

small, however, approximate solutions can be derived. When ¢t — 0, uj,u} — a and ug,uh — b,
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Figure 3.5: Constructing the capacitance C of a CPW with thickness t

keeping terms up to the first order in t/a, we find the solutions of u1,u}, us, uh (see Appendix [Dl for

the derivatio)

2t
d = —
iy
d 3log2 d d b—a
- ¢ d— 21002+ 4y
“ Tyt 2 %8, T8
d 3log2 d d d b—a
ur = bmg - odagley —gle Ty
wy, = wu;—d

Cipolt) = o 2;(,23) (3.25)
L1/2(t) = po 2ll{(((klf:3) (3.29)

where k; = uy (t)/ua(t) and k) = \/1 — k2.

There is a subtlety in constructing the total capacitance and inductance. Because the substrate
does not exactly fill half of CPW to the symmetry line (see the dashed line in Fig. [B1), it is found
that the total capacitance is better approximated by the sum of the half capacitance of a CPW

with thickness ¢ in free space (e = 1) and the half capacitance of a zero-thickness CPW in dielectric

(e =€r):
2K (k) 2K (k)

C = Ol/g(t) + 67«01/2(0) = €p K(/{/) + €r€0 K(k') . (330)
t
And the total inductance is ,
Lo bt K (3.31)
2 MUK (k) '

11 have derived these formulas myself, but I am not sure if they already exist in the massive literature on coplanar

waveguide.
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Figure 3.6: Mapping a quadrant of a finite-thickness CPW into a rectangle using Matlab SC toolbox

3.1.2.3 General case of finite thickness from numerical approach

The SC-mapping can also be solved by numerical programs. One of the basic tasks for such a
numerical program is to solve the nonlinear equations like those in Eq. and determine
the mapping parameter to the requested precision. We find the Schwarz-Christoffel toolbox (SC-
toolbox) for MATLAB developed at University of Delaware [53] to be very flexible and accurate for
our purpose.

With the SC-toolbox we directly map a quadrant of the CPW geometry with finite thickness ¢
into a rectangle (parallel-plate capacitor) without the intermediate step of flattening the CPW (see

Fig. B.0). The vertices of the rectangle & are given by the toolbox and L, C are calculated by

= 632
Lyjy= MO%- (3.33)

The total capacitance and inductance from the same approximation as used in Eq.[3.30 and shown

in Fig. B0l is

C = 2[01/4(t) + 6706(1/4 (O)]

Ly4(t/2)

T (3.34)

The approximation used in the electrostatic problem applies a magnetic wall boundary condition
at the exposed substrate surface and solves Laplace’s equation in the free space and substrate regions

independently. It is also possible to solve for the capacitance accurately without approximation. In
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Figure 3.7: Calculating the exact capacitance of a CPW by solving Laplace’s equation in the W-plane

order to do this, we first map the right-hand-side half of the CPW into a parallel plate capacitor
partially filled with dielectric (see Fig. B1). Then we solve Laplace’s equation faithfully in the
parallel-plate structure by the partial differential equation (PDE) toolbox of Matlab. The PDE
toolbox internally implements the finite element method (FEM) and is capable of solving equations

of the general type [54]
-V (cVP) +ad = f. (3.35)
The equation compatible with PDE toolbox and appropriate for our electrostatic problem is
V - [e(e,n)V®(a,n)] =0 (3.36)

which comes from one of Maxwell’s equations: V - D =o. e(o,n) is set to 1 (vertices in blue in
Fig. or €, (vertices in red in Fig. depending on whether (o, 7) maps to a point (x,y)
in the free space region or the substrate region in Fig. The boundary conditions ® = 1 and
® = 0 are applied on the left and right parallel plates, and %—f = 0 on both the top and bottom
edges of the rectangle. A typical solution of ® is shown in Fig. The difference between ®
as compared to the solution of parallel plates fully filled with dielectric is plotted in Fig. As
we can see, the former differs from the latter only in the air-substrate interface region. From the

solution @, the total electric energy w,. is calculated and the capacitance is derived.
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3.1.2.4 A comparison of L and C calculated using different methods

¢ [om] 300 100

s [pm] 15] 30| 60| 15] 3.0 6.0
Lo [mH/m] | 436.8 | 436.8 | 436.8 | 436.8 | 436.8 136.8
L, mH/m] | 345.1 | 384.7 | 407.3 | 399.4 | 415.8 4251
L, [mH/m] | 352.1 | 386.5 | 407.8 | 400.2 | 416.0 425.2
Co [pPF/m] | 165.6 | 165.6 | 165.6 | 165.6 | 165.6 165.6
C: [pF/m] | 173.6 | 169.0 | 167.3 | 167.8 | 166.8 166.2
Cs [pF/m] | 1714 | 168.7 | 167.2 | 167.7 | 166.7 166.2
Cs [pF/m] | 172.0 | 169.1 | 167.4 | 167.9 | 166.7 166.1

Lg: L from zero-thickness formula

Lq: L from finite-thickness approximate formula

Lo: L from numerical method

Cy: C from zero-thickness formula

C:: C from finite-thickness approximate formula

C5: C from numerical method with magnetic wall approximation
C5: C from numerical method without approximation

Table 3.1: L and C calculated using different methods for different geometries

Results of L and C calculated using different methods, including zero-thickness formula (Lo and
Cy), approximate formula for ¢ < a (L and C7), numerical SC mapping with magnetic wall approx-
imation (Lo and C3), and the numerical SC mapping followed by FEM without any approximation
(C3), are compared in Table Bl L and C are evaluated for three center-strip widths 1.5, 3, 6 yum
and two film thicknesses 300 nm and 100 nm. The ratio between the center-strip width to the width
of the gap is fixed to 3:2.

As expected, we see that the results using different methods converge to the same value as t/a
goes to zero. As t/a increases, Ly and Cj first break down, which deviate from the most accurate
values Lo and Cj significantly for larger ¢. Thus these zero-thickness formulas have large error when
applied to thick-film CPW. The approximate formula L; and C; work quite well for not-so-thick
films. The error is only 2 % for t/a =1/5 (s = 0.6 pm and ¢t = 300 nm). In all these geometries, Co
is always very close to C3, suggesting that the magnetic wall approximation is a good approximation.
Because of the presence of the substrate in the electrostatic problem, the errors in C' using different

methods are much less than the error in L.

3.1.3 Theoretical calculation of « for thick films (¢ > A\)
3.1.3.1 Kinetic inductance Ly;, kinetic inductance fraction a, and geometrical factor g

For a transmission line made of perfect conductor, the magnetic field H is completely excluded
from the conductor. The inductance L is related to the energy stored in the magnetic field outside
the conductor. Because this L purely depends on the geometry, it is referred to as the geometric

inductance, denoted by L,,. The calculation of L,, has been discussed intensively in the preceding
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Figure 3.8: E field and H field near the surface of a thick superconducting CPW.

section of this chapter.

For a superconducting transmission line, the H field extends into the superconductor by a dis-
tance given by the penetration depth. In this case, the supercurrent flowing in this penetrated
layer carries a significant amount of kinetic energy of the Cooper pairs, which will also contribute
to L. Because this energy depends on the penetration depth which changes with temperature and
quasi-particle density, we usually write the total inductance L as a sum of two parts, a fixed part
Ly and a variable part L.

It can be shown that Ly ~ L,,, because the magnetic field outside the superconductor is usually not
too much different from that of a perfect conductor and has little dependence on the penetration
depth. L, is what we usually refer to as the kinetic inductance Ly;. |4 The total inductance can now

be written as
L=Lyg+ Ly~ L,,+ L. (3.37)

The kinetic inductance fraction « is defined as the ratio of the kinetic inductance Ly; to the total

inductance L
Ly
=T

(e

(3.38)

In MKIDs, a large o means a large fraction of the inductance is able to change with the quasi-particle
density, which usually means a more responsive detector.
Fig. 3.8 shows the E and H field inside and outside a thick superconducting CPW line. Inside

the superconductor, H and J are zero everywhere except in a surface layer of thickness Aog. Outside

2Strictly speaking, besides the kinetic energy of the Cooper pairs, the magnetic energy stored in the penetrating
magnetic field also contributes to the variable inductance Li. In the thick film case, these two contributions are
comparable, while in the thin film case, the kinetic energy of Cooper pairs dominates over the magnetic energy.
Throughout this thesis, we do not discriminate L; and Lg;.
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the superconductor, the fields are close to a TEM mode, except the E field has a small longitudinal
component E,, giving rise to a small component of Poynting vector S directed normally into the
superconductor surface. This normal component delivers complex power (per unit length) into the
superconductor, which is calculated by fc E* x Hdl = fc E; - H\dl, where the integral is along
the surface contour C of the superconductor in the cross-sectional plane. On the other hand, the
dissipation and stored magnetic energy inside the superconductor are represented by %RI 2 and

%L;ﬂ-l 2, respectively, in the transmission line model. According to the Poynting theorem,

%Rﬂ = Re| / EZ - Hydl] (3.39)
C

1
§kaiI2 = Im| / E% - Hdl]. (3.40)
C

With the relationship between E, and H| given by the surface impedance

E
Zy =" =R, + jwL,. (3.41)
Hy
We finally derive
R = gR; (3.42)
L = gLs=guoles (3.43)
where
fc H2dl

Eq. B:44] shows that the kinetic inductance is related to the effective penetration depth Aeg by
a factor g, which depends only on the geometry. The calculation of Aeg is discussed in great detail
in Chapter @I The calculation of the geometrical factor g requires the evaluation of the contour
integral of H ﬁ . As discussed at the beginning of this chapter, H| can be derived by treating the
superconductor as a perfect conductor and solving the Laplace’s equation outside. This allows us to

use the same conformal mapping technique as used in the calculation of L and C.

3.1.3.2 Approximate formula of g under the condition of ¢t < a

The contour integral of H ﬁ in Eq. B44] diverges for a zero-thickness CPW, because a 1/x type of
singularity will be encountered at the edges of center strip and ground planes. For finite thickness
CPW, a 1/+/x type of singularity will be encountered instead, which is integrable.

To evaluate the integral, we use the same two-step SC-mapping as used in Section the
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finite-thickness CPW in the Z-plane is first mapped into a zero-thickness CPW in the W-plane
by Eq. BZIl which is then mapped into a parallel-plate structure in the &-plane by Eq. It’s
most convenient to work on the integral in the W —plane. Assume a uniform magnetic field H =1
between the parallel plates in the {-plane. The magnetic field H) in the W-plane and Z-plane are
|d¢/dw| and |d¢/dz| = |d§/dw| [ |dz/dw]|, respectively. The current on the center strip I and the

geometrical factor g can be written as

t 4/()“1 % o (3.45)
‘o %{/OUJF/:O}H%’/ j_ir S_Z dw (3.46)
with
- W<w2—u%1><w2—uz>\ (347)
ol

In the case of t < a, approximate solutions for uq, u}, u2, uj are available (see Eq. B:2T). Using
the lowest-order approximations: u; = a, v} = a — 2t/m, ug = b,uly = b+ 2t/m, a formula of g has

been derived by Collins|55]

g = Getr T ggnd
1 o dma o 1+ k
ctr — ™ - Py
Jet 1aK2(k) (1 — k2) &7 81 %
k Atb 1 14k
= log — — —log —— 3.49
Jend 1k 2 (k) (1 — k2) [”‘L BT TR B k] (3:49)

where geir and ggna are the contribution from the center strip and the ground planes, respectively,
and k = a/b as before. This formula is estimated to be accurate to within 10 percent for ¢t < 0.05a

and k£ < 0.8.

3.1.3.3 Numerical calculation of g for general cases

The geometrical factor g can be evaluated numerically with the help of SC-toolbox. To do this, one
must first determine the values of the mapping parameters of uy, u}, us, uj using the SC-toolbox.

With these parameters available, the integrals in Eq. [3.46] can be evaluated numerically.
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t [nm] 300 200 100

s [um] 0.6 3 6 0.6 3 6 0.6 3 6
L mH/m] | 255.7 | 387.7 | 408.7 | 309.4 | 401.3 | 416.7 | 3632 | 416.7 | 4255
g [pm 1] 1525 | 0391 | 0214 1633 | 04127 | 0.2249 | 1.819 | 0.4498 | 0.2434
L mH/m] | 95.81 | 2457 | 13.45| 102.6 | 2503 | 14.13 | 1143 | 2826 | 15.29
a 0.2726 | 0.0596 | 0.03186 | 0.2491 | 0.06069 | 0.0328 | 0.2393 | 0.06351 | 0.03469

Table 3.2: Ly, g, Ly, and « calculated from the approximate formula Eq. Aet = 50 nm is
assumed in the calculation.

¢ [nm] 300 200 100

s [um] 0.6 3 6 0.6 3 6 0.6 3 6
L mH/m] | 2805 | 3865 | 407.8| 3159 | 400.2 416 | 362.6 416 | 4252
g [pm 1] 1.209 | 0.3673 | 0.2066 | 1.385 | 0.3945 | 0.2193 | 1.655 | 0.4385 0.24
L mH/m] | 7598 | 23.08 | 1298 | 86.99 | 2479 | 13.78 104 | 2755 | 15.08
a 0.2132 | 0.05635 | 0.03085 | 0.2159 | 0.05832 | 0.03206 | 0.2229 | 0.06212 | 0.03426

Table 3.3: Ly, g, Ly, and « calculated from the numerical method. Aeg = 50 nm is assumed in the
calculation.

3.1.3.4 A comparison of g calculated using different methods

The geometrical factor g, the kinetic inductance fraction «, as well as the geometric inductance Ly,
and the kinetic inductance Ly; are calculated using the two methods and are compared in Table B.2]
and We see that the approximate formula of g gives less than 10% error for t/a < 0.1. We also
find that Ly, increases as t or s decreases. Furthermore, g scales as 1/s. This is because H | scales

as 1/s while the integration interval scales as s (Eq. B.44]).

3.1.4 Theoretical calculation of « for thin films (f < Ag)

For thin films with ¢ < Aeg, the geometrical factor g and the kinetic inductance Ly; can no longer
be evaluated from the contour integral of H that is derived for a perfect conductor. The reason has
been discussed at the beginning of this chapter. There, we also show that in this case the vector
potential A, satisfies the Laplace equation outside the superconductor and the London equation

inside the superconductor, as given by

o LA , inside the superconductor
vZA={ X (3.50)
0, outside the superconductor.

A numerical program “induct” developed by Chang [50] is useful in this case. The program uses
a variational method to find the current distribution in superconducting strips and calculates the
inductance by minimizing the total magnetic and kinetic energy. It can be shown that the variational
method used in “induct” is equivalent to solving the equations “Induct” takes one parameter,

the London penetration depth (effective) Ar, and outputs the total inductance L. By comparing
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6 T T T
$=0.6 um, Lm:0.52 uH/m, g=1.8/um

s=1.5 um, Lm=0.49 uH/m, g= 0.74/um
s=3um, Lm=0.47 pH/m, g= 0.39/um
$=6 um, Lm=0.46 pMH/m, g= 0.2/um
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Figure 3.9: Calculated total inductance L as a function of the surface inductance Ly = 1/05t for a
thin-film CPW. The film thickness used in the calculation is ¢ = 20 nm. Four curves from top to
bottom correspond to four CPW geometries with center strip widths of 0.6, 1.5, 3, 6 pm and with
the ratio between the center strip width and the gap width fixed at 3 to 2. Data marked with “4”
are calculated from “induct”. The four lines show linear fits to the data.

the local equation in the normal form and in the London form at low temperatures,

J 5, (0, < 0y for T < Tc) (3.51)

Il
=

Il

|
.
N
o

we find that Ay, is related to o9 by

AL =4/ L . (3.52)
Woo2

On the other hand, we have shown in Section 2.4.1.3 that the surface inductance of a supercon-

ducting thin film with ¢ < Aeg is given by

1
Ly=— (3.53)

O'Qt

By varying o9 in Eq. B52 and Eq. B53] and inserting A, into “induct”, we can derive the total
inductance L as a function of the surface inductance L,. The results calculated for CPW with four

different geometries are shown in Fig. We find that L almost has a linear dependence on Lg,
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which allows us to extend the thick-film formula

L=Ly+gL, (3.54)

to the thin film case. The equivalent geometrical inductance L,, and geometrical factor g can be
determined from the intercept and slope of a linear fit to the data. The linear fits are indicated by
the solid lines in Fig. 3.9 with the derived values of L,, and g listed in the legend. The equivalent

kinetic inductance Ly; and kinetic inductance fraction « for the thin film case are still given by

Lki = gLs
gL
= 3.55

Thus, we have unified formulation for both the thick film and thin film cases.
For a specific CPW, the relevant quantities (L, L,, L, g, and a) can be derived using the

following procedures:

1. Calculate the total inductance L as a function of the surface inductance L, for the specific

film thickness ¢, and from a linear fit, derive L,, and g;

2. Measure the sheet resistance of the film above its T, (e.g., at 4 K for Al films), from which

derive oy;
3. Calculate o2(w,T) from the formula of o2/, derived in Chapter 2 (Eq. 2.92);

4. Insert oy into Eq.[353], and from Eq.[B.54 and Eq. derive Ly; and «.

3.1.5 Partial kinetic inductance fraction

It is often the case that the quasiparticles are only generated in the center strip of CPW instead of the
whole superconducting film. In this situation, although the entire superconducting film contributes
to Ly, only the center strip where quasiparticle density has a change dng, contributes to §Ly;. Thus

we define a partial kinetic inductance fraction a* as

_ L Ly
L Ly

*

(07

(3.56)

where Lj; is the partial kinetic inductance contributed from the center strip of the CPW. In the

thick film case (t > Aegr), Ly; is calculated by
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s [pm] 0.6 3 6 5 5 5
g [im 0.4 2 1 1 2 3
71 0.7309 | 0.7244 | 0.7224 | 0.6133 | 0.6713 | 0.7118
) 0.6528 | 0.6986 | 0.7074 | 0.5911 | 0.6513 | 0.6939

r1: ratio of o/« from Eq. B.49
ro: ratio of o /o from numerical method

Table 3.4: Ratio of o*/« calculated using the two methods. A film thickness of ¢ = 200 nm is used
in these calculations.

s [pm] 3 5
g [pm] 2 2
AL [nm] 100 150 200 100 150 200

t=40 nm | 0.8174 | 0.858 | 0.8863 | 0.7613 | 0.8066 | 0.8412
t=60nm | 0.7978 | 0.8368 | 0.8664 | 0.7412 | 0.7821 | 0.8162
t =100 nm | 0.7762 | 0.8107 | 0.8395 | 0.7192 | 0.754 | 0.7851

Table 3.5: Ratio of a*/« calculated using “induct” program

thi =g"Ls
 Je B
g = TH (3.57)

where the contour C* only runs along the surface of the center strip. In Eq. we already give
an approximate formula for ¢g*, and numerical evaluation of ¢g* is also straightforward. The ratios of
L}/ Ly (or o /o) evaluated from both the approximate formula and numerical method for a number
of geometries are listed in Table B4l We can see that the center strip accounts for more than half
of the kinetic inductance. As t/a — 0, the ratio approaches a constant Lj;/Li; — 1/(1+ k) = 0.7
for CPW geometries with center-strip-to-gap ratio of 3:2, according to Eq.

In the thin film case (¢ < Aesr), @/ can still be calculated by using the “induct” program. The
“induct” program allows users to assign different London penetration depths to the center strip and
the ground planes. We first calculate the total inductance L and its increment dL by assigning both
the center strip and the ground planes with the actual A\, and A, + dA,. Then we calculate the
partial inductance increment 6L* by only increasing the London penetration depth of the center
strip to AL, + 0\, while keeping the ground planes at Ar,. The ratio of §L*/0L yields the ratio of
a* /a. The ratios of §L* /§ L are calculated for a number of combinations of geometry, thickness, and
London penetration depth, and are listed in Table We find that for these geometries the ratios
are between 80 % to 90 %, and are higher than the thick film case.
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3.2 Experimental determination of «

In this section, we describe an experimental method to determine the kinetic inductance fraction a

of a superconducting CPW.

3.2.1 Principle of the experiment

out
in

Figure 3.10: Coupler structure of the a-test device

The resonant frequency f, of a quarter—wave resonator of length [,. is given by

1

o= uvic

(3.58)

According to Eq. B58 and Eq. 3337, a straightforward way of determining « is to compare the
measured resonance frequency of a superconducting CPW resonator f3°, with the calculated resonant

frequency f"* of the same resonator assuming only the magnetic inductance Lyy,:

fsc
r

“=1

)2 (3.59)

This method, however, is only accurate for CPW with large «, because the relative error in Eq. 3.5

is:

o 11—« O fm O fe
— =2 r_)2 r_)2, .
e =2t [T (O (3.60)

For example, if f7° or f™ has an relative error of 1%, the relative error in a will be 6% for o = 25%
which is acceptable, and 98% for a = 2% which is too large to be useful.

For a CPW geometry with small a, we resort to the temperature dependence of the resonant
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Res# | Group# | 5 [um] | L, [jan] | L, [mm] | /7" [GHZ] Q.
0 1 0.6 168.60 4558.42 6.466 | 1.0107E+05
1 1 0.6 168.60 4533.42 6.500 | 1.0000E+05
2 1 0.6 168.60 4508.42 6.535 | 9.8937E+04
3 2 1.5 130.45 4408.41 6.713 | 2.0222E+05
4 2 1.5 130.45 4383.41 6.750 | 2.0000E+05
5 2 1.5 130.45 4358.41 6.788 | 1.9779E+05
6 3 3.0 156.56 4180.82 6.960 | 1.0116E+05
7 3 3.0 156.56 4155.82 7.000 | 1.0000E+405
8 3 3.0 156.56 4130.82 7.041 | 9.8844E+04
9 4 6.0 173.75 4004.95 7.163 | 6.8670E+04
10 4 6.0 148.75 4004.95 7.206 | 1.0886E+05
11 4 6.0 123.75 4004.95 7.250 | 2.0000E+405
12 4 6.0 123.75 3979.95 7.294 | 1.9759E+05
13 4 6.0 123.75 3954.95 7.339 | 1.9519E+05
14 5 24.0 263.41 3713.70 7.453 | 2.0254E404
15 5 24.0 263.41 3663.70 7.548 | 1.9748E+04

Table 3.6: Design parameters of the a-test device. f is calculated assuming a film thickness of
200 nm.

frequency f, and quality factor @, (see Eq.[2.54):

5fr(T) — fr(T) _fr(o) — _g(SXs(T)
fr fr(o) 2 X
L 1 1 R(D)
0T T @M a0 X, (3.61)

Because the temperature dependence of the surface impedance is an intrinsic property of the su-
perconductor, Xs(7") and Rs(T) are common for resonators of all geometries made from the same
superconducting film. The ratio of §f,./f. or §(1/Q,) between two CPW geometries, with the

common temperature dependence canceled out, gives the ratio of a:

% _ ((Sfr/fr)z _ 5(1/627‘)1
o (Ofe/fr);  6(1/Qr);

(3.62)

If o; is large and can be determined with a good accuracy from Eq.[B.59] the small o; can also be

determined with fairly good accuracy by scaling a; with the ratio given by Eq.[B.62

3.2.2 a-test device and the experimental setup

For this experiment, we designed two a-test devices which are made of Al films with two different
thicknesses: 200 nm and 20 nm. In each device, an Al film was deposited on a silicon substrate
and patterned into 16 CPW quarter-wavelength resonators with 5 different geometries. As shown in
Fig. BI0 each resonator has a coupler of length [, and a common center-strip width of 6 ym, which

capacitively couples the resonator body to the feedline for readout. The coupler is then widened (or
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narrowed) into the resonator body, with center-strip widths s, of 0.6 pm, 1.5 pm, 3 ym, 6 pm, or
24 pm, and a length [,. The ratio between center strip width s and the gap ¢g in both the coupler
and the resonator body section is fixed to 3:2, to maintain a constant impedance at Zy =~ 50 .
The relevant design parameters of the a-test device are listed in Table Because the smaller
geometries are expected to have larger «, they are designed to have smaller f*. This guarantees
the actual resonance frequencies f3° are always in a fixed order easy to recognize, with smaller
geometries at lower frequencies regardless of the film thickness.

The device is mounted in a dilution fridge and cooled down to T as low as 100 mK. A microwave
synthesizer is used to excite the resonators. The signal transmitted past the resonator is amplified
with a cryogenic HEMT amplifier and compared with the original signal using an IQ-mixer. As
the excitation frequency f is swept through the resonance, the I-QQ output from the IQ-mixer, after
corrections, gives the complex transmission So; through the device and HEMT. The readout system
used in this experiment is described in more detail in Section and shown in Fig. BIl The
resonance frequency f, is obtained by fitting the complex So; data to its theoretical model. The

IQ-mixer correction and resonance curve fitting are given in the Appendix [E and [

3.2.3 Results of 200 nm Al a-test device (¢t > A\ and ¢t < a)

The 200 nm device was cooled in the dilution fridge and T, was measured to be 1.25 K. All the 16

resonators were observed.

3.2.3.1 « of the smallest geometry

We first measured the resonant frequency and quality factor of all the resonators at 150 mK. «
are immediately calculated from Eq. [3.59 for each resonator and the group mean value is listed in
Table B.7 in the column “al'”. We will only take al = 27.6% of group 1 as a reliable value and

abandon the rest, based on the previous discussion.

3.2.3.2 Retrieving values of a from f,.(T) and Q,(T)

« of the remaining four geometries are determined from the temperature sweep data. §f,.(T)/ f» and

5(1/Q,) for all the resonators are measured from 150 mK to 480 mK in steps of 10 mK and plotted
in Fig.[3.11(a)| and Fig|3.11(b)|. In both plots, the curves fall onto 5 trajectories corresponding to

the 5 geometries. We normalize them by the value of group-1. The normalized curves appear to be
flat in the temperature range between 220 mK and 300 mK (see Fig. B.I2)), where the ratios a;/a;

are retrieved. The ratios as well as the values of «; scaling down from «; are listed in Table 3.7 in

9 2%

the two columns “o;/a1” and “a

The ratio of a;/a; can also be derived by fitting 0 f,./ f and 6(1/Q,) to Eq. Bl with §X,/X,
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Figure 3.11: Measured §f,/f, and §(1/Q,) as a function of T from the 200 nm a-test device
(a)Plot of 6f,/fr vs. T (b)Plot of 6(1/Q,) vs. T
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Figure 3.12: §f,./ f- normalized by group-1 from the 200 nm a-test device
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Figure 3.13: Fitting (a)d f,/fr with §X/X, and (b)d(1/Q,) with Rs/X, from the 200 nm a-test
device

group# al | a;/aq a? a® ot a®
11]27.6% | 1.000 | 27.6% | 27.6% | 27.6% | 30.8%
2 123% | 0430 | 11.9% | 12.6% | 13.1% | 14.5%
3 4.3% | 0.230 6.3% 7.0% 7.2% 7.8%
41 03% | 0130 | 3.6% | 41% | 4.0% | 4.2%
5| -6.5% | 0.039 1.1% 1.3% 1.2% 1.2%

Table 3.7: Results from the 200 nm a-test device

a': o from Eq. B350

ai/ar: « ratio between the ith group and the group 1

o?: o from scaling the largest alpha with «;/aq

o®: a from fitting 0 f/ fr to 0Xs/Xs
o’ o from fitting §(1/Q,) to Rs/Xs
a

5 . . .
°: a from a numerical calculation of g and A ~= 64 nm from “surimp”

and Rs/X calculated from Martis-Bardeen theory by our “surimp” program described in Chapter
As for the five material-dependent parameters required by “surimp”, we take values of vy and
AL from referenced0], T, = 1.25 K, and [ = 200 nm (limited by the film thickness). The parameter
A(0)/kpT, is chosen such that the fitting yields 27.6% for the smallest 0.6-0.4 geometry. Once
determined, the same five parameters are used to fit for the other four geometries. The results are
listed in Table 3.7 in the column “a3” and “a?”. We see that “a3” and “a?” agree with “a?”. The
advantage of the fitting approach (a3, ay4) over the direct ratio approach (as) is that the former
takes into account of the frequency dependence of the surface impedance which does not cancel

completely in Eq.[B.62 between two resonators.

3.2.3.3 Comparing with the theoretical calculations

The experimental results of « are compared with the theoretical calculations. The kinetic inductance

fraction can be calculated from Eq. [3.44] and Eq. B:43] because the film thickness is several times
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larger than the penetration depth. With Aeg = 64 nm calculated from “surimp”, calculated values
of a are listed in Table B in the column “a®”’. We find a good agreement, within 10%, between

the theoretical results and the experimental results.

3.2.4 Results of 20 nm Al a-test device (f < Aegr)

The 20 nm a-test device was cooled in a dilution fridge in another cooldown. T, was measured to

be 1.56 K. 14 out of the 16 resonators showed up (Res 2 and Res 11 fail to show up).

3.2.4.1 « of the smallest geometry

We measured the resonant frequency and quality factor of all the 14 resonators at 120 mK. «
calculated from Eq. [B.59 are listed in Table under column “a'”. We see that « of this 20 nm
device is significantly larger than the 200 nm device. Even the largest geometry gives an « over

20%. Thus the values of o' derived from Eq.[3.59 are all reliable.

3.2.4.2 Retrieving values of « from f,.(T)

dfr/fr as a function of T are measured between 110 mK and 575 mK in steps of 15 mK and plotted
in Fig. BI4 Curves for the 14 resonators still fall onto five trajectories. The quality factors are
also measured which appear to be very low. We were unable to distinguish trajectories between
geometric groups from the §(1/Q,) curves. So we proceed only with the df,./f, data. The results
from both the direct ratio approach and the fitting approach are shown in Fig. and Fig. [3.16,
and are listed in Table 3.8 under columns “a?” and “a>”. The parameters used in the fits are: T,=
1.56 K, =20 nm, vy = 1.34 x 108 m/s, A\r, = 15.4 nm, and Ag/kyTc = 1.71. We can see that the
values of a? and o are notably smaller compared to o', for which we do not have an explanation

yet.

——15 0.1r
5 0‘.2 013 014 0‘.5 0.‘6 ([)),3 0_:‘35 014 O_LIS
T(K) T (K)
Figure 3.14: Measured df,./f, as a function Figure 3.15: ¢f./f. normalized by group 1

of T from the 20 nm Al device from the 20 nm device
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Figure 3.16: Fitting 0 f,/f, with 6X/X, from the 20 nm device

gs# ol | aifoq a? a’ ab
11 89.3% | 1.000 | 89.3% | 89.3% | 88.3%
21 76.5% | 0.770 | 68.7% | 70.2% | 75.6%
3162.7% | 0.560 | 50.0% | 51.6% | 61.8%
41 45.3% | 0.430 | 38.4% | 41.0% | 46.4%
51 20.6% | 0.160 | 14.3% | 16.8% | 20.2%

Table 3.8: Results from the 20 nm a-test device

ab: « calculated from “induct” program with A\r, = 165 nm. Other symbols same as in Table 37

3.2.4.3 Comparing with the theoretical calculations

Since the thickness 20 nm is less than the effective penetration depth, it is appropriate to calculate
« from “induct” program, instead of surface integral method. « calculated from “induct” program,
assuming a effective London penetration depth of A\, = 165 nm, are listed in Table in the column
“ab”. Unfortunately, the sheet resistance of the film at 4 K was not measured for this device and

AL can not be verified from the procedures described in Section [3.1.41

3.2.5 A table of experimentally determined « for different geometries and

thicknesses.

The values of o determined from the two a-test devices described in this section and from another
40 nm geometry-varying device are summarized in Table This table is useful for a quick estima-
tion of « for geometries listed or close to those listed in the table. For example, the submm MKID,
with a 6 ym width center strip, a 2 um wide gap, and a 60 nm thick Al film, is estimated to have a

kinetic inductance fraction around 20%.
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s [pm] \ t [nm] 200 40 20
0.6 | 27.6% 89.3%
1.5 | 12.6% 76.5%
3 7% | 45% | 62.7%
5 26%
6| 4.1% 45.3%
10 17%
24 1.3% 20.6%

Table 3.9: Summary of experimentally determined « for different center-strip widths and thicknesses.
Values of o are reported using a! for 20 nm and 40 nm devices, and o for 200 nm device.
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Chapter 4

Analysis of the resonator readout
circuit

In this chapter, we discuss the resonator readout circuit. The basic question to be answered is: if
the kinetic inductance of the superconducting resonator has a change dLy; due to a change in the
quasiparticle density dng,, what will be the change in the phase and amplitude of the microwave
output signal?

We begin with an introduction of the basics of a quarter-wave transmission line resonator. Then
we present a network model of a resonator capacitively coupled to a feedline. To be general, we
assume that the transmission line resonator is terminated by a small impedance Z; instead of being
shorted. From the network model, we derive the responsivity of MKID both for Z; = 0 case and
Z; # 0 case. The Z; = 0 case corresponds to the simple short-circuited A/4 resonator and the
Z; # 0 case corresponds to the hybrid resonator, which has a short sensor strip section near the
short-circuited end that is made from a different type of superconductor or a different geometry
from the rest part of the resonator. For the hybrid resonator, both the static and dynamic response

are discussed.

4.1 Quarter-wave transmission line resonator

4.1.1 Input impedance and equivalent lumped element circuit

A short-circuited CPW transmission line of length A/4 (see Fig. [4.1(a)) makes a simple while useful
microwave resonator[57]. According to the transmission line theory, the input impedance of a shorted

transmission line of length [ is

1 — j tanh ol cot
Zin = Zytanh(a + jB) = Z jtanh alcot 8

4.1
O tanh ol — jcot Bl (4.1)
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Figure 4.1: A short-circuited A/4 transmission line and its equivalent circuit. (a) Illustration of a
short-circuited \/4 resoantor. The voltage and current distributions show standing wave patterns.
(b) The equivalent RLC parallel resonance circuit, valid near resonance

where

v=a+j8=V(R+jwl)(jwC) (4.2)

is the complex propagation constant, and

Zy = (4.3)

L
C
is the characteristic impedance of the transmission line. Here L, C, and R are the distributed
inductance, capacitance, and resistance of the transmission line.

For a lossless line, « = 0 and

Zin = jZp tan fl. (4.4)
At the fundamental resonance frequency
T 1
wn = or = 45
* T 2VIC o= qvie (45)
we have
Bol = g Zin = 00. (4.6)
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For a transmission line with small loss al < 1 at a frequency close to the resonance frequency

w = wp + Aw, Eq. 1] approximately reduces to

Zo
Ly = ——— 4.7
al + jrAw /2w (47)
Recall that the impedance of a parallel RLC circuit shown in Fig. [4.1(b)| has the same form near

the resonance frequency

1

= "= (4.8)
1/R + 2jAwC

in
Thus a short-circuited transmission line of length A/4 is equivalent to a parallel RLC resonance
circuit, with the equivalent lumped elements R, L, and C related to the distributed R, L, and C' of

the transmission line by

. 2 L = = 8l
And the quality factor @ of the circuit is
T L

4.1.2 Voltage, current, and energy in the resonator
At the resonance frequency w = wyp, the RMS voltage and current have standing-wave distributions
along the transmission line

T . T
V(z) = Vp, cos 5 I(z) = m SI0 = (4.11)

where V,, is the maximum voltage at the open end (z = 0) and I,,, is the maximum current at the
shorted end (x = 1). V,, and I, are related by V,, = I,,Zp. It follows that the electric energy,

magnetic energy and dissipation (per unit length) are

1 o 1 o Smx
We(z) = 2OV(:1:) = 2C’Vmcos 5
L o Lo . o7w
W(z) = 2LI(:C) —2LIms1n 5]
1 9 9 . o TXT
P(x) = 2RI($) = 2RIm sin o (4.12)
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The lumped-element relationships in Eq. can also be derived by equating the total electric energy

and magnetic energy in the RLC tank circuit and in the transmission line resonator,

e
—dz

Total electric energy = 5

oo 1[0 s
=CVi=- [ CVz: cos
2 2 o

vz o1
Total magnetic energy = 3 2’% =3 / LI? sin? 7;—;:dx
wh 0

1v2 1!
Total dissipation = 5% = 5/0 RI? sin? %dx (4.13)

which, by applying Vi, = V;;, and Eq. &3] leads to the same results as in Eq.

4.2 Network model of a quarter-wave resonator capacitively

coupled to a feedline

__\_/1__> Ssy ___V_2_>

Sas

L'z

M
<
AAA
vV
N
A

Figure 4.2: Network model of a \/4 resonator capacitively coupled to a feedline. (a)The “elbow”
coupler. (b) Equivalent lumped element circuit of the coupler. (¢) A network model and the signal
flow graph

The resonator readout circuit used in MKIDs consists of feedline, coupler, and A/4 transmission
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line resonator, which is shown in Fig. Using the equivalent circuit of the coupler shown
in Fig. 4.2(b)} and by considering the frequency dependent complex impedance of a shorted \/4
transmission line (Eq. 7)), Mazin[16] and Day[I4] have derived the resonance condition for the

circuit. Here we present an alternative derivation from the network analysis approach.

4.2.1 Network diagram

Fig. shows a diagram of the equivalent network model, as well as its signal flow graph. In this
diagram, the coupler is modeled by a 3-port network block with its port 3 connected to one end of
the A/4 transmission line. To facilitate future discussions of the hybrid resonator design, we assume
the other end of the transmission line is terminated by a load impedance Z;. For the case of shorted
A/4 resonator, we shall simply set Z; = 0. We assume that the feedline is a lossless transmission line
with characteristic impedance Zy, which may be different from the impedance Z, of the resonator

transmission line.

4.2.2 Scattering matrix elements of the coupler’s 3-port network

The scattering matrix of the coupler’s 3-port network can be easily derived from its equivalent
lumped element circuit (Fig. 4.2(b)]), in which a coupling capacitor C, weakly couples the resonator
to the feedline. Let g = wC.Zy and 0, = wC.Z,. For weak coupling (which is required by a high
@, resonator), C, is small and &y, 0, < 1. Under these assumptions, the scattering matrix S is

given b

—jdo/2  1—3760/2 jv/00n
S=|1-346/2 —jdo/2  jVdodr : (4.14)
Vs, VB8, 1—2j8, — 202 — 5,00

We find the following general properties for .S;;:

So1 =1
S31 = Si3, S32 = Sa3
S31 = S32, S13 = Sa3

|S33| = +/1 — 2[S31 /2.

Eq.[AI5 states the fact that the direct transmission through the feedline is close to 1. Eq.[4A.16]l comes

from the reciprocity of the 3-port network. Because the dimension of the coupler is much smaller

1In the discussion that follows, S-parameters are normalized to the characteristic impedance of Zg for port 1 and
port 2, and Z, for port 3 and port A.
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than the wavelength, port 1 and port 2 appear to be symmetric and Eq. £17 holds. Eq. £I] holds

because the 3-port network is lossless.

4.2.3 Scattering matrix elements of the extended coupler-resonator’s 3-

port network

We can extend the coupler’s 3-port network to include the A/4 transmission line connected to port-3.
This can be easily done by shifting the reference plane of port-3 to the other end of the resonator,

to port A. The relevant scattering matrix elements are modified to

Sa1=S1a = Sas = Soa = Szre (4.19)

Saa = Ssze” ! (4.20)
where [ &~ \/4 is the length of the transmission line section.

4.2.4 Transmission coefficient t5; of the reduced 2-port network

When port-A is terminated by the load impedance Z;, the whole circuit reduces to a 2-port network.
With the help of the signal flow graph, the total transmission from port 1 to port 2 can be written

as:

Sa1l'Sa4 Sz

to = S — =f 4.21
21 21 t+ 1 —TSas 21 + T — S5 ( )
where I' is the reflection coefficient from the load
Zy— Z,
= . 4.22
Zl + Zr ( )

For the simple case that the A/4 transmission line is shorted at port A, ' = —1. In order to further

simplify Eq. 2] we first introduce a coupling quality factor Q. defined as:

energy stored in the resonator T

Qe =2 (4.23)

7Tenergy leak from port 3 to port 1 and 2 per cycle - 2|531]2"

The relationship between ). and S3; can be understood from a power flow point of view: during
each cycle the traveling wave inside the A/4 resonator is reflected twice at port 3 and upon each
reflection a fraction |S13|? of the stored energy leaks out to port 1 and port 2, respectively. As a

result, a total fraction 4]S13|? of the energy leaks out of the resonator per cycle.
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With Eq. [£23] we find

s
g1 = j
31 =J 20.
Sas ~ /1 21951 Pei® 1 — - 4 jo, (¢ << 1)

2Q.

(4.24)

(4.25)

where ¢ < 1 because the wave is reflected from an open end of the transmission line at port 3.

Meanwhile, the propagation constant ~ is related to the distributed inductance L, capacitance C,

and resistance R by:

J

y=a+jf=jB8(1~ 500 = V(R + jwL)(jwC)
TL
where
B =wVLC
Qm ="

Q1 is the quality factor of the resonator transmission line.

Define a quarter-wave resonance frequency fy /4 as,

P
MAET VIO

Under the condition that [ &~ \/4 and Z; < Z,, we have

290 __ ™ . f_f)\/4
—e M =~1+4+ + g7

2QrL Iaja
1 Zr+ 7 . ™ .
— = x~14+2z=1+2 2 =14+—++2
T 7 — 7, + 2z + 27 + 2524 +2Qz+ 1T

with
ZlZZ—lZH-Fj!Ez, (Jal < 1)
™
Ql_4_’l"l

where @ is the quality factor associated with the dissipation in the load impedance.

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)
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With these relationships, Eq. [£2]] can now be reduced to

= S Sgl
o1 21 + 20T — S
1
- 1_ Qc -
1 1 1 s f—fx/4 2 @
(@—FQTL—’—@)—FZ?( fx/>\4 +7Tx ﬂ')
%
= 1-—=— (4.34)
1+2jQ, 5=

where (), is the total quality factor of the resonator given by

1 1 1 1 1 1

o o e oo (4:3)

Q; is the internal quality factor of the resonator which accounts for all the other loss channels (Qy,

Qr1) than through coupling to the feedline (Q¢). The resonance frequency f, is given by

fr:f)\/4(1+% _%—L)v (436)

™

which is very close to fy/4

4.2.5 Properties of the resonance curves

For a simple shorted \/4 resonator, we set Z; = 0 and the resonance frequency and quality factor

are given by

fo= hai+9) (437
1 1 1
@—@4—@, Qi = QL. (4.38)

According to Eq. 434 to1(f) is fully characterized by three parameters Q., fr, @, (or Q;). Q.
depends on the coupling capacitance C,. and is fixed for a certain coupler design. f, and @Q; are
related to the transmission line parameters (R, L, C, and [) of the resonator.

The complex t2; as a function of f is plotted in Fig. When f < fr or f > fr, to1 is
close to ta1(00) = 1 and the feedline is unaffected by the resonator. When f sweeps through the

resonance, to; traces out a circle which is referred to as the resonance circle. At the resonance

frequency f = f,

Qe q
=l e S g G, o (4.39)
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Figure 4.3: Plot of t21(f) (solid line) and its variation t5, (f) (dashed line) due to a small change in
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The diameter of the circle is

Q 1/Qc

= Qe 1/Qi+1/Q.

(4.40)

In the coupling @ limited case where Q. < @Q;, we find Q — Q. and d — 1, while in the internal
@ limited case where Q. > @;, we find @ — @; and d — 0. In the critical coupling case we have
Q.=Q;and d=1/2.
The magnitude of o, as a function of f is plotted in Fig. [4.3(b)l According to Eq.E34, |ta1 (f)]?
has a Lorentzian shape
1 AL
g +4(5)

Again, when f > f, or f < f,, the transmission [to1]| is close to 1; at the resonance frequency

ltar (F)]? =1 - (4.41)

f = fr, [t21] is at the minimum and the feedline is fully loaded by the resonator.

The phase angle 6 of ta; with respect to the off-resonance point t91(c0) = 1 is plotted in
Fig. 0 equals half of the phase angle measured from the center of the circle. According
to Eq. .34 6 has the following profile

f_fr

0 = — arctan 2Q),
Ir

(4.42)

which changes from 7/2 to —7/2 when f sweeps from f < f. to f > f.. We find that the slope
df/df is maximized at the resonance frequency f = f;.

The complex t3; can be measured with a vector network analyzer. The resonance parameters
Q., fr, Q, and Q; can be obtained by fitting the t2; data to the theoretical models. There are at
least two different fitting methods: one can fit the magnitude |t21| to a Lorentzian profile according
to Eq.[£4]] or fit the phase angle 6 to an “arctan” profile according to Eq. Discussion on both
methods are given in Appendix [El

4.3 Responsivity of MKIDs I — shorted )\/4 resonator (7, =
0)

If the distributed inductance and resistance of the superconducting transmission line have small

variations 0L and 0 R, due to a change in the quasiparticle density dngp, the variation in the resonance
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frequency and quality factor are given by, according to Eq. 428, Eq. E36, and Eq. B.373.43]

5fr_ 15L:_g5Lki:_g5Xs (4.43)
fr 2 L 2 L 2 X
1 oR OR,

AL (4.44)

where Z; = Rs+j X is the surface impedance and « is the kinetic inductance fraction. The variation

of tp; with the microwave frequency tuned to and fixed at the original resonance frequency f, is,

from Eq. 434

s L, 0f 2527,
5t21|f:fr:&(5_—2‘]i)"‘ Qr

Q.'Q; Tz

(Rs < X, for T < T,). (4.45)

The relationship between dt21 and dng, is, from Eq. 440 Eq. 280, and Eq. 2100,

Q2
Oto1 = aly|k="dngp (4.46)
Qe
where k is the coefficient defined in Eq.

Eq. is appropriate for quasiparticles generated uniformly in the entire resonator, both in
the center strip and the ground planes. A change in the thermal quasi-particle density caused by
a change in the bath temperature will lead to a resonator response that is describable by Eq.
In the photon detection applications, however, the quasiparticles are usually generated only in the
center strip, and so « in Eq. should be replaced by the partial kinetic inductance fraction o*.

We should also take into account the fact that the quasiparticles are usually generated near the
shorted end instead of the entire center strip. It can be derived from a modal analysis that the effect
to the resonance frequency and internal quality factor due to position dependent variations 6L (z)

and 0R(z) are weighted by the square of the current distribution in the resonaton:

ofr 1 (' ,7wwdL(x)
1 2 (", nxdR(x)

One can check Eq. [£41 and 14§ are consistent with Eq. [£43] and Eq. 44l It follows that, if in
general dng,(x) has a position-dependent distribution along the center strip, the response dt; is
given by

2

92 l
Stoy = {7/sin2 %(qu(x)d:c} a|y|lk == (4.49)
0

c

2For modal analysis, see Section 2.6 of reference [I6]. It can also be derived by replacing the exp(—2+l) factor with
exp {—2[’yl + fol 67(:c)dx}} (the WKB approximation) in Eq. E2T] and the derivations that follows.
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If the quasiparticles are uniformly distributed near the shorted end, with sin? 57 ~ 1 we finally

derive

dtor 2a*|”y|liQ_§
Nep V. Qe

(4.50)

where V is the volume of the entire center strip and Vg, is the total number of quasiparticles.

Eq. @50 suggests that we can make the MKID more responsive by making o*, ~, k, and g—i larger,
and the volume V smaller. According to Eq. 2100, « is set by the material property (such as Ny
and Ag) of the superconductor and has a weak dependence on temperature and frequency. Once a
superconductor is selected, k is almost fixed. Both V and o* can be largely increased by shrinking the
geometry, including making the lateral dimension smaller and reducing the film thickness. When the
film thickness is made thinner than the bulk penetration depth, |y| automatically takes its maximum

value 1, according to Eq. 280 The factor Q2/Q. can be rewritten as

Q_ Q. _Q

@ - @ Qi
Qe (Qi+Qc)? (\/8:+\/g:)2_ 4

which has a maximum at Q. = Q; for a fixed @;. Usually Q; is set by the residual resistance of the

(4.51)

superconductor or the dielectric loss of the resonator. The factor Q2/Q.. is maximized by designing
a coupling Q. to match the internal @Q;.

To assess and optimize the overall performance of the detector, one has to take into account other
factors such as quasiparticle recombination and noise. A comprehensive discussion of the sensitivity
of MKID is given in Chapter

An example response of dt9; to an increase in the quasiparticle density dngp is plotted in Fig. 4.3
by the dashed lines. Because Ry increases with ng, and X, decreases with ng,, the resonance
frequency shifts to lower frequency f, < f, and the quality factor decreases Q' < @, resulting in a
smaller resonance circle. Under the fixed driving frequency f = f;., to1 moves from the point on the
outer circle indicated by “*” to the point on the inner circle indicated by “[0”. We note that the
displacement dto; in the complex plain has both components in the tangential direction (referred
to as the phase direction) and the radial direction (referred to as the amplitude direction) of the
resonance circle, which are proportional to § X and § Ry, respectively. The displacement in the phase
direction is usually several times larger than in the amplitude direction (see Fig.[210). However, the
noise in MKIDs is found to be almost entirely in the phase direction. Amplitude readout sometimes
gives better sensitivity than phase readout. Discussion on noise, sensitivity, and phase readout vs.

amplitude readout are the main topics of Chapter [l and



Figure 4.4: A hybrid design of MKID. The total length of the resonator (including the sensor strip)
is [, and the length of the sensor strip is 5.

4.4 Responsivity of MKIDs II — )\/4 resonator with load
impedance (Z; # 0)

4.4.1 Hybrid resonators

Recently it has been more popular to use the “hybrid” resonator design for MKIDs. As shown in
Fig. L4 the resonator consists of two sections, a long transmission line section and a short sensor
strip section. The two sections may be made from two different superconductors or two different
geometries. There are several advantages of using a hybrid design. If the sensor strip section is made
of a lower gap superconductor (e.g., Al) and the transmission line section is made of a higher gap
superconductor (e.g., Nb), it forms a natural quasi-particle trap — the quasiparticles generated on
the sensor strip will be confined in the most sensitive region where the current is maximum. If the

transmission line section is made of a wider geometry, it will benefit from the noise reduction effect

(see Section [5.0]).

4.4.2 Static response

The result of dte; due to a static change in the load impedance dz; = §Z;/Z, is given by, according

to Eq. .34

2 1 Ofr
i = Qg%
g

It is often the case that the total dissipation is dominated by the superconductor loss in the load

impedance so that Q; ~ @;. For example, in the hybrid submm MKID the sensor strip is made of
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thin Al (~ 40 nm) film and the rest of the resonator is made of thick Nb (> 100 nm) film. The
background optical loading (from the blackbody radiation of the atmosphere) will create a constant
density of quasiparticles in the Al strip that is much larger than the thermal quasiparticles density
in both Al and Nb sections. In this case, the microwave power in the resonator is mainly dissipated

though the surface resistance of Al

It can be derived from Eq.[4.33] Eq. 452 that

Q? 6z Q% ong, [ ,Im(li):|
Otar|f= = L —— ==L 1+ 4.53
st = 0@ T 0 g [N Rel) (453)
which is maximized under critical coupling Q. = Q;

1dn Im(k)
Ota]f= —g, = -——211 . 4.54
21lr=1.. Q=@ Ty, [ +jRe(m)} (4.54)

We can also derive the following formulas
_ _ 4R, N 215

Q; L= Q t= 7, =a |’Y|Re("f)”qpf (4.55)

5fr 2X; * 21
A = Az, ) |7|Im(’i)5”qpf (4.56)

where I, is the length of the sensor strip and I, & A/4 is the total length of the quarter-wave resonator

(including s, see Fig. @.4).

4.4.3 Power dissipation in the sensor strip

Before moving onto a discussion of the dynamic response, we first calculate the power dissipation
P, in the load impedance Z; (sensor strip).

From a signal flow analysis illustrated in Fig. the current I; flowing through Z; is given
by

. 2
Vi-Va _ VW Sm Vit 2\ =g

I = = 1-T)~ . 4.57
: Z, VZZ 1-Tsa D~ 77 I oL (4.57)
The power dissipated by Z; is given by
2 %
1 -
B = SlIf|R = P ——Sre (4.58)
1+4Q2 |5

Right on resonance f = f, and under critical coupling Q. = Q;, the power dissipated in the load
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impedance is half of the input power to port-1

1 1

4.4.4 Dynamic response

Assuming that the load impedance has a slow time-dependent variation 07y, (t), we would like to
find the corresponding response in the output voltage 6V5 (t).

Here we apply a perturbation analysis to the circuit. We first replace the load impedance Z;

1(20) Sa1 22)
N S Ve
Ss3
—
Sl | N
I = |
R L I |
\j i Saa :
SVR() VL) v e
SL@d(t)/dt Al
I0)5R VaTiva
- :’ Z
ol(t) dl(t) SVST
-y o J =

(a) (b) (c)
Figure 4.5: Equivalent circuit for (a) 0R(t) and (b) 0L(t) perturbations. The equivalent network

model is shown in (c).

with a resister R; and a inductor L; in serial connection, and discuss them separately.
Let Vg(t), I(t), and R be the unperturbed voltage, current and resistance of the resistor. And
let dVg(t), dI(t), and dR(t) be their perturbations. Considering the total voltage, current, and

resistance with and without the perturbations, we can write down the following equations,

[Va(t) + 6VR(t)] = [I(t) + SI(1)][R + OR(t)] (4.60)
Va(t) = I(t)R. (4.61)
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Subtracting Eq. 61l from Eq. and dropping the 2nd-order terms, we get
SVa(t) = I(t)OR(t) + 61(1)R (4.62)

which suggests an effective circuit as shown in Fig. [5(a).

Similarly, for the inductance perturbation we have

SVL(t) = L(t)%é[(t) + 5L(t)%[(t) (4.63)

which suggests an effective circuit as shown in Fig. [L5|(b).
Therefore the effect of the perturbation §Z; can be taken into account by adding an effective

voltage source §V;(t) to the original network model, as illustrated in Fig. (c),
d
SVi(t) =dR(t)I(t) + 6L(t)al(t). (4.64)

Assume that JR(t) and 0L(t) are narrow-banded signal with Fourier transforms

+Af - o
SR(t) = /_ N SR(f)e?*mItdf

+Af N L
5L(t)_/Af SL(f)e?*™Itaf. (4.65)

Inserting Eq. E65 into Eq. E64 and using I(t) = [;e/?™/t we find

SVs(f + f) = LISR(f) + i2x fSL()] = LidZi(f) (4.66)

where §V,(f + f) is the Fourier transform of §V,(t). 0V, (t), the voltage response at port 2, is given
by,

Vi (f + ) VX(erf)\/g—zSzA(erf)

AR T
~ 1-TSaa Z, + 2 ZSQA' (4.67)

Now we define a time dependent transmission coefficient a1 (¢) with its Fourier transform to; (f)

Vy (f+ 1)

Stor(f) = T (4.68)
1

When the output microwave signal V,~ is homodyne mixed with V;" using a IQ mixer, the dynamic

trajectory in the IQ plane is described o1 (t).
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From Eq. 457, [£.66] and [.67, we derive

. 402 1 1 .
ot = o . —z(f). 4.69
21 (f) WQC 1+ 2JQT f}rjr 14 2]QT f+:;:7f7' l(f) ( )

When the resonator is driven on resonance f = f,., we find

102 1 .
r_ — s5a0h). 4.70
7Qc1+2jerir z1(f) (4.70)

Stor (f)l=s, =

Eq. B0 shows that under small perturbation dz;, the resonator circuit acts as a low-pass filter
with a bandwidth equal to the resonator’s bandwidth f./2@Q. One can also verify that by setting

f =0, Eq. 470 gives the same static response as derived in Eq. [4L.52]

In the case that @Q; is set by the superconductor loss in the sensor strip, we find

Q dulf) 1 (4.71)

QcQi 1 1+2jQr%

Stor ()l =,

We further assume that at any time the instant load impedance Zp,(t) depends only on the QP
density ngp(t) at that time. With this assumption, Eq. [4.71] leads to

~ Q2 dngy(f) Im(r) 1
St () ry = O omanD) [} _ (4.72)
21(f)ls=r QcQi ngp Re(r)] 1+ 2jQ, £+
which is maximized at critical coupling Q. = Q;
i 1 616, (f) [ Im(r) 1
5t f i o, _ _L 1 +] = . 473
2(Nlp=1., e.=@ 1 ng Re(r) ] 1+ 25Q, L o

It’s easy to see that Eq. .71l .72 and [£.73] are the counterparts of Eq. 452 Eq. 453 and Eq.4.54]

respectively.
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Chapter 5

Excess noise in superconducting
microwave resonators

5.1 A historical overview of the noise study

The fundamental noise limit for MKIDs is set by the quasiparticle generation-recombination (g-r)
noise (see Section [G.I.1]), which decreases exponentially to zero and makes the detector extremely
sensitive as the temperature goes to zero. Unfortunately and unexpectedly, a significant amount
of excess noise was observed in these resonators, which prevents the detectors from achieving the
ultimate sensitivity imposed by the g-r noise. The discovery of this excess noise and a discussion
of its influence on detector NEP dates back to 2003[I4]. There we have shown, from the noise
measurement, of a 200 nm thick Al on sapphire MKID, that the NEP limited by the excess noise
is two orders of magnitude higher than that limited by the g-r noise, and one order of magnitude
higher than that limited by the HEMT amplifier (due to the coupling limited Q). The origin of this
excess noise remained largely unknown at that time.

Since then, systematic studies of the excess noise have been carried out both theoretically and
experimentally. Early studies were focused on exploring the noise properties and are described in
detail in Mazin’s thesis[I5]. Several interesting properties of the excess noise have been observed in
this early work, although some of the discussions and conclusions remained more qualitative than
quantitative. We found that the noise is dominantly a phase noise (or a frequency noise, equivalent
to a jitter in the resonator’s resonance frequency); we observed that the excess noise has a strong
dependence on the microwave readout power. An important discovery was that the Al devices made
on sapphire substrate gave significant lower noise than those made on the Si substrate. Although
in 2003[14] we suggested that the excess noise is too large to be explained by the quasiparticle
fluctuations in the superconductor, the apparent substrate dependence of the noise gave stronger
evidence that the noise is not related to superconductor.

Meanwhile, we began to search for the candidates of the noise source from the literature of low
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temperature physics. We noticed that excess telegraph noise was reported from the single electron
transistor (SET) community. In one experiment, they were able to constrain the noise source as
being in the substrate by looking at the correlation of the charge fluctuation signals from the two
SETs placed close to each other on the same substrate[58]. Fluctuations of similar origins were also
found in tunnel junctions and were reported from the quantum computing community. By spring
2005, Peter Day, a JPL member of our MKID group, had described in a proposal the idea that the
noise might be generated by two-level tunneling systems in amorphous dielectrics. Our affection to
this possibility was substantially increased by the results of Martinis et al. [59], who found that
the decoherence of their Josephson qubits could be explained by the dielectric loss caused by the
two-level systems (TLS) in the tunnel barrier. TLS are tunneling states in amorphous solids, which
have a broad distribution of energy splitting and can be thermally activated at low temperatures,
causing anomalous properties (thermal, acoustic and dielectric) and noise. It turns out that TLS
were studied as early as in 1960s and a quite established TLS model already existed since the early
1970s[60, [61]. One of the results from Martinis et al. that caught our attention was that the TLS-
induced dielectric loss has a strong saturation effect, a behavior perhaps related to the observed
power dependence of excess noise in our resonators. Since then, TLS has become a strong candidate
for the noise source of our resonators.

The devices tested in the early days were mostly made of Al. In these measurements, the
resonator’s frequency shift and internal loss are dominated by the conductivity of the superconductor.
It was first proposed by Kumar[62, [63] to use Nb resonators to study the low temperature anomalous
frequency shift predicted by the TLS theory, and the temperature dependence of excess noise. For
this purpose, a Nb on Si CPW resonator was fabricated and tested. From this device, we got two
interesting results. First, the noise was seen to decrease dramatically with temperature. Although
we do not know what mechanism causes this phenomenon, this is a strong evidence that the excess
noise is not from the superconductor, because Nb has T, = 9.2 K and at T' < 1 K the contribution
from the conductivity is negligible. Second, the noise level measured from these resonators were as
low as that from the Al on sapphire resonators, contradicting our general experience of higher noise
on Si substrate than sapphire substrate. From this experiment, we began to suspect that the TLS
noise source might be related to the surface or interface, instead of to the bulk substrate, which was
proved to be true in a later experiment.

I started to study the excess noise in 2004, following the early work of Mazin’s thesis. In summary,
progress in three major areas has been made in my thesis. First, the properties of the excess noise,
including power, temperature, material, and geometry dependence, have been quantified; Second,
the TLS, responsible for both the low temperature anomalous frequency shift and the excess noise,
are confirmed to have a surface distribution, while a bulk distribution in substrate has been ruled

out. Three, a semi-empirical noise model has been developed to explain the power and geometry
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dependence of the noise, which is useful to predict noise for a specified resonator geometry.

The organization of this chapter follows the historical path of the noise study. Following a brief
introduction to the noise measurement setup and the data analysis in Section [5.2] we present the
observed general properties of the excess noise in Section (.3} including its property of being pure
frequency (phase) noise, the power dependence, temperature dependence, material dependence, and
geometry dependence. These properties give strong evidence that the excess noise is not coming
from the superconductor but from the two level-systems in the dielectric materials in the resonator.
For this reason, we give a review of the standard TLS theory in the first half of Section (5.4 The
established TLS theory may be readily applied to explain the power and temperature dependence
of the resonator’s frequency shift and dissipation, but not the noise. We dedicate the second half
of Section [5.4] to the discussion of the noise model. Because we still do not have a complete TLS
noise model yet, in this section we do not go any further than giving some qualitative and semi-
quantitative discussions. Nevertheless, based on the TLS theory and experimental observations of
the excess noise, we propose a semi-empirical model that is practically useful to predict noise in
the resonators. Guided by the TLS theory, several interesting experiments are designed to test the
TLS hypothesis, which is discussed in Section 5.5l In the first two experiments, TLS are artificially
added into the resonator through a deposited layer of amorphous dielectric material. The behavior
of the resonators loaded with TLS is found to be in good agreement with the TLS theory and
the observed increase of frequency noise in these resonators demonstrates that TLS are able to
act as noise source. The next two experiments, which explore the geometrical scaling of the TLS-
induced frequency shift and noise, are the two critical experiments of this chapter. They give direct
experimental evidence that the TLS are distributed on the surface of the resonator but not in the
bulk substrate. Moreover, the measured geometrical scaling of frequency noise can be satisfactorily
explained by the semi-empirical model introduced in Section With the knowledge about TLS
and excess noise, we discuss a number of methods that can potentially reduce the excess noise in

Section [5.6], which concludes this chapter.

5.2 Noise measurement and data analysis

The homodyne system used for resonator readout and for noise measurement is illustrated in Fig.[5.11
A microwave synthesizer generates a microwave signal at frequency f which is used to excite a
resonator. The transmitted signal is amplified with a cryogenic high electron mobility transistor
(HEMT) amplifier mounted at 4 K stage and a room-temperature amplifier, and is then compared
to the original signal using an IQ mixer. The output voltages I and Q of the IQ mixer are proportional
to the in-phase and quadrature amplitudes of the transmitted signal. As f is varied, the output

¢ = [I,Q]T (the superscript T represents the transpose) traces out a resonance circle (Fig. 5.2(a)).
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Figure 5.1: A diagram of the homodyne readout system used for the noise measurement

With f fixed, £ is seen to fluctuate about its mean, and the fluctuations 6¢(t) = [01(t),5Q(t)]T are

digitized for noise analysis, typically over a 10 s interval using a sample rate Fy = 250 kHz.
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Figure 5.2: (a) Resonance circle of a 200 nm Nb on Si resonator at 120 mK (solid line), quasiparticle
trajectory calculated from the Mattis-Bardeen theory[39] (dashed line). For this figure, the readout
point ¢ = [I,Q] is located at the resonance frequency f,. (b) Noise ellipse (magnified by a factor
of 30). Other parameters are f,=4.35 GHz, Q, = 3.5 x 105 (coupling limited), w=>5 pum, g=1 um,
readout power P, =~ -84 dBm, and internal power P,,; ~-30 dBm.

The fluctuations §£(t) (vector function of t) can be projected into two special directions, the
direction tangent to the resonance circle (referred to as the phase direction) and its orthogonal
direction (referred to as the amplitude direction). Fluctuation components 6&(¢) and 6§ (t) (scalar
functions of t) in these two directions correspond to fluctuations in the phase and amplitude of

the resonator’s electric field E, respectively. The voltage noise spectra in the phase and amplitude
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direction can be calculated from

(68 ()€ (")) = ) (w)o (v — ')
(6L (1)6€1 (V) = SL(W)o(v =) (5.1)

where 6¢| () and 6¢ (v) are the Fourier transform of the time domain fluctuations 6§ (t) and 0£ . (t),
respectively.
The noise data 6£(t) can also be quantified by studying the spectral-domain noise covariance

matrix S(v), defined by

(ew)sE W) = St — ). s(w) = S0 el 52)

Siov) Sqq(v)
where §£(v) is the Fourier transform of the time-domain data, the dagger represents the Hermitian
conjugate, Srr(v) and Sgg(v) are the auto-power spectra, and Srg(v) is the cross-power spectrum.
The matrix S(v) is Hermitian and may be diagonalized using a unitary transformation; however,
we find that the imaginary part of S;q is negligible and that an ordinary rotation applied to the
real part Re S(v) gives almost identical results. We calculate the eigenvectors and eigenvalues of

S(v) at every frequency v:

OT(v)ReS(v)O(v) = , (5.3)
0 Spp(V)
where O(v) = [va(v),vp(v)] is an orthogonal rotation matrix. We use Sy, (v) and v,(v) to denote
the larger eigenvalue and its eigenvector.
The total noise power in 0¢(t) can be quantified and clearly visualized by plotting a noise ellipse,
defined by
seTCse =1 (5.4)

where

C= /U2 Re S(v)dv (5.5)

is the covariance matrix for 61 and §Q) filtered for the corresponding bandpass.

The noise in the phase direction can also be described in terms of the phase noise Sp(r) and the
(fractional) frequency noise Ssy, (v)/f?, because the voltage fluctuations in the phase direction ¢
can be viewed as being caused by either fluctuations in the phase angle, 56 (with reference to the
center of the resonance circle) or jitters in the resonator’s resonance frequency, éf,. The voltage

noise S (v), phase noise Sg(v) and the frequency noise Ssy, (v)/f? are related to each other by the



following relationships:

Soo(w) = S (5 = 21 (5.6)
o7, )/ 12 = 28], (L~ 2 5.7

where r is the radius of the resonance circle. They will be used to compare the excess noise in future
discussions.

In practice, the calculation of the noise spectra (e.g., Sir(v) and Sgg(v)) can be accomplished
efficiently using the Matlab function “pwelch” [54]. We use “pwelch” to calculate the power spectrum
in three different frequency resolutions for three noise frequency ranges. The noise spectra shown
in this chapter usually are plotted with 1 Hz resolution for 1 Hz < v < 50 Hz, 10 Hz resolution for
1 Hz < v < 1 kHz, and 100 Hz resolution for 1 kHz < v < 125 kHz (F5/2). Unless noted, the noise
spectra are calculated as double-sided spectra with S(v) = S(—v) and only the positive frequencies

are plotted.

5.3 General properties of the excess noise

5.3.1 Pure phase (frequency) noise
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Figure 5.3: Noise spectra in the phase (Sq,(v), solid line) and amplitude (Sp,(v), dashed line)
directions, and the rotation angle (¢(v), dotted line). The noise data are from the same Nb/Si
resonator under the same condition as in Fig.

A typical pair of spectra Sqq(v) and Spy(v) are shown in Fig. B3] along with the rotation angle

¢(v), defined as the angle between v,(r) and the I axis. Three remarkable features are found for
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all noise data. First, ¢(v) is independent of v within the resonator bandwidth (the r.m.s. scatter
is 04 < 0.4° per 10 Hz frequency bin from 1 Hz to 5 kHz in Fig. [53]), which means that only two
special directions, v, and v, diagonalize S(v). Second, v, is always tangent to the IQ resonance
circle while v, is always normal to the circle, even when f is detuned from f,. Because S, (v)
and Spy(v) are the noise spectra projected into these two constant directions according to Eq. 53]
they are equal to the voltage noise spectra calculated from Fourier transform of the projected time

domain noise data ¢ (t) and 0£4 (),

Saa(V) = S”(l/)
Sbb(l/) = SL(V). (58)

Third, Seq(v) is well above Spy(v) (see Fig.[53). When we plot the noise ellipse according to Eq. 54
and using a integration bandpass 1 = 1 Hz and v5 = 1 kHz, we find the major axis of the noise
ellipse is always in the phase direction, and the ratio of the two axes is always very large (8 for the
noise ellipse shown in Fig. 52(b)).

Fig.[E3lalso shows that the amplitude noise spectrum is flat except for a 1/v knee at low frequency
contributed by the electronics. The amplitude noise is independent of whether the synthesizer is
tuned on or off the resonance, and is consistent with the noise temperature of the HEMT amplifier.

1/2 glope above 10 Hz, and

The phase noise spectrum has a 1/v slope below 10 Hz, typically a v~
a roll-off at the resonator bandwidth f,./2Q, (as is the case in Fig. B3] or at the intrinsic noise
bandwidth Awv,, whichever comes first. The phase noise is well above the HEMT noise, usually
by two or three orders of magnitude (in rad?/Hz) at low frequencies. It is well in excess of the
synthesizer phase noise contribution or the readout system noise.

Quasi-particle fluctuations in the superconductor, perhaps produced by temperature variations
or the absorption of high frequency radiation, can be securely ruled out as the source of the measured
noise by considering the direction in the IQ plane that would correspond to a change in quasi-particle
density dngp. According to the discussion in Section [24] both the real and inductive parts of the
complex conductivity o respond linearly to dngp, do = do1—idog = K|o|dng,, resulting in a trajectory
that is always at a nonzero angle 1 = tan=!(§oy/d02) to the resonance circle, as indicated by the
dashed lines in Fig.[5.2l(a) and (b). Mattis-Bardeen calculations yield ¢ = tan~![Re(x)/Im(x)] > 7°
for Nb below 1 K, so quasi-particle fluctuations are strongly excluded, since ¢ >> 04. Furthermore,
1 is measured experimentally by examining the response to X-ray, optical/UV, or submillimeter

photons, and is typically ¥ ~ 15° ([24] 50], and see Section [£.6.3)).
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Figure 5.4: Excess noise in the phase direction under different readout powers P,,. (a) Voltage
noise spectrum Sy (v). (b) Phase noise spectrum Ssg(v) (left axis) and fractional frequency noise
spectrum Ssy, (v)/ f? (right axis). The readout powers of the 4 curves are P, =-87 dBm, -91 dBm,
-95 dBm, -99 dBm from top to bottom in (a) and from bottom to top in (b). The data is measured
from a 200 nm thick Al on sapphire resonator.

5.3.2 Power dependence

The excess noise has a dependence on the microwave readout power P,,. Fig. .4 compares the
measured noise spectra of a resonator under four different readout powers in steps of 4 dBm. We
found the voltage noise increases with the readout power, as shown in Fig.|5.4(a)l A 2 dB separation

is found between the two adjacent noise spectra, suggesting
1
S“(V) XX P,fw. (5.9)

The excess noise, when converted to phase noise or frequency noise, decreases with readout power.

The same separation of 2 dB but with a reversed order (top curve with the lowest P,,,) is seen in

Fig. [5.4(b)l which suggests:
_1 _1
Ss0(v) P, Ss, (0)/ £  Piad. (5.10)

1
Eq. and Eq. [5.I0] are consistent because the radius of the resonance loop 7 scales as r o< P2.
To compare the excess noise among resonators with different f, and @,, we plot the frequency
noise Sy, (v)/f? as a function of the microwave power inside the resonator (the internal power). It

can be shown that the internal power P, is related to the readout power P, by

2Q;
Rnt = ;@ nw (511)

for a quarter-wave resonator.

The frequency noise vs. internal power for resonators with different f,. and @, on the same
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Figure 5.5: Frequency noise at 1 kHz Ss, (1 kHz)/f? vs. internal power Py falls on to straight lines
of slope -1/2 in the log-log plot indicating a power law dependance: Ssy /s, o P_'% Data points

int
marked with“+”,“00”, and “*” indicate the on-resonance (f = f,) noise of three different resonators
(with different f, and @, on the same chip) under four different P,,,. Data points marked with

[P 2]

o” indicate the noise of resonator 1 (marked with “*”) measured at half-bandwidth away from the
resonance frequency (f = f. £ f,/2Q,) under the same four P,,,. The data is measured from a 200
nm thick Al on sapphire device.

substrate are compared in Fig. The data points, from three different resonators, four different
readout powers, driven on-resonance and detuned, fall nicely onto a straight line of slope -1/2 in the
log-log plot, suggesting that the frequency noise depends on the internal power Py, of the resonator
by a power law

Ssp (1)) f2 x P2 (5.12)

int

The power law index -1/2 in Eq. 512] is suggestive. For comparison, amplifier phase noise is a
multiplicative effect that would give a constant noise level independent of P, while the amplifier

noise temperature is an additive effect that would produce a 1/P;,; dependence.

5.3.3 Metal-substrate dependence

The excess noise also depends on the materials used for the resonator. In Fig. 5.6l we plot the
frequency noise spectrum at 1 KHz Ssy, (1 kHz)/ f? against internal power Py for five resonators
made of different metal-substrate combinations (all substrates used are crystalline substrates). In
addition to the power dependence Ssy, (v)/f? o Pi;tl/ ®. we find that the noise levels are material
dependent. In general, sapphire substrates give lower phase noise than Si or Ge, roughly by an
order of magnitude in the noise power. However the Nb/Si resonator showed low noise comparable

with Al/sapphire resonator, suggesting that the etching or interface chemistry, which is different for

Nb and Al, may play a role. Two Al/Si resonators with very different Al thicknesses and kinetic
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inductance fractions[64] fall onto the dashed equal-noise scaling line, strongly suggesting that the

superconductor is not responsible for the phase noise.

- ‘ ‘ " [—=— 320 nm Al on Si
10‘17*\ —&— 40 nm Al on Si
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Figure 5.6: Power and material dependence of the frequency noise at v = 1 kHz. All the resonators
shown in this plot have w=3 pym, g=2 pm and are measured around 120 mK. The spectra used in
this plot are single-sided (v > 0).

As will be discussed in great detail later in this chapter, the TLS on the surface of the resonator,
either metal surface or the exposed substrate surface, are responsible for the excess noise. Therefore,
the metal-substrate dependence of the excess noise shown in Fig. turns out to have nothing to
do with the bulk properties of the superconductor or the substrate. Instead, it’s their surface or
interface properties that make a difference. For example, the metal Al, Nb and crystalline Si, Ge can
all form a native oxide layer on the surface, which can be the host material of the TLS. The defects,
impurities and chemical residues introduced during etching and other processes of the fabrication

may be another source of TLS.

5.3.4 Temperature dependence

The temperature dependence of the excess frequency noise is best demonstrated by the experiment
in which the noise of a Nb on Si resonator is measured at temperatures below 1 K. Because Nb
has a transition temperature T, = 9.2 K, the noise contribution from superconductor are frozen at
T < 1 K. Any temperature dependence of noise has to be from other low energy excitations — TLS
in the resonator.

Fig. [5.7 shows the measured phase and amplitude noise spectra under readout power P, =
—85 dBm at several temperatures between 120 mK and 1200 mK. While the amplitude noise (S (v),
in green) remains almost unchanged, the phase noise (S (), in blue) decreases steeply with temper-

ature. As mentioned earlier, the amplitude noise spectrum S, (v) is consistent with the noise floor
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Figure 5.7: Phase noise (S)(v), blue curves) and amplitude noise (S, (v), green curves) spectra
measured at T=120, 240, 400, 520, 640, 760, 830, 1000, 1120 mK (from top to bottom). The true
phase noise can be calculated by subtracting the amplitude noise from the phase noise, which is
plotted as the red curves. The voltage unit used here is the unit of our AD card with 1 V =
32767 ADU. The data is measured from a 200 nm Nb on Si resonator under a fixed readout power
P, = —85 dBm.

of the readout electronics (mainly limited by the noise temperature of our HEMT). Therefore, we
calculate the “true” phase noise by subtracting the measured S () from S)(v) and the results are
plotted in red curves in Fig. 5.7

To better quantify the temperature and power dependence of the frequency noise, we retrieve
the noise values at 1 kHz from the phase noise spectrum (red curve) at each readout power and each
temperature. The 1 kHz frequency noise Ssy, (1 kHz)/f? is plotted as a function of P, and T in
Fig. The even spacing (~ 2 dB) between any two adjacent noise curves indicates the Pi;tl/ 2
dependence of frequency noise as expected. At a fixed P, we find the frequency noise roughly

falls onto a power-law relationship and at intermediate temperatures 300 mK < 7" < 900 mK the

temperature dependence is close to
Ssr. (1 kHz)/f? oc T2 (5.13)

as indicated by the parallel solid lines in Fig. This scaling is consistent with the 777173 scaling
found by Kumar[63], where he was fitting for a broader range of temperatures.

In addition to the noise, the resonance frequency f, and quality factor @, also show strong
temperature dependence, which are shown in Fig. Later in this chapter we will see plenty
examples of similar f,.(T) and Q,.(T') curves and show that they can be well explained by the TLS
theory.
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Figure 5.8: Frequency noise at v = 1 kHz as a function of temperature under several readout powers.
The readout powers P,,,, are from -105 dBm to -73 dBm in step of 4 dBm from top to bottom. The
solid lines indicate 72 temperature dependence. The data is measured from a 200 nm Nb on Si
resonator.

In summary, the measured temperature dependence of resonance frequency, quality factor, and
frequency noise strongly suggest to us that TLS in the dielectric materials are responsible for the

noise.

5.3.5 Geometry dependence

The geometry dependence of the frequency noise was carefully studied with a Nb on sapphire
geometry-test device, which contains CPW resonators with five different center strip widths (s,
=3 pm, 5 pm, 10 pm, 20 pm, and 50 pm) and with the ratio between the center strip width and the
gap width fixed to 3:2. Here we only present the conclusions, while leaving the detailed data and
analysis to Section [£.5.2.2] after the introduction of TLS theory and a semi-empirical noise model.
Fig. B 10 shows the measured frequency noise (before and after the correction for coupler’s noise
contribution) at ¥ = 2 kHz as a function of center strip width s, under the same internal power

Pt = —25 dBm. We find that the frequency noise has a geometrical scaling
S5, (v) /£ o 1/51. (5.14)

The noise data as well as the temperature-dependent f,(T') and @, (T") data measured from this
geometry-test device will be discussed in great detail in Section[5.5.2.2] As we will show there, these
data not only confirm the TLS hypothesis but further point to a surface distribution of TLS and

rule out a uniform distribution of TLS in the bulk substrate.
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Figure 5.9: Resonance frequency (a) and quality factor (b) as a function of temperature under several
readout powers. The readout powers P, are from -105 dBm to -73 dBm in steps of 4 dBm from
bottom to top in both plots. The data is measured from a 200 nm Nb on Si resonator.

5.4 Two-level system model

In this section, we first give a review of the standard two-level system (TLS) theory. Then we present

a semi-empirical TLS noise model.

5.4.1 Tunneling states

Experiments show that amorphous solids exhibit very different thermal, acoustic, and dielectric
properties from crystalline solids at low temperatures. In 1972, the standard two-level system
model was independently introduced by Phillips[60] and Anderson[61], which satisfactorily explains
the experimental results. This model assumes that a broad spectrum of tunneling states exist in
amorphous solids. Although the microscopic nature of the TLS is still unknown, it is often thought
that in a disordered solid, one or a group of atoms can tunnel between two sites. These tunneling
states have elastic and electric dipole moments that can couple to the elastic and electric fields.
Such a tunneling two-level system can be quantum mechanically treated as a particle in a double-
well potential, as illustrated in Fig. 5.1l
In the local basis (¢1 and ¢2), the system Hamitonian can be written as
gL A B0 (5.15)
2\ Ay A

where A is called the asymmetric energy which equals the energy difference between the right well
and the left well. Ag is the tunneling matrix element.

In the standard TLS theory, a uniform distribution in A and a log uniform distribution in Ay is
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Figure 5.10: The frequency noise Ssf(2 kHz)/ f? at Pipe = —25 dBm measured from the geometry-test
device is plotted as a function of the center strip width s,.. Values before and after the correction for
the coupler’s noise contribution are indicated by the squares and stars, respectively. The corrected
values of Ss¢(2 kHz)/ f2 scale as s, 158, as indicated by the dashed line. Refer to Section [(.5.2.2 for

details on the device, noise data, and analysis.

assumed

P
P(A, Ag)dAdA = A—OdAdAo
0
where P, is the two-level density of state found to be on the order of 10%*/J-m3.

The Hamiltonian in Eq. [5.15] can be diagonalized to give the eigenenergies +&/2 where

e =1/A2+ AZ.

The true eigenstates 1)1 and ¥y can be written in terms of ¢; and ¢2 as

Y1 = ¢1cosf + pasin b

o = 1 8in 6 — o cos b

where
Ao
tan26 = —.
an A

(5.16)

(5.17)

(5.18)
(5.19)

(5.20)

In the diagonal representation (1, ¥2) the Hamiltonian is in the form of a standard TLS,

where

Op = , Oy = o, =

(5.21)

(5.22)
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Figure 5.11: A illustration of a particle in a double-well potential

are the Pauli matrices.

5.4.2 Two-level dynamics and the Bloch equations

TLS can interact with an external electric field £ and strain field e. It can be shown that the
dominant effect of the external fields on the TLS is through the perturbation in the asymmetry
energy A, while changes in the tunnel barrier Ay can usually be ignored[65]. In the electric problem,

the interaction Hamiltonian can be written as (in 1, 12 basis)

A Ay

HE, = [—az + —am] do - E. (5.23)
€ €
We recognize
5 - A
d = 2d0? (5.24)
as the permanent electric dipole moment and
- A
d= do?" (5.25)

as the transition electric dipole moment[66]. Because Ay < e, the maximum transition dipole
moment of a TLS with energy splitting ¢ is do. Later we will see that the first term in Eq. [5.23) gives
rise to a relaxation response and the second term gives a resonant response to the electric field. In

€

our problem of TLS in a microwave resonator, Hf

. gives the coupling between the TLS and the

microwave photons.
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Similarly, in the acoustic problem, the interaction Hamiltonian can be written as
A A
HE, = [?az + ?001] ve (5.26)

where 7y is the elastic dipole moment and e is the strain field. In our problem, H}, couples the TLS
to the phonon bath and causes relaxations.

The Hamitonian of TLS in the electric problem
H = Hy+ H, (5.27)
has a formal analogy to that of a spin 1/2 system in a magnetic field
H=—hyB-§=—hy(By-S)—hy(B'-9) (5.28)

where By is the static magnetic field, B’ is the (oscillating) perturbation field, and S = a/2.

Comparing Eq. 523 to Eq. 528 we identify the following correspondence
—hyB=1(0,0,¢) and —hyB' =(2d-E, 0, d-E). (5.29)

Without relaxation processes, the dynamic equation for a free spin in a magnetic field is simply

d = L

—S(t)=~vS x B (5.30)

dt

where S (t) can be either interpreted as the spin operator in Heisenberg picture or as the classical

spin (because the quantum mechanical and classical equation take the same form in this problem).
When the relaxation processes are considered, the evolution of the ensemble average of the spin

operators (5;(t)) is described by the famous Bloch equations, which were first derived to describe

the nuclear magnetic resonance[67]:

0S.0) =7 ((5,) B~ (5B, 5 =0
08,(0) =7 (52 B — (82 B2) - 52 =0
S (8.0) =7 (52) B, — {5,) B) - L= EIE) 531
where 77 and T3 are the longitudinal and transverse relaxation times, respectively, and
SB. (1)] =  tann(B=0)) (5.32)
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is the instantaneous equilibrium value of S, .

5.4.3 Solution to the Bloch equations

To solve the Bloch equations in Eq.[B.31] we first set up the magnetic field as
Bo=(0, 0, By), B' = 2B coswt = (BL, 0, BY) (e + e79%). (5.33)

Here we enforce By < 0. Next, we linearize the term S$4[B,(t)] with its Taylor expansion assuming

B! < |BY|
SZUB.(t)] = SU(Bo) + BL(t)dS:*/dBo. (5.34)

Because the perturbation field in Eq.[5.33lis time harmonic, the steady state solution to Eq.[5.31]

can be written as a sum of frequency components at w,, = mw (m is an integer)

m=+o00
<§(t)> = 3 S exp(jwmd). (5.35)
m=—o0

By inserting Eq. and Eq.533linto Eq. 53T and equating the coefficient in front of exp(jwy,t)
on the left- and right-hand sides of Eq. £.31] one will obtain a set of coupled linear equations for

Sm- It can be shown that only equations for m = —1,0, 41 are important.
The solutions to these equations are given, for example, by Hunklinger[68]. Note that he used
S, to represent the coefficient for the frequency component e~7“=* while here we use it for the
frequency component e/“mt. Therefore, a substitution of —w for w will convert his results to ours.

The magnetic susceptibilities x;(w) are defined by

S’; = Xz (w)i‘wB}c

S! = xz(w)hyB. (5.36)

and are derived to be

(w) = 5 ! + ! (5.37)
Xa B 25 lwo —w+ 5T wot+w— 3Tyt '
dsst 1 —jwlh

X:(w) = 0 Bo) 1+ 717 (5.38)

where wy = —vBy and

1+ (wo — w)?T%
SY = Sed, 5.39
# 1+ (’yBglc)leTz + (wo — w)2T22 # ( )
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The susceptibilities x,(w) and x.(w) are of two different origins: y,(w) describes the resonant
response of the spins to the ac magnetic field, while x,(w) has the typical form of a relaxation
process. Furthermore, the first term in Eq. 537 is the response to the rotating wave and the second
term is to the counter rotating wave.

The results for spins in magnetic field can be easily converted to the results for our problem —
TLS in an electric field coupled to a phonon bath—by applying the correspondence in Eq. For
TLS in an electric field, we define an electric susceptibility tensor for the resonance process ﬁXﬁ res (W)

and a susceptibility tensor for the relaxation process _>X_>r61 (w)

(d) =X sos () - E (5.40)

<J’> =X e () - E. (5.41)
It can be shown that
- o0 1 1 -
X res w = —= + dd 5.42
@) h [wg—w+jT21 we +w— Ty " (5:42)
—— dO’eq(E) 1-— jWTl 77
. - % dd 5.43
X ret () de 1+ w'T? (5.43)
where
o%i(e) = —tanh(%) (5.44)
1+ (we — w)?T%
)= . : 29(e). 5.45
T IT + (we — w)2TE (€) (5.45)
Here w. = ¢/h and Q = 2d - E/h is the Rabi frequency.
5.4.4 Relaxation time 77 and 75
In absence of an external field, the Bloch equation for (o) becomes
d (0,) — o
— () = ———F-—2-. 5.46
7 (o) === (5.46)

Because (0,) = p1 —p2 is equal to the population difference between the upper and lower states, T, !
relaxation rate is the rate at which a non-equilibrium population relaxes to its equilibrium value,
through the interaction with the phonon bath. Both phonon emission and absorption contribute
to this relaxation process. When the two-level population is in thermal equilibrium, the phonon
emission and absorption processes are balanced and the population stays unchanged. If the two-

level population is out of equilibrium, one phonon process will dominate over the other, always
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pulling the system back to its equilibrium. It can be shown that T} is given by [66]

1 Ao\ 1
T =\ 5.47
Tl ( € ) Tl,min ( )
1 71% 7’2r g’ €
= |5 T 5 th(—=— 5.48
Tl,min |:'Ui + ’U,‘% 27Tpﬁ4 0 (QkT) ( )

where v, and 7 are the longitudinal and transverse deformation potential, respectively, vy, and vr
are the longitudinal and transverse sound velocity, respectively, and p is the mass density. T min is
the minimum 73 time for a TLS with splitting energy ¢.

The transverse relaxation time T3 is also called the dephasing time. In absence of the external
field, the transverse spin operators in Heisenberg picture will be precessing about the z axis and the

o4 = 0, + joy operator is given by,

01 (t) = 0 (0) exp(—j ). (5.49)

If the energy level € fluctuates with time and the fluctuations de are not identical for different TLS,
even if an ensemble of TLS starts with the same spin o1 (0) (in phase), they will no longer be in
phase after a period of time. Each spin picks up a random phase 6(¢t) = fg de(7)dr and the ensemble
average value of (o4) (or the transverse spin components (o) and (o)) will decay to zero in a rate

that is dictated by 1/T5, because usually <e’j9(t)> has a behavior of exponential deca; :
<€—j I 6s<f>d7> ~ et/ T2 (5.50)

For TLS in an amorphous material, the energy level fluctuation de(¢) is described by a “diffusion”
process, referred to as spectral diffusion. As shown in Fig. 512 the energy levels gradually spread
out and in the long time limit (¢ > T} with T} being the average 77 time), de reaches a stationary
distribution with a width of Ae. And T5 is inversely proportional to Ae. Roughly speaking, T5 is

the time for which the spread in the random phase 6 is of the order 7/2 and can be estimated by
T,t=2—". (5.51)

The major contribution to the energy level fluctuations de is through the TLS-TLS interaction. The
interaction energy between two TLS (7, j) is given by[65]

GBi B i

5.52
€ €5 pvzr?j ( )

(SEij =

IDepending on the detailed process of de(t), the decay generally has a more complicated form than a single
exponential and is not always compatible with the single T»-rate description used in the Bloch equations.
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Figure 5.12: An illustration of spectral diffusion. Figure from [65]

where v;A/e and ;A /e are the permanent elastic dipole moments of the two TLS, r;; is the distance
between the two TLS, and C' is a constant of order unity. Physically, Eq. describes the process
in which one TLS changes its states and produces a strain field that is felt by another TLS. Replacing
1/ T?j with the volume density of thermally excitable TLS PykT and averaging over the neighboring
TLS j leads to

2PET A
Ae~Cl 22 (5.53)
o2 e
and therefore
_ 2v2PkT A
Tl = .54
2 ¢ whpv? e (5:54)

is expected to have a linear dependence on temperature.

5.4.5 Dielectric properties under weak and strong electric fields

At microwave frequencies (w ~ 10° Hz) and at low temperatures (7' < 1 K, T1 > 1 ps), wTj > 1
and the relaxation contribution given by Eq. 543 is much smaller than the resonant contribution
given by Eq. Therefore, we will give no further discussion on the relaxation contribution.
For the resonant interaction, the TLS contribution to the (isotropic) dielectric function is given
by
enis@) = [[[ o Xiee @) €] - dAdadd = ehys(e) - jefis(e) (5.55)

where we have averaged over the TLS asymmetry A, tunnel splitting Ag, and dipole orientation d.
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5.4.5.1 Weak field

If the electric field is weak and the condition Q?T1Ty < 1 is satisfied, Eq. [5.55] can be worked out
(see Appendix [G))

Emax Pd% € 1 1
W) = —% tanh + de 556
erLs(w) /0 3h (Qk;BT) [wa—w+jT2_1 w€+w—sz_1} (556)
2Pd? 1 hw— jhTy ! Emax
- g (L Mo =GR | e 5.57
3 [ (2 2jmksT ) % 2mhpT o0

where ¥ is the complex digamma function and ep,ax is the maximum energy splitting of TLS.

The TLS contribution to the dielectric loss tangent § is given by

el o(w hw
orLs = %() = Jtus tanh (2kBT> (5:58)

where the relationship[52] Im¥(1/2 + jy) = (7/2) tanh 7y has been applied, and 6% = 7TPd2/3e
represents the TLS-induced loss tangent at zero temperature in weak electric field. Here € is the
dielectric constant of the TLS hosting material.

Similarly, the TLS contribution to the real part of the dielectric constant is given by

/ 0
s (w) 20018 1 hw Emax
S ReW = — — ) ) 5.59

e r | \2 T 2nkpT ) %8 2mkpT (5:59)

where AT 1 /2wkT < 1/2 has been neglected and the sign before iw/2jmkT can take either “+” or
“” because ¥(Z) = ¥(z).

Eq. for the loss tangent can be alternatively derived by considering the imaginary part of
the integral in Eq. The major contribution to this integral is from the resonant absorption

1 Tt
Im[ - _1} = 22 > (5.60)
we —w + 15 (Ws_w) +(T2 )

term

which is a narrow Lorentzian peak centered at w with a line width 7 1| Physically it means only
the TLS close to resonance w. ~ w have significant contribution the loss tangent. Neglecting the
1/(we +w+3T5 1) term and pulling tanh(e/2kT) out of the integral as tanh(hw/2kT) will yield the
same result for drps in Eq.

Eq. and Eq. are the two important results of TLS theory. The predicted temperature
dependence is illustrated in Fig. The loss tangent drrs (blue curve) is highest (drrs = 5%LS)
at low temperatures T' < hw/2k, and decreases monotonically with T', as 1/T at high temperatures
T > hw/2k. €y g (red curve) has a non-monotonic behavior: e g increases with T when T' < hw/2k;
g decreases when T > hw/2k; a maximum in €/ g occurs around T' = fuw /2k.

The predicted temperature and frequency dependence of dtrs and €/ g have been tested on all
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kinds of amorphous solids and are found to be in great agreement with the experiments. Eq. [5.58
and Eq. 559 have been used extensively to derive the values of 6% ¢ for different materials. We use

them in the experiments described in Section to obtain crucial information of the TLS in our

resonators.

5.4.5.2 Strong field

For general and strong electric field, erps(w) has to be evaluated from the full integral

Emax P, 2 1 _ 2T2
erLs(w) = / Ddy tanh ( c ) _2+ (we = )Ty
0 3 2k5T ) |1+ TVTs + (we — w)2T2
1 1
X { — + : 1] de (5.61)
we —w + 5T, we +w — jTy

where

2do|fﬂ7|ﬂ
V3h ¢

is the modified Rabi frequency accounting for the orientation integral (see Appendix [Gl).

ﬁ:

(5.62)

For the imaginary part of the integral, the main contribution is still from the 1/(w, —w — jT5 1)
term. By dropping the other term 1/(w. 4w — 5T, '), the integrand now contains a power-broadened

absorption profile

1+ (we —w)?T2
1+ Ty + (. — w)?T2

= (5.63)

- 2
[T;lx/ 1 +§2T1T2] + (we — w)?

where the width of the Lorentzian is broadened by a factor of K = /1 + §2T1T2. As a result, the

1 ] -yt

xlm{ —
we —w + jTy
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TLS loss tangent

tanh (2k2T>

oTLs = 6’%Lsf2
V1I+Q T,

is reduced by a factor of x from the weak field result.

(5.64)

Figure 5.14: Electric field strength dependence of drrs

Because Q |E |, the loss tangent drrs depends on the electric field strength as

dris(|E| = 0)
V1+|E/E]?

where E, is a critical field for TLS saturation defined as

sris(|E|) = (5.65)

E.= vah
‘ 2dO|E|\/ Tl,minTQ '

(5.66)

The |E| dependence of 1 is illustrated in Fig. (.14 where we see that drps scales as |Eﬂ|_1 in
a strong electric field |E| > E..

The real part of the integral in Eq. [5.61] can also be approximately evaluated. Because
1 1 1 1

Re[ —] ~ , Re] —] ~ (5.67)
we —w + jTy We — W we +w — T, We +w

does not converge (yielding logarithmic divergence) when integrated to a large emax, it means that
the contribution to €/ ¢ from large detuned TLS is not negligible. In other words, TLS from a
broad range of energy, on-resonance and detuned, all contribute to €. In addition, we find that

the contributions from the two terms in Eq.[5.67 are comparable and therefore none of them can be
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neglected. After making a number of mathematical approximations, we derive (see Appendix [G])

/ / —1
s (k) — epps(0) _ 50 _ 2 hT,
. = 0pps(1 — K)sech (—2kT)—2kT

2 (5.68)

where €/ 5(0) is the weak field result given by Eq. Usually xhTy ' < kT and T, ' < w,

therefore, the power dependence of €/, ¢ has a very small effect.

5.4.6 A semi-empirical noise model assuming independent surface TLS

fluctuators

We assume that the TLS have a uniform spatial distribution within a volume of TLS-host material
V3, that occupies some portion of the total resonator volume V. Consider a TLS labeled «, located
at a random position 7, € Vj, and with an energy level separation e, = (A2 + Aj ). The TLS
transition dipole moment is given by cfa = dadvoﬂ /€a, where the dipole orientation unit vector

de, is assumed to be random and isotropically distributed. In the weak-field, linear response limit,

the TLS contribution to the dielectric tensor of the hosting medium is

Corns (w0, 7) = — ;JJ5(F— 7)) La - mlj et mlj | e (569)
Eq. looks very similar to Eq. but the interpretations are quite different. In Eq. ol is
the ensemble average of o, when the system is in steady-state. Here o, , is used microscopically to
represent the state of an individual TLS at time ¢ which takes values of —1 for the lower state of the
TLS and +1 for the upper state. We also replaced the dephasing linewidth 75 ! which is an average
effect, with a general linewidth I". Averaging over the TLS position, asymmetry, tunnel splitting,
and dipole orientation, and assuming a thermal distribution for the level population, Eq. gives
the same result for the TLS contribution to the (isotropic) dielectric function as in Eq. 557

2Pd% 1 hw — jl—‘ Emax
= 7 (e A B | . 5.70
erLs (@) 3 { (2 2j7rkBT) 8 9nkpT (5:70)

As derived earlier, the real (e¢) and imaginary (e/f;g) parts of etrs yield the well-known results
for the TLS contribution to the dielectric constant Eq.[5.59 and loss tangent Eq. 5.58 When these
TLS are coupled to the resonator, the average effects to the frequency shift and quality factor can

be derived both classically from the cavity perturbation theory given by Pozar[57] and quantum-

2] have derived this formula by myself which hasn’t been tested by any experiment yet.
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mechanically from the cavity QED theory[69]. The results for weak field are

Afr _fvh, el s |E? d _ Fég Rew (L hw o Cmax (5.71)
oo 2, dEPdR 2~ 2jrkpT & onkpT '
1 I el sl EJ? dif hw
A— = -2 2 = F§Ygtanh | 5.72
Q. I, el B2 d s I 2R (5.72)
where 0%, ¢ = 3Pd%/2¢), and
n

W we
F is a filling factor which accounts for the fact that the TLS host material volume V}, may only
partially fill the resonator volume V', giving a reduced effect on the variation of resonance frequency
and quality factor. According to Eq. [E73] F is the ratio of the electric energy wf stored in the
TLS-loaded volume to the total electric energy w® stored in the entire resonator.
It can be derived from Eq. B.7I] that the TLS-induced temperature variation of frequency shift
is given by

(1) = f:(0) F&9 S 1 hw hw
S [Re‘p <§ - 2jkaT> ~log 27rkBT} ' (5.74)

If the internal loss of the resonator is dominated by the TLS-induced dielectric loss, the internal

quality factor Q; has a temperature dependence given by

1
Qi(T)

hw
_ 150
= Fdp g tanh (2kT) . (5.75)

In Section 5.5 Eq. 574 and Eq. [B.78 are directly applied to the experimental data of Af,.(T)/ f»
and 1/Q;(T) measured at T' << T, to retrieve F'63; 4 for each resonator.
Now, if the dielectric constant fluctuates on time scales 7. > 1/w, according to Eq. B.7I, we
would expect to see resonator frequency fluctuations given by
ofr(t) _ fvh erps (75 1| E|? dF

= - : 5.76
fr 2 [, €|l E|2 dF (5.76)

From Eq.[5.69] we see that €/ g could fluctuate with time if the TLS switch states randomly (o«
changes sign), for instance due to phonon emission or absorption, or if the the energy level separation
E, is perturbed randomly, for instance due to a collection of nearby TLS that randomly switch states
and produce a randomly varying strain field that couples to TLS a. Whatever the mechanism, for

independently fluctuating TLS, from Eq.[5.69 we would expect that the Fourier spectra of the dey
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fluctuations to obey
<56'/I>':LS (Fl, Vl) 66’/1“LS(F27 V2)> = 56(771, v, T)&(Fl — Fg)é(Vl — VQ). (577)

Therefore, the resonator frequency power spectrum should be given by

5’5#(,/) fv (F,v, T |E|4d7’
2
I7 (fv €|E|2d7’)

(5.78)

For weak enough E field, the fluctuations in de’ g should not depend on E and therefore Eq.BT8
predicts that the resonator noise is independent of microwave power. Noise in this low power regime
is very difficult to measure and the behavior of the noise remains unknown, because the level of the
noise usually falls below the HEMT noise floor. While in the familiar high P, regime, in which
most MKIDs operate[14] and most of the noise data are taken[70], the frequency noise is observed to
scale as P, ¢ 1/2 as discussed in Section 532 This P 1/2 scaling reminds us of TLS saturation effects

discussed in Section £.45.2 which are quantitatively described by Eq.[5.64 We therefore make the

ansatz that the noise depends on field strength in a similar manner:

Su(F.v,w, T) = w(v,w, T)/\ B + B2 ,(w.T), (5.79)

where E, .(w,T) is a critical electric field, likely related to the critical field E. for the saturation
of the TLS dissipation (Eq. [E.60]), and the noise spectral density coefficient k(v,w,T) is allowed to
vary with (microwave) frequency w and temperature T[63]. Because we are assuming a uniform
distribution of TLS in the volume V},, we do not expect S¢ to have an additional explicit dependence
on position 7. At high power for which £ > E, . in the region contributing significantly to the

resonator noise, Eq. .78 becomes

13 73
Séfr(l/) =k(v,w,T) fvh |EFd"r

(5.80)
F? 4 (fve|E|2d3r)2

In Appendix [Hl we have further derived a noise formula for our transmission line resonators by

inserting the appropriate resonator field into Eq. [£.80,

4fA (z,y)3dxdy
3rC2V,l ’

Ssr. (V)

72 =r(v,w,T)

(5.81)

where C'is the distributed capacitance of the transmission line, [ is the length of the resonator, Vj is
the voltage at the open end, and p(x,y) is the electric field distribution in the cross-sectional plane

normalized to Vy = 1 V. It is easy to see that Eq. 5.8 exhibits the desired P;_ 1/2 scaling with power.

int
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The semi-empirical model, especially Eq. B.80 and Eq. 581l will be applied and tested in the

experiments in the next section.

5.5 Experimental study of TLS in superconducting resonators

In this section, we present measurements of several devices that are specially designed to study TLS
in the resonators. By applying the TLS theory and noise model developed in Section [5.4] we have
obtained important information of the TLS which provides new clues to physical mechanism of the

TLS noise.

5.5.1 Study of dielectric properties and noise due to TLS using super-

conducting resonators

In the following two experiments, TLS are known to be in a deposited layer of a known type of
amorphous material. Because the thickness of the TLS layer is much larger (hundreds of nm) than
the intrinsic TLS layer on a bare CPW resonator (a few nm ), the TLS effects are more pronounced
and easier to measure. From these experiments, we would like to know whether the TLS theory
gives a good description of the observed TLS effects and whether these extrinsic TLS are able to

produce excess noise that exhibits the same noise properties as observed from the intrinsic TLS.

5.5.1.1 Sillicon nitride (SiN,) covered Al on sapphire device

In this experiment we artificially deposited a 1u m thick layer of amorphous SiN, by plasma-enhanced
chemical vapor deposition (PECVD) on top of Al on sapphire CPW resonators. We measured f;,
@, and noise before and after the deposition, to study how TLS are coupled to a resonator and how

the noise changes before and after the deposition of the SiN, layer.

e Device and measurement The original device is a typical Al on sapphire CPW device: a
200 nm thick Al film is deposited on a crystalline sapphire substrate and patterned into several CPW
quarter-wave resonators. All these resonators have center strip width s, = 3 pum, gap g, = 2um
and resonator lengths [, ~ 8 mm to produce resonance frequencies f, ~ 4 GHz. The original
device, after various measurements, was deposited with a ~ 1 pym thick layer of SiN, by plasma-
enhanced chemical vapor deposition (PECVD) on its surface, for further testing and measurements
(see Fig. B.15)).

As usual, we use a vector network analyzer to measure the Sa; transmission (through the device,
HEMT and a room temperature amplifier). The resonance frequency f,, total quality factor @,

coupling quality factor @, and internal quality factor @; are derived from fitting So1(f) data, using

3We will see in Section [(.5.2. 1 that the TLS are distributed in a nm-thick surface layer instead of the bulk substrate.
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SiN,

sapphire substrate
sub

Figure 5.15: An illustration of the SiN,-covered CPW resonator. The Al film is in blue color and
the SiN, layer is in red color.

the procedures described in Appendix [El For noise characterization, both the measurement setup

and the noise data analysis are standard, and have been described in Section

e Resonance Frequency shift before and after the deposition of SiN, The fundamental
resonance frequency f, of all resonators (7 resonators with different @).) are measured before and
after the deposition of SiN,. After the deposition of SiNz, we also measured the non-fundamental
resonances around 2f,. and 3f,.. The resonance at 2f, is very likely to come from the coupled slot-
line mode (also called the odd mode) of CPW line[71]. We include them for two reasons: they have
lower Q. (~ 6000) closer to the TLS-limited @; (~ 2000) at low excitation powers, which gives us
better sensitivity at those powers; these 2f,- (around 7 GHz) and 3f,- (around 10 GHz) resonances

also allow us to study the frequency dependence of various properties.

Table 5.1: f, before and after the deposition of SiN,
fr (GHz) before  f, (GHz) after ratio

Res 1 3.880 3.428 1.13
Res 2 3.880*%2=7.760* 7.658 1.01
Res 3  3.880*3=11.64* 10.167 1.14

The resonance frequency shift of one of the resonators and its 2f,., 3f, harmonics (they are
refereed to as Res 1, Res 2 and Res 3, and treated as if they were three physically independent
resonators hereafter) are quantitatively compared in Table 5.1l Because f,. of Res 2 and Res 3 are
not measured on the bare device, they are inferred by the doubling and tripling f, of Res 1. On
the other hand, we use EM simulation programs to calculate the effective dielectric constant e, for
the CPW even mode (Res 1 and Res 3) before and after the deposition. With a dielectric constant
en, = 7.2 for SiN,, the simulation result gives €cg, before = 5.5 for the bare device and €cg, after = 7.2

for the SiN,-covered device. And the ratio

[ Lalter 14 (5.82)
€eff ,before
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Figure 5.16: Internal loss @; L as a function of Py of the 3 resonators measured at several temper-
atures between 50 mK to 300 mK. T" ranges from 50 mK to 300 mK in steps of 50 mK (or 25 mK)
and P, ranges from -65 dBm and -120 dBm in steps of 4 dBm (or 2 dBm).

agrees very well with the measured f, ratios of Res 1 and Res 3 in Table 5.l This result confirms
that both the geometric parameters and dielectric constants we assumed are very close to their real
values. We notice that the f,. ratio for Res 2 are much less than Res 1 and Res 3, suggesting that
the CPW odd mode probably has a field distribution that is less concentrated in the SiN, layer as
compared to the CPW even mode.

e Power dependence of f, and @; We measure f, and @Q; of the 3 resonators in a two-
dimensional sweep of bath temperature I" and readout power P,,,. Fig. [5.16 shows internal loss

Q; 1 as a function of internal power Py at different temperatures.

We can clearly see 3 regimes in Fig.[5.16(a)} below -80 dBm (regime I), Q; ' reaches a constant

3

high value; between -80 dBm and -40 dBm (regime II), Q; ! decreases with Py and scales as Pi;tl/ 2;
above -40 dBm (regime IIT), Q; Lincreases with Py¢. The regime IIT behavior is known to be caused
by the non-linearity of superconductor at high power and is not TLS-related. Res 2 (Fig. [5.16(b)))

and Res 3 (Fig. [5.16(c)) also show the same features, except that we have to subtract 1.3 x 107°
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Table 5.2: 69,5 and f, from a joint fit to the Q; ' (T) and f.(T) data at the lowest readout power
fr (GHz) Fopyg r OrLs
Res 1 3.4294 7.63x107%  0.31 246 x 1073
Res 2 7.6593 2.21 x 1074 - -
Res 3 10.172 9.92x107% 031 3.20x1073

from Qi_l for Res 2 and 6 x 107° for Res 3 to make them scale as Pi;tl/2 in regime II. These extra
power independent small losses might be related to the interface between Al and SiN,—for example,
from a slightly damaged surface of Al formed during the deposition process. In regime I and II, Q; !
is limited by the TLS-induced loss tangent drrs which displays a typical saturation behavior that

is discussed in Section (.4.5.2

e Temperature dependence of f. and @; To retrieve the value of 5%LS (6rLs for weak field
at zero temperature), we fit the data of Q; *(T') and f,(T) under the lowest readout power at each
temperature to their theoretical profiles Eq. and Eq. 574 For each resonator, Q;l(T) and
[+(T) are fitted jointly with two fitting parameters: f, and the product Fé%; ¢ . As shown in
Fig. 517 fits to the TLS model generally agree well with the data, except that a large deviation
is seen in the f, fit of Res 3. We find that at the lowest readout powers an adjacent resonator is
entering the bandwidth of Res 3 and probably makes the fitting routine report an inaccurate f;.

The values of Fé%;q and f, from the fits are listed in Table Because both the CPW
geometry and the thickness of SiN, are known, we can derive the electric field distribution from EM
simulations and calculate the filling factor F' according to Eq. 573l For Res 1 and Res 3 with CPW
even mode, we find F' = 0.31. Using this value of filling factor, Res 1 data yields 63;q = 2.46 x 1073
and Res 3 data yields 0% = 3.2 x 1073 for our SiN,. These values of 63, 4 are pretty reasonable.
Typical values of 8% ¢ for amorphous materials are usually found between 10~* and 1072 in the
literature[59]. Even for the same amorphous material, the value of §%; ¢ depends largely on how the
material is prepared. For example, low-loss SiN, made from PECVD process with 6% ¢ & 10~* was
reported from another research group[59], which is significantly lower than what we measured from
our SiN,.

The difference between the two values of §%; ¢ derived from Res 1 and Res 3, though not large,
suggests that the TLS density of states P might be frequency dependent, because Res 1 and Res
3 are physically the same resonator with the same filling factor F' and the only difference is their

resonance frequencies, 3.4 GHz vs. 10.2 GHz.

e Noise comparison before and after the deposition of SiN, Noise, as well as its power and
temperature dependence, is measured on both the bare device and the SiN,-covered device. The

noise from the bare device shows the general features of excess noise that have been discussed in
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Figure 5.17: Joint fit of Q;l and f. vs. T at lowest readout power into their theoretical profiles
Eq. 574 and Eq. 575
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detail in Section (.3

Fig. shows a pair of phase and amplitude noise spectra, measured on Res 1 of the SiN,-
covered device at T = 50 mK and Pt = —50 dBm. It has the same features as the noise from a
bare resonator: the noise is dominantly phase noise; amplitude noise is mostly flat and limited by
the HEMT noise floor; the phase noise spectrum has a 1/f slope below 10 Hz, a 1/f*1/2 at higher
frequencies and a roll-off at around 10 kHz. The frequency noise of Res 1 at v = 500 Hz as a
function of P, is plotted in Fig. for two different temperatures, T = 125 mK (blue) and
T = 200 mK(red). For comparison, the noise from the bare device measured at 7' = 120 mK is also
plotted (black). In addition to the familiar Pi;tl/ 2 power dependence, we find that the noise has
increased by a factor a 20 after the deposition of SiN,. This implies that the measured excess noise

of the SiN,-covered device, as shown in Fig. [5.18(a)| is mainly produced by the TLS in the SiN,

layer.
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Figure 5.18: Excess noise measured on Res 1 of the SiN,-covered device. (a) Phase and amplitude
noise spectra measured at 7 = 50 mK and Py, = —50 dBm. (b) Frequency noise at 500 Hz
Ss7,.(500 Hz) vs. internal power Pyp;. The blue and red lines are measured at 7' = 125 mK and
T = 200 mK, respectively. As a comparison, noise measured at 7' = 120 mK before the deposition
of SiN,, is indicated by the black line.

eTemperature dependence of excess phase noise Constrained by the low @, at low P, and
the nonlinearity effect of superconductor at high P, we have a very limited window of readout
power in which we can measure noise. Also we can not reliably measure noise at 7" > 250 mK,
because the resonator is made of Al (T, = 1.2 K) and the effect from superconductivity will mix in
at higher temperatures.

Fig. shows the frequency noise at v = 500 Hz of Res 1 measured between 50 mK and
225 mK and at Py =-48 dBm (interpolated). The noise shows a strong temperature dependence

on the temperature, scaling roughly as T—1-5 above 125 mK.
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Figure 5.19: Temperature dependence of frequency noise measured on Res 1 at Py = —48 dBm

from the SiN,-covered device

Conclusion The measured temperature dependence of Af,./f, and @Q; ! as well as the power and
temperature dependence of Q; ', all agree well with the TLS theory. By fitting the Af,.(T)/f, data
and Q;(T)~! data to Eq. .74 and Eq. 575, the product F§%; ¢ can be derived. If F' is known, 0% ¢
can be determined, which is one of the important parameters of the TLS.

After the deposition of SiN,, the phase noise is seen to increase by a factor of 20. It also keeps
all the general features of phase noise found in a bare resonator. The fact that the noise from a
SiN,-covered device and from a bare device shows the same features is strong evidence that the

noise in both cases is of the same origin — TLS.

5.5.1.2 Nb microstrip with SiO; dielectric on sapphire substrate

Another device we measured with a large TLS filling factor is a Nb on sapphire half-wavelength
microstrip resonator device. Between the top strip (600 nm thick) and the ground plane (150 nm
thick), both made of Nb, is a layer of sputtered (amorphous) SiO2 dielectric (400 nm thick). Other
relevant resonator parameters are listed in Table Because the electric field is largely confined
in the dielectric layer, the microstrip should have a very high filling factor. Indeed, EM simulation

shows that F' = 94% for this microstrip device.

e Power and temperature dependence of f, and Q. We first measure the power and
temperature dependence of f, and @Q;, and fit the latter to the TLS model to retrieve the value of
F&%, 4, as we did in the previous experiment with the SiN,-covered device.

The results are shown in Fig. In Fig. [5.20(a)| we plot a group of @Q; L ys. Py curves at
different T', which looks very similar to its counter part in the SiN, experiment. In Fig. [5.20(b)| we

plot a group of f, vs. T curves at different P,;, which shows the signature shape of TLS-induced
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Figure 5.20: Measured power and temperature dependence of f, and ; from Nb on sapphire with
SiOg dielectric microstrip device. (a) Q; 1 as a function of P, at several temperatures (indicated in
the legend) between 20 mK and 500 mK. (b) f, as a function of T' measured at several readout powers
P, (indicated in the legend) between -132 dBm and -72 dBm. (c) Fitting Q; *(T') at P, = —132
(lowest P,,,) to the theoretical model Eq. yields F6%; ¢ = 5.35 x 10~%. The first three data
points are ignored, because for these data points the electric field is not below the critical field, as
shown in (a). (d) Fitting f.(T) at Py, = —132 dBm (lowest P,,,) to the theoretical model Eq. [5.74]
yields F6%yq =6 x 1074

variation of dielectric constant, as discussed in Section B.45.71l We also see that at temperature
above 100 mK, these curves shows very little power dependence, which is expected from Eq. (565).
The noticeable power dependence under 100 mK is probably due to the heating effect.

The data of Q™ *(T) and f.(T) under the lowest readout power at each temperature are sepa-
rately fitted to their theoretical profiles Eq. and Eq.[5.74l Fairly good fits are obtained as shown
in Fig. and Fig. (5.20(d)). The value of F% ¢ is 5.4 x 107* derived from the Q; (7)) fit
and 6 x 10~ from the f,(T) fit, which roughly agrees (within 20%) with each other. This means
the loss tangent 63 g of the SiOs dielectric is around 63 g ~ 6 x 10™%, which is a factor of 4 better

compared to the SiN, measured in the experiment described in the previous section.
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Figure 5.21: Frequency noise at 30 Hz as a function of temperature measured at P,;=-78, -86, -94,
and -102 dBm from Nb on sapphire with SiOs dielectric microstrip device. At T > 100 mK, the
noise roughly scales as T~2.

e Power and temperature dependence of frequency noise. The frequency noise measured at
temperatures between 20 mK and 500 mK under several readout powers are shown in Fig. (5.5.1.2).
We again see that the noise decreases rapidly at high temperature (7' > 100 mK) and roughly scales
as T2, which is also observed in Fig.[5.8 and Fig. In addition, we see that the noise decrease

slightly at very low temperatures, which is another interesting clue to the physics of the TLS noise.

e Estimating x(v,w,T) from noise data. Because both the spatial distribution of the TLS
(uniformly distributed in the dielectric layer) and the electric field (from EM simulation or simply
approximated by a parallel plate structure) are known, we are ready to apply the semi-empirical
noise model developed in Section and estimate the noise coefficient (v, w, T') for SiO2 used in
our microstrip.

As an example, we will derive the spectrum of x(v,5 GHz,120 mK) from the frequency noise

Table 5.3: Parameters of Nb/SiO2/Nb microstrip
resonance frequency fr 5.07 GHz
internal power Pint -43 dBm
Nb top strip width w 7.5 pm
Nb top strip thickness d 600 nm
thickness of SiO» h 400 nm

l
C

resonator length 15 mm (half-wave)
capacitance per unit length 7.3e-10 F/m (85 €p)

characteristic impedance Zy 8.66
effective dielectric constant €. 3.6
CPW voltage at open end Vo 1.86 mV

integral [, p(z,y)>dxdy I3 47/pm
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spectrum measured at T = 120 mK and P, = —38 dBm shown in Fig. [5.22(a)l The 3 parameters,
C, Vp, and I, required by Eq. 5.8l are calculated and listed in Table The integral

Is = / p(x,y)*dedy ~ w/h? (5.83)
Ap

is calculated by approximating the microstrip field with that in a parallel plate structure.

According to Eq. 58] the conversion factor from the frequency noise Ssy, (v)/f2 to k(v,w,T) is

given by
413 9.90 x 107,
g 3rC2Vyl €2 m ( )

By applying this factor, we finally derive the spectrum (v, 5 GHz, 120 mK) which is shown in the
Fig. [5.22(b)|

The noise coefficient x(v,w,T') for other temperatures 7' and microwave frequencies w can be
derived in a similar way. Because on this device we have only one microstrip resonator with f, ~
5 GHz, we are unable to obtain k for other frequencies. In future experiments, it should be easy
to design resonators which spread out in the wider frequency range in which we are interested. In
fact, according to the TLS picture, the frequency noise should be only dependent on the value of
hw/kT, instead of w and T individually. Once the values of k(v, fw/kT) are derived, they can be
used to predict the frequency noise in resonators with any geometry, resonance frequency, and at
any temperature, as long as the TLS are of the same type, and the spatial distribution of the TLS

and the electric field are known in these resonators.
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Figure 5.22: Frequency noise spectrum (a) and the derived noise coefficient x (b). The noise spectra
are measured at 7" = 120 mK and P,; = —38 dBm from the Nb microstrip device with SiOs
dielectric.
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5.5.2 Locating the TLS noise source

From the experimental and theoretical results presented in the preceding sections of this chapter,
we are almost certain that the excess noise is caused by fluctuating TLS in the dielectric materials.
So far we have not given any discussion on where the TLS are. As shown in Fig. [5.23] at least four
locations in our CPW resonator can host the TLS fluctuators—the bulk substrate or its exposed
surface, the interface layers between the metal films and the substrate, and the oxide layers on the
metal surfaces. In the next two experiments, we will give experimental evidence that the TLS are

distributed on the surface of the resonator but not in the bulk substrate.

E— . —

Figure 5.23: Potential locations of TLS noise source: bulk substrate (yellow), exposed substrate
surface (red), the interface layers between the metal films and the substrate (green), and oxide
layers on the metal surfaces (blue)

5.5.2.1 Evidence for a surface distribution of TLS from frequency shift measurement

We have learned a lot about the TLS effects on the dielectric properties from the study of SiN,-
covered device and SiOs dielectric microstrip device. Especially, we are able to determine the
product of the TLS loss tangent 63 and filling factor F' by fitting the TLS models to either the
temperature dependence of Af,.(T)/ f, data at any readout power or @Q; 1(T) data at low power. In
this experiment, we go back and apply this analysis to study the intrinsic TLS in the bare resonators.

The key idea of this experiment is to measure Af,/ f, of coplanar waveguide (CPW) resonators
with different geometries in order to obtain values of F0%; ¢ for each geometry. The frequency-
multiplexed resonators are all fabricated simultaneously and are integrated onto a single chip, and
are measured in a single cooldown. We can therefore safely assume that a single value of the loss
tangent 63y applies for all resonator geometries. This allows the variation of the filling factor F
with geometry to be determined, providing information on the geometrical distribution of the TLS.
If TLS are in the bulk substrate with dielectric constant e,, Eq. applied to the CPW field
distribution would yield a filling factor F' = €,/(e, + 1) that is independent of the resonator’s center
strip width s,. If instead the TLS are in a surface layer, F' should be dependent on the CPW
geometry, scaling roughly as 1/s,.

The geometry test device used in this experiment consists of five CPW quarter-wavelength res-

onators with different geometries. They are patterned from a 120 nm-thick Nb film deposited on a
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Figure 5.24: An illustration of the CPW coupler and resonator. The inset shows a cross-sectional
view of the CPW. The contour of the metal surface and the contour of the exposed surface of the
substrate are indicated by the solid line and the dashed line, respectively.

crystalline sapphire substrate. Because Nb has a critical temperature T, = 9.2 K, the effect of super-
conductivity on the temperature dependence of the resonance frequency is negligible for T' < 1 K.
As shown in Fig. [5.24] each resonator is capacitively coupled to a common feedline using a CPW
coupler of length [, 2 200 pm and with a common center-strip width of s, = 3 pm. The coupler is
then widened into the resonator body, with a center-strip width of s, = 3 pym, 5 pm, 10 pm, 20 ym
or 50 um, and a length of [, ~ 5 mm. The ratio between center strip width s and the gap g in both
the coupler and the resonator body is fixed to 3:2, to maintain a constant impedance of Zy ~ 50 €.
The resonance frequencies are f,. ~ 6 GHz, and the coupler is designed to have a coupling quality
factor Q. ~ 50, 000.

Fig. shows the measured frequency shifts Af,./f. for the five resonators as a function of
temperature over the temperature range 100 mK to 800 mK. Although all of the resonators display
a common shape for the variation of frequency with temperature, the magnitude of the effect varies
strongly with geometry. As shown by the dashed lines in Fig. 525 fits to the TLS model (Eq.[574)
generally agree quite well with the data. The familiar non-monotonic variation of the dielectric
constant with temperature can be clearly seen in Fig. fr increases (e decreases) when T >
hw/2k; a minimum in f,. (a maximum in €) occurs around T' = fiw/2k; at lower temperatures (T <
100 mK), we would expect to see a decrease in f, (increase in €) as indicated by the extrapolation
of the fit. The largest deviations from the TLS model (about 4%) occur at the lowest temperatures,
and are likely due to TLS saturation effects discussed in Section 542520 Power-dependent frequency
shifts of this size have also been previously observed experimentally[63]. Here, we will ignore these
small effects and focus on the geometrical dependence.

With the exception of the 3 um resonator, the measured values of F'63; ¢ from the fits have to

be corrected for the coupler because the coupler’s center strip width s, = 3 pm differs from that
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Figure 5.25: Fractional frequency shift Af,./f, as a function of temperature. Af,./f. is calculated
using Af,/fr = [fr(T) — f-(800 mK)]/f-(800 mK). The temperature sweep is in steps of 50 mK
from 100 mK to 600 mK, and in steps of 100 mK above 600 mK. The markers represent different
resonator geometries, as indicated by the values of the center strip width s, in the legend. The
dashed lines indicate fits to the TLS model.

of the resonator, s, # s,. In the limit [, << [, it can be shown that the corrected filling factor is

given by,
F —tF3m

F* =
1-t¢

(5.85)

where ¢t = 2l./(I. +1.). The values of F*§%; ¢ are listed in Table[(.4] as well as the ratios relative to
the value for 3 pum resonator.

We also measured the resonance frequencies at 4.2 K (0.46 T¢), allowing the shift Af,(4.2 K) =
fr(4.2 K)— f-(100 mK) as well as the kinetic inductance fraction to be calculated for each geometry,
as shown in Table 54

Fig. shows the results for the geometrical scaling of the corrected filling factor F* and the
kinetic inductance fraction «, plotted as ratios relative to their respective values for the resonator
with a 3 um wide center strip. The observed strong variation of F* with geometry immediately rules
out a volume TLS distribution, and favors a surface distribution. We investigate this in more detail
by comparing the data to two theoretically calculated geometrical factors g, and gz, which have

units of inverse length and are calculated from contour integrals in a cross-sectional plane given by

Igm = — E2dl (5.86)
V2 metal
1 _

9% = 73 E?dl (5.87)
gap

where V' is the CPW voltage. The first integral is actually a sum of three contour integrals, taken

over the surfaces of the three metal conductors, the center strip and the two ground planes. The
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Figure 5.26: The scaling of the measured values of the kinetic inductance o and TLS filling factor
F*, as well as the calculated values of the CPW geometrical factors g, and g,, are shown, as a
function of the resonator center strip width s,. The top panel shows the ratios of « (r1), F* (r2),
gm (r3), and gy (r4) to their values for the 3 pm resonators. The bottom panel shows these ratios
normalized by the kinetic inductance ratio ;.

second contour integral is taken over the two “gaps”, the surface of the exposed substrate in between
the conductors. These contours are illustrated in the inset of Fig. The integrals are evaluated
numerically using the electric field derived from a numerical conformal mapping solution to the
Laplace equation, where the conformal mapping procedure is identical to that used in the calculation
of a described in Section B.1.37]

According to Eq. 573, F* should have the same scaling as gy, if the TLS are distributed on the
metal surface (or at the metal-substrate interface), or as g if the TLS are located on the surface of
the exposed substrate. The kinetic inductance of the CPW may also be calculated using a contour
integral similar to that of g,,, except that the integrand is replaced by H? [64]. Because the magnetic
field H is proportional to E for a quasi-TEM mode, we expect the kinetic inductance fraction « to
have the same geometrical scaling as gp,.

Fig. [5.26 shows that the four quantities, F™*, o, gm, and g, all scale as s,7” with v = 0.85 —0.91.
The finite thickness of the superconducting film is responsible for the deviations from v = 1. This
is very strong evidence that the TLS have a surface distribution and are not uniformly distributed
in the bulk substrate. These data, however, cannot discriminate between a TLS distribution on
the metal surface and a TLS distribution on the exposed substrate surface (the gap), because the
corresponding theoretical predictions (gm and gg) are very similar and both agree with the data.
Future measurements of resonators with various center-strip-to-gap ratios may allow these two TLS
distributions to be separated.

The absolute values of F*8%, 4 are also of interest. Assuming a typical value of §%; ¢ ~ 1072 for

the TLS-loaded material[59], the measured value of F*8%; ¢ = 3 x 107° for the 3 ym resonator yields
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a filling factor of F* ~ 0.3%. Numerical calculations show that this is consistent with a ~ 2 nm layer
of the TLS-loaded material on the metal surface or a ~ 3 nm layer on the gap surface, suggesting

that native oxides or adsorbed layers may be the TLS host material|72].

Table 5.4: Values and ratios

5y fr100 mK)  Af(42K) 2= Fog Fgm glm
[pm] [GHz| [MHz] x1075
3 pm 5.666 11.1 I 298+0.12 1 1 1
5 ym 5.735 7.41 0.67 2.00+£0.07 0.67 0.62  0.64
10 pm 5.800 4.15 0.37 1.10£0.03 037 033 035
20 pm 5.836 2.28 021 0.54+0.03 0.18 017  0.19
50 pm 5.851 1.02 0.092 0.24+0.02 0.08 0.075 0.086

5.5.2.2 More on the geometrical scaling of frequency noise
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Figure 5.27: Frequency noise of the four CPW resonators measured at 7' = 55 mK. (a) Frequency
noise spectra at P, = —65 dBm. From top to bottom, the four curves correspond to CPW center
strip widths of s, = 3 pum, 5 pm, 10 pm, and 20 gm. The various spikes seen in the spectra are
due to pickup of stray signals by the electronics and cabling. (b) Frequency noise at v = 2 kHz as
a function of P,t. The markers represent different resonator geometries, as indicated by the values
of s, in the legend. The dashed lines indicate power law fits to the data of each geometry.

In addition to the low-temperature frequency shift data, we also measured the frequency noise
data on the same geometry test device as described in the previous section in the same cooldown.

The frequency noise spectra Ss, (v)/ f? of the five resonators are measured for microwave readout
power P, in the range -61 dBm to -73 dBm. As an example, the frequency noise spectra measured
at P, = —65 dBm are shown in Fig. [5.27(a). Apart from a common spectral shape, we clearly see
that the level of the noise decreases as the center strip becomes wider. Unfortunately the noise of
the 50 pm-resonator is not much higher than that of our cryogenic HEMT amplifier, and therefore

those measurements are less reliable, so we exclude the 50 pm-resonator from further discussion.
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Figure 5.28: The measured frequency noise S5¢(2 kHz)/f? at Pne = —25 dBm is plotted as a

function of the center strip width s,. Values directly retrieved from power-law fits to the data in
Fig. are indicated by the open squares. Values corrected for the coupler’s contribution are
indicated by the stars. The corrected values of Ssf(2 kHz)/f? scale as s 158, as indicated by the
dashed line.

The noise levels at v =2 kHz were retrieved from the noise spectra and are plotted as a function
of resonator internal power Py = 2Q%P,,/7Q. in Fig. 527(b). All resonators display a power
dependence close to Ssf/f? Pi;tl/ ®. as we have previously observed[73, [70, 63]. In order to
study the geometrical scaling of the noise in more detail, we first fit the noise vs. power data
for each resonator to a simple power law, and retrieve the values of the noise Ss¢(2 kHz)/f? at
Pyt = —25 dBm for each geometry. These results (Fig. 5.28) again show that the noise decreases
with increasing s,., although not (yet) as a simple power law.

To make further progress, we apply the semi-empirical noise model (Eq. ER0) to the coupler
correction. For the resonators that are wider than the coupler (s, > s, = 3 um), the measured
values of Sy, /f? need to be corrected for the coupler’s noise contribution. A similar procedure was

applied in the frequency shift data in the previous section (Eq. E8H). In the limit I, << I, the

correction is given by

55, = (Ssg. — 0S¢, 3pm)/(1 =) (5.88)

where n = 3ml./4(l. + l,). The corrected values are plotted in Fig. (with symbol stars) and
are found to have a simple power—law scaling 1/s1:58. We find a similar noise scaling, 1/s%, with «
between 1.49 and 1.6, for noise frequencies 400 Hz < v < 3 kHz.
While the fact that an | E|>~weighted coupler noise correction leads to a simple power law noise
—~1.58

scaling is already quite encouraging, we will now go further and show that the observed s power—

law slope can be reproduced by our semi-empirical noise model. Measurements of the anomalous



125

R i Wiplane 554
S \ &plane
?\ X N \ :
NN b - ﬂ1'|;>\ il 23
< N th L x inf
NN S A CEYA .
> -]
;U} B ; T 1 s/2 sf2+g inf
£ Y ~u 2.3..45 . Zplane
L & ~o
~ - ﬁ\
*  p=0.28,y=-0.440| >4 Tk
p=0.33, y=-0.452 NS :
¢ B=0.38, y=—-0.456 NN
o B=0.43, y=-0.455 N
10 '
0.001 0.01 0.1
t/s,

Figure 5.29: The calculated dimensionless noise scaling function Fi*(¢/s,) is plotted as a function of
the ratio between the CPW half film thickness ¢t and the center strip width s,. The inset shows the
conformal mapping used to derive the electric field. The contour integral for Fi*(t/s,) is evaluated
on the surface of the metal, as outlined by the solid lines in the W-plane. Results are shown for four
different values of the parameter 8 = 0.28, 0.33, 0.38, 0.43 that controls the edge shape (see inset).
The dashed lines indicate power law (¢/s,)7 fits to Fi*(t/s,).

low temperature frequency shift described in the previous section have already pointed to a surface
distribution of TLS. If these TLS are also responsible for the frequency noise, according to Eq.
we would expect the noise to have the same geometrical scaling as the contour integral I3 = [ |E |3ds
evaluated either on the metal surface (I3") or the exposed substrate surface (I§). For zero-thickness
CPW, although the integral is divergent, the expected scaling can be shown to be I3 « 1/s2. For
CPW with finite thickness, we can evaluate I3 numerically using the electric field derived from a
numerical conformal mapping solution. The two-step mapping procedure used here is modified from
that given by Collin[55] and is illustrated in the inset of Fig. We first map a quadrant of
finite-thickness CPW with half thickness ¢ ( in the W-plane) to a zero-thickness CPW (in the Z-
plane) and then to a parallel-plate capacitor (in the ¢-plane). To avoid non-integrable singularities,
we must constrain all internal angles on the conductor edges to be less than /2, which leads to
the condition 0.25 < 8 < 0.5, where 7 is the angle defined in Fig. Instead of evaluating I3
directly, we define a normalized dimensionless integral F3(t,s,) = [ |E/E*|3ds*, where s* = s/s, is

a normalized integration coordinate and E* = V/s, is a characteristic field strength for a CPW with
voltage V. Now Fj3 depends only on the ratio ¢/s, and is related to the original contour integral by
I3(s,,t,V) = (V3/s2)F3(t/s,). The results F3"(t/s,) calculated for the metal surface are plotted
in Fig. 529, and show a power law scaling Fy* ~ (t/s,)” with v ~ —0.45 for 0.003 < t/s, < 0.02,
the relevant range for our experiment. We also find that for a wide range of 3, 0.27 < § < 0.43,
although the absolute values of Fi"(t/s,) vary significantly, the scaling index - remains almost

constant, —0.456 < v < —0.440. Therefore, v appears to depend little on the edge shape.
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From Eq. BE80 the noise scaling is predicted to be IF'(t,s,,V) x s.277 ~ 515 (at fixed

T

—1.58

- scaling. We also investigated the case

V'), which agrees surprisingly well with the measured s
for TLS located on the exposed substrate surface, and found that Ff has almost identical scaling
(v = —0.45) as FJ*. While we still cannot say whether the TLS are on the surface of the metal
or the exposed substrate, we can safely rule out a volume distribution of TLS fluctuators in the
bulk substrate; this assumption yields a noise scaling of ~ s, 103 significantly different than that
measured.

In summary, the scaling of the frequency noise with resonator power and CPW geometry can
be satisfactorily explained by the semi-empirical model developed in Section and with the as-
sumption of a surface distribution of independent TLS fluctuators. These results allow the resonator
geometry to be optimized, which will be discussed in the next section. Had we known the exact
E field distribution and the exact TLS distribution for our CPW resonators, we would be able to
derive the noise coefficient k(v,w,T) as we did for the SiQ2 microstrip experiment discussed earlier.
Unfortunately, the two parameters, the edge shape and the thickness of the TLS layer, required for
calculating x(v,w,T) are not easily available. However, they are expected to be common among
resonators fabricated simultaneously on the same wafer, and more or less stable for resonators fab-
ricated through the same processes. Since we have shown that the ratio of |E |> integral between

two resonator geometries is insensitive to the edge shape, we can still predict the scaling of the noise

among different resonator geometries|74].

5.6 Method to reduce the noise

Based on our knowledge of the excess noise, we propose several methods that may potentially reduce
the noise. Some of them have already been put into the action and proved to be effective. Of course,
a better understanding of the physics of the TLS noise may lead to more effective noise reduction

methods.

5.6.1 Hybrid geometry
5.6.1.1 Two-section CPW

Our noise model (Eq. E80) implies that the noise contributions are weighted by |E|?, so TLS
fluctuators located near the coupler end of a quarter-wave resonators should give significantly larger
noise contributions than those located near the shorted end. Meanwhile, the noise measurement

of the geometry test device has demonstrated that the noise decreases rapidly with increasing s,

—1.6
r .

scaling as s This leads us to a two-section CPW resonator design for MKID. As shown in

Fig. 530 the resonator has a wider section (with center strip width s1, gap g1, and length 1) on
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f

Figure 5.30: An illustration of the two-section CPW MKID design. Quasiparticles are generated
and confined in the effective sensor area indicated by the red strip.

}

Figure 5.31: An illustration of the MKID design using interdigitated capacitor. Quasiparticles are
generated and confined in the effective sensor area indicated by the red strip.

the coupler end to benefit from the noise reduction, but a narrower section (with center strip width
S2, gap g2, and length l5) at the low-|E| shorted end to maintain a high kinetic inductance fraction
and responsivity. Meanwhile, we can make the section 1 CPW from a higher gap superconductor
(e.g., Nb) and section 2 from a lower gap superconductor (e.g., Al), to confine the quasiparticles in
section 2. To maximize the noise reduction effect and the responsivity, we should also make I; > I5.

In the example design as shown in Fig. 530, we have s1/s2 = g1/g2 = 4. According to the s, 16
noise scaling, this detector design is expected to give 9 times lower frequency noise and therefore 3

times better NEP as compared to the conventional one-section CPW with sy and gs.
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5.6.1.2 A design using interdigitated capacitor

The wider geometry section in the two-section CPW design can be replaced by a interdigitated
planar capacitor section, as shown in Fig. 53Tl Such an interdigitated design makes the resonator
more compact and easier to fit into a detector array where the space is limited. The strips and
gaps in the interdigitated capacitor should be made as wide as is allowed by the space in order to
maximize the noise reduction effect. Because the dimension of the capacitor (I; ~ 1 mm) is designed
to be much smaller than the wavelength A > 10 mm, the voltage distribution on the interdigitated
capacitor structure is almost in phase and such a structure indeed acts as a lumped-element capacitor
C'. The length of the shorted sensor strip in section 2 is also much smaller than the wavelength, so
the sensor strip acts as an inductor with inductance L’ = Ll;, where L is the inductance per unit
length of the CPW in section 2. The entire structure shown in Fig. [5.31] virtually becomes a parallel

RLC resonant circuit and can be conveniently described by a lumped-element circuit model.

5.6.2 Removing TLS

An obvious way of reducing excess noise is to remove the TLS fluctuators from the resonator,

partially or completely.

5.6.2.1 Coating with non-oxidizing metal

If the TLS are in the oxide layer of the superconductor, coating the superconductor with a layer
of non-oxidizing metal (for example, Au) may get rid of some of the TLS on the metal surface and
reduce noise. However, it can not remove all the TLS because the superconducting film will still
be exposed to air and form oxides at the edges where they are etched off. Because the electric
field strength is usually peaked at these edges, the noise contributions from these remaining TLS,
according to the |E |> weighting, are still significant. EM simulation shows that this method may

only moderately reduce the noise by a factor of a few.

5.6.2.2 Silicides

The surface oxide can only be avoided if the superconducting film is not exposed to air. This
is almost impossible for standard lithographed planar structures but may be possible by using
superconducting silicides (such as PtSi[75], CoSi[76]). These silicides are made by ion implantation
of metal into silicon substrate. With this process, for example, one can bury a entire CPW into the
crystalline Si up to ~ 100 nm deep beneath the surface. One can bury it even deeper by regrowing
crystalline Si on the surface. Because the crystalline structure of Si will not be destroyed and no
amorphous material will be created in these processes, the devices made from these silicides are

expected to be free of TLS fluctuators and excess noise.
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5.6.3 Amplitude readout

As has been shown earlier in this chapter, no excess noise is observed in the amplitude direction and
the amplitude noise, set by the noise temperature of HEMT, can be orders of magnitude lower than
the phase noise at low noise frequencies. Therefore, using amplitude readout may avoid the excess
noise and in some cases give better sensitivity.

Recall from Chapter 2 and [ that a change in the quasiparticle will cause a change in both the
real (o1) and imaginary (o2) part of the conductivity, resulting in an IQ trajectory that is always
at a nonzero angle ¢ = tan~!(do1/d02) to the resonance circle. Calculation from Martis-Bardeen’s
theory shows that tant = 1/4 ~ 1/3 for the temperature and frequency range that MKIDs usually
operate in. This means as soon as the phase noise exceeds the amplitude noise (HEMT noise floor)
by about a factor of 10 (in power), amplitude readout may yield a better NEP than the phase

readout.
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Figure 5.32: Detector response to a single UV photon event. The data is measured from a 40 nm
Al on sapphire MKID illuminated by monochromatic UV photons (A = 254 nm) at around 200 mK.
The quasi-particle recombination time is measured to be 20 us. The inset shows the resonance circle
and the pulse response in the IQ plane. In the zoom-in view of the pulse response, one can identify
the pulse and the noise ellipse. The angle between the average pulse direction and the major axis
of the noise ellipse is 15°.

Fig. shows the measured detector response to a 254 nm UV photon. From the average pulse
trajectory and the major axis of the noise ellipse, we determine ¢ ~ 15°. Applying the standard
optimal filtering analysis to these data, we derived the NEP for both the phase and amplitude
readout, which is plotted in Fig. [5.33] We see that amplitude NEP is a factor of 4 lower than the
phase NEP at low frequency (below 10 Hz). At high frequency (above 5 kHz), the phase NEP
becomes better than the amplitude NEP again. To take advantage of the signal in both directions,

one can analyze the data using a two-dimensional optimal filtering algorithm. It can be shown that
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Figure 5.33: NEP calculated for the phase readout (blue), amplitude readout (green), and a combined
readout (red)

the two-dimensional NEP is given by

NEP,3 = NEP_2 + NEP,2 (5.89)

pha amp

which is indicated by the lowest curve in Fig. [5.33
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Chapter 6

Sensitivity of submm kinetic
inductance detector

In this chapter, we will discuss the sensitivity of submm MKIDs, as an example of applying the
models and theories of superconducting resonators developed in the previous chapters.

As the first stage of the detector development, these submm MKIDs are to be deployed in the
Caltech Submillimeter Observatory (CSO), a ground-based telescope. For ground-based observa-
tions, it is inevitable that the detector will be exposed to the radiations from the atmosphere and
have a background photon signal. Once the intrinsic noise of the detector is made smaller than
the shot noise of this background photon signal, the sensitivity of the detector is adequate. This
requirement is called background limited photon (BLIP) detection.

One of the important questions to be answered in this chapter is whether our submm MKIDs
can achieve the background limited photon detection on the ground, or in other words, whether the
intrinsic detector noise (g-r noise, HEMT amplifier noise, and TLS noise) is below the photon noise

of the background radiation from the atmosphere.

6.1 The signal chain and the noise propagation

In our submm MKID design, we have adopted the hybrid resonator architecture as discussed in
Section [4.4], Section (£.6.1] and shown in Fig.

For the purpose of a sensitivity analysis, the signal chain of the detector is illustrated in Fig.
the submm photon stream (with optical power p) breaks the Cooper pairs and generates quasipar-
ticles (with density ng,), which changes the impedance of the sensor strip Z; and the microwave
output signal V;  (the microwave voltage seen at the input port of the HEMT). We would like to

derive the fluctuations in the output voltage 6V, when the sensor strip is under the optical loading

p.
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Figure 6.1: A diagram of the signal chain and noise propagation in a hybrid submm detector.
p: optical power; Z;: load impedance of the sensor strip ng,: quasiparticle density; V, : output
microwave voltage seen at the input port of the HEMT

6.1.1 Quasiparticle density fluctuations dn,, under an optical loading p

When the sensor strip is under optical loading, the total quasiparticle density ng, is the sum of
the thermal quasiparticle density nfzz (generated by thermal phonons) and the excess quasiparticle

density ng; (generated by optical photons).

Ngp = nby + gy (6.1)

Three independent physical processes are involved in changing ny, and must be modeled: thermal
quasiparticle generation, excess quasiparticle generation, and quasiparticle recombination. We can

write out the following rate equation,

dngp(t)

) (g™ (1) + g (1) — (1) (62)

where g*"(t), g°*(t), and r(t) are the rates for the 3 processes.

6.1.1.1 Quasiparticle recombination ()

The average quasiparticle recombination rate only depends on the total quasiparticle density ng,

and is calculated by[77]
(r(t) =r(ng) = Rngp. (6.3)

With this definition, the quasiparticle lifetime is given b

— = 2Rn,, (6.4)

1We usually express the quasiparticle lifetime as Tq;l = 7'(;1 +2Rngp, to account a finite lifetime 79 at low ngp. In
the regime that submm MKIDs operate, ngp from the background loading is usually large enough so that the Rngp
term will dominate over the 75 ! term. For this reason, we ignore the 74 ! term throughout the calculations in this
chapter.
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where R is the recombination constant.

‘We write

r(t) = ——= = (r(t)) + or(t) (6.5)

where V' is the volume of the sensor strip and R(t) represents the recombination events in the volume
V. R(t) is often modeled by a Poisson point process[78] and it can be shown that the auto-correlation

function of ér(t) is a delta function

<or(t)or(t') > = 72 (R(t))d(t—t") = VRngpé(t -t (6.6)
and the power spectrum is white
- 2
Ssr(f) = Vanp' (6.7)

6.1.1.2 Thermal quasiparticle generation ¢*"(t)

The average thermal generation rate only depends on the bath temperature 7' and is in balance
with the thermal recombination rate when the system is in thermal equilibrium and without excess

quasiparticles
(9™(1)) = g"™(T) = r(ngy(T)) = Rngy(T)? (6.8)

where nfz}; is the thermal quasiparticle density given by Eq. [2.93]

‘We write

_2G"™()

g™ (t) %

= (g"(1)) +dg™(t) (6.9)

where G'"(t) represents the thermal generation events, which is also modeled by a Poisson point
process. The power spectrum of §g*"(t) is

o2

Ssqun (f) = VRng’;(T)2. (6.10)

6.1.1.3 Excess quasiparticle generation ¢°*(¢) under optical loading

We assume that the number of excess quasiparticles generated by each detected submm photon
is given by ((v, A), which in general, depends both on the photon energy hr and the gap energy
A (binding energy of the Cooper pair). An empirical assumption about (v, A) often adopted for

photon to quasiparticle conversion is that a fraction of 7. &~ 60% of the photon energy goes to the
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quasiparticles,

_¢

== (6.11)

Te

Thus, the excess quasiparticle generation rate g°*(¢) and the photon detection rate GP"(¢) (num-

ber of photons detected per unit time) are related by

g°r(t) = %Gph(t). (6.12)

The statistical properties of G¢*(t) can be found in photon counting theory. In addition, to
simplify the discussion, we make the following assumptions:
1. The optical loading is from the black body radiation with mean photon occupation number
Mo = (¥ — 1)1
2. The photon numbers and their fluctuations of different modes are independent;
3. The detector has a narrow band of response ([ dv — Av);
4. The detector is single mode (AQ = A?, where A is the area of the detector and § is diffraction
limited solid angle) and is only sensitive to one of the two polarizations;
5. The detector has a quantum efficiency of 1. (A reduced quantum efficiency 1 can be introduced
with the substitution 7p, — n7iph.)

Under these assumptions, we can derive

< GPM(t) >= Avmg, (6.13)
p =< GP"(t) > hv = Aviy,hy (6.14)
< SGPM()SGPM (') >= Aviipn (1 + Tpn)d(t — 1) (6.15)

where p is the average optical power received by the detector. Therefore

ex __ _ex C — Cp
(g () = 9" (p) = ; AVTpn = 205 (6.16)
Ssgex (f) = < 2Auﬁ (1 +Tpn) = < 2£(1—4— P ). (6.17)
g v P P V) hv hvAv
6.1.1.4 Steady state quasiparticle density 7y,
The steady state quasiparticle density 7y, can be derived by solving
d t
dngp(®) _ (6.18)

dt
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which leads to a quadratic equation

Cp

—2 B2
Rm, — anp(T) v =

(6.19)

We usually operate at a low enough temperature so that the excess quasiparticle generation rate

dominates over the thermal quasiparticle generation rate
9 (p) > ¢"™(I). (6.20)

Under this condition, the thermal generation terms can be neglected and the steady-state equation

reduces to,
_ cp
Rn;, =
" T v

Ngp =/ hf}zv (6.22)

6.1.1.5 Fluctuations in quasiparticle density dng,

(6.21)

and the positive root is

The fluctuations in the quasiparticle density dng,(t) = ngp(t) — Tigp can be shown to satisfy the

following equation,

domngp(t
"d%() = —2RMy0ng(t) + (69" (8) + 8957 () — or(t)] (6.23)
This allows us to calculate the power spectrum of dng, in the Fourier domain as,

B 7_2 N 7_2

Song, (f) = ﬁ[ssw( ) + Ssgex (f) + Sor(f)] = ﬁsgr(f) (6.24)

where 74, = T4p(Tgp) and we have used the fact that the 3 processes are independent. Under the

condition that the excess quasiparticle generation dominates over thermal generation,

Sgr(f) = Sér(f) + Ssges (f)
2¢p ¢\ p P
vz (V) H(l + huAl/) (6:25)

where Eq. and Eq. [6.2T] have been applied. By applying Eq. and Eq. [6.22] we can further

derive the spectral density of the fractional quasiparticle density fluctuations (background limited),

BLIP N Ssng, (f) B 1/4 {(2/@4— Dhv 1
S(S"qp/nqp(f) - ﬁgp - 1+ (27T.f~7-qp)2 P + Av . (626)
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Note that the power spectra derived above are double-sided with —oo < f < 00.

6.2 Noise equivalent power (NEP)

Now we are ready to calculate NEP of our submm MKIDs limited by different noise sources.
Throughout the derivation that follows, we make the assumption that the noise frequency f of
interest is small compared to both the resonator bandwidth f < f,/2Q, and the recombination
bandwidth f < f, /277,
We also assume that the maximum microwave power allowed to be dissipated in the sensor strip

equals the submm optical power absorbed in the sensor strip times a fudge factor £ >

Pr = &nep. (6.27)

This ensures that the microwave readout power will not overwhelm the optical power in generating
quasiparticles and so the quasi-particle population in the sensor strip is always dominated by the

submm photon generated quasiparticles. For simplicity, we assume £ = 1 in future derivations.

6.2.1 Background loading limited NEP

The directive of the logarithm of Eq. [6.2T] yields a very simple and useful relationship

dMgp/Mgp 1
— = — 6.28
The background loading limited NEP can be calculated by
- —\da.. T |
NEPBUP (f) = S(};?,nLIF;n (f) anl/”qp (6.29)
qap ap p

\/(éhl/—i-hu—i-%)p

2A P
\/( o E) P (6.30)

2In theory, the microwave frequency (< 10 GHz) is far below the gap frequency of Al (~90 GHz) and can not
directly break Cooper pairs. However, in experiments we have observed both a shift in the resonance frequency and a
decrease in the quality factor as the microwave power increases, which suggests that the microwave power (dissipated
by the surface resistance) is able to increase the quasiparticle density in the superconductor through some unknown
mechanism. Because part (perhaps most part) of this dissipated microwave power goes to the phonon bath, the fudge
factor must be larger (perhaps much larger) than 1.

where Eq. [6.26] and Eq. [6.11] have been used.
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6.2.2 Detector NEP limited by the HEMT amplifier

The HEMT noise temperature T;, is equivalent to a voltage fluctuation 6V5_ seen at the input port

of the HEMT, with the noise power spectrum given by
ST (f + f) = kT Zo (6.31)

which, after IQ) demodulation, leads to a (isotropic) noise

SioM(f) = kTnZo/2 (6.32)

in either the phase or amplitude quadrature of the IQ voltage output. In order to calculate NEP
utilizing Eq. [6.28] we would like to convert the HEMT noise to an equivalent fluctuation in the
quasiparticle density 0ngp/nqgp-

In Section @4l we have discussed the the dynamic response of a hybrid resonator. According to

Eq. B3 and 58, under the optimal condition (which maximizes the responsivity)

Qec=Qiand f = f, (6.33)

the spectrum of the fluctuations in the microwave output voltage 6V;~, due to fluctuations in quasi-

particle density 0ngp/ngp, is given by

Vo (f+F) = Vitota (f) =/ ZZPZ oy (/) [1+ ]EEE:” (6.34)

Nap

where P, is the power dissipated in the sensor strip. After 1Q) demodulation, the voltage noise in
the IQ output iﬁ

- ZuP
Sio(f) = % A (6.35)

where r, = Re(x)/Im(k) for phase readout and r, = 1 for amplitude readout. Therefore, the
equivalent noise spectrum of the HEMT amplifier, in terms of quasi-particle fluctuations dngp,/ngp,

is given by

= 4ET,
ST = (6.0

With Eq. 628 627 and [6.36] the HEMT limited NEP for both amplitude readout and phase

3Note that the noise power delivered to the load by 8V is |§V2|?/2Zo and a factor of 1/2 arises.



138
readout can be calculated by

-1

dngp /mgp

dﬁqp / ﬁqp
dp

[16KT,p
. 6.38
Ener ( )

6.2.3 Requirement for the HEMT noise temperature 7}, in order to achieve

BLIP detection

(6.37)

The condition for background limited detection is that the detector noise is dominated by the
background photon noise but not the HEMT amplifier, or equivalently, the HEMT limited NEP
should be below the BLIP NEP:

NEPBLIF » NgpHEMT (6.39)

which leads to the following criteria,

2A P 16kT,p
h - . 6.40
(776 Thet P> Ener? (640)
This imposes a requirement for the HEMT noise temperature,
2(2A +n.h en/A
7, < RAt 77162 +1ep/Av) (6.41)

We assume that the optical loading is equivalent to a blackbody of temperature Tipaq in front
of the telescope and the telescope has an optical efficiency of 7opt, so that the optical power the

detector directly sees can be calculated from
b= noptleoadAV (642)
which leads to

T, <

2
T
: o Ak + nehv/k + nenopt Toad)- (6.43)

==

The required HEMT noise temperature T}, in order to achieve BLIP detection is calculated for
the four mm/submm bands used in MKIDcam and are listed in Table[6.1l The appropriate effective
loading temperatures Tj,aq quoted for CSO, a photon to quasiparticle conversion factor of . = 0.6,
a fudge factor of £ = 1, an overall optical efficiency of n.pe = 25%, and a ratio of 3 between the

phase signal and the amplitude signal (r, = 3 for phase readout or r, = 1 for amplitude readout) are
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assumed in these calculations. For each band, the detector sees an optical loading around 10 pW.
Also listed in Table[61 are the BLIP NEP (NEPBMP) HEMP amplifier limited NEPs for the phase
readout (NEPE&MT) and amplitude readout (NEPEIEgIT), where T,, = 5 K is assumed in these NEP
calculations.

We find that the values of T7™P listed in Table are all less than 5 K, while TP all greater
than 5 K, the noise temperature of the HEMT currently in use. This means that the BLIP detection
is not achieved in the amplitude readout; it would be achieved by using the phase readout, if there
were no excess phase noise. However, the fudge factor we assumed in the calculation was very
conservative £ = 1. In reality, £ could be much larger than 1 and the amplitude readout might have

already been or very close to be background limited, using the hybrid resonator design under the

optimal operation conditions.

Band Ao | 10 (AV) | Tioaa | T2 | TPB | NEPPMY | NEPLYT| NEPLYT | NEP) 2
[um] | [GHz] | [K] | [K] | [K] | [107"7] (10777 &) (10717 =] [107 10 ]

1 1300 | 230 (60) | 50 12 | 106 | 6.7 13.8 4.6 4.6

2 1050 | 285 (50) | 60 14 | 12372 13.8 4.6 4.6

3 860 | 350 (30) | 1025 | 1.9 | 17.0 | 8.6 14.0 47 47

4 740 | 405 (20) | 162.5 | 2.5 | 23.0 | 10.3 14.4 4.8 4.8

Table 6.1: Requirement for the HEMT noise temperature T, in order to achieve BLIP detection cal-
culated from Eq.[6.43l \g: center wavelength; vy: center frequency; Av: bandwidth; Tjoaq: effective
loading temperature in front of the telescope; T2™P, TPha: required HEMT noise temperature 7T}, for

amplitude and phase readout; NEPPMF: background loading limited NEP; NEPEH%/IT, NEPE}EMT:

HEMT limited detector NEP for amplitude readout and phase readout, calculated using 7,, = 5 K

and a phase-to-amplitude signal ratio of 3; NEP;{;S : TLS limited detector NEP for phase readout.

All NEPs are quoted at f = 1 Hz with f defined in —oo < f < 0.

In deriving the results in Table [6.1], we have made several assumptions. One of the important
assumptions is that Q; is set by the superconductor loss in the sensor strip. As long as this condition
is satisfied, we find the BLIP criteria Eq. [6.43] does not depend on the detailed resonator design

parameters, such as the film thickness, the resonator geometry, or the kinetic inductance fraction.

6.2.4 Detector NEP limited by the TLS noise

Because there is no excess noise in the amplitude direction, NEPEIEQ/IT quoted in Table are
directly achievable when implementing the amplitude readout. For phase readout, however, the
NEP will be greatly degraded due to the excess phase noise caused by the TLS.

To predict the TLS limited detector NEP, we need to estimate the frequency noise for our submm
MKID. This can be done by scaling the measured noise according to Eq.[H.6l The noise level of Nb
on Si resonator at the internal power of -40 dBm shown in Fig. is chosen as the noise standard,

from which the noise will be scaled. According to Eq. L6l the noise of different resonators should

scale with a noise scaling factor Ny = I} /(C2Vpl,.). So the parameters C, I, Vo, and I} are directly
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relevant to the noise scaling.

The detailed design parameters of a hybrid resonator used in the submm MKID array, as well
as the relevant parameter of the Nb on Si resonator, are shown in Table In this table Band
1 parameters are used in the calculations. Those parameters directly relevant to the noise scaling
are marked with the stars. The values of I are evaluated using the conformal mapping solution as
described in Section B.I.2.3 assuming § = 0.33 (internal angles of 27/3).

From the evaluation of the noise factor Ny, we find the frequency noise of the hybrid resonator
at its optimal operation power (P, = —46 dBm) is larger than that of the Nb on Si resonator at the
internal power of -40dBm by a factor of 4.2. The predicted frequency noise for the hybrid resonators
are 2.1 x 10719/Hz at 1kHz and 6.6 x 107'¥ /Hz at 1Hz, if a 1/\/}~ spectral shape is assumed.

To calculate NEP, the following frequency responsivity factor is needed

Sfr/ fr _ Sfr/fr Ongp/ngp b (6.44)
op 0MNgp/Mgp op 2Q; 2p

where the following formula, derived from Eq. and [£50] is applied:

6Qi 2 fr @ {1 jRe(’f) (6.45)

Ngp

Finally, the TLS noise limited detector NEP for phase readout is given by

S fr/ fr

5 Ssr,. (f)/ f2- (6.46)

—1
- 4pQ;
NEP 2 =1/ Sss, (f)/ £2 = IZQ

The results of NEP;{;S are listed in Table for all four bands and in Table for Band 1.
We can see that for phase readout, the TLS limited detector NEP is a factor of 10 higher than
the HEMT limited NEP and is a factor of 5 — 7 higher than the BLIP NEP. Therefore, the BLIP
detection is not achieved using the current design with the phase readout. Currently we are working

on modifying the design to implement a interdigitated capacitor scheme, as discussed in Sec.[5.6.1.2,

to reduce the TLS noise.
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[10~16W //Hyz]

Parameter Meaning Nb/Si hybrid Reference
fr [GHZ] resonance frequency 4 7.5

Sp [pm center strip width 3 6 Fig. 44
gr [pm gap width 2 2 Fig. 44
t [nm] film thickness 200 60

ls [mm] length of the sensor strip (Al) - 1 Fig. 44
V [pm?] volume of the sensor strip (Al) - 360

[, [mm] total length of resonator 8.3 4.3 Eq. 429
*C, [pF/m] capacitance per unit length 142 171 Sec. B.1.2.3]
L, [nH/m] inductance per unit length - 349 Sec. 3.1.2.3
Z, Q] characteristic impedance - 45 Eq.[43
a* partial kinetic inductance fraction - 0.2 Sec. [3.2.5]
T. [K] transition temperature - 1.35

Ap [meV] superconducting gap - 0.2

T [K] operation temperature 0.12 0.22

% 1077 pm?] 2eflel - | 1.19+3.35j | Eq.
¥ a power index - -1 Eq. .80
p [pW] detector optical loading - 10.3 Eq. 642
R [um=3s71] recombination constant - 9.6 Ref. [TT]
Ngp,0 [4m ] steady-state quasiparticle density - 7403 Eq. 622
Tap [148] quasiparticle recombination time - 7 Eq.
Q; internal quality factor - 12200 Eq. 453
Q. coupling quality factor - 12200 Eq. 633
Q- resonator quality factor - 6100 Eq.
P, [dBm] readout power - -79 Eq. 459
P, [dBm] internal power -40 -46 Eq.
*Vy [mV] voltage at open (coupler) end 6.5 3 Eq.[HA4
I3 [V2pm ™2 contour integral on metal surface 1.35 1.95 Sec. 5.5.2.2
«Ny =13 /(C2Voly) noise scaling factor 1.24 5.2 Eq. [H.6l
Sst.(1kHz)/ f? noise level at 1 kHz 0.5 2.1 Fig.
[10~19/Hz]

Sst.(1Hz)/f? noise level at 1 Hz (1/1/f shape) 1.6 6.6 Sec. 5311
(10718 /Hz]

% [1/W] responsivity - 5.6 x 10° Eq.
NEP > TLS limited NEP for phase readout - 4.6 Eq.

Table 6.2: Design parameters and derived quantities involved in the calculation of TLS limited

detector NEP
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Appendix A

Several integrals encountered in
the derivation of the
Mattis-Bardeen kernel K(q) and

K(n)

A.1 Derivation of one-dimensional Mattis-Bardeen kernel K (1)

and K(q)

The Mattis-Bardeen non-local equation 2.11] is a vector equation in the general form of three-

dimensional convolution
T = /f{(ﬁ) AV (A1)

where
- RRI(w,R,T)e R/l

R4
R=('-a)i+ ' —9)i+ (& -2z (A:3)

(A.2)

K (é) is a tensor and C' is an unimportant constant. In the configuration of a plane wave polarized
in the z direction incident onto the surface of a bulk superconductor in the x — y plane as shown in

Fig. 211 we need to derive the one-dimensional form of Eq. With
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we can rewrite Eq. [A.I]in Cartesian coordinates as

where

Jz(2)

Using the property that

we get

Kz —=z)

—

Ry

5 P2 —R/l

/ K (2 — 2)Ay(2')d’

4

L B2 —R/l
2 —2z) = C’//(a7 F) I(%R’T)e da'dy’.

) = / F(2")8(2 — 2")dz"

—Rl/l
C/// Rl T)e 8(z" = 2")dx' dy' dz"

Z- Rl) ( , R, ) —f/l / " D
C'/ 7 0((z' = 2) = (2" = 2))dR,;

4
1

(@' —2)2+ (y — )+ (2" — 2)z.

This integral can be worked out in spherical coordinates

Kz —2)

(A.10)

(A.11)

(A.12)

00 T 27
= C/ de/ sin9d9/ dgsin® 0 cos? ¢I(w, Ry, T)e #1/15(z' — z — Reos )

= Cw/ de/ dfsin® 0I(w, Ry, T)e F1/15(2' — z — Ry cos )

= Ow/ de/ dt(1 —t3)I(w, Ry, T)e ™/15(2' — 2 — Rit)

= Cw/ dtl
-1

Cr fo

wa dti=t-

2 — z>
It]

— 2

1

dtl\tf I (w, Z_Z T)ef% Z—2z2>0
“I(w, ,T)e_z,t?z 2 —2<0

/ dRyI(w, Ry, T)e T/I5(Ry —
0

[¢]

1 2
1—1¢ — 2z
= C7T/ dt I(w, |Z Zl,T)e_‘ o
0

t

t
e A T
= v ul— — — W, |z —ZlUu .
1 u ud ’

(A.13)
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Finally, we have
RPEN ~Inlu/1
Kn) = Cr du(= — —)I(w, |n|u, T)e™" (A.14)
1 u u

withn=2"— 2.
The one-dimensional kernel in Fourier space K(g) can be worked out by Fourier transform of

Eq. [ATJ4l Instead of working on the final result, we start from one of the intermediate results in

Eq.[A13

K(q)

_/ K(n)ejq"dn

o) 1 o)
_Cw/ de/ dt(1 — t2)1(w,R1,T)e*Rl/l{/ 5(n — th)ej‘mdn}
0 -1 —o

oo 1
_OTF/ de/ dt(1 — 1)1 (w, Ry, T)e—T/leiafat
0 -1
(A.15)

where the minus sign arises from the definition J,(¢) = —K(q)Ax(¢) in Eq. The integral with

respect to ¢ can be easily carried out

1 . 4 .
/1(1 _ @)ty — (qu)Q[Slgéfl — cos(qRy)). (A.16)

Finally, we get

> sinqR;  cosqR; _Ri /I
K = —Ow/ — I(w, Ry, T)e /1R, A7
(q) 0 [(qu)g (qu)g] ( 1 ) 1 ( )

A.2 R(a, b) and S(a, b)

We encounter the following two integrals in solving for K(q):

/0 e_bw(sl?% - %) cosaxdx = R(a,b) (A.18)
/0 e_bw(t# - Coxs;v)sin azxdx = S(a,b). (A.19)

They can be worked out by method of Laplace transform. Let s = b — ia and

W(s) = R(a,b)+iS(a,b)
= / i(smx — cosz)e”CTITqy
0 x X

2
= /O {%(SIEI—cosx)}e*”dz. (A.20)
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Now the problem becomes finding the Laplace transform of the term in the curly brackets. From

the two tabulated Laplace transforms:

1
S
L(cosz) = T (A.22)
and by iteratively applying the property of Laplace transform:
Lif(e)) = | L (@)ds + £0) (A.23)
0
W (s) works out to be
s 8241 1
W(s) = ~3 + arctan —. (A.24)
S
It follows that
R(a,b) = Re[W(b—ia)]
b ab, b+ (1+a)? 1 9 o 2b
- _5 + Z ln[m] + Z(l + b —a ){arctan[m] + nmw} (A25)
S(a,b) = Im[W(b—ia)]
a ab 2 1 9 oy D2+ (1+a)?

nx:Ofoer—i-aQ—lZO, ng=1forb>+a2—-1<0.
In our numerical program, R(a,b) and S(a,b) are evaluated by Eq.[A.25 and Eq. [A.26]

A.3 RR(a, b), SS(a, b), RRR(a, b, t), and SSS(a, b, t)

The following two integrals are encountered in solving for K (n) in the thin film surface impedance

calculation:

8

Sl 2k

—~

- 8-

Je~*“ cos(bu)du = RR(a,b) (A.27)

8

—

Je~*“sin(bu)du = SS(a,b). (A.28)

—

Let s = a + jb and define

X(s) = RR(a,b)—jSS(a,b)

= /OO(l — i)e‘sudu. (A.29)
1

v ud
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The complex-valued integral of X (s) can be worked out and the result is

X(s) = e ¥ — Eq(s) (A.30)

where Fi(s) is a special function called exponential integral. In our numerical program, RR(a,b)
and SS(a,b) are evaluated from first evaluating X (s) from Eq. and then taking the real and
imaginary part. Separate expressions of the real and imaginary part are also available and given by
Popel[40].

When solving for

2 %
= ;/ K (n)dn (A.31)
0
two other integrals are encountered
9 t/2
n / RR(an,bn)dn = RRR(a,b,t) (A.32)
0
2 t/2
7 SS(an,bn)dn = SSS(a,b,t). (A.33)
0
With s = a + jb, we define
Y(s,t) = RRR(a,b,t) jS’SS(a b,t)

t/2
= / / — — —)e dudn.

(A.34)
The complex-valued integral Y (s,t) works out to be
1 1. 2(1 et/
Y(s,t) = R Yol S B
(5,) /1 (u u3) stu “
4 st 1 4. _ t/2 2t2
= — — - —)e~ " 1-— Ey(st/2 A.

(e a0 ) B, (4.35)

In our numerical program, RRR(a,b,t) and SSS(a,b,t) are evaluated from first evaluating the
complex Y (s) from Eq. [A:38] and then taking the real and imaginary parts of Y(s). Separated

expressions of the real and imaginary parts are also available and given by Popel.
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Appendix B

Numerical tactics used in the
calculation of surface impedance of
bulk and thin-film superconductors

B.1 Dimensionless formula

The integrals of K(g) in Eq. and Eq. are made dimensionless by redefining the following

normalized variables:

Ay ANy — —

T =— G=—, aT =G+, &~ =a1 — @ (B.3)
q q

and K(q) becomes
9 3
Re{A[oK(q)} = 5 X
/1 1 2fE+ et i ar 4B + S(az, a1+ b)) de
— €E+w az, a; a2, a1 €
max{l—w,—1} Vv 1-— e (E + G)Q -1

1 7t o _ - _ —_
s g [ -2 DIl + U@ ~ lo(®) — US(@T e
1-w
- /1 1 - (@) — [+ D)lg(®) — 1S(aF, )de
n /100[.7”(5)—f(€+w)][g(€)+1]S(a_,5)d€} (B.4)
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{20k (@)} = 2 x

2w

-1
{‘%/ 1~ 2f(e+@){9(e) + UR(@.b) + [9() — LIR(aT.b)}de

—w

+ /100[f(€)—f(€+5)]{[9(€)+1]R(a ,5)+[9(€)—1]R(a_+,5)}d€}- (B.6)

B.2 Singularity removal

The integrals in Eq. [B.4] and Eq. [B.6l involves finite and infinite integrals with singularity at lower

or upper limit. They can be pre-removed by the following change of variables:

b Jia
/ \/].;'(!TT)adx:2‘/O f(y2+a)dy,x:y2+a
f(z)

/ab \/‘%dfc—2/omf(b—y2)dy, x="b-y
/abmﬁLfmdx: [ %‘”/ Vosavab
[ [t z=sin ®

We also encounter a singularity in the integral of Eq. 236l at @ = 0. To remove it, we first split the

dzr

integration interval of [0, co] into [0, 1] and [1, 00]. Then the first integral can be rewritten as

/1 ln(l + A%OI(V(C2/ALO)d62)
0

QQ
1 1

- / I0(Q? + Ao K (Q/ALo)dQ) — / In Q%dQ
0 0

1
/0 I0(Q? + A2 K (Q/Aro)dQ) +2

which is no longer singular at @Q = 0.
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B.3 Evaluation of K(n)

It can be derived that the expression of K(n) ( n > 0) can be obtained from the expression of K (q)

with the following substitutions

1/q -
R(a,b RR(a,b
(a,b) — (a,0) - (B.9)
S(a,b) — SS(a,b)
_ qK4(q) - K@)
Similarly, K, can be obtained from the expression of K (g) with the following substitutions
1/q — t/2
R(a,b RRR(a,b,t
(@) = (a,b,1) (B.10)
S(a,b) — SSS(a,b,t)
_ lIK4(‘1) — Kun

Thus the numerical integrals of K(q) developed for the the bulk case can be largely reused with

slight modifications for the thin film case.
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Appendix C

jt/j- in quasi-TEM mode

Figure C.1: Current and charge distribution on the surface of the center strip

The continuity equation of charge reads

- dp
. £ = 1
V-J+ En 0 (C.1)
which can be rewritten into the following form
Ve ji = Bz — jwp. (C2)

For a CPW in a homogenous media, a pure TEM mode exists. In this mode,

Bj. = wp (C.3)
Jg =0 (C.4)

holds on every point on the conductor surface. From an integral of Eq. along an arbitrary

contour enclosing the center conductor, we get

Bl = w@ (C.5)
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where @ is the total charge (per unit length) on the center strip. For a CPW with substrate-air
inhomogeneity, Eq. still holds macroscopically. From the solution to the magnetostatic problem,
I, splits into equal halves on the bottom and top sides of the center strip and j, is symmetric on
the two sides. From the solution to the electrostatic problem, we have an unequal distribution of
total charge @, with Q/(1 + ¢,) and Qe /(1 + ¢,) on the top and bottom sides (see Fig. [C]). In
this case, Eq. and no longer hold on every point and the magnitude of V, - j; may be on the

same order of (35, at some points:
Vi i ~ B (C.6)

Integrating Eq. in the rectangular area as shown in Fig. and applying the divergence theorem,
we find

(ji — 3k ~ Bjzwh

Je ~ 32 =Gt ~ Biaw (C.7)
which leads to
Jt w
=~ —. C.8
FAlaY (C.8)

The result in Eq. can be understood by looking at the charge redistribution: j, redistributes
the charges along the propagation direction (z direction) and j; redistributes the charges within the
cross-sectional plane; in a cycle, j, effectively moves the charges by the distance of a wavelength A
while j; moves the charges by a distance no greater than the transverse dimension w. Therefore,
the ratio of j, to j; is on the order of the ratio of the wavelength to the transverse dimension of the

transmission line.
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Appendix D

Solution of the conformal mapping
parameters in the case of t < a

We first write uy, uf, us,ub as

up =a+ 6 (D.1)
uz =b—dy (D.2)
uy =uy —dy (D.3)
ubh = ug + ds. (D.4)

01, 02, d1 and ds all go to zero as t goes to zero. To solve the integral equations in Eq. [3.22H3.28]

we rewrite the integrand G(u) as

G(w):\/’w—u’l.w—i—u’l.w—u’g.w—i—u’2 (D.5)
w

—UuU; w+uy w—uy W+ u2
which is the square-root of a product of 4 fractions. Because u; &~ u} and us = u}, the pair of zero
and pole in each fraction are very close to each other. Whenever the pair of zero and pole are far
away from the integration interval, we replace the fraction with its first-order Taylor expansion, e.g.,
w — u) dy

~l— ———. D.
w — Uy 2(w —uq) (D-6)
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Eq.[B.23] can be approximately worked out

t = / G(w')dw'

w1 w —
/ Ldw' + o(t)
" U —w

Q

7Td1
In the same way Eq.[B.28 yields ¢t = wds/2. Therefore
2t
di=dy=d=—. (D.8)
™
Eq.B.22  and Eq. B.24] can be worked out with a few more steps
“ ) —w d d d
~ 1— dw'
a up —w' 2(w'+u1)+2(w’—u2)+2(w’+u2)} v
L—wd (M 1 1 1
~ a-%,z - + + dw’
up—w 2 ) w 4w w —uy W +us
\/a d U1 + usg Us
= —d)+dlog ———F———= | + - | —log2 +log — +1
<\/U1(Ul ) +dlog T Ja 4 2( 082 +log — - oguz_ul>
d 3log2 d d d a+b
= - — = d+ —log — + =1
My T T fTgleg TRy
w2 —uh uh —w d d
b—a =~ L2 1-— dw’
“ / w — uy Ug — ’{ 2(w’+u1)+2(w’+U2)] v
~ w’—u’lu'Q—w’+/“2£l 1 n 1 dw’
w' —ug ug — W' w2 w +ur W+ us
d d w1 + Uz 211,2 >
~ —u+d—log—— | +=(-1o +lo
<u2 b & 4(’(1,2 — U1)> 2 < & 2uq & U1 + uo
d d a+b 2b
= — d—log —— = -1 1 . D.9
(1t tom g )+ (low g 1on ) D9
The sum of the two equations gives
d 3log2 d d d b—a
b-uz—i-i—i— > d—§10g5+510ga+b. (D.10)
Therefore
d 3log2 d d b—a
to= gty dm gl tyle iy
d 3log?2 d d b—a
= = d— —log -+ —log——
02 5" TR R

(D.11)
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and Eq. is derived.
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Appendix E

Fitting the complex transmission
to1 data

In this appendix, we discuss how to determine the resonance parameters f,., Q,, and Q. by fitting

to the measured complex t9; data from the network analyzer.

E.1 The fitting model

The total transmission t2; through the device, amplifiers, and cables measured by the network
analyzer, can be written as

(E.1)

to1(f) = ae”2™/T ll L Qu/QeeT ] |

1+2jQ(LLx)

Eq. is our fitting model which contains seven parameters: arglal,|a|, 7, fr, @Qr, @, and
¢o. Here a is a complex constant accounting for the gain and phase shift through the system.
The constant 7 accounts for the cable delay related with the path length of the cables. The other

parameters have been introduced in Chapter [

E.2 The fitting procedures

Although it is possible to use Eq. and directly fit for all the 7 parameters simultaneously, such a
nonlinear multi-parameter fitting problem is non-robust and extremely sensitive to the initial values.
For this reason, we usually break down the 7-parameter fitting problem into several independent
fitting problems, each only containing one or two parameters. The fitting results obtained from
this step-by-step method are usually quite good. If further accuracy is needed or the statistics of
the fitting results are required, we will finally run a 7-parameter refined fitting, using the results

obtained from the step-by-step method as initial values.
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270

Figure E.1: Fitting the resonance circle step by step in the complex plain. The data in this plot is
from a Al on Si resonator.

E.2.1 Step 1: Removing the cable delay effect

Let {(fi,zi)} be the set of transmission data we would like to fit, which is measured by a network
analyzer at a low temperature (usually between 50 mK and 200 mK for Al devices).

The cable delay time 7 can be measured directly using the network analyzer’s “electronic delay”
function. At off-resonance frequencies the ty; data reflects the pure cable term e2™7/7  which is
usually a circle or an arc centered at the origin. When the electronic delay 7 is set to an optimal
value, these circles (arcs) should shrink to a blob of minimal size. For example, in our current setup
7 is usually around 30 ns, which depends on the length of the coaxial cables in use. Another way to
remove the cable effect is to normalize the low temperature transmission data z by the transmission
data z, measured at a much higher temperature (above T./2). At this high temperature, the
superconductor loss becomes so large that almost all the resonances have died out, leaving only the
trace of the cable delay term (see the green curve in Fig. [E]]).

After this step, with the cable delay term removed, the new data z’ should now appear as a circle

(see the red curve in Fig. [ET]).

E.2.2 Step 2: Circle fit

In this step, we will determine the center z. = x. + jy. and the radius r of the circle z’ resulted

from the previous step. For this circle fitting problem, we use the method described by Chernov
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and Lesort[79]. In this method, the objective function to be minimized is

n

]'—(l'c, ycaT) = Z[Awf + B;p; + Cy; + D]2
i=1
which is subject to the constraint B2 4+ C2 — 4AD = 1. Here w)’

F = ATMA and the constraint is ATBA = 1, where

A= (A,B,C,D)T

Mww me Myw Mw
Mww MLE:E MIU MI
M = ’
M, M, M, n
0 0 0 -2
0 1 0 0
B:
0 0 1 0
-2 0 0 0

— 12 12
=z; ty;.

(E.2)

In matrix form,

where M;; are the moments of the data. For example, M, = Z?:l z;w; and M, = Z?:l T;.

This is a constrained nonlinear minimization problem which can be solved by the standard

Lagrange multiplier method. With the introduction of a Lagrange multiplier 7 we minimize the

function
F.=ATMA —n(ATBA - 1)
Differentiating with respect to A leads to the linear equation
MA -nBA =0
1 can be solved from the equation

det(M — B) = 0

(E.7)

(E.8)

Q(n) = det(M —nB) = 0 is a polynomial equation of 4-th degree. It can be shown that Q(n) = 0 has

3 positive roots and the smallest one minimizes F,. Thus 7 can be efficiently found by a numerical

root searching algorithm with start value of n = 0. Once 7 is determined, other parameters A, B C,
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Figure E.2: Fitting the phase of z/ (a)Z” (b)6;(f) (blue) and its fit(red)

D can be obtained from Eq. and the circle parameters are given by

The purple dashed curve in Fig. [E.Il shows the result from this circle fitting procedure.

E.2.3 Step 3: Rotating and translating to the origin

In this step, we translate the circle to the origin and align it along real axis by the following

transformation:

7 = (2 — ) exp (—ja) (E.10)

where z. and o = arg(z.) are the results from circle fitting. This is equivalent to setting up a new

coordinate system at the center of the circle as shown in Fig. [E.1l

E.2.4 Step 4: Phase angle fit

In this step, the phase angle 6 of 2/ as a function of f is fit to the following profile:

0 = —0y + 2tan"'[2Q,(1 — i)] (E.11)

fr
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tion:

fi

where 6; = arg(z!’). We use Matlab curve fitting toolbox to carry out a robust non-linear minimiza-
0; + 6y — 2tan_1[2QT(1 — —)]

- 2} . (E.12)

fr, Qr, and 6y are determined from the fit. The phase angle data and fit are shown in Fig.

wf3

i=1

Figure E.3: Geometric relationships used to determine Q¢ and ¢g

E.2.5 Step 5: Retrieving other parameters

The parameters Q. and ¢y can be found from the geometric relationships illustrated in Fig. [E.3
According to Eq. 440, Q. is

|ze| + 7
c = r. E.13
Q=g (5.13)
And ¢y is related to 6y by
gbo = 90 — arg(zc). (E14)

E.3 Fine-tuning the fitting parameters

The parameters obtained from the step-by-step fitting procedures can be used as the initial values
to run a refined multi-parameter non-linear fitting. This time we fit z; directly to Eq. (EIl). We use
Matlab curve fitting toolbox to do a robust non-linear least-squared fitting. One of the advantages
of using the curve fitting toolbox is that the confidence interval for each parameter is automatically

reported by the toolbox. To evaluate and compare the goodness of the fits, we calculate the reduced

x? by

1 >0 e — zae)?
P L= . (E.15)
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Figure E.4: Refining the fitting result from the step-by-step fitting procedures. The result from the
step-by-step fitting procedures is plotted in (a) and (b), while the result from the refined fitting
procedure is plotted in (¢) and (d). Data z (blue) and its fit zg¢(red) are plotted in (a) and (c). Real
(blue) and imaginary (green) part of the residues (zg; — 2) are plotted in (b) and (d).
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where n — 7 is the degree of freedom in the fitting problem. o2 is estimated from the mean square

distance between two adjacent data points of the first m data points
2 e |z =zl

= E.16
o* 2m (E.16)

This method of estimating o works quite well because the first m data points are usually at off
resonance frequencies with the Gaussian-distributed noise from the measurement system.

As shown in Fig. [E.4] both the initial fit and the refined fit usually have small x2. The refined
fit yields a x? close to 1, which means the fitting model Eq. [E.Ilis a good model.

E.4 Fitting |t51)* to the skewed Lorentzian profile

Resonance parameters can also be found by fitting the |t21]? data to the following skewed Lorentzian

model

AS +A4(f - fr)

a1 ()P = Av + Ao (f — fr) + 5.
144Q2 (55)

(E.17)

The fitting result is shown in Fig. For the data set used throughout this appendix, we find that
the result of f, from this skewed Lorentzian fit agrees with the previous fitting method within 10~7

and Q within 0.1%.
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Figure E.5: Fitting |t21] to skewed Lorentzian model
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Appendix F

Calibration of IQ-mixer and data
correction

Assume that the LO port of the IQ mixer is fed with a microwave signal of complex amplitude

Apo = 1 and the RF port with Arp = re??. The output voltages can be written as

I Iy + Ajcost (F.1)

Q = Qo+ Agcos(d+1). (F.2)

Here ~ is the phase difference between the I and Q channels. Iy, Qo account for the DC offset and
Ay, Ag account for the unbalanced gains in the two channels. For an ideal IQ-mixer, v = —7/2,
Iy =Qo =0, A = Ag = A, and as 6 goes from 0 to 27, the IQ output traces out a circle centered
at the origin in the IQ plane. For a nonideal IQ-mixer, the output traces out an ellipse which is off
the origin, as shown in Fig. [F]l Easy to see that the center of the ellipse is at (Iy, Qo). It can
be shown that the other 3 mixer parameters A;, Ag, and v are related to the half long axis a, half

short axes b, and the orientation angle & by

A = \/a2 cos2 ® + h2sin® ®
Ag = \/a2 sin? @ + b2 cos2 &
7= a1 — Qa2
bsin ®©
o1 = arctan
acosd
bcos®
= — t . F.3
Qs ™~ arctan ——— (F.3)

These relationships are illustrated in Fig. by two triangles.
According to Eq. [F23] the 3 parameters A7, Ag, and v, which characterize a non-ideal IQ mixer,
can be fully determined from the IQ ellipses. This provides us a way to experimentally measure

these parameters. One can use a phase shifter to produce a 6 sweep and obtain the 1Q ellipse.
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Figure F.1: IQ mixer output tracing out an ellipse

Unfortunately, we do not have a programmable phase shifter. Instead, we obtain the 1Q ellipse by
beating two synthesizers. The output frequencies of the two synthesizers are set to be 1 kHz apart
and the IQ ellipses are digitized at a sample rate of 2 kHz for 1 second (two circles are recorded).
The data is then fit to a ellipse by standard routines to give a, b, and ®.

The IQ ellipses measured at a number of frequencies and RF input powers by beating two
synthesizers are plotted in Fig. [.3l The ratio of A;/Ag and v are indicated in these plots. As
expected, the A;/Ag is close to but not exactly 1. + varies between —85° and —113° at frequencies
between 2 GHz and 10 GHz. The ellipses under different RF input powers at the same frequency
are concentric and the long and short axes scale linearly with RF amplitude. From these ellipses,
we obtain Ay, Ag, and 7 at discrete frequencies and powers from Eq.[F.3l These values are then
interpolated at arbitrary frequency and power in the measurement range to generate the continuous

functions A;(f, Prr), Ar(f, Prr), and v(f, Prr). Using these functions, the amplitude and phase
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Figure F.2: Relationships between A;, Ag, v and a, b, ® illustrated in two triangles

of the original RF input microwave signal can be recovered by
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Figure F.3: IQ ellipses from beating two synthesizers. Data and fits are plotted in blue and red,
respectively. Ellipses for each frequency are measured with LO power of 13 dBm and RF power in
steps of 2 dBm.
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Appendix G

Several integrals encountered in
the calculation of eppq(w)

G.1 Integrating ?res (w) over TLS parameter space

Here we evaluate the integral of Eq. [5.55 Let

1 1
W) = + . a1
M) = i) v T o

The full integral reads

P .
erns(w) = / / e X res ] A dAodAdd
max A0 max P %
= / dA/ —dAg / sin 0df
0 Aomin Do 0

Ao\ o, 5 1+ (we —w)?T%

— ) d ftanh ( — . (G.2
{( e ) 0 cos At (Qk:T) T+ T T + (o —wperg | X - (G:2)
Let u = Ag/e. By applying the following change of variables

max Ao, max P Emax P
dA dA —>/ ——————dude G.3
/ /AO min ’ Umin UV 1- u‘2 ( )

X

the integral reduces to

Emax 1 =
erLs(w) = Pd%/o ds/ \/111—u2du/02 cos? 0 sin 0df

o (o) [t e )L
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Figure G.1: Comparison between F(a) and 1/(a® + 3)

Note that

0T, — <2d0|E| cost Ag

2 2
. - ) X T min (i) = 2d2|E|? cos® 0T} pin/h? (G.5)

Ag

has dependence on 6 but no dependence on u. Therefore, the integral of w can be separately worked

out

1

reducing the integral to

™

errs(w) = Pd2 / * cos? fsin 60
0

max € 1+ (we — w)?T%
x {/0 de tanh (2kT) [1 FOPIT, 1 (w. — w)°T2 X(we,w) ¢ - (G.7)

The integral on 6 is of the following form

boog2 a — arctan(a)
/0 oyt = S ) (G.8)

In fact, for all range of a, F'(a) can be well approximated by a simpler function, as shown in Fig.[G]]

1 1

Fla)~ 3 ami1

(G.9)

According to Eq.[G.9 the #-integral and #-dependence of Q can be effectively removed by substi-
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tuting do/ V/3 for dy in the € integral

Pd2 E€max
errs(w) = TO/ de tanh (2kT)
0

where the effective Rabi frequency is modified to

1+ (we — w)?T2
1+ T\ Ty + (we — w)2T2

X(we,w)  (G.10)

— 2do|E| Ao
0= =2
V3 e

(G.11)

G.2 ers(w) for weak field (|E| — 0).

If the electric field is weak and Q2T1Ty < 1 is satisfied, we can set = 0 in Eq.[G1 (or Q = 0 in
Eq.[GI0) and the integral simplifies to

Pd3 1 1

€max
5 g
_ ¢ h( ) + de. G.12
erLs(w) BT an\ ot L}a —w+iTyt wetw— Tyt ) ( )

Now let © = ¢/kT, z = (hw — jhTy ") /kT and x,, = emax/kT. We rewrite the integral as

Pd3 [*m x, 2z
ETLS((U) = TO ‘/0 tanh(§)mdm (Gl?))

The following are pure mathematical derivations

Tm x, 2z
tanh(-)—=—-—=d
/0 an (2)172 sdx

—Z

Tm x 2z Tmo 2p

S 22
/ — d:c—i—log( m)
0

er +12x2—

° 1 2 2x —a2,
_2/ ( P 6290—1) :1:2—z2dx+10g( 5 )
i < 2 2z JTm
- 2 do— | 5 —da 1o
/0 —11:2—,2296 /0 e _1a2 200 ( z )}
o0 2t 9 2t 2
= -2 dt — dt — log(——
/0 627Tt — 182+ (jz/2m)? /0 et — 12 — (jz/m)? os( z )}

> 2t > 9 2 Jm
= =2 dt — dt — log(——
/O 627rt -1 t2 ( fz‘)2 /0 eert -1 t2 + (—2; )2 Og( > )]

2myj 2mj

= 2{ a2+ FL - )] 2 os( )+ - w( )| - w2

- w(———.>—1og<—>] (G.14)
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In the derivations above, we have applied the following two formula found in Abramowitz and Stegun

(page 259)[52], to express the integral in terms of complex digamma function :

1 o0 tdt
¥(z) 082~ 5 /0 (12 + 22)(e27 — 1)
1 1 1
¥(2z) = Ew(z) + 51/1(2 + ;) +log2. (G.15)
Therefore in the weak field limit,
_2Pd3 [ 1 hw— Ty " Emax
eris(w) = — 3 [¢(§ - W) - 10g(27rkT) : (G.16)

G.3 erps(w) for nonzero E field.

For general nonzero electrical field, we evaluate the real part (ef;q) and the imaginary part (efyg)
separately.
For the integral of €/} 4, the major contribution is from the first term in x(we,w) and the second

term can be neglected. After dropping the second term, the integral becomes

Pd2 €max _T—l
ehsw) = 0/0 de tanh (i) 2 . (GaT)

3h 28T (Ty "1+ QT To)? + (we — w)?

The factor in the square brackets is a Lorentzian centered at w. with a line width of 7~ ! 1+ ﬁQTl Ts.
Because within the width of the Lorentizian tanh(e/2kT) is almost constant, it can be taken out of

the integral leading to

Pd3 hw \ [ ~Ty!
G%LS (W) ~ _3—ho tanh (ﬁ) / dE 2
0 (T, 1+ )2 + (we — w)2

wPd tanh (4)

. (G.18)
V1+ 2T
The field-dependent loss tangent is given by
tanh (2
drLs = 50wa) (G.19)
1+ (|E|/Ec)?
where the critical electric field is
3h
V3 (G.20)

E. = = .
2dO|E| \ Tl,minTQ
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Next, we work on the real part of the integral in Eq.[G7 for ey (w). Let s(|E]) = /1 + O

be the saturation factor. The difference in €/ q(w) between strong field and zero field is calculated

by

d0c'(k) = eppg(k) —erps(0)
Pd2 €max 1 _ 2T2
-0 tanh (—E ) _2+ (We — w)Ty -1
3 Jo 2T 1+ QN + (we — w)2T2
« { (%2— w) - (w52+ w) _ Q}ds. (G.21)
(we —w)?+(T57)?  (we+w)?+(T5)
Now we calculate the contribution from the two terms in the curly brackets separately.
Pd3 [omax 1 —w)?T2 —
T p—— tanh (L) _2+ (we —w)*T3 -1 w52 ¥ —de
30 Jo KT/ 14+ QW + (we —w)2T3 (we —w)? + (Ty )
Pd3 /E"“‘"‘ € [ Aw Aw ]
= — tanh (—) — de. G.22
3 Jo 2KT) | Aw? + (kTy 1)2  Aw? + (Ty )2 (¢.22)
Because the term in the square brackets
Aw Aw B (1—w%)(Ty ') Aw (G.23)

A+ (KT ) A’ +(Ty ) [Aw? + (T, )2[Aw? + (+T; 1)

is an odd function of Aw which has significant contribution to the integral only when |w. —w| < xTy !,

we can replace tanh ( L) by its Taylor expansion at € = fiw and extend the integral limits to +oo,

KT
Pd2 [ hw hw \ hAw Aw Aw
/ 0 2
N O— h{— h* | —— — dA
%4 3 ) [tan (2kT> e (2kT) 2kT] [AwQ—i—(nTQl)? Aw? + (13 02]
mPd? hw \ Ty "
— h2 et 2 1—
3 (2kT> o (L)
(G.24)
The contribution from the second term in the curly brackets is Eq. [G211
PdZ [ome 0T\ T.
dehy = —4 tanh (L) — 12 w52—|—w — 2d€
3h Jo kT | 14N + (we — w)2T2 | (we +w)? +(T37)
(G.25)

where the term in the square brackets is only nonzero within a small range around w. ~ w in which
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Figure G.2: §€/, d¢} and d¢€) as a function of temperature. Left panel shows €/ ¢ for zero field £ = 0
(blue) and nonzero field k = 3 (red). Their difference is plotted by the bottom curve in the right
panel, as well as the two contributions dej and dej. In the right panel, solid lines are calculated

from evaluating the exact integrals numerically while the dashed line are calculated from the derived
approximate formula.

all other terms are almost constant. Therefore

Pd2 ho\ 1 [ O\ T
dey, ﬂtanh (—) —/ — 12 de
3h 26T ) 2w J_ o 14+ 0 Ty Ts + (we — w)2T2
rPd? how \ Tyt 1 — K2
- T3 tanh(m) 2w &
(G.26)
Finally, we have derived
errs(k) — erps(0)
= §€} + e,
7 Pd? hw \ ATy hiw \ Tyt 1 — k2
- h? [ —— 2_(1- h(— ) =2 2
3 [Sec <2kT> o (LK) tan <2kT> 2w (G.27)

The temperature variation of €/ g for zero field k = 0 and nonzero field x = 3 are plotted in
the left panel in Fig. We can see that ey decreases with the field strength. The difference
between the two curves d¢’ = errs(k = 3) — erLs(k = 0), separated into the two contributions
de} and d¢€), evaluated both numerically from the exact integrals and analytically from the derived

approximate formula, are plotted in the right panel of Fig. There we see that the approximate

formula works pretty well.
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Appendix H

Semi-empirical frequency noise
formula for a transmission line
resonator

In this appendix, we derive the formula of frequency noise in the high power regime for a transmission

line resonator from the semi-empirical noise model Eq. [5.80
th, |E2d3r

4 (fve|E|2d3r)2

5%%3(1/) =k(v,w,T)

(H.1)

We consider a m-wave transmission line resonator in general. For example, for a quarter-wave
resonator m = 1/4 and for a half-wave resonator m = 1/2. Assume that the transmission line goes
in the z-direction with z = 0 and z = [ represents the coupler end (always an open end) and the
opposite end, respectively. The cross-section of the transmission line is in the x —y plane, with z-axis
parallel to surface of the metal film and y-axis perpendicular to the surface. The spatial distribution

of the electric field in the resonator has a standing wave pattern given by

2mmz

|E(x, y, 2)| = Vop(z,y)| cos( )| (H.2)

where Vj is the voltage at z=0 (a harmonic time dependence of e/*! is assumed and omitted as

usual), which is related to the internal power P, and readout power P, by,

Vi (/2?2 1 p Q2

P = = = P, H.3

¢ 27, 27, 2rm” " Q. (H:3)
47, Q?

—LPuw H.4

VO m Qc I3 ( )

p(z,y) is the field distribution in the cross-sectional plane normalized by Vj. The denominator in

Eq. [H1lis related to the electric energy in the system and can be expressed in terms of transmission
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line parameters

2 / eE(7)2di = OV (H.5)
v
Inserting Eq. and Eq. to Eq. [l yields

4 [y, p(,y)>dedy
3nC2Vyl

755]0’"@) =r(v,w,T)

b = (H.6)

Because of the term Vj in the denominator, Eq. [[L.6l gives the correct Pi;tl/ 2 power dependence

of noise. Eq. also predict that the noise scales inversely with length, which arises from the

incoherent sum of the contribution from independent fluctuators along the z-axis.

The most important part of the noise formula Eq. [[L.l is the following integral

I3 =/ p(a,y)*dedy (H.7)
Ap

which is taken in the area Aj occupied by the TLS host material in the cross-sectional plane. It can

be shown that for microstrip transmission line

w
Isz/ play)dedy ~ 3 (H.8)
Ap

where the field is approximated by that of a parallel plate capacitor. Here w and h are the width

and the thickness of the dielectric in the microstrip. For a surface distribution of TLS,

b= [ pwidety ~ v pera (1.9)

where the contour Cj, runs over the TLS distributed surface and ¢ is the thickness of the TLS layer.
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