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Preface

This book is written for a wide audience ranging from upper undergraduate to advanced
graduate students in mathematics, physics, and more broadly engineering students, especially
in computer science. It covers manifolds, Riemannian geometry, and Lie groups, some central
topics of mathematics. However, computer vision, robotics, and machine learning, to list
just a few “hot” applied areas, are increasingly consumers of differential geometry tools, so
this book is also written for professionals who wish to learn about the concepts and tools
from differential geometry used to solve some of their problems.

Although there are many books covering differential geometry and Lie groups, most of
them assume that the reader is already quite familar with manifold theory, which is a severe
obstacle for a reader who does not possess such a background. In this book, we only assume
some modest background in calculus and linear algebra from the reader, and basically develop
manifold theory from scratch. Additional review chapters covering some basics of analysis,
in particular the notion of derivative of a map between two normed vector spaces, and some
basics of topology, are provided for the reader who needs to firm up her/his background in
these areas. This book is split into two parts.

1. The basic theory of manifolds and Lie groups.
2. Some of the fundamental topics of Riemannian geometry.

The culmination of the concepts and results presented in this book is the theory of nat-
urally reductive homogeneous manifolds and symmetric spaces. It is remarkable that most
familiar spaces are naturally reductive manifolds. Remarkably, they all arise from some suit-
able action of the rotation group SO(n), a Lie group, which emerges as the master player.
The machinery of naturally reductive manifolds, and of symmetric spaces (which are even
nicer!), makes it possible to compute explicitly in terms of matrices all the notions from
differential geometry (Riemannian metrics, geodesics, etc.) that are needed to generalize
optimization methods to Riemannian manifolds. Such methods are presented in Absil, Ma-
hony and Sepulchre [2], and there is even a software package (MANOPT) that implements
some of these procedures.

The interplay between Lie groups, manifolds, and analysis, yields a particularly effective
tool. We tried to explain in some detail how these theories all come together to yield such
a beautiful and useful tool.



We have also included chapters that present material having significant practical appli-
cations. These include

1. Chapter 8, on constructing manifolds from gluing data, which has applications to
surface reconstruction from 3D meshes.

2. Chapter 21, on the “Log-Euclidean framework,” has applications in medical imaging.

3. Chapter 22, on homogeneous reductive spaces and symmetric spaces, has applications
to robotics, machine learning, and computer vision. For example, Stiefel and Grass-
mannian manifolds come up naturally. Furthermore, in these manifolds, it is possible
to compute explicitly geodesics, Riemannian distances, gradients and Hessians. This
makes it possible to actually extend optimization methods such as gradient descent
and Newton’s method to these manifolds. A very good source on these topics is Absil,
Mahony and Sepulchre [2].

Let us now give motivations for learning the concepts and tools discussed in this book.

The need to generalize concepts and tools used in “flat spaces” such as the real line, the
plane, or more generally R™, to more general spaces (such as a sphere) arises naturally. Such
concepts and tools include

1. Defining functions.

2. Computing derivatives of functions.

3. Finding minima or maxima of functions.

4. More generally, solving optimization problems.
5. Computing the length of curves.

6. Finding shortest paths between two points.

7. Solving differential equations

8. Defining a notion of average or mean.

9. Computing areas and volumes.

10. Integrating functions.

A way to deal with a space M more complicated than R™ is to cover it with small pieces
U,, such that each piece U, “looks” like R™, which means that there is a bijection ¢, from
U, to a subset of R™. Typically, M is a topological space, so the maps ¢, : U, — R", called
charts, are homeomorphisms of U, onto some open subset of R"™. From an intuitive point of
view, locally, M looks like a piece of R"™.



The mathematical notion formalizing the above idea is the notion of manifold. Having a
“oood” notion of what a space M is, the issue of defining real-valued functions f: M — R,
and more generally functions f: M — N between two manifolds M and N, arises. Then it
is natural to wonder what is a function with a certain degree of differentiability, and what
is the derivative of a function between manifolds.

To answer these questions, one needs to add some structure to the charts ¢,: U, — R",
namely, whenever two charts ¢,: U, — R" and pg: Ug — R" overlap, which means that
U,NUg # 0, then the map pzop, ! should behave well; technically, this means that it should
be C* (continuously differentiable up to order k), or smooth.

Another important idea coming from the notion of derivative of a function from R" to
R™, is the idea of linear approximation of a function f: M — N between two manifolds. To
accomplish this, we need to define the notion of tangent space T,,M to the manifold M at a
point p € M. Similarly, we have a tangent space T, N to the manifold NV at the point f(p)
(the image of p under f), and the derivative of f at p is a linear map dfy,: T,M — Tq,)N
from the tangent space T, M (with p € M) to the tangent space Ty, N (with f(p) € V).

Setting up carefully and rigorously the machinery to define manifolds, maps between
them, tangent spaces, and the derivative of a function between manifolds, will occupy the
first third of this volume.

If the manifold M is already naturally a subset of RY for some N large enough, then
matters are simpler, and it is easier to define manifolds, tangent spaces, and derivatives of
functions between manifolds. For pedagogical reasons, we begin with this simpler case in
Chapters 1-3.

If the manifold M is not embedded in RY for some N, which typically occurs when
M is obtained as a quotient space, such as real projective space RP" (the space of lines
through the origin in R"™) or the Grassmannian G(k,n) (the space of k-dimensional linear
subspaces of R"), then matters are technically more complicated. One needs to introduce
charts and atlases, and the definitions of the tangent space and of the derivative of a map
between manifolds are more technical. One needs to define tangent vectors in terms of various
equivalence relations (on curves, on certain triples, on germs of locally defined functions). We
do this very carefully, even in the case of a C* manifold where 1 < k < oo (that is, a manifold
which is not necessarily smooth). We give three equivalent definitions of the tangent space
T,M to M at p, and prove their equivalence. The first definition involves equivalence classes
of curves through p. The third definition in terms of point derivations applies even to C*-
manifolds, at the price of introducing stationary germs. In the smooth case, this definition
is equivalent to the standard definition found in Tu [112] and Warner [114]. Following J.P.
Serre, the equivalence of the first and of the third definition is elegantly proved by setting
up a bilinear pairing and showing that this pairing is nondegenerate. Chapters 7 and 9 are
devoted to the definitions of tangent spaces, tangent bundles, vector fields, and the related
concepts such as Lie derivatives and Lie brackets, in the framework of general manifolds.



Chapter 8 presents a more constructive approach for constructing manifolds using what
we call gluing data. This chapter has applications to surface reconstruction from 3D meshes.

A very important class of manifolds is the class of groups that are also manifolds and
topological groups (which means that multiplication and the inverse operation are smooth).
Such groups are called Lie groups. The prime example is the group SO(3) of rotations in R,
and more generally SO(n). Remarkably, a large subclass of Lie groups turns out to be the
family of closed subgroups of GL(n,R), the group of invertible n x n real matrices. This is a
famous result due to Von Neumann and Cartan, see Theorem 3.8. Such closed subgroups of
GL(n,R) are called linear Lie groups or matriz Lie groups. If G is a linear Lie group, then
its tangent space T;G at the identity, denoted g, has some additional structure besides being
a vector space. It has a noncommutative and nonassociative skew-symmetric multiplication
[X,Y] (with X,Y € g) called the Lie bracket, which satisfies a strange kind of associativity
axiom called the Jacobi identity. The vector space g with the Lie bracket as multiplication
operation has the algebraic structure of what is called a Lie algebra. In some sense, g is a
linearization of G near I, and the Lie bracket is a measure of the noncommutativity of the
group operation. Remarkably, there is a way of “recovering” G from its Lie algebra g by
making use of the (matrix) exponential exp: g — G. This map is not injective nor surjective
in general. In many cases of interest, such as SO(n) and SE(n), it is surjective. Also, “near”
I, the exponential is bijective. Since we can move from the tangent space T7G = g at I to
to the tangent space T,G at any other element g € G by left (or right) multiplication, we
obtain a way of parametrizing G using the exponential map.

As a warm-up for the discussion of linear Lie groups and Lie algebras in Chapter 3,
we present some properties of the exponential map of matrices in Chapters 1 and 2. In
particular, we give a formula for the derivative of exp. A discussion of general Lie groups
(not necessarily groups of matrices) is postponed until Chapter 18.

Another important theme of this book is the notion of group action. A manifold, such as
the sphere S (in R"*1); or projective space RP", or the Grassmannian G(k,n), may not be
a group, but may have a lot of symmetries given by a group G. For example, the sphere S?
in R? has the group of rotations SO(3) as group of symmetries, in the sense that a rotation
in SO(3) moves any point on the sphere to another point on the sphere, so the sphere is
invariant under rotations.

The notion of symmetry of a space under the transformations of a group G is neatly
captured by the notion of action of a group on a set (or a manifold). A (left) action of a
group G on a set X is a binary operation -: G x X — X satisfying the axioms

g1 (g2-2) = (1g2) - @ for all g1,90 € G and all x € X
l-x==x for all z € X.

Here, g1g2 denotes the product of the two elements ¢g; and gs using the group multiplication
operation on (G, and 1 denotes the identity element of GG. Intuitively, we can think of g - z,
where ¢ is an element of the group G' and z is an element of the set X, as the result of
moving x using the “transformation” g.



A group action is transitive if for any two elements x,y € X, there is some group element
g € G that moves = to y, that is, y = ¢ - x. Many actions that arise in practice are
transitive. For example, the group SO(3) acts transitively on S?, and more generally SO(n)
acts transitively on S 1. The reason why transitivity is important is that if we consider
any fixed element x € X, we can look at the stabilizer GG, of x, which is the set of elements
of X left fixed by the action of GG, namely

G.={9€G|g-z==x}

It can be shown that G is a subgroup of G (not necessarily normal), and there is a bijection
between the set G /G, of left cosets of G and X.

This bijection is very crucial, because it allows us to view X as the set of cosets G/G,,
and if the group G is well understood, then this yields a way of inferring information about
X using information about GG and G,.. So far, X is a just a set, and G is just a group without
any additional structure, but if X is also a topological space, and G is a topological group,
then we can ask whether the quotient space G/G, is homeomorphic to X. In general, this
is not the case, but if G is a Lie group and if X is a manifold, then G/G, is a manifold
diffeomorphic to X.

The above result is very significant because it allows us to study certain manifolds M
that possess a transitive action of a Lie group G in terms of the groups G and G,. Such
spaces are called homogenous spaces, and it turns out that many familiar manifolds such as
S™ RP", the Grassmannians G(k,n), the space of symmetric positive definite matrices, the
Lorentz manifolds, etc., are homogenous manifolds.

We begin our study of group actions and homogenous spaces in Chapter 4. We provide
many examples of spaces having a transitive action, and compute explicitly stabilizers for
these actions. The study of homogenous spaces is continued in greater depth, also dealing
with considerations of Riemannian geometry, in Chapter 22,

As a kind of interlude, in Chapter 5, we spend some time investigating the Lorentz groups
O(n,1), SO(n,1) and SOy(n,1) (and also the groups O(1,n), SO(1,n) and SOy(1,n)).
When n = 3, these groups arise in the special theory of relativity. It turns out that O(3,1)
also comes up in computer vision in the study of catadioptric cameras (see Geyer [50],
Chapter 5), and this was one of our original motivations for getting interested in homogeneous
spaces. In Chapter 6, we also investigate the topological structure of the groups O(p, q),
SO(p, q), and SOq(p, q).

One feature of our exposition worth pointing out is that we give a complete proof of
the surjectivity of the exponential map exp: so(1,3) — SOq(1,3), for the Lorentz group
SOy(1,3) (see Section 5.2, Theorem 5.18). Although we searched the literature quite thor-
oughly, we did not find a proof of this specific fact (the physics books we looked at, even the
most reputable ones, seem to take this fact as obvious, and there are also wrong proofs; see
the remark following Theorem 5.5).



We are aware of two proofs of the surjectivity of exp: so(1,n) — SOg(1,n) in the general
case where where n is arbitrary: One due to Nishikawa [90] (1983), and an earlier one
due to Marcel Riesz [97] (1957). In both cases, the proof is quite involved (40 pages or
so). In the case of SOg(1,3), a much simpler argument can be made using the fact that
¢: SL(2,C) — SOy(1,3) is surjective and that its kernel is {I, —I} (see Proposition 5.17).
Actually, a proof of this fact is not easy to find in the literature either (and, beware there are
wrong proofs; again see the Remark following Theorem 5.5). We have made sure to provide
all the steps of the proof of the surjectivity of exp: so(1,3) — SOq(1,3). For more on this
subject, see the discussion in Section 5.2, after Corollary 5.14.

What we have discussed above comprises the basic theory of manifolds, Lie groups, and
homogenous spaces. Chapter 10 gathers some technical tools needed later such as partitions
of unity and covering spaces. For the sake of the reader who feels rusty on some basics
of analysis and topology, we have included two refresher chapters: Chapter 11 on power
series and derivative of functions between normed vector spaces, and Chapter 12 on basics
of topology. These should be consulted as nedeed, but we strongly advise the reader who
has not been exposed to the notion of derivative as a linear map to review Chapter 11.

One of the main gaps in the theory of manifolds that we just sketched is that there is
no way to discuss metric notions such as the notion of length of a curve segment, or the
notion of angle between two curves. We are in a situation similar to the theory of vector
spaces before inner products are introduced. The remedy is to add an inner product to our
manifold M, but since the tangent spaces T,M (with p € M) are unrelated, we actually
need to add a family ((—, —),)pen of inner products, one for each tangent space T,M. We
also need to require that these inner products vary smoothly as p moves in M. A family
of inner products as above is called a Riemannian metric, and a pair (M, (—, —)) where M
is a smooth manifold and ((—, —),)penm is a Riemannian metric is a Riemannian manifold,
after B. Riemann who was the first to have this idea. If a manifold is too big, then it
may not have a Riemannian metric, but “well-behaved” manifolds, namely second-countable
manifolds, always have a Riemannian metric (this is shown using a partition of unity).
Riemannian metrics are defined in Chapter 13. Having a Riemannian metric allows us to
define the gradient, the Hessian, and the Laplacian, of a function. For functions f: R" — R,
this is automatic since R” is equipped with the Euclidean inner product, but for a manifold
M, given a function f: M — R, to convert the linear form df, into a vector (grad f), € T,M
such that df,(u) = ((grad f),, u) for all u € T, M, an inner product is needed on T,M, and
so a Riemannian metric on M is needed.

The notion of Riemannian metric allows us to discuss metric properties of a manifold,
but there is still a serious gap which has to do with the fact that given a manifold M, in
general, for any two points p,q € M, there is no “natural” isomorphism between the tangent
spaces T,M and T,M. Given a curve c: [0,1] — M on M, as c(t) moves on M, how does
the tangent space T, M change as ¢(t) moves?

If M = R", then the spaces T.)R" are canonically isomorphic to R", and any vector
v € Ty)R™ = R™ is simply moved along c by parallel transport; that is, at c(t), the tangent



vector v also belongs to T, R". However, if M is curved, for example a sphere, then it is not
obvious how to “parallel transport” a tangent vector at ¢(0) along a curve c¢. This problem
is related to the fact that it is not obvious how to define the derivative VxY of a vector field
X with respect to another vector field Y. If X and Y are vector fields on a surface S in R3,
then for any point p € S, the derivative (DxY), given by

DY (p) = lim Y(p+tX(p) - Y(p)

t—0 t

(if it exists), is a vector in R?, but there is no reason why it should belong to the tangent
space 1,5 to S at p.

Gauss solved this problem by introducing the notion of covariant derivative, which con-
sists in keeping the projection (Vy X) of (DxY'), onto the tangent space 7,5, and to discard
the normal component.

However, if M is a general manifold not embedded in RY, then it is not clear how to
perform such a projection. Instead, the notion of covariant derivative is defined in terms of a
connection, which is a bilinear map V: X(M) x X(M) — X(M) defined on vector fields and
satisfying some properties that make it a generalization of the notion of covariant derivative
on a surface. The notion of connection is defined and studied in Chapter 14. Having the
notion of connection, we can define the notion of parallel vector field along a curve, and of
parallel transport, which allows us to relate two tangent spaces 1, M and T, M.

The notion of covariant derivative is also well-defined for vector fields along a curve. This
is shown in Section 14.2. Given a vector field X along a curve 7, this covariant derivative is
denoted by DX/dt. We then have the crucial notion of a vector field parallel along a curve
7, which means that DX /dt(s) = 0 for all s (in the domain of ).

The notion of a connection on a manifold does not assume that the manifold is equipped
with a Riemannian metric. In Section 14.3, we consider connections having additional prop-
erties, such as being compatible with a Riemannian metric or being torsion-free. Then we
have a phenomenon called by some people the “miracle” of Riemannian geometry, namely
that for every Riemannian manifold, there is a unique connection which is torsion-free and
compatible with the metric. Furthermore, this connection is determined by an implicit for-
mula known as the Koszul formula. Such a connection is called the Levi-Civita connection.

If v is a curve on a smooth Riemannian manifold M, and if X =+’ is the vector field of
tangent vectors 7' to -y, we can consider the curves 7 that satisfy the equation

D~/
i = 0. ()

Intuitively, we can view Dd—;’/ as the tangent component of the acceleration vector v of the

curve 7, and such curves have an acceleration normal to the manifold. Curves satistying
equation (x) are called geodesics. Geodesics are the Riemannian equivalent of straight lines

in R™. The notion of geodesic is one of the most crucial tools in Riemannian geometry. One
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of the reasons is that geodesics are locally distance minimizing, and that they provide a way
to parametrize a neighborhood U of any point p on a manifold M by a neighborhood of
the origin in the tangent space T,M, using the exponential map (not to be confused with
the Lie group exponential) exp,: T,M — M. If the exponential map is surjective, then the
manifold M is said to be complete. A beautiful theorem of Hopf and Rinow states that if a
manifold is complete, then any two points can be joined by a minimal geodesic (a geodesic
of minimal length). This is an important property because the shortest distance between
any two points is achieved by a geodesic. Compact Riemannian manifolds are complete, so
many of the familiar compact manifolds (S, RP", G(k,n)) are complete.

Given a curve w on a Riemannian manifold, the quantity F(w) = fol |’ (8)|) dt is called
the energy function. Geodesics between two points p and ¢ turn out to be critical points of
the energy function E on the path space Q(p, q) of all piecewise smooth curves from p to q.
To define the notion of critical point of the energy function, because the space Q(p, q) is not
a finite-dimensional manifold, it is necessary to introduce the notion of variation of a curve
and to prove the first variation formula. Here, we make a link with the calculus of variation.
Geodesics are studied throroughly in Chapter 15.

Riemannian metrics, connections, and geodesics, are three of the pilars of differential
geometry. The fourth pilar is curvature.

For surfaces, the notion of curvature can be defined in terms of the curvatures of curves
drawn on the surface. The notion of Gaussian curvature (of course, introduced by Gauss)
gives a satisfactory answer. However, for manifolds of dimension greater than 2, it is not ob-
vious what curvature means. Riemann proposed a definition involving the notion of sectional
curvature, but his seminal paper (1868) did not contain proofs and did not give a general
method to compute such a curvature. It is only fifty years later that the idea emerged that
the curvature of a Riemannian manifold should be viewed as a measure R(X,Y)Z of the
extent to which the operator (X,Y) — VxVyZ is symmetric.

The Riemann curvature operator R turns out to be C'*°-linear in all of its three arguments,
but it is a rather complicated object. Fortunately, there is a simpler object, the sectional
curvature K(u,v). When V is the Levi-Civita connection, the curvature operator R can
be recovered from the sectional curvature K. There is also an important simpler notion of
curvature Ric(zx,y), called the Ricci curvature, which arises as the trace of the linear map
v — R(x,v)y. An even cruder notion of curvature is the scalar curvature. These notions of
curvature are discussed in Chapter 16.

We pointed out earlier that the energy function F(w) = fol |w'(t)||* dt determines the
geodesics (between two fixed points p and ¢) in the sense that its critical points are the
geodesics. A deeper understanding of the energy function is achieved by investigating the
second derivative of E at critical points. To do this we need the notion of 2-parameter
variation and the second variation formula. The curvature operator shows up in this formula.
Another important technical tool is the notion of Jacobi fields, which are induced by geodesic
variations. Jacobi fields can be used to compute the sectional curvature of various manifolds.
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Another important theme of differential geometry is the influence of curvature (sectional
or Ricci) on the topology of a Riemannian manifold. This is a vast subject and we only
discuss three results, one of which being the Hadamard and Cartan theorem about complete
manifolds of non-positive curvature.

The goal of Chapter 17 is to understand the behavior of isometries and local isometries,
in particular their action on geodesics. We also intoduce Riemannian covering maps and
Riemannian submersions. If 7: M — B is a submersion between two Riemannian manifolds,
then for every b € B and every p € 7~ *(b), the tangent space T,M to M at p splits into two
orthogonal components, its vertical component V, = Ker dm,, and its horizontal component
H, (the orthogonal complement of V,). If the map dm, is an isometry between H, and T},5,
then most of the differential geometry of B can be studied by lifting B to M, and then
projecting down to B again. We also introduce Killing vector fields, which play a technical
role in the study of reductive homogeneous spaces.

In Chapter 18, we return to Lie groups. Not every Lie group is a matrix group, so
in order to study general Lie groups it is necessary to introduce left-invariant (and right-
invariant) vector fields on Lie groups. It turns out that the space of left-invariant vector
fields is isomorphic to the tangent space g = T7G to G at the identity, which is a Lie algebra.
By considering integral curves of left-invariant vector fields, we define the generalization
of the exponential map exp: g — G to an arbitrary Lie group. The notion of immersed
Lie subgroup is introduced, and the correspondence between Lie groups and Lie algebra is
explored. We also consider the special classes of semidirect products of Lie algebras and Lie
groups, the universal covering of a Lie group, and the Lie algebra of Killing vector fields on
a Riemannian manifold.

Chapter 19 deals with two topics:

1. A formula for the derivative of the exponential map for a general Lie group (not
necessarily a matrix group).

2. A formula for the Taylor expansion of u(X,Y") = log(exp(X)exp(Y')) near the origin.

The second problem is solved by a formula known as the Campbell- Baker-Hausdorff formula.
An explicit formula was derived by Dynkin (1947), and we present this formula.

Chapter 20 is devoted to the study of metrics, connections, geodesics, and curvature, on
Lie groups. Since a Lie group G is a smooth manifold, we can endow G with a Rieman-
nian metric. Among all the Riemannian metrics on a Lie groups, those for which the left
translations (or the right translations) are isometries are of particular interest because they
take the group structure of G into account. As a consequence, it is possible to find explicit
formulae for the Levi-Civita connection and the various curvatures, especially in the case of
metrics which are both left and right-invariant.

In Section 20.2 we give four characterizations of bi-invariant metrics. The first one refines
the criterion of the existence of a left-invariant metric and states that every bi-invariant
metric on a Lie group G arises from some Ad-invariant inner product on the Lie algebra g.
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In Section 20.3 we show that if G is a Lie group equipped with a left-invariant metric,
then it is possible to express the Levi-Civita connection and the sectional curvature in terms
of quantities defined over the Lie algebra of GG, at least for left-invariant vector fields. When
the metric is bi-invariant, much nicer formulae are be obtained. In particular the geodesics
coincide with the one-parameter groups induced by left-invariant vector fields.

Section 20.5 introduces simple and semisimple Lie algebras. They play a major role in
the structure theory of Lie groups

Section 20.6 is devoted to the Killing form. It is an important concept, and we establish
some of its main properties. Remarkably, the Killing form yields a simple criterion due to
Elie Cartan for testing whether a Lie algebra is semisimple.

We conclude this chapter with a section on Cartan connections (Section 20.7). Un-
fortunately, if a Lie group G does not admit a bi-invariant metric, under the Levi-Civita
connection, geodesics are generally not given by the exponential map exp: g — G. If we
are willing to consider connections not induced by a metric, then it turns out that there
is a fairly natural connection for which the geodesics coincide with integral curves of left-
invariant vector fields. These connections are called Cartan connections. This chapter makes
extensive use of results from a beautiful paper of Milnor [84].

In Chapter 21 we present an application of Lie groups and Riemannian geometry. We
describe an approach due to Arsigny, Fillard, Pennec and Ayache, to define a Lie group
structure and a class of metrics on symmetric, positive-definite matrices (SPD matrices)
which yield a new notion of mean on SPD matrices generalizing the standard notion of
geometric mean.

SPD matrices are used in diffusion tensor magnetic resonance imaging (for short, DTI),
and they are also a basic tool in numerical analysis, for example, in the generation of meshes
to solve partial differential equations more efficiently. As a consequence, there is a growing
need to interpolate or to perform statistics on SPD matrices, such as computing the mean
of a finite number of SPD matrices.

Chapter 22 provides the culmination of the theory presented in the book, the concept of
a homogeneous naturally reductive space.

The goal is to study the differential geometry of a manifold M presented as the quotient
G/H of a Lie group G by a closed subgroup H. We would like to endow G/H with a
metric that arises from an inner product on the Lie algebra g of G. To do this, we consider
G-invariant metrics, which are metrics on G/H such that the left multiplication operations
1,0 G/H — G/H given by

T,(heH) = ggo H

are isometries. The existence of G-invariant metrics on G/H depends on properties of a
certain representation of H called the isotropy representation (see Proposition 22.21). The
isotropy representation is equivalent to another representation Ad“/#: H — GL(g/h) of H
involving the quotient algebra g/b.
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This representation is too complicated to deal with, so we consider the more tractable
situation where the Lie algebra g of GG factors as a direct sum

g=bhodm,

for some subspace m of g such that Ad,(m) C m for all h € H, where § is the Lie algebra
of H. Then g/b is isomorphic to m, and the representation Ad“/?: H — GL(g/h) becomes
the representation Ad: H — GL(m), where Adj, is the restriction of Ad, to m for every
h € H. In this situation there is an isomorphism between T,(G/H) and m (where o denotes
the point in G/H corresponding to the coset H). It is also the case that if H is “nice” (for
example, compact), then M = G/H will carry G-invariant metrics, and that under such
metrics, the projection 7: G — G/H is a Riemannian submersion.

It is remarkable that a simple condition on m, namely Ad(H) invariance, yields a one-to-
one correspondence between G-invariant metrics on G/H and Ad(H)-invariant inner prod-
ucts on m (see Proposition 22.22). This is a generalization of the situation of Proposition
20.3 characterizing the existence of bi-invariant metrics on Lie groups. All this is built into
the definition of a reductive homogeneous space given by Definition 22.8.

It is possible to express the Levi-Civita connection on a reductive homogeneous space in
terms of the Lie bracket on g, but in general this formula is not very useful. A simplification
of this formula is obtained if a certain condition holds. The corresponding spaces are said
to be naturally reductive; see Definition 22.9. A naturally reductive space has the “nice”
property that its geodesics at o are given by applying the coset exponential map to m;
see Proposition 22.27. As we will see from the explicit examples provided in Section 22.7,
naturally reductive spaces “behave” just as nicely as their Lie group counterpart GG, and the
coset exponential of m will provide all the necessary geometric information.

A large supply of naturally reductive homogeneous spaces are the symmetric spaces. Such
spaces arise from a Lie group G equipped with an involutive automorphism o: G — G (with
o #id and 0% = id). Let G° be the set of fixed points of o, the subgroup of G given by

G°={geGla(g) =g},

and let G be the identity component of G (the connected component of G? containing 1).
Consider the +1 and —1 eigenspaces of the derivative doy: g — g of o, given by

t={Xeg|dn(X)=X}
m={X eg|do(X)=—-X}.

Pick a closed subgroup K of G such that G C K C G“. Then it can be shown that G/K is
a reductive homogenous space and that g factors as a direct sum € @ m, which makes G/K
a reductive space. Furthermore, if G is connected and if both G§ and K are compact, then
G /K is naturally reductive.

There is an extensive theory of symmetric spaces and our goal is simply to show that
the additional structure afforded by an involutive automorphism of GG yields spaces that are
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naturally reductive. The theory of symmetric spaces was entirely created by one person,
Elie Cartan, who accomplished the tour de force of giving a complete classification of these
spaces using the classification of semisimple Lie algebras that he had obtained earlier. In
Sections 22.8, 22.9, and 22.10, we provide an introduction to symmetric spaces.

In the past five years, we have also come to realize that Lie groups and homogeneous
manifolds, especially naturally reductive ones, are two of the most important topics for their
role in applications. It is remarkable that most familiar spaces, spheres, projective spaces,
Grassmannian and Stiefel manifolds, symmetric positive definite matrices, are naturally re-
ductive manifolds. Remarkably, they all arise from some suitable action of the rotation group
SO(n), a Lie group, who emerges as the master player. The machinery of naturally reductive
manifolds, and of symmetric spaces (which are even nicer!), makes it possible to compute
explicitly in terms of matrices all the notions from differential geometry (Riemannian met-
rics, geodesics, etc.) that are needed to generalize optimization methods to Riemannian
manifolds.

Since we discuss many topics ranging from manifolds to Lie groups, this book is already
quite big, so we resolved ourselves, not without regrets, to omit many proofs. The purist
may be chagrined, but we feel that it is more important to motivate, demystify, and explain,
the reasons for introducing various concepts and to clarify the relationship between these
notions rather than spelling out every proof in full detail. Whenever we omit a proof, we
provide precise pointers to the literature. In some cases (such as the theorem of Hopf and
Rinow), the proof is just too beautiful to be skipped, so we include it.

The motivations for writing these notes arose while the first author was coteaching a
seminar on Special Topics in Machine Perception with Kostas Daniilidis in the Spring of
2004. In the Spring of 2005, the first author gave a version of his course Advanced Geo-
metric Methods in Computer Science (CIS610), with the main goal of discussing statistics
on diffusion tensors and shape statistics in medical imaging. This is when he realized that
it was necessary to cover some material on Riemannian geometry but he ran out of time
after presenting Lie groups and never got around to doing it! Then, in the Fall of 2006 the
first author went on a wonderful and very productive sabbatical year in Nicholas Ayache’s
group (ACSEPIOS) at INRIA Sophia Antipolis, where he learned about the beautiful and
exciting work of Vincent Arsigny, Olivier Clatz, Hervé Delingette, Pierre Fillard, Grégoire
Malandin, Xavier Pennec, Maxime Sermesant, and, of course, Nicholas Ayache, on statistics
on manifolds and Lie groups applied to medical imaging. This inspired him to write chapters
on differential geometry, and after a few additions made during Fall 2007 and Spring 2008,
notably on left-invariant metrics on Lie groups, the little set of notes from 2004 had grown
into a preliminary version of this manuscript. The first author then joined forces with the
second author in 2015, and with her invaluable assistance, produced the present book, as
well, as a second volume dealing with more advanced topics.

We must acknowledge our debt to two of our main sources of inspiration: Berger’s
Panoramic View of Riemannian Geometry [14] and Milnor’'s Morse Theory [81]. In our
opinion, Milnor’s book is still one of the best references on basic differential geometry. His
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exposition is remarkably clear and insightful, and his treatment of the variational approach
to geodesics is unsurpassed. We borrowed heavily from Milnor [81]. Since Milnor’s book
is typeset in “ancient” typewritten format (1973!), readers might enjoy reading parts of it
typeset in IXTEX. We hope that the readers of these notes will be well prepared to read
standard differential geometry texts such as do Carmo [39], Gallot, Hulin, Lafontaine [49]
and O’Neill [91], but also more advanced sources such as Sakai [100], Petersen [93], Jost [64],
Knapp [68], and of course Milnor [81].

The chapters or sections marked with the symbol ® contain material that is typically
more specialized or more advanced, and they can be omitted upon first (or second) reading.

Acknowledgement: We would like to thank Eugenio Calabi, Ching-Li Chai, Ted Chinburg,
Chris Croke, Ron Donagi, Harry Gingold, H.-W. Gould, Herman Gluck, David Harbater, Julia
Hartmann, Jerry Kazdan, Alexander Kirillov, Florian Pop, Steve Shatz, Jim Stasheff, George
Sparling, Doran Zeilberger, and Wolfgand Ziller for their encouragement, advice, inspiration
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Chapter 1

The Matrix Exponential; Some
Matrix Lie Groups

Le role prépondérant de la théorie des groupes en mathématiques a été longtemps
insoupconné; il y a quatre-vingts ans, le nom méme de groupe était ignoré. C’est Galois
qui, le premier, en a eu une notion claire, mais c’est seulement depuis les travaux de
Klein et surtout de Lie que 'on a commencé a voir qu’il n’y a presque aucune théorie
mathématique ou cette notion ne tienne une place importante.

—Henri Poincaré

The purpose of this chapter and the next two chapters is to give a “gentle” and fairly
concrete introduction to manifolds, Lie groups and Lie algebras, our main objects of study.

Most texts on Lie groups and Lie algebras begin with prerequisites in differential geometry
that are often formidable to average computer scientists (or average scientists, whatever that
means!). We also struggled for a long time, trying to figure out what Lie groups and Lie
algebras are all about, but this can be done! A good way to sneak into the wonderful world
of Lie groups and Lie algebras is to play with explicit matrix groups such as the group
of rotations in R? (or R?) and with the exponential map. After actually computing the
exponential A = ef of a 2 x 2 skew symmetric matrix B and observing that it is a rotation
matrix, and similarly for a 3 x 3 skew symmetric matrix B, one begins to suspect that there
is something deep going on. Similarly, after the discovery that every real invertible n x n
matrix A can be written as A = RP, where R is an orthogonal matrix and P is a positive
definite symmetric matrix, and that P can be written as P = e for some symmetric matrix
S, one begins to appreciate the exponential map.

Our goal in this chapter is to give an elementary and concrete introduction to Lie groups
and Lie algebras by studying a number of the so-called classical groups, such as the general
linear group GL(n,R), the special linear group SL(n,R), the orthogonal group O(n), the
special orthogonal group SO(n), and the group of affine rigid motions SE(n), and their Lie
algebras gl(n,R) (all matrices), sl(n,R) (matrices with null trace), o(n), and so(n) (skew

25



26 CHAPTER 1. THE MATRIX EXPONENTIAL; SOME MATRIX LIE GROUPS

symmetric matrices). Lie groups are at the same time, groups, topological spaces, and
manifolds, so we will also have to introduce the crucial notion of a manifold.

The inventors of Lie groups and Lie algebras (starting with Lie!) regarded Lie groups as
groups of symmetries of various topological or geometric objects. Lie algebras were viewed
as the “infinitesimal transformations” associated with the symmetries in the Lie group. For
example, the group SO(n) of rotations is the group of orientation-preserving isometries of
the Euclidean space E". The Lie algebra so(n,R) consisting of real skew symmetric n x n
matrices is the corresponding set of infinitesimal rotations. The geometric link between a Lie
group and its Lie algebra is the fact that the Lie algebra can be viewed as the tangent space
to the Lie group at the identity. There is a map from the tangent space to the Lie group,
called the exponential map. The Lie algebra can be considered as a linearization of the Lie
group (near the identity element), and the exponential map provides the “delinearization,”
i.e., it takes us back to the Lie group. These concepts have a concrete realization in the
case of groups of matrices and, for this reason, we begin by studying the behavior of the
exponential maps on matrices.

We begin by defining the exponential map on matrices and proving some of its properties.
The exponential map allows us to “linearize” certain algebraic properties of matrices. It also
plays a crucial role in the theory of linear differential equations with constant coefficients.
But most of all, as we mentioned earlier, it is a stepping stone to Lie groups and Lie algebras.
On the way to Lie algebras, we derive the classical “Rodrigues-like” formulae for rotations
and for rigid motions in R? and R3. We give an elementary proof that the exponential map
is surjective for both SO(n) and SE(n), not using any topology, just certain normal forms
for matrices (see Gallier [48], Chapters 12 and 13).

In Chapter 2, in preparation for defining the Lie bracket on the Lie algebra of a Lie
group, we introduce the adjoint representations of the group GL(n,R) and of the Lie algebra
gl(n,R). The map Ad: GL(n,R) — GL(gl(n,R)) is defined such that Ad, is the derivative
of the conjugation map Ad,: GL(n,R) — GL(n,R) at the identity. The map ad is the
derivative of Ad at the identity, and it turns out that ad(B) = [A, B], the Lie bracket of A
and B, and in this case, [A, B] = AB — BA. We also find a formula for the derivative of the
matrix exponential exp.

Chapter 3 gives an introduction to manifolds, Lie groups and Lie algebras. Rather than
defining abstract manifolds in terms of charts, atlases, etc., we consider the special case of
embedded submanifolds of RY. This approach has the pedagogical advantage of being more
concrete since it uses parametrizations of subsets of RY, which should be familiar to the
reader in the case of curves and surfaces. The general definition of a manifold will be given
in Chapter 7.

Also, rather than defining Lie groups in full generality, we define linear Lie groups us-
ing the famous result of Cartan (apparently actually due to Von Neumann) that a closed
subgroup of GL(n,R) is a manifold, and thus a Lie group. This way, Lie algebras can be
“computed” using tangent vectors to curves of the form ¢ — A(t), where A(t) is a matrix.
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This chapter is inspired from Artin [10], Chevalley [31], Marsden and Ratiu [77], Curtis [34],
Howe [62], and Sattinger and Weaver [102].

1.1 The Exponential Map

Given an n x n (real or complex) matrix A = (a;;), we would like to define the exponential
et of A as the sum of the series

letting AY = I,,. The problem is, Why is it well-defined? The following proposition shows
that the above series is indeed absolutely convergent. For the definition of absolute conver-
gence see Chapter 2, Section 1.

Proposition 1.1. Let A = (a;;) be a (real or complex) n x n matriz, and let
p=max{|a;;| | 1 <i,j <n}.

If AP = (a§§)), then

foralli,j, 1 <1i,5 <n. As a consequence, the n® series

converge absolutely, and the matrix

15 a well-defined matriz.

Proof. The proof is by induction on p. For p = 0, we have A° = I,,, (nu)® = 1, and the
proposition is obvious. Assume that

|al?| < (npu)?

for all 7,7, 1 <1i,5 <n. Then we have

E :a’zkak]

(pﬂ | = < Z|a | an;| < MZ‘@ } < np(np)? = (nu)Pt,
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for all 4,7, 1 <1i,j < n. For every pair (7, j) such that 1 <i,j < n, since

the series

is bounded by the convergent series

and thus it is absolutely convergent. This shows that

Ak
GAIZH

k>0

is well defined. [

It is instructive to compute explicitly the exponential of some simple matrices. As an
example, let us compute the exponential of the real skew symmetric matrix

A:(g —09).

We need to find an inductive formula expressing the powers A™. Let us observe that
0 —0 0 —1 0 —0\° , /1 0
o @)= ) GV -GY)
0 —1
=01 9).

Then letting

we have
A4n _ 6471]27
A4n+1 — 94n+1 J7
A4n+2 — _94n+212’
A4n+3 — _04n+3j7
and so

0 02 e e e ¢ o
A— R —_— — —_— — J— J— _— — _— — .« e e
¢ =ht oo/t bt g = — S
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Rearranging the order of the terms, we have

2 0 g o 0 e 0
A P— —_—— —_—— — .« .. —_—— — —_— e — o ..
e—<1 TR )5+(u TR T )J

We recognize the power series for cos# and sin @, and thus

et = cos 01, + sin 6.J,

A cosf) —siné
~ \sinf cosf )
Thus, e” is a rotation matrix! This is a general fact. If A is a skew symmetric matrix,
then e” is an orthogonal matrix of determinant +1, i.e., a rotation matrix. Furthermore,
every rotation matrix is of this form; i.e., the exponential map from the set of skew symmetric

matrices to the set of rotation matrices is surjective. In order to prove these facts, we need
to establish some properties of the exponential map.

that is

But before that, let us work out another example showing that the exponential map is
not always surjective. Let us compute the exponential of a real 2 x 2 matrix with null trace

of the form
a b
)

We need to find an inductive formula expressing the powers A™. Observe that
A? = (a® + be)l, = —det(A) L.

If a®> + bec = 0, we have
€A = [Q—I—A

If a® 4+ be < 0, let w > 0 be such that w? = —(a® + be). Then, A? = —w?I,. We get

A w? w? w? w* W W
Ai — — — —_— — — — —_— — —_— — .« ..
bt gy At g A g At
Rearranging the order of the terms, we have
2 4 6 3 5 7
A w® Wt w 1 w® W w

We recognize the power series for cosw and sinw, and thus

sin w

sin w cosw + a sinw p,
e = cosw I + A= sinw “ W )
w Sy e cosw — ¥

w
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Note that

. . )
sin w sin w sin® w
det(e?) = (cosw+ al | cosw— a|——5—bc
w w w
sin? w

= costw — (a® + bc) = cos® w + sin*w = 1.

2
If a> + bc > 0, let w > 0 be such that w? = a® + bc. Then A? = w?I,. We get

2 w2 4 4 6 6

A w w w w w
A— — — — — — — — o« o o
e —[2+1!+2!12+3!A+4!I2+5!A—|-6![2+7!A+ )

Rearranging the order of the terms, we have
2 4 6 3 5 7

A w w w 1 w w w

If we recall that coshw = (e“’ + 6_‘")/2 and sinhw = (ew — e_w)/Q, we recognize the power
series for coshw and sinh w, and thus

: inhw sinh w
sinh w coshw + ¥2¥¢q sSmaep
A
e’ = coshw ]2 + A= sinh w @ h ¢ sinh w ;
TC cosnw — TCL

and

det(e?) = (coshw—i- = wa) <coshw— o wa) _ A Y

w w w?

. h2
— cosh?w — 2 5 ~ (a® + bc) = cosh? w — sinh? w = 1.
w
In both cases
det (eA) =1.

This shows that the exponential map is a function from the set of 2 x 2 matrices with null
trace to the set of 2 x 2 matrices with determinant 1. This function is not surjective. Indeed,
tr(e?) = 2cosw when a? + be < 0, tr(e?) = 2coshw when a? + be > 0, and tr(e?) = 2 when
a® + bc = 0. As a consequence, for any matrix A with null trace,

tr (eA) > =2,

and any matrix B with determinant 1 and whose trace is less than —2 is not the exponential
e” of any matrix A with null trace. For example,

a 0
B_(O a1>’



1.1. THE EXPONENTIAL MAP 31

where a < 0 and a # —1, is not the exponential of any matrix A with null trace since

(a+1)? a*4+2a+1 a*+1

+2 <0,

a a
which in turn implies tr(B) = a + 1 = % < —2.

A fundamental property of the exponential map is that if A\;,..., A\, are the eigenvalues

of A, then the eigenvalues of e are e, ..., e*. For this we need two propositions.

Proposition 1.2. Let A and U be (real or complex) matrices, and assume that U is invert-

ible. Then
VAU — AU,

Proof. A trivial induction shows that

UAPU = (UAU )P,

and thus
~1 UAU_l)p UAPU !
AU Z ( _ Z
p=0 p! p=0 p'
AP
= U (Z —‘> Ul =UeAU
p>0 p:

]

Say that a square matrix A is an upper triangular matriz if it has the following shape,

11 Airz2 @13 ... QGip-1 Ain
0 a2 azz ... azn— Ao n
0 0 ass ... asnp—1 asn
7
0 0 O e Ap_1n—1 Qp—1n
0 0 0o ... 0 Qnn

i.e., a;; = 0 whenever j <1, 1<17,j <n.

Proposition 1.3. Given any complex n x n matrix A, there is an invertible matriz P and
an upper triangular matriz T such that

A=PTP %
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Proof. We prove by induction on n that if f: C* — C” is a linear map, then there is a

basis (u1, ..., u,) with respect to which f is represented by an upper triangular matrix. For
n = 1 the result is obvious. If n > 1, since C is algebraically closed, f has some eigenvalue
A1 € C, and let u; be an eigenvector for A\;. We can find n — 1 vectors (vs, ..., v,) such that
(ug,v9,...,v,) is a basis of C", and let W be the subspace of dimension n — 1 spanned by
(va,...,v,). In the basis (uj,vs...,v,), the matrix of f is of the form
11 ai2 ... Qin
0 a9 A2n
0 Qp 2 Qpp
since its first column contains the coordinates of Aju; over the basis (uy, v, ..., v,). Letting

p: C* — W be the projection defined such that p(u;) = 0 and p(v;) = v; when 2 < i < n,
the linear map g: W — W defined as the restriction of p o f to W is represented by the
(n—1) x (n— 1) matrix (a; j)2<i j<n over the basis (vq, ..., v,). By the induction hypothesis,
there is a basis (us, ..., u,) of W such that g is represented by an upper triangular matrix
(bij)1<ij<n—1-

However,

C" = Cul @D W,

and thus (ug,...,u,) is a basis for C". Since p is the projection from C* = Cu; & W onto
W and g: W — W is the restriction of po f to W, we have

f(ul) = AUy
and
n—1
fuig1) = aruy + Z b; juj 1
j=1

for some a;; € C, when 1 < i < n— 1. But then the matrix of f with respect to (uq,...,u,)
is upper triangular. Thus, there is a change of basis matrix P such that A = PTP~! where
T is upper triangular. O

Remark: If F is a Hermitian space, the proof of Proposition 1.3 can be easily adapted to
prove that there is an orthonormal basis (uq,...,u,) with respect to which the matrix of
f is upper triangular. In terms of matrices, this means that there is a unitary matrix U
and an upper triangular matrix 7' such that A = UTU*. This is usually known as Schur’s
lemma. Using this result, we can immediately rederive the fact that if A is a Hermitian
matrix, i.e. A = A*, then there is a unitary matrix U and a real diagonal matrix D such
that A = UDU™.
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If A= PTP~! where T is upper triangular, then A and T have the same characteristic
polynomial. This is because if A and B are any two matrices such that A = PBP~!, then

det(A—XI) = det(PBP’1 —)\PIP’l),
= det(P(B—-XI)P™Y),
= det(P)det(B — A I)det(P™),
= det(P)det(B — A1) det(P)’l,
= det(B—\I).
Furthermore, it is well known that the determinant of a matrix of the form
A=A i ais A1n—1 A1n
0 A2 — A 23 a2p—1 A2n
0 0 Az — A a3p—1 a3n
0 0 0 )\n—l - A Ap—1n
0 0 0 0 An — A

is (\; —A)--- (A, — A), and thus the eigenvalues of A = PTP~! are the diagonal entries of
T. We use this property to prove the following proposition.

Proposition 1.4. Given any complex n x n matriz A, if A1,...,\, are the eigenvalues of
A, then e, ... e are the eigenvalues of e*. Furthermore, if u is an eigenvector of A for
\;, then u is an eigenvector of e for eMi.

Proof. By Proposition 1.3 there is an invertible matrix P and an upper triangular matrix 7’
such that
A=pPTP .

By Proposition 1.2,
€PTP_1 — PeTPfl
250 % is upper triangular since T? is upper triangular for all p > 0. If
., A\n are the diagonal entries of T', the properties of matrix multiplication, when
AR,
This in turn implies that the diagonal entries of e’ are ZPZO ’;—T =edifor 1 <i<mn In
the preceding paragraph we showed that A and T" have the same eigenvalues, which are the
diagonal entries Ay, ..., A, of T. Since e = ¢PTP™" = PeT P! and e is upper triangular,
we use the same argument to conclude that both e and e’ have the same eigenvalues, which
are the diagonal entries of e”, where the diagonal entries of e’ are of the form e, ...
Now, if u is an eigenvector of A for the eigenvalue A, a simple induction shows that u is an
eigenvector of A™ for the eigenvalue A", from which is follows that
A A2 A3 2 3
I+ﬂ+§+§+...}u:u+Au+§u+§u+...
2 3 2 3 R

u—i—/\u—i—au—l—au—l—---: l1+/\—|—§—|—§+... u = e’u,

Note that 7 = >
AL, Ao, ..
combined with an induction on p, imply that the diagonal entries of TP are A}, A5, ..

A
’e 7L.

eAu
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which shows that u is an eigenvector of e for e*. O

As a consequence, we can show that
det(e?) = e,

where tr(A) is the trace of A, i.e., the sum a;; + - -+ + a,, of its diagonal entries, which is
also equal to the sum of the eigenvalues of A. This is because the determinant of a matrix
is equal to the product of its eigenvalues, and if A{, ..., \, are the eigenvalues of A, then by
Proposition 1.4, e, ..., e are the eigenvalues of e, and thus

det (e) = M ..o = Mt = i),

This shows that e is always an invertible matrix, since e is never null for every z € C. In

fact, the inverse of e? is e, but we need to prove another proposition. This is because it
is generally not true that

unless A and B commute, i.e., AB = BA. We need to prove this last fact.

Proposition 1.5. Given any two complex n X n matrices A, B, if AB = BA, then

Proof. Since AB = BA, we can expand (A + B)P using the binomial formula:

(A+ By = zp: (i) Akprk,

k=0
and thus »
1 Ak Bp—Fk
—(A+ B)! = —_
| | _ |
p! p kl(p — k)!
Note that for any integer N > 0, we can write
2N ON p
1 Ak Bp—Fk
Zpl(A+B) - ZZklp k)l
p=0 k=0
A\ (XL By Ak Bl
- () (%) x wh
p=0 p=0 * max(k)>N
k+1<2N

where there are N(N + 1) pairs (k,1) in the second term. Letting

[A} = max{lai;| | 1 <d,5 <n}, ||Bl| =max{[b;| [ 1 <i,j <n},



1.2. SOME CLASSICAL LIE GROUPS 35

and p = max(||A|[, || B]|), note that for every entry ¢;; in (A*/k!) (B'/1!), the first inequality
of Proposition 1.1, along with the fact that N < max(k,l) and k+1 < 2N , implies that

(n)* ()" _ ()™ _ ()™ (2t (022"
< < < < .
k! A 1T k! - kEN' T NI
As a consequence, the absolute value of every entry in

Ak B!
> WT

max(k,l) >N
k+l<2N

lcij| <n

is bounded by
()
N! 7

which goes to 0 as NV +— oco. To see why this is the case, note that

N(N +1)

) (n2,u)2N B ) N(N+1) (n2,u)2N L (n4u2)N72+2
A NN D)= = A NN ) (N2 A v =21
4, 2\N—2
_ 4 2\2 7 (” %) _
= ()" Jim ~v_2n

where the last equality follows from the well known identity limy_, %N, = 0. From this it
immediately follows that

Now, using Proposition 1.5, since A and —A commute, we have

which shows that the inverse of e? is e=4.

We will now use the properties of the exponential that we have just established to show
how various matrices can be represented as exponentials of other matrices.

1.2 The Lie Groups GL(n,R), SL(n,R), O(n), SO(n), the
Lie Algebras gl(n,R), sl(n,R), o(n), so(n), and the
Exponential Map

First, we recall some basic facts and definitions. The set of real invertible n x n matrices
forms a group under multiplication, denoted by GL(n, R). The subset of GL(n, R) consisting
of those matrices having determinant +1 is a subgroup of GL(n,R), denoted by SL(n,R).
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It is also easy to check that the set of real n x n orthogonal matrices forms a group under
multiplication, denoted by O(n). The subset of O(n) consisting of those matrices having
determinant +1 is a subgroup of O(n), denoted by SO(n). We will also call matrices in
SO(n) rotation matrices. Staying with easy things, we can check that the set of real n x n
matrices with null trace forms a vector space under addition, and similarly for the set of
skew symmetric matrices.

Definition 1.1. The group GL(n,R) is called the general linear group, and its subgroup
SL(n,R) is called the special linear group. The group O(n) of orthogonal matrices is called
the orthogonal group, and its subgroup SO(n) is called the special orthogonal group (or group
of rotations). The vector space of real n x n matrices with null trace is denoted by sl(n, R),
and the vector space of real n x n skew symmetric matrices is denoted by so(n).

Remark: The notation sl(n,R) and so(n) is rather strange and deserves some explanation.
The groups GL(n,R), SL(n,R), O(n), and SO(n) are more than just groups. They are also
topological groups, which means that they are topological spaces (viewed as subspaces of
R"’) and that the multiplication and the inverse operations are continuous (in fact, smooth).
Furthermore, they are smooth real manifolds.! Such objects are called Lie groups. The real
vector spaces sl(n) and so(n) are what is called Lie algebras. However, we have not defined
the algebra structure on sl(n,R) and so(n) yet. The algebra structure is given by what is
called the Lie bracket, which is defined as

[A, B] = AB — BA.

Lie algebras are associated with Lie groups. What is going on is that the Lie algebra of
a Lie group is its tangent space at the identity, i.e., the space of all tangent vectors at the
identity (in this case, I,,). In some sense, the Lie algebra achieves a “linearization” of the Lie
group. The exponential map is a map from the Lie algebra to the Lie group, for example,

exp: 50(n) — SO(n)
and
exp: sl(n,R) — SL(n,R).

The exponential map often allows a parametrization of the Lie group elements by simpler
objects, the Lie algebra elements.

One might ask, What happened to the Lie algebras gl(n,R) and o(n) associated with the
Lie groups GL(n,R) and O(n)? We will see later that gl(n,R) is the set of all real n x n
matrices, and that o(n) = so(n).

"'We refrain from defining manifolds right now, not to interrupt the flow of intuitive ideas.



1.2. SOME CLASSICAL LIE GROUPS 37

The properties of the exponential map play an important role in studying a Lie group.
For example, it is clear that the map

exp: gl(n,R) — GL(n,R)

is well-defined, but since det(e?) = ") every matrix of the form e has a positive de-
terminant and exp is not surjective. Similarly, the fact det(e?) = e" ) implies that the
map

exp: sl(n,R) — SL(n,R)

is well-defined. However, we showed in Section 1.1 that it is not surjective either. As we will
see in the next theorem, the map

exp: 50(n) — SO(n)
is well-defined and surjective. The map
exp: o(n) — O(n)

is well-defined, but it is not surjective, since there are matrices in O(n) with determinant
—1.

Remark: The situation for matrices over the field C of complex numbers is quite different,
as we will see later.

We now show the fundamental relationship between SO(n) and so(n).
Theorem 1.6. The exponential map
exp: so(n) — SO(n)
1s well-defined and surjective.

Proof. First we need to prove that if A is a skew symmetric matrix, then e? is a rotation
matrix. For this we quickly check that

(e =t

This is consequence of the definition e = szo % as a absolutely convergent series, the
observation that (AP)" = (AT)P, and the linearity of the transpose map, i.e (A + B)' =

A" 4+ BT, Then since AT = —A, we get

and so
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and similarly,

showing that e is orthogonal. Also,
det (e) = et (A

and since A is real skew symmetric, its diagonal entries are 0, i.e., tr(A) = 0, and so
det(e?) = +1.

For the surjectivity, we use Theorem 12.5, from Chapter 12 of Gallier [48]. Theorem
12.5 says that for every orthogonal matrix R there is an orthogonal matrix P such that
R = PE P'", where E is a block diagonal matrix of the form

such that each block E; is either 1, —1, or a two-dimensional matrix of the form
cosf; —sindb;
Ei — ) 7 7
(sm 0; cosb; ) ’

with 0 < 0; < 7. Furthermore, if R is a rotation matrix, then we may assume that 0 < 6; <7
and that the scalar entries are +1. Then we can form the block diagonal matrix

P

such that each block D; is either 0 when FE; consists of +1, or the two-dimensional matrix

0 —0;
D= <02- 0 )

cosf; —sinb;
Ei = (sin 0, cosb; ) ’
and we let A = PDP'. It is clear that A is skew symmetric since AT = (PDPT)T =
PD'PT = —PDP'. By Proposition 1.2,

when

1 .
€A — ePDP — P@DP 1’



1.2. SOME CLASSICAL LIE GROUPS 39

and since D is a block diagonal matrix, we can compute e” by computing the exponentials
of its blocks. If D; = 0, we get E; = €° = +1, and if

0 —0;

oDi C'OS f; —sinb;
sinf; cos6; )’

exactly the block F;. Thus, E = e”, and as a consequence,

we showed earlier that

e = PP — pLp-l — ppp-l — pPEPT = R.

This shows the surjectivity of the exponential. O]

When n = 3 (and A is skew symmetric), it is possible to work out an explicit formula for
e, For any 3 x 3 real skew symmetric matrix

0 —c b
A=l ¢ 0 —a],
b a O
letting 0 = va? 4+ b> + ¢? and
a’> ab ac
B=\|ab b bc|,
ac bc 2

we have the following result known as Rodrigues’s formula (1840).
Proposition 1.7. The exponential map exp: s0(3) — SO(3) is given by

in6 (1 —cosf)
A_ 7, S0
e cosf I3 + 7 A+ 0z

B,

or, equivalently, by
A sin ¢ (1 —cosf) .,
=7 A A
€ 3+ 9 + 02

if 0 %0, with €% = I3.

Proof sketch. First observe that
A2 - —0213 + B,
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since
0 —c b 0 —c b — — b ba ca
A = c 0 -a c 0 —-al|= ab —c? — a? ch
b a O b a O ac cb —b% — a?
—a? —b* -2 0 0 a®> ba ca
= 0 —a®>—b —c 0 +ab B* b
0 0 —a? — b — 2 ac cb
= —0’I;+B
and that
AB = BA=0.
From the above, deduce that
A3 = —0%A,
and for any k > 0,
A4k+1 — 64kA
A4k+2 — 94kA2
A4k+3 — —94k+2A
A4k+4 — —04k+2A2.

Then prove the desired result by writing the power series for e4 and regrouping terms so
that the power series for cosf and sin f show up. In particular

A2p+1 A2p
A
(& = [3 + Z Z — + Z —
p92p (—1)r—1p2—1)
APV L ED Y
(2p+1 = @)
Z p92p+1 A? (_1)1)9210
T T @  (2p)!

sin 9 A? (—1)re% A2

= L+—A—— ) ———— 4 —
3T 2 2; o e
. 811919A+ (1 _9C089>A2

]

The above formulae are the well-known formulae expressing a rotation of axis specified by
the vector (a, b, ¢) and angle 6. Since the exponential is surjective, it is possible to write down
an explicit formula for its inverse (but it is a multivalued function!). This has applications
in kinematics, robotics, and motion interpolation.
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1.3 Symmetric Matrices, Symmetric Positive Definite
Matrices, and the Exponential Map

Recall that a real symmetric matrix is called positive (or positive semidefinite) if its eigen-
values are all positive or null, and positive definite if its eigenvalues are all strictly positive.
We denote the vector space of real symmetric n x n matrices by S(n), the set of symmetric
positive matrices by SP(n), and the set of symmetric positive definite matrices by SPD(n).

The next proposition shows that every symmetric positive definite matrix A is of the
form e? for some unique symmetric matrix B. The set of symmetric matrices is a vector
space, but it is not a Lie algebra because the Lie bracket [A, B] is not symmetric unless A
and B commute, and the set of symmetric (positive) definite matrices is not a multiplicative

group, so this result is of a different flavor as Theorem 1.6.
Proposition 1.8. For every symmetric matriz B, the matriz e® is symmetric positive defi-
nite. For every symmetric positive definite matriz A, there is a unique symmetric matriz B

such that A = eB.

Proof. We showed earlier that
() ="

If B is a symmetric matrix, then since B' = B, we get

(eB)T _ eBT _ eB,

and e? is also symmetric. Since the eigenvalues A, ..., )\, of the symmetric matrix B are
real and the eigenvalues of e? are e, ... eM, and since e* > 0 if A € R, e? is positive
definite.

To show the surjectivity of the exponential map, note that if A is symmetric positive
definite, then by Theorem 12.3 from Chapter 12 of Gallier [48], there is an orthogonal
matrix P such that A = PD PT, where D is a diagonal matrix

where \; > 0, since A is positive definite. Letting

10g )\1
log Ao

log A\,
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by using the power series representation of e”, it is obvious that e/ = D, with log \; € R,
since \; > 0.
Let
B=PLP".

By Proposition 1.2, we have
B = ePEPT — PP — pelp=t — pel PT = PDPT = A.

Finally, we prove that if B; and B, are symmetric and A = et = ¢P2 then B; = B,. We
use an argument due to Chevalley [31] (see Chapter I, Proposition 5, pages 13-14). Since B,

is symmetric, there is an orthonormal basis (ug, ..., u,) of eigenvectors of By. Let puq, ..., fin
be the corresponding eigenvalues. Similarly, there is an orthonormal basis (vq,...,v,) of
eigenvectors of By. We are going to prove that By and Bs agree on the basis (vy,...,v,),

thus proving that B; = Bs.

Let i be some eigenvalue of By, and let v = v; be some eigenvector of By associated with
. We can write
V=0qUr F o QU

Since v is an eigenvector of By for p and A = P2, by Proposition 1.4
A(v) = e'v = efaquy + - - - + e*a,uy,.
On the other hand,
A(w) = Alaqug + - -+ + apuy) = g A(uy) + - -+ + a Aluy),

and since A = eP' and B;(u;) = psu;, by Proposition 1.4 we get

A(w) = etaquy + -+ - + e anuy,.
Therefore, o; = 0 if p; # p. Letting

I={i|p=pic{l,....,n}}

v = E AUy

i€l

we have

Now,

Bi(v) = B (Z au> =Y aBiw) = 3 o,

el il el

= ) i = u(Z ozU> = v,

i€l el
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since p; = p when ¢ € I. Since v is an eigenvector of By for u,
B2 (U) = pv,

which shows that
Bl(’l}) = BQ(U).

Since the above holds for every eigenvector v;, we have By = Bs. O

Proposition 1.8 can be reformulated as stating that the map exp: S(n) — SPD(n)
is a bijection. It can be shown that it is a homeomorphism. In the case of invertible
matrices, the polar form theorem can be reformulated as stating that there is a bijection
between the topological space GL(n, R) of real n x n invertible matrices (also a group) and
O(n) x SPD(n).

As a corollary of the polar form theorem (Theorem 13.1 in Chapter 13 of Gallier [48])
and Proposition 1.8, we have the following result: For every invertible matrix A there is a
unique orthogonal matrix R and a unique symmetric matrix S such that

A=Re%.

Thus, we have a bijection between GL(n,R) and O(n) x S(n). But S(n) itself is isomorphic
to R™™+1)/2 Thus, there is a bijection between GL(n,R) and O(n) x R*™+1/2_ Tt can also
be shown that this bijection is a homeomorphism. This is an interesting fact. Indeed, this
homeomorphism essentially reduces the study of the topology of GL(n,R) to the study of
the topology of O(n). This is nice, since it can be shown that O(n) is compact.

In A= Re’, if det(A) > 0, then R must be a rotation matrix (i.e., det(R) = +1), since
det (%) > 0. In particular, if A € SL(n,R), since det(A) = det(R) = +1, the symmetric
matrix S must have a null trace, i.e., S € S(n)Nsl(n,R). Thus, we have a bijection between

SL(n,R) and SO(n) x (S(n) Nsl(n,R)).

We can also show that the exponential map is a surjective map from the skew Hermitian
matrices to the unitary matrices (use Theorem 12.7 from Chapter 12 in Gallier [48]).

1.4 The Lie Groups GL(n,C), SL(n,C), U(n), SU(n), the
Lie Algebras gl(n,C), sl(n,C), u(n), su(n), and the
Exponential Map

The set of complex invertible n x n matrices forms a group under multiplication, denoted by
GL(n,C). The subset of GL(n,C) consisting of those matrices having determinant +1 is a
subgroup of GL(n, C), denoted by SL(n,C). It is also easy to check that the set of complex
n X n unitary matrices forms a group under multiplication, denoted by U(n). The subset
of U(n) consisting of those matrices having determinant +1 is a subgroup of U(n), denoted
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by SU(n). We can also check that the set of complex n x n matrices with null trace forms
a real vector space under addition, and similarly for the set of skew Hermitian matrices and
the set of skew Hermitian matrices with null trace.

Definition 1.2. The group GL(n,C) is called the general linear group, and its subgroup
SL(n,C) is called the special linear group. The group U(n) of unitary matrices is called the
unitary group, and its subgroup SU(n) is called the special unitary group. The real vector
space of complex n x n matrices with null trace is denoted by sl(n, C), the real vector space
of skew Hermitian matrices is denoted by u(n), and the real vector space u(n) Nsl(n,C) is
denoted by su(n).

Remarks:

(1) As in the real case, the groups GL(n,C), SL(n,C), U(n), and SU(n) are also topo-
logical groups (viewed as subspaces of R2”2), and in fact, smooth real manifolds. Such
objects are called (real) Lie groups. The real vector spaces sl(n,C), u(n), and su(n)
are Lie algebras associated with SL(n,C), U(n), and SU(n). The algebra structure is
given by the Lie bracket, which is defined as

[A, Bl = AB — BA.

(2) It is also possible to define complex Lie groups, which means that they are topological
groups and smooth complez manifolds. It turns out that GL(n,C) and SL(n,C) are
complex manifolds, but not U(n) and SU(n).

@ One should be very careful to observe that even though the Lie algebras sl(n,C),

u(n), and su(n) consist of matrices with complex coefficients, we view them as real
vector spaces. The Lie algebra sl(n, C) is also a complex vector space, but u(n) and su(n)
are not! Indeed, if A is a skew Hermitian matrix, iA is not skew Hermitian, but Hermitian!

Again the Lie algebra achieves a “linearization” of the Lie group. In the complex case,
the Lie algebras gl(n, C) is the set of all complex n x n matrices, but u(n) # su(n), because
a skew Hermitian matrix does not necessarily have a null trace.

The properties of the exponential map also play an important role in studying complex
Lie groups. For example, it is clear that the map

exp: gl(n,C) — GL(n,C)

is well-defined, but this time, it is surjective! One way to prove this is to use the Jordan
normal form. Similarly, since

det (eA) = (4
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the map
exp: sl(n,C) — SL(n,C)

is well-defined, but it is not surjective! As we will see in the next theorem, the maps
exp: u(n) — U(n)

and
exp: su(n) — SU(n)

are well-defined and surjective.
Theorem 1.9. The exponential maps

exp: u(n) - U(n) and exp: su(n) — SU(n)
are well-defined and surjective.

Proof. First we need to prove that if A is a skew Hermitian matrix, then e is a unitary
. — T . .
matrix. Recall that A* = A . Then since (e4)T = A", we readily deduce that

() = et

Then since A* = — A, we get

and so
(eA)* oA — pmApA — pmA+A _ 0
and similarly, e? (eA)* = I,,, showing that e” is unitary. Since

det (e?) = e (A

if A is skew Hermitian and has null trace, then det(e?) = +1.

For the surjectivity we will use Theorem 12.7 in Chapter 12 of Gallier [48]. First assume
that A is a unitary matrix. By Theorem 12.7, there is a unitary matrix U and a diagonal
matrix D such that A = UDU*. Furthermore, since A is unitary, the entries A\y,..., A\, in
D (the eigenvalues of A) have absolute value +1. Thus, the entries in D are of the form
cos @ + isinf = . Thus, we can assume that D is a diagonal matrix of the form

ei91

If we let E be the diagonal matrix
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164
10,

it is obvious that E is skew Hermitian and that

e? = D.

Then letting B = UEU*, we have
eP=A

and it is immediately verified that B is skew Hermitian, since F is.

Y

If A is a unitary matrix with determinant 41, since the eigenvalues of A are €1, ... ei%

and the determinant of A is the product

e

ei91 .. eigp — ei(91+---+9p)

of these eigenvalues, we must have
0+ +6,=0,
and so, F is skew Hermitian and has zero trace. As above, letting
B=UFEU",

we have

e = A,

where B is skew Hermitian and has null trace. O

We now extend the result of Section 1.3 to Hermitian matrices.

1.5 Hermitian Matrices, Hermitian Positive Definite
Matrices, and the Exponential Map

Recall that a Hermitian matrix is called positive (or positive semidefinite) if its eigenvalues
are all positive or null, and positive definite if its eigenvalues are all strictly positive. We
denote the real vector space of Hermitian nxn matrices by H(n), the set of Hermitian positive
matrices by HP(n), and the set of Hermitian positive definite matrices by HPD(n).

The next proposition shows that every Hermitian positive definite matrix A is of the
form e” for some unique Hermitian matrix B. As in the real case, the set of Hermitian
matrices is a real vector space, but it is not a Lie algebra because the Lie bracket [A, B] is
not Hermitian unless A and B commute, and the set of Hermitian (positive) definite matrices
is not a multiplicative group.
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Proposition 1.10. For every Hermitian matriz B, the matriz e is Hermitian positive
definite. For every Hermitian positive definite matriz A, there is a unique Hermitian matrix
B such that A = €B.

Proof. 1t is basically the same as the proof of Theorem 1.8, except that a Hermitian matrix
can be written as A = UDU*, where D is a real diagonal matrix and U is unitary instead of
orthogonal. O]

Proposition 1.10 can be reformulated as stating that the map exp: H(n) — HPD(n) is
a bijection. In fact, it can be shown that it is a homeomorphism. In the case of complex
invertible matrices, the polar form theorem can be reformulated as stating that there is a
bijection between the topological space GL(n,C) of complex n x n invertible matrices (also
a group) and U(n) x HPD(n). As a corollary of the polar form theorem and Proposition
1.10, we have the following result: For every complex invertible matrix A, there is a unique
unitary matrix U and a unique Hermitian matrix S such that

A=Ue¢e".

Thus, we have a bijection between GL(n,C) and U(n) x H(n). But H(n) itself is isomorphic
to R", and so there is a bijection between GL(n,C) and U(n) x R™. It can also be
shown that this bijection is a homeomorphism. This is an interesting fact. Indeed, this
homeomorphism essentially reduces the study of the topology of GL(n,C) to the study of
the topology of U(n). This is nice, since it can be shown that U(n) is compact (as a real
manifold).

In the polar decomposition A = Ue¥, we have | det(U)| = 1, since U is unitary, and tr(.9)
is real, since S is Hermitian (since it is the sum of the eigenvalues of S, which are real), so
that det (es) > 0. Thus, if det(A) = 1, we must have det (es) = 1, which implies that S €
H(n)Nsl(n,C). Thus, we have a bijection between SL(n, C) and SU(n) x (H(n)Nsl(n,C)).

In the next section we study the group SE(n) of affine maps induced by orthogonal trans-
formations, also called rigid motions, and its Lie algebra. We will show that the exponential
map is surjective. The groups SE(2) and SE(3) play play a fundamental role in robotics,
dynamics, and motion planning.

1.6 The Lie Group SE(n) and the Lie Algebra se(n)

First, we review the usual way of representing affine maps of R™ in terms of (n+1) x (n+1)
matrices.

Definition 1.3. The set of affine maps p of R", defined such that
p(X)=RX + U,

where R is a rotation matrix (R € SO(n)) and U is some vector in R", is a group under
composition called the group of direct affine isometries, or rigid motions, denoted by SE(n).
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Every rigid motion can be represented by the (n + 1) x (n + 1) matrix

(0 %)
()= ) 6)

p(X)=RX +U.

in the sense that

iff

Definition 1.4. The vector space of real (n+ 1) x (n + 1) matrices of the form
(1)

where €2 is an n x n skew symmetric matrix and U is a vector in R™, is denoted by se(n).

Remark: The group SE(n) is a Lie group, and its Lie algebra turns out to be se(n).

We will show that the exponential map exp: se(n) — SE(n) is surjective. First we prove
the following key proposition.

Proposition 1.11. Given any (n + 1) x (n+ 1) matriz of the form

-(3)

where Q is any n X n matriz and U € R™,

OF Q1D
kE_
(5 1),

where QY = I,,. As a consequence,

where
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Proof. A trivial induction on k shows that

QrF QFlu
kE _
(5

Ak
A
= 2w
k>0

1 /QF QF1U
I+ Z T < 0 0 ) )
E>1

— (In+2k>1 & Zk>1 TR >
0 1 ’

(VU
N o 1)/

We can now prove our main theorem. We will need to prove that V' is invertible when €2
is a skew symmetric matrix. It would be tempting to write V' as

V=0 - 1).

Then we have

]

Unfortunately, for odd n, a skew symmetric matrix of order n is not invertible! Thus, we
have to find another way of proving that V' is invertible. However, observe that we have the

following useful fact:
= / et dt
ot

since e** is absolutely convergent and term by term integration yields

1
Ot .
/Oedt—/o dt Zkl/m

k>0 k>0

tk+1 1
= /tkdt { }
k+1],

k>0

Qk:—l Qk
Yy
k! & (k+1)!

k>1

k>1

This is what we will use in Theorem 1.12 to prove surjectivity.

Theorem 1.12. The exponential map
exp: se(n) — SE(n)

1s well-defined and surjective.
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Q

Proof. Since () is skew symmetric, e* is a rotation matrix, and by Theorem 1.6, the expo-

nential map
exp: so(n) — SO(n)

is surjective. Thus it remains to prove that for every rotation matrix R, there is some skew
symmetric matrix {2 such that R = ¢ and

v 2
V=l +Y
= (k:—l—l)!

is invertible. This is because Proposition 1.11 will then imply
Q ViU
o o0 | (e VVTIU\ (R U
‘ o 1 J7\o 1)
Theorem 12.5 from Chapter 12 of Gallier [48] says that for every orthogonal matrix R there

is an orthogonal matrix P such that R = PE PT, where E is a block diagonal matrix of the

form
Ey

E

p

such that each block FE; is either 1, —1, or a two-dimensional matrix of the form
cosf; —sinb;
Ei = (sin 0, cosb; ) ’

Furthermore, if R is a rotation matrix, then we may assume that 0 < §; < 7 and that the
scalar entries are +1. Then we can form the block diagonal matrix

D,
D,
D,

such that each block D; is either 0 when FE; consists of +1, or the two-dimensional matrix

0 —0;
D= <9i 0 )

cosf; —sinb;
Ei = (sin 0, cosb; ) ’

when
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with 0 < 0; < 7. If we let Q = PD P, then
e =R,
as in the proof of Theorem 1.6. To compute V, since Q2 = PD P"T = PDP~!, observe that

V:]+Zk+1

k>1 (k+1)
AU RS
< k>1 k +1)!
= pwp!
where D
W=5t 2 G
We can compute
DF !
W=l k]'_/QMﬁ
=1 (k+1) 0
by computing
Wi
W
W = ) .
Wp

by blocks. Since

oo (o) i)

when D; is a 2 x 2 skew symmetric matrix

0 -6,
p=( 0)
and W; = fol ePitdt, we get

W — (fo cos(0;t)dt fo — sin(6; t)dt) 1 ( sin(0;t) |§  cos(6;t) |(1))

fo sin( t)dt fo cos(0;t)dt 0; \—cos(0;t) |§ sin(6;t) |}

that is,

1 ing.  —(1— ,
W, = _( sin 0; (1 ' cos@,))’

0; \1— cos¥b; sin 6;
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and W; =1 when D; = 0. Now, in the first case, the determinant is

1 2
2 ((sin#;)* + (1 — cos 6;)%) = 9—2(1 — cosb;),

which is nonzero, since 0 < 6; < w. Thus, each W; is invertible, and so is W, and thus,
V = PW P! is invertible. O]

In the case n = 3, given a skew symmetric matrix

0 —c b
Q=1 ¢ 0 —al,
—b a O

letting 6 = Va2 + b2 + 2, it it easy to prove that if # = 0, then

a_ (I3 U
6_(01’

and that if 6 # 0 (using the fact that Q* = —6%Q), then by adjusting the calculation found

at the end of Section 1.2
sin 0 (1 — cosf) 0?2

Q _
=1+ l0 B0 (%1)
and (1 6)  (6—sind)
— COS — S1n
V = I3 + 92 Q + 03 QQ. (*2)

1.7 Problems

Problem 1.1. (a) Find two symmetric matrices, A and B, such that AB is not symmetric.
(b) Find two matrices A and B such that
eteB + AT,
Hint. Try
0
0
-1

A= -1 and B=nw

o O O
= o O
o

o O O

and use the Rodrigues formula.
(¢) Find some square matrices A, B such that AB # BA, yet

oAeB — A+B

Hint. Look for 2 x 2 matrices with zero trace.
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Problem 1.2. Given any matrix

B= (“ b) € s1(2,C),
C a

if w? = a? 4 bc and w is any of the two complex roots of a? + be, prove that if w # 0, then

sinh w
eB = coshw I +

B,

w

and e? = I + B, if a® + bc = 0. Observe that tr(e?) = 2 cosh w.

Prove that the exponential map, exp: sl(2,C) — SL(2, C), is not surjective. For instance,

prove that
-1 1
0 -1

is not the exponential of any matrix in s[(2, C).

Problem 1.3. (Advanced) (a) Recall that a matrix N is nilpotent iff there is some m > 0
so that N™ = 0. Let A be any n x n matrix of the form A = I — N, where N is nilpotent.
Why is A invertible? Prove that there is some B so that e® = I — N as follows: Recall that
for any y € R so that |y — 1| is small enough, we have

log(y)—_(1_y)_@_..._@_....

As N is nilpotent, we have N™ = 0, where m is the smallest integer with this propery. Then,

the expression
N2 Nm—l
B=log(l-N)=—-N—— —-..—
2 m—1

is well defined. Use a formal power series argument to show that

P = A.

We denote B by log(A).

(b) Let A € GL(n,C). Prove that there is some matrix, B, so that e = A. Thus, the
exponential map, exp: gl(n,C) — GL(n, C), is surjective.

Hint. First, use the fact that A has a Jordan form, PJP~!. Then, show that finding a log
of A reduces to finding a log of every Jordan block of J. As every Jordan block, J, has a
fixed nonzero constant, A, on the diagonal, with 1’s immediately above each diagonal entry

and zero’s everywhere else, we can write J as (AI)(I — N), where N is nilpotent. Find B,
and By so that A\ = eB', ] — N = eP2, and B, B, = B,B;. Conclude that J = eP1 752,
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Problem 1.4. (a) Let s0(3) be the space of 3 x 3 skew symmetric matrices

0 —c b
s50(3) = c 0 —a a,b,ce R
—b a O
For any matrix
—c b
A= ¢ 0 —a] €s0(3),
—b a O
if we let 0 = va? 4+ b2 + ¢? and
a’> ab ac
B=|ab b bc|,
ac be c?
prove that
A* = —0*I + B,

AB = BA=0.
From the above, deduce that
A = —0?A.
(b) Prove that the exponential map exp: so(3) — SO(3) is given by
sin 0 (1 —cosf)

expA =e? =cosOI; + 7 A+ 0z

B,

or, equivalently, by

A sin 6 (1 —cos®) ,
e —[3+ 9 A-'- 02 A,

if 0 £ 0,

with exp(03) = 1.
(c) Prove that e# is an orthogonal matrix of determinant +1, i.e., a rotation matrix.

(d) Prove that the exponential map exp: so(3) — SO(3) is surjective. For this, proceed
as follows: Pick any rotation matrix R € SO(3);

(1) The case R = [ is trivial.
(2) If R# I and tr(R) # —1, then
6

exp (1) = {25h19

(Recall that tr(R) = ri1 + ros + r33, the trace of the matrix R).

(R—R") | 14 2cosf :tr(R)}.

Show that there is a unique skew-symmetric B with corresponding 6 satisfying 0 <
0 < 7 such that e? = R.
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(3) If R # I and tr(R) = —1, then prove that the eigenvalues of R are 1,—1, —1, that
R =R'", and that R? = I. Prove that the matrix

S= 3 (R-1)

is a symmetric matrix whose eigenvalues are —1, —1,0. Thus, S can be diagonalized
with respect to an orthogonal matrix () as

-1 0 0
S=Q|l 0 -1 0]|Q".
0 0 0

Prove that there exists a skew symmetric matrix

0 —-d c
U=\|d 0 -b
—c b 0
so that ]
Observe that
—(*+d?) be bd
U? = bc —(b* + d?) cd :
bd cd —(* 4+ )

and use this to conclude that if U? = S, then b? + ¢ + d> = 1. Then, show that

0 —d c
exp (R)=¢(2k+1)r | d 0 -b|,keZy,
—c b 0

where (b, ¢, d) is any unit vector such that for the corresponding skew symmetric matrix
U, we have U? = S.

(e) To find a skew symmetric matrix U so that U? = S = (R — I) as in (d), we can
solve the system
-1 b bd

be -1 cd = S.
bd cd d*>—1

We immediately get b2, ¢, d?, and then, since one of b, ¢, d is nonzero, say b, if we choose the
positive square root of b?, we can determine ¢ and d from bc and bd.

Implement a computer program to solve the above system.
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(f) The previous questions show that we can compute a log of a rotation matrix, although

when 0 =~ 0, we have to be careful in computing 5”6‘9; in this case, we may want to use

sin9_1 6’2+94+
0 31 5! ‘

Given two rotations, Ry, Ry € SO(3), there are three natural interpolation formulae:

_ T T
6(1 t)log R1+tlog Rg; Rlet log(R, R2) 6t log(R2R; )Rh

with 0 <¢ < 1.

Write a computer program to investigate the difference between these interpolation for-
mulae.

The position of a rigid body spinning around its center of gravity is determined by a
rotation matrix, R € SO(3). If Ry denotes the initial position and Ry the final position of
this rigid body, by computing interpolants of R; and Ry, we get a motion of the rigid body
and we can create an animation of this motion by displaying several interpolants. The rigid
body can be a “funny” object, for example a banana, a bottle, etc.

Problem 1.5. Consider the affine maps p: R? — R? defined such that

T\ cos —sinf T n Wy
P Yy ~Y\sing  cosd Y wy )’

where 0, wy,wy, € R, with o« > 0. These maps are called (direct) affine similitudes (for
short, similitudes). The number o > 0 is the scale factor of the similitude. These affine
maps are the composition of a rotation of angle 6, a rescaling by o > 0, and a translation.

(a) Prove that these maps form a group that we denote by SIM(2).

Given any map p as above, if we let

n_ 0989 —sin @ X = z Cand W= w1 7
sinf  cos6 Y Wa

then p can be represented by the 3 x 3 matrix

oR W acng —asing  w;
A= 0 1)° asinf  acosf  ws
0 0 1

in the sense that
p(X)\  (aR W)\ (X
1 ) 1 1

p(X) =aRX +W.

iff
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(b) Consider the set of matrices of the form

A —0 u
0 N v
0 0 O

where 0, A\, u,v € R. Verify that this set of matrices is a vector space isomorphic to (R?*, +).
This vector space is denoted by sim(2).

A =0
()

(¢) Given a matrix

prove that
o o [cost —sinf
© = (sin@ cos@)'
Hint. Write
Q=M +46J,
with

0 -1
J= (1 ) ) .
Observe that J2 = —1, and prove by induction on & that

Q" =2 (A +1i0)" + (A —i0)") I + % (A +i0)" — (A —1i0)%) J.

A -0
=0 )

1
2

(d) As in (c), write

let
0= (1)
v
and let 0
U
-(31)
Prove that R
w5 ")
where QY = I,.
Prove that
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where

—]2—1'2 k‘—i—l

k>1

(e) Use the formula

Qk 1
V:IQ+Z :/emdt
. 0

to prove that if A =6 = 0, then
V=1,

else

v — 1 ()\(e’\ cosf — 1)+ e*dsinf —0(1 — e* cosf) — e*Asin 9)

A2+ 02 \0(1 —e*cosf) + e*sind  Aercosh — 1) + e*dsinf

Conclude that if A =6 = 0, then

s (I U
6_(01’

else
B __ GQ VU
“~\o 1)
with . "
QA COS — Sin
€ =¢ (sin& 0039)’
and

1 Mercosh — 1)+ ersinf  —0(1 — e* cosf) — e*sinf
T2 402 \0(1 —ercosh) +ePsind (et cosh — 1) + ersind

and that e € SIM(2), with scale factor e*.
(f) Prove that the exponential map exp: sim(2) — SIM(2) is surjective.

(g) Similitudes can be used to describe certain deformations (or flows) of a deformable
body B; in the plane. Given some initial shape B in the plane (for example, a circle), a
deformation of B is given by a piecewise differentiable curve

D: [0,7] — SIM(2),

where each D(t) is a similitude (for some 7" > 0). The deformed body B; at time t is given
by

The surjectivity of the exponential map exp: sim(2) — SIM(2) implies that there is a
map log: SIM(2) — sim(2), although it is multivalued. The exponential map and the log
“function” allows us to work in the simpler (noncurved) Euclidean space sim(2).
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For instance, given two similitudes A;, Ay € SIM(2) specifying the shape of B at two
different times, we can compute log(A;) and log(As), which are just elements of the Euclidean
space sim(2), form the linear interpolant (1 — ¢)log(A;) + tlog(As), and then apply the
exponential map to get an interpolating deformation

PREINC B log(A1)+t10g(A2), t € 10,1].

Also, given a sequence of “snapshots” of the deformable body B, say Ay, A1, ..., A,,, where
each is A; is a similitude, we can try to find an interpolating deformation (a curve in
SIM(2)) by finding a simpler curve t +— C(t) in sim(2) (say, a B-spline) interpolating
log Ay, log Ay, ..., log A,,. Then, the curve t — e“®) yields a deformation in SIM(2) inter-
polating Ag, Ay, ..., A,

(1) Write a program interpolating between two deformations.

(2) If you know about cubic spline interpolation, write a program to interpolate a sequence
of deformations given by similitudes Ay, Ay, ..., A,, by a C*-curve.

Problem 1.6. Derive Equations (x;) and (x9) of Section 1.6.
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Chapter 2

Adjoint Representations and the
Derivative of exp

In this chapter, in preparation for defining the Lie bracket on the Lie algebra of a Lie
group, we introduce the adjoint representations of the group GL(n,R) and of the Lie algebra
gl(n,R). The map Ad: GL(n,R) — GL(gl(n,R)) is defined such that Ad, is the derivative
of the conjugation map Ad,s: GL(n,R) — GL(n,R) at the identity. The map ad is the
derivative of Ad at the identity, and it turns out that ada(B) = [A, B, the Lie bracket of
A and B, and in this case, [A, B] = AB — BA. We also find a formula for the derivative of
the matrix exponential exp. This formula has an interesting application to the problem of
finding a natural sets of real matrices over which the exponential is injective, which is used
in numerical linear algebra.

2.1 The Adjoint Representations Ad and ad

Given any two vector spaces E and F', recall that the vector space of all linear maps from
E to F is denoted by Hom(E, F'). The set of all invertible linear maps from F to itself is
a group (under composition) denoted GL(F). When £ = R", we often denote GL(R") by
GL(n,R) (and if £ = C", we often denote GL(C") by GL(n,C)). The vector space M, (R)
of all n x n matrices is also denoted by gl(n, R) (and M,,(C) by gl(n,C)). Then GL(gl(n,R))
is the group of all invertible linear maps from gl(n,R) = M, (R) to itself.

For any matrix A € M,(R) (or A € M,,(C)), define the maps L,: M,(R) — M, (R) and

La(B) = AB, Ra(B)=BA, forall B € M,(R).

Observe that Ly o Rg = Rgo Ly for all A, B € M,(R).
For any matrix A € GL(n,R), let

Ady: M,(R) — M,(R) (conjugation by A)

61
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be given by
Ad,(B) = ABA™" for all B € M,(R).

Observe that Ady = LyoR4-1 and that Ad, is an invertible linear map with inverse Ad 4-1.
The restriction of Ad 4 to invertible matrices B € GL(n,R) yields the map

Ad,: GL(n,R) — GL(n,R)

also given by

Ad,(B) = ABA™" for all B € GL(n,R).

This time, observe that Ad, is a group homomorphism of GL(n,R) (with respect to mul-
tiplication), since

Adu(BC) = ABCA™ = ABAYACA™" = Ad4(B)Ad4(C), for all B,C € GL(n,R).

In fact, Ad,4 is a group isomorphism (since its inverse is Ad-1).

Beware that Ady is not a linear map on GL(n,R) because GL(n,R) is not a vector
space! Indeed, GL(n,R) is not closed under addition.

Nevertheless, we can define the derivative of Ad4: M, (R) — M, (R) with A € GL(n,R)
and B, X € M, (R) by

Ada(B+ X)—Ada(B) = A(B+ X)A™' — ABA™' = AXA™,
which shows that d(Ad4)p exists and is given by
d(Ady)p(X)=AXA"', forall X € M,(R).

In particular, for B = I, we see that the derivative d(Ad4); of Ady4 at [ is a linear map of
gl(n,R) = M, (R) denoted by Ad(A) or Ads (or Ad A), and given by

Ada(X) = AXA™ forall X € gl(n,R).
The inverse of Ady is Ad-1, so Ady € GL(gl(n,R)). Note that
Adsp = Ada o Adp,
so the map A +— Ad, is a group homomorphism of GL(gl(n,R)) denoted
Ad: GL(n,R) — GL(gl(n,R)).

The homomorphism Ad is called the adjoint representation of GL(n,R).

We also would like to compute the derivative d(Ad); of Ad at [. If it exists, it is a linear
map

d(Ad);: gl(n,R) — Hom(gl(n,R), gl(n,R)).
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For all X,Y € M, (R), with || X|| small enough we have I + X € GL(n,R), and

Adpx (V)= AL(Y) - (XY = YX) =T+ X)YI+X)'-Y - XY +YX
=[I+X)Y -Y(I+X)-XY(I+X)
+YX(I+X))(I+X)™?
=Y +XY-Y-YX-XY-XYX
+YX +Y X1+ X)!
= (YX? - XYX)(I+X)"

If we let (VX2 XY X)L 4 X)!
— _|_ -
E(X, Y) = )
1]
since || || is a matrix norm, we get
1e(X,Y)]| = Y X? = XYX| [+ X)) (VX2 + XY XU+ X))
’ 1X1] N 1X1]
= (X + I XD I+ X 2 X I+ X))
N 1X1] 1]

= 2 X Y] (2 + X))
Therefore, we proved that for || X|| small enough
Adpx(Y) = Adg(Y) = (XY =Y X) +¢(X,Y) [ X]],

with [|e(X, V)| < 2| X[V |( + X)7!||, and €(X,Y) linear in Y.
Let ady: gl(n,R) — gl(n,R) be the linear map given by

ady(Y)=XY -YX =[X,Y],
and ad be the linear map
ad: gl(n,R) — Hom(gl(n,R), gl(n,R))

given by
ad(X) = adx.

We also define ex: gl(n,R) — gl(n,R) as the linear map given by
ex(Y)=¢€¢(X,Y).
If ||ex] is the operator norm of ey, we have

Jexl = max le(X, V)| < 2 ]| (2 + %)
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Then the equation
Adrx(Y) = Ady(Y) = (XY = YX) + (X, V) |X]],
which holds for all Y, yields
Ad;yx — Ad; = adx + ex || X,

and because |lex|| < 2| X |( + X) |, we have limx, o ex = 0, which shows that
d(Ad);(X) = ady; that is,
d(Ad); = ad.

The notation ad(X) (or ad X) is also used instead adyx. The map ad is a linear map
ad: gl(n,R) — Hom(gl(n,R), gl(n,R))

called the adjoint representation of gl(n,R). The Lie algebra Hom(gl(n,R), gl(n,R)) of the
group GL(gl(n,R)) is also denoted by gl(gl(n,R)).
Since
ad([X,Y))(Z) = ad(XY — YX)(Z) = (XY —YX)Z — Z(XY — YX)
=XYZ-YXZ-ZXY+7ZYX
=XYZ-XZY -YZIX+IYX - (YXZ-YZIX—-XZY +ZXY)
—X(YZ—2Y)— (YZ - ZY)X — (Y(XZ — ZX) — (XZ — ZX)Y)
—ad(X)(YZ — 2Y) — ad(Y)(X Z — ZX)
= ad(X)ad(Y)(Z) — ad(Y)ad(X)(2)

whenever XY, Z € gl(n,R), we find that
ad([X,Y]) = ad(X)ad(Y) — ad(Y)ad(X) = [ad(X), ad(Y)].

This means that ad is a Lie algebra homomorphism. It can be checked that this property is
equivalent to the following identity known as the Jacobi identity:

(X, [Y, 2+ (2, [X, Y]+ [V, [Z, X]] =0,
for all X,Y,Z € gl(n,R). Note that
adX = LX — Rx.

Next we prove a formula relating Ad and ad through the exponential. For this, we view
adx and Ady as n? x n? matrices, for example, over the basis (E;;) of n x n matrices whose
entries are all 0 except for the entry of index (4, ) which is equal to 1.
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Proposition 2.1. For any X € M,(R) = gl(n,R), we have

o0 k
Ad x = eMx = Z (a(]i:'() ;

k=0

that is,
1 1
Ve =Y =V 4 [X, V] 4 51X [N V] + XX X Y]]+ -
for all X, Y € M,(R)
Proof. Let
A(t) = Adex,

pick any Y € M,,(R), and compute the derivative of A(¢)Y. By the product rule we have

(A@DY) () = (Ve ™) (1)
— XetheftX 4 etXYeftX(_X)
— XetheftX o etXYGftXX

= ady (AduxY) = ady (A()Y).

We also have A(0)Y = Ad;Y =Y. Therefore, the curve ¢t — A(t)Y is an integral curve for
the vector field X,q4, with initial condition Y, and by Proposition 11.25 (with n replaced by
n?), this unique integral curve is given by

(t) = ey,

which proves our assertion. O

2.2 The Derivative of exp

It is also possible to find a formula for the derivative dexp, of the exponential map at A,
but this is a bit tricky. It can be shown that

00 C1\k 0o Y |
TRSTRED o MRS S A7

« (k+ (7 +1)
SO X ) 1
d(exp)a(B) = e* (B = 5[4 Bl + 5[ [A, Bl = 1A [A, [A, B + - ) .
It is customary to write
id — eada

adA
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for the power series

(D K
; k1)

and the formula for the derivative of exp is usually stated as
id — e2da
d =t [ —— ).
(exp)a =e ( o )

Most proofs I am aware of use some tricks involving ODE’s, but there is a simple and direct
way to prove the formula based on the fact that ady = L4 — R4 and that L, and Ra
commute. First, one can show that

L Rk
l(e ) § : ATYA ]
P)a |
Py (h+k+1)!
Thus, we need to prove that

LN ' ’ LRy
A (L — j_ ‘
‘ Z]+1 = Ba) Z(h+k+1)!

j=0 h,k>0

To simplify notation, write a for L4 and b for L. We wish to prove that
hbk

aoo (=1) j_ a
P PITESTE  PY "

=0 ' h,k>0

assuming that ab = ba. This can be done by finding the coefficient of the monomial a"b* on

the left hand side. We find that this coefficient is

h+k+1 h+Fk—1i
et ()

Therefore, to prove (x), we need to prove that

S () ()

1=0

The above identity can be shown in various ways. A brute force method is to use induction.
One can also use “negation of the upper index” and a Vandermonde convolution to obtain
a two line proof. The details are left as an exercise.

The formula for the exponential tells us when the derivative d(exp) 4 is invertible. Indeed,
if the eigenvalues of the matrix X are Ay,...,\,, then the eigenvalues of the matrix

id—e ™ & (D,
X _Z(k+1)!X

k=0
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are
l—e ™ :
T 1fAJ7éO,and11f)\]:O
Y
To see why this is the case, assume A # 0 is an eigenvalue of X with eigenvector u, i.e.
Xu = Au. Then (=X )ku = — ¥y for any nonnegative integer k and
1d—e 1+—X+X2+—X3+X4+
2! 3! 4! 5!
k:O
1
2 3 4
{1——/\—1— —A 4‘)\ +a)\ +}u
i k: 1 0 k:-i-l
prt (k + 1 )\ k‘ —|— 1)!
1—e?
= u.
A
It follows that the matrix 9 )e( is invertible iff no \; is of the form k2 for some k € Z—{0},

so d(exp) 4 is invertible iff no eigenvalue of ad 4 is of the form k2mi for some k € Z — {0}; this
result is also found in Duistermaat and Kolk [43] (Chapter I, Section 5, Corollary 1.5.4) and
Varadarajan [113] (Chapter 2, Section 14, Theorem 2.14.3). However, it can also be shown
that if the eigenvalues of A are Aq,..., \,, then the eigenvalues of ad4 are the \; — A;, with
1 <1,7 <n. In conclusion, d(exp), is invertible iff for all i, j we have

This suggests defining the following subset £(n) of M,,(R). The set £(n) consists of all
matrices A € M, (R) whose eigenvalues A + iy of A (A, € R) lie in the horizontal strip
determined by the condition —7 < p < m. It is clear that the matrices in £(n) satisfy
Condition (%), so d(exp) 4 is invertible for all A € £(n). By the inverse function theorem, the
exponential map is a local diffeomorphism between £(n) and exp(€(n)). Remarkably, more
is true: the exponential map is diffeomorphism between £(n) and exp(€(n)) (in particular,
it is a bijection). This takes quite a bit of work to be proved. For example, see Mnemné
and Testard [86], Chapter 3, Theorem 3.8.4 (see also Bourbaki [19], Chapter III, Section 6.9,
Proposition 17, Theorem 6, and Varadarajan [113], Chapter 2, Section 14, Lemma 2.14.4).
We have the following result.

Theorem 2.2. The restriction of the exponential map to £(n) is a diffeomorphism of £(n)
onto its image exp(E(n)). Furthermore, exp(€(n)) consists of all invertible matrices that
have no real negative eigenvalues; it is an open subset of GL(n,R); it contains the open ball
B(I,1) ={A € GL(n,R) | ||A = I|| < 1}, for every matriz norm || || on n X n matrices.

Theorem 2.2 has some practical applications because there are algorithms for finding a
real log of a matrix with no real negative eigenvalues; for more on applications of Theorem
2.2 to medical imaging, see Section 9.4.
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2.3 Problems

Problem 2.1. Let M,,(C) denote the vector space of nxn matrices with complex coefficients
(and M,,(R) denote the vector space of n x n matrices with real coefficients). For any matrix

A e M,(C), let Ry and L, be the maps from M,,(C) to itself defined so that
La(B)=AB, Ra(B)=BA, forall BeM,(C).

Check that L4 and R4 are linear, and that L4 and Rp commute for all A, B.
Let ads : M,,(C) — M, (C) be the linear map given by

ad(B) = L(B) — Ro(B) = AB — BA=[A,B], for all B € M,(C).

Note that [A, B] is the Lie bracket.

(1) Prove that if A is invertible, then L4 and R4 are invertible; in fact, (La)™' = L,
and (R4)~' = R-1. Prove that if A= PBP~! for some invertible matrix P, then

LAILPOLBOLIDl, RA:R?ORBORP.

(2) Recall that the n? matrices E;; defined such that all entries in Ej; are zero except
the (7, j)th entry, which is equal to 1, form a basis of the vector space M,,(C). Consider the
partial ordering of the E;; defined such that for¢ =1,...,n,ifn > 35 > k > 1, then then E;;
precedes Fy,, and for j =1,...,n, if 1 <7 < h <n, then E;; precedes Fj;.

Draw the Hasse diagam of the partial order defined above when n = 3.

There are total orderings extending this partial ordering. How would you find them
algorithmically? Check that the following is such a total order:

(1,3), (1,2), (1,1), (2,3), (2,2), (2,1), (3,3), (3,2), (3,1).

(3) Let the total order of the basis (E;;) extending the partial ordering defined in (2) be
given by
it=hand j >k
or ¢ < h.

(i,7) < (h, k) iff {

Let A, ..., A\, be the eigenvalues of A (not necessarily distinct). Using Schur’s theorem,
A is similar to an upper triangular matrix B, that is, A = PBP~! with B upper triangular,
and we may assume that the diagonal entries of B in descending order are \q,..., \,. If
the £;; are listed according to the above total order, prove that Rp is an upper triangular
matrix whose diagonal entries are
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and that L is an upper triangular matrix whose diagonal entries are

CTD TR VD W)

v~
n

n

Hint. Figure out what are RB(EZ]> = EUB and LB(Ez]) = BEZJ
Use the fact that

Li=LpoLgolLy', Ry=Rp'oRpzoRp,

to express ady = Lo — R4 in terms of Ly — Rp, and conclude that the eigenvalues of ad 4
are \; — \j, fori=1,...,n,and for j =mn,..., 1

(4) (Extra Credit) Let R be the n x n permutation matrix given by

00 ...01
00 10
R=1: 1 "~ 1
01 ...00
10 00

Observe that R~' = R. T checked for n = 3 that in the basis (E;;) ordered as above, the
matrix of L, is given by A ® I3, and the matrix of R, is given by I3 @ RATR. Here, ®
the Kronecker product (also called tensor product) of matrices. It is natural to conjecture
that for any n > 1, the matrix of L, is given by A ® [,,, and the matrix of R4 is given by
I, ® RATR. Prove this conjecture.

Problem 2.2.

(i) First show that
Lh sz
d(exp)a = Z ——a 4 __
o (h+k+1)!

(ii) Next show that

LYy R, - (2D -
> =elr )y — (La— Ra).
Az, (bt k+ 1)) = (j +1)!
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Chapter 3

Introduction to Manifolds and Lie
Groups

In this chapter we define precisely manifolds, Lie groups, and Lie algebras. One of the
reasons that Lie groups are nice is that they have a differential structure, which means that
the notion of tangent space makes sense at any point of the group. Furthermore, the tangent
space at the identity happens to have some algebraic structure, that of a Lie algebra. Roughly
speaking, the tangent space at the identity provides a “linearization” of the Lie group, and
it turns out that many properties of a Lie group are reflected in its Lie algebra, and that
the loss of information is not too severe. The challenge that we are facing is that unless
our readers are already familiar with manifolds, the amount of basic differential geometry
required to define Lie groups and Lie algebras in full generality is overwhelming.

Fortunately, most of the Lie groups that we will consider are subspaces of RY for some
sufficiently large N. In fact, most of them are isomorphic to subgroups of GL(N,R) for
some suitable N, even SE(n), which is isomorphic to a subgroup of SL(n + 1). Such groups
are called linear Lie groups (or matriz groups). Since these groups are subspaces of R, in
a first stage, we do not need the definition of an abstract manifold. We just have to define
embedded submanifolds (also called submanifolds) of R (in the case of GL(n,R), N = n?).
This is the path that we will follow. The general definition of manifold will be given in
Chapter 7.

3.1 Introduction to Embedded Manifolds

In this section we provide the definition of an embedded submanifold. For simplicity, we
restrict our attention to smooth manifolds. For detailed presentations, see DoCarmo [38, 39],
Milnor [83], Marsden and Ratiu [77], Berger and Gostiaux [15], or Warner [114]. For the
sake of brevity, we use the terminology manifold (but other authors would say embedded
submanifolds, or something like that).

The intuition behind the notion of a smooth manifold in RY is that a subspace M is a

71
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manifold of dimension m if every point p € M is contained in some open subset U of M (in
the subspace topology) that can be parametrized by some function ¢:  — U from some
open subset (2 in R™ containing the origin, and that ¢ has some nice properties that allow
the definition of smooth functions on M and of the tangent space at p. For this, ¢ has to
be at least a homeomorphism, but more is needed: ¢ must be smooth, and the derivative
¢©'(0,,) at the origin must be injective (letting 0,, = (0,...,0)).

——

m

Definition 3.1. Given any integers N,m, with N > m > 1, an m-dimensional smooth
manifold in RN, for short a manifold, is a nonempty subset M of RY such that for every
point p € M there are two open subsets 2 C R™ and U C M, with p € U, and a smooth
function ¢:  — RY such that ¢ is a homeomorphism between Q and U = (), and /()
is injective, where to = ¢ '(p); see Figure 3.1. The function p: Q — U is called a (local)
parametrization of M at p. If 0,,, € Q and ¢(0,,,) = p, we say that p: Q — U is centered at

p.

]Em

Figure 3.1: A manifold in RY.

Saying that ¢(to) is injective is equivalent to saying that ¢ is an immersion at .

Recall that M C R¥ is a topological space under the subspace topology, and U is some
open subset of M in the subspace topology, which means that U = M N W for some open
subset W of RV. Since ¢: Q — U is a homeomorphism, it has an inverse ¢=': U — € that
is also a homeomorphism, called a (local) chart. Since @ C R™, for every point p € M and
every parametrization ¢: Q — U of M at p, we have ¢~!(p) = (z1,. .., zmm) for some z; € R,
and we call 21, ..., 2, the local coordinates of p (w.r.t. ¢=1). We often refer to a manifold
M without explicitly specifying its dimension (the integer m).

Intuitively, a chart provides a “flattened” local map of a region on a manifold. For
instance, in the case of surfaces (2-dimensional manifolds), a chart is analogous to a planar
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map of a region on the surface. For a concrete example, consider a map giving a planar
representation of a country, a region on the earth, a curved surface.

Remark: We could allow m = 0 in Definition 3.1. If so, a manifold of dimension 0 is just
a set of isolated points, and thus it has the discrete topology. In fact, it can be shown that
a discrete subset of R is countable. Such manifolds are not very exciting, but they do
correspond to discrete subgroups.
Example 3.1. The unit sphere S? in R? defined such that

S*={(z,y,2) eR® | 2® +y* + 2> =1}

is a smooth 2-manifold because it can be parametrized using the following two maps ¢; and

©a:
( )'_> 2u 2v w40 —1
c(u, v
P, W24+ w2+ 024+ 1 w2+ 0241
and
(w,0) 2u 2u 1—u? =02
- (u, v :
¥z ’ w42 4+1" w402 4+1 u240v2+1

The map ¢; corresponds to the inverse of the stereographic projection from the north
pole N = (0,0,1) onto the plane z = 0, and the map ¢y corresponds to the inverse of
the stereographic projection from the south pole S = (0,0, —1) onto the plane z = 0, as
illustrated in Figure 3.2.

Figure 3.2: Inverse stereographic projections.

We demonstrate the algebraic constructions of ¢; and (7', leaving the constructions of
¢o and ;! to the reader. Take S? and a point Z = (1,7, 23) € S? — {(0,0,1)} and form
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[, the line connecting (0,0,1) and Z. Line [ intersects the zy-plane at point (u,v,0) and
has equation p + (1 — t)?> where p = (0,0,1) and v = (u,v,0) —(0,0,1) = (u,v,—1). See
Figure 3.3.

X1IX21X3)
4
u,v, 0
» \( )
\
\
\

Figure 3.3: Line [ is in red.

In other words, the line segment on Line [ between (u,v,0) and (0,0, 1) is parametrized
by ((1 —t)u, (1 — t)v,t) for 0 < ¢t < 1. The intersection of this line segment and S? is
characterized by the equation

1=ty +(1 -t +t?=1, 0<t<l.
Take this equation, subtract t?, and divide by 1 — ¢ to obtain
(1—t)(u*+0*) =1+t
Solving this latter equation for ¢ yields

2 2_1 2
u? +v2+1 u? +v?2 41

By construction we know the intersection of the line segment with S? is Z = (1,29, 73).
Hence, we conclude that

2 2 u? +v% —1
m, xgz(l—t)v:— $3:t_

r1=(1—-tu= : ==
1= (=1 u? 02 + 1 u? 02 + 1
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To calculate ¢; !, we parameterize | by ((1—t)zy, (1—t)ay, (1—t)(23—1)+1). The intersection
of Line [ with the zy-plane is characterized by ((1—t)z1, (1—t)zo, (1—t)(x3—1)+1) = (u,v,0)
and gives

(1—t)(z3—1)+1=0.

Solving this equation for ¢ implies that

1
3 and 1—t= .
1—563 1—.’173

t=—

Hence ;! (x1, 79, 23) = (u,v), where

x X2

u=(1—t)z; =

v=(1—-t)xe =

1—1'37 1—513'3‘

We leave as an exercise to check that the map ¢, parametrizes S* — {N} and that the
map ¢, parametrizes S? — {S} (and that they are smooth, homeomorphisms, etc.). Using
1, the open lower hemisphere is parametrized by the open disk of center O and radius 1
contained in the plane z = 0.

The chart ¢; * assigns local coordinates to the points in the open lower hemisphere. If we
draw a grid of coordinate lines parallel to the x and y axes inside the open unit disk and map
these lines onto the lower hemisphere using ¢, we get curved lines on the lower hemisphere.
These “coordinate lines” on the lower hemisphere provide local coordinates for every point
on the lower hemisphere. For this reason, older books often talk about curvilinear coordinate
systems to mean the coordinate lines on a surface induced by a chart. See Figure 3.4.

P
~1

(0,0,1)

Figure 3.4: The curvilinear coordinates on the lower hemisphere of S? induced by ;.

We urge our readers to define a manifold structure on a torus. This can be done using
four charts.



76 CHAPTER 3. INTRODUCTION TO MANIFOLDS AND LIE GROUPS

Every open subset of RY is a manifold in a trivial way. Indeed, we can use the inclusion
map as a parametrization. In particular, GL(n,R) is an open subset of R"Q, since its
complement is closed (the set of invertible matrices is the inverse image of the determinant
function, which is continuous). Thus, GL(n,R) is a manifold. We can view GL(n,C) as a
subset of R using the embedding defined as follows: For every complex n x n matrix A,
construct the real 2n x 2n matrix such that every entry a + ib in A is replaced by the 2 x 2

block
a —b
b a

where a,b € R. It is immediately verified that this map is in fact a group isomorphism.
Thus we can view GL(n,C) as a subgroup of GL(2n,R), and as a manifold in REn)*

A T-manifold is called a (smooth) curve, and a 2-manifold is called a (smooth) surface
(although some authors require that they also be connected).

The following two lemmas provide the link with the definition of an abstract manifold.
The first lemma is shown using Proposition 3.4 and is Condition (2) of Theorem 3.6; see
below.

Lemma 3.1. Given an m-dimensional manifold M in RY, for every p € M there are
two open sets O,W C RY with Oy € O and p € M NW, and a smooth diffeomorphism
©: O = W, such that (Ox) = p and

00N (R™ x {Ox_m})) = MO W.

There is an open subset €2 of R™ such that
on (Rm X {ON—m}) = x {ON_m},
and the map : Q — R given by

1/)(1’) - gO(I, ON—m)

is an immersion and a homeomorphism onto U = W N M so v is a parametrization of M at
p. We can think of ¢ as a promoted version of v» which is actually a diffeomorphism between
open subsets of RY; see Figure 3.5.

The next lemma is easily shown from Lemma 3.1 (see Berger and Gostiaux [15], Theorem
2.1.9 or DoCarmo [39], Chapter 0, Section 4). It is a key technical result used to show that
interesting properties of maps between manifolds do not depend on parametrizations.

Lemma 3.2. Given an m-dimensional manifold M in RY, for every p € M and any two
parametrizations p1: Qy — Uy and @o: Q9 — Uy of M at p, if Uy NUs # 0, the map
0yt o1 o UL NUy) — @, {(UL N Uy) is a smooth diffeomorphism.
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Figure 3.5: An illustration of Lemma 3.1, where M is a surface embedded in R*, namely
m=2and N = 3.

The maps ;" 0 ¢1: o7 (Uy N Us) — @5 (U N Uy) are called transition maps. Lemma
3.2 is illustrated in Figure 3.6.

Using Definition 3.1, it may be quite hard to prove that a space is a manifold. Therefore,
it is handy to have alternate characterizations such as those given in the next Proposition,
which is Condition (3) of Theorem 3.6. An illustration of Proposition 3.3 is given by Figure
3.7.

Proposition 3.3. A subset M C R™** is an m-dimensional manifold iff either

(1) For every p € M, there is some open subset W C R™* with p € W, and a (smooth)
submersion f: W — R* so that W N M = f~1(0),
or

(2) For every p € M, there is some open subset W C R™* with p € W, and a (smooth)
map f: W — R¥, so that f'(p) is surjective and W N M = f~1(0).

Observe that Condition (2), although apparently weaker than Condition (1), is in fact
equivalent to it, but more convenient in practice. This is because to say that f’(p) is surjective
means that the Jacobian matrix of f/(p) has rank k, which means that some determinant is
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O

‘%%¢1 QH!}
D"

Figure 3.6: Parametrizations and transition functions.

nonzero, and because the determinant function is continuous this must hold in some open
subset W; C W containing p. Consequently, the restriction f; of f to Wj is indeed a
submersion, and f;1(0) =W, N f~10) =W, NnWNM=W,NM.

A proof of Proposition 3.3 can be found in Lafontaine [72] or Berger and Gostiaux [15].
Lemma 3.1 and Proposition 3.3 are actually equivalent to Definition 3.1. This equivalence
is also proved in Lafontaine [72] and Berger and Gostiaux [15].

Theorem 3.6, which combines Propositions 3.1 and 3.3, provides four equivalent char-
acterizations of when a subspace of RY is a manifold of dimension m. Its proof, which is
somewhat illuminating, is based on two technical lemmas that are proved using the inverse
function theorem (for example, see Guillemin and Pollack [55], Chapter 1, Sections 3 and 4).

Lemma 3.4. Let U C R™ be an open subset of R™ and pick some a € U. If f: U — R"
is a smooth immersion at a, i.e., df, is injective (so, m < n), then there is an open set
V CR™ with f(a) € V, an open subset U' C U with a € U’ and f(U') CV, an open subset
O CR™™, and a diffeomorphism 6:V — U’ x O, so that

O(f(z1,.- . xm)) = (21, ..., T, 0,...,0),

for all (xq,...,2,) € U', as illustrated in the diagram below

Uvcu—ts puycv

) k
ini

U x O

where iny (1, ..., Tm) = (T1,...,Zm,0,...,0); see Figure 3.8.
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W

f0)=WNM

Figure 3.7: An illustration of Proposition 3.3, where M is the torus, m = 2, and k = 1. Note
that f71(0) is the pink patch of the torus, i.e. the zero level set of the open ball WW.

Proof. Since f is an immersion, its Jacobian matrix J(f) (an n x m matrix) has rank m,
and by permuting coordinates if needed, we may assume that the first m rows of J(f) are

linearly independent and we let
Ofi
A pu—
(3933' (a))

be this invertible m x m matrix. Define the map ¢g: U x R"™™ — R" by

g(:L‘, y) - (fl(x>7 SRS fm(x)ayl + fm—&-l(x)a ooy Yn—m T fn(x))7
for all z € U and all y € R"™™. The Jacobian matrix of g at (a,0) is of the form

A0
7=(5 1)

so det(J) = det(A)det(I) = det(A) # 0, since A is invertible. By the inverse function
theorem, there are some open subsets W C U x R™™ with (a,0) € W and V' C R" such
that the restriction of g to W is a diffeomorphism between W and V. Since W C U x R*™™
is an open set, we can find some open subsets U’ C U and O C R™ ™ so that U’ x O C W,
a € U', and we can replace W by U’ x O and restrict further g to this open set so that we
obtain a diffeomorphism from U’ x O to (a smaller) V. If §: V' — U’ x O is the inverse of
this diffeomorphism, then f(U’) C V and since g(z,0) = f(x),

0(g(x,0)) =0(f(x1,...,2m)) = (z1,...,2m,0,...,0),
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Figure 3.8: An illustration of Lemma 3.4, where m = 2 and n = 3. Note that U’ is the base
of the solid cylinder and 6 is the diffeomorphism between the solid cylinder and the solid
gourd shaped V. The composition 6 o f injects U’ into U’ x O.

for all x = (z1,...,2,) € U O

Lemma 3.5. Let W C R™ be an open subset of R™ and pick some a € W. If f: W — R"

is a smooth submersion at a, i.e., df, is surjective (so, m > n), then there is an open set

VCW CR™ witha €V, and a diffeomorphism v : O — V with domain O C R™, so that
f(¢($1a < 7xm>> = <x17 s 7$n)7

for all (xq,...,2y,) € O, as illustrated in the diagram below

OCR" Y- vVcCcwcRr™

R™,

where w(x1,. .., Ty) = (T1,...,2,); see Figure 3.9.
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Figure 3.9: An illustration of Lemma 3.5, where m = 3 and n = 2. Note that 1 is the
diffeomorphism between the 0 and the solid purple ball V. The composition f o projects
O onto its equatorial pink disk.

Proof. Since f is a submersion, its Jacobian matrix J(f) (an n X m matrix) has rank n, and
by permuting coordinates if needed, we may assume that the first n columns of J(f) are

linearly independent and we let
Ofi
A=
<(9%‘ (a))

be this invertible n x n matrix. Define the map g: W — R™ by

g(l‘) = (f($)7l‘n+1, e 7xm)7

for all z € W. The Jacobian matrix of g at a is of the form

A B
=0 7).
so det(J) = det(A)det(]) = det(A) # 0, since A is invertible. By the inverse function
theorem, there are some open subsets V' C W with a € V and O C R™ such that the

restriction of g to V' is a diffeomorphism between V and O. Let v: O — V be the inverse of
this diffeomorphism. Because g o 1) = id, we have

(Ih s ,J}m) = g(¢($)) = (f(¢($)),¢n+1(56’), s ﬂﬁm(@)»

that is,
fW(zy, ... xm) = (1,..., )
for all (z1,...,z,) € O, as desired. O
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Using Lemmas 3.4 and 3.5, we can prove the following theorem which confirms that all
our characterizations of a manifold are equivalent.

Theorem 3.6. A nonempty subset M C RY is an m-manifold (with 1 < m < N ) iff any of
the following conditions hold:

(1) For every p € M, there are two open subsets Q@ C R™ and U C M with p € U,
and a smooth function ¢: Q — RN such that ¢ is a homeomorphism between ) and
U = ¢(Q), and ¢'(0) is injective, where p = ¢(0).

(2) For every p € M, there are two open sets O,W C RY with Oy € O andp € M NW,
and a smooth diffeomorphism ¢: O — W, such that ¢(On) = p and

e(ON(R™ x{0n_m})) =MNW.
(3) For every p € M, there is some open subset W C RY with p € W, and a smooth
submersion f: W — RN=™ so that W N M = f~1(0).

(4) For every p € M, there is some open subset W C RY with p € W, and N —m
smooth functions f;: W — R, so that the linear forms dfy(p), ..., df n_m(p) are linearly
independent, and

WnM=f0)n---n fyl,.(0).
See Figure 3.10.

Proof. Tf (1) holds, then by Lemma 3.4, replacing €2 by a smaller open subset ' C Q if
necessary, there is some open subset V' C RY with p € V and ¢(Q') C V, an open subset
O’ C RY=™ and some diffeomorphism 6: V — €' x O', so that

Oop)(xy,...,xm) = (T1,...,Zm,0,...,0),
for all (xq,...,x,) € . Observe that the above condition implies that
(00 ) () =0(V) N (R™ x {(0,...,0)}).

Since ¢ is a homeomorphism between 2 and its image in M and since ' C  is an open
subset, (') = M NW’ for some open subset W' C RV so if we let W =V N W', because
o(Q) C V, it follows that (') = M N W and

OW N M) =0(p(Q))=0(V)N(R™ x {(0,...,0)}).
However, 0 is injective and (W N M) C (W), so

oW nNM) = 6W)ne(V)n (R™ x {(0,...,0)})
= 0WnV)nR™ x{(0,...,0)})
= O(W)N(R™ x {(0,...,0)}).
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Figure 3.10: An illustration of Condition (4) in Theorem 3.6, where N = 3 and m = 1. The
manifold M is the helix in R3. The dark green portion of M is magnified in order to show
that it is the intersection of the pink surface, f; '(0), and the blue surface, f;'(0).

If we let O = (W), we get
01 (ONMR™ x {(0,...,00})) =MnW,
which is (2).

If (2) holds, we can write o' = (f1,..., fy) and because ¢~': W — O is a diffeomor-
phism, dfi(q),...,dfx(q) are linearly independent for all ¢ € W, so the map

f = (fm+17"'afN)
is a submersion f: W — RN"™ and we have f(z) =0 iff f,41(z) = = fx(x) =0 iff
o Hx) = (fi(z),..., fm(2),0,...,0)
iff p7H(z) e ONR™ X {0n_m}) iff 2 € p(ON(R™ x {On_p}) = M NW, because
e(ONR™ x {On-m})) =MNOW.

Thus, M N W = f~1(0), which is (3).

The proof that (3) implies (2) uses Lemma 3.5 instead of Lemma 3.4. If f: W — RN—™
is the submersion such that M N W = f~1(0) given by (3), then by Lemma 3.5, there are
open subsets V C W, O C RY and a diffeomorphism v¢: O — V, so that

fW(zy,...,2n)) = (21, .., TN_m)
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for all (x1,...,xy) € O. If ¢ is the permutation of variables given by
(X1, Ty Tt 1y -+ EN) = (Tonady oo o s TNG Ty e ey T,
then ¢ =1 o ¢ is a diffeomorphism such that
fle(xy,...;2n)) = (Tmety -+, TN)
for all (zq,...,zx) € O. If we denote the restriction of f to V' by g, it is clear that
MOV =g '(0),
and because g(p(z1,...,zy)) =0 iff (41,...,2n5) = Ony_m and ¢ is a bijection,

MOV = {(y,--,ynx) €V | glyr,...,yn) =0}
{o(x1,...;zNn) | B(x1,...,2n) € O)(g(p(z1,...,2x5)) =0)}
(O N R™ x {On-m})),

which is (2).
If (2) holds, then ¢: O — W is a diffeomorphism,

on (Rm X {ON—m}) = x {ON—m}
for some open subset Q C R™, and the map ¢:  — RY given by

U(x) = @, 0n—m)
is an immersion on {2 and a homeomorphism onto W N M, which implies (1).

If (3) holds, then if we write f = (f1,..., fn—m), with f;: W — R, then the fact that
df (p) is a submersion is equivalent to the fact that the linear forms df;(p), ..., dfn_m(p) are
linearly independent and

MW = f70) = f71(0) NN f31,,(0)

Finally, if (4) holds, then if we define f: W — RY=™ by

f = (fl?"'afN—m)a

because df;(p), ..., dfn—m(p) are linearly independent we get a smooth map which is a sub-
mersion at p such that
MnW = f40).

Now, f is a submersion at p iff df(p) is surjective, which means that a certain determinant
is nonzero, and since the determinant function is continuous, this determinant is nonzero on
some open subset W/ C W containing p, so if we restrict f to W/, we get a submersion on
W’ such that M N W' = f=1(0). O
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Condition (4) says that locally (that is, in a small open set of M containing p € M),
M is “cut out” by N — m smooth functions f;: W — R, in the sense that the portion of
the manifold M N W is the intersection of the N — m hypersurfaces f; '(0) (the zero-level
sets of the f;), and that this intersection is “clean,” which means that the linear forms
dfi(p), ..., df n_m(p) are linearly independent.

As an illustration of Theorem 3.6, we can show again that the sphere
" ={z e R | ||z]; -1 =0}

is an n-dimensional manifold in R"*!. Indeed, the map f: R"™ — R given by f(x) = H:U||§—1
is a submersion (for z # 0), since

n+1

df () (y) =2 .

n(

We can also show that the rotation group SO(n) is an %U—dimensional manifold in

R™.
Indeed, GL*(n) is an open subset of R of dimension n? (recall, GLT(n) = {A €
GL(n) | det(A) > 0}), and if f is defined by

f(A) - ATA - Ia
where A € GL"(n), then f(A) is symmetric, so f(A4) € S(n) = R*5 . We proved in
Section 11.2 that
df(A)(H)=A"H + H" A.
But then, df(A) is surjective for all A € SO(n), because if S is any symmetric matrix, we
see that
S ST S ST

AS ASN '
df(A)(AS/2) = A 5 +(2)A AA2—|—2AA 5t S.

As SO(n) = f71(0), we conclude that SO(n) is indeed a manifold.

A similar argument proves that O(n) is an @—dimensional manifold.

Using the map f: GL(n) — R given by A +— det(A), we can prove that SL(n) is a
manifold of dimension n? — 1.

Remark: We have df(A)(B) = det(A)tr(A™'B) for every A € GL(n), where f(A) =
det(A).
A class of manifolds generalizing the spheres and the orthogonal groups are the Stiefel

manifolds. For any n > 1 and any k£ with 1 < k < n, let S(k,n) be the set of all orthonormal
k-frames; that is, of k-tuples of orthonormal vectors (ui,...,u;) with u; € R™. Obviously
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S(1,n) = S" ! and S(n,n) = O(n). Every orthonormal k-frame (uy, ..., u;) can be repre-
sented by an n x k matrix Y over the canonical basis of R", and such a matrix Y satisfies
the equation

YTy =1.

Thus, S(k,n) can be viewed as a subspace of M,, x(R), where M,, x(R) denotes the vector
space of all n x k matrices with real entries. We claim that S(k,n) is a manifold. Let
W = {A € M,x(R) | det(ATA) > 0}, an open subset of M, .(R) such that S(k,n) C W
(since if A € S(k,n), then ATA = I, so det(ATA) = 1). Generalizing the situation involving
SO(n), define the function f: W — S(k) by

f(A)=ATA-1.
Basically the same computation as in the case of SO(n) yields
df(A)Y(H)=A"H + H" A,

The proof that df (A) is surjective for all A € S(k,n) is the same as before, because only the
E(k+1)

equation ATA = I is needed. Indeed, given any symmetric matrix S € S(k) & R
have from our previous calculation that

df (A) <§> = 5.

, We

2
As S(k,n) = f71(0), we conclude that S(k,n) is a smooth manifold of dimension

k(k—1)

The third characterization of Theorem 3.6 suggests the following definition.

Definition 3.2. Let f: R™** — R* be a smooth function. A point p € R™** is called a
critical point (of f) iff df, is not surjective, and a point ¢ € R” is called a critical value (of
f)iff ¢ = f(p) for some critical point p € R™*. A point p € R™* is a regular point (of f)
iff p is not critical, i.e., df, is surjective, and a point ¢ € R* is a regular value (of f) iff it is
not a critical value. In particular, any ¢ € R¥ — f(R™*) is a regular value, and ¢ € f(R™"%)
is a regular value iff every p € f~1(q) is a regular point (in contrast, ¢ is a critical value iff
some p € f~1(q) is critical).

Part (3) of Theorem 3.6 implies the following useful proposition:

Proposition 3.7. Given any smooth function f: R™* — R*  for every reqular value ¢ €
f(R™HK) the preimage Z = f~1(q) is a manifold of dimension m.



3.1. INTRODUCTION TO EMBEDDED MANIFOLDS 87

Definition 3.2 and Proposition 3.7 can be generalized to manifolds. Regular and critical
values of smooth maps play an important role in differential topology. Firstly, given a smooth
map f: R™* — R* almost every point of R” is a regular value of f. To make this statement
precise, one needs the notion of a set of measure zero. Then Sard’s theorem says that the
set of critical values of a smooth map has measure zero. Secondly, if we consider smooth
functions f: R™" — R, a point p € R™! is critical iff df, = 0. Then we can use second
order derivatives to further classify critical points. The Hessian matriz of f (at p) is the
matrix of second-order partials

Hy(p) = ( afjaij (p)) :

and a critical point p is a nondegenerate critical point if H;(p) is a nonsingular matrix.
The remarkable fact is that, at a nondegenerate critical point p, the local behavior of f is
completely determined, in the sense that after a suitable change of coordinates (given by a
smooth diffeomorphism)

f@)=fp) —at = —al + 2l + o

near p, where \, called the index of f at p, is an integer which depends only on p (in fact, A
is the number of negative eigenvalues of H¢(p)). This result is known as Morse lemma (after
Marston Morse, 1892-1977).

Smooth functions whose critical points are all nondegenerate are called Morse functions.
It turns out that every smooth function f: R™*! — R gives rise to a large supply of Morse
functions by adding a linear function to it. More precisely, the set of a € R™*! for which
the function f, given by

fa(flf) = f(x) + a1y + ct e + am+1xm+1

is not a Morse function has measure zero.

Morse functions can be used to study topological properties of manifolds. In a sense
to be made precise and under certain technical conditions, a Morse function can be used to
reconstruct a manifold by attaching cells, up to homotopy equivalence. However, these results
are way beyond the scope of this book. A fairly elementary exposition of nondegenerate
critical points and Morse functions can be found in Guillemin and Pollack [55] (Chapter 1,
Section 7). Sard’s theorem is proved in Appendix 1 of Guillemin and Pollack [55] and also
in Chapter 2 of Milnor [83]. Morse theory (starting with Morse lemma) and much more,
is discussed in Milnor [81], widely recognized as a mathematical masterpiece. An excellent
and more leisurely introduction to Morse theory is given in Matsumoto [80], where a proof
of Morse lemma is also given.

Let us now introduce the definitions of a smooth curve in a manifold and the tangent
vector at a point of a curve.
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Definition 3.3. Let M be an m-dimensional manifold in RY. A smooth curve v in M is
any function y: I — M where [ is an open interval in R and such that for every ¢t € I,
letting p = ~y(t), there is some parametrization ¢: Q — U of M at p and some open interval
(t — ¢, t+¢€) C I such that the curve o=t o~y: (t — ¢, t +€) — R™ is smooth.

The notion of a smooth curve is illustrated in Figure 3.11.

Using Lemma 3.2, it is easily shown that Definition 3.3 does not depend on the choice of
the parametrization ¢: Q@ — U at p.

Lemma 3.2 also implies that v viewed as a curve v: I — R” is smooth. Then the tangent
vector to the curve v: I — RN at t, denoted by 7/(t), is the value of the derivative of « at ¢
(a vector in RY) computed as usual:

/ T
7 () = lim

V(i +h) =)
- :

Given any point p € M, we will show that the set of tangent vectors to all smooth curves
in M through p is a vector space isomorphic to the vector space R™. The tangent vector at
p to a curve 7y on a manifold M is illustrated in Figure 3.12.

Given a smooth curve vy: [ — M, for any ¢ € I, letting p = ~y(t), since M is a manifold,
there is a parametrization ¢: Q@ — U such that ¢(0,,) = p € U and some open interval J C [
with ¢ € J and such that the function

go_loy: J — R™

is a smooth curve, since 7 is a smooth curve. Letting o = ¢! o 7, the derivative o/(¢) is
well-defined, and it is a vector in R™. But poa: J — M is also a smooth curve, which
agrees with v on J, and by the chain rule,

V(1) = @' (0m) (@'(1)),

since a(t) = 0,,, (because ¢(0,,) = p and v(t) = p). See Figure 3.11. Observe that 7/(t) is a
vector in RY. Now for every vector v € R™, the curve a: J — R™ defined such that

alu) = (u—t)v

for all uw € J is clearly smooth, and «/(t) = v. This shows that the set of tangent vectors at ¢
to all smooth curves (in R™) passing through 0,, is the entire vector space R™. Since every
smooth curve v: I — M agrees with a curve of the form ¢ o a: J — M for some smooth
curve a: J — R™ (with J C I) as explained above, and since it is assumed that ¢'(0,,) is
injective, ¢'(0,,) maps the vector space R™ injectively to the set of tangent vectors to 7 at
p, as claimed. All this is summarized in the following definition.

Definition 3.4. Let M be an m-dimensional manifold in RY. For every point p € M, the
tangent space T,M at p is the set of all vectors in RY of the form ~/(0), where v: I — M is
any smooth curve in M such that p = v(0). The set T, M is a vector space isomorphic to
R™. Every vector v € T,M is called a tangent vector to M at p.
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Figure 3.11: A smooth curve in a manifold M.

Figure 3.12: Tangent vector to a curve on a manifold.
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Remark: The definition of a tangent vector at p involves smooth curves, where a smooth
curve is defined in Definition 3.3. Actually, because of Lemma 3.1, it is only necessary
to use curves that are C! viewed as curves in RY. The potential problem is that if ¢ is a
parametrization at p and v is a C! curve, it is not obvious that p~to~ is C! in R™. However,
Lemma 3.1 allows us to promote ¢ to a diffeomorphism between open subsets of R, and
since both v and (this new) ! are C*, so is ¢! o y. However, in the more general case of
an abstract manifold M not assumed to be contained in some RY, smooth curves have to
be defined as in Definition 3.3.

3.2 Linear Lie Groups

We can now define Lie groups (postponing defining smooth maps). In general, the difficult
part in proving that a subgroup of GL(n,R) is a Lie group is to prove that it is a manifold.
Fortunately, there is a characterization of the linear groups that obviates much of the work.
This characterization rests on two theorems. First, a Lie subgroup H of a Lie group G
(where H is an embedded submanifold of G) is closed in G (see Warner [114], Chapter
3, Theorem 3.21, page 97). Second, a theorem of Von Neumann and Cartan asserts that
a closed subgroup of GL(n,R) is an embedded submanifold, and thus, a Lie group (see
Warner [114], Chapter 3, Theorem 3.42, page 110). Thus, a linear Lie group G is a closed
subgroup of GL(n,R). Recall that this means that for every sequence (4,),>1 of matrices
A, € G, if this sequence converges to a limit A € GL(n,R), then actually A € G.

Since our Lie groups are subgroups (or isomorphic to subgroups) of GL(n,R) for some
suitable n, it is easy to define the Lie algebra of a Lie group using curves. This approach to
define the Lie algebra of a matrix group is followed by a number of authors, such as Curtis
[34]. However, Curtis is rather cavalier, since he does not explain why the required curves
actually exist, and thus, according to his definition, Lie algebras could be the trivial vector
space reduced to the zero element.

A small annoying technical problem will arise in our approach, the problem with discrete
subgroups. If A is a subset of R™, recall that A inherits a topology from RY called the
subspace topology, defined such that a subset V of A is open if

V=ANU

for some open subset U of RY. A point a € A is said to be isolated if there is some open
subset U of RY such that
{a} = ANU,
in other words, if {a} is an open set in A.
The group GL(n, R) of real invertible n x n matrices can be viewed as a subset of R™, and
as such, it is a topological space under the subspace topology (in fact, a dense open subset

of R”Z). One can easily check that multiplication and the inverse operation are continuous,
and in fact smooth (i.e., C*°-continuously differentiable). This makes GL(n,R) a topological
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group. Any subgroup G of GL(n,R) is also a topological space under the subspace topology.
A subgroup G is called a discrete subgroup if it has some isolated point. This turns out
to be equivalent to the fact that every point of G is isolated, and thus, G has the discrete
topology (every subset of G is open). Because GL(n,R) is a topological group, every discrete
subgroup of GL(n,R) is closed (which means that its complement is open); see Proposition
4.5. Moreover, since GL(n,R) is the union of countably many compact subsets, discrete
subgroups of GL(n,R) must be countable. Thus, discrete subgroups of GL(n,R) are Lie
groups (and countable)! But these are not very interesting Lie groups, and so we will consider
only closed subgroups of GL(n,R) that are not discrete.

Definition 3.5. A Lie group is a nonempty subset G of RN (N > 1) satisfying the following
conditions:

(a) G is a group.
(b) G is a manifold in R,
(c) The group operation - : G x G — G and the inverse map ~!': G — G are smooth.

(Smooth maps are defined in Definition 3.8). It is immediately verified that GL(n, R) is
a Lie group. Since all the Lie groups that we are considering are subgroups of GL(n,R), the
following definition is in order.

Definition 3.6. A linear Lie group is a subgroup G of GL(n,R) (for some n > 1) which is
a smooth manifold in R".

Let M,,(R) denote the set of all real n X n matrices (invertible or not). If we recall that
the exponential map
exp: A e’

is well defined on M, (R), we have the following crucial theorem due to Von Neumann and
Cartan.

Theorem 3.8. (Von Neumann and Cartan, 1927) A closed subgroup G of GL(n,R) is a
linear Lie group. Furthermore, the set g defined such that

g={X cM,R) | ¥ €G forallt € R}

1s a nontrivial vector space equal to the tangent space TiG at the identity I, and g is closed

under the Lie bracket [—, —| defined such that [A, B] = AB — BA for all A, B € M,,(R).

Theorem 3.8 applies even when G is a discrete subgroup, but in this case, g is trivial (i.e.,
g = {0}). For example, the set of nonnull reals R* = R — {0} = GL(1,R) is a Lie group
under multiplication, and the subgroup

H={2"|nelZ}
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is a discrete subgroup of R*. Thus, H is a Lie group. On the other hand, the set Q* = Q—{0}
of nonnull rational numbers is a multiplicative subgroup of R*, but it is not closed, since Q
is dense in R. Hence Q* is not a Lie subgroup of GL(1,R).

The first step in proving Theorem 3.8 is to show that if G is a closed and nondiscrete
subgroup of GL(n,R) and if we define g just as T;G (even though we don’t know yet that G
is a manifold), then g is a vector space satisfying the properties of Theorem 3.8. We follow
the treatment in Kosmann [70], which we find one of the simplest and clearest.

Proposition 3.9. Given any closed subgroup G in GL(n,R), the set
g={XeM,(R)| X =+(0),7: J = G is a C' curve in M,,(R) such that v(0) = I}
satisfies the following properties:
(1) g is a vector subspace of M, (R).
(2) For every X € M,(R), we have X € g iff e € G for all t € R.
(3) For every X € g and for every g € G, we have gXg~* € g.
(4) @ is closed under the Lie bracket.

Proof. If v is a C! curve in G such that v(0) = I and 7/(0) = X, then for any A\ € R, the
curve a(t) = v(At) passes through I and o/(0) = AX. If 7, and 7, are two C! curves in G
such that 71(0) = 1(0) = I, 71(0) = X, and 75(0) = Y, then the curve a(t) = v1(t)y2(?)
passes through I and the product rule implies

o/ (0) = (1 (£)2(0)(0) = X + Y.

Therefore, g is a vector space.

(2) If ! € G for all t € R, then ~: t —~ X is a smooth curve through I in G such that
7 (0)=X,s0 X €g.
Conversely, if X = 7/(0) for some C! curve in G such that v(0) = I, using the Taylor

expansion of v near 0, for every t € R and for any positive integer k large enough t/k is
small enough so that v(¢/k) € G and we have

t

~ (E) =1+ %X +e1(k) = exp (%X + éz(k‘)) :

where € (k) is O(1/k?), i.e. |e1(k)| < & for some nonnegative C, and e (k) is also O(1/k?).
Raising to the kth power, we deduce that

, (%)k — oxp (1X + es(h)
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where €3(k) is O(1/k), and by the continuity of the exponential, we get

k
t
klggofy (k) = exp(tX).

For all k large enough, since G is a closed subgroup, (v(t/k))¥ € G and

N
imo(g) <o
and thus X € G.

(3) We know by Proposition 1.2 that

tgXg! — geth—l
)

and by (2), if X € g, then /X € G for all ¢, and since g € G, we have e/9X9 " = getXg~1 € G.
Since (ge!*g71)(t) = gXeX gL, the definition of g implies that
(eX97Y(0) = (g™ g1 (0) = gXg " € g.
(4) if X,Y € g, then by (2), for all t € R we have e'* € G, and by (3), e*Ye ™ € g.
By the product rule we obtain

(ethe—tX)/(t> — Xethe—tX . etXYX€_tX,

e

which in turn implies

(e™Ye ™ )(0) = XY - Y X
and proves that g is a Lie algebra. O]

The second step in the proof of Theorem 3.8 is to prove that when G is not a discrete
subgroup, there is an open subset @ C M,,(R) such that 0 € Q, an open subset W C GL(n,R)
such that I € W, and a diffeomorphism ®: 2 — W such that

o(QNg)=WnNAG.
If G is closed and not discrete, we must have m > 1, and g has dimension m.

We begin by observing that the exponential map is a diffeomorphism between some open
subset of 0 and some open subset of I. This is because d(exp)y = id, which is easy to see
since

X T =X+ |X]eX)
with

and so limy,,o€(X) = 0. By the inverse functlon theorem, exp is a diffeomorphism between
some open subset Uy of M,,(R) containing 0 and some open subset V; of GL(n, R) containing
I.
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Proposition 3.10. Let G be a subgroup of GL(n,R), and assume that G is closed and not
discrete. Then dim(g) > 1, and the exponential map is a diffeomorphism of a neighborhood
of 0 in g onto a neighborhood of I in G. Furthermore, there is an open subset Q@ C M, (R)
with 0 € Q, an open subset W C GL(n,R) with I € W, and a diffeomorphism ®: Q — W
such that

o(2ng)=WnNAG.

Proof. We follow the proof in Kosmann [70] (Chapter 4, Section 5). A similar proof is given
in Helgason [58] (Chapter 2, §2), Mneimné and Testard [86] (Chapter 3, Section 3.4), and
in Duistermaat and Kolk [43] (Chapter 1, Section 10). As explained above, by the inverse
function theorem, exp is a diffeomorphism between some open subset Uy of M,,(R) containing
0 and some open subset V) of GL(n,R) containing I. Let p be any subspace of M,,(R) such
that g and p form a direct sum

and let ®: g ®p — G be the map defined by

(X +Y)=e¥e.
We claim that d®y = id. One way to prove this is to observe that for || X|| and ||Y|| small,
X =T+ X+ |X[a(X) & =I+Y +[Y]e),
with limx, ;0 €1(X) = 0 and limy, €2(Y") = 0, so we get

eXeY =T+ X+Y +XY
X e(X)I +Y) + [Vl e2(Y)( + X) + || X [[Y]] €r(X)e2(X)

=1+ X 47+ (VIXIP + V)P )e(X,Y),
with

X v
SR
X+ Y1 e
" XY + || XY er(X)ex(X)

X[+ 1Y)

e(X,)Y) =

e(Y)(I + X)

Since limy, ;0 €1(X) = 0 and limy,,0€2(Y) = 0, the first two terms go to 0 when X and Y
go to 0, and since

XY+ [|XTHY T e (X ex (X < XTIV L+ [lea(X)ex (X))

< SUXIE+ VI + la(Xea(X)]),
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we have

XY + XY e (X)ea(X)
X1+ 117

< S (VIXIP + IV IP) (1 + les (e,

1
2

so the third term also goes to 0 when X and Y to 0. Therefore, limy, ;0 y0€(X,Y) = 0,
and d®o(X +Y) = X + Y, as claimed.

By the inverse function theorem, there exists an open subset of M, (R) containing 0 of
the form U’ + U” with U’ C g and U” C p and some open subset W’ of GL(n,R) such that
® is a diffeomorphism of U’ + U” onto W'. By considering Uy N (U’ + U"), we may assume
that Uy = U’ + U”, and write W’ = ®(Up); the maps exp and ® are diffecomorphisms on U.

Since U’ C g, we have exp(U’) C W' N G, but we would like equality to hold.

Suppose we can show that there is some open subset U]/ C U” C p such that for all
X e U}, if eX € G, then X = 0. If so, consider the restriction of ® to U’ & U}/, and let
W = ®(U' & UY); clearly, exp(U’) € W N G. Then, since ® maps U’ + U} onto W, for any
g € WNG, we have g = eX'eX” for some X' € U’ C g and some X” € U C p. Then,
eX' € G since X' € g, 50 X' = e X' g € G. However, as X” € U, we must have X" = 0,
and thus W NG = exp(U’). This proves that exp is a diffeomorphism of U’ C g onto W NG,

which is the first statement of Proposition 3.10.

For the second part of Proposition 3.10, if we let Q = U’ + U}l and W = exp(?), then
) is an open subset of M,,(R) containing 0, W is an open subset of GL(n,R) containing I,
U’ =QnNg, and ® is a diffeomorphism of Q onto W such that ®(Q2Ng) = W NG, as desired.

We still need to prove the following claim:

Claim. There exists an open subset U) C U” C p such that for all X € U}, if e* € G,
then X =0

The proof of the claim relies on the fact that G is closed.

Proof of the Claim. We proceed by contradiction. If the claim is false, then in every open
subset of p containing 0, there is some X # 0 such that eX € G. In particular, for every
positive integer n, there is some X,, € B(0,1/n) Np such that X,, # 0 and eX» € G (where
B(0,1/n) denotes the open ball of center 0 and radius 1/n). We obtain a sequence (X,,) in
p whose limit is 0, and thus the sequence (e*") converges to I in G. Define the sequence

(Zn> by

X
Ty = ——.
Tl
so that ||Z,]| = 1. Since the unit sphere is compact, there is some subsequence of (Z,)

that converges to a limit Z in p of unit norm (since p is closed); from now on, consider
this converging subsequence of (Z,) and the corresponding subsequence of X, (which still
converges to 0, with X,, # 0 for all n).
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Lemma 3.11. Let G be a closed subgroup of GL(n,R) and let m be any subspace of M,,(R).
For any sequence (X,,) of nonzero matrices in m, if eX» € G for all n, if (X,) converges to
0, and if the sequence (Z,) given by

X
Z, = _—n_
1 Xl
converges to a limit Z (necessarily in m and with ||Z|| = 1), then Z € g.

Proof. We would like to prove that €4 € G for all t € R, because then, by Proposition
3.9(2), Z € g. For any t € R, write

X = pu(t) + u,(t), with p,(t) € Z and u,(t) € [0,1).

Then we have )
otZn — 6(mxn) _ (eXn)pn(t)eun(t)Xn‘

Since u,(t) € [0,1) and since the sequence (X,) converges to 0, the sequence (u,(t)X,)
also converges to 0, so the sequence e»()X» converges to I. Furthermore, since p,(t) is an
integer, eX» € G, and G is a group, we have (eX")P»() ¢ G. Since G is closed, the limit
of the sequence et?r = (eXn)Prlt)eun()Xn helongs to G, and since lim,, o Z, = Z, by the
continuity of the exponential, we conclude that ¥ € G. Since this holds for all t € R, we
have Z € g. O]

Applying Lemma 3.11 to m = p, we deduce that Z € gNp = (0), so Z = 0, contradicting
the fact that ||Z|| = 1. Therefore, the claim holds. O

It remains to prove that g is nontrivial. This is where the assumption that G is not
discrete is needed. Indeed, if G is not discrete, we can find a sequence (g,) of elements of G
such that g, # I and the sequence converges to I. Since the exponential is a diffeomorphism
between a neighborhood of 0 and a neighborhood of I, we may assume by dropping some
initial segment of the sequence that g, = e*» for some nonzero matrices X,,, and that the
sequence (X,,) converges to 0. For n large enough, the sequence

Xl
makes sense and belongs to the unit sphere. By compactness of the unit sphere, (Z,,) has some
subsequence that converges to some matrix Z with ||Z|| = 1. The corresponding subsequence
of X, still consists of nonzero matrices and converges to 0. We can apply Lemma 3.11 to

m = M, (R) and to the converging subsequences of (X,,) and (Z,) to conclude that Z € g,
with Z # 0. This proves that dim(g) > 1, and completes the proof of Proposition 3.10. [

Remark: The first part of Proposition 3.10 shows that exp is a diffeomorphism of an open
subset U’ C g containing 0 onto W N G, which is Condition (1) of Theorem 3.6; that is, the
restriction of exp to U’ is a parametrization of G.

Theorem 3.8 now follows immediately from Propositions 3.9 and 3.10.
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Proof of Theorem 3.8. Proposition 3.9 shows that g = TG and that it is a Lie algebra.
Proposition 3.10 shows that Condition (2) of Theorem 3.6 holds; that is, there is an open
subset Q@ C M, (R) with 0 € €, an open subset W C GL(n,R) with I € W, and a diffeo-
morphism ®: €2 — W such that

o(2ng)=WnNAG.

To prove that this condition holds for every g € G besides I is easy. Indeed, L,: G — G is
a diffeomorphism, so L, o ®: Q@ — L (W) is a diffeomorphism such that

(Lyo ®)(QNg) = L, (W) NG,

which shows that Condition (2) of Theorem 3.6 also holds for any ¢ € G, and thus G is a
manifold. ]

It should be noted that the assumption that G is closed is crucial, as shown by the
following example from Tapp [111].

Pick any irrational multiple A of 27, and define

te 0
G:{gt:<60 em)‘teR}.

It is clear that G is a subgroup of GL(2,C). We leave it as an exercise to prove that the map
@: t — g is a continuous isomorphism of (R,+) onto G, but that ¢! is not continuous.
Geometrically, ¢ is a curve embedded in R* (by viewing C? as R*). It is easy to check that
g (as defined in Proposition 3.9) is the one dimensional vector space spanned by

i 0
W‘(o /\z’>’

and that e = g, for all ¢t € R. For every r > 0 (r € R), we leave it as an exercise to prove
that

exp({tW [t € (=r,r)}) ={g. [t € (=r,7)}

is not a neighborhood of I in G. The problem is that there are elements of G of the form
Gorn for some large n that are arbitrarily close to I, so they are exponential images of very
short vectors in My(C), but they are exponential images only of very long vectors in g. The
reader should prove that the closure of the group G is the group

ti
0 e

and that G is dense in G. Geometrically, G is a curve in R* and G is the product of two
circles, that is, a torus (in R*). Due to the the irrationality of A, the curve G winds around
the torus and forms a dense subset.
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With the help of Theorem 3.8 it is now very easy to prove that SL(n), O(n), SO(n),
SL(n,C), U(n), and SU(n) are Lie groups and to figure out what are their Lie algebras.
(Of course, GL(n,R) is a Lie group, as we already know.) It suffices to show that these
subgroups of GL(n,R) (GL(2n,R) in the case of SL(n,C), U(n), and SU(n)) are closed,
which is easy to show since these groups are zero sets of simple continuous functions. For
example, SL(n) is the zero set of the function A — det(A) — 1, O(n) is the zero set of the
function R — RTR — I, SO(n) = SL(n) N O(n), etc.

For example, if G = GL(n,R), as e/ is invertible for every matrix A € M,(R), we
deduce that the Lie algebra gl(n,R) of GL(n,R) is equal to M,,(R). We also claim that the
Lie algebra sl(n,R) of SL(n,R) is the set of all matrices with zero trace. Indeed, sl(n,R) is
the subalgebra of gl(n,R) consisting of all matrices X € gl(n, R) such that

det(e'™) =1
for all t € R, and because det(e!*) = e"*X) for t = 1, we get tr(X) = 0, as claimed.

We can also prove that SE(n) is a Lie group as follows. Recall that we can view every
element of SE(n) as a real (n+ 1) x (n + 1) matrix

R U
0 1
where R € SO(n) and U € R™. In fact, such matrices belong to SL(n 4 1). This embedding

of SE(n) into SL(n + 1) is a group homomorphism, since the group operation on SE(n)
corresponds to multiplication in SL(n + 1):

(0 )= D6 )

Note that the inverse of <§ l{) is given by

R' —-R'U\ (R" —-R'U
(5 57)=(0 1)

It is easy to show that SE(n) is a closed subgroup of GL(n+1,R) (because SO(n) and R"
are closed). Also note that the embedding shows that, as a manifold, SE(n) is diffeomorphic
to SO(n) x R™ (given a manifold M; of dimension m; and a manifold M, of dimension ms,
the product M; x M, can be given the structure of a manifold of dimension m; + msy in a

natural way). Thus, SE(n) is a Lie group with underlying manifold SO(n) x R”, and in
fact, a closed subgroup of SL(n + 1).

@ Even though SE(n) is diffeomorphic to SO(n) x R™ as a manifold, it is not isomorphic

to SO(n) x R™ as a group, because the group multiplication on SE(n) is not the
multiplication on SO(n) x R". Instead, SE(n) is a semidirect product of SO(n) by R"; see
Section 18.5 or Gallier [48] (Chapter 2, Problem 2.19).
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An application of Theorem 3.8 shows that the Lie algebra of SE(n), se(n), is as described
in Section 1.6; is easily determined as the subalgebra of sl(n + 1) consisting of all matrices

of the form
B U
0 0

where B € so(n) and U € R". Thus, se(n) has dimension n(n + 1)/2. The Lie bracket is

given by
B U\ (C VN (C V(B U\_(BC-CB BV-CU
0 0 0 0 0 0 0o 0/ 0 0 ’

Returning to Theorem 3.8, the vector space g is called the Lie algebra of the Lie group
G. Lie algebras are defined as follows.

Definition 3.7. A (real) Lie algebra A is a real vector space together with a bilinear map
[-,-]: Ax A — A called the Lie bracket on A such that the following two identities hold for
all a,b,c € A:

la, a] =0,

and the so-called Jacobi identity
[a, [b, c]] + ¢, [a, 0]] + [b, [c, a]] = 0.

By using the Jacobi identity, it is readily verified that [b, a] = —[a, b].

In view of Theorem 3.8, the vector space g = T;G associated with a Lie group G is indeed
a Lie algebra. Furthermore, the exponential map exp: g — G is well-defined. In general,
exp is neither injective nor surjective, as we observed earlier. Theorem 3.8 also provides a
kind of recipe for “computing” the Lie algebra g = T7G of a Lie group G. Indeed, g is the
tangent space to G at I, and thus we can use curves to compute tangent vectors. Actually,
for every X € T;G, the map
Yx it et

is a smooth curve in G, and it is easily shown that +%(0) = X. Thus, we can use these curves.
As an illustration, we show that the Lie algebras of SL(n) and SO(n) are the matrices with
null trace and the skew symmetric matrices.

Let t — R(t) be a smooth curve in SL(n) such that R(0) = I. We have det(R(t)) = 1

for all t € (—¢, €). Using the chain rule, we can compute the derivative of the function
t — det(R(t))
at t = 0, and since det(R(t)) = 1 we get

det)(R'(0)) = 0.
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We leave it as an exercise for the reader to prove that

det’(X) = tr(X),
and thus tr(R'(0)) = 0, which says that the tangent vector X = R'(0) has null trace. Clearly,
sl(n, R) has dimension n? — 1.

Let t — R(t) be a smooth curve in SO(n) such that R(0) = I. Since each R(t) is
orthogonal, we have
RO R =1

for all t € (—¢, €). By using the product rule and taking the derivative at t = 0, we get
R(0) R(0)" + R(0) R'(0)" =0,
but since R(0) = I = R(0)", we get
R'(0)+ R(0)" =0,
which says that the tangent vector X = R'(0) is skew symmetric. Since the diagonal elements
of a skew symmetric matrix are null, the trace is automatically null, and the condition

det(R) = 1 yields nothing new. This shows that o(n) = so(n). It is easily shown that so(n)
has dimension n(n —1)/2.

By appropriately adjusting the above methods, we readily calculate gl(n,C), sl(n,C),
u(n), and su(n), confirming the claims of Section 1.4. It is easy to show that gl(n,C) has
dimension 2n?, sl(n,C) has dimension 2(n* — 1), u(n) has dimension n? and su(n) has
dimension n? — 1.

As a concrete example, the Lie algebra s0(3) of SO(3) is the real vector space consisting
of all 3 x 3 real skew symmetric matrices. Every such matrix is of the form

0 —d c
d 0 -b
—c b 0

where b,c,d € R. The Lie bracket [A, B] in s0(3) is also given by the usual commutator,
A, B] = AB — BA.

Let x represent the cross product of two vectors in R? where for u = (uy,us, u3) and
v = (v1,v9,v3), we have

uXv=—vXu=(UgU3 — UgVs, —U V3 + U3V1, UV — UgV1).

It is easily checked that the vector space R3 is a Lie algebra if we define the Lie bracket on
R3 as the usual cross product u x v of vectors. We can define an isomorphism of Lie algebras
¥ (R, x) — s0(3) by the formula

0 —-d c
P(bye,dy=|d 0 —b
—-c b 0
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A basic algebraic computation verifies that

(u x v) = [P(u), P(v)].

It is also verified that for any two vectors u = (b, ¢,d) and v = (¥, ¢, d') in R3

0 —d c b —dc + cd’
Yuw)(v)y=d 0 =b| ]| =] d—=bd | =uxuo.
—c b 0 d —cb' + bc

In robotics and in computer vision, ¥ (u) is often denoted by uy.

The exponential map exp: s0(3) — SO(3) is given by Rodrigues’s formula (see Proposi-
tion 1.7):

e = cosO Is + 8120A+ u _GZOSG)B,

or equivalently by

ATt sm&A_l_ (1—cos€)A2

0 62
if 0 # 0, where
0 —-d c
A=[d 0 =b|,
—c b 0

b2 4 2 +d?, B = A% + 0%I5, and with €° = I5.

For another concrete example, the Lie algebra su(2) of SU(2) (or S?) is the real vector
space consisting of all 2 x 2 (complex) skew Hermitian matrices of null trace. Every such
matrix is of the form

, _ ib c+id
i(doy + cog + bos) = (—C—I— id —ib ) )

where b, c,d € R, and o1, 09, 03 are the Pauli spin matrices

(0 1 (0 —i (1 0
01 - 1 0 ) 02 - Z 0 ) 03 - O _1 9
and thus the matrices ioy,i09,i03 form a basis of the Lie algebra su(2). The Lie bracket

[A, B] in su(2) is given by the usual commutator, [A, B] = AB — BA.

Let x represent the cross product of two vectors in R? . Then we can define an isomor-
phism of Lie algebras ¢: (R?, x) — su(2) by the formula

i 1 ib c+id
o(b,c,d) = §(d0'1+cag+bag) =3 (—c—l—id —ib )
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A tedious but basic algebraic computation verifies that

p(ux v) = [p(u), ¢(v)].
Returning to su(2), letting 0 = /b + ¢? + d?, we can write

doy + cog + bog = (ic 3_ d _Ziz_ d) =0A,

where

0 g \ic+d )

so that A? = I, and it can be shown that the exponential map exp: su(2) — SU(2) is given
by

1 1 —1
A:—(d01+002+b03):—< b Zc+d),

exp(i#A) = cosf I + isinf A.

In view of the isomorphism ¢: (R3, x) — su(2), where

1 ib c+id\ .0
gO(b, ¢, d) - 5 (—C+2d —ib ) - Z_A7

2
the exponential map can be viewed as a map exp: (R3, x) — SU(2) given by the formula
0 0
exp(fv) = [cos 2 sin§ v] :

for every vector fv, where v is a unit vector in R® and # € R. Recall that [a, (b, ¢, d)] is
another way of denoting the quaternion al + bi+ cj + dk; see Section 5.3 and Problem 18.16
for the definition of the quaternions and their properties. In this form, exp(6v) is a unit
quaternion corresponding to a rotation of axis v and angle 6.

3.3 Homomorphisms of Linear Lie groups and Lie Al-
gebras

In this section we will discuss the relationship between homomorphisms of Lie groups and
homomorphisms of Lie algebras. But in order to do so, we first need to explain what is
meant by a smooth map between manifolds.

Definition 3.8. Let M; (m;-dimensional) and M, (ms-dimensional) be manifolds in RY. A
function f: My — My is smooth if for every p € M, there are parameterizations p: 0 — U
of My at p and ¢: Qs — Us of My at f(p) such that f(U;) C Uy and

v lo fop: Oy — R™

is smooth; see Figure 3.13.
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Using Lemma 3.2, it is easily shown that Definition 3.8 does not depend on the choice of
the parametrizations ¢: €y — U; and ¢: 25 — Us. A smooth map f between manifolds is
a smooth diffeomorphism if f is bijective and both f and f~! are smooth maps.

We now define the derivative of a smooth map between manifolds.

Definition 3.9. Let M; (m;-dimensional) and M, (my-dimensional) be manifolds in R¥.
For any smooth function f: M; — M, and any p € M, the function f[’,: TyMy — Ty My,
called the tangent map of f at p, or derivative of f at p, or differential of f at p, is defined
as follows: For every v € T,,M; and every smooth curve v: I — M; such that (0) = p and
Y (0) =,

Fi(0) = (f 07)(0).

See Figure 3.14.

R

Figure 3.13: An illustration of a smooth map from the torus, M;, to the solid ellipsoid M.
The pink patch on M; is mapped into interior pink ellipsoid of Ms.

The map f} is also denoted by df,, or T),f. Doing a few calculations involving the facts
that

foy=(fop)o(pon) and y=gpo(p o)
and using Lemma 3.2, it is not hard to show that f/(v) does not depend on the choice of the
curve . It is easily shown that f) is a linear map.
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Figure 3.14: An illustration of the tangent map from T, M; to T, Ms.

Given a linear Lie group G, since L, and R, are diffeomorphisms for every a € G, the
maps d(L,)r: ¢ — T,G and d(R,);: ¢ — T,G are linear isomorphisms between the Lie
algebra g and the tangent space T,G to G at a. Since G is a linear group, both L, and R,
are linear, we have (dL,), = L, and (dR,), = R, for all b € G, and so

T.G=ag={aX | X €g} ={Xa| X € g} = ga.

Finally we define homomorphisms of Lie groups and Lie algebras and see how they are
related.

Definition 3.10. Given two Lie groups G and Gs, a homomorphism (or map) of Lie groups
is a function f: Gy — G, that is a homomorphism of groups and a smooth map (between
the manifolds G; and G3). Given two Lie algebras A; and Ay, a homomorphism (or map)
of Lie algebras is a function f: A; — A, that is a linear map between the vector spaces A;
and As and that preserves Lie brackets, i.e.,

f([A, B]) = [f(A), f(B)]
for all A, B € Aj.
An isomorphism of Lie groups is a bijective function f such that both f and f~! are

homomorphisms of Lie groups, and an isomorphism of Lie algebras is a bijective function
f such that both f and f~! are maps of Lie algebras. If f: G; — G5 is a homomorphism
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of linear Lie groups, then f;: g; — g is a homomorphism of Lie algebras, but in order to
prove this, we need the adjoint representation Ad, so we postpone the proof.

The notion of a one-parameter group plays a crucial role in Lie group theory.

Definition 3.11. A smooth homomorphism h: (R,+) — G from the additive group R to a
Lie group G is called a one-parameter group in G.

All one-parameter groups of a linear Lie group can be determined explicitly.
Proposition 3.12. Let G be any linear Lie group.

1. For every X € g, the map h(t) = €' is a one-parameter group in G.

2. Fuvery one-parameter group h: R — G is of the form h(t) = e'%, with Z = h'(0).

In summary, for every Z € g, there is a unique one-parameter group h such that h'(0) = Z
given by h(t) = e?t.

Proof. The proof of (1) is easy and left as an exercise. To prove (2), since h is a homomor-
phism, for all s,t € R, we have

h(s+t) = h(s)h(t).
Taking the derivative with respect to s for s = 0 and holding t constant, the product rule

implies that

If we write Z = h/(0) we we have
h'(t) = Zh(t) = Xz(h(t)) forall ¢t € R.

This means that h(t) is an integral curve for all ¢ passing through I for the linear vector field
Xy, and by Proposition 11.25, it must be equal to e'Z. O]

The exponential map is natural in the following sense:

Proposition 3.13. Given any two linear Lie groups G and H, for every Lie group homo-
morphism f: G — H, the following diagram commutes:

G
exp T
g

Proof. Observe that for every v € g, the map h: ¢t — f(e'”) is a homomorphism from (R, +)
to G such that /'(0) = df;(v). On the other hand, by Proposition 3.12 the map ¢ — e!¥1(®)
is the unique one-parameter group whose tangent vector at 0 is df;(v), so f(e¥) = e#1®), O

f

— s H

b

—_—
dfr
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Alert readers must have noticed that in Theorem 3.8 we only defined the Lie algebra of
a linear group. In the more general case, we can still define the Lie algebra g of a Lie group
G as the tangent space T;G at the identity I. The tangent space g = T7G is a vector space,
but we need to define the Lie bracket. This can be done in several ways. We explain briefly
how this can be done in terms of so-called adjoint representations. This has the advantage
of not requiring the definition of left-invariant vector fields, but it is still a little bizarre!

Given a Lie group G, for every a € G we define left translation as the map L,: G — G
such that L,(b) = ab for all b € G, and right translation as the map R,: G — G such that
R,(b) = ba for all b € G. The maps L, and R, are diffeomorphisms, and their derivatives
play an important role.

The inner automorphisms Ad,: G — G defined by Ad, = R,-1 o L, (= R,-1L,) also
play an important role. Note that

Ad,(b) = aba™".
The derivative
(Ada)/li T]G — T[G

of Ad, at [ is an isomorphism of Lie algebras, and since T;G = g, if we denote (Ad,); by
Ad,, we get a map
Ad,: g — 9.

The map a — Ad, is a map of Lie groups

Ad: G — GL(g),

called the adjoint representation of G (where GL(g) denotes the Lie group of all bijective
linear maps on g).

In the case of a linear group, we have
Ad(a)(X) = Ady(X) = aXa™*

for all @ € G and all X € g. Indeed, for any X € g, the curve () = "X is a curve in G
such that v(0) = I and 7/(0) = X. Then by the definition of the tangent map, we have

d(Ada)1(X) = (Ada(~(1)))'(0)

We are now almost ready to prove that if f: G; — G5 is a homomorphism of linear
Lie groups, then f;: gi — g2 is a homomorphism of Lie algebras. What we need is to
express the Lie bracket [A, B] in terms of the derivative of an expression involving the
adjoint representation Ad. For any A, B € g, we have

(Adea(B))'(0) = (e"*Be™4)(0) = AB — BA = [A, B).
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Proposition 3.14. If f: G; — G5 is a homomorphism of linear Lie groups, then the linear
map dfr: g1 — go satisfies the equation

df1(Ade(X)) = Ady)(df1(X)), foralla e G and all X € gy,
that is, the following diagram commutes

dfr
91— 02

Adal lAdf(@

91— B2

Furthermore, df; is a homomorphism of Lie algebras.
Proof. Since f is a group homomorphism, for all X € g;, we have
flae™a™) = f(a)f(e™) f(a™) = fla)f(e™) fla) 7"

The curve a given by a(t) = ae'*a~! passes through I and o/(0) = aXa™! = Ad,(X), so we
have

as claimed. Now pick any X,Y € g;. The plan is to use the identity we just proved with
a=e* and X =Y, namely

df[(Ader (Y)) = Adf(etX)(df[<Y)), (*)

and to take the derivative of both sides for ¢t = 0. We make use of the fact that since
dfr: g — g is linear, for any Z € g;, we have

d(dfr)z = dfr.

Then, if we write §(t) = Ad.xY, we have df;(Ad..xY) = df;(8(t)), and as df; is linear, the
derivative of the left hand side of (x) is

(df1(B(£)))'(0) = d(df1)p)(B'(0)) = df1(B(0)).
On the other hand, by the fact proven just before stating Proposition 3.14,

B/(()) = (AdetXY)/<O) = [X7 Y]?
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so the the derivative of the left hand side of (x) is equal to df;(8'(0)) = df;([X,Y]). When
we take the derivative of the right hand side, since f is a group homomorphism, we get
(Adpeex)(dfr(Y)))(0) = (f(e)dfs (V) (f()) ) (0)
= (f(e™)df1(Y) f(e%))(0) = [dfr(X), dfs (V)]
and we conclude that
dfi([X,Y]) = [df1(X), df 1 (Y)];

that is, f; is a Lie algebra homomorphism. O]

If some additional assumptions are made about G; and Gs (for example, connected,
simply connected), it can be shown that f is pretty much determined by f7.

The derivative
Adj: g — gl(g)
of Ad: G — GL(g) at I is map of Lie algebras, and if we denote Ad} by ad, it is a map
ad: g — gl(g),

called the adjoint representation of g. (Recall that Theorem 3.8 immediately implies that
the Lie algebra gl(g) of GL(g) is the vector space Hom(g, g) of all linear maps on g).

In the case of linear Lie groups, if we apply Proposition 3.13 to Ad: G — GL(g), we
obtain the equation
Ada = ¢4 forall A € g,

or equivalently

G —2 GL(g),

exp ]exp

g —ol(g)
which is a generalization of the identity of Proposition 2.1.

In the case of a linear group we have

ad(A)(B) = [A, B]
for all A, B € g. This can be shown as follows.

Proof. For any A, B € g, the curve y(t) = 4

that 7/(0) = A, so we have

is a curve in G passing through I and such

which proves our result. O
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Remark: The equation

((Adeea) (0)(B) = ((Ad.a)(B))'(0)

requires some justification. Define evalg: Hom(g,g) — g by evalg(f) = f(B) for any f €
Hom(g,g). Note that evalg is a linear map, and hence d(evalg); = evalg for all f €
Hom(g, g). By definition Ad.a(B) = evalg(Ad.), and an application of the chain rule
implies that

((Adea)(B))'(0) = (evalp(Ad,ea))'(0) = d(evalp)aa,, o (Adea)'(0)
= evalg(Adga)'(0) = ((Adgea)'(0))(B).
Another proof of the fact that ads(B) = [A, B] can be given using Propositions 2.1 and
3.13. To avoid confusion, let us temporarily write ada(B) = [A, B] to distinguish it from
ada(B) = (d(Ad);(A))(B). Both ad and ad are linear. For any fixed ¢t € R, by Proposition

2.1 we have
Ad,ia = etdia — emdf‘,

and by Proposition 3.13 applied to Ad, we have
Adia = A = plada,
It follows that
elvda — etada for all t € R,

and by taking the derivative at ¢ = 0, we get ad, = ad 4.

One can also check that the Jacobi identity on g is equivalent to the fact that ad preserves
Lie brackets, i.e., ad is a map of Lie algebras:

ad([A, B]) = [ad(A), ad(B)]

for all A, B € g (where on the right, the Lie bracket is the commutator of linear maps on g).
Thus we recover the Lie bracket from ad.

This is the key to the definition of the Lie bracket in the case of a general Lie group (not
just a linear Lie group). We define the Lie bracket on g as

[A, B] = ad(A)(B).

To be complete, we have to define the exponential map exp: g — G for a general Lie
group. For this we need to introduce some left-invariant vector fields induced by the deriva-
tives of the left translations, and integral curves associated with such vector fields. We will
do this in Chapter 18 but for this we will need a deeper study of manifolds (see Chapters 7
and 9).
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We conclude this section by computing explicitly the adjoint representations ad of so0(3)
and Ad of SO(3). Recall that for every X € so(3), ady is a linear map ady: s0(3) — s0(3).
Also, for every R € SO(3), the map Adg: s0(3) — s0(3) is an invertible linear map of
50(3). As we saw at the end of Section 3.2, s0(3) is isomorphic to (R?, x), where X is the
cross-product on R3, via the isomorphism : (R3, x) — s0(3) given by the formula

0 —c b
P(a,b,c)=| ¢ 0 —a
—b a O

In robotics and in computer vision, 1(u) is often denoted by u.. Recall that
P(u)v =uxv =uxv forall u,v € R3.

The image of the canonical basis (e, ez, e3) of R? is the following basis of s0(3):

—_

E1:

o O O

0
O —1 ,EQZ
1

Observe that
[Ey, By = Es,  [Es, Es]) = Ey, |[Es, Ey| = Es.

Using the isomorphism 1, we obtain an isomorphism ¥ between Hom(so(3),s0(3)) and
M;3(R) = gl(3,R) such that every linear map f: s0(3) — s0(3) corresponds to the matrix of
the linear map

U(f)=¢~ " ofod

in the basis (eq, €2, €3). By restricting U to GL(s0(3)), we obtain an isomorphism between
GL(s0(3)) and GL(3,R). It turns out that if we use the basis (Ei, Fs, F3) in so(3), for
every X € s0(3), the matrix representing ady € Hom(s0(3),s0(3)) is X itself, and for every
R € SO(3), the matrix representing Adp € GL(s0(3)) is R itself.

Proposition 3.15. For all X € so(3) and all R € SO(3), we have
Ulady) = X,  W(Adg) = R,

which means that W o ad is the inclusion map from so(3) to M3(R) = gl(3,R), and that
U o Ad is the inclusion map from SO(3) to GL(3,R). Equivalently, for all u € R3, we have

adx (¢ (u)) = ¥(Xu),  Adg(y(u)) = P (Ru).
These equations can also be written as

(X, ux] = (Xu)y, Ruy R = (Ru).
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Proof. Since ad is linear, it suffices to prove the equation for the basis (Ey, sy, E3). For F,
since 1 (e;) = E;, we have

0 ifi=1
adp, (V(e:) = [Er, ¥(e)] = { By ifi=2
—B, ifi=3.

Since
Eie1 =0, FEies=e3, FEies=—es, ¥(0)=0, (ez)=Es (ex) = Eo,

we proved that
adp, (V(e;)) = (Ere), i=1,2,3.
Similarly, the reader should check that

adEj (7/1(61)) = w(Ejei)a j = 27 37 1= 17 27 37

and so,
adx ((u)) = (Xu) for all X € s0(3) and all u € R?,

or equivalently
Y (adx (¥(u))) = X(u) for all X € s0(3) and all u € R;

that is, ¥ o ad is the inclusion map from so(3) to M3(R) = gl(3,R).

Since every one-parameter group in SO(3) is of the form ¢ — X for some X € s0(3)
and since U o ad is the inclusion map from so(3) to M3(R) = gl(3,R), the map ¥ o Ad
maps every one-parameter group in SO(3) to itself in GL(3,R). Since the exponential
map exp: 50(3) — SO(3) is surjective, every R € SO(3) is of the form R = e* for some
X € 50(3), so R is contained in some one-parameter group, and thus R is mapped to itself

by ¥ o Ad. 0

Readers who wish to learn more about Lie groups and Lie algebras should consult (more
or less listed in order of difficulty) Tapp [111], Rossmann [98], Kosmann [70], Curtis [34],
Sattinger and Weaver [102], Hall [56], and Marsden and Ratiu [77]. The excellent lecture
notes by Carter, Segal, and Macdonald [29] constitute a very efficient (although somewhat
terse) introduction to Lie algebras and Lie groups. Classics such as Weyl [118] and Chevalley
[31] are definitely worth consulting, although the presentation and the terminology may seem
a bit old fashioned. For more advanced texts, one may consult Abraham and Marsden [1],
Warner [114], Sternberg [110], Brocker and tom Dieck [24], and Knapp [68]. For those who
read French, Mneimné and Testard [86] is very clear and quite thorough, and uses very little
differential geometry, although it is more advanced than Curtis. Chapter 1, by Bryant, in
Freed and Uhlenbeck [25] is also worth reading, but the pace is fast.
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3.4 Problems
Problem 3.1. Recall that
S? = {(x,y,z) ER |2+ + 22 = 1}.

Let N = (0,0,1) and S = (0,0, —1). Define two maps ¢;: R* — S? — {N} and py: R? —
S% — {S} as follows:

( )'_> 2u 2v w4+ —1
clu,v
prs i WA+ w2+ 02+ 1 w202+ 1

(w,0) 2u 2u 1—u? =02
- (u, v )
¥z ’ w42 4+1" w402 4+1 u240v2+1

(i) Prove that both of these maps are smooth homeomorphisms.

(ii) Prove that ¢; and ¢y are immersions for each point in their respective domains.
Problem 3.2. Show that the torus 72 = S; x S is an embedded manifold in R?.
Problem 3.3. Prove Lemma 3.1.

Problem 3.4. (a) Consider the map f: GL(n,R) — R, given by
f(A) = det(A).

Prove that df(I)(B) = tr(B), the trace of B, for any matrix B (here, I is the identity

matrix). Then, prove that
df (A)(B) = det(A)tr(A™'B),

where A € GL(n,R).

(b) Use the map A +— det(A) — 1 to prove that SL(n,R) is a manifold of dimension
n? — 1.

(c) Let J be the (n+ 1) x (n + 1) diagonal matrix

I, 0
=50
We denote by SO(n, 1) the group of real (n + 1) x (n + 1) matrices

SO(n,1) ={AcGL(n+1,R) | ATJA=J and det(A)=1}.

Check that SO(n, 1) is indeed a group with the inverse of A given by A~! = JATJ (this is
the special Lorentz group.) Consider the function f: GL*(n + 1) — S(n + 1), given by

FA) =ATJA—J,
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where S(n + 1) denotes the space of (n + 1) x (n + 1) symmetric matrices. Prove that
df(A)(H)=ATJH+ H"JA

for any matrix, H. Prove that df(A) is surjective for all A € SO(n,1) and that SO(n,1) is

a manifold of dimension @

Problem 3.5. Prove Proposition 3.7.
Problem 3.6. Recall that a matrix B € M,,(R) is skew-symmetric if
B" =-B.

Check that the set so(n) of skew-symmetric matrices is a vector space of dimension n(n—1)/2,
and thus is isomorphic to R™*"~1)/2,

cos —sinf
R_<sin9 cosQ)’

where 0 < 6 < m, prove that there is a skew symmetric matrix B such that

(a) Given a rotation matrix

R=(I-B)I+B)™"

(b) Prove that the eigenvalues of a skew-symmetric matrix are either 0 or pure imaginary
(that is, of the form iu for u € R.).

Let C: so(n) — M,(R) be the function given by
C(B)=(I-B)I+B)"

Prove that if B is skew-symmetric, then [ — B and [ + B are invertible, and so C' is well-
defined. Prove that
(I+B)(I—-B)=(—-B)({+B),

and that
(I+B)(I—-B)'=(U-B)"YI+B).
Prove that
(Ce(B))'cB)=1
and that

det C(B) = +1,

so that C(B) is a rotation matrix. Furthermore, show that C(B) does not admit —1 as an
eigenvalue.
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(c) Let SO(n) be the group of n x n rotation matrices. Prove that the map
C: s0(n) — SO(n)

is bijective onto the subset of rotation matrices that do not admit —1 as an eigenvalue. Show
that the inverse of this map is given by

B=(I+R)"I-R)=(I-R(I+R)",
where R € SO(n) does not admit —1 as an eigenvalue. Check that C' is a homeomorphism

between so(n) and C(so(n)).
(d) Use Problem 11.9 to prove that

dC(B)(A) = —[I+ (I = B)(I + B)JA(I + B)™' = —2(I + B) "A(T + B)™".

Prove that dC(B) is injective, for every skew-symmetric matrix B. Prove that C' a
parametrization of SO(n).

Problem 3.7. Recall from Problem 3.6, the Cayley parametrization of rotation matrices in
SO(n) given by
C(B)=(I-B)I+B)",

where B is any n X n skew symmetric matrix.

(a) Now, consider n = 3, i.e., SO(3). Let Ei, Ey and E5 be the rotations about the
r-axis, y-axis, and z-axis, respectively, by the angle 7, i.e.,

1 0 O -1 0 O -1 0 0
Ey=10 -1 0], E=(0 1 0], Es=[0 —-10
0o 0 -1 0 0 —1 0 0 1
Prove that the four maps
B — (C(B)
B — EC(B)
B — EC(B)
B — E3C(B)

where B is skew symmetric, are parametrizations of SO(3) and that the union of the images
of C, E\C, E>C and E5C covers SO(3), so that SO(3) is a manifold.

(b) Let A be any matrix (not necessarily invertible). Prove that there is some diagonal
matrix, F/, with entries +1 or —1, so that EA + I is invertible.

(c) Prove that every rotation matrix, A € SO(n), is of the form

A=E(I-B)(I+B)™,
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for some skew symmetric matrix, B, and some diagonal matrix, E, with entries +1 and
—1, and where the number of —1 is even. Moreover, prove that every orthogonal matrix
A € O(n) is of the form

A=E(I—-B)(I+B)",

for some skew symmetric matrix, B, and some diagonal matrix, F, with entries +1 and
—1. The above provide parametrizations for SO(n) (resp. O(n)) that show that SO(n) and
O(n) are manifolds. However, observe that the number of these charts grows exponentially
with n.

Problem 3.8. Consider the parametric surface given by

Suv
) = e
4o(u? + v — 1)
4 2 .2
z(u,v) = (u” — ')

(U2 +'U2 + 1)2

The trace of this surface is called a crosscap. In order to plot this surface, make the change
of variables

u = pcosb

v = psiné.
Prove that we obtain the parametric definition

4 2
r= P sin 20,
(p* +1)?
_ 4p(p* —1)
(p* +1)
4 2
z= o cos 26.
17

Show that the entire trace of the surface is obtained for p € [0,1] and 6 € [, 7.

sin 6,

Hint. What happens if you change p to 1/p?

Plot the trace of the surface using the above parametrization. Show that there is a line
of self-intersection along the portion of the z-axis corresponding to 0 < z < 1. What can
you say about the point corresponding to p =1 and 6 = 07

Plot the portion of the surface for p € [0,1] and 6 € [0, 7].
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(b) Express the trigonometric functions in terms of u = tan(6/2), and letting v = p, show
that we get

16w (1 —u?)

- (u® 4 1)2(v2 + 1)2’
~ Suv(u? +1)(v* — 1)
(w4 1)2(v2 4 1)2
AP (ut —6u® + 1)

B (u? 4 1)2(v2 + 1)2'

Problem 3.9. Consider the parametric surface given by

dv(uP +0* —1)

x(u7 >_ (u2+v2+1>2 )
4u(u? +v? — 1)
v ) = Ta e
4 2 _ .2
z(u,v) = (w” —v7)

(U2 + V2 + 1)2

The trace of this surface is called the Steiner Roman surface. In order to plot this surface,
make the change of variables

u = pcosf

v = psiné.

Prove that we obtain the parametric definition

Show that the entire trace of the surface is obtained for p € [0,1] and § € [—m, 7]. Plot
the trace of the surface using the above parametrization.

Plot the portion of the surface for p € [0,1] and 6 € [0, 7].
Prove that this surface has five singular points.

(b) Express the trigonometric functions in terms of u = tan(6/2), and letting v = p, show
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that we get

~ Buv(u? +1)(v* —1)

B (u? + 1)2(v2 + 1)2 )

_ 4o(1 —ut)(v? —1)
(u?2+1)%(v2 4+ 1)%’

AP (ut —6u® + 1)

o (u? + 1)2(v2 + 1)2'

Problem 3.10. Consider the map H: R® — R* defined such that

(CC,y,Z) = (l’y,yZ,Q?Z,JJQ - y2)

Prove that when it is restricted to the sphere S? (in R3), we have H(z,y, 2) = H(z', v/, 2’) iff
(', y,2") = (x,y,2) or (2,9, 2") = (—x,—y,—2). In other words, the inverse image of every
point in H(S?) consists of two antipodal points.

(a) Prove that the map H induces an injective map from the projective plane onto H.(S?),
and that it is a homeomorphism.

(b) The map H allows us to realize concretely the projective plane in R* as an embedded
manifold. Consider the three maps from R? to R* given by

br(uw) = ( uv v u u? —v? )’

wHol+1uw+ 24+ 1u 024+ 1 w2402+ 1
o, 0) u v uv u? —1
UU - b b b b)
2 wWHl4+ 1w +02+ 1w +02+ 1 w2 +0?2+1
u uv v 1 — u?
U3(u,v) = ( )

W+l +1 w24+ 1w+ 024+ 1 w2402+ 1

Observe that 1/, is the composition H o oy, where aq: R?> — S? is given by

1
<u,v>H( - )
V2 +02+1 Ve +024+1 Vu2+02+1

that 1)y is the composition H o ay, where ay: R?2 — S? is given by

( )»—>( U 1 v )
u7/l} ) ) M
V2 +02+1 Ve +024+1 Vu2+02+1

and 13 is the composition H o a3, where as: R? — S? is given by

1
(o T T )
Vu4+ 02+ 1 V2 + 02 +1 Vu? + 02+ 1

Prove that each v; is injective, continuous and nonsingular (i.e., the Jacobian has rank 2).
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(c) Prove that if ¢ (u,v) = (x,y, 2,t), then

(
2, 2 _1 2 21 2, 2
y 4z Sé_l and y—i-,z:zL it v+ =1

Prove that if ¢ (u,v) = (z,y, 2,t), then u and v satisfy the equations

(v + 22 u — zu+ 2 =0
(y° 4+ 22)v* —yv + 9> = 0.

Prove that if y? + 22 # 0, then

1—+/1—4(y? 2
2( (?/ +Z)) if u2—|—1)2§1,

2(y% + 22)

u =

else

"y 2(1+ /1 —4(y? + 22)) o,
2(y> + 27)
and there are similar formulae for v. Prove that the expression giving u in terms of y and z
is continuous everywhere in {(y, z) | y* + 2*> < 1} and similarly for the expression giving v
in terms of y and 2. Conclude that 1;: R?* — 9;(R?) is a homeomorphism onto its image.
Therefore, U; = ¢ (R?) is an open subset of H(S5?).

Prove that if ¢ (u,v) = (x,y, 2, t), then

1
and :L‘2—|—y2:Z iff w?+0%=1.

|

z?+y* <

Prove that if ¢9(u,v) = (z,y, 2,t), then u and v satisfy the equations
(2 +y*)u? —zu+2° =0
(2% 4+ y*)v? —yv + > = 0.

Conclude that ty: R? — 15(R?) is a homeomorphism onto its image and that the set
U, = 15(R?) is an open subset of H(S?).
Prove that if ¢3(u,v) = (x,y, 2,t), then

1

1
xQ—i—zzSZ—l and xQ—i—zz:Z iff w?4+0%=1.

Prove that if ¢3(u,v) = (z,y, 2,t), then u and v satisfy the equations

(2* + 2 —aru+ 22 =0

(2% 4+ 2%)v? — zv + 22 = 0.
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Conclude that t3: R? — 13(R?) is a homeomorphism onto its image and that the set
Us = 13(R?) is an open subset of H(S?).

Prove that the union of the U;’s covers H(S?). Conclude that 1y, 1y, 13 are parametriza-
tions of RP? as a smooth manifold in R%.

(d) Plot the surfaces obtained by dropping the fourth coordinate and the third coordi-
nates, respectively (with u,v € [—1,1]).

(e) Prove that if (z,y, 2,t) € H(S?), then
2y + 27+ Y7 = wyz
v(22 —y*) = yat.
Prove that the zero locus of these equations strictly contains H(S?). This is a “famous
mistake” of Hilbert and Cohn-Vossen in Geometry and the Immagination!

Finding a set of equations defining exactly H(S?) appears to be an open problem.

Problem 3.11. Pick any irrational multiple A of 27, and define

te 0
G:{gt:<€0 ektz)‘tER}

(1) Check that G is a subgroup of GL(2, C).

(2) Prove that the map ¢: ¢t — g, is a continuous isomorphism of (R, +) onto G, but that

¢~ ! is not continuous.

Check that g (as defined in Proposition 3.9) is the one dimensional vector space spanned

by
1 0
W= (0 /\i) !
and that eV = ¢, for all t € R.

(3) For every r > 0 (r € R), prove that

exp({tW [t € (=r,7)}) ={g [t € (=r,7)}
is not a neighborhood of I in G.

The problem is that there are elements of G of the form ¢, for some large n that are
arbitrarily close to I, so they are exponential images of very short vectors in My(C), but
they are exponential images only of very long vectors in g.

(4) Prove that the closure of the group G is the group

ti
a:{(e g)‘useR},
0 e

and that G is dense in G.
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Chapter 4

Groups and Group Actions

This chapter provides the foundations for deriving a class of manifolds known as homogeneous
spaces. It begins with a short review of group theory, introduces the concept of a group acting
on a set, and defines the Grassmanians and Stiefel manifolds as homogenous manifolds arising
from group actions of Lie groups. The last section provides an overview of topological groups,
of which Lie groups are a special example, and contains more advanced material that may
be skipped upon first reading.

4.1 Basic Concepts of Groups

We begin with a brief review of the group theory necessary for understanding the concept of
a group acting on a set. Readers familiar with this material may proceed to the next section.

Definition 4.1. A group is a set G equipped with a binary operation -: G x G — G that
associates an element a - b € GG to every pair of elements a,b € G, and having the following
properties: - is associative, has an identity element e € GG, and every element in G is invertible
(w.r.t. -). More explicitly, this means that the following equations hold for all a,b,c € G:

(Gl) a-(b-c)=(a-b)-c. (associativity)
(G2) a-e=e-a=a. (identity)
(G3) For every a € G, there is some a™! € G such that a-a™ ' =a"!-a =e. (inverse)

A group G is abelian (or commutative) if

a-b=>b-a forall abed.

A set M together with an operation -: M x M — M and an element e satisfying only
conditions (G1) and (G2) is called a monoid. For example, the set N = {0,1,...,n,...} of
natural numbers is a (commutative) monoid under addition. However, it is not a group.

Some examples of groups are given below.
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Example 4.1.

1.

10.

The set Z = {...,—n,...,—1,0,1,...,n,...} of integers is an abelian group under
addition, with identity element 0. However, Z* = Z — {0} is not a group under
multiplication, but rather a commutative monoid.

The set Q of rational numbers (fractions p/q with p,q € Z and ¢ # 0) is an abelian
group under addition, with identity element 0. The set Q* = Q—{0} is also an abelian
group under multiplication, with identity element 1.

Similarly, the sets R of real numbers and C of complex numbers are abelian groups
under addition (with identity element 0), and R* = R — {0} and C* = C — {0} are
abelian groups under multiplication (with identity element 1).

The sets R™ and C" of n-tuples of real or complex numbers are groups under compo-
nentwise addition:

(xla"')xn) + (yla"‘7yn) = (Il +y17""xn+yn)7
with identity element (0,...,0). All these groups are abelian.

Given any nonempty set S, the set of bijections f: S — S, also called permutations
of S, is a group under function composition (i.e., the multiplication of f and g is the
composition g o f), with identity element the identity function idg. This group is not
abelian as soon as S has more than two elements.

The set of n x n matrices with real (or complex) coefficients is an abelian group under
addition of matrices, with identity element the null matrix. It is denoted by M, (R)
(or M,,(C)).

The set R[X] of all polynomials in one variable with real coefficients is an abelian group
under addition of polynomials.

The set of n x n invertible matrices with real (or complex) coefficients is a group under
matrix multiplication, with identity element the identity matrix [,,. This group is
called the general linear group and is usually denoted by GL(n,R) (or GL(n,C)).

The set of n x n invertible matrices with real (or complex) coefficients and determinant
+1 is a group under matrix multiplication, with identity element the identity matrix
I,,. This group is called the special linear group and is usually denoted by SL(n,R)
(or SL(n,C)).

The set of n x n invertible matrices with real coefficients such that RRT = I, and
of determinant +1 is a group called the orthogonal group and is usually denoted by
SO(n) (where R' is the transpose of the matrix R, i.e., the rows of R' are the columns
of R). It corresponds to the rotations in R™.
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11. Given an open interval (a,b), the set C((a,b)) of continuous functions f: (a,b) — R is
an abelian group under the operation f + ¢ defined such that

(f +9)(x) = f(z) + g(z)

for all = € (a,b).

It is customary to denote the operation of an abelian group G by +, in which case the
inverse a~! of an element a € G is denoted by —a.

The identity element of a group is unique. In fact, we can prove a more general fact:

Fact 1. If a binary operation -: M x M — M is associative and if ¢/ € M is a left identity
and e” € M is a right identity, which means that

¢-a=a forall aeM (G21)

and
a-€" =a forall a€ M, (G2r)

then e = ¢€".

Proof. If we let a = €’ in equation (G21), we get

and thus

as claimed. O

Fact 1 implies that the identity element of a monoid is unique, and since every group is
a monoid, the identity element of a group is unique. Furthermore, every element in a group
has a unique inverse. This is a consequence of a slightly more general fact:

Fact 2. In a monoid M with identity element e, if some element a € M has some left inverse
a’ € M and some right inverse a” € M, which means that

ad-a=e (G31)

and
a-d’ =e, (G3r)

then a’ = a”.
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Proof. Using (G3l) and the fact that e is an identity element, we have

(a/.a)_a/ﬂ:e_a/ﬂ:all.

Similarly, Using (G3r) and the fact that e is an identity element, we have

a-(a-d")y=d -e=d.

However, since M is monoid, the operation - is associative, so

a/:a,‘(a'a”):(a/‘a,)'a”:a,”,

as claimed. n
Remark: Axioms (G2) and (G3) can be weakened a bit by requiring only (G2r) (the exis-
tence of a right identity) and (G3r) (the existence of a right inverse for every element) (or

(G21) and (G3l)). It is a good exercise to prove that the group axioms (G2) and (G3) follow
from (G2r) and (G3r).

Given a group G, for any two subsets R, S C G, we let
RS={r-s|reR,seS}.
In particular, for any g € G, if R = {g}, we write
95 =1{g-5|s €8}
and similarly, if S = {g}, we write

Rg={r-g|re R}

From now on, we will drop the multiplication sign and write g;g-» for g; - go.
Definition 4.2. Given a group G, a subset H of G is a subgroup of G iff
(1) The identity element e of G also belongs to H (e € H);
(2) For all hy, hy € H, we have hihy € H;

(3) For all h € H, we have h™' € H.

It is easily checked that a subset H C G is a subgroup of G iff H is nonempty and
whenever hi, hy € H, then hih,' € H.
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Definition 4.3. If H is a subgroup of G and g € G is any element, the sets of the form gH
are called left cosets of H in G and the sets of the form Hg are called right cosets of H in
G.

The left cosets (resp. right cosets) of H induce an equivalence relation ~ defined as
follows: For all g1, g2 € G,
gr~g2 Mt giH=gH
(resp. g1 ~ g2 iff Hgy = Hgs).

Obviously, ~ is an equivalence relation. It is easy to see that g1 H = g H iff g;'g1 € H,
so the equivalence class of an element g € G is the coset gH (resp. Hg). The set of left
cosets of H in G (which, in general, is not a group) is denoted G/H. The “points” of G/H
are obtained by “collapsing” all the elements in a coset into a single element. This is the

same intuition used for constructing the quotient space topology. The set of right cosets is
denoted by H\G.

It is tempting to define a multiplication operation on left cosets (or right cosets) by
setting

(1 H)(92H) = (9192) H,

but this operation is not well defined in general, unless the subgroup H possesses a special
property. This property is typical of the kernels of group homomorphisms, so we are led to

Definition 4.4. Given any two groups G and G’, a function ¢: G — G’ is a homomorphism
iff

©(9192) = ¢(91)p(g2), forall g1, g0 € G.

Taking g1 = g2 = e (in G), we see that

and taking ¢ = ¢ and ¢g» = g~ !, we see that

-1

w(g™") = »lg)

If p: G - G"and ¥: G' — G" are group homomorphisms, then o p: G — G” is also a
homomorphism. If ¢: G — G’ is a homomorphism of groups, and H C G, H' C G’ are two
subgroups, then it is easily checked that

Im H=p(H)={p(g) |ge H}

is a subgroup of G’ called the image of H by ¢, and

e '(H)={geG|yplg) € H}
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is a subgroup of G. In particular, when H' = {¢'}, we obtain the kernel Ker ¢ of ¢. Thus,

Ker o ={g € G|p(g) =€}

It is immediately verified that ¢: G — G’ is injective iff Ker ¢ = {e}. (We also write
Ker ¢ = (0).) We say that ¢ is an isomorphism if there is a homomorphism ¢: G’ — G, so
that

'LbOQOZidG and @Ol/}:idgl.

In this case, v is unique and it is denoted ¢~!. When ¢ is an isomorphism, we say the the
groups G and G’ are isomorphic and we write G = G’ (or G =~ G'). When G' = G, a group
isomorphism is called an automorphism.

We claim that H = Ker ¢ satisfies the following property:
gH = Hg, forall g€ . (%)
Note that () is equivalent to
gHg ' =H, forallgeQg,
and the above is equivalent to
gHg ' C H, forall ge€Qq. ()
This is because gHg ' C H implies H C g-'Hg, and this for all ¢ € G. But
plghg™) = w(g)e(h)e(g™") = lg)e'p(9) ™" = w(g)p(g) ™" = ¢,
forallh € H = Ker p and all g € G. Thus, by definition of H = Ker ¢, we have gHg~! C H.
Definition 4.5. For any group G, a subgroup N of G is a normal subgroup of G iff
gNg™' =N, forall g€G.

This is denoted by N <1 G.

If N is a normal subgroup of G, the equivalence relation induced by left cosets is the
same as the equivalence induced by right cosets. Furthermore, this equivalence relation ~ is
a congruence, which means that: For all g1, g2, g7, g5 € G,

(1) I 1N = g/ N and goN = gy N, then g1goN = gjg5N, and

(2) If 1N = goN, then g;'N = g; ' N.
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As a consequence, we can define a group structure on the set G/ ~ of equivalence classes
modulo ~, by setting

(91N)(92N) = (g192)N.
This group is denoted G/N. The equivalence class g/N of an element g € G is also denoted
g. The map 7: G — G/N, given by
m(g) =g =gN
is clearly a group homomorphism called the canonical projection.

Given a homomorphism of groups ¢: G — G’, we easily check that the groups G /Ker ¢
and Im ¢ = p(G) are isomorphic.

4.2 Group Actions: Part I, Definition and Examples

If X is a set (usually some kind of geometric space, for example, the sphere in R3, the upper
half-plane, etc.), the “symmetries” of X are often captured by the action of a group G on
X. In fact, if G is a Lie group and the action satisfies some simple properties, the set X
can be given a manifold structure which makes it a projection (quotient) of G, a so-called
“homogeneous space.”

Definition 4.6. Given a set X and a group G, a left action of G on X (for short, an action
of G on X) is a function ¢: G x X — X such that:

(1) For all g,h € G and all x € X,
(g, p(h,x)) = ¢(gh, ),
(2) For all x € X,

e(l,z) =,
where 1 € G is the identity element of G.

To alleviate the notation, we usually write g - = or even gz for ¢(g,x), in which case the
above axioms read:

(1) For all g,h € G and all x € X,

(2) Forall z € X,

The set X is called a (left) G-set. The action ¢ is faithful or effective iff for every g, if
g-x =z for all x € X, then ¢ = 1. Faithful means that if the action of some element g
behaves like the identity, then g must be the identity element. The action ¢ is transitive ift
for any two elements x,y € X, there is some g € G so that g -z = y.
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Given an action ¢: G x X — X, for every g € G, we have a function ¢ ,: X — X defined
by
pg(r) =g-x, forallzeX.

Observe that ¢4 has ¢ -1 as inverse, since
py1(pg(@) = @g1(g-2) =97 - (g-2)=(97'g) =1 2=u1,
and similarly, ¢, o g1 = id. Therefore, ¢, is a bijection of X; that is, ¢, is a permutation
of X. Moreover, we check immediately that
Pg © Ph = Pgh,

so the map g — ¢, is a group homomorphism from G to Gy, the group of permutations of
X. With a slight abuse of notation, this group homomorphism G — Gy is also denoted .

Conversely, it is easy to see that any group homomorphism ¢: G — Gx yields a group
action -: G x X — X, by setting
gz =p(g)(x)

Observe that an action ¢ is faithful iff the group homomorphism ¢: G — S is injective,
i.e. iff ¢ has a trivial kernel. Also, we have g-z =y iff g7' -y = z, since (gh) -z =g (h- )
and 1.z =ux, for all g,h € G and all x € X.

Definition 4.7. Given two G-sets X and Y, a function f: X — Y is said to be equivariant,
or a G-map, iff for all z € X and all g € GG, we have

flg-z) =g f(x)
Equivalently, if the G-actions are denoted by ¢: G x X — X and ¢: G x Y — Y, we have
the following commutative diagram for all g € G-

™

.Y
Remark: We can also define a right action -: X x G — X of a group G on a set X as a
map satisfying the conditions

(1) For all g,h € G and all z € X,

Pg
_—

(2) Forall z € X,

Every notion defined for left actions is also defined for right actions in the obvious way.
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@ However, one change is necessary. For every g € G, the map ¢,: X — X must be
defined as

polx) =2 g7,
in order for the map g — ¢, from G to &x to be a homomorphism (¢, 0 ¢, = @gn).

Py
Conversely, given a homomorphism ¢: G = Gx, we get a right action -: X x G X by
setting

z-g=9(g7")(x).
Here are some examples of (left) group actions.

Example 4.2. The unit sphere S? (more generally, S"~1).
Recall that for any n > 1, the (real) unit sphere S"~! is the set of points in R™ given by

Sl =L(zy, . x) ERM |2 -+ 22 =1},

In particular, S? is the usual sphere in R3. Since the group SO(3) = SO(3,R) consists of
(orientation preserving) linear isometries, i.e., linear maps that are distance preserving (and
of determinant +1), and every linear map leaves the origin fixed, we see that any rotation
maps S? into itself.

@ Beware that this would be false if we considered the group of affine isometries SE(3) of
E3. For example, a screw motion does not map S? into itself, even though it is distance
preserving, because the origin is translated.

Thus, for X = S? and G = SO(3), we have an action -: SO(3) x 5% — S?, given by the
matrix multiplication

R-x = Rx.

The verification that the above is indeed an action is trivial. This action is transitive.
This is because, for any two points x,y on the sphere S?, there is a rotation whose axis is
perpendicular to the plane containing x,y and the center O of the sphere (this plane is not
unique when x and y are antipodal, i.e., on a diameter) mapping x to y. See Figure 4.1.

Similarly, for any n > 1, let X = S"! and G = SO(n) and define the action -: SO(n) x
Sl §n=lag R- o = Rax. It is easy to show that this action is transitive.
Analogously, we can define the (complex) unit sphere X", as the set of points in C"
given by
Y= {21, ,20) €EC" | 2921+ 2,2, = 1}

If we write z; = x; + iy;, with x;,y; € R, then
Enil:{(I‘l,...,l‘n,yl,...,yn) €R2n|$%++xi+y%++y2:1}

Therefore, we can view the complex sphere "' (in C") as the real sphere S**~! (in R?").
By analogy with the real case, we can define for X = X" ! and G = SU(n) an action
- SU(n) x X1 — 71 of the group SU(n) of linear maps of C" preserving the Hermitian
inner product (and the origin, as all linear maps do), and this action is transitive.
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e

Figure 4.1: The rotation which maps x to y.

@ One should not confuse the unit sphere X"~! with the hypersurface S, given by
Set={(z1,..,20) EC" | 27 + - + 22 = 1}.

For instance, one should check that a line L through the origin intersects ¥"~! in a circle,
whereas it intersects Sg_l in exactly two points! Recall for a fixed u = (z1,...2n,y1,...Yn) €
C", that L = {yu | v € C}. Since 7 = p(cosf + isinf), we deduce that L is actu-
ally the two dimensional subspace through the origin spanned by the orthogonal vectors

(*rlu e Ty Y1y - yn) and (_yla T Yn, Ty - xn)

Example 4.3. The upper half-plane.

The upper half-plane H is the open subset of R? consisting of all points (z,y) € R?, with
y > 0. It is convenient to identify H with the set of complex numbers z € C such that &z > 0.
Then we can let X = H and G = SL(2,R) and define an action -: SL(2,R) x H — H of
the group SL(2,R) on H, as follows: For any z € H, for any A € SL(2,R),

az+b

cz+d’

a b
a=(03)
with ad — be = 1.

It is easily verified that A - z is indeed always well defined and in H when z € H (check
this). To see why this action is transitive, let z and w be two arbitrary points of H where
z=x+iy and w = v+ iv with z,u € R and y,v € R* (i.e. y and v are positive real

where

v UY—VT

numbers). Define A = ( y \/\/?T; ) Note that A € SL(2,R). A routine calculation shows
0 7

that A -z = w.
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Before introducing Example 4.4, we need to define the groups of Mébius transformations
and the Riemann sphere. Maps of the form

az+b
= )
cz+d

where z € C and ad — bc = 1, are called Mébius transformations. Here, a,b,c,d € R, but in
general, we allow a,b,c,d € C. Actually, these transformations are not necessarily defined
everywhere on C, for example, for z = —d/c if ¢ # 0. To fix this problem, we add a “point
at infinity” oo to C, and define Mdbius transformations as functions CU {oo} — CU {o0}.
If ¢ = 0, the Mobius transformation sends oo to itself, otherwise, —d/c — oo and oo +— a/c.

The space CU{oco} can be viewed as the plane R? extended with a point at infinity. Using
a stereographic projection from the sphere S? to the plane (say from the north pole to the
equatorial plane), we see that there is a bijection between the sphere S? and CU{cc}. More
precisely, the stereographic projection oy of the sphere S? from the north pole N = (0,0, 1)
to the plane z = 0 (extended with the point at infinity co) is given by

(:U,y,z)ESQ—{(O,O,l)}H( al— )—“’yec, with (0,0,1) — co.

1—2"1—2 1—2z
The inverse stereographic projection o' is given by

21 2y 4+ y? -1
224y 41 a2+ 2+ 224y 41

(z,y) — ( ) ,  with oo+ (0,0,1).

Intuitively, the inverse stereographic projection “wraps” the equatorial plane around the
sphere. See Figure 3.3.

The space C U {oo} is known as the Riemann sphere. ~ We will see shortly that C U
{oo} = 52 is also the complex projective line CP'. In summary, Mobius transformations
are bijections of the Riemann sphere. It is easy to check that these transformations form a
group under composition for all a,b,c,d € C, with ad — bc = 1. This is the Médbius group,
denoted Méb™. The Mobius transformations corresponding to the case a, b, c,d € R, with
ad — be = 1 form a subgroup of Méb™ denoted Moby, .

The map from SL(2,C) to Méb™ that sends A € SL(2,C) to the corresponding Mébius
transformation is a surjective group homomorphism, and one checks easily that its kernel
is {—1,1} (where I is the 2 x 2 identity matrix). Therefore, the Mobius group Mob™ is
isomorphic to the quotient group SL(2,C)/{—1,1}, denoted PSL(2,C). This latter group
turns out to be the group of projective transformations of the projective space CP'. The
same reasoning shows that the subgroup Méby; is isomorphic to SL(2,R)/{—1, I}, denoted
PSL(2,R).

Example 4.4. The Riemann sphere C U {oo}.
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Let X = CU {oo} and G = SL(2,C). The group SL(2,C) acts on C U {oo} = S? the
same way that SL(2,R) acts on H, namely: For any A € SL(2,C), for any z € CU {o0},

az+b

cz+d
where
A= (a b) with ad — bec = 1.
c d
This action is transitive, an exercise we leave for the reader.

Example 4.5. The unit disk.

One may recall from complex analysis that the scaled (complex) Mobius transformation

zZ—1
Z+1

Z =

is a biholomorphic or analytic isomorphism between the upper half plane H and the open
unit disk
D={zeC||z| <1}

As a consequence, it is possible to define a transitive action of SL(2,R) on D. This can be
done in a more direct fashion, using a group isomorphic to SL(2,R), namely, SU(1,1) (a
group of complex matrices), but we don’t want to do this right now.

Example 4.6. The unit Riemann sphere revisited.

Another interesting action is the action of SU(2) on the extended plane CU{oo}. Recall
that the group SU(2) consists of all complex matrices of the form

_(a B 4G —
A—(_B a) a, e C, aa + BB =1,
Let X = CU {o0} and G = SU(2). The action -: SU(2) x (CU{o0}) — CU {o0} is given
by
A= 0t0
—fw + @
This action is transitive, but the proof of this fact relies on the surjectivity of the group
homomorphism

, we CU{oo}.

p: SU(2) — SO(3)

defined below, and the stereographic projection oy from S? onto C U {oo}. In particular,
take z,w € C U {oo}, use the inverse stereographic projection to obtain two points on S,
namely o' (z) and o' (w). Then apply the appropriate rotation R € SO(3) to map o' (2)
onto og,l(w). Such a rotation exists by the argument presented in Example 4.2. Since
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p: SU(2) — SO(3) is surjective (see below), we know there must exist A € SU(2) such that
p(A)=Rand A-z = w.

Using the stereographic projection oy from S? onto CU{oo} and its inverse 0;,1, we can
define an action of SU(2) on S? by

A (x,y,2) = J;]l(A con(7,y,2)), (z,y,2) €S>

Although this is not immediately obvious, it turns out that SU(2) acts on S? by maps that are
restrictions of linear maps to S2, and since these linear maps preserve S?, they are orthogonal
transformations. Thus, we obtain a continuous (in fact, smooth) group homomorphism

p: SU(2) — O(3).

Since SU(2) is connected and p is continuous, the image of SU(2) is contained in the
connected component of I in O(3), namely SO(3), so p is a homomorphism

p: SU(2) — SO(3).

We will see that this homomorphism is surjective and that its kernel is {I, —I}. The upshot
is that we have an isomorphism

SO(3) = SU(2)/{I, —I}.

The homomorphism p is a way of describing how a unit quaternion (any element of SU(2))
induces a rotation, via the stereographic projection and its inverse. If we write o = a + b
and [ = ¢+ id, a rather tedious computation yields

a?—b* -2+ d? —2ab — 2cd —2ac + 2bd
p(A) = 2ab — 2cd a? -+ —d* —2ad—2bc
2ac + 2bd 2ad — 2bc a4+ - —d?

One can check that p(A) is indeed a rotation matrix which represents the rotation whose
axis is the line determined by the vector (d, —c, b) and whose angle 6 € [—7, 7] is determined

by

cos 5 = |al.

We can also compute the derivative dp;: su(2) — s0(3) of p at I as follows. Recall that
su(2) consists of all complex matrices of the form

( b c+1id

—c+id —ib ) be,d€R,

so pick the following basis for su(2),
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and define the curves in SU(2) through I given by

et 0 cost sint cost isint
a(t) = (O e”) ()= (— sint Cost) . aslt) = <isint cost) '

It is easy to check that ¢/(0) = X; for ¢ = 1,2, 3, and that

)

0 -1 0 00 -1 00 O
dp[(Xl) =211 0 0 s dp[(Xg) =210 0 0 s dp[(Xg) =210 0 -1
0 0 O 1 0 O 01 0

Thus we have
dp](Xl) = 2E3, d,O](XQ) = —QEQ, dp[(Xg) = 2E1,

where (E1, Es, E3) is the basis of s0(3) given in Section 3.1, which means that dp; is an
isomorphism between the Lie algebras su(2) and so(3).

Recall from Proposition 3.13 that we have the commutative diagram

SU(2) —= SO(3)

exp T ] exp

su(2) 50 (3) .

Since dpy is surjective and the exponential map exp: s0(3) — SO(3) is surjective, we con-
clude that p is surjective. (We also know from Section 3.1 that exp: su(2) — SU(2) is
surjective.) Observe that p(—A) = p(A), and it is easy to check that Kerp = {I, —TI}.

Example 4.7. The set of n x n symmetric, positive, definite matrices, SPD(n).

Let X = SPD(n) and G = GL(n). The group GL(n) = GL(n,R) acts on SPD(n) as
follows: for all A € GL(n) and all S € SPD(n),

A-S=ASAT.

It is easily checked that ASAT is in SPD(n) if S is in SPD(n). First observe that ASAT is
symmetric since

(ASAT)T = ASTAT = ASAT.
Next recall the following characterization of positive definite matrix, namely
y' Sy >0, whenever y # 0.

We want to show z" (ATSA)x > 0 for all z # 0. Since A is invertible, we have z = A~y for
some nonzero y, and hence

e (ATSA)x =y " (ATHTATSAA™ Yy
=y' Sy > 0.
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Hence A" SA is positive definite. This action is transitive because every SPD matrix S can

be written as S = AAT, for some invertible matrix A (prove this as an exercise). Given any
two SPD matrices S; = AlAlT and Sy = AQA; with A; and A, invertible, if A = AzAl’l, we
have

A8y = AAT S (AL AT T = AL ATV (A])TAT
= A ATYALA] (A])TTA) = A A = S,

Example 4.8. The projective spaces RP" and CP".

The (real) projective space RP™ is the set of all lines through the origin in R™™!; that
is, the set of one-dimensional subspaces of R"*! (where n > 0). Since a one-dimensional
subspace L C R"*! is spanned by any nonzero vector u € L, we can view RP" as the set of
equivalence classes of nonzero vectors in R"* — {0} modulo the equivalence relation

u~v iff v=2>Au, forsome MeR, \F#0.

In terms of this definition, there is a projection pr: (R"*! — {0}) — RP", given by pr(u) =
[u]~, the equivalence class of u modulo ~. Write [u] for the line defined by the nonzero
vector u. Since every line L in R™™! intersects the sphere S™ in two antipodal points, we can
view RIP" as the quotient of the sphere S™ by identification of antipodal points. See Figures
4.2 and 4.3.

Let X = RP" and G = SO(n + 1). We define an action of SO(n + 1) on RP" as follows:
For any line L = [u], for any R € SO(n + 1),
R - L = [Ru.
Since R is linear, the line [Ru] is well defined; that is, does not depend on the choice of
u € L. The reader can show that this action is transitive.

The (complez) projective space CP" is defined analogously as the set of all lines through
the origin in C"*1; that is, the set of one-dimensional subspaces of C"*! (where n > 0). This
time, we can view CP" as the set of equivalence classes of vectors in C"*' — {0} modulo the
equivalence relation

u~v iff v=2Au, forsome X\ #0¢&C.

We have the projection pr: C"*! — {0} — CP", given by pr(u) = [u]., the equivalence
class of w modulo ~. Again, write [u] for the line defined by the nonzero vector u. Let
X = CP" and G = SU(n + 1). We define an action of SU(n + 1) on CP" as follows: For

any line L = [u], for any R € SU(n + 1),
R-L=[Ru.

Again, this action is well defined and it is transitive. (Check this.)
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Figure 4.2: Three constructions for RP' = S'. Illustration (i.) applies the equivalence
relation. Since any line through the origin, excluding the z-axis, intersects the line y = 1,
its equivalence class is represented by its point of intersection on y = 1. Hence, RP" is the
disjoint union of the line y = 1 and the point of infinity given by the z-axis. Illustration
(ii.) represents RP' as the quotient of the circle S* by identification of antipodal points.
[lustration (iii.) is a variation which glues the equatorial points of the upper semicircle.

Before progressing to our final example of group actions, we take a moment to construct
CP" as a quotient space of S?"*!. Recall that ¥* C C"*!, the unit sphere in C"*!, is defined
by

5" ={(21,- -, Zn1) €C | 21iZ1 + -+ Zpg1Zngr = 1)

For any line L = [u], where u € C"™! is a nonzero vector, writing « = (u1, ..., U,.1), a point
z € C"™ belongs to L iff z = A(uy, ..., u,s1), for some A € C. Therefore, the intersection
LN X" of the line L and the sphere " is given by

LN Y= {/\(ul, e ,Un+1) € Cn—H | A c C, )\X(ulﬂl + -+ Un—&—lan—i-l) = 1},

ie.,

1
Lo {A<u1,...,un+1> CCT PG N = e P}'
1 PR TL+1
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(ii.)

Figure 4.3: Three constructions for RP?. Illustration (i.) applies the equivalence relation.
Since any line through the origin which is not contained in the zy-plane intersects the plane
z = 1, its equivalence class is represented by its point of intersection on z = 1. Hence,
RP? is the disjoint union of the plane z = 1 and the copy of RP' provided by the zy-plane.
[lustration (ii.) represents RP? as the quotient of the sphere S? by identification of antipodal
points. [lustration (iii.) is a variation which glues the antipodal points on boundary of the
unit disk, which is represented as as the upper hemisphere.

Thus, we see that there is a bijection between LNY" and the circle S*; that is, geometrically
L NX™is a circle. Moreover, since any line L through the origin is determined by just one
other point, we see that for any two lines L; and L, through the origin,

Li# Ly iff (Lin¥")N(LynX™) =0.

However, X" is the sphere S?"*! in R?"*2 Tt follows that CP" is the quotient of S?"*! by
the equivalence relation ~ defined such that

y~z ift y,ze LNX" for some line, L, through the origin.

Therefore, we can write

SQn—i—l/sl ~ (C]P)n

The case n = 1 is particularly interesting, as it turns out that

S3/8% = 82,
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This is the famous Hopf fibration. To show this, proceed as follows: As
S =Y ={(z,2) € C*| |2|* + || = 1},
define a map, HF: S® — S2, by
HF((2, 2))) = (2:7, |22 — |2).
We leave as a homework exercise to prove that this map has range S? and that
HF((z1, 21)) = HF((22,25)) iff (21, 21) = A(22,25), for some A with [\ = 1.

In other words, for any point, p € 52, the inverse image HF ! (p) (also called fibre over p) is a
circle on S3. Consequently, S® can be viewed as the union of a family of disjoint circles. This
is the Hopf fibration. It is possible to visualize the Hopf fibration using the stereographic
projection from S® onto R®. This is a beautiful and puzzling picture. For example, see
Berger [13]. Therefore, HF induces a bijection from CP' to 52, and it is a homeomorphism.

Example 4.9. Affine spaces.

Let X be a set and F a real vector space. A transitive and faithful action -: Ex X — X
of the additive group of £ on X makes X into an affine space. The intuition is that the
members of F are translations.

Those familiar with affine spaces as in Gallier [48] (Chapter 2) or Berger [13] will point
out that if X is an affine space, then not only is the action of £ on X transitive, but more
is true: For any two points a,b € E, there is a unique vector v € E, such that uv-a = b.
By the way, the action of E on X is usually considered to be a right action and is written
additively, so u - a is written a + u (the result of translating a by ). Thus, it would seem
that we have to require more of our action. However, this is not necessary because E (under
addition) is abelian. More precisely, we have the proposition

Proposition 4.1. If G is an abelian group acting on a set X and the action -: G x X — X
18 transitive and faithful, then for any two elements x,y € X, there is a unique g € G so
that g - x =y (the action is simply transitive).

Proof. Since our action is transitive, there is at least some g € G so that ¢ -z = y. Assume
that we have g1, go € G with

g1 T =ga T =Y.

We shall prove that
g1 -z2=g¢g9-2, forall ze X.

This implies that
9192_1'222, for all z € X.

As our action is faithful, g;g,* = 1, and we must have g, = go, which proves our proposition.
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Pick any z € X. As our action is transitive, there is some h € GG so that z = h-z. Then,
we have

G-z = g1 (h-x)

= (q1h) -z
= (hq1) -z (since G is abelian)
= h-(g1-2)
= h-(92-2) (since g1 7 =gy )
= (hg2) - @
= (g2h) - x (since G is abelian)
= g2 (h-x)
= g2z
Therefore, g, - 2 = g9 - z for all z € X, as claimed. O]

4.3 Group Actions: Part II, Stabilizers and Homoge-
neous Spaces

Now that we have an understanding of how a group G acts on a set X, we may use this
action to form new topological spaces, namely homogeneous spaces. In the construction of
homogeneous spaces, the subset of group elements that leaves some given element x € X
fixed plays an important role.

Definition 4.8. Given an action -: G x X — X of a group GG on a set X, for any = € X,
the group G, (also denoted Stabg(z)), called the stabilizer of x or isotropy group at x, is
given by

G.={9€G|g -z=ux}.

We have to verify that GG, is indeed a subgroup of GG, but this is easy. Indeed, if -z = x
and h - x = x, then we also have h™! - 2 = z and so, we get gh~! - x = x, proving that G, is
a subgroup of G. In general, G, is not a normal subgroup.

Observe that
Goow = 9Gag™",
for all g € G and all x € X. Indeed,
Gygo = {heG|h-(g-x)=9g- z}
= {heG|hg-v=g-z}
— {heG|gthg -z =g},
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1 Tt remains to show that

1 with h-2 = x. Since

which shows ¢7'Gy..g C G,, or equivalently that G,., C gG.g~
9G.97 C G,.,. Take an element of gG,g~ ', which has the form ghg~
h-x =z, we have (ghg™') - gr = gz, which shows that ghg™ € G,.,..

Because G, = gG,g™", the stabilizers of x and g - = are conjugate of each other.

When the action of G on X is transitive, for any fixed = € GG, the set X is a quotient (as
a set, not as group) of G by G,. Indeed, we can define the map, 7,: G — X, by

m(g) =g-z, forall ged.

Observe that
This shows that 7,: G — X induces a quotient map 7,: G/G, — X, from the set G/G, of
(left) cosets of G, to X, defined by

T (9Gy) = g - .
Since
m.(g) =7, (h) iff g-x=h-x ff g'h-x=2 if g'heq, iff ¢G,=hG,,

we deduce that 7, : G/G, — X is injective. However, since our action is transitive, for every
y € X, there is some g € G so that g - x =y, and so 7,(9G,) = ¢ - * = y; that is, the map
T, is also surjective. Therefore, the map 7,: G/G, — X is a bijection (of sets, not groups).
The map m,: G — X is also surjective. Let us record this important fact as

Proposition 4.2. If -: G x X — X is a transitive action of a group G on a set X, for every
fired x € X, the surjection m,: G — X given by

T(9) =g 7

induces a bijection
T GGy — X,

where G, is the stabilizer of x. See Figure 4.4.

The map m,: G — X (corresponding to a fixed z € X) is sometimes called a projection
of G onto X. Proposition 4.2 shows that for every y € X, the subset 7, !(y) of G (called
the fibre above y) is equal to some coset gG, of G, and thus is in bijection with the group
G, itself. We can think of G as a moving family of fibres G, parametrized by X. This
point of view of viewing a space as a moving family of simpler spaces is typical in (algebraic)
geometry, and underlies the notion of (principal) fibre bundle.

Note that if the action -: G x X — X is transitive, then the stabilizers G, and G, of
any two elements x,y € X are isomorphic, as they are conjugates. Thus, in this case, it is
enough to compute one of these stabilizers for a “convenient” .

As the situation of Proposition 4.2 is of particular interest, we make the following defi-
nition:
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\__)/

>

G/

1

X

Figure 4.4: A schematic representation of G/G, = X, where G is the gray solid, X is its
purple circular base, and G, is the pink vertical strand. The dotted strands are the fibres
9G,.

Definition 4.9. A set X is said to be a homogeneous space if there is a transitive action
-1 G x X — X of some group G on X.

We see that all the spaces of Examples 4.2-4.9, are homogeneous spaces. Another example
that will play an important role when we deal with Lie groups is the situation where we have
a group G, a subgroup H of G (not necessarily normal), and where X = G/H, the set of
left cosets of G modulo H. The group G acts on G/H by left multiplication:

a-(gH) = (ag)H,

where a,g € G. This action is clearly transitive and one checks that the stabilizer of gH
is gHg™'. If G is a topological group and H is a closed subgroup of G (see later for an
explanation), it turns out that G/H is Hausdorff. If G is a Lie group, we obtain a manifold.
@ Even if G and X are topological spaces and the action -: G x X — X is continuous, in

general, the space G/G, under the quotient topology is not homeomorphic to X.

We will give later sufficient conditions that insure that X is indeed a topological space
or even a manifold. In particular, X will be a manifold when G is a Lie group.

In general, an action -: G x X — X is not transitive on X, but for every x € X, it is
transitive on the set
Ox)=G-z={g-z|geqG}.

Such a set is called the orbit of x. The orbits are the equivalence classes of the following
equivalence relation:
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Definition 4.10. Given an action -: G x X — X of some group G on X, the equivalence
relation ~ on X is defined so that, for all x,y € X,

r~y iff y=g¢g-z, forsomegeQG.
For every z € X, the equivalence class of x is the orbit of z, denoted O(z) or G - x, with
G-2=0()={g-2]geG}.
The set of orbits is denoted X/G.

We warn the reader that some authors use the notation G\ X for the the set of orbits
G -z, because these orbits can be considered as right orbits, by analogy with right cosets Hg
of a subgroup H of G.

The orbit space X/G is obtained from X by an identification (or merging) process: For
every orbit, all points in that orbit are merged into a single point. This akin to the process
of forming the identification topology. For example, if X = S? and G is the group consisting
of the restrictions of the two linear maps I and —1I of R? to S? (where (—1)(z) = —z for all
r € R?), then

X/G = S*/{I,—I} = RP>

See Figure 4.3. More generally, if S™ is the n-sphere in R"™! then we have a bijection
between the orbit space S™/{I, —I} and RP":

S™ I, —1} = RP".
Many manifolds can be obtained in this fashion, including the torus, the Klein bottle, the

Mobius band, etc.

Since the action of G is transitive on O(x), by Proposition 4.2, we see that for every
r € X, we have a bijection

O(x) = G/G,.

As a corollary, if both X and G are finite, for any set A C X of representatives from
every orbit, we have the orbit formula:

x| = 36 Gl = S 161G,

acA a€A

Even if a group action -: G x X — X is not transitive, when X is a manifold, we can
consider the set of orbits X/G, and if the action of G on X satisfies certain conditions,
X/G is actually a manifold. Manifolds arising in this fashion are often called orbifolds. In
summary, we see that manifolds arise in at least two ways from a group action:

(1) As homogeneous spaces G/G,, if the action is transitive.
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(2) As orbifolds X/G (under certain conditions on the action).

Of course, in both cases, the action must satisfy some additional properties.

For the rest of this section, we reconsider Examples 4.2—4.9 in the context of homogeneous
space by determining some stabilizers for those actions.

(a) Consider the action -: SO(n) x S"™' — S™~! of SO(n) on the sphere S"~! (n > 1)
defined in Example 4.2. Since this action is transitive, we can determine the stabilizer of
any convenient element of S"~! say e; = (1,0,...,0). In order for any R € SO(n) to leave
ey fixed, the first column of R must be e, so R is an orthogonal matrix of the form

1 U :
R= (0 S)’ with det(S) =1,

where U is a 1 x (n — 1) row vector. As the rows of R must be unit vectors, we see that
U =0and S € SO(n — 1). Therefore, the stabilizer of e; is isomorphic to SO(n — 1), and
we deduce the bijection

SO(n)/SO(n — 1) = s™ 1.
@ Strictly speaking, SO(n — 1) is not a subgroup of SO(n), and in all rigor, we should

consider the subgroup SO(n — 1) of SO(n) consisting of all matrices of the form

(é g) with  det(S) = 1,

and write

SO(n)/SO(n —1) = 5",
However, it is common practice to identify SO(n — 1) with §6(n —1).
When n = 2, as SO(1) = {1}, we find that SO(2) = S', a circle, a fact that we already
knew. When n = 3, we find that SO(3)/SO(2) = S?. This says that SO(3) is somehow the

result of glueing circles to the surface of a sphere (in R?), in such a way that these circles do
not intersect. This is hard to visualize!

A similar argument for the complex unit sphere X"~! shows that
SU(n)/SU(n — 1) =yt == g1,

Again, we identify SU(n — 1) with a subgroup of SU(n), as in the real case. In particular,
when n = 2, as SU(1) = {1}, we find that

that is, the group SU(2) is topologically the sphere S®! Actually, this is not surprising if we
remember that SU(2) is in fact the group of unit quaternions.
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(b) We saw in Example 4.3 that the action -: SL(2,R) x H — H of the group SL(2,R)
on the upper half plane is transitive. Let us find out what the stabilizer of z = 7 is. We
should have

ai+b
= Z,
ci+d
that is, ai + b = —c+ di, i.e.,
(d—a)i=b+ec.
Since a, b, ¢, d are real, we must have d = a and b = —c. Moreover, ad — bc = 1, so we get

a® +b* = 1. We conclude that a matrix in SL(2,R) fixes i iff it is of the form

(“ _b), with a®+b% = 1.
b a

Clearly, these are the rotation matrices in SO(2), and so the stabilizer of i is SO(2). We

conclude that
SL(2,R)/SO(2) = H.

This time we can view SL(2,R) as the result of glueing circles to the upper half plane.
This is not so easy to visualize. There is a better way to visualize the topology of SL(2, R)
by making it act on the open disk D. We will return to this action in a little while.

(c) Now consider the action of SL(2,C) on CU {00} = S? given in Example 4.4. As it is
transitive, let us find the stabilizer of z = 0. We must have

and as ad — bc = 1, we must have b = 0 and ad = 1. Thus the stabilizer of 0 is the subgroup
SL(2,C) of SL(2,C) consisting of all matrices of the form

cC a

<a 01), where a € C—{0} and ceC.

We get
SL(2,C)/SL(2,C)y = CU {0} = S
but this is not very illuminating.

(d) In Example 4.7 we considered the action -: GL(n) x SPD(n) — SPD(n) of GL(n)
on SPD(n), the set of symmetric positive definite matrices. As this action is transitive, let
us find the stabilizer of /. For any A € GL(n), the matrix A stabilizes I iff

ATAT = AAT =11
Therefore the stabilizer of I is O(n), and we find that

GL(n)/O(n) = SPD(n).
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Observe that if GL™(n) denotes the subgroup of GL(n) consisting of all matrices with
a strictly positive determinant, then we have an action -: GL™(n) x SPD(n) — SPD(n) of
GL"(n) on SPD(n). This action is transitive and we find that the stabilizer of I is SO(n);
consequently, we get
GL*(n)/SO(n) = SPD(n).

(e) In Example 4.8 we considered the action -: SO(n+ 1) x RP" — RP" of SO(n+1) on
the (real) projective space RP". As this action is transitive, let us find the stabilizer of the
line L = [e;], where e; = (1,0,...,0). For any R € SO(n + 1), the line L is fixed iff either
R(e1) = €1 or R(e1) = —ey, since e; and —e; define the same line. As R is orthogonal with
det(R) = 1, this means that R is of the form

R:((g g), with a==+1 and det(5) = a.

But, S must be orthogonal, so we conclude S € O(n). Therefore, the stabilizer of L = [e]
is isomorphic to the group O(n), and we find that

SO(n +1)/O(n) = RP".

@ Strictly speaking, O(n) is not a subgroup of SO(n + 1), so the above equation does not
make sense. We should write

SO(n +1)/0(n) = RP",

where O(n) is the subgroup of SO(n + 1) consisting of all matrices of the form

(g g) , with S€O(n), a==+x1 and det(S) = a.

This group is also denoted S(O(1) x O(n)). However, the common practice is to write O(n)
instead of S(O(1) x O(n)).

We should mention that RP* and SO(3) are homeomorphic spaces. This is shown using
the quaternions; for example, see Gallier [48], Chapter 8.

A similar argument applies to the action -: SU(n + 1) x CP" — CP" of SU(n + 1) on
the (complex) projective space CP". We find that

SU(n + 1)/U(n) = CP".

Again, the above is a bit sloppy as U(n) is not a subgroup of SU(n + 1). To be rigorous,
we should use the subgroup U(n) consisting of all matrices of the form

<g g) , with SeU(n), la]=1 and det(S)=a.
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This group is also denoted S(U(1) x U(n)). The common practice is to write U(n) instead
of S(U(1) x U(n)). In particular, when n = 1, we find that

SU(2)/U(1) = CP'.
But, we know that SU(2) = S3, and clearly U(1) & S'. So, again, we find that S%/S* = CP*
(we know more, namely, S3/S! = §% =~ CP'))

Observe that CP" can also be viewed as the orbit space of the action -: S!x §?"+1 — §2ntl
given by
A (Zl, e 7Zn+1) = (/\Zl, ceey /\Zn+1),

where S' = U(1) (the group of complex numbers of modulus 1) and S?"*! is identified with
PN

We now return to Case (b) to give a better picture of SL(2,R). Instead of having
SL(2,R) act on the upper half plane, we define an action of SL(2,R) on the open unit disk
D as we did in Example 4.5. Technically, it is easier to consider the group SU(1,1), which
is isomorphic to SL(2, R), and to make SU(1, 1) act on D. The group SU(1, 1) is the group
of 2 x 2 complex matrices of the form

((—l b) . with a@—bb=1.
The reader should check that if we let

b a
1 —i
=1 7)
then the map from SL(2,R) to SU(1, 1) given by
A gAg!
is an isomorphism. Observe that the scaled Mobius transformation associated with g is

Z—1
241

Z =

which is the holomorphic isomorphism mapping H to D mentionned earlier! We can define
a bijection between SU(1,1) and S* x D given by

<% g) s (a/|al, bja).

We conclude that SL(2,R) = SU(1,1) is topologically an open solid torus (i.e., with the
surface of the torus removed). It is possible to further classify the elements of SL(2,R) into
three categories and to have geometric interpretations of these as certain regions of the torus.
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For details, the reader should consult Carter, Segal and Macdonald [29] or Duistermatt and
Kolk [43] (Chapter 1, Section 1.2).

The group SU(1,1) acts on D by interpreting any matrix in SU(1,1) as a M&bius tran-

formation; that is,
(a b) ( az + b)
- _ =1z = .
b a bz +a

The reader should check that these transformations preserve D.

Both the upper half-plane and the open disk are models of Lobachevsky’s non-Euclidean
geometry (where the parallel postulate fails). They are also models of hyperbolic spaces
(Riemannian manifolds with constant negative curvature, see Gallot, Hulin and Lafontaine
[49], Chapter IIT). According to Dubrovin, Fomenko, and Novikov [41] (Chapter 2, Section
13.2), the open disk model is due to Poincaré and the upper half-plane model to Klein,
although Poincaré was the first to realize that the upper half-plane is a hyperbolic space.

4.4 The Grassmann and Stiefel Manifolds

In this section we introduce two very important homogeneous manifolds, the Grassmann
manifolds and the Stiefel manifolds. The Grassmann manifolds are generalizations of pro-
jective spaces (real and complex), while the Stiefel manifold are generalizations of O(n).
Both of these manifolds are examples of reductive homogeneous spaces; see Chapter 22. We
begin by defining the Grassmann manifolds G(k,n).

First consider the real case.

Definition 4.11. Given any n > 1, for any k£ with 0 < k < n, the set G(k,n) of all linear k-
dimensional subspaces of R™ (also called k-planes) is called a Grassmannian (or Grassmann

manifold).

Any k-dimensional subspace U of R"™ is spanned by k linearly independent vectors
Uy, ..., ur in R™; write U = span(uq, ..., u). We can define an action -: O(n) x G(k,n) —
G(k,n) as follows: For any R € O(n), for any U = span(uy, ..., ux), let

R-U = span(Ruy, ..., Rug).

We have to check that the above is well defined. If U = span(vy,...,v;) for any other k
linearly independent vectors vy, ..., v, we have

k
Ui:Zaijuj7 1§Z§]{7,
j=1

for some a;; € R, and so

k
R’UZ' = Zainuj, 1 S 7 S k’,

7j=1
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which shows that
span(Ruy, . .., Ruy) = span(Ruy, ..., Ruy);

that is, the above action is well defined.

We claim this action is transitive. This is because if U and V are any two k-planes,
we may assume that U = span(uq,...,u;) and V = span(vy,...,v;), where the u;’s form
an orthonormal family and similarly for the v;’s. Then we can extend these families to
orthonormal bases (ui,...,u,) and (v,...,v,) on R" and w.r.t. the orthonormal basis
(u1,...,u,), the matrix of the linear map sending u; to v; is orthogonal. Hence G(k,n) is a
homogeneous space.

In order to represent G(k,n) as a quotient space, Proposition 4.2 implies it is enough
to find the stabilizer of any k-plane. Pick U = span(ey,...,ex), where (ey,...,e,) is the
canonical basis of R" (i.e., ¢; = (0,...,0,1,0,...,0), with the 1 in the ith position). Any
R € O(n) stabilizes U iff R maps ey, ..., e to k linearly independent vectors in the subspace
U = span(ey, ..., eg), i.e., R is of the form

S 0
=07
where S is k X k and T is (n — k) x (n — k). Moreover, as R is orthogonal, S and 7" must

be orthogonal, that is S € O(k) and T' € O(n — k). We deduce that the stabilizer of U is
isomorphic to O(k) x O(n — k) and we find that

O(n)/(O(k) x O(n — k)) = G(k,n).
It turns out that this makes G(k,n) into a smooth manifold of dimension

nin—1) kk-1) nm—-knh-k-1)
2 2 2 = hn—k)

called a Grassmannian.

The restriction of the action of O(n) on G(k,n) to SO(n) yields an action
- SO(n) x G(k,n) — G(k,n) of SO(n) on G(k,n). Then it is easy to see that this action
is transitive and that the stabilizer of the subspace U is isomorphic to the subgroup
S(O(k) x O(n — k)) of SO(n) consisting of the rotations of the form

S 0
=i 7)
with S € O(k), T € O(n — k) and det(S) det(7") = 1. Thus, we also have

SO(n)/S(O(k) x O(n — k)) = G(k,n).

If we recall the projection map of Example 4.8 in Section 4.2, namely pr: R"™ — {0} —
RP", by definition, a k-plane in RP" is the image under pr of any (k + 1)-plane in R™*1.
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So, for example, a line in RP™ is the image of a 2-plane in R""!, and a hyperplane in RP" is
the image of a hyperplane in R"*!. The advantage of this point of view is that the k-planes
in RP" are arbitrary; that is, they do not have to go through “the origin” (which does not
make sense, anyway!). Then we see that we can interpret the Grassmannian, G(k+1,n+1),
as a space of “parameters” for the k-planes in RP". For example, G(2,n + 1) parametrizes
the lines in RP". In this viewpoint, G(k + 1,n + 1) is usually denoted G(k,n).

It can be proved (using some exterior algebra) that G(k,n) can be embedded in RP(:) L.
Much more is true. For example, G(k,n) is a projective variety, which means that it can be

defined as a subset of RP(:)~! equal to the zero locus of a set of homogeneous equations.
There is even a set of quadratic equations known as the Plicker equations defining G(k,n).
In particular, when n = 4 and k = 2, we have G(2,4) C RP?, and G(2,4) is defined by
a single equation of degree 2. The Grassmannian G(2,4) = G(1,3) is known as the Klein
quadric. This hypersurface in RP° parametrizes the lines in RP?.

Complex Grassmannians are defined in a similar way, by replacing R by C and O(n) by
U(n) throughout. The complex Grassmannian Gg¢(k,n) is a complex manifold as well as a
real manifold, and we have

U(n)/(U(k) x U(n = k)) = Ge(k, n).

As in the case of the real Grassmannians, the action of U(n) on G¢(k,n) yields an action of

SU(n) on Ge(k,n), and we get
SU(n)/S(U(k) x U(n — k)) = Ge(k,n),

where S(U(k) x U(n — k)) is the subgroup of SU(n) consisting of all matrices R € SU(n)

of the form S
0
n=(5 1)

with S € U(k), T € U(n — k) and det(S) det(T") = 1.

Closely related to Grassmannians are the Stiefel manifolds S(k,n). Again we begin with
the real case.

Definition 4.12. For any n > 1 and any k with 1 < k < n, the set S(k,n) of all orthonormal
k-frames, that is, of k-tuples of orthonormal vectors (uy,...,ux) with u; € R", is called a
Stiefel manifold.

Obviously, S(1,n) = S"~! and S(n,n) = O(n), so assume k < n — 1. There is a natural
action -: SO(n) x S(k,n) — S(k,n) of SO(n) on S(k,n) given by

R~(u1,...,uk) = (Rul,...,Ruk).

This action is transitive, because if (uy,...,ux) and (vq,...,v;) are any two orthonormal
k-frames, then they can be extended to orthonormal bases (for example, by Gram-Schmidt)
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(u1,...,u,) and (vy,...,v,) with the same orientation (since we can pick u, and v, so
that our bases have the same orientation), and there is a unique orthogonal transformation
R € SO(n) such that Ru; =wv; fori=1,... n.

In order to apply Proposition 4.2, we need to find the stabilizer of the orthonormal k-
frame (ey, ..., ex) consisting of the first canonical basis vectors of R™. A matrix R € SO(n)
stabilizes (eq,...,eg) iff it is of the form

(L, 0
7= (5 5)
where S € SO(n — k). Therefore, for 1 <k <n — 1, we have
SO(n)/SO(n — k) = S(k,n).

This makes S(k,n) a smooth manifold of dimension

nn—1) (m—knh-kFk-—1) k(k+1)
5 - 5 :nk—T:k(n—k)+

k(k—1)
=

Remark: It should be noted that we can define another type of Stiefel manifolds, denoted

by V(k,n), using linearly independent k-tuples (uq, ..., ux) that do not necessarily form an
orthonormal system. In this case, there is an action -: GL(n,R) x V(k,n) — V(k,n), and
the stabilizer H of the first k£ canonical basis vectors (eq,...,ex) is a closed subgroup of

GL(n,R), but it doesn’t have a simple description (see Warner [114], Chapter 3). We get
an isomorphism

V(k,n) = GL(n,R)/H.

The version of the Stiefel manifold S(k,n) using orthonormal frames is sometimes denoted
by VO(k,n) (Milnor and Stasheff [85] use the notation V;?(R™)). Beware that the notation
is not standardized. Certain authors use V(k,n) for what we denote by S(k,n)!

Complez Stiefel manifolds are defined in a similar way by replacing R by C and SO(n)
by SU(n). For 1 < k < n — 1, the complex Stiefel manifold Sc(k,n) is isomorphic to the
quotient

SU(n)/SU(n — k) = Sc(k, n).

If k=1, we have Sc(1,n) = S*"~! and if k = n, we have Sc(n,n) = U(n).

The Grassmannians can also be viewed as quotient spaces of the Stiefel manifolds. Every
orthonomal k-frame (uy, ..., u;) can be represented by an n x k matrix Y over the canonical
basis of R"”, and such a matrix Y satisfies the equation

Y'Y =1
We have a right action -: S(k,n) x O(k) — S(k,n) given by
Y.-R=YR,
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for any R € O(k). This action is well defined since
(YRY'YR=R'Y'YR=1.

However, this action is not transitive (unless & = 1), but the orbit space S(k,n)/O(k) is
isomorphic to the Grassmannian G(k,n), so we can write

G(k,n) =2 S(k,n)/O(k).
Similarly, the complex Grassmannian is isomorphic to the orbit space Sc(k,n)/U(k):

Ge(k,n) = Se(k,n)/U(k).

4.5 Topological Groups ®

Since Lie groups are topological groups (and manifolds), it is useful to gather a few basic
facts about topological groups.

Definition 4.13. A set G is a topological group ift
(a) G is a Hausdorff topological space;

(b) G is a group (with identity 1);
(c) Multiplication -: G x G — G, and the inverse operation G — G: g — ¢!, are
continuous, where G x G has the product topology.

It is easy to see that the two requirements of Condition (c) are equivalent to
(¢/) The map G x G — G': (g, h) — gh™! is continuous.

Proposition 4.3. If G is a topological group and H is any subgroup of G, then the closure
H of H is a subgroup of G.

Proof. We use the fact that if f: X — Y is a continuous map between two topological spaces
X and Y, then f(A) C f(A) for any subset A of X. For any a € A, we need to show that
for any open subset W C Y containing f(a), we have W N f(A) # 0. Since f is continuous,
V = f~Y(W) is an open subset containing a, and since a € A, we have f~*(W) N A # 0,
so there is some x € f~1(W) N A, which implies that f(z) € W N f(A), so Wn f(A) # 0,
as desired. The map f: G x G — G given by f(z,y) = xy~! is continuous, and since H is
a subgroup of G, f(H x H) C H. By the above property, if a € H and if b € H, that is,

(a,b) € H x H, then f(a,b) = ab~! € H, which shows that H is a subgroup of G. ]



152 CHAPTER 4. GROUPS AND GROUP ACTIONS

Given a topological group G, for every a € G we define the left translation L, as the map
L,: G — G such that L,(b) = ab, for all b € G, and the right translation R, as the map
R,: G — G such that R,(b) = ba, for all b € G. Observe that L,-1 is the inverse of L, and
similarly, R,-1 is the inverse of R,. As multiplication is continuous, we see that L, and R,
are continuous. Moreover, since they have a continuous inverse, they are homeomorphisms.
As a consequence, if U is an open subset of G, then so is gU = Ly(U) (resp. Ug = R,U), for
all g € GG. Therefore, the topology of a topological group is determined by the knowledge of
the open subsets containing the identity 1.

Given any subset S C G, let S™!' = {s7! | s € S}; let S = {1}, and S™™! = S"S, for all
n > 0. Property (c) of Definition 4.13 has the following useful consequences, which shows
there exists an open set containing 1 which has a special symmetrical structure.

Proposition 4.4. If G is a topological group and U is any open subset containing 1, then
there is some open subset V.C U, with 1 €V, so that V =V ~! and V2 C U. Furthermore,
VCUu.

Proof. Since multiplication G x G — G is continuous and G x G is given the product
topology, there are open subsets U; and Us, with 1 € U; and 1 € Us, so that UyU, C U. Let
W =UNUyand V=W NW~1 Then V is an open set containing 1, and clearly V = V1
and V2 C UU, C U. If g € V, then gV is an open set containing g (since 1 € V) and
thus, gV NV # (). This means that there are some hy, ho € V' so that gh; = hy, but then,
g=hoh' e VV1=VV CU. m

Definition 4.14. A subset U containing 1 and such that U = U~ is called symmetric.

Proposition 4.4 is used in the proofs of many the propositions and theorems on the
structure of topological groups. For example, it is key in verifying the following proposition
regarding discrete topological subgroups.

Definition 4.15. A subgroup H of a topological group G is discrete iff the induced topology
on H is discrete; that is, for every h € H, there is some open subset U of G so that
UNH = {h}.

Proposition 4.5. If G is a topological group and H is a discrete subgroup of G, then H 1is
closed.

Proof. As H is discrete, there is an open subset U of G so that U N H = {1}, and by
Proposition 4.4, we may assume that U = U~!. Our goal is to show H = H. Clearly
H C H. Thus it remains to show H C H. If g € H, as gU is an open set containing g, we
have gU N H # (). Consequently, there is some y € gU N H = gU ' N H, so g € yU with
y € H. We claim that yU N H = {y}. Note that x € yU N H means = = yu; with yu; € H
and u; € U. Since H is a subgroup of G and y € H, y 'yu; =u; € H. Thus u; € UNH,

which implies u; = 1 and = = yu; = y, and we have
geyUNHCyUNH = {y} = {y}.
since G is Hausdorff. Therefore, g =y € H. m
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Using Proposition 4.4, we can give a very convenient characterization of the Hausdorff
separation property in a topological group.

Proposition 4.6. If G is a topological group, then the following properties are equivalent:
(1) G is Hausdorff;
(2) The set {1} is closed;
(8) The set {g} is closed, for every g € G.

Proof. The implication (1) — (2) is true in any Hausdorff topological space. We just have
to prove that G — {1} is open, which goes as follows: For any g # 1, since G is Hausdorff,
there exists disjoint open subsets U, and V,, with g € U, and 1 € V. Thus, |JU, = G —{1},
showing that G — {1} is open. Since L, is a homeomorphism, (2) and (3) are equivalent.
Let us prove that (3) — (1). Let g1,92 € G with g; # go. Then, g;'g> # 1 and if U and
V are disjoint open subsets such that 1 € U and g;'go € V, then ¢g; € ;U and g, € g1V,
where ¢1U and ¢,V are still open and disjoint. Thus, it is enough to separate 1 and g # 1.
Pick any g # 1. If every open subset containing 1 also contained g, then 1 would be in the
closure of {g}, which is absurd since {g} is closed and g # 1. Therefore, there is some open
subset U such that 1 € U and g ¢ U. By Proposition 4.4, we can find an open subset V'
containing 1, so that VV C U and V = V~1. We claim that V and gV are disjoint open
sets with 1 € V and g € gV

Since 1 € V, it is clear that g € gV. If we had V N gV # (), then by the last sentence in
the proof of Proposition 4.4 we would have g € VV~! = VV C U, a contradiction. n

If H is a subgroup of G' (not necessarily normal), we can form the set of left cosets G/H,
and we have the projection p: G — G/H, where p(g) = gH = g. If G is a topological group,
then G/H can be given the quotient topology, where a subset U C G//H is open iff p~1(U) is
open in GG. With this topology, p is continuous. The trouble is that G/H is not necessarily
Hausdorff. However, we can neatly characterize when this happens.

Proposition 4.7. If G is a topological group and H is a subgroup of G, then the following
properties hold:

(1) The map p: G — G/H is an open map, which means that p(V') is open in G/H
whenever V' is open in G.

(2) The space G/H is Hausdorff iff H is closed in G.

(8) If H is open, then H is closed and G/H has the discrete topology (every subset is open).

(4) The subgroup H is open iff 1 € b (i.e., there is some open subset U so that
leUCH).
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Proof. (1) Observe that if V' is open in G, then VH = J,., Vh is open, since each Vh is
open (as right translation is a homeomorphism). However, it is clear that

p(p(V) =VH,

i.e., p~Y(p(V)) is open which, by definition of the quotient topology, means that p(V) is
open.

(2) If G/H is Hausdorff, then by Proposition 4.6, every point of G/H is closed, i.e., each
coset gH is closed, so H is closed. Conversely, assume H is closed. Let T and y be two
distinct point in G/H and let z,y € G be some elements with p(x) = 7 and p(y) = 7. As
T # 7, the elements x and y are not in the same coset, so © ¢ yH. As H is closed, so is
yH, and since = ¢ yH, there is some open containing x which is disjoint from yH, and we
may assume (by translation) that it is of the form Uz, where U is an open containing 1. By
Proposition 4.4, there is some open V containing 1 so that VV C U and V = V~!. Thus,
we have

VienyH =0

and in fact,
VieH NyH =0,

since H is a group; if z € V2xH NyH, then z = vyvexh; = yhs for some vy, v, € V, and
some hy, hy € H, but then vyver = yhohy!' so that VZr N yH # (), a contradiction. Since
V =V~! we get

VaeHNVyH =0,

and then, since V' is open, both VaH and VyH are disjoint, open, so p(VaH) and p(VyH)
are open sets (by (1)) containing T and 7 respectively and p(VaH) and p(VyH) are disjoint
(because p~'(p(VzH)) = VoeHH = VzH, p ' (p(VyH)) = VyHH = VyH, and VzH N
VyH = (). See Figure 4.5.

(3) If H is open, then every coset gH is open, so every point of G/H is open and G/H
is discrete. Also, UggH gH is open, i.e., H is closed.

(4) Say U is an open subset such that 1 € U C H. Then for every h € H, the set hU is
an open subset of H with h € hU, which shows that H is open. The converse is trivial. []

We next provide a criterion relating the connectivity of G with that of G/H.

Proposition 4.8. Let G be a topological group and H be any subgroup of G. If H and G/H
are connected, then G is connected.

Proof. Tt is a standard fact of topology that a space G is connected iff every continuous
function f from G to the discrete space {0,1} is constant; see Proposition 12.15. Pick
any continuous function f from G to {0,1}. As H is connected and left translations are
homeomorphisms, all cosets gH are connected. Thus, f is constant on every coset gH. It
follows that the function f: G — {0,1} induces a continuous function f: G/H — {0,1}
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Figure 4.5: A schematic illustration of VaH N VyH = (), where G is the pink cylinder, H is
the vertical edge, and G/H is the circular base. Note xH and yH are vertical fibres.

such that f = f op (where p: G — G/H; the continuity of f follows immediately from the

definition of the quotient topology on G /H). As G/H is connected, f is constant, and so
f = f opis constant. [

The next three propositions describe how to generate a topological group from its sym-
metric neighborhoods of 1.

Proposition 4.9. If G is a connected topological group, then G is generated by any sym-
metric neighborhood V of 1. In fact,
G=Jv

n>1

Proof. Since V = V7!, it is immediately checked that H = Un21 V™ is the group generated
by V. As V is a neighborhood of 1, there is some open subset U C V, with 1 € U, and

so 1l e IO{ . From Proposition 4.7 (3), the subgroup H is open and closed, and since G is
connected, H = G. O]

Proposition 4.10. Let G be a topological group and let V' be any connected symmetric open
subset containing 1. Then, if Gy is the connected component of the identity, we have

GO = U Vn,
n>1
and Gy is a normal subgroup of G. Moreover, the group G /Gy is discrete.

Proof. First, as V' is open, every V" is open, so the group Un21 V™ is open, and thus closed,
by Proposition 4.7 (3). For every n > 1, we have the continuous map

V.. xV-—V": e Gn) g1 G
‘ , (G153 9n) = g1 g

n
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As V' is connected, V' x --- x V is connected, and so V" is connected; see Theorem 12.18
and Proposition 12.11. Since 1 € V™ for all n > 1 and every V"™ is connected, we use
Lemma 12.12 to conclude that | J,-, V" is connected. Now, |-, V" is connected, open and
closed, so it is the connected component of 1. Finally, for every g € G, the group gGog~" is
connected and contains 1, so it is contained in Gy, which proves that G is normal. Since

G is open, Proposition 4.7 (3) implies that the group G/G) is discrete. O

Recall that a topological space X is locally compact iff for every point p € X, there is a
compact neighborhood C of p; that is, there is a compact C' and an open U, with p € U C C.
For example, manifolds are locally compact.

Proposition 4.11. Let G be a topological group and assume that G is connected and locally
compact. Then, G is countable at infinity, which means that G is the union of a countable
family of compact subsets. In fact, if V is any symmetric compact neighborhood of 1, then

¢=Jv"

n>1

Proof. Since G is locally compact, there is some compact neighborhood K of 1. Then,
V = KN K™ !is also compact and a symmetric neighborhood of 1. By Proposition 4.9, we

have
G=Jv

n>1

An argument similar to the one used in the proof of Proposition 4.10 to show that V" is
connected if V' is connected proves that each V™ compact if V' is compact. O

We end this section by combining the various properties of a topological group G to
characterize when G /G, is homeomorphic to X. In order to do so, we need two definitions.

Definition 4.16. Let GG be a topological group and let X be a topological space. An action
v: G x X — X is continuous (and G acts continuously on X) if the map ¢ is continuous.

If an action p: Gx X — X is continuous, then each map ¢,: X — X is a homeomorphism
of X (recall that p,(z) =g -z, for all z € X).

Under some mild assumptions on G and X, the quotient space G/G, is homeomorphic
to X. For example, this happens if X is a Baire space.

Definition 4.17. A Baire space X is a topological space with the property that if {F'};>4
is any countable family of closed sets F; such that each F; has empty interior, then | J,~, F;
also has empty interior. By complementation, this is equivalent to the fact that for every
countable family of open sets U; such that each U; is dense in X (i.e., U, = X), then (5, U;
is also dense in X. B
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Remark: A subset A C X is rare if its closure A has empty interior. A subset Y C X is
meager if it is a countable union of rare sets. Then, it is immediately verified that a space
X is a Baire space iff every nonempty open subset of X is not meager.

The following theorem shows that there are plenty of Baire spaces:
Theorem 4.12. (Baire) (1) Every locally compact topological space is a Baire space.

(2) Every complete metric space is a Baire space.

A proof of Theorem 4.12 can be found in Bourbaki [21], Chapter IX, Section 5, Theorem

We can now greatly improve Proposition 4.2 when G and X are topological spaces having
some “nice” properties.

Theorem 4.13. Let G be a topological group which is locally compact and countable at
infinity, X a Hausdorff topological space which is a Baire space, and assume that G acts
transitively and continuously on X. Then, for any x € X, the map p: G/G, — X is a
homeomorphism.

Proof. We follow the proof given in Bourbaki [21], Chapter IX, Section 5, Proposition 6
(Essentially the same proof can be found in Mneimné and Testard [86], Chapter 2). First,
observe that if a topological group acts continuously and transitively on a Hausdorff topo-
logical space, then for every x € X, the stabilizer GG, is a closed subgroup of G. This is
because, as the action is continuous, the projection 7,: G — X: g — ¢-x is continuous, and
G, = 7 1({x}), with {z} closed. Therefore, by Proposition 4.7, the quotient space G/G,
is Hausdorff. As the map 7,: G — X is continuous, the induced map ¢,: G/G, — X is
continuous, and by Proposition 4.2, it is a bijection. Therefore, to prove that ¢, is a home-
omorphism, it is enough to prove that ¢, is an open map. For this, it suffices to show that
7, is an open map. Given any open U in GG, we will prove that for any g € U, the element
7:(g) = g - x is contained in the interior of U - x. However, observe that this is equivalent
to proving that = belongs to the interior of (¢g7! - U) - x. Therefore, we are reduced to the
following case: if U is any open subset of G containing 1, then = belongs to the interior of
U-x.

Since G is locally compact, using Proposition 4.4, we can find a compact neighborhood
of the form W = V, such that 1 € W, W = W~ and W? C U, where V is open with
1 eV CU. As G is countable at infinity, G = |J,», K, where each K; is compact. Since V'
is open, all the cosets gV are open, and as each K is covered by the gV’s, by compactness
of K;, finitely many cosets gV cover each K;, and so

G = ng‘V = ng‘W,
i>1 i>1

for countably many ¢; € G, where each ¢;WW is compact. As our action is transitive, we
deduce that

X=Jaw o,

1>1
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where each ¢;WW - x is compact, since our action is continuous and the g,/ are compact. As
X is Hausdorff, each ¢;\W - x is closed, and as X is a Baire space expressed as a union of
closed sets, one of the g;W - x must have nonempty interior; that is, there is some w € W,
with g;w - x in the interior of ¢;,WW - x, for some ¢. But then, as the map y — ¢ -y is a
homeomorphism for any given g € G (where y € X)), we see that z is in the interior of

wlg !t (gW ) =w Wz CWI'W a2 =W? .2 CU -,
as desired. O

By Theorem 4.12, we get the following important corollary:

Theorem 4.14. Let G be a topological group which is locally compact and countable at
infinity, X a Hausdorff locally compact topological space, and assume that G acts transitively
and continuously on X. Then, for any x € X, the map ¢,: G/G, — X is a homeomorphism.

Readers who wish to learn more about topological groups may consult Sagle and Walde
[99] and Chevalley [31] for an introductory account, and Bourbaki [20], Weil [116] and Pon-
tryagin [94, 95|, for a more comprehensive account (especially the last two references).

4.6 Problems

Problem 4.1. Recall that the group SU(2) consists of all complex matrices of the form

_ (o 8 ~ 1 3G —
A_(—B a) a,p € C, aa+ (6 =1,
and the action -: SU(2) x (CU{o0}) = CU {oo} is given by

aw +
A-w:_—ﬁ, w € CU {oo}.
—fw + @
This is a transitive action. Using the stereographic projection oy from S? onto C U {cc}
and its inverse o', we can define an action of SU(2) on S? by

A (x,y,2) = J;]l(A con(x,y,2)), (v,y,2) € S2,

and we denote by p(A) the corresponding map from S? to S2.
(1) If we write « = a +ib and 8 = ¢ + id, prove that p(A) is given by the matrix
a?—b? -+ d? —2ab — 2cd —2ac + 2bd

p(A) = 2ab — 2cd a? -+ —d? —2ad — 2bc
2ac + 2bd 2ad — 2bc a?+b* = — &
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Prove that p(A) is indeed a rotation matrix which represents the rotation whose axis is
the line determined by the vector (d, —c,b) and whose angle § € [—m, 7] is determined by

0
cos — = |al.
2

Hint. Recall that the axis of a rotation matrix R € SO(3) is specified by any eigenvector of
1 for R, and that the angle of rotation € satisfies the equation

tr(R) = 2cosf + 1.

(2) We can compute the derivative dp;: su(2) — s0(3) of p at I as follows. Recall that
su(2) consists of all complex matrices of the form

( b c+1id

—c+id  —ib ) b d€R,

so pick the following basis for su(2),

1 0 0 1 0 1
Xl — (0 _Z)) X2_ (_1 0)7 X3_ ('l 0)7

and define the curves in SU(2) through I given by

et 0 cost sint cost isint
Cl(t)_(() e~ ) ca(t) = —sint cost)’ cs(t) = isint cost |-

Prove that ¢;(0) = X, for i = 1,2,3, and that

0 —1 0 00 —1 00 0
dpr(X1)=2(1 0 0], dp(Xz)=2[0 0 0|, dos(X3)=2[0 0 —1
0 0 0 10 0 01 0

Thus, we have
dpr(X1) = 2E5, dpi(Xs) = —2E,, dpi(X3) = 2E;,

where (Ey, Ey, Es) is the basis of s0(3) given in Section 2.5. Conclude that dp; is an isomor-
phism between the Lie algebras su(2) and so(3).

(3) Recall from Proposition 3.13 that we have the commutative diagram

SU(2) —£= SO(3)

exp T T exp

su(2) 50 (3).

Since dpy is surjective and the exponential map exp: s0(3) — SO(3) is surjective, conclude
that p is surjective. Prove that Kerp = {I, —1}.
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Problem 4.2. Consider the action of the group SL(2,R) on the upper half-plane, H = {z =

x+1y € C|y >0}, given by
a b az +b
cz = .
c d cz+d

(a) Check that for any g € SL(2,R),

3(2)

\9(9'2) = m,

and conclude that if z € H, then g -z € H, so that the action of SL(2,R) on H is indeed
well-defined (Recall, ®(z) = z and J(z) = y, where z = = + iy.)
(b) Check that if ¢ # 0, then

az+b_ —1 +a
cz+d z+ed ¢

Prove that the group of Mdbius transformations induced by SL(2, R) is generated by Mobius
transformations of the form

1. z— 240,
2. z+— kz,
3. z— —1/z,
where b € R and k € R, with £ > 0. Deduce from the above that the action of SL(2,R) on

H is transitive and that transformations of type (1) and (2) suffice for transitivity.

(c) Now, consider the action of the discrete group SL(2,7Z) on H, where SL(2,7Z) consists
of all matrices

(a b), ad —bc=1, a,b,c,déeZ.
c d

Why is this action not transitive? Consider the two transformations

S:z+— —1/z

associated with ((1] _01) and
T: 2z 2z+1

) ) 11
associated with (0 1).

Define the subset, D, of H, as the set of points, z = x + iy, such that —1/2 <z < —1/2

and 22 + y> > 1. Observe that D contains the three special points, i, p = e*™/3 and
= __ ,mi/3
p=e"/3,
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Draw a picture of this set, known as a fundamental domain of the action of G = SL(2,7Z)
on H.

Remark: Gauss proved that the group G = SL(2,7Z) is generated by S and T.
Problem 4.3. Let J be the 2 x 2 matrix

1 0
(%)
and let SU(1, 1) be the set of 2 x 2 complex matrices
SU(L,1)={A|A"JA=J, det(A) =1},

where A* is the conjugate transpose of A.

(a) Prove that SU(1, 1) is the group of matrices of the form

A:(C—L E), with a@ — bb = 1.
b @

(1 V)

prove that the map from SL(2,R) to SU(1, 1) given by

If

A gAg™?
is a group isomorphism.
(b) Prove that the M&bius transformation associated with g,
zZ—1
z+1

is a bijection between the upper half-plane, H, and the unit open disk, D = {z € C | |z| < 1}.
Prove that the map from SU(1,1) to S* x D given by

(% f) — (a/]al,b/a)

Z =

a

is a continuous bijection (in fact, a homeomorphism). Conclude that SU(1, 1) is topologically
an open solid torus.

(c) Check that SU(1,1) acts transitively on D by

(a b) az+b
- ) z== X
b a bz +a

Find the stabilizer of z = 0 and conclude that
SU(1,1)/SO(2) = D.
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Chapter 5

The Lorentz Groups ®

In this chapter we study a class of linear Lie groups known as the Lorentz groups. As we
will see, the Lorentz groups provide interesting examples of homogeneous spaces. Moreover,
the Lorentz group SO(3, 1) shows up in an interesting way in computer vision.

5.1 The Lorentz Groups O(n, 1), SO(n,1) and SOq(n, 1)

Denote the p x p-identity matrix by I, for p,q, > 1, and define

I 0
[qu B (6) _LJ) '

If n = p+ ¢, the matrix I, , is associated with the nondegenerate symmetric bilinear form
p n
SOPvQ((xh'“7$n)7(y17~'7yn)) :inyi_ Z XY
=1 j=p+1

with associated quadratic form

p n
(I)p7q(<3;'17 cee wxn)) — 23712 — Z .%3
=1

Jj=p+l1
In particular, when p = 1 and ¢ = 3, we have the Lorentz metric
2 2

2 2

In physics, z; is interpreted as time and written ¢, and x9, x5, 74 as coordinates in R? and
written x,y, z. Thus, the Lorentz metric is usually written a

2 g gy g2

163
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although it also appears as
Y e B

which is equivalent but slightly less convenient for certain purposes, as we will see later. The
space R* with the Lorentz metric is called Minkowski space. It plays an important role in
Einstein’s theory of special relativity.

Definition 5.1. For any p,q > 1, the group O(p, q) is the set of all n x n-matrices
O(p,q) = {A € GL(n,R) | ATI,,A=1,,}.

This is the group of all invertible linear maps of R™ that preserve the quadratic form @, ,,
i.e., the group of isometries of ®,, .

Let us check that O(p, q) is indeed a group.

Proposition 5.1. For any p,q > 1, the set O(p, q) is a group, with the inverse A~' of any
element A € O(p,q) given by A =1,,A"L,,. If A€ O(p,q), then AT € O(p, q).

Proof. 1f A, B € O(p,q), then A"I,,A=1,,and B"I,,B = I,,, so we get
(AB"I,,AB=B"A"I,,AB=B"1,,B=1,,,

which shows that AB € O(p,q). Since [57(] = I we have, I € O(p,q). Since [g,q = I, the
condition A", ,A = I, is equivalent to I, ,A" I, ,A = I, which means that

At =1,,A"L,,
Consequently I = AA™! = A, ,A"I,,, so
AL AT =1, (%)

also holds, which shows that O(p, ¢) is closed under transposition (i.e., if A € O(p,q), then
AT € O(p,q)). Using the fact that I? =T and I, = I,,, we have

(A_l)TIp,qA_l = ([p,qATIp,q)T[pﬂA_l = Ip,qA[p,q[p,qA_l = [p,qAA_l = [p,q-

Therefore, A~1 € O(p, q), so O(p, q) is indeed a subgroup of GL(n,R) with inverse given by
A7l = [p,qAT[pyq. O

Definition 5.2. For any p,q > 1, the subgroup SO(p, q) of O(p, q) consisting of the isome-
tries of (R™, @, ,) with determinant +1 is given by

SO(p.q) = {A € O(p.q) | det(4) = 1}.
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It is clear that SO(p, ¢) is indeed a subgroup of of O(p, q) also closed under transposition.

The condition A"I,,A = I,, has an interpretation in terms of the inner product ¢,
and the columns (and rows) of A. Indeed, if we denote the jth column of A by A;, then

ATIp,qA = (pp,e(4i, 45)),
so A € O(p, ¢) iff the columns of A form an “orthonormal basis” w.r.t. ¢, i.e.,

5 if 1 <4,5<p;
A Ay =< 9 ool =
Ppa(Ais Aj) {—517‘ itp+1<4,j<p+q.

The difference with the usual orthogonal matrices is that ¢, ,(A4;, 4;) = —1, if
p+1<i<p+gq As O(p,q) is closed under transposition, the rows of A also form an
orthonormal basis w.r.t. ¢, ,.

It turns out that SO(p, ¢) has two connected components, and the component containing
the identity is a subgroup of SO(p,q) denoted SOy(p,q). The group SOy(p, q) is actually
homeomorphic to SO(p) x SO(q) x RPZ. This is not immediately obvious. A way to prove
this fact is to work out the polar decomposition for matrices in O(p, ¢). This is nicely done
in Dragon [40] (see Section 6.2). A close examination of the factorization obtained in Section
6.1 also shows that there is bijection between O(p, ¢) and O(p) x O(q) x RP4. Another way
to prove these results (in a stronger form, namely that there is a homeomorphism) is to use
results on pseudo-algebraic subgroups of GL(n,C); see Sections 6.2 and 6.3. It can also
be shown that there are isomorphisms ¢ : O(p, q) — O(q,p), ¥: SO(p,q) — SO(q, p), and
¥: SOg(p,q) = SOg(q, p); see Proposition 6.8.

We will now determine the polar decomposition and the SVD decomposition of matrices
in the Lorentz groups O(n,1) and SO(n,1). Write J = I,,;, and given any A € O(n, 1),

write
B u

where B is an n X n matrix, u, v are (column) vectors in R” and ¢ € R. We begin with the
polar decomposition of matrices in the Lorentz groups O(n,1).

Proposition 5.2. Every matriz A € O(n, 1) has a polar decomposition of the form

. <Q 0) (\/In—l—va v) B <Q 0) (v_fn—i—va U>
- 0 1 T C or A= 0 —1 T )

v v c
where Q € O(n) and ¢ = +/||v]|* + 1.

Proof. Write A in block form as above. As the condition for A to be in O(n,1)is ATJA = J,

we get
BT w B u\ (I, O
u' ) \=v" —¢) \0 -1)°
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ie.,

B'B = I,+wv"
wu = -1
B'u = cv.

If we remember that we also have AJAT = J, then
B u BT v\ (I, 0
vloe) \=u" —¢) 0 -1/’

BB = I,+uu'

vl -1

and

Bv = cu.

From u"u = |ju|® = ¢ — 1, we deduce that |¢| > 1. From BTB = I, + vv", we deduce that
BT B is clearly symmetric; we also deduce that BT B positive definite since

e (I, +vo )z = ||z||* + 2oz = ||lz||” + HUTSL’”Z,

and ||z + ||UT1;H2 whenever r # 0. Now, geometrically, it is well known that vo" /vTv is
the orthogonal projection onto the line determined by v. Consequently, the kernel of vv ' is
the orthogonal complement of v, and vv' has the eigenvalue 0 with multiplicity n — 1 and
the eigenvalue ¢ — 1 = ||v||* = vTv with multiplicity 1. The eigenvectors associated with 0
are orthogonal to v, and the eigenvectors associated with ¢? — 1 are proportional with v since
(vo'/ HUHQ) v = (¢ — 1)v. It follows that I, + vv" has the eigenvalue 1 with multiplicity
n — 1 and the eigenvalue ¢ with multiplicity 1, the eigenvectors being as before. Now, B
has polar form B = )5}, where () is orthogonal and 5} is symmetric positive definite and
S? = BB = I, + vv'. Therefore, if ¢ > 0, then S; = /I, + vvT is a symmetric positive
definite matrix with eigenvalue 1 with multiplicity n — 1 and eigenvalue ¢ with multiplicity
1, the eigenvectors being as before. If ¢ < 0, then change ¢ to —c.

Case 1: ¢ > 0. Then v is an eigenvector of S; for ¢ and we must also have Bv = cu,
which implies
Bv = QS1v = Q(cv) = cQu = cu,

SO
Qu = u.
It follows that

A= 8= ) =E )0,

v cC v c 0 1 ) c
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where Q € O(n) and ¢ = y/||v]|* + 1.

Case 2: ¢ < 0. Then v is an eigenvector of S; for —c and we must also have Bv = cu,
which implies

Bv = QS1v=Q(—cv) = cQ(—v) = cu,

SO

It follows that

A:(B u):<@§1 @(—v)):(@ o)(W _0)7

UTC

where @ € O(n) and ¢ = —y/||v]|* + 1.

We conclude that any A € O(n, 1) has a factorization of the form

S R S R (I

0 1 o’ c 0 -1 vl c

where Q € O(n) and ¢ = y/|[v||* + 1. Note that the matrix (%2 j?l) is orthogonal and

/T ol /T 1 T
I”U—i—_r vy Z) is symmetric. Proposition 5.3 will show that < I";—_r ov Z) is positive

definite. Hence the above factorizations are polar decompositions.

—
In order to show that S = I”U—i—_r vy 2) is positive definite, we show that the eigen-

values are strictly positive. Such a matrix is called a Lorentz boost. Observe that if v = 0,
then c=1and S = [,41.

Proposition 5.3. Assume v # 0. The eigenvalues of the symmetric positive definite matrizc

5 (\/[n +ovT v)

UT C

where ¢ = \/ ||v||* + 1, are 1 with multiplicity n — 1, and e* and e~® each with multiplicity 1
(for some a > 0). An orthonormal basis of eigenvectors of S consists of vectors of the form

<U1> (“n—l) (ﬁvnvn) (ﬁ]vu)
AR ) ) 1 M 1 M
0 0 5/ \~%

where the u; € R™ are all orthogonal to v and pairwise orthogonal.
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Proof. Let us solve the linear system

() G

(W)v%—dv = v

vivted = M.

Since the proof of Proposition 5.2 implies that ¢ = y/|[v]|* + 1 and (VT, + vvT) v = cv, the

previous two equations are equivalent to

We get

(c+dv = M
—1+ed = M.

Because v # 0, we get A = ¢+ d. Substituting in the second equation, we get
& —1+cd=(c+d)d,
that is,
= —1.

In other words d = ++/c¢? — 1, which in turn implies A = ¢+ d = ¢ & v/¢? — 1. Thus, either
M=c+vVE—landd=+vVc?—1,or y =c—+vc*—1and d = —+/c? — 1. Since ¢ > 1 and
M2 =1, set a = log(c + /2 — 1) > 0, so that —a = log(c — v/¢? — 1), and then \; = e
and Ay = e~®. On the other hand, if u is orthogonal to v, observe that

()00

since the kernel of vv' is the orthogonal complement of v. The rest is clear. O]

Corollary 5.4. The singular values of any matriz A € O(n, 1) are 1 with multiplicity n— 1,
e”, and e=®, for some a > 0.

Note that the case a = 0 is possible, in which case A is an orthogonal matrix of the form

Q 0 Q 0
(0 1) % \o 1)
with @ € O(n). The two singular values e* and e~ tell us how much A deviates from being

orthogonal.

By using Proposition 5.2 we see that O(n, 1) has four components corresponding to the
cases:
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(1) @ € O(n); det(Q) < 0; +1 as the lower right entry of the orthogonal matrix;
(2) @ € SO(n); —1 as the lower right entry of the orthogonal matrix;
(3) Q € O(n); det(Q) < 0; —1 as the lower right entry of the orthogonal matrix;
(4) @ € SO(n); +1 as the lower right entry of the orthogonal matrix.

Observe that det(A) = —1 in Cases (1) and (2) and that det(A) = +1 in Cases (3) and
(4). Thus, Cases (3) and (4) correspond to the group SO(n,1), in which case the polar
decomposition is of the form

A:(Q o)(%ﬁ?ﬁﬁ g’

0 -1 vl c

where Q € O(n), with det(Q) = —1 and ¢ = 1/||v|* + 1, or
A (Q O> <\/[n+vvT v)

0 1 v’ c

where Q € SO(n) and ¢ = y/|jv||* + 1.

The components in Cases (1), (2) and (3) are not groups. We will show later that all four
components are connected and that Case (4) corresponds to a group (Proposition 5.7). This
group is the connected component of the identity and it is denoted SOg(n, 1) (see Corollary
5.11). For the time being, note that A € SOy(n, 1) iff A € SO(n,1) and api1n41 =c¢ >0
(here, A = (a;;).) In fact, we proved above that if a, 11,41 > 0, then a,41,41 > 1.

Remark: If we let

Ap = (Inol,l (1)> and Ap=1I,;, where I,;= (% _01> )

then we have the disjoint union

O(n, 1) = SOO(H, ].) U APSOO(H, ].) U ATSOO(TL, ].) U APATSOO(TL, ].)

We can now determine a convenient form for the SVD of matrices in O(n, 1).
Theorem 5.5. Every matrizv A € O(n, 1) can be written as
1 -~ 0 0 0
: : : QT 0
1 0 0 < 0 1
0 cosha sinha
0 sinha cosha

OO O -
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with e = +1, P € O(n) and Q € SO(n). When A € SO(n, 1), we have det(P)e = +1, and
when A € SOy(n, 1), we have € = +1 and P € SO(n); that is,

1 --- 0 0 0
0 - 0 cosha sinhao
0 - 0 sinha cosha

with P € SO(n) and Q € SO(n).

Proof. By Proposition 5.2, any matrix A € O(n, 1) can be written as

=l 9 )

0 € v’ c

where e = £1, R € O(n) and ¢ = /||v|]|* + 1. The case where ¢ = 1 is trivial, so assume
¢ > 1, which means that o from Proposition 5.3 is such that o > 0. The key fact is that the

eigenvalues of the matrix
cosha sinha
sinha cosha
are e® and e~®. To verify this fact, observe that

dot cosha — A sinh «
© sinh a cosha — A

) = (cosha — \)? —sinh®a = A — 2\ cosha 4+ 1 = 0,

which in turn implies

A = cosh a £ sinh «,

er—e @

2

and the conclusion follows from the definitions of cosh o = # and sinh o =

Also observe that the definitions of cosh o and sinh o imply that

N 1 1 ) 1 1
e 0\ 7z cosha sinh o 7
0 e ) % — \/Li sinha cosha \% —\/Li ’

1

which is equivalent to the observation that <*{§) is the eigenvector associated with e®, while

V2
1

< 721 ) is the eigenvector associated with e™“.

V2
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From these two facts we see that the diagonal matrix

1 --- 0 O 0
D=0 1 0 0
0 0 e~ 0
0 0 0 e“
—
of eigenvalues of S = ( ]n;% o Z) is given by
1 .- 0 0 O 1 -~ 0 0 0 1 .- 0 0 O
p=lo - 10 o |lo..1 o 0 0 1 0 0
0 - 0 \% \/Li 0 --- 0 cosha sinha 0 0 \% %5
0 - 0 \/LQ _\/Li 0 --- 0 sinha cosha 0 0 \/iﬁ _\/Li

By Proposition 5.3, an orthonormal basis of eigenvectors of S consists of vectors of the form

(“1> <“n—1> (ﬁnvn) (ﬁnvn)
AR | ) 1 M 1 M
0 0 5\~

where the u; € R™ are all orthogonal to v and pairwise orthogonal. Now, if we multiply the
matrices

1 - 0 0 0
Uy e Uy v v R :
(01 01 V2ol \fllfll) 0o --- 1.0 0 |,
V2 V2 0 --- 0 \/Li \/Li
1 1
0 --- 0 % — %
we get an orthogonal matrix of the form
@ 0
0 1
where the columns of () are the vectors
v
Uy Un—15 77
Il

By flipping u; to —u; if necessary, we can make sure that this matrix has determinant +1.
Consequently,

1 -~ 0 0 0
(Q 0 : : : QT 0
S—(O 1) |0 10 0 0o 1)
O --- 0 cosha sinha
0 0 sinha cosha
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SO
1 0 0 0
A‘(o e><0 1) 0 10 0 (0 1)’
0 0 cosha sinha
0 .-+ 0 sinha cosha
and if we let P = R(Q), we get the desired decomposition. n

Remark: We warn our readers about Chapter 6 of Baker’s book [12]. Indeed, this chapter
is seriously flawed. The main two Theorems (Theorem 6.9 and Theorem 6.10) are false,
and as consequence, the proof of Theorem 6.11 is wrong too. Theorem 6.11 states that the
exponential map exp: so(n, 1) — SOq(n, 1) is surjective, which is correct, but known proofs
are nontrivial and quite lengthy (see Section 5.2). The proof of Theorem 6.12 is also false,
although the theorem itself is correct (this is our Theorem 5.18, see Section 5.2). The main
problem with Theorem 6.9 (in Baker) is that the existence of the normal form for matrices
in SOy(n, 1) claimed by this theorem is unfortunately false on several accounts. Firstly, it
would imply that every matrix in SOg(n, 1) can be diagonalized, but this is false for n > 2.
Secondly, even if a matrix A € SOg(n, 1) is diagonalizable as A = PDP~!, Theorem 6.9
(and Theorem 6.10) miss some possible eigenvalues and the matrix P is not necessarily in
SOq(n,1) (as the case n = 1 already shows). For a thorough analysis of the eigenvalues of
Lorentz isometries (and much more), one should consult Riesz [97] (Chapter III).

Clearly, a result similar to Theorem 5.5 also holds for the matrices in the groups O(1,n),
SO(1,n) and SOy(1,n). For example, every matrix A € SOy(1,n) can be written as

cosha sinha 0 0
Lo sinha coshae O --- 0O Lo
- 0 0 1 0
=)o o)
0 0 0o --- 1

where P, @ € SO(n).

In the case n = 3, we obtain the proper orthochronous Lorentz group SOg(1,3), also
denoted Lor(1, 3). By the way, O(1,3) is called the (full) Lorentz group and SO(1,3) is the
special Lorentz group.

Theorem 5.5 (really, the version for SOy(1,n)) shows that the Lorentz group SOg(1,3)
is generated by the matrices of the form

10 .
(o P> with P € SO(3)
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and the matrices of the form

cosha sinha 0 0
sinha cosha 0 O
0 0 10
0 0 01

This fact will be useful when we prove that the homomorphism ¢: SL(2,C) — SOy(1, 3) is
surjective.

Remark: Unfortunately, unlike orthogonal matrices which can always be diagonalized over
C, not every matrix in SO(1,n) can be diagonalized for n > 2. This has to do with the fact
that the Lie algebra so(1,n) has non-zero idempotents (see Section 5.2).

It turns out that the group SOy(1, 3) admits another interesting characterization involv-
ing the hypersurface

M= {(t,0,9,2) €R | £ 22 —y? — 22 = 1},

This surface has two sheets, and it is not hard to show that SOq(1,3) is the subgroup of
SO(1,3) that preserves these two sheets (does not swap them). Actually, we will prove this
fact for any n. In preparation for this, we need some definitions and a few propositions.

Let us switch back to SO(n, 1). First, as a matter of notation, we write every u € R"*!
as u = (u,t), where u € R" and t € R, so that the Lorentz inner product can be expressed
as

(u,v) = ((u,t),(v,s)) =u-v—ts,

where u - v is the standard Euclidean inner product (the Euclidean norm of x is denoted
|z]]). Then we can classify the vectors in R"™! as follows:

Definition 5.3. A nonzero vector u = (u,t) € R™"! is called
(a) spacelike iff (u,u) > 0, ie., iff |Jul® >
(b) timelike iff (u,u) <0, ie., iff |Ju?® < ;
(c) lightlike or isotropic iff (u,u) =0, i.e., iff Jul® = 2.

A spacelike (resp. timelike, resp. lightlike) vector is said to be positive iff t > 0 and negative
iff £ < 0. The set of all isotropic vectors

Ha(0) = {u = (u,t) € R™" [ ||u® = £}
is called the light cone. For every r > 0, let
Ha(r) = {u= (u,t) € R" | |Ju® = £ = —r},

a hyperboloid of two sheets.
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It is easy to check that H,(r) has two connected components as follows: First, since
r >0 and
47 =2

we have [t| > \/r. For any © = (z1,...,2,,t) € H,(r) with ¢t > \/r, we have the continuous
path from (0,...,0,+/7) to z given by

A= (A1, Az, T+ N2(E2 — 1)),

where A\ € [0, 1], proving that the component of (0,...,0,/7) is connected. Similarly, when
t < —4/r, we have the continuous path from (0,...,0,—/7) to x given by

A= Az, AT, — T+ A2 = 1)),
where A € [0, 1], proving that the component of (0, ...,0, —/r) is connected. We denote the
sheet containing (0,...,0,+/r) by H.(r) and sheet containing (0,...,0, —/r) by H, (r)

Since every Lorentz isometry A € SO(n,1) preserves the Lorentz inner product, we
conclude that A globally preserves every hyperboloid H,,(r), for r > 0. We claim that every
A € SOy(n, 1) preserves both H.(r) and #H_ (). This follows immediately from

Proposition 5.6. If a,i1,01 > 0, then every isometry A € O(n,1) preserves all positive
(resp. megative) timelike vectors and all positive (resp. negative) lightlike vectors. Moreover,
if A€ O(n,1) preserves all positive timelike vectors, then a,i1n+1 > 0.

Proof. Let u = (u,t) be a nonzero timelike or lightlike vector. This means that
Jul? <#* and ¢ #0.

Since A € O(n, 1), the matrix A preserves the inner product; if (u,u) = |[ul|* — #* < 0,
we get (Au, Au) < 0, which shows that Au is also timelike. Similarly, if (u,u) = 0, then
(Au, Au) = 0. Define 4,11 = (Apni1,@Gni1ny1) is the (n + 1)th row of the matrix A. As
A € O(n, 1), we know that

(Ang1, Angr) = —1,

that is,

HAnHH2 - a’?z—l—ln—&-l = -1
or equivalently

HAn+1H2 = a721+1n+1 -1

The (n + 1)th component of the vector Au is

u-An+ apgint

By Cauchy-Schwarz,
2 2
(u- Apn)” < [[uf” Al
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so we get,

2 2 2
(u-An1)® < ul [Apall = llull* (a2 100 — 1)
< t2<a’i+ln+1 -1)= t2a’i+ln+l —

< t2a721+1n+1a

since t # 0. These calculations imply that
(W-Ap1)® =205 1y = (0 Apjy — tanginr1) (0 Ay + tanging) <0,
and that
w- A < [tansing

Note that either (u- A, 1 — tapi1nr1) < 0or (u- Api1 + tans1ne1) < 0, but not both. If
t <0, since |u- Ayqq1| < |tlant1ne1 and api1n41 > 0, then (- A,y — tani1n+1) > 0 and
(w-A,yq +tagiine1) < 0. On the other hand, if ¢ > 0, the fact that |[u- A,iq| < |t|ans1ns1
and a,y1,41 > 0 implies (u- A, 11 —tapi1n1) < 0and (- A, 1 +tani1n41) > 0. From this
it follows that u- A, 11 +a,+1,n+1t has the same sign as ¢, since @, 41,41 > 0. Consequently, if
ani1ne1 > 0, we see that A maps positive timelike (resp. lightlike) vectors to positive timelike
(resp. lightlike) vectors and similarly with negative timelight (resp. lightlike) vectors.

Conversely, as e,.1 = (0,...,0,1) is timelike and positive, if A preserves all positive
timelike vectors, then Ae,; is timelike positive, which implies a,, 11,11 > 0. O

Let OT(n,1) denote the subset of O(n,1) consisting of all matrices A = (a;;) such that
ani1ne1 > 0. Using Proposition 5.6, we can now show that O™ (n, 1) is a subgroup of O(n, 1)
and that SOg(n, 1) is a subgroup of SO(n, 1). Recall that

SOo(n, 1) = {A c SO(TL, 1) | An+1n+1 > 0}
Note that SOg(n,1) = OT(n,1) N SO(n, 1).

Proposition 5.7. The set Ot (n,1) is a subgroup of O(n,1) and the set SOgy(n,1) is a
subgroup of SO(n,1).

Proof. Let A € OT(n,1) € O(n,1), so that a,y1,41 > 0. The inverse of A in O(n,1) is
JATJ, where
I, 0
= %)

which implies that a,},.1 = @Gni1nt1 > 0, and so A1 € OF(n,1). If A, B € OF(n,1), then
by Proposition 5.6, both A and B preserve all positive timelike vectors, so AB preserves all
positive timelike vectors. By Proposition 5.6 again, AB € O"(n, 1). Therefore, O (n, 1) is
a group. But then, SOgy(n,1) = Ot (n,1) N SO(n,1) is also a group. ]
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Since any matrix A € SOg(n, 1) preserves the Lorentz inner product and all positive
timelike vectors and since H.7 (1) consists of timelike vectors, we see that every A € SOg(n, 1)
maps M, (1) into itself. Similarly, every A € SOq(n,1) maps H,, (1) into itself. Thus, we
can define an action -: SOg(n, 1) x H} (1) — H,} (1) by

A -u=Au
and similarly, we have an action -: SOg(n,1) x H, (1) — H,, (1).

Proposition 5.8. The group SOq(n, 1) is the subgroup of SO(n,1) that preserves H; (1)
(and H. (1)), that is,

SOo(n,1) ={A €8S0(n,1) | A(H, (1)) =H, (1) and A(H,(1))=H, (1)}
Proof. We already observed that A(H;} (1)) = H}i(1) if A € SOg(n,1) (and similarly,
A(H; (1)) = H;(1)). Conversely, for any A € SO(n,1) such that A(HF (1)) = HI(1),
as e, = (0,...,0,1) € HI(1), the vector Ae, 1 must be positive timelike, but this says
that Apt1ntl > 0, i.e., A€ SOO(TL, 1) UJ

Next we wish to prove that the action SOqg(n,1) x H,}'(1) — H; (1) is transitive. For
this, we need the next two propositions.

Proposition 5.9. Let u = (u,t) and v = (v, s) be nonzero vectors in R"™ with (u,v) = 0.
If w is timelike, then v is spacelike (i.e., (v,v) > 0).

Proof. Since u is timelike, we have |[ul|® < 2, so t # 0. The condition (u,v) = 0 is
equivalent to u-v —ts = 0. If u = 0, then ts = 0, and since ¢t # 0, then s = 0. Then
(v,v) = |[v|]|* = 5% = ||v|* > 0 since v is a nonzero vector in R**'. We now assume u # 0.

In this case u-v —ts =0, and we get

2 2 2 (U‘V)2

But when u # 0 Cauchy-Schwarz implies that (u-v)2/ [|ul|* < ||v||*, so we get

(u-v)? (u-v)? 0

2 2
v,V) = ||V - > ||V -
(v,0) = vl v vl TR

as |lul]” < 2. O

Lemma 5.9 also holds if u = (u, t) is a nonzero isotropic vector and v = (v, s) is a nonzero
vector that is not collinear with u: If (u,v) = 0, then v is spacelike (i.e., (v,v) > 0). The
proof is left as an exercise to the reader.

Proposition 5.10. The action SOg(n,1) x HF (1) — H;} (1) is transitive.
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Proof. Let epy1 = (0,...,0,1) € H;}(1). It is enough to prove that for every u = (u,t) €
H; (1), there is some A € SOq(n, 1) such that Ae,; = u. By hypothesis,

(u,u) = [[uf® — £ = —1.

We show that we can construct an orthonormal basis, eq,...,e,,u, with respect to the
Lorentz inner product. Consider the hyperplane

H = {v e R"" | (u,v) = 0}.

Since u is timelike, by Proposition 5.9, every nonzero vector v € H is spacelike, that is

(v,v) > 0. Let vy,...,v, be a basis of H. Since all (nonzero) vectors in H are spacelike, we
can apply the Gram-Schmidt orthonormalization procedure and we get a basis eq,...,e, of
H, such that

(ei,ej) = 0;5, 1<14,5<n.

By construction, we also have
(ei,uy =0, 1<i<n, and (u,u)=—1.

Therefore, eq,...,e,,u are the column vectors of a Lorentz matrix A such that Ae,,; = u,
proving our assertion. O

Let us find the stabilizer of e,,4; = (0,...,0,1). We must have Ae, ;1 = €,.1, and the
polar form implies that
A= <€ (D ,  with P € SO(n).
Therefore, the stabilizer of e, is isomorphic to SO(n), and we conclude that #H (1), as a
homogeneous space, is

1+ (1) 22 SOy (n, 1)/SO(n).

We will return to this homogeneous space in Chapter 22, and see that it is actually a
symmetric space.

We end this section by showing that the Lorentz group SOq(n, 1) is connected. Firstly, it
is easy to check that SOg(n, 1) and H,F (1) satisfy the assumptions of Theorem 4.14 because
they are both manifolds, although this notion has not been discussed yet (but will be in
Chapter 7). Since the action -: SOg(n,1) x H} (1) — H;(1) of SOg(n,1) on H;} (1) is
transitive, Theorem 4.14 implies that as topological spaces,

SO(n,1)/SO(n) = HI(1).

We already showed that (1) is connected, so by Proposition 4.8, the connectivity of
SOq(n, 1) follows from the connectivity of SO(n) for n > 1. The connectivity of SO(n)
is a consequence of the surjectivity of the exponential map (for instance, see Gallier [48],
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Chapter 14) but we can also give a quick proof using Proposition 4.8. Indeed, SO(n + 1)
and S™ are both manifolds and we saw in Section 4.2 that

SO(n +1)/SO(n) 2 S™.

Now, S™ is connected for n > 1 and SO(1) = S' is connected. We finish the proof by
induction on n.

Corollary 5.11. The Lorentz group SQOg(n, 1) is connected; it is the component of the
identity in O(n,1).

5.2 The Lie Algebra of the Lorentz Group SOg(n,1)

In this section we take a closer look at the Lorentz group SOg(n, 1), and in particular, at the
relationship between SOq(n, 1) and its Lie algebra so(n, 1). The Lie algebra of SOg(n, 1) is
easily determined by computing the tangent vectors to curves ¢t — A(t) on SOg(n, 1) through
the identity I. Since A(t) satisfies

T o B (I, O
AJA—J, J— n,l_(o _1)7

differentiating and using the fact that A(0) = I, we get
ATJ+JA =0.

Therefore,

s0(n,1) = {A € My (R) | ATJ + JA =0},

Since J = J ', this means that JA is skew-symmetric, and so

B u n T

50(”, 1) = UT 0 € Mn+1(R) | u €R s B'=—-B;.
Since J? = I, the condition ATJ 4+ JA = 0 is equivalent to
AT = —JAJ

Observe that every matrix A € so(n, 1) can be written uniquely as

B uw\ (B 0 n 0 u

w0/ \0 0 u' 0)°

where the first matrix is skew-symmetric, the second one is symmetric, and both belong to
so0(n,1). Thus, it is natural to define

éz{(? 8) | B € M,,(R), BT:—B},
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p={<u0T 3) |ueR”}.

It is immediately verified that both £ and p are subspaces of so(n, 1) (as vector spaces) and
that ¢ is a Lie subalgebra isomorphic to so(n), but p is not a Lie subalgebra of so(n,1)
because it is not closed under the Lie bracket. Still, we have

and

e ce [eplCp [pp]CE
Clearly, we have the direct sum decomposition
so(n,1) =t D p,

known as Cartan decomposition.

There is also an automorphism of so(n, 1) known as the Cartan involution, namely
0(A) = —-AT = JAJ,
and we see that
t={Aecso(n,1)]|0(A)=A} and p={A€so(n1)|0(A)=—-A}

The involution 6 defined on so0(n, 1) is the derivative at I of the involutive isomorphism o of
the group SOq(n,1) also defined by

o(A)=JAJ, A€ SOy(n,l).

To justify this claim, let v(¢) be a curve in SOy(n, 1) through /. Define h(t) = o o y(t) =
J7(t)J. The product rule implies A'(0) = J+/(0).J. On the other hand, the chain rule implies
h'(0) = Doy o~/(0). Combining the two equivalent forms of A’(0) implies Do (X) = JXJ,
whenever X € SOg(n, 1).

Since the inverse of an element A € SOg(n, 1) is given by A=t = JATJ, we see that o is
also given by

Unfortunately, there does not appear to be any simple way of obtaining a formula for
exp(A), where A € so(n,1) (except for small n—there is such a formula for n = 3 due to
Chris Geyer). However, it is possible to obtain an explicit formula for the matrices in p.
This is because for such matrices A, if we let w = ||u|| = VuTu, we have

A% = WA,

Thus we get
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Proposition 5.12. For every matriz A € p of the form
0 u
A= (UT O) )

(coshw—1) T sinhw sinh?w,, T sinhw
ed = (In + Loz uu w u) = I + Tz uu Tw 4.

we have

sinhw, T

sinhw, T
Tw U coshw u coshw

w w

Proof. Using the fact that A3 = w?A, we easily prove (by adjusting the calculations of

Section 1.1) that
sinh w coshw — 1

et =T+ A+ A%

w w?

which is the first equation of the proposition, since

42 wu' 0 _ wu' 0
N0 ww) L0 W)

We leave as an exercise the fact that

2 :
(In + —(cosha; - 1)uuT) =1, + smhj “u
w w

O

It clear from the above formula that each e® with B € p is a Lorentz boost. Conversely,
every Lorentz boost is the exponential of some B € p, as shown below.

Proposition 5.13. Fvery Lorentz boost

e (v]n—l—va v)

UT C

with ¢ = 4/ HUH2 +1, is of the form A = P for some B € p; that is, for some B € so0(n, 1)

of the form
0 wu
B- (uT 0) .

Proof. Given

we need to find some
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such that A = e®. This is done by solving the equation

<\/In + Sinulj;”uuT Sinf“u) _ <\/ I, +vv' v)

T

sinhw,, T v C

U cosh w
w

with w = ||ju| and ¢ = y/||v]|> +1. When v = 0, we have A = I, and the matrix B = 0
corresponding to u = 0 works. So assume v # 0. In this case, ¢ > 1. We have to solve the

equation coshw = ¢, that is,
e —2ce” +1=0.

The roots of the corresponding algebraic equation X2 — 2¢X + 1 = 0 are

X=ct+vc2-1.

As ¢ > 1, both roots are strictly positive, so we can solve for w, say w = log(c++v/¢? — 1) # 0.
Then, sinhw # 0, so we can solve the equation

sinh w
U=
w
for u, which yields a B € so(n, 1) of the right form with A = e®. O

Combining Proposition 5.2 and Proposition 5.13, we have the corollary:

Corollary 5.14. Every matrizx A € O(n, 1) can be written as
9
T
0 e

where @ € O(n), e = +1, and u € R™.

)

Remarks:

(1) Tt is easy to show that the eigenvalues of matrices

0 wu
5= (. o)

are 0, with multiplicity n — 1, ||u||, and — |ju||. In particular, the eigenvalue relation
0 wu)\ [c c n
(2 (0)=r(0) e anes

du = Ac, u'c= .

implies

If A #0, c =% which in turn implies u'ud = A%d, i.e. A2 =u'u = [ul|®. Tf A =0,

u' ¢ = 0, which implies that c is in the n — 1-dimensional hyperplane perpendicular to
u. Eigenvectors are then easily determined.
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(2) The matrices B € so(n, 1) of the form

o --- 0 o
0 a 0

are easily seen to form an abelian Lie subalgebra a of so(n, 1) (which means that for
all B,C € a, [B,C] =0, i.e., BC = CB). Proposition 5.12 implies that any B € a as
above, we get

1 -+ 0 0 0
e’ =10 1 0 0

0 --- 0 cosha sinha

0 0 sinha cosha

The matrices of the form e? with B € a form an abelian subgroup A of SOg(n,1)
isomorphic to SOy(1,1). As we already know, the matrices B € so(n, 1) of the form

B 0

0 0)°
where B is skew-symmetric, form a Lie subalgebra € of so(n, 1). Clearly, £ is isomorphic
to so(n), and using the exponential, we get a subgroup K of SOg(n, 1) isomorphic to

SO(n). It is also clear that €N a = (0), but €@ a is not equal to so(n,1). What is the
missing piece?

Consider the matrices N € so(n, 1) of the form

0 —u u
N=[x" 0 0],
u' 0 0

where u € R™!. The reader should check that these matrices form an abelian Lie
subalgebra n of so(n, 1). Furthermore, since

B1 Uy U

so(n,1)= | —u{ 0 «
u' a0
By ur+u 0 0 0 0 0 —u u
=|l-u{ —u" 0 O0]l+|0 0 al+[u" 0 0],
0 0 0 0 a O w0 0
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where By € so(n — 1), u,u; € R" ! and a € R, we conclude that
so(n,1)=tdadn.

This is the Iwasawa decomposition of the Lie algebra so(n, 1). Furthermore, the reader
should check that every N € n is nilpotent; in fact, N® = 0. (It turns out that n is a
nilpotent Lie algebra, see Knapp [68]).

The connected Lie subgroup of SOg(n, 1) associated with n is denoted N and it can
be shown that we have the Twasawa decomposition of the Lie group SOg(n,1):

SOq(n,1) = KAN.

It is easy to check that [a,n] C n, so a @ n is a Lie subalgebra of so(n,1) and n is an
ideal of a®n. This implies that /N is normal in the group corresponding to a®n, so AN
is a subgroup (in fact, solvable) of SO¢(n, 1). For more on the Iwasawa decomposition,
see Knapp [68].

Observe that the image n of n under the Cartan involution 6 is the Lie subalgebra

0 uw u
n=<|—-u" 0 0 |ueR"!
u' 0 0

By using the Iwasawa decomposition, we can show that the centralizer of a, namely
{m € so(n,1) | ma = am whenever a € a}, is the Lie subalgebra

m= {(g 8) € M1 (R) | B€5o(n—1)}.

Hence
so(n,1)=mdadndn,
since
B uw w
so(n,1)= [ —u 0 «

By 00 000 0 (up —u)/2 (u—wuy)/2
=10 00]+(|0 0 al+|@—u)/2 0 0
0 00 0 a 0 (W7 —ul)/2 0 0
0 (u+wu)/2 (u+uy)/2
+ [ (—u" —u)/2 0 0
(u" +uj)/2 0 0
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where B; € so(n — 1), u,u; € R" ! and a € R. We also have
[m,n] Cn,

so m @ a @ n is a subalgebra of so(n, 1).

The group M associated with m is isomorphic to SO(n — 1), and it can be shown that
B = M AN is a subgroup of SOg(n,1). In fact,

SOy(n,1)/(MAN) = KAN/MAN = K/M = SO(n)/SO(n — 1) = §" .

It is customary to denote the subalgebra m & a by go, the algebra n by g;, and n by
g_1, so that so(n,1) =m @ adn@n is also written

so(n,1) =go® g1 D 1.
By the way, if N € n, then
1
eN=IT+N+ §N2,

and since N + 1N? is also nilpotent, e can’t be diagonalized when N # 0. This
provides a simple example of matrices in SOq(n, 1) that can’t be diagonalized.

Observe that Corollary 5.14 proves that every matrix A € SOg(n, 1) can be written as

A= Pe®, with P € K2 8S0(n) and S € p,

SOo(n, 1) = K exp(p),

a version of the polar decomposition for SOg(n, 1).

5.3 The Surjectivity of exp: so(1,3) — SOy(1, 3)

It is known that the exponential map exp: so(n) — SO(n) is surjective. So when A €
SOy(n, 1), since then @ € SO(n) and € = +1, the matrix

(@)

is the exponential of some skew symmetric matrix

B 0
C= (0 O> € so(n, 1),
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and we can write A = e%e?, with C' € £ and Z € p. Unfortunately, C' and Z generally don’t
commute, so it is generally not true that A = ¢“+#. Thus, we don’t get an “easy” proof of
the surjectivity of the exponential, exp: so(n, 1) — SOg(n, 1).

This is not too surprising because to the best of our knowledge, proving surjectivity for
all n is not a simple matter. One proof is due to Nishikawa [90] (1983). Nishikawa’s paper is
rather short, but this is misleading. Indeed, Nishikawa relies on a classic paper by Djokovic
[37], which itself relies heavily on another fundamental paper by Burgoyne and Cushman
[26], published in 1977. Burgoyne and Cushman determine the conjugacy classes for some
linear Lie groups and their Lie algebras, where the linear groups arise from an inner product
space (real or complex). This inner product is nondegenerate, symmetric, or Hermitian
or skew-symmetric or skew-Hermitian. Altogether, one has to read over 40 pages to fully
understand the proof of surjectivity.

In his introduction, Nishikawa states that he is not aware of any other proof of the
surjectivity of the exponential for SOg(n, 1). However, such a proof was also given by Marcel
Riesz as early as 1957, in some lectures notes that he gave while visiting the University of
Maryland in 1957-1958. These notes were probably not easily available until 1993, when
they were published in book form, with commentaries, by Bolinder and Lounesto [97].

Interestingly, these two proofs use very different methods. The Nishikawa-Djokovic—
Burgoyne and Cushman proof makes heavy use of methods in Lie groups and Lie algebra,
although not far beyond linear algebra. Riesz’s proof begins with a deep study of the
structure of the minimal polynomial of a Lorentz isometry (Chapter III). This is a beautiful
argument that takes about 10 pages. The story is not over, as it takes most of Chapter IV
(some 40 pages) to prove the surjectivity of the exponential (actually, Riesz proves other
things along the way). In any case, the reader can see that both proofs are quite involved.

It is worth noting that Milnor (1969) also uses techniques very similar to those used by
Riesz (in dealing with minimal polynomials of isometries) in his paper on isometries of inner
product spaces [82].

What we will do to close this section is to give a relatively simple proof that the expo-
nential map exp: s0(1,3) — SOg(1,3) is surjective. The reader may wonder why we are
considering the groups SOg(1,3) instead of the group SOy(3,1). This is simply a matter of
technical convenience, for instance, in the proof of Proposition 5.17.

In the case of SOg(1,3), we can use the fact that SL(2,C) is a two-sheeted covering
space of SOp(1,3), which means that there is a homomorphism ¢: SL(2,C) — SOy(1, 3)
which is surjective and that Ker ¢ = {—1I,I}. Then the small miracle is that, although the
exponential exp: s[(2,C) — SL(2,C) is not surjective, for every A € SL(2,C), either A or
—A is in the image of the exponential!

Proposition 5.15. Given any matrix
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let w be any of the two complex roots of a®> + be. If w # 0, then

sinh w
eB = coshw I +

B

Y

w

and e? = I + B if a®> + bc = 0. Furthermore, every matriz A € SL(2,C) is in the image of
the exponential map, unless A = —I + N, where N is a nonzero nilpotent (i.e., N* = 0 with
N #0). Consequently, for any A € SL(2,C), either A or —A is of the form e, for some
B € s1(2,C).

Proof. Observe that

Then, it is straightforward to prove that

inh
e? =coshwl + SIh @

B,
w

where w is a square root of a? + be if w # 0, otherwise, e = I + B.

Let
A= (j ?) ad — B =1

be any matrix in SL(2,C). We would like to find a matrix B € s[(2,C) so that A = ¢, In
view of the above, we need to solve the system

sinh w
coshw + a = «
w
sinh w
coshw — a = 0
w
sinh w
b =
w
sinh w
c = 7
w

for a, b, c, and w. From the first two equations we get

coshw = at9
2
sinh w a—0
a =
w 2

Thus, we see that we need to know whether complex cosh is surjective and when complex
sinh is zero. We claim:

(1) cosh is surjective.
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(2) sinhz = 0 iff z = n7i, where n € Z.
Given any ¢ € C, we have coshw = c iff
e* —2e¥c+1=0.
The corresponding algebraic equation
Z*—2cZ+1=0
has discriminant 4(c?* — 1) and it has two complex roots

J=ctvVc?-1

where v/c2 — 1 is some square root of ¢2 — 1. Observe that these roots are never zero.
Therefore, we can find a complex log of ¢ + v/¢? — 1, say w, so that ¥ = c+ 2 —11is a
solution of e — 2e“c + 1 = 0. This proves the surjectivity of cosh.

We have sinhw = 0 iff €2 = 1; this holds iff 2w = n27i, i.e., w = nmi.

Observe that

ol i inh nmi
=0 ifn A0, but =1 whenn =0,
nmi nm
We know that
a—+9
coshw = 5

can always be solved.
Case 1. If w # nmi, with n # 0, then

sinh w

£0

and the other equations can also be solved (this includes the case w = 0). We still have to
check that

w

a® + be = W2,
a+0

This is because, using the fact that coshw = “3*, ad — fy =1, and cosh? w — sinh?w = 1,

we have
(@ —0)%w® = pyu?
4 sinh? w sinh? w
w?(a® + 0% — 2ad + 437)
4 sinh? w
w?(a? + 0% + 2a — 4(ad — By))
4 sinh? w
w?((a +0)* — 4(ad — B7))
4sinh? w
_ 4dw*(cosh’w — 1)
B 4sinh?® w

= (JJ2.

a’ 4 be =
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Therefore, in this case, the exponential is surjective. It remains to examine the other case.

Case 2. Assume w = nmi, with n #£ 0. If n is even, then e* = 1, which implies
a+o6=2.

However, ad — By = 1 (since A € SL(2,C)), so from the facts that det(A) is the product
of the eigenvalues and tr(A) is the sum of the eigenvalues, we deduce that A has the double
eigenvalue 1. Thus, N = A — I is nilpotent (i.e., N*> = 0) and has zero trace; but then,
N € 5l(2,C) and
eN=I+N=I+A-1=A
If n is odd, then e¥ = —1, which implies
a+do=-2.

In this case, A has the double eigenvalue —1 and A + I = N is nilpotent. So A= -1+ N,
where N is nilpotent. If N # 0, then A cannot be diagonalized. We claim that there is no
B € sl(2,C) so that e = A.

Indeed, any matrix B € sl(2,C) has zero trace, which means that if A; and Ay are the
eigenvalues of B, then A\; = —\,. If A\; £ 0, then A\; # A\ so B can be diagonalized, but then
Proposition 1.4 implies that e? can also be diagonalized, contradicting the fact that A can’t
be diagonalized. If A\; = Ay = 0, then e? has the double eigenvalue +1, but by Proposition
1.4, A has eigenvalues —1. Therefore, the only matrices A € SL(2,C) that are not in the
image of the exponential are those of the form A = —I + N, where NV is a nonzero nilpotent.
However, note that —A = I — N is in the image of the exponential. O

Remark: If we restrict our attention to SL(2,R), then we have the following proposition
that can be used to prove that the exponential map exp: so(1,2) — SOq(1, 2) is surjective:

Proposition 5.16. Given any matrix

B= (a b) € sl(2,R),
C a

if a®> +bc > 0, then let w = va? +bc > 0, and if a®> + bc < 0, then let w = \/—(a? + bc) > 0
(i.e., w? = —(a® +bc)). In the first case (a* +bc > 0), we have

B sinh w

e” =coshw I + B,
w
and in the second case (a* +bc < 0), we have
sin w
ef =coswl + B.
w

If a®> + bc = 0, then e® = I + B. Furthermore, every matriz A € SL(2,R) whose trace
satisfies tr(A) > —2 is in the image of the exponential map, unless A = —I + N with N # 0
nilpotent. Consequently, for any A € SL(2,R), either A or —A is of the form B, for some
B € s1(2,R).
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Proof. For any matrix

B= (a b) € sl(2,R),
C a

some simple calculations show that if a® 4+ bc > 0, then

inh
eB = coshw I + s wB
w
with w = Va2 + be > 0, and if a® + be < 0, then
eB:cosz—I—SmwB

with w = /—(a? +bc) > 0 (and e? = I + B when a® + bc = 0). Let
_ (> B By
A—(7 5), a)—pPy=1
be any matrix in SL(2,R).

First, assume that tr(A) = a4+ J > 2. We would like to find a matrix B € sl(2,R) so
that A = e®. In view of the above, we need to solve the system

sinh w
coshw + a = «
w
inh
coshw—Sln wa =
w
sinh w
b = f
w
sinh w
c = 7
w

for a,b, c, and w. From the first two equations we get

coshw = ot
2
sinh w a—0
a =
w 2

As in the proof of Proposition 5.15, coshw = ¢ iff ¥ is a root of the quadratic equation

7?2 —27+1=0.

a+d
2

real roots. Furthermore, the root ¢ + v/¢? — 1 is greater than 1, so logc is a positive real
number. Then, as in the proof of Proposition 5.15, we find solutions of our system above.
Moreover, these solutions are real and satisfy a? + be = w?.

This equation has real roots iff ¢> > 1, and since ¢ = and a 4+ 0 > 2, our equation has
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Let us now consider the case where —2 < a4+ < 2. This time we try to solve the system

sin w
Ccosw + a=«
w
sin w
CoSw — a=20
w
sin w
b=7
w
sin w
c=r.
w
We get
a+o
CosSw =
2
sin w a—0
a =
w 2

Because —2 < o+ § < 2, the first equation has (real) solutions, and we may assume that
0<w<m.

If w = 0 is a solution, then o + f = 2 and we already know via the arguments of
Proposition 5.15 that N = A — I is nilpotent and that ¢V = I + N = A. If w = 7, then
a+ [ = —2 and we know that N = A+ 1 is nilpotent. If N = 0, then A = —I, and otherwise
we already know that A = —I + N is not in the image of the exponential.

If 0 < w < 7, then sinw # 0 and the other equations have a solution. We still need to

check that

a’® + be = —w?.

Because cosw = O‘TH, ad — fy =1 and cos?w + sin?w = 1, we have

(0 —6)’w® = Py’
4sin® w * sin? w
_ w(a? + 0% — 200 + 453y)
B 4 sinh® w
w(a? + 62 4+ 2ad — 4(ad — 7))

a® +be =

4sin®w

w?((a+0)* — 4(ad — 7))

4sin® w
4w (cos?w — 1)
- 4sin’ w

= —w2.

This proves that every matrix A € SL(2,R) whose trace satisfies tr(A) > —2 is in the image
of the exponential map, unless A = —I + N with N # 0 nilpotent. m
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We now return to the relationship between SL(2,C) and SOy(1,3). In order to define a
homomorphism ¢: SL(2,C) — SOy(1, 3), we begin by defining a linear bijection h between
R* and H(2), the set of complex 2 x 2 Hermitian matrices, by

t+x y—1iz
R el

Those familiar with quantum physics will recognize a linear combination of the Pauli matri-
ces! The inverse map is easily defined For instance, given a Hermitian matrix

(a b), a,deR, c¢=beC
c d

a b\ [(t+x y—iz
b d)]  \y+iz t—a)’

a-+d a—d b+b b—b
t: 7:1;: 7y: 7Z: . *
2 21

by setting

we find that

For any A € SL(2,C), we define a map l4: H(2) — H(2), via
S — ASA*.

(Here, A* = ZT.) Using the linear bijection h: R* — H(2) and its inverse, we obtain a map
lors: R* — R?*, where
lory=h"tolyoh.

As ASA* is Hermitian, we see that [, is well defined. It is obviously linear and since
det(A) =1 (recall, A € SL(2,C)) and

det(t—i_?j y—zz) =t —a? —y? —
y+iz t—ux

we see that lory preserves the Lorentz metric! Furthermore, it is not hard to prove that
SL(2,C) is connected (use the polar form or analyze the eigenvalues of a matrix in SL(2, C),
for example, as in Duistermatt and Kolk [43] (Chapter 1, Section 1.2)) and that the map
¢: SL(2,C) — GL(4,R) with

¢: A lory

is a continuous group homomorphism. Thus the range of ¢ is a connected subgroup of
SOq(1,3). This shows that ¢: SL(2,C) — SOy(1, 3) is indeed a homomorphism. It remains
to prove that it is surjective and that its kernel is {/, —1}.
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Proposition 5.17. The homomorphism ¢: SL(2,C) — SOq(1, 3) is surjective and its kernel
is {I,—1}.

Proof. Recall that from Theorem 5.5, the Lorentz group SOq(1,3) is generated by the ma-
trices of the form

1 0 .
<O P> with P € SO(3)

and the matrices of the form

cosha sinha 0 0
sinha cosha 0 0
0 0 10
0 0 01

Thus, to prove the surjectivity of ¢, it is enough to check that the above matrices are in the
range of ¢. For matrices of the second kind

does the job. Let e, e, e3, and e4 be the standard basis for R%. Then

lora(e)) =htolpoh(e)) =htoly ((é ?))

o (fe* 0 (et te et —e®
(i )= ()

= (cosh a, sinh v, 0, 0).

Similar calculations show that

lor4(es) = (sinh o, cosh v, 0, 0)
lora(es) = (0,0,1,0) lora(es) = (0,0,0,1).

For matrices of the first kind, we recall that the group of unit quaternions ¢ = al+bi+cj+dk
can be viewed as SU(2), via the correspondence

. . a+1ib cH+1id

al +bi+ c¢j + dk — (—c+id a—ib) ,

where a,b,c,d € R and a? + b* + ¢ + d*> = 1. Moreover, the algebra of quaternions H is

the real algebra of matrices as above, without the restriction a? + b? + ¢2 + d? = 1, and R?

is embedded in H as the pure quaternions, i.e., those for which a = 0. Observe that when

a =0,
b ct+id) . b d—ic) .
(—c+id —z‘b>_2(d—|—ic —b )-zh(O,b,d,c).
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Therefore, we have a bijection between the pure quaternions and the subspace of the Her-

mitian matrices
b d—ic
d+1ic —b

for which a = 0, the inverse being division by 4, i.e., multiplication by —i. Also, when ¢ is a
unit quaternion, let § = al — bi — ¢j — dk, and observe that § = ¢~!. Using the embedding
R? < H, for every unit quaternion ¢ € SU(2), define the map p,: R* — R? by

py(X) = qXq=qXq ",

for all X € R® — H. It is well known that p, is a rotation (i.e., p, € SO(3)), and moreover
the map ¢ — p, is a surjective homomorphism p: SU(2) — SO(3), and Ker ¢ = {I, -1}
(For example, see Gallier [48], Chapter 8).

Now consider a matrix A of the form

1 0 :
(0 P) with P € SO(3).

We claim that we can find a matrix B € SL(2,C), such that ¢(B) = lorg = A. We claim
that we can pick B € SU(2) C SL(2,C). Indeed, if B € SU(2), then B* = B™!, so

B t+g: Yy—1z) pe _y 10 B i z—i—lzy Bl
y+iz t—=x 01 —z -+ —ix

The above shows that lorg leaves the coordinate ¢ invariant. The term

B( 1 . z+.iy> g

—z+wy -

is a pure quaternion corresponding to the application of the rotation pg induced by the unit
quaternion B to the pure quaternion associated with (z,y,z) and multiplication by —i is

just the corresponding Hermitian matrix, as explained above. But, we know that for any
P € SO(3), there is a unit quaternion B so that pg = P, so we can find our B € SU(2) so

that
1 0
lorg = (O P) =A.

Finally, assume that ¢(A) = lory = I. This means that
ASA* =5,

for all Hermitian matrices S defined above. In particular, for S = I, we get AA* =1, i.e.,
A € SU(2). Thus
AS =S5A
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for all Hermitian matrices S defined above, so in particular, this holds for diagonal matrices

of the form
t+x 0
0 t—x)’

with ¢t +x #t — x. We deduce that A is a diagonal matrix, and since it is unitary, we must
have A = 4+1. Therefore, Ker ¢ = {I, —TI}. O

Remark: The group SL(2,C) is isomorphic to the group Spin(1,3), which is a (simply-
connected) double-cover of SOq(1,3). This is a standard result of Clifford algebra theory;
see Brocker and tom Dieck [24] or Fulton and Harris [46]. What we just did is to provide a
direct proof of this fact.

We just proved that there is an isomorphism

However, the reader may recall that SL(2,C)/{I,—I} = PSL(2,C) = Méb". Therefore,
the Lorentz group is isomorphic to the Mobius group.

We now have all the tools to prove that the exponential map exp: so(1,3) — SOy(1,3)
is surjective.

Theorem 5.18. The exponential map exp: s0(1,3) — SOy(1,3) is surjective.

Proof. First recall from Proposition 3.13 that the following diagram commutes:

SL(2,C) —2~ S0,(1,3).

exp T T exp

50(2,C) Tm>50(1’3)

Pick any A € SOq(1,3). By Proposition 5.17, the homomorphism ¢ is surjective and as
Ker¢ = {I,—1}, there exists some B € SL(2,C) so that

Now by Proposition 5.15, for any B € SL(2,C), either B or —B is of the form e“, for some
C € sl(2,C). By the commutativity of the diagram, if we let D = d¢;(C) € s0(1,3), we get

A= ¢(£ef) = ?1(O) = D

with D € so(1, 3), as required. ]
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Remark: We can restrict the bijection h: R* — H(2) defined earlier to a bijection between
R? and the space of real symmetric matrices of the form

t+z oy
y t—=x)°

Then, if we also restrict ourselves to SL(2,R), for any A € SL(2,R) and any symmetric
matrix S as above, we get a map
S ASAT

The reader should check that these transformations correspond to isometries in SOy(1,2)
and we get a homomorphism ¢: SL(2,R) — SOy(1,2). Just as SL(2,C) is connected, the
group SL(2,R) is also connected (but not simply connected, unlike SL(2, C)). Then we have
a version of Proposition 5.17 for SL(2,R) and SOy(1, 2):

Proposition 5.19. The homomorphism ¢: SL(2,R) — SOq(1,2) is surjective and its kernel
is {I,—1}.

Using Proposition 5.19, Proposition 5.16, and the commutative diagram

SL(2,R) —2~ S0,(1,2),

exp T T exp

5[(2, R) Tm>50(1, 2)

we get a version of Theorem 5.18 for SOy (1, 2):

Theorem 5.20. The exponential map exp: s0(1,2) — SOy(1,2) is surjective.

Also observe that SOg(1,1) consists of the matrices of the form
A cosha sinha

~ \sinha cosha)’
and a direct computation shows that
0 «

A\ 0] (cosha sinha

~ \sinha cosha /)’
Thus, we see that the map exp: so(1,1) — SOy(1,1) is also surjective. Therefore, we have

proved that exp: so(1,n) — SOg(1,n) is surjective for n = 1,2,3. This actually holds for
all n > 1, but the proof is much more involved, as we already discussed earlier.
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5.4 Problems

Problem 5.1. Define ¢ and p by

and

(1) Check that both € and p are subspaces of so(n, 1) (as vector spaces) and that € is a
Lie subalgebra isomorphic to so(n).

(2) Show that p is not a Lie subalgebra of so(n, 1) because it is not closed under the Lie
bracket. Still, check that
Lece [eplCp [pplCt

Problem 5.2. Consider the subset n of so(n, 1) consisting of the matrices of the form

0 —u u
N=[x" 0 0],
u' 0 0

where u € R,
(1) Check that n is an abelian Lie subalgebra of so(n, 1).
(2) Prove that every N € n is nilpotent; in fact, N® = 0.

(3) Prove that [a,n] C n, and that a @ n is a Lie subalgebra of so(n, 1) and n is an ideal
of a ®n.

Problem 5.3. The map
e (50,0 )

Y t—x

is a bijection between R3 and the space of real symmetric matrices of the above form. For
any A € SL(2,R) and any symmetric matrix S as above, we get a map

S ASAT.

(1) Check that these transformations correspond to isometries in SOy (1, 2), and that we
get a homomorphism ¢: SL(2,R) — SOy(1,2).

(2) Prove Proposition 5.19, namely that the homomorphism ¢: SL(2,R) — SOy(1,2) is
surjective and its kernel is {I, —1}.



Chapter 6

The Structure of O(p,q) and SO(p, q)

In this chapter, we take a closer look at the stucture of the groups O(p,q) and SO(p,q)
(also SOg(p, q)). We begin with the polar form of matrices in O(p, ¢), and then we describe
the topological structure of the groups O(p, q), SO(p, q), and SOq(p, q). For this, we briefly
investigate a class of groups called pseudo-algebraic groups.

6.1 Polar Forms for Matrices in O(p, q)

Recall from Section 5.1 that the group O(p, q) is the set of all n X n-matrices
O(p,q) = {A€ GL(n,R) | A", ,A=1,,}.

We deduce immediately that |det(A)] = 1, and we also know that AI,,A" = I,, holds.
Unfortunately, when p # 0,1 and ¢ # 0, 1, it does not seem possible to obtain a formula as
nice as that given in Proposition 5.2. Nevertheless, we can obtain a formula for a polar form
factorization of matrices in O(p, q).

Recall (for example, see Gallier [48], Chapter 12) that if S is a symmetric positive definite
matrix, then there is a unique symmetric positive definite matrix, 7, so that

S =172

We denote T by S 2 or V5. By S ’%, we mean the inverse of S2. In order to obtain the polar
form of a matrix in O(p, ¢), we begin with the following proposition:

Proposition 6.1. Every matriz X € O(p,q) can be written as

U 0 ar azZ’
X_(O V> (5%2 5z )
where « = (I, — Z"Z)™" and § = (I, — ZZ")™', for some orthogonal matrices U € O(p),

V € O(q) and for some q X p matriz, Z, such that I, — Z"Z and I, — ZZ" are symmetric
positive definite matrices. Moreover, U,V, Z are uniquely determined by X .

197
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A B
(& n)
with A a p x p matrix, D a ¢ X ¢ matrix, B a p X ¢ matrix and C' a ¢ X p matrix, then the
equations X "I, , X = I,, and X1, ,X" = I, , vield the (not independent) conditions

Proof. 1f we write

ATA = L,+C'C
D'D = I,+B'B
A'B = C'D
AAT = I,+ BB’
DD" = I,+CCT
ACT = BD'".

Since C'TC' is symmetric and since
' CTCx = ||Cx|” >0,

we see that CTC is a positive semi-definite matrix with nonnegative eigenvalues. We then
deduce, (via the argument used in Proposition 5.2), that AT A is symmetric positive definite
and similarly for D" D. If we assume that the above decomposition of X holds, we deduce
that

A = Uar=U(l,-Z'Z)2

B = Ua?Z =U(I,-2"2):2"
C = V6Z=V(I,-22")2Z

D = Vér=V(,—227),

which implies
Z=D'C and Z'" = A"'B.

We must check that
(D'C)T = A™'B

ie.,

C' (D' =A"B,

namely,

AC" =BD',

which is indeed the last of our identities. Thus, we must have Z = D71C = (A7'B)". The
above expressions for A and D also imply that

A'A=(I,-2'2)"" and D'D=(1,-22")"",
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so we must check that the choice Z = D7'C = (A71B)T yields the above equations.
Since Z' = A7'B, we have
Z'Z = AT'BBT(AT)™!
= ATNAAT — L) (AT since AA" =I,+ BB"

— [p o A—l(AT)—l
= I,— (ATA)™.
Therefore,
ATA ' =1,-2"Z,
ie.,

ATA=(1,-2"2)7!
as desired. We also have, this time, with Z = D71,
77" = D'coc™(D")
DYDD" - 1,)(D")™',  since DD =1,+CC"T
= I,—-D D"
= I,—(D"D)™"

Y

Therefore,
(D'DY'=1,-27",
ie.,
D'D=(,—-2Z")",
as desired. Now since AT A and DT D are positive definite, the polar form implies that
A=UATA): =U,—-Z"2)2
and . )
D=V(D'D):=V(,—ZZ")"z,
for some unique matrices, U € O(p) and V € O(q). Since Z = D™'C and ZT = A™'B, we
get C = DZ and B = AZ", but this is

B = Ul,-2"2) 22"
C = V(I,-22"):Z

as required. Therefore, the unique choice of Z = D™'C' = (A7'B)", U and V does yield the
formula of the proposition. O

We next show that the matrix

az a2Z"\  ((I,—-Z7TZ2): (I,—ZTZ):ZT
022 o3 (I,— 22732 (I,—ZZ7)s

is symmetric. To prove this we use power series.
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Proposition 6.2. For any q x p matriz Z such that I, — Z"Z and I, — ZZ" are symmetric

positive definite, the matriz
1 1
az a2z’
S=1. 1
027 o2

is symmetric, where « = (I, — Z'Z)™  and 6 = (I, — ZZ")~".

Proof. The matrix S is symmetric iff Zoz = 02 Z, that isiff Z(I,—Z72Z)"2 = (I,—ZZ") 27
ift
(I,— 22" Z=2(,— 7' Z)z.

If Z = 0, the equation holds trivially. If Z # 0, we know from linear algebra that ZZ7T
and Z'Z are symmetric positive semidefinite, and they have the same positive eigenvalues.
Thus, I, — Z7Z is positive definite iff I,-727 T is positive definite, and if so, we must have
p(ZZ") = p(Z7Z) < 1 (where p(ZZ") denotes the largest modulus of the eigenvalues of
ZZ " in this case, since the eigenvalues of ZZ " are nonnegative, this is the largest eigenvalue
of ZZT). If we use the spectral norm || || (the operator norm induced by the 2-norm), we
have

1227\ = Vol(ZZT) 227) = p(227) < 1,

and similarly
|27 Z||=p(Z2"Z) < 1.

Therefore, the following series converge absolutely:

(I,-Z"2)s =1+ %ZTZ - é(ZTZ)Q SO 1€ S & 'é!(% mla) (Z72)* +
and

(I, — 2Z7)} :1+%ZZT—%(ZZT)2+---+%(%_1)"1;!(%_“1)(ZZT)’“+--- .
We get
Z(I,— 27T 2) = Z + %ZZTZ - éZ(ZTZ)Z by 2GTY .1%!(% —k+1) AVADALEE

and

N |—

1 1 1) (E-k+1
(Iq—ZZT)%ZzZ+§ZZTZ—§(ZZT)QZ+---+ (-1 k,(Q )(ZZT)kZ+---

However

22"V =272"2---2"2=22"..22" 7 =(ZZ2")*Z,
k k

which proves that (I, — ZZ7)2Z = Z(I, — Z" Z)z, as required. O
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Another proof of Proposition 6.2 can be given using the SVD of Z. Indeed, we can write
Z =PDQ"

where P is a ¢ x q orthogonal matrix, () is a p X p orthogonal matrix, and D is a ¢ X p matrix
whose diagonal entries are (strictly) positive and all other entries zero. Then,

I,—Z2"Z=1,-QD"P"PDQ" =Q(I,— D'D)QT,

a symmetric positive definite matrix by assumption. Furthermore,
1 1
(I, -Z"Z)2 =Q(,— DD")2Q" since

Q(I,— DD):Q"Q(I,— DD")2Q" =Q(I, — D' D)Q".

We also have
I,-2Z2"=1,-PDQ'QD"P" = P(I,— DD")P",

another symmetric positive definite matrix by assumption, which has unique square root
1 1
(I,—ZZ"): = P(I,— DD")2P". Then,

Z(I,—Z'Z)"2 = PDQ"Q(I, — D'D)2Q" = PD(I, — D' D)"2Q"
and ) ) )

(I,- 22"y 2:Z=P(I,—~DD")2P"PDQ" = P(I,— DD")2DQ",
so it suffices to prove that

D(I,—D'D) % = (I,— DD")"2D.

However, D is essentially a diagonal matrix and the above is easily verified, as the reader
should check.

Remark: The polar form of matrices in O(p, ¢) can be obtained wvia the exponential map
and the Lie algebra, o(p, q), of O(p, q), see Section 6.3. Indeed, every matrix X € O(p, q)

has a polar form of the form
(P 0 S1 Sy
(o) (3 %)

51
S

S; S x
T (T 1 02
z' ' Six= (x 0) (S; 53) (O) >0

for all x € RP, z # 0, and that

S; S 0
TSy = (0 y" 1 2) < ) >0

with P € O(p),Q € O(g), and with (
that

S2> symmetric positive definite. This implies
3
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for all y € R?, y # 0. Therefore, S; and S35 are symmetric positive definite. But then if we

write
A B
(¢ n),

A BY (P 0)\[S 5
(e 0)- (0 o) (& &)

we get A = PS; and D = (S5, which are polar decompositions of A and D respectively. On
the other hand, our factorization

A B\ (U 0\[az a2Z"

C D) \0 V)\szz 42
yields A = Ua? and D = V3, with U € O(p),V € O(q), and oz, 83 symmetric positive
definite. By uniqueness of the polar form, P = U,Q =V (S = oz and S; = 5%), which
shows that our factorization is the polar decomposition of X after alll This can also be

proved more directly using the fact that [ — Z'Z (and I — ZZ") being positive definite
implies that the spectral norms || Z|| and ||ZT|| of Z and ZT are both strictly less than one.

from

We also have the following amusing property of the determinants of A and D:

Proposition 6.3. For any matrizx X € O(p,q), if we write
A B
(¢ )

det(X) = det(A) det(D)™! and |det(A)| = |det(D)| > 1.

then

Proof. Using the identities ATB = C"D and D'D = I, + BT B proven in Proposition 6.1,
observe that

AT 0 \ (A B\ _ ATA ATB _(ATA A'B
BT -p")\c p)~\B'A-D'Cc B'B-D'D)"\ 0 -I,)

If we compute determinants, we get
det(A)(—1)?det(D) det(X) = det(A)*(—1)%.

It follows that
det(X) = det(A) det(D) .

From ATA = [,+C7C and D" D = I,+B" B, we conclude, via an eigenvalue argument, that
|det(A)| > 1 and |det(D)| > 1. Since |det(X)| = 1, we have |det(A)| = |det(D)| > 1. O
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Remark: It is easy to see that the equations relating A, B, C, D established in the proof of
Proposition 6.1 imply that

det(A) =+1 iff C=0 iff B=0 iff det(D)=+1.

We end this section by exhibiting a bijection between O(p, ¢) and O(p) x O(q) x RP4, and
in essence justifying the statement that SOg(p, q) is homeomorphic to SO(p) x SO(g) x R4,
The construction of the bijection begins with the following claim: for every ¢ x p matrix Y,
there is a unique ¢ x p matrix Z such that I, — Z 7T is positive definite symmetric matrix
and

(I,—22") 22 =Y, (+)
given by 1
Z =, +YYT)2Y.

To verify the claim, we start with a given Y and define Z = (I, + YYT)~2Y, and show
that Z satisfies (x). Indeed, I, + YY" is symmetric positive definite, and we have

ZZT = (L + YY) :YY (I, + YY) =
= 2L, +YY T —I)(I,+YYT)2
=I,—(I,+YY")™

,HYYT)T2

SO
I,—2Z" =, +YY )™

from which we deduce that I, — ZZ" is positive definite (since it is the inverse of a positive

definite matrix, and hence must have positive eigenvalues). Note that [, — ZZ" is also

symmetric since it is the inverse of a symmetric matrix. It follows that

(I, — 272"y 2Z =(I,+YY ):(I,+ YY) 2y =Y,
which shows that Z = (I, + YYT)"2Y is a solution of (x).

We now verify the uniqueness of the solution. Assume that Z is a solution of (x). Then
we have

YY ' =(1,- 22" 222 (I,— ZZ") "=
=(I,~22") (I, ~ (I, = ZZ")(I, = 22") ">
=(,-2z")"~ 1,
so (I, —ZZ")"' =1,+ YY", which implies that
Z=(I,—227)2Y = (I,+ YY) 2Y.

Therefore, the map Y — (I, + YYT)’%Y is a bijection between R?% and the set of ¢ x p
matrices Z such that I, — ZZT is symmetric positive definite, whose inverse is the map

Z (I, — 22732 =622.
As a corollary, there is a bijection between O(p, q) and O(p) x O(q) x R,
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6.2 Pseudo-Algebraic Groups

The topological structure of certain linear Lie groups determined by equations among the
real and the imaginary parts of their entries can be determined by refining the polar form of
matrices. Such groups are called pseudo-algebraic groups. For example, the groups SO(p, q)
and SU(p, ¢) are pseudo-algebraic, where U(p, q) is the set of all n x n-matrices

U(p,q) = {A € GL(n,C) | AL, ;A = 1,4},
and SU(p, q) is the subgroup
SU(p,q) = {A € U(p,q) | det(A4) = 1}.

Consider the group GL(n,C) of invertible n x n matrices with complex coefficients. If
A = (ag) is such a matrix, denote by zy; the real part (resp. yx, the imaginary part) of ay
(so,akl::xkl%—iym).

Definition 6.1. A subgroup G of GL(n,C) is pseudo-algebraic iff there is a finite set of
polynomials in 2n? variables with real coefficients {P;(Xi, ..., X,2,Y3,... ,Y2) 5y, so that

A= (zy+iyy) € G it Pj(z11,.. ., Tpns Va1, Ynn) =0, forj=1,.... ¢

Since a pseudo-algebraic subgroup is the zero locus of a set of polynomials, it is a closed
subgroup, and thus a Lie group.

Recall that if A is a complex n x n-matrix, its adjoint A* is defined by A* = (A)T.
Also, U(n) denotes the group of unitary matrices, i.e., those matrices A € GL(n,C) so
that AA* = A*A = I, and H(n) denotes the vector space of Hermitian matrices i.e., those
matrices A so that A* = A.

The following proposition is needed.

Proposition 6.4. Let P(xq,...,x,) be a polynomial with real coefficients. For any (a, ...,
an) € R", assume that P(ek® ... e*) =0 for all k € N. Then,

P(e'™,....e") =0 forallteR.

Proof. Any monomial ax? ---z% in P when evaluated at ('™, ..., ef™) becomes ae! 2%,
Collecting terms with the same exponential part, we may assume that we have an expression

of the form
N N-1
P(ef ... ') = E apet™ = ayet™ + E age'
k=1 k=1

which vanishes for all £ € N. We may also assume that oy # 0 for all k£ and that the b, are
sorted so that by < by < -+ < by. Assume by contradiction that N > 0. If we multiply
the above expression by e~ by relabeling the coefficients b, in the exponentials, we may
assume that by < by < --- < by_1 < 0 = by. Now, if we let ¢ go to +00, the terms ae'® go
toOfor k=1,...,N — 1, and we get any = 0, a contradiction. O
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We now have the following theorem which is essentially a refined version of the polar
decomposition of matrices:

Theorem 6.5. Let G be a pseudo-algebraic subgroup of GL(n,C) stable under adjunction
(i.e., we have A* € G whenever A € G). There is some integer d € N so that G is
homeomorphic to (GNU(n)) x RY. Moreover, if g is the Lie algebra of G, the map

(Un)NG) x (H(n)Ng) — G given by (U, H) > Ue",
1s a homeomorphism onto G.

Proof. We follow the proof in Mneimné and Testard [86] (Chapter 3); a similar proof is given
in Knapp [68] (Chapter 1). First we observe that for every invertible matrix P, the group
G is pseudo-algebraic iff PGP~! is pseudo-algebraic, since the map X ~ PX P! is linear.

By the polar decomposition, every matrix A € GG can be written uniquely as A = US,
where U € U(n) and S € HPD(n). Furthermore, by Proposition 1.10, the matrix S can
be written (uniquely) as S = e} for some unique Hermitian matrix H € H(n), so we have
A = Ue!. We need to prove that H € g and that U € G. Since G is closed under adjunction,
A* € G, that is e'U* € G, so e'U*Uef = €2 € G. If we can prove that e’ € G for all
teR,then Hegande? € G,s0U ce A G.

Since 2H is Hermitian, it has real eigenvalues Aq,..., A, and it can be diagonalized as
2H = VAV~ where V is unitary and A = diag(\,...,\,). By a previous observation,
the group VGV ! is also pseudo-algebraic, so we may assume that 2H is a diagonal matrix
with real entries, and to say that e*7 € GG means that e, ..., e’ satisfy a set of algebraic
equations. Since G is a group, for every k € Z, we have e¥* € G, so e, ... eF M satisfy
the same set of algebraic equations. By Proposition 6.4, e, ... e satisfy the same set
of algebraic equations for all t+ € R, which means that e!’ € G for all t € R. It follows that
Hecg e cG andthusU ce A€ G.

For invertible matrices, the polar decomposition is unique, so we found a unique U €
U(n) NG and a unique matrix H € H(n) N g so that

A=Ue".

The fact that the map (U, H) — Ue!! is a homeomorphism takes a little bit of work. This
follows from the fact that polar decomposition and the bijection between H(n) and HPD(n)
are homeomorphisms (see Section 1.5); these facts are proved in Mneimné and Testard
[86]; see Theorem 1.6.3 for the first homeomorphism and Theorem 3.3.4 for the second
homeomorphism. Since H(n) N g is a real vector space, it is isomorphic to R¢ for some
d € N, and so G is homeomorphic to (G N U(n)) x RZ O

Observe that if G is also compact then d = 0, and G C U(n).
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Remark: A subgroup G of GL(n,R) is called algebraic if there is a finite set of polynomials
in n? variables with real coefficients {P;(X1, ..., X,2)}!_;, so that

A= (zp) e G it Pj(xi1,...,Tn,) =0, forj=1,...,t.
Then it can be shown that every compact subgroup of GL(n, R) is algebraic. The proof

is quite involved and uses the existence of the Haar measure on a compact Lie group; see
Mneimné and Testard [86] (Theorem 3.7).

6.3 More on the Topology of O(p,q) and SO(p, q)

It turns out that the topology of the group O(p, q) is completely determined by the topology
of O(p) and O(g). This result can be obtained as a simple consequence of some standard
Lie group theory. The key notion is that of a pseudo-algebraic group defined in Section 6.2.

We can apply Theorem 6.5 to determine the structure of the space O(p,q). We know
that O(p, q) consists of the matrices A in GL(p + ¢, R) such that

-
AL A=1,,
and so O(p, q) is clearly pseudo-algebraic. Using the above equation, and the curve technique

demonstrated at the beginning of Section 5.2, it is easy to determine the Lie algebra o(p, q)
of O(p,q). We find that o(p, q) is given by

o(p,q) = { (i((j §§) ‘ XlT = —Xy, X3T =—X3, Xo arbitrary}

where X is a p X p matrix, X3 is a ¢ X ¢ matrix, and X5 is a p X ¢ matrix.

Consequently, it immediately follows that

X .
o(p,q) NH(p+q) = { ()?QT 02> ‘ X, arb1trary} ,

a vector space of dimension pq.

Some simple calculations also show that

O(p,a) NU(p+q) = { ()({)1 )22) ' X1€0(p), X2 € O(Q)} = O(p) x O(q).

Therefore, we obtain the structure of O(p, q):

Proposition 6.6. The topological space O(p, q) is homeomorphic to O(p) x O(q) x R4,
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Since O(p) has two connected components when p > 1, we deduce (via the decomposition
of Proposition 6.1) that O(p,q) has four connected components when p,q > 1. It is also
obvious that

SO(p,q) NU(p+q) = { <)(()1 ;32) ’ X, €0(p), X € 0(q), det(X)det(Xs) = 1}.

This is a subgroup of O(p) x O(q) that we denote S(O(p) x O(q)). Furthermore, it can be
shown that so(p,q) = o(p, q). Thus, we also have

Proposition 6.7. The topological space SO(p, q) is homeomorphic to S(O(p) x O(q)) x RPI.

Observe that the dimension of all these spaces depends only on p+¢. It is p(p — 1)/2 +
q(q—1)/24+pq = (p+q)(p+q—1)/2, where we used the fact that O(n) is a smooth manifold
of dimension n(n — 1)/2. Also, SO(p, q) has two connected components when p,q > 1. The
connected component of I, is the group SOq(p, ¢). This latter space is homeomorphic to

SO(p) x SO(q) x Rr1. If we write
_ (P @
1=k 9).

then it is shown in O’Neill [91] (Chapter 9, Lemma 6) that the connected component
SOy(p, q) of SO(p, q) containing I is given by

SOy(p,q) = {A € GL(n,R) | A"I, ,A = I,,, det(P) > 0, det(S) > 0}.
For both SO(p, ¢) and SOq(p, q), the inverse is given by
At =1,,AT1,,

We can show that SO(p, q) and SO(g, p) are isomorphic (similarly, O(p, q) and O(q, p)
are isomorphic, and SOq(p, ¢q) and SOq(g,p) are isomorphic) as follows. Let J,, be the

permutation matrix
0 I
Tpa = (Ip 0) .

Observe that J, ¢.Jg = Ipq and that J] = J,,.

Proposition 6.8. If ¢ is the map given by Y(A) = J,,AJ,,, then : O(p,q) — O(q,p),
¥: SO(p,q) — SO(q,p), and 1p: SOu(p,q) — SOy(q,p), are isomorphisms.

Proof sketch. Since J,, 4Jy, = Iptq, we have
Y(A)Y(B) = JpqAdqpIpaBIap = JpgABJygp.

Observe that
T
Jq,p[q,p‘]q,p = Jq,p[q,p‘]p,q = _Ip,q'
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Using the above equation, if A € O(p, q), that is, A"I, ,A = I,,, then we have

(¢(A))qu7p¢(A) = (Jp7qAJq,p)TIq,pJp,qAJq,p
= Jp,qATJq,pIq,pJp,qAJq,p
= _Jp,qATIp,qA‘]q,p
= _Jp,q[p,qu,p

= = [qm = ]q,p'

Therefore (A) € O(q,p), and ¥: O(p, q) — O(q, p) is a homomorphism.
Since J, = Jgp, and since det(.J,4) = £1 because J,, , is a permutation matrix, we have

IpqAdyp = JMAJT SO

det(1p(A)) = det(J, AT, ) = det(J,,) det(A) det(J,,) = det(A).

Therefore, if A € SO(p, ¢), then det(A) = 1, so det(1(A)) = det(A) = 1,s09(A) € SO(q, p),
and ¢: SO(p, q) — SO(q, p) is a homomorphism.

_(PQ
1= (0 5)

B (0 IL\N(P Q\(0 L\ (S R
== (55) (e §) (0 8) = (0 7)

If A € SOq(p,q) then det(P) > 0 and det(S) > 0, so ¥(A) € SOy(q,p), and ¥: SOy(p, q) —
SOq(q,p) is a homomorphism. It is easy to verify that the inverse of 1 is given by ¢~ (B) =
JgpBJp.q, s0 the above maps are indeed isomorphisms. O

If we write

then we have

Theorem 6.5 gives the polar form of a matrix A € O(p, q). We have
A=Ue® with U€O(p)x0(q) and S €so(p,q)NS(p+q),

where U is of the form

U—<§ g), with P € O(p) and Q € O(q),

and s0(p,q) N S(p + q) consists of all (p+ q) x (p+ ¢) symmetric matrices of the form

0 X
(1)

with X an arbitrary p X ¢ matrix.
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It turns out that it is not very hard to compute explicitly the exponential e of such
matrices (see Mneimné and Testard [86]). Recall that the functions cosh and sinh also make
sense for matrices (since the exponential makes sense) and are given by

6A_}_eﬂéx A2 AQk
hA) = "% a2 2 L
cosh(4) = © b
and A A A3 A2k+1
et —e”
hA :—:A —_— e _— e,
sinh(4) > LTI O sl
We also set
sinh(A) —I+A2—|— n A%k N
A 3! (2k 4+ 1)! ’

which is defined for all matrices A (even when A is singular). Then we have

Proposition 6.9. For any matrix S of the form

0 X
S_<XT 0)7

we have )
cosh((X X T)2) —Si“h((XXT)f)X
= ) (XXT)2
sinh((XTX)ﬁ)XT COSh((XTX)%)
(XTX)2

Proof. By induction, it is easy to see that

ok _ ((XXT)k 0 )

0 (X TX )’g
and .
G2k+1 _ 0 (XX )X
(X X )’“X T 0 '
The rest is left as an exercise. O

Remark: Although at first glance, e® does not look symmetric, it is!

As a consequence of Proposition 6.9, every matrix A € O(p, ¢) has the polar form

T\1 sinh((XXT)%)X
A: (P O) COSh((X‘X; )2) (XXT)%
O Q SiHh((XTX)?)XT COSh((XTX)%)
(XTX)2

with P € O(p), @ € O(q), and X an arbitrary p x ¢ matrix.
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6.4 Problems

Problem 6.1. Finish the proof of Proposition 6.8.

Problem 6.2. Provide the details of the proof of Proposition 6.9.



Chapter 7

Manifolds, Tangent Spaces, Cotangent
Spaces, Submanifolds

In Chapter 3 we defined the notion of a manifold embedded in some ambient space RY. In
order to maximize the range of applications of the theory of manifolds, it is necessary to
generalize the concept of a manifold to spaces that are not a priori embedded in some R¥.
The basic idea is still that, whatever a manifold is, it is a topological space that can be
covered by a collection of open subsets U,, where each U, is isomorphic to some “standard
model,” e.g., some open subset of Euclidean space R". Of course, manifolds would be very
dull without functions defined on them and between them. This is a general fact learned from
experience: Geometry arises not just from spaces but from spaces and interesting classes of
functions between them. In particular, we still would like to “do calculus” on our manifold
and have good notions of curves, tangent vectors, differential forms, etc.

The small drawback with the more general approach is that the definition of a tangent
vector is more abstract. We can still define the notion of a curve on a manifold, but such
a curve does not live in any given R"”, so it it not possible to define tangent vectors in a
simple-minded way using derivatives. Instead, we have to resort to the notion of chart. This
is not such a strange idea. For example, a geography atlas gives a set of maps of various
portions of the earth and this provides a very good description of what the earth is, without
actually imagining the earth embedded in 3-space.

The material of this chapter borrows from many sources, including Warner [114], Berger
and Gostiaux [15], O'Neill [91], Do Carmo [39, 38], Gallot, Hulin and Lafontaine [49], Lang
[75], Schwartz [104], Hirsch [61], Sharpe [107], Guillemin and Pollack [55], Lafontaine [72],
Dubrovin, Fomenko and Novikov [42] and Boothby [16]. A nice (not very technical) ex-
position is given in Morita [87] (Chapter 1). The recent book by Tu [112] is also highly
recommended for its clarity. Among the many texts on manifolds and differential geometry,
the book by Choquet-Bruhat, DeWitt-Morette and Dillard-Bleick [32] stands apart because
it is one of the clearest and most comprehensive. (Many proofs are omitted, but this can
be an advantage!) Being written for (theoretical) physicists, it contains more examples and
applications than most other sources.

211
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7.1 Charts and Manifolds

Given R”, recall that the projection functions pr;: R®™ — R are defined by

pri(xy, ... 1) =2 1<i<n,.

For technical reasons (in particular, to ensure the existence of partitions of unity, a crucial
tool in manifold theory; see Section 10.1) and to avoid “esoteric” manifolds that do not arise
in practice, from now on, all topological spaces under consideration will be assumed
to be Hausdorff and second-countable (which means that the topology has a countable
basis).

The first step in generalizing the notion of a manifold is to define charts, a way to say
that locally a manifold “looks like” an open subset of R".

Definition 7.1. Given a topological space M, a chart (or local coordinate map) is a pair
(U, ¢), where U is an open subset of M and ¢: U — €2 is a homeomorphism onto an open
subset 2 = p(U) of R™ (for some n, > 1). For any p € M, a chart (U, ) is a chart at p iff
p e U. If (U, ) is a chart, then the functions z; = pr; o ¢ are called local coordinates and for
every p € U, the tuple (x1(p),...,z,(p)) is the set of coordinates of p w.r.t. the chart. The
inverse (2,7') of a chart is called a local parametrization. Given any two charts (U;, ¢;)

Figure 7.1: A chart (U, ) on M.

and (U, ¢;), if U; NU; # 0, we have the transition maps @) : ¢;(U; NU;) — ¢;(U; NU;) and
©%: (Ui N U;) = ¢i(U; N Uj), defined by

ol =pjop;" and ¢} =00
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Figure 7.2: The transition maps gp{ and goé

Clearly, 903- = (¢))~!. Observe that the transition maps ¢! (resp. goz) are maps between
open subsets of R™. This is good news! Indeed, the whole arsenal of calculus is available
for functions on R"™, and we will be able to promote many of these results to manifolds by
imposing suitable conditions on transition functions.

As in Section 3.1, whatever our generalized notion of a manifold is, we would like to
define the notion of tangent space at a point of manifold, the notion of smooth function
between manifolds, and the notion of derivative of a function (at a point) between manifolds.
Unfortunately, even though our parametrizations ¢=': Q — U are homeomorphisms, since
U is a subset of a space M which is not assumed to be contained in RN (for any N ), the
derivative d(p{ol does not make sense, unlike in the situation of Definition 3.1. Therefore,
some extra conditions on the charts must be imposed in order to recapture the fact that
for manifolds embedded in R¥, the parametrizations are immersions. An invaluable hint is
provided by Lemma 3.2: we require the transition maps ¢! : ¢;(U;NU;) — ¢;(U;NU;) to be
sufficiently differentiable. This makes perfect sense since the gog are functions between open
subsets of R™. It also turns out that these conditions on transition maps guarantee that
notions, such as tangent vectors, whose definition seems to depend on the choice of a chart,
are in fact independent of the choice of charts. The above motivations suggest the following
requirements on charts.
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Definition 7.2. Given a topological space M, given some integer n > 1 and given some k
such that k is either an integer k > 1 or k = 0o, a C* n-atlas (or n-atlas of class C*) A is a
family of charts {(U;, ¢;)}, such that

(1) ¢i(U;) C R™ for all i;

(2) The U; cover M, i.e.,

M:UUZ,

(3) Whenever U; nU; £ (), the transition map ¢’ (and ¢’) is a C*-diffeomorphism. When
k = oo, the ¢] are smooth diffeomorphisms.

We must ensure that we have enough charts in order to carry out our program of gener-
alizing calculus on R” to manifolds. For this, we must be able to add new charts whenever
necessary, provided that they are consistent with the previous charts in an existing atlas.

Definition 7.3. Given a C* n-atlas A on a topological space M, for any other chart (U, ¢),
we say that (U, ¢) is compatible with the atlas A iff every map ¢; o ! and g o ¢; ' is C*
(whenever U NU; # 0). Two atlases A and A’ on M are compatible iff every chart of one
is compatible with the other atlas. This is equivalent to saying that the union of the two
atlases is still an atlas.

It is immediately verified that compatibility induces an equivalence relation on~C’k n-
atlases on M. In fact, given an atlas A for M, it is easy to see that the collection A of all
charts compatible with A is a maximal atlas in the equivalence class of atlases compatible
with A. Finally we have our generalized notion of a manifold.

Definition 7.4. Given some integer n > 1 and given some k such that £ is either an integer
k> 1or k= oo, a Ck-manifold of dimension n consists of a topological space M together
with an equivalence class A of C* n-atlases on M. Any atlas A in the equivalence class A
is called a differentiable structure of class C* (and dimension n) on M. We say that M is
modeled on R™. When k = oo, we say that M is a smooth manifold.

Remark: It might have been better to use the terminology abstract manifold rather than
manifold to emphasize the fact that the space M is not a priori a subspace of RV, for some
suitable V.

We can allow & = 0 in the above definitions. In this case, Condition (3) in Defini-
tion 7.2 is void, since a C°-diffeomorphism is just a homeomorphism, but ¢’ is always a
homeomorphism.

Definition 7.5. If £ = 0 in Definition 7.4, then M is called a topological manifold of
dimension n.
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We do not require a manifold to be connected but we require all the components to have
the same dimension n.

On every connected component of M, it can be shown that the dimension n,, of the range
of every chart is the same. This is quite easy to show if k£ > 1 (use Proposition 11.20) but for
k = 0 this requires a deep theorem of Brouwer. (Brouwer’s Invariance of Domain Theorem
states that if U C R™ is an open set and if f: U — R" is a continuous and injective map, then
f(U) is open in R™. Using Brouwer’s theorem, we can show the following fact: If U C R™ and
V C R™ are two open subsets and if f: U — V is a homeomorphism between U and V', then
m = n. If m > n, then consider the injection, i: R" — R™, where i(x) = (z,0,,_,). Clearly,
i is injective and continuous, so i o f: U — (V) is injective and continuous and Brouwer’s
Theorem implies that i(V') is open in R™, which is a contradiction, as i(V) =V X {0,,—n}
is not open in R™. If m < n, consider the homeomorphism f=*: V — U.)

What happens if n = 07 In this case, every one-point subset of M is open, so every
subset of M is open; that is, M is any (countable if we assume M to be second-countable)
set with the discrete topology!

Observe that since R™ is locally compact and locally connected, so is every manifold
(check this!).

In order to get a better grasp of the notion of manifold it is useful to consider examples
of non-manifolds. First, consider the curve in R? given by the zero locus of the equation

-
namely, the set of points

My ={(z,y) €R* | y* =2* — 2"},

Figure 7.3: A nodal cubic; not a manifold.

This curve, shown in Figure 7.3, is called a nodal cubic and is also defined as the para-
metric curve

r = 1—1¢
= t(1—1%).
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We claim that M; is not even a topological manifold. The problem is that the nodal cubic
has a self-intersection at the origin. If M; was a topological manifold, then there would be a
connected open subset U C M containing the origin O = (0, 0), namely the intersection of a
small enough open disc centered at O with M7, and a local chart ¢: U — €, where €2 is some
connected open subset of R (that is, an open interval), since ¢ is a homeomorphism. However,
U — {O} consists of four disconnected components, and Q — ¢(O) of two disconnected
components, contradicting the fact that ¢ is a homeomorphism.

Let us now consider the curve in R? given by the zero locus of the equation

namely, the set of points

Figure 7.4: A cuspidal cubic.

This curve showed in Figure 7.4 and called a cuspidal cubic is also defined as the para-
metric curve

r = t?
t3.
Consider the map, ¢: My — R, given by

o(z,y) =y">.

Since x = y?/3 on M,, we see that ¢! is given by
PR OEIGRY

and clearly ¢ is a homeomorphism, so M5 is a topological manifold. However, with the atlas
consisting of the single chart {¢: My — R}, the space M, is also a smooth manifold! Indeed,
as there is a single chart, Condition (3) of Definition 7.2 holds vacuously.
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This fact is somewhat unexpected because the cuspidal cubic is not smooth at the origin,
since the tangent vector of the parametric curve c: ¢ +— (£2,¢3) at the origin is the zero
vector (the velocity vector at t is /(t) = (2t,3t%)). However, this apparent paradox has
to do with the fact that, as a parametric curve, M, is not immersed in R? since ¢ is not
injective (see Definition 7.27 (a)), whereas as an abstract manifold, with this single chart,
M, is diffeomorphic to R.

We also have the chart ¢: My — R, given by

V(z,y) =y,

with ¢~ given by
Y u) = (1)

With the atlas consisting of the single chart {¢: My — R}, the space M; is also a smooth
manifold. Observe that

poipH(u) = u'”,
a map that is not differentiable at u = 0. Therefore, the atlas {¢: My — R, ¢: My — R}

is not C', and thus with respect to that atlas, M, is not a C''-manifold. This example also
shows that the atlases {¢: My — R} and {¢): My — R} are inequivalent.

The example of the cuspidal cubic reveals one of the subtleties of the definition of a C* (or
C*) manifold: whether a topological space is a C*-manifold or a smooth manifold depends
on the choice of atlas. As a consequence, if a space M happens to be a topological manifold
because it has an atlas consisting of a single chart, or more generally if it has an atlas whose
transition functions “avoid” singularities, then it is automatically a smooth manifold. In
particular, if f: U — R™ is any continuous function from some open subset U of R" to R™,
then the graph T'(f) C R™™ of f given by

L(f) ={(x, f(z)) eR™™ |z € U}

is a smooth manifold of dimension n with respect to the atlas consisting of the single chart
e: I'(f) = U, given by
p(z, f(z)) =z,

with its inverse o ~!: U — T'(f) given by

p i (2) = (z, f(2)).

The notion of a submanifold using the concept of “adapted chart” (see Definition 7.26 in
Section 7.6) gives a more satisfactory treatment of C* (or smooth) submanifolds of R".

It should also be noted that determining the number of inequivalent differentiable struc-
tures on a topological space is a very difficult problem, even for R”. In the case of R", it
turns out that any two smooth differentiable structures are diffeomorphic, except for n = 4.
For n = 4, it took some very hard and deep work to show that there are uncountably many
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distinct diffeomorphism classes of smooth differentiable structures. The case of the spheres
S™ is even more mysterious. It is known that there is a single diffeomorphism class for
n = 1,2,3, but for n = 4 the answer is unknown! For n = 15, there are 16,256 distinct
classes; for more about these issues, see Conlon [33] (Chapter 3). It is also known that every
topological manifold admits a smooth structure for n = 1,2,3. However, for n = 4, there
exist nonsmoothable manifolds; see Conlon [33] (Chapter 3).

In some cases, M does not come with a topology in an obvious (or natural) way and a
slight variation of Definition 7.2 is more convenient in such a situation:

Definition 7.6. Given a set M, given some integer n > 1 and given some k such that &
is either an integer & > 1 or k = oo, a C* n-atlas (or n-atlas of class C*) A is a family of
charts {(U;, ¢;)}, such that

(1) Each U; is a subset of M and ¢;: U; — ¢;(U;) is a bijection onto an open subset
i(U;) CR™, for all i;

(2) The U; cover M; that is,

3) Whenever U; NU; # 0, the sets ;(U; NU;) and ¢;(U; N U;) are open in R™ and the
J. J j J
transition maps o] and g0§- are C*-diffeomorphisms.

Then the notion of a chart being compatible with an atlas and of two atlases being
compatible is just as before, and we get a new definition of a manifold analogous to Definition
7.4. But this time we give M the topology in which the open sets are arbitrary unions of
domains of charts U;, more precisely, the U;’s of the maximal atlas defining the differentiable
structure on M.

It is not difficult to verify that the axioms of a topology are verified, and M is indeed a
topological space with this topology. It can also be shown that when M is equipped with the
above topology, then the maps ¢;: U; — ¢;(U;) are homeomorphisms, so M is a manifold
according to Definition 7.4. We also require that under this topology, M is Hausdorff and
second-countable. A sufficient condition (in fact, also necessary!) for being second-countable
is that some atlas be countable. A sufficient condition of M to be Hausdorff is that for all
p,q € M with p # g, either p,q € U; for some U;, or p € U; and ¢ € U; for some disjoint
Ui, U;. Thus, we are back to the original notion of a manifold where it is assumed that M is
already a topological space.

One can also define the topology on M in terms of any of the atlases A defining M (not
only the maximal one) by requiring U C M to be open iff ¢;(UNU;) is open in R™, for every
chart (U;, ;) in the atlas A. Then one can prove that we obtain the same topology as the
topology induced by the maximal atlas. For details, see Berger and Gostiaux [15], Chapter
2.
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If the underlying topological space of a manifold is compact, then M has some finite
atlas. Also, if A is some atlas for M and (U, ¢) is a chart in A, for any (nonempty) open
subset V' C U, we get a chart (V, ¢ [ V), and it is obvious that this chart is compatible with
A. Thus, (V,¢ [ V) is also a chart for M. This observation shows that if U is any open
subset of a C*-manifold M, then U is also a C*-manifold whose charts are the restrictions
of charts on M to U.

We are now fully prepared to present a variety of examples.

Example 7.1. The sphere S™.

Using the stereographic projections (from the north pole and the south pole), we can
define two charts on S™ and show that S™ is a smooth manifold. Let on: S™ — {N} — R"
and og: S™ — {S} — R", where N = (0,---,0,1) € R"™! (the north pole) and S =
(0,---,0,—1) € R™" (the south pole) be the maps called respectively stereographic projec-
tion from the north pole and stereographic projection from the south pole, given by

1 1

(x1,...,2,) and og(xy, ..., Tpy1) = ———— (21, ..., Tp).

O'N(l‘l,...,l’n—i-l) = 1‘|‘$n+1

1- Tn+1

The inverse stereographic projections are given by
0_1(1’1...1'):;(21'1...2!17 (nxz)—1>
N ) )y n (Z?:1 $?) + 1 ) 3 n pa 7

and .
1 1

o3 (:El,...,mn):m (Qxl,...,zxn,—(zxf) +1).

i=1Ti =1
See Example 3.1 for the case of n = 2. Thus, if we let Uy = S™ — {N} and Us = S™ —
{S}, we see that Uy and Ug are two open subsets covering S™, both homeomorphic to R™.
Furthermore, it is easily checked that on the overlap Uy NUg = S™ — {N, S}, the transition
maps
I:asoaﬁl :aNoag1
defined on N (Uy NUs) = ps(Uny NUg) = R™ — {0}, are given by

1
W({Eh...,l’n);

=11

(le,...,.]?n)'—)

that is, the inversion Z of center O = (0, ...,0) and power 1. Clearly, this map is smooth on
R™ — {0}, so we conclude that (Uy,on) and (Ug, 0g) form a smooth atlas for S™.

Example 7.2. Smooth manifolds in RY.

Any m-dimensional embeddded manifold M in R¥ is a smooth manifold, because by
Lemma 3.2, the inverse maps ¢ ': U — Q of the parametrizations ¢: Q — U are charts
that yield smooth transition functions. In particular, by Theorem 3.8, any linear Lie group
is a smooth manifold.
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Example 7.3. The projective space RP". To define an atlas on RP", it is convenient to

view RP" as the set of equivalence classes of vectors in R"*! — {0} modulo the equivalence
relation

u~v iff v=>Au, forsome X\ #0¢€R.

Given any p = [r1,...,2,11] € RP", we call (xy,...,7,41) the homogeneous coordinates
of p. It is customary to write (z1: ---: x,41) instead of [z1,...,2,41]. (Actually, in most
books, the indexing starts with 0, i.e., homogeneous coordinates for RP" are written as
(xo: -+ :x,).) Now, RP" can also be viewed as the quotient of the sphere S™ under the
equivalence relation where any two antipodal points = and —x are identified. It is not hard
to show that the projection 7: S™ — RP" is both open and closed. Since S™ is compact
and second-countable, we can apply Propositions 12.31 and 12.33 to prove that under the
quotient topology, RP" is Hausdorff, second-countable, and compact.

We define charts in the following way. For any i, with 1 <7 <n + 1, let
U= {(z1: -+ zpy1) € RP" | z; # 0}.

Observe that U; is well defined, because if (y1: -+ : ypy1) = (x1: -+ : Tpyq), then there is
some A # 0 so that y; = Az, for j =1,...,n+1. We can define a homeomorphism ¢, of U;
onto R" as follows:

. ) R ES! Li—1 Lit1 Ln+1
Qoi(xl-""xn-i-l)_ Ty ) 1yt )

where the 7th component is omitted. Again, it is clear that this map is well defined since it
only involves ratios. We can also define the maps v; from R" to U; C RP", given by

wi(xl,...,xn):(:clz LR i S 1: Tio xn),

where the 1 goes in the ith slot, fori=1,...,n+ 1.

One easily checks that ¢; and 1; are mutual inverses, so the ; are homeomorphisms.
On the overlap U; N U;, (where i # j), as x; # 0, we have

_ T i1 1 z; Ti Tiy T
(gojogoil)(xl,...,xn):( B ks e )

) ) ’ ) ) ) ) )
Tj—1 Tj-1 Tj—1 Tj-1 Tj-1 Tj-1 Tj—1

(We assumed that ¢ < j; the case j < i is similar.) This is clearly a smooth function from
0;(U; NU;) to ¢;(U; N U;j). As the U; cover RP", we conclude that the (U;, ;) are n + 1
charts making a smooth atlas for RP". Intuitively, the space RP" is obtained by gluing the
open subsets U; on their overlaps. Even for n = 3, this is not easy to visualize!
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Example 7.4. The Grassmannian G(k,n). Recall that G(k,n) is the set of all k-dimensional

linear subspaces of R", also called k-planes. Every k-plane W is the linear span of k linearly
independent vectors uq, ..., u; in R™; furthermore, w4, ..., u, and vy, ..., vr both span W iff
there is an invertible k£ x k-matrix A = ();;) such that

k
vj:Z)\ijui, 1§]§k’

i=1

Obviously there is a bijection between the collection of £ linearly independent vectors
U1, ...,u; in R™ and the collection of n x k matrices of rank k. Furthermore, two n x k
matrices A and B of rank £ represent the same k-plane iff

B = AA, for some invertible k x k£ matrix, A. (%)

The Grassmannian G(k,n) can be viewed of the set of equivalence classes of n x k matrices
of rank k& under the equivalence relation given by (). (Note the analogy with projective
spaces where two vectors u, v represent the same point iff v = Au for some invertible A € R.)

The set of n x k matrices of rank k is a subset of R"**_in fact an open subset.

One can show that the equivalence relation on n X k matrices of rank &k given by
B = AA, for some invertible k£ x k matrix, A,

is open, and that the graph of this equivalence relation is closed. For some help proving
these facts, see Problem 7.2 in Tu [112]. By Proposition 12.32, the Grassmannian G(k,n) is
Hausdorff and second-countable.

We can define the domain of charts (according to Definition 7.2) on G(k,n) as follows:
For every subset S = {iy,...,ix} of {1,...,n}, let Us be the subset of equivalence classes of
n X k matrices A of rank k whose rows of index in S = {iy,..., i} form an invertible k x k
matrix denoted Ag. Note Ug is open in the quotient topology of G(k,n) since the existence
of an invertible k£ X k matrix is equivalent to the open condition of detAg # 0. Observe that
the k x k matrix consisting of the rows of the matrix AAg" whose index belong to S is the
identity matrix I;. Therefore, we can define a map @g: Ug — R"F*F where pg(A) is equal
to the (n — k) x k matrix obtained by deleting the rows of index in S from AAg".

We need to check that this map is well defined, i.e., that it does not depend on the matrix
A representing W. Let us do this in the case where S = {1,...,k}, which is notationally
simpler. The general case can be reduced to this one using a suitable permutation.

If B = AA, with A invertible, if we write

(A (B
A_(A2> and B—(BZ),
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where A; and B are k x k matrices and Ay and By are (n — k) X k matrices, as B = AA,
we get B = A1\ and By, = Ay A, from which we deduce that

Bl B_1: [k _ [k _ [k _ Al A_l
By) ! B,B;! AAATAT! Ay AT ,) L

Therefore, our map is indeed well-defined.

Here is an example for n = 6 and k = 3. Let A be the matrix

DO = = = = N
|
[S—Y

N O DN DO~ Ot

and let
S =12,3,5}.

Then we have
1 11
A{273,5} =111 0},
1 00

and we find that

0 0 1
2ssy =0 1 -1],
1 -1 0
and
5 =2 —1
1 0 O
4 |0 1 0
AA{2,3,5} 12 -3 2
0 0 1
2 -3 3
Therefore,
5 =2 -1
90{273,5}(14) = 2 —3 2
2 -3 3
We can define its inverse ¢g as follows: let mg be the permutation of {1,...,n} sending

{1,...,k} to S defined such that if S = {i; < --- < g}, then mg(j) = 4; for j = 1,... k,
and if {hy <--- < hp} ={1,...,n} =5, then ng(k +j) = h; for j =1,...,n — k (this is
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a k-shuffle). If Ps is the permutation matrix associated with g, for any (n — k) x k matrix
M, let

ws(h) = Pu( 1)

actually the equivalence class of Pg (ﬁ) in Ug. The effect of ¢g is to “insert into M” the
rows of the identity matrix I as the rows of index from S. Using our previous example

where n = 6,k =3 and S = {2,3,5}, we have

5 —2 -1
M=[2 -3 2|,
2 -3 3
the permutation mg is given by
(1 2 3 45 6
= 2351 4 6)
whose permutation matrix is
000100
1 00 0 00O
01 0000
Pessi=1o 000 1 0|
001000
0 00O0O0T1
and
000100 1 0 0 5 —2 -1
1 00000 0 1 0 1 0 0
I 01 0O0O00O0 0 0 1 0 1 0
¢{2’3’5}(M)_P{2’3’5}(M)_ 0000105 -2 1] |2 -3 2
001 0O0O0 2 -3 2 0 0 1
00 0O0O0°1 2 -3 3 2 -3 3

Since the permutation 7g is a k-shuffle that sends {1,...,k} to S, we see that pg(A) is
also obtained by first forming Pg ' A, which brings the rows of index in S to the first k rows,
then forming Pg'A(Pg 1A){_11,...,k}> and finally deleting the first k& rows. If we write A and

Py Lin block form as
(A 4 (P P
a= () == (n =)

with A; a k X k matrix, Ay a (n — k) X k matrix, P; a k X k matrix, Py a (n — k) x (n — k)
matrix, P, a k x (n — k) matrix, and P3 a (n — k) X k matrix, then

polg— P P\ (A _ (PiA+ PAy
ST TA\P Py Ay ) \PsAL+ PAY)°
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SO

-1 PlAl + P2A2
){1 ..... K}y —

_ -1
PyA, + P4A2> (Prds+ PoAy)

_ I
B ((P3A1 + PyAy) (P A + P2A2)_1> 7

and thus,
0s(A) = (P3A; + PyAy) (P A, + P Ay) 7L

With the above example,

010000
001000
1 1000010
235, 1.0 0 0 0 O}’
000100
000O0O0°1
and then
1 1 1
1 1 0
1 11 0 0
P{2,3,5} ~ 12 3 51\
1 -1 2
2 -1 2
0 0 1
(P{72,13,5}A>{711,2,3}: 0 1 -1],
-1 0
and
1 0 O
0 1 0
_ _ _ 0 0 1
P{2,13,5}A(P{2,13,5}A){11,2,3}: 5 —2 —11|°
2 =3 2
2 =3 3
which does yield
5 =2 -1
90{273,5}(14) = 2 =3 2
2 =3 3

At this stage, we have charts that are bijections from subsets Ug of G(k,n) to open
subsets, namely, R %>k The reader can check that the transition map ¢z o cpgl from
ws(Us N Ur) to or(Us N Ur) is given by

M — (P3+p4M)(P1+P2M)71,
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PP\
<P3 P4) =Pl
is the matrix of the permutation 7' o 7g and M is an (n — k) x k matrix. This map is
smooth, as the inversion of a matrix uses the cofactor matrix which relies on the smoothness
of the determinant, and so the charts (Us, @) form a smooth atlas for G(k,n). Finally, one

can check that the conditions of Definition 7.2 are satisfied, so the atlas just defined makes
G(k,n) into a topological space and a smooth manifold.

where

The Grassmannian G(k,n) is actually compact. To see this, observe that if W is any
k-plane, then using the Gram-Schmidt orthonormalization procedure, every basis B =
(by,...,bg) for W yields an orthonormal basis U = (uq,...,ux), and there is an invertible
k x k matrix A such that

U = BA,

where the the columns of B are the b;’s and the columns of U are the u;’s. Thus we may
assume that the representatives of W are matrices U which have orthonormal columns and
are characterized by the equation

U'U = 1.

The space of such matrices is closed and clearly bounded in R™**, and thus compact. In fact,
the space of n x k matrices U satisfying UTU = I is the Stiefel manifold S(k,n). Observe
that if U and V are two n x k matrices such that UTU =T and V'V = [ and if V = UA
for some invertible k x k matrix A, then A € O(k). Then G(k,n) is the orbit space obtained
by making O(k) act on S(k,n) on the right, i.e. S(k,n)/O(k) = G(k,n), and since S(k,n)
is compact, we conclude that G(k,n) is also compact as it is the continuous image of a
projection map.

Remark: The reader should have no difficulty proving that the collection of k-planes repre-
sented by matrices in Ug is precisely the set of k-planes W supplementary to the (n—k)-plane
spanned by the canonical basis vectors e;, ..., ¢e;, (i.e., span(W U {ej,,,,...,¢€;,}) = R,
where S = {i1,... it} and {jgr1,-.-,Jn} = {1,...,n} = 5).

Example 7.5. Product Manifolds.

Let M; and M, be two C*-manifolds of dimension n; and ns, respectively. The topological
space M; x My with the product topology (the open sets of M; x My are arbitrary unions
of sets of the form U x V', where U is open in M; and V' is open in M) can be given the
structure of a C*-manifold of dimension n; + ny by defining charts as follows: For any two
charts (U;, ;) on M; and (V},v;) on My, we declare that (U; x V},¢; X 1);) is a chart on
M, x My, where ¢; x 1;: U; x V; — R™*"2 is defined so that

@i X ¥i(p,q) = (wi(p),¥;(q)), forall (p,q) € Ui x Vj.

See Figure 7.5.
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Figure 7.5: A chart for the torus as the product manifold S x S1.

We define C*-maps between manifolds as follows:

Definition 7.7. Given any two C*-manifolds M and N of dimension m and n respectively,
a C*-map is a continuous function h: M — N satisfying the following property: For every
p € M, there is some chart (U, ) at p and some chart (V,¢) at ¢ = h(p), with h(U) C V
and

pohoyp™: p(U) — y(V)

a C*-function. See Figure 7.6.

It is easily shown that Definition 7.7 does not depend on the choice of charts.

The requirement in Definition 7.7 that h: M — N should be continuous is actually
redundant. Indeed, since ¢ and 1) are homeomorphisms, ¢ and ¢~! are continuous, and
since ¢(U) is an open subset of R™ and (V') is an open subset of R", the function ¢ o h o
ot p(U) — ¥(V) being a C*function is continuous, so the restriction of h to U being
equal to the composition of the three continuous maps

vl o(ohop oy
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Figure 7.6: The C* map from M to N, where M is a 2-dimensional manifold and N is a
3-dimensional manifold.

is also continuous on U. Since this holds on some open subset containing p, for every p € M,
the function h is continuous on M.

Other definitions of a C*-map appear in the literature, some requiring continuity. The
following proposition from Berger and Gostiaux [15] (Theorem 2.3.3) helps clarifying how
these definitions relate.

Proposition 7.1. Let h: M — N be a function between two manifolds M and N. The
following equivalences hold.

(1) The map h is continuous, and for every p € M, for every chart (U, @) at p and every
chart (V,4) at h(p), the function 1 o h o o=t from o(U N AL (V)) to (V) is a C*-
function.

(2) The map h is continuous, and for every p € M, for every chart (U, ) at p and every
chart (V,4) at h(p), if h(U) C V, then the function v o hop™! from o(U) to (V) is
a C*-function.
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(8) For every p € M, there is some chart (U, ) at p and some chart (V,¢) at ¢ = h(p)
with h(U) C V, such that the function ohop=" from o(U) to ¢(V) is a C*-function.

Observe that Condition (3) states exactly the conditions of Definition 7.7, with the con-
tinuity requirement omitted. Condition (1) is used by many texts. The continuity of A is
required to ensure that 2=!(V) is an open set. The implication (2) = (3) also requires the
continuity of h.

Even though the continuity requirement in Definition 7.7 is redundant, it seems to us
that it does not hurt to emphasize that C*-maps are continuous.

In the special case where N = R, we obtain the notion of a C*-function on M. One
checks immediately that a function f: M — R is a C*-map iff the following condition holds.

Definition 7.8. A function f: M — R is a C*-map iff for every p € M, there is some chart
(U, ) at p so that

fop™:pU) —R

is a C*-function. See Figure 7.7.

Figure 7.7: A schematic illustration of a C*-function on the torus M.

If U is an open subset of M, the set of C*-functions on U is denoted by C*(U). In
particular, C*(M) denotes the set of C*-functions on the manifold, M. Observe that C*(U)
is a commutative ring.

On the other hand, if M is an open interval of R, say M = (a,b), then v: (a,b) — N is
called a C*-curve in N. One checks immediately that a function v: (a,b) — N is a C*-map
iff the following condition holds.
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Definition 7.9. A function v: (a,b) — N is a C*-map iff for every ¢ € N, there is some
chart (V, 1) at ¢ and some open subinterval (¢, d) of (a,b), so that v((c,d)) C V and

hory: (Cvd) — ¢(V)

is a C*-function. See Figure 7.8.

Figure 7.8: A schematic illustration of a C*-curve in the solid spheroid N.

It is clear that the composition of C*-maps is a C*-map.

Definition 7.10. A C*-map h: M — N between two manifolds is a C*-diffeomorphism iff
h has an inverse h™': N — M (i.e., h™* o h = idj; and ho h™! = idy), and both h and h™!
are C*-maps (in particular, h and h~! are homeomorphisms).

Next we define tangent vectors.

7.2 Tangent Vectors, Tangent Spaces

Let M be a C* manifold of dimension n, with & > 1. The purpose of the next three sections is
to define the tangent space T,,(M) at a point p of a manifold M. We provide three definitions
of the notion of a tangent vector to a manifold and prove their equivalence.

The first definition uses equivalence classes of curves on a manifold and is the most
intuitive.
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The second definition makes heavy use of the charts and of the transition functions. It is
also quite intuitive and it is easy to see that that it is equivalent to the first definition. The
second definition is the most convenient one to define the manifold structure of the tangent
bundle T'(M) (see Section 9.1).

The third definition (given in the next section) is based on the view that a tangent
vector v, at p, induces a differential operator on real-valued functions f, defined locally near
p; namely, the map f +— v(f) is a linear form satisfying an additional property akin to the
rule for taking the derivative of a product (the Leibniz property). Such linear forms are
called point-derivations. This third definition is more intrinsic than the first two but more
abstract. However, for any point p on the manifold M and for any chart whose domain
contains p, there is a convenient basis of the tangent space T,(M). The third definition is
also the most convenient one to define vector fields. A few technical complications arise when
M is not a smooth manifold (when k # o0), but these are easily overcome using “stationary
germs.”

As pointed out by Serre in [105] (Chapter III, Section 8), the relationship between the
first definition and the third definition of the tangent space at p is best described by a
nondegenerate pairing which shows that 7),(M) is the dual of the space of point derivations
at p that vanish on stationary germs. This pairing is presented in Section 7.4.

The most intuitive method to define tangent vectors is to use curves. Let p € M be any
point on M and let v: (—¢,€) — M be a C'-curve passing through p, that is, with v(0) = p.
Unfortunately, if M is not embedded in any R”, the derivative 7/(0) does not make sense.
However, for any chart, (U, ¢), at p, the map po~ is a C!'-curve in R” and the tangent vector

= (po7)'(0) is well defined. The trouble is that different curves may yield the same !

To remedy this problem, we define an equivalence relation on curves through p as follows:
Definition 7.11. Given a C* manifold, M, of dimension n, for any p € M, two C'-curves,

Y: (—€1,61) = M and vo: (—€g,€2) — M, through p (i.e., v1(0) = 12(0) = p) are equivalent
iff there is some chart, (U, ), at p so that

(0 0m)'(0) = (¢ ©72)'(0).
See Figure 7.9.
The problem is that this definition seems to depend on the choice of the chart. Fortu-
nately, this is not the case. For if (V1) is another chart at p, as p belongs both to U and

V, we have U NV # 0, so the transition function n = v o =1 is C* and, by the chain rule,
we have

(Yom)(0) = (noywom)(0)
"((p)((p o m)'(0))
"((p))((p 072)'(0))
= (nogwom)(0)

(1 0 72)'(0).

n
Y
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Figure 7.9: Equivalent curves ~;, in blue, and 5, in pink.

This leads us to the first definition of a tangent vector.

Definition 7.12. (Tangent Vectors, Version 1) Given any C*-manifold, M, of dimension
n, with k£ > 1, for any p € M, a tangent vector to M at p is any equivalence class u = [7]
of Cl-curves 7 through p on M, modulo the equivalence relation defined in Definition 7.11.
The set of all tangent vectors at p is denoted by T,,(M) (or T,M).

In order to make T),M into a vector space, given a chart (U, ) with p € U, we observe
that the map @ : T,M — R" given by

(7)) = (¢ 07)'(0)

is a bijection, where [7] is the equivalence class of a curve v in M through p (with v(0) = p).
The map @, is injective by definition of the equivalence relation on curves; it is surjective,
because for every vector v € R, if v, is the curve given by 7,(t) = ¢ ' (p(p) + tv), then
(¢ 07)'(0) = v, and so Py ([]) = v.

Observe that for any chart (U, ¢) at p, the equivalence class [y] of all curves through p
such that (¢ o) (0) = v for some given vector v € R" is determined by the special curve ~,
defined above.

The vector space structure on T, M is defined as follows. For any chart (U, ¢) at p, given
any two equivalences classes [y1] and [vo] in T,M, for any real A, we set
1]+ [v2] = %5 @ ([n]) + Bu(lre)))
Am] =y (A ([nl)).
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If (V,4) is any other chart at p, since by the chain rule

(1 0)'(0) = (o ™), o (por)(0),

it follows that

_ . _

Yy = (Yo ), m ° Py
Since (1 o ‘P_l):o(p) is a linear isomorphism, we see that the vector space structure defined
above does not depend on the choice of chart at p. Therefore, with this vector space structure

on T, M, the map @, : T,M — R" is a linear isomorphism. This shows that 7,,M is a vector
space of dimension n = dimension of M.

In particular, if M is an n-dimensional smooth embedded manifold in RY and if v is a
curve in M through p, then v(0) = u is well defined as a vector in R, and the equivalence
class of all curves v through p such that (¢o7)’(0) is the same vector in some chart ¢: U — Q
can be identified with w. Thus, the tangent space T,M to M at p is isomorphic to

{7(0) | v: (—€,€) = M is a Cl-curve with v(0) = p}.

In the special case of a linear Lie group G, Proposition 3.10 shows that the exponential
map exp: g — G is a diffeomorphism from some open subset of g containing 0 to some open
subset of G' containing /. For every g € G, since L,: G — G is a diffeomorphism, the map
Lyoexp: g — G is a diffeomorphism from some open subset of g containing 0 to some open
subset of G containing g. Furthermore,

dLg(g) = Ly(g) = 99 = {9 X | X € g}.

Thus, we obtain smooth parametrizations of G whose inverses are charts on G, and since by
definition of g, for every X € g, the curve y(t) = ge'* is a curve through g in G such that
7'(0) = gX, we see that the tangent space T,G to G at g is isomorphic to gg.

One should observe that unless M = R™, in which case, for any p,q € R", the tangent
space T,(M) is naturally isomorphic to the tangent space T,(M) by the translation ¢ — p,
for an arbitrary manifold, there is no relationship between T,,(M) and T,(M) when p # q.

The second way of defining tangent vectors has the advantage that it makes it easier to
define tangent bundles (see Section 9.1).

Definition 7.13. (Tangent Vectors, Version 2) Given any C*-manifold, M, of dimension n,
with k& > 1, for any p € M, consider the triples, (U, ¢, u), where (U, ¢) is any chart at p and
u is any vector in R™. Say that two such triples (U, ¢, u) and (V, v, v) are equivalent iff

(oo™ () =v.

See Figure 7.10. A tangent vector to M at p is an equivalence class of triples, [(U, ¢, u)], for
the above equivalence relation.
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Figure 7.10: Two equivalent tangent vector v and v.

The intuition behind Definition 7.13 is quite clear: The vector u is considered as a
tangent vector to R™ at ¢(p). If (U, ¢) is a chart on M at p, we can define a natural bijection
Ov.pp: R = T,(M) between R™ and T,(M), as follows: For any u € R",

9U,g0,p: u = [(U7 2 u)]

As for Version 1 of tangent vectors, we can use the bijection 0y, , to transfer the vector
space structure on R™ to T,M so that 8y, becomes a linear isomorphism. Given a chart
(U, ), for simplicity of notation if we denote the equivalence class of the triple (U, ¢, u) by
[u], we set

[l + [] = Ovpp (0, ([u) + O ([0]))
Alu] = 0u0p (M ([u]))-

Since the equivalence between triples (U, ¢, u) and (V,1,v) is given by

(¢ © 8071):0(1)) (U) =,

we have
—1 —1 —1
eVﬂb,p = (o )ip(p) © 9U,<p,p’
so the vector space structure on 7, M does not depend on the choice of chart at p.

The equivalence of this definition with the definition in terms of curves (Definition 7.12)
is easy to prove.
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Proposition 7.2. Let M be any C*-manifold of dimension m, with k > 1. For every
p € M, for every chart, (U,p), at p, if x = [y] is any tangent vector (Version 1) given by
some equivalence class of C'-curves v: (—e,+€) — M through p (i.e., p = v(0)), then the
map

z = [(U, 0, (9 07)(0))]
is an isomorphism between T,(M)-Version 1 and T,(M)-Version 2.
Proof. 1f o is another curve equivalent to v, then (¢ o v)’(0) = (¢ o ¢)'(0), so the map is
well-defined. It is clearly injective. As for surjectivity, define the curve v, on M through p
by

Yu(t) = ¢~ () + tu);
see Figure 7.11. Then, (¢ o 7,)(t) = ¢(p) + tu and

(¢ o) (0) = u,
as desired. O

Figure 7.11: The tangent vector w is in one-to-one correspondence with the line through
©(p) with direction wu.

7.3 Tangent Vectors as Derivations

One of the defects of the above definitions of a tangent vector is that it has no clear relation
to the C*-differential structure of M. In particular, the definition does not seem to have
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anything to do with the functions defined locally at p. There is another way to define tangent
vectors that reveals this connection more clearly. Moreover, such a definition is more intrinsic,
i.e., does not refer explicitly to charts. Our presentation of this second approach is heavily
inspired by Schwartz [104] (Chapter 3, Section 9) but also by Warner [114] and Serre [105]
(Chapter III, Sections 7 and 8).

As a first step, consider the following: Let (U, ) be a chart at p € M (where M is
a C*-manifold of dimension n, with k& > 1) and let ; = pr; o ¢, the ith local coordinate
(1 <i < n). For any real-valued function f defined on p € U, set

—1
Oz; P 0X; ©(p)

(Here, (0g/0X;)|, denotes the partial derivative of a function g: R" — R with respect to
the ith coordinate, evaluated at y.)

We would expect that the function that maps f to the above value is a linear map on the
set of functions defined locally at p, but there is technical difficulty: The set of real-valued
functions defined locally at p is not a vector space! To see this, observe that if f is defined
on an open p € U and ¢ is defined on a different open p € V', then we do not know how to
define f 4+ g. The problem is that we need to identify functions that agree on a smaller open
subset. This leads to the notion of germs.

Definition 7.14. Given any C*-manifold M of dimension n, with k& > 1, for any p € M, a
locally defined function at p is a pair (U, f), where U is an open subset of M containing p
and f is a real-valued function defined on U. Two locally defined functions (U, f) and (V, g)
at p are equivalent iff there is some open subset W C U NV containing p, so that

fIW=glW.
The equivalence class of a locally defined function at p, denoted [f] or £, is called a germ at
p.
One should check that the relation of Definition 7.14 is indeed an equivalence relation. Of

course, the value at p of all the functions f in any germ f, is f(p). Thus, we set f(p) = f(p),
for any f € f.

For example, for every a € (—1, 1), the locally defined functions (R — {1},1/(1 —x)) and
((—1,1),>°02,2™) at a are equivalent.

We can define addition of germs, multiplication of a germ by a scalar, and multiplication
of germs as follows. If (U, f) and (V,g) are two locally defined functions at p, we define
(UNV, f+g), (UNV, fg) and (U, \f) as the locally defined functions at p given by (f+g)(q) =

f(a) + g(q) and (fg)(q) = f(a)g(q) for all ¢ € UNV, and (Af)(q) = Af(q) for all ¢ € U,
with A € R. Then, if f = [f] and g = [g] are two germs at p, we define
1+ 19l =[f + 9]
ALfT = [AS]
/gl = [f9].



236 CHAPTER 7. MANIFOLDS, TANGENT SPACES, COTANGENT SPACES

However, we have to check that these definitions make sense, that is, that they don’t depend
on the choice of representatives chosen in the equivalence classes [f] and [g]. Let us give the
details of this verification for the sum of two germs, [f] and [g].

We need to check that for any locally defined functions (Uy, f1), (Us, f2), (V1,41), and
(Va, g2), at p, if (Uy, f1) and (Us, f2) are equivalent and if (V1, ¢1) and (V4, g2) are equivalent,
then (U1 NV4, fi+g1) and (UsNVa, fo+ go) are equivalent. However, as (Uy, f1) and (Us, fo)
are equivalent, there is some Wy C Uy NU; so that f1 [ Wy = fo | Wy and as (V4,¢91) and
(Va, go) are equivalent, there is some Wy C Vi NV; so that g1 [ Wy = go | W5. Then, observe
that (fi +¢g1) | (Wi N Wa) = (f2 + g2) | (W1 N Ws), which means that [fi + ¢1] = [f2 + g2]-
Therefore, [f + g] does not depend on the representatives chosen in the equivalence classes
[f] and [g] and it makes sense to set

L1+ 19l =[f + gl

We can proceed in a similar fashion to define A[f] and [f][g]. Therefore, the germs at p form
a ring.

Definition 7.15. Given a C*-manifold M, the commutative ring of germs of C*-functions
at p is denoted (’)](\l;?p. When k£ = oo, we usually drop the superscript oo.

Remark: Most readers will most likely be puzzled by the notation (9 . In fact, it is
standard in algebraic geometry, but it is not as commonly used in dlfferentlal geometry. For
any open subset U of a manifold M, the ring C*(U) of C*-functions on U is also denoted

Og\?(U ) (certainly by people with an algebraic geometry bent!). Then it turns out that the
map U — (’)](\l;)(U ) is a sheaf, denoted Og\’;), and the ring Og\?p is the stalk of the sheaf (9](\];)

at p. Such rings are called local rings. Roughly speaking, all the “local” information about
M at p is contained in the local ring Og\?p. (This is to be taken with a grain of salt. In the
Ck-case where k < 0o, we also need the “stationary germs,” as we will see shortly.)

Now that we have a rigorous way of dealing with functions locally defined at p, observe

that the map
vi: f— ( 0 ) f
8272' P

yields the same value for all functions f in a germ f at p. Furthermore, the above map is
linear on (’)](\’;?p. More is true:

(1) For any two functions f, g locally defined at p, we have

(ai)p(f” = ((ai)pf> 9(p) + £ (p) <£i)pg.

(2) If (f o ") (¢(p)) = 0, then ;
<8xi>pf -
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The first property says that v; is a point-derivation; it is also known as the Leibniz
property. As to the second property, when (f o ') (o(p)) = 0, we say that f is stationary
at p.

It is easy to check (using the chain rule) that being stationary at p does not depend
on the chart (U, ) at p or on the function chosen in a germ f. Therefore, the notion of a
stationary germ makes sense.

Definition 7.16. We say that a germ f at p € M is a stationary germ iff (fop™1) (p(p)) =0
for some chart (U, ), at p and some function f in the germ f. The C*-stationary germs
form a subring of Og\?p (but not an ideal) denoted S](\f[?p

Remarkably, it turns out that the set of linear forms on (’)( , that vanish on S » 18 iso-

morphic to the tangent space T,(M). First we prove that this space has (8%1) . (%)
p p

as a basis.

Proposition 7.3. Given any C*-manifold M of dimension n, with k > 1, for any p € M
and any chart (U, @) at p, the n functions <i> ey (i) defined on (95\’2]) b
P p

ox1 0zn
-1
< 9 ) po Wev™) l<i<n,
Oz P 0X; ©(p)

are linear forms that vanish on 81(\2)[). FEvery linear form L on (’)](\l;?p that vanishes on S](\ﬁ?p
can be expressed in a unique way as

. 0
5 (8),
iz_; 0331 P

where \; € R. Therefore, the linear forms
0
"\ Oz, »

9
81‘1 p’

form a basis of the vector space of linear forms on O](\]f[?p that vanish on S](f[?p.

Proof. The first part of the proposition is trivial by definition of ( > f, since for a sta-
tionary germ f, we have (f oo™ 1)(p(p)) = 0.

Next assume that L is a linear form on O p that vanishes on S Mpe For any function
(U, f) locally defined at p, consider the function (U, g) locally defined at p given by

9(q) = f(q) =D _(prio 9)(q) < 0

i=1 dz;

) f, qeU.
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Observe that the germ of g is stationary at p. Indeed, if we let X = ¢(q), then ¢ = ¢~ 1(X),
and we can write

(909 ™)X) = (£ o)) = Sopn0) (5 )

= (fogo_l)(Xl...,Xn)—iXi (a%)pf'

i=1

)
— f=0.
©(p) <8xi p

But then as L vanishes on stationary germs, and the germ of

g=1=2 (prioy) (ai) f

is stationary at p, we have L(g) =0, so

un =Y tome9) (52)

as desired. We still have to prove linear independence. If

- 9,

then if we apply this relation to the functions x; = pr; o @, as

0
— R

we get A\, =0, fori=1,...,n. O

By definition it follows that

dgoe™)
X,

~O(fop™)
o 0X;

»(p)

To define our third version of tangent vectors, we need to define point-derivations.

Definition 7.17. Given any C*-manifold M of dimension n, with & > 1, for any p € M, a
deriwation at p in M or point-derivation on (’)](\l;) is a linear form v on (’)E\?p, such that

v(fg) = v(f)g(p) + £(p)v(g),

for all germs f, g € Og’;?p. The above is called the Leibniz property. Let Dz(;k)(M ) denote the

set of point-derivations on Og\?p.
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As expected, point-derivations vanish on constant functions.
Proposition 7.4. Every point-derivation v on Og\lf[)p vanishes on germs of constant functions.

Proof. If g is a germ of a constant function at p, then there is some A € R so that g = A (a
constant function with value \) for all ¢ € g. Since v is linear,

v(g) = v(AL) = Mo(1),

where 1 is the germ of constant functions with value 1, so we just have to show that v(1) = 0.
However, because 1 =1 -1 and v is a point-derivation, we get

v(l) = v(1-1)

= v(1)1(p) + 1(p)v(1)
= v(1)1+ 1v(1) = 2v(1)
from which we conclude that v(1) = 0, as claimed. O
Recall that we observed earlier that the (%) are point-derivations at p. Therefore, we
‘/p

have

Proposition 7.5. Given any C*-manifold M of dimension n, with k > 1, for any p € M,
the linear forms on (9](\]2]3 that vanish on S](\?p are exactly the point-derivations on O]\f[?p that

o 9
0x; p’“" Oz, ),

form a basis of the linear forms on Og\?p that vanish on S](\j?p. Since each (%) is a also a
‘/p
point-derivation at p, the result follows. O

vanish on S](\Z)p.

Proof. By Proposition 7.3,

Remark: Proposition 7.5 says that any linear form on Og\?p that vanishes on S](\fj?p belongs
to Dl()k)(M ), the set of point-derivations on Og\lj?p. However, in general, when k£ # oo, a
point-derivation on (’)](\]f[)p does not necessarily vanish on 81(\2)1). We will see in Proposition 7.9

that this is true for k = oo.

Here is now our third definition of a tangent vector.

Definition 7.18. (Tangent Vectors, Version 3) Given any C*-manifold M of dimension n,
with £ > 1, for any p € M, a tangent vector to M at p is any point-derivation on Og‘f}?p that

vanishes on S](\?p, the subspace of stationary germs.
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Let us consider the simple case where M = R. In this case, for every z € R, the tangent
space T,(R) is a one-dimensional vector space isomorphic to R and (%)m = %‘m is a basis
vector of T,,(R). For every Ck-function f locally defined at z, we have

0 _dfy
(&), 7=, =7

Thus, (%L is: compute the derivative of a function at z.

We now prove the equivalence of Version 1 and Version 3 of a tangent vector.

Proposition 7.6. Let M be any C*-manifold of dimension n, with k > 1. For any p €
M, let u be any tangent vector (Version 1) given by some equivalence class of C'-curves

v: (—€,+€) — M through p (i.e., p=~(0)). Then the map L, defined on O](\lf[?p by

Lu(f) = (f 27)'(0)
15 a point-derivation that vanishes on S](\Z)p. Furthermore, the map u — L, defined above is
an isomorphism between T,(M) and the space of linear forms on Og\?p that vanish on S](\?p.

Proof. (After L. Schwartz) Clearly, L, (f) does not depend on the representative f chosen in
the germ f. If v and o are equivalent curves defining u, then (¢ o ¢)'(0) = (¢ o 7)'(0), so
from the chain rule we get

(fo0)(0) = (foue™ ) (e@)((poa)(0) = (four™)(wm)((peor)(0) = (fo)(0),

which shows that L, (f) does not depend on the curve 7 defining u. If f is a stationary germ,
then pick any chart (U, ¢) at p, and let 1) = ¢ o y. We have

Lu(f) = (f o) (0) = (fo ™) o (2 0))(0) = (fo ™) (w(p) (¥/(0)) = 0,

since (f o 1) (p(p)) = 0, as f is a stationary germ. The definition of L, makes it clear
that L, is a point-derivation at p. If u # v are two distinct tangent vectors, then there exist
some curves v and o through p so that

(¢ 079)'(0) # (¢ 0 0)(0).
Thus, there is some 7, with 1 < i < n, so that if we let f = pr; o ¢, then
(f 27)(0) # (f 00)(0),

and so, L, # L,. This proves that the map u — L, is injective.

For surjectivity, recall that every linear map L on Oj(\lf[?p that vanishes on S](\f[?p can be

uniquely expressed as
- 0
iz—l: <axi)p
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Define the curve v on M through p by

Y(#) =7 (@p) + (A M),

for ¢t in a small open interval containing 0. See Figure 7.11. Then we have

FOy(®) = (f oo™ )(elp) + (A, ..., \)),

and by the chain rule we get

/ -1y — - a(fo(p_1>
(For)(0) = (foe™ (e, An) = D N = 53—

i=1

»(p)

This proves that T,(M) is isomorphic to the space of linear forms on (’)](\lf[?p that vanish on
S 0
7p.

We show in the next section that the the space of linear forms on O](\]f[?p that vanish on
S](\Z)p is isomorphic to ((95\?1, / S](\?p)* (the dual of the quotient space (95\?}, / S](\?p).
Even though this is just a restatement of Proposition 7.3, we state the following propo-

sition because of its practical usefulness:

Proposition 7.7. Given any C*-manifold M of dimension n, with k > 1, for any p € M
and any chart (U, @) at p, the n tangent vectors

o 9
or, )\ oz, ),

When M is a smooth manifold, things get a little simpler. Indeed, it turns out that in
this case, every point-derivation vanishes on stationary germs. To prove this, we recall the
following result from calculus (see Warner [114]):

form a basis of T,M.

Proposition 7.8. If g: R" — R is a C*-function (k > 2) on a convex open U about p € R™,
then for every q € U, we have

dg

9(q) = g(p) + Z X it

(i =) + D (4 —pi) (g —pj)/o (1-1) IX,0X,

ij=1

dt.

(1-t)p+tq

In particular, if g € C*°(U), then the integral as a function of q is C™.

Proposition 7.9. Let M be any C*>-manifold of dimension n. For any p € M, any point-
derivation on (’)ﬁg vanishes on S](\f;, the ring of stationary germs. Consequently, T,,(M) =

DY (M).
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Proof. Pick some chart (U, ) at p, where ¢(U) is convex (for instance, an open ball) and
let f be any stationary germ. If we apply Proposition 7.8 to fo@™! (for any f € f) and then
compose f o p~! with ¢, we get

(2i(q) = :(p) + Y (xi(a) — 2:(p)) (25(a) — 2;(p),

»(p) ij=1

fla) = )+ 3 2o )

near p, where h is C* and x; = pr; o ¢. Since f is a stationary germ, this yields

fl@)=f)+ > (wilq) — z:(p)(x;(q) — z;(p))h.

3,j=1

If v is any point-derivation, since f(p) is constant, Proposition 7.4 implies v(f(p)) = 0, and
we get

n

o(f) = o(f(p) + Y [(%(Q) — z:(p))(P)(x;(q) — 2;(p)) (p)v(h)

4,j=1

+ (@i(q) — 2:(p))(p)v(z;(q) — ;(p))h(p) + v(wi(q) — 2:(p))(x;(q) — z; (p))(p)h(p)] =0,
where the three terms in the summand vanish since

(zi(q) — z:(p))(p) = zi(p) — xi(p) = 0 = z;(p) — 2;(p) = (z;(¢) — z;(p))(p)-

We conclude that v vanishes on stationary germs. O]

Proposition 7.9 shows that in the case of a smooth manifold, in Definition 7.18, we
can omit the requirement that point-derivations vanish on stationary germs, since this is
automatic.

Remark: In the case of smooth manifolds (kK = oo) some authors, including Morita [87]
(Chapter 1, Definition 1.32) and O’Neil [91] (Chapter 1, Definition 9), define derivations as
linear derivations with domain C*°(M ), the set of all smooth funtions on the entire manifold,
M. This definition is simpler in the sense that it does not require the definition of the notion
of germ but it is not local, because it is not obvious that if v is a point-derivation at p, then
v(f) = v(g) whenever f, g € C*(M) agree locally at p. In fact, if two smooth locally defined
functions agree near p it may not be possible to extend both of them to the whole of M.
However, it can be proved that this property is local because on smooth manifolds, “bump
functions” exist (see Section 10.1, Proposition 10.2). Unfortunately, this argument breaks
down for C*-manifolds with & < oo and in this case the ring of germs at p can’t be avoided.
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7.4 Tangent and Cotangent Spaces Revisited ®

The space of linear forms on Og\];)p that vanish on SJ(\’;?p turns out to be isomorphic to the dual

of the quotient space O](\’;?p /Sj(\’;?p, and this fact shows that the dual (7,M)* of the tangent
space T,M, called the cotangent space to M at p, can be viewed as the quotient space

O](\Z?p / S](\f[?p. This provides a fairly intrinsic definition of the cotangent space to M at p. For
notational simplicity, we write 77 M instead of (T,M)*. This section is quite technical and
can be safely skipped upon first (or second!) reading,.

Let us refresh the reader’s memory and review quotient vector spaces. If F is a vector
space, the set of all linear forms f: £ — R on E is a vector space called the dual of E and
denoted by E*. If H C FE is any subspace of E, we define the equivalence relation ~ so that
for all u,v € F,

u~v iff u—veH.

Every equivalence class [u], is equal to the subset u + H = {u+ h | h € H}, called a coset,
and the set of equivalence classes £/H modulo ~ is a vector space under the operations
[u] + [v] = [u+ 1]
Au| = [Au].
The space E/H is called the quotient of E by H or for short, a quotient space.

Denote by L(E/H) the set of linear forms f: £ — R that vanish on H (this means that
for every f € L(E/H), we have f(h) = 0 for all h € H). The following proposition plays a
crucial role.

Proposition 7.10. Given a vector space E and a subspace H of E, there is an isomorphism
L(E/H) = (E/H)"

between the set L(E/H) of linear forms f: E — R that vanish on H and the dual of the
quotient space E/H.

Proof. To see this, define the map f — J?from L(E/H) to (E/H)* as follows: for any
f e LE/H), ~
f([u]) = f(u), [u] € E/H.

This function is well-defined because it does not depend on the representative u, chosen in
the equivalence class [u]. Indeed, if v ~ u, then v = u + h some h € H and so

fw) = fluth) = fu)+ f(h) = f(u),

since f(h) = 0 for all h € H. The formula f([u]) = f(u) makes it obvious that f is linear
since f is linear. The mapping f — f is injective. This is because if f; = fs, then
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for all u € E, and because ﬁ([u]) = fi(u) and Jg([u]) = fo(u), we get fi(u) = fo(u) for all
u € F, that is, fi = f;. The mapping f +— f is surjective because given any linear form
v € (E/H)*, if we define f by

o~

for all w € E, then f is linear, vanishes on H and clearly, f = ¢. Therefore, we have the
isomorphism,

L(E/H) = (E/H)",

as claimed. n

As a consequence of Proposition 7.10 the subspace of linear forms on O](\]f[?p that vanish on
8](\2, is isomorphic to the dual ((’)1(\121) / S](\Z)p)* of the space (’)](\I;?p /SJ(\fI?p, we see that the linear

forms
o 0
dz1 ), T\ Oz, ,

also form a basis of (Og\?p / S](\Z)p)*.
There is a conceptually clearer way to define a canonical isomorphism between 7,(M) and

the dual of Og\l;?p / SJ(JCIL in terms of a nondegenerate pairing between 7,,(M) and Og\?p / S](\f[?p.
This pairing is described by Serre in [105] (Chapter III, Section 8) for analytic manifolds
and can be adapted to our situation.

Define the map w: T,(M) x Og\?p — R, so that
w([], £) = (f 22)'(0),

for all [y] € T,(M) and all f € Og\?p (with f € f). It is easy to check that the above
expression does not depend on the representatives chosen in the equivalences classes [y], and
f and that w is bilinear. However, as defined, w is degenerate because w([v],f) = 0if f is a

stationary germ. Thus, we are led to consider the pairing with domain 7},(M) x ((9](\]21) / S](\f[?p)

given by
w([y], [£]) = (f 2 )(0),

where [y] € T,,(M) and [f] € (’)](\?p/SZ(\?p, which we also denote w: T,(M) x (O](\l;?p/S](\??p) — R.
Then the following result holds.

Proposition 7.11. The map w: T,(M) x ((’)g\f[?p/S](\?p) — R defined so that
w(y], [f]) = (f 2 7)'(0),

for all [y] € T,(M) and all [f] € O](\];?p/sj(é?p, is a nondegenerate pairing (with f € f).
Consequently, there is a canonical isomorphism between T,(M) and (Oglf[?p/S](\?p)* and a

canonical isomorphism between T (M) and Og\?p / S](\Z)p.
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Proof. This is basically a replay of the proof of Proposition 7.6. First assume that given some
[v] € T,(M), we have w([v], [f]) = 0 for all [f] € 05\%/&(\%. Pick a chart (U, ), with p € U
and let ; = pr; o . Then, the x;’s are not stationary germs, since z;0p ' = pryopop ! =
pr; and (pr;)’(0) = pr; (because pr; is a linear form). By hypothesis, w([v], [xi]) = 0 for
1 =1,...,n, which means that

(z:07)'(0) = (priop07)(0) =0
for i = 1,...,n, namely, pr;((p o) (0)) =0 for i = 1,...,n; that is,

(¢ 07)(0) = On,
proving that [y] = 0.
Next assume that given some [f] € Og\];?p / S](\?p, we have w([7], [f]) = 0 for all [y] € T,(M).
Again pick a chart (U, ¢). For every z € R", we have the curve v, given by

Y:(t) = o~ ((p) + t2)

for all ¢ in a small open interval containing 0. See Figure 7.11. By hypothesis,

w(ly:l [f]) = (f 07:)'(0) = (fo 0™ ) (9(p))(2) = 0

for all z € R™, which means that

(foe ™) (p(p)) = 0.

But then, f is a stationary germ and so, [f] = 0. Therefore, we proved that w is a nonde-

generate pairing. Since T,,(M) and O](\?p /S](\?p have finite dimension n, it follows that there

is are canonical isomorphisms between 7,(M) and ((95\%2 /Sj(\lj?p)* and between Ty(M) and
k k

o8 /St O

In view of Proposition 7.11, we can identify T,,(M) with (Og\/[?p / 8](\/[?p) and T (M) with
o) /S(k)
Mp/ = M,p*

Remark: Also recall that if F is a finite dimensional space, the map evalg: £ — E** defined
so that,
evalg(v)(f) = f(v), forallv € E and for all f € E*,

is a linear isomorphism.

Observe that we can view w(u,f) = w([7], [f]) as the result of computing the directional
derivative of the locally defined function f € f in the direction u (given by a curve 7).
Proposition 7.11 suggests the following definition:
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Definition 7.19. (Tangent and Cotangent Spaces, Version 4) Given any C*-manifold M
of dimension n, with £ > 1, for any p € M, the tangent space at p denoted T,(M) is the

space of point-derivations on Og\l;?p that vanish on S](\Z)p. Thus, T,(M) can be identified with

(O](\?p/S](\?p)*, the dual of the quotient space O](\Z?p/S](\’;?p. The space Og\?p/S](\?p is called
the cotangent space at p; it is isomorphic to the dual T (M), of T,,(M). (For simplicity of
notation we also denote T),(M) by T,M and T (M) by T M.)

We can consider any C*-function f on some open subset U of M as a representative of
the germ f € 05\12177 so the image of f in (’)5\]21)/8](\5’[, under the canonical projection of (’)E\I;?p

onto (’)g\]f[?p / S](f[’)p makes sense. Observe that if z; = pr; o ¢, as

0

the images of z1,...,x, in (9}%/8};; form the dual basis of the basis (8%1) s <£>
P "/

of T,,(M).

Definition 7.20. Given any C*-function f on U, we denote the image of f in T (M) =

Oj(\?p/S](\?p by df,. This is the differential of f at p.

Using the isomorphism between Og];?p / S](\Z)p and ((’)g\?p / S](\?p)** described above, df, cor-
responds to the linear map in T;(M) defined by
dfp(v) = v(f),
for all v € T,(M). With this notation, we see that (dwi),,...,(dz,), is a basis of T (M),
and this basis is dual to the basis (%1) . ( < ) of T,(M). For simplicity of notation,
P p

(o2
we often omit the subscript p unless confusion arises.

Remark: Strictly speaking, a tangent vector v € T),(M) is defined on the space of germs

O](\?p, at p. However, it is often convenient to define v on C*-functions f € C*(U), where U
is some open subset containing p. This is easy: set

v(f) = v(f).
Given any chart (U, ) at p, since v can be written in a unique way as
. 0
S8,
i=1 Oz P
we get

o(f) = ZA (aix)f
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This shows that v(f) is the directional derivative of f in the direction v. The directional
derivative, v(f), is also denoted v[f].

It is also possible to define T,,(M) just in terms of (’)E\Zf’;, and we get a fifth definition of
T,M.

Definition 7.21. Let my;, C O](\Zf; be the ideal of germs that vanish at p. We also have the
ideal m?w’p, which consists of all finite sums of products of two elements in myy,.

It turns out that T (M) is isomorphic to mys,/my, , (see Warner [114], Lemma 1.16).

Deﬁnition 7.22. Let m(kp
55\’; » C Stk M » denote the ideal of stationary C*-germs that vanish at p.

- (’)M " denote the ideal of C*-germs that vanish at p and

Adapting Warner’s argument, we can prove the following proposition:

Proposition 7.12. We have the inclusion, (mg\]f[?p)Q C 55\]2]) and the isomorphism

k k X ~Y *
(O3 /Sity)” = (i), /47),)".
As a consequence, T,(M) = (mMp/s o) and Ty(M) = mg\?ﬂé\?p

Proof. Given any two germs, f, g € mg\]f[?p, for any two locally defined functions, f € f and

g € g, since f(p) = g(p) = 0, for any chart (U, ¢) with p € U, by definition of the product
fg of two functions, for any ¢ € M near p, we have

(fgo e (g )=( 9) (¢ ' (q))
fle™ ( )g(e~'(q))
( @) goe ),

SO
fgoo™ = (fop ) (gop™),

and by the product rule for derivatives, we get
(fgoe ™) (0)=(foe ) (0)(goe™)(0)+ (for)(0)(gor ") (0) =0,

because (g o ¢™)(0) = g(¢™(0)) = g(p) = 0 and (f o 71)(0) = f(¢7(0)) = f(p) =
Therefore, fg is stationary at p and since fg(p) = 0, we have fg € 55\]21), which implies the

inclusion (mg\? )2 C s(k)

Now the key point is that any constant germ is statlonary, smce the derlvatlve of a
constant function is zero. Consequently, if v is a linear form on O\ M ', vanishing on St M , then

v(f) = v(f — f(p)),
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for all f € O](\?p, where f(p) denotes the germ of constant functions with value f(p). We use

*

this fact to define two functions between (Og\?p / S](\Z)p)* and (mg\?p /55\’2]0) which are mutual

mnverses.

The map from (O ]\];p/SA?p)* to (m]\];p/sj\];p)* is restriction to mg\]f[)p' every linear form v

on O M vanishing on S, (k) » yields a linear form on mgw that vanishes on 55\/[)

Conversely, for any linear form ¢ on mgw?p vanishing on 55\/[717, define the function v, so that

v(f) = ((f — £(p)),

for any germ f € (’)5\20. Since /¢ is linear, it is clear that v, is also linear. If f is stationary at
p, then f— f(p) is also stationary at p because the derivative of a constant is zero. Obviously,
f — f(p) vanishes at p. It follows that v, vanishes on stationary germs at p.

Using the fact that v(f) = v(f — f(p)), it is easy to check that the above maps between
((’)g\?p / S](f[?p)* and (mg\]f[?p /55\]2:0)* are mutual inverses, establishing the desired isomorphism.

Because (Og\l}?p / S](\?p)* is finite-dimensional, we also have the isomorphism

k) ~ k

Mp/SM)p = mMp/E( :
which yields the isomorphims T, (M) = (mMp/sMp) and T (M) = mg\?p/sg\’f[)’p. O
When k = oo, Proposition 7.8 shows that every stationary germ that vanishes at p

belongs to m?w’p. Therefore, when k = oo, we have 55\?; = m?w’p and so, we obtain the result
quoted above (from Warner):

TH(M) = O5) /i) 2 mpy, /mi .

Remarks:

(1) The isomorphism
(O8,/S30)" = (mly), /) )

yields another proof that the linear forms in (Og\lj’p / S](\Zp) are point-derivations, using
the argument from Warner [114] (Lemma 1.16). It is enough to prove that every linear

form of the form vy is a point-derivation. Indeed, if ¢ is a linear form on mg\]f[)p vanishing

v(fg) = ((fg — £(p)g(P))
= (((f - f(p))(g — g(p)) + (f — f(p))g(p) + f(p)(g — 8(P)))
=(((f - f(p))(g — g(p))) + Uf - f(p))g(p) + f(p)l(g — g(p))
= v(f)g(p) + £(p)ve(g),

using the fact that ¢((f — f(p)

55\’213, which proves that v, is a point-derivation.

(g —g(p))) = 0 since (mE@?pF C 5%1213 and ¢ vanishes on
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(2) The ideal mg\?p is in fact the unique maximal ideal of (95\’2]2. This is because if f € OE\?;;

does not vanish at p, then 1/f belongs to Og’;?p (because if f does not vanish at p,

then by continuity, f does not vanish in some open subset containing p, for all f € f),

and any proper ideal containing mﬁ’}?p and f would be equal to O](\’;?p, which is absurd.

Thus, (95\]217 is a local ring (in the sense of commutative algebra) called the local ring
of germs of C*-functions at p. These rings play a crucial role in algebraic geometry.

(3) Using the map f — f — f(p), it is easy to see that
o

~ k k) ~ k
= R & mg\/[?p and S](\4?p ~R @55\4;.

7.5 Tangent Maps

After having explored thoroughly the notion of tangent vector, we show how a C*-map
h: M — N, between C* manifolds, induces a linear map dhy,: T,(M) — Ty, (N), for every
p € M. We find it convenient to use Version 3 of the definition of a tangent vector. Let
u € T,(M) be a point-derivation on OE\ZD that vanishes on 8](\2,. We would like dh,(u) to be
a point-derivation on O](\]Z)h(p) that vanishes on S](V]i)h(p). For every germ g € OJ(\];,)h(p)’ ifgeg
is any locally defined function at h(p), it is clear that g o h is locally defined at p and is C*,
and that if g1, 9o € g then g; o h and gy o h are equivalent. The germ of all locally defined
functions at p of the form g o h, with g € g, will be denoted g o h. We set

dhy(u)(g) = u(goh).

In any chart (U, ) at p, ifu=>3"" N <%) , then
‘/p

Iy (u)(8) = 5" A (5) o

i=1

for any g € g. Moreover, if g is a stationary germ at h(p), then for some chart (V,v) on N
at ¢ = h(p), we have (go¢y~1)(x(q)) = 0 and, for any chart (U, ¢) at p on M, we use the
chain rule to obtain

(gohop™)(e(p) = (gov™ ) (W(@)((Yohop™)(o(p)) =0,

which means that g o h is stationary at p. Therefore, dh,(u) € Ty (N). It is also clear that
dh, is a linear map. We summarize all this in the following definition.

Definition 7.23. (Using Version 3 of a tangent vector) Given any two C*-manifolds M
and N, of dimension m and n respectively, for any C*-map h: M — N and for every
p € M, the differential of h at p or tangent map dh,: T,(M) — Ty (N) (also denoted
Toh: Ty(M) = Thp)(N)), is the linear map defined so that

dhy(u)(g) = Tph(u)(g) = u(goh)



250 CHAPTER 7. MANIFOLDS, TANGENT SPACES, COTANGENT SPACES

for every u € T,(M) and every germ g € (’)](\l;)h(p). The linear map dh,, (= T,h) is sometimes
denoted h;, or D,h. See Figure 7.12.

Figure 7.12: The tangent map dh,(u)(g) =Y N <%> goh.
t/p

The chain rule is easily generalized to manifolds.

Proposition 7.13. Given any two C*-maps f: M — N and g: N — P between smooth
C*-manifolds, for any p € M, we have

d(go f)p = dgse) o dfy.

In the special case where N = R, a C*-map between the manifolds M and R is just a
C*-function on M. It is interesting to see what 7, f is explicitly. Since N = R, germs (of
functions on R) at to = f(p) are just germs of C*-functions g: R — R locally defined at .
Then for any u € T,,(M) and every germ g at to,

T,f(u)(g) = u(go f).

If we pick a chart (U, ) on M at p, we know that the (%) form a basis of T,(M), with
“/p
u

1 <i < n. Therefore, it is enough to figure out what 7}, f(u)(g) is when u = ( 0 > . In this
p

ox;
0 0 d(go foypt
Tpf ((61‘) ) (g) = (&U) go f= %

case,

»(p)
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Using the chain rule, we find that

ni((2) ) () s

d
dt
This shows that we can identify 7}, f with the linear form in T;;(M) defined by

to

Therefore, we have

Tpf (u) = u(f)

to

df,(u) = u(f), ue T,M,

by identifying T3 R with R. This is consistent with our previous definition of df, as the image
of fin T;(M) = (95\?},/8}\’;; (as T,(M) is isomorphic to (Oﬁ?p/sﬁ’j?p)*).

Again, even though this is just a restatement of facts we already showed, we state the
following proposition because of its practical usefulness.

Proposition 7.14. Given any C*-manifold M of dimension n, with k > 1, for anyp € M
and any chart (U, @) at p, the n linear maps

(dx1)ps - -, (dxy)p

form a basis of Ty M, where (dx;),, the differential of x; at p, is identified with the linear
form in TXM such that (dx;),(v) = v(x;), for every v € T,M (by identifying T\R with R).

In preparation for the definition of the flow of a vector field (which will be needed to
define the exponential map in Lie group theory), we need to define the tangent vector to
a curve on a manifold. Given a C*-curve 7: (a,b) — M on a Ck-manifold M, for any
to € (a,b), we would like to define the tangent vector to the curve 7 at tq as a tangent vector
to M at p=(to). We do this as follows: Recall that 4 ,, 18 a basis vector of Ty, (R) =R.

Definition 7.24. The tangent vector to the curve v at ty, denoted (to) (or 7/ (ty), or Z—Z(to)),
d

is given by
0
Y(tg) = d — == :
Y(to) = dyg (dt to) ((%)tov

We find it necessary to define curves (in a manifold) whose domain is not an open
interval. A map v: [a,b] — M, is a C*-curve in M if it is the restriction of some C*-curve
v:(a—¢€,b+¢€) — M, for some (small) e > 0. Note that for such a curve (if £ > 1) the
tangent vector 4(¢) is defined for all ¢ € [a,b]. A continuous curve 7: [a,b] — M is piecewise
C* iff there a sequence ag = a, ay, ..., a, = b, so that the restriction v; of v to each [a;, a;1]
is a C*-curve, for i = 0,...,m — 1. This implies that 7/(a;+1) and 7/, (a;+1) are defined for
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1 =0,...,m — 1, but there may be a jump in the tangent vector to v at a;y, that is, we
may have {(a;11) # Vip1(@i+1).

Sometimes, especially in the case of a linear Lie group, it is more convenient to define
the tangent map in terms of Version 1 of a tangent vector. Given any C*-map h: M — N,
for every p € M, for any two curves 7, and 7, such that v;(0) = 42(0) = p, if 71 and 75 are
equivalent, then for any chart ¢: U — €y at p, we have (¢ o0v1)'(0) = (¢ 072)'(0), and since
f is CF, for some (in fact, any) chart 1: V — Q, at ¢ = h(p), the map o ho ¢! is C¥, so

(pohoy)(0)=(Yohop ), ((gomn)(0)
= (Y ohow ), ((po)(0)
= (o ho)(0),

which shows that h oy, and h o, are equivalent. As a consequence, for every equivalence
class u = [y] of curves through p in M, all curves of the form h o~ (with v € u) through
h(p) in N belong to the same equivalence class, and can make the following definition.

Definition 7.25. (Using Version 1 of a tangent vector) Given any two C*-manifolds M
and N, of dimension m and n respectively, for any C*-map h: M — N and for every
p € M, the differential of h at p or tangent map dhy,: T,(M) — Ty (N) (also denoted
Toh: T,(M) — Thpy(N)), is the linear map defined such that for every equivalence class
u =[] of curves v in M with v(0) = p,

dhy(u) = T,h(u) = v,

where v is the equivalence class of all curves through h(p) in N of the form ho~y, with v € w.
See Figure 7.13.

If M is a manifold in RM and N is a manifold in R"? (for some Ny, Ny > 1), then
7' (0) € RN and (h o) (0) € RN, so in this case the definition of dh, = T,h is just
Definition 3.9; namely, for any curve v in M such that v(0) = p and 7/(0) = w,

dhy(u) = Tph(u) = (h o 7)'(0).

Example 7.6. For example, consider the linear Lie group SO(3), pick any vector u € R3,
and let f: SO(3) — R? be given by

f(R) = Ru, ReSO(3).
To compute dfg: TrSO(3) — Tr,R?, since TRSO(3) = Rso(3) and Tx,R* = R3, pick any
tangent vector RB € Rso(3) = TrSO(3) (where B is any 3 x 3 skew symmetric matrix), let
7(t) = Re'® be the curve through R such that 4/(0) = RB, and compute

dfa(RB) = (f((£)))'(0) = (Re'"u)'(0) = RBu.
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Figure 7.13: The tangent map dh,(u) = v defined via equivalent curves.

Therefore, we see that
de(X) = XU, X e TRSO(3) = R50(3)

If we express the skew symmetric matrix B € s0(3) as B = wy for some vector w € R3, then
we have

dfr(Rwy) = Rwxu = R(w x u).
Using the isomorphism of the Lie algebras (R?, x) and s0(3), the tangent map df is given
by
dfr(Rw) = R(w X u).

Here is another example inspired by an optimization problem investigated by Taylor and
Kriegman.

Example 7.7. Pick any two vectors u,v € R3, and let f: SO(3) — R be the function given
by

F(R) = (u™ o).
To compute dfr: TrSO(3) = TR, since TRSO(3) = Rso(3) and TypmR = R, again pick

any tangent vector RB € Rso(3) = TrSO(3) (where B is any 3 x 3 skew symmetric matrix),
let y(t) = Re'® be the curve through R such that 7/(0) = RB, and compute via the product
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rule

dfr(RB) = (f(~(1)))'(0)
= ((u' Re'"v)?)(0)
=u' RBvu' Rv +u' Rvu' RBv
= 2u" RBuu' Ru,

where the last equality used the observation that u" RBv and u Rv are real numbers. There-
fore,
dfp(X) =2u" Xvu'Rv, X € Rso(3).

Unlike the case of functions defined on vector spaces, in order to define the gradient of
f, a function defined on SO(3), a “nonflat” manifold, we need to pick a Riemannian metric
on SO(3). We will explain how to do this in Chapter 13.

7.6 Submanifolds, Immersions, Embeddings

Although the notion of submanifold is intuitively rather clear, technically, it is a bit tricky.
In fact, the reader may have noticed that many different definitions appear in books and
that it is not obvious at first glance that these definitions are equivalent. What is important
is that a submanifold M of a given manifold N has the topology induced by N but also that
the charts of M are somehow induced by those of N.

Given m,n, with 0 < m <n, we can view R™ as a subspace of R" using the inclusion

R™ 2 R™ x {(0,...,0)} = R™" xR"™ =R",  (z1,...,2Zn) — (1,...,2Zm,0,...,0).
——— N——
Definition 7.26. Given a C*-manifold N of dimension n, a subset M of N is an m-

dimensional submanifold of N (where 0 < m < n) iff for every point p € M, there is a
chart (U, ) of N (in the maximal atlas for V), with p € U, so that

p(UNM) = oU)NR" X {0n-m}).

(We write 0,,—,,, = (0,...,0).)
———

n—m

The subset U N M of Definition 7.26 is sometimes called a slice of (U, ¢) and we say that
(U, ) is adapted to M (See O’Neill [91] or Warner [114]).

@ Other authors, including Warner [114], use the term submanifold in a broader sense than
us and they use the word embedded submanifold for what is defined in Definition 7.26.
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Figure 7.14: The red circle M is a 1-dimensional submanifold of the torus V.

The following proposition has an almost trivial proof but it justifies the use of the word
submanifold.

Proposition 7.15. Given a C*-manifold N of dimension n, for any submanifold M of N
of dimension m < n, the family of pairs (U N M,@ | U N M), where (U, ) ranges over
the charts over any atlas for N, is an atlas for M, where M is given the subspace topology.
Therefore, M inherits the structure of a C*-manifold.

In fact, every chart on M arises from a chart on N in the following precise sense.

Proposition 7.16. Given a C*-manifold N of dimension n and a submanifold M of N of

dimension m < n, for any p € M and any chart (W,n) of M at p, there is some chart (U, )
of N at p, so that

p(UNM)=oU)NR" x{0,-n}) and @[ UNM=n[UNM,
wherepe UNM CW.

Proof. See Berger and Gostiaux [15] (Chapter 2). O

It is also useful to define more general kinds of “submanifolds.”
Definition 7.27. Let h: M — N be a C*-map of manifolds.

(a) The map h is an smmersion of M into N iff dh, is injective for all p € M.
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(b) The set h(M) is an immersed submanifold of N iff h is an injective immersion.

(¢) The map h is an embedding of M into N iff h is an injective immersion such that the
induced map, M — h(M), is a homeomorphism, where h(M) is given the subspace
topology (equivalently, h is an open map from M into h(M) with the subspace topol-
ogy). We say that h(M) (with the subspace topology) is an embedded submanifold of
N.

(d) The map h is a submersion of M into N iff dh, is surjective for all p € M.

@ Again, we warn our readers that certain authors (such as Warner [114]) call h(M), in
(b), a submanifold of N! We prefer the terminology immersed submanifold.

The notion of immersed submanifold arises naturally in the framework of Lie groups.
Indeed, the fundamental correspondence between Lie groups and Lie algebras involves Lie
subgroups that are not necessarily closed. But, as we will see later, subgroups of Lie groups
that are also submanifolds are always closed. It is thus necessary to have a more inclusive
notion of submanifold for Lie groups and the concept of immersed submanifold is just what’s
needed.

Immersions of R into R? are parametric curves and immersions of R? into R® are para-
metric surfaces. These have been extensively studied, for example, see DoCarmo [38], Berger
and Gostiaux [15], or Gallier [48].

Immersions (i.e., subsets of the form h(M), where h is an immersion) are generally neither
injective immersions (i.e., subsets of the form h(M), where h is an injective immersion) nor
embeddings (or submanifolds). For example, immersions can have self-intersections, as the
plane curve (nodal cubic) shown in Figure 7.15 and given by = = * — 1;y = t(¢* — 1).

Figure 7.15: A nodal cubic; an immersion, but not an immersed submanifold.

Note that the cuspidal cubic, t — (t2,¢%), (see Figure 7.4), is an injective map, but it is
not an immersion since its derivative at the origin is zero.
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Injective immersions are generally not embeddings (or submanifolds) because h(M) may
not be homeomorphic to M. An example is given by the lemniscate of Bernoulli shown in
Figure 7.16, an injective immersion of R into R?:

t(1 4 %)
r = —,
1+ ¢t
t(1 —t?
y = 0=t
14+t

Figure 7.16: Lemniscate of Bernoulli; an immersed submanifold, but not an embedding.

When t = 0, the curve passes through the origin. When t — —oo, the curve tends to the
origin from the left and from above, and when ¢ — +o00, the curve tends tends to the origin
from the right and from below. Therefore, the inverse of the map defining the lemniscate of
Bernoulli is not continuous at the origin.

Another interesting example is the immersion of R into the 2-torus, 72 = S* x St C R4,
given by
t +— (cost,sint, cosct,sin ct),

where ¢ € R. One can show that the image of R under this immersion is closed in T2 iff
c is rational. Moreover, the image of this immersion is dense in 72 but not closed iff ¢ is
irrational. The above example can be adapted to the torus in R?*: One can show that the
immersion given by

t = ((2+ cost) cos(V2t), (2 + cost) sin(v/2t),sint),
is dense but not closed in the torus (in R?) given by
(s,t) = ((2 4 coss)cost, (2 + cos s) sint, sin s),

where s,t € R.
There is, however, a close relationship between submanifolds and embeddings.
Proposition 7.17. If M is a submanifold of N, then the inclusion map j7: M — N 1is an

embedding. Conversely, if h: M — N is an embedding, then h(M) with the subspace topology
is a submanifold of N and h is a diffeomorphism between M and h(M).
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Proof. See O’Neill [91] (Chapter 1) or Berger and Gostiaux [15] (Chapter 2). O

In summary, embedded submanifolds and (our) submanifolds coincide. Some
authors refer to spaces of the form h(M), where h is an injective immersion, as immersed
submanifolds and we have adopted this terminology. However, in general, an immersed sub-
manifold is not a submanifold. One case where this holds is when M is compact, since then, a
bijective continuous map is a homeomorphism. For yet a notion of submanifold intermediate
between immersed submanifolds and (our) submanifolds, see Sharpe [107] (Chapter 1).

7.7 Problems

Problem 7.1. Prove that the collection A of all charts compatible with an atlas A is a
maximal atlas in the equivalence class of atlases compatible with A.

Problem 7.2. Prove that every C*-manifold (k = 0, ..., 00) is locally connected and locally
compact.

Problem 7.3. Consider a C* n-atlas on a set M as defined in Definition 7.6. Give M the
topology in which the open sets are arbitrary unions of domains of charts U;, more precisely,
the U;’s of the maximal atlas defining the differentiable structure on M.

(1) Check that the axioms of a topology are verified, and M is indeed a topological space
with this topology.

(2) Check that that when M is equipped with the above topology, then the maps ¢;: U; —
¢i(U;) are homeomorphisms, so M is a manifold according to Definition 7.4.

Problem 7.4. Referring to Example 7.1, show that on the overlap Uy NUg = S™ —{N, S},
the transition maps
I=o0500y =onxo0g’
defined on on(Uy NUs) = ps(Uy NUs) = R™ — {0}, are given by
1
(- 0) o g (1,1 20):
> i T

that is, the inversion Z of center O = (0,...,0) and power 1.

Problem 7.5. In Example 7.4, check that the transition map o7 o pg' from ¢g(Us N Ur)
to pr(Us N Ur) is given by

M — (P3+P4M)(P1+P2M)_1,

P B\ _ 5
(PS P4)_PT Fs

is the matrix of the permutation 7' o rg and M is an (n — k) X k matrix.

where
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Problem 7.6. Referring to Example 7.4, prove that the collection of k-planes represented
by matrices in Ug is precisely the set of k-planes W supplementary to the (n — k)-plane
spanned by the canonical basis vectors e, ,,...,¢e;, (i.e., span(W U {ej,,,,...,¢€;,}) = R,
where S = {i1,... i} and {jg41,.--,Jnf = {1,...,n} = 9).

Problem 7.7. Prove that the condition of Definition 7.7 does not depend on the choice of
charts.

Problem 7.8. Check that the relation of Definition 7.14 is an equivalence relation.

Problem 7.9. Prove that the operations A[f] and [f][g] are well defined on germs of C*-
functions at a point p of a manifold.

Problem 7.10. Check that being stationary at a point p does not depend on the chart
(U, ) at p or on the function chosen in the germ f.

Problem 7.11. Consider the immersion of R in the torus 7% = S! x S! C R*, given by
t — (cost,sint, cosct,sin ct),

where ¢ € R. Show that the image of R under this immersion is closed in 72 iff ¢ is rational.
Moreover, show that the image of this immersion is dense in 72 but not closed iff ¢ is
irrational.

Problem 7.12. Show that the immersion given by
t = ((2+ cost) cos(V2t), (2 + cost) sin(v/21t),sint),
is dense but not closed in the torus (in R?) given by
(s,t) = ((24 coss) cost, (2 + cos s)sint, sin s),
where s,t € R.

Problem 7.13. Prove that if N is a compact manifold, then an injective immersion f: N —
M is an embedding.

Problem 7.14. Let f: M — N be a map of smooth manifolds. A point, p € M, is called
a critical point (of f) iff df, is not surjective and a point ¢ € N is called a critical value (of
f)iff ¢ = f(p), for some critical point, p € M. A point p € M is a regular point (of f) iff p
is not critical, i.e., df, is surjective, and a point ¢ € N is a reqular value (of f) iff it is not a
critical value. In particular, any ¢ € N — f(M) is a regular value and ¢ € f(M) is a regular
value iff every p € f7'(q) is a regular point (but, in contrast, ¢ is a critical value iff some
p € f1(q) is critical).

(a) Prove that for every regular value, q € f(M), the preimage Z = f~!(q) is a manifold
of dimension dim(M) — dim(N).
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Hint. Pick any p € f~!(¢) and some parametrizations ¢ at p and ¢ at ¢, with ¢(0) = p and
¥(0) = ¢, and consider h = 1y~! o f o . Prove that dhy is surjective and then apply Lemma
3.5.

(b) Under the same assumptions as (a), prove that for every point p € Z = f~1(q), the
tangent space, 1,7, is the kernel of df,: T,M — T, N.

(c) If X, Z C RY are manifolds and Z C X, we say that Z is a submanifold of X. Assume
there is a smooth function, g: X — R*, and that 0 € R* is a regular value of g. Then, by
(a), Z = ¢g7'(0) is a submanifold of X of dimension dim(X) — k. Let g = (g1,...,gx), with
each g; a function, ¢g;: X — R. Prove that for any p € X, dg, is surjective iff the linear
forms, (dg;),: T,X — R, are linearly independent. In this case, we say that ¢i,...,g; are
independent at p. We also say that Z is cut out by g¢1,..., g when

Z={peX|glp)=0,... g(p) =0}
with g¢1,..., gx independent for all p € Z.
Let f: X — Y be a smooth maps of manifolds and let ¢ € f(X) be a regular value.

Prove that Z = f~(g) is a submanifold of X cut out by ¥ = dim(X) — dim(Y") independent
functions.

Hint. Pick some parametrization, 1, at ¢, so that ¢/(0) = ¢ and check that 0 is a regular
value of g = 1)~ o f, so that gi,..., g, work.

(d) Now, assume Z is a submanifold of X. Prove that locally, Z is cut out by independent
functions. This means that if £ = dim(X) — dim(Z), the codimension of Z in X, then for
every z € Z, there are k independent functions, ¢, ..., g, defined on some open subset,
W C X, with z € W, so that Z N W is the common zero set of the g;’s.

Hint. Apply Lemma 3.4 to the immersion 7 — X.

(e) We would like to generalize our result in (a) to the more general situation where we
have a smooth map, f: X — Y, but this time, we have a submanifold, Z C Y and we are

investigating whether f~!(7) is a submanifold of X. In particular, if X is also a submanifold
of Y and f is the inclusion of X into Y, then f~1(Z) =X N Z.

Convince yourself that, in general, the intersection of two submanifolds is not a subman-
ifold. Try examples involving curves and surfaces and you will see how bad the situation can
be. What is needed is a notion generalizing that of a regular value, and this turns out to be
the notion of transversality.

We say that f is transversal to Z iff
dfp(T,X) + Ty 2 = Ty,

for all p € f~1(Z). (Recall, if U and V are subspaces of a vector space, F, then U + V is
the subspace U +V ={u+v e E|ue U, v e V}). In particular, if f is the inclusion of X
into Y, the transversality condition is

T,X +T,7 =T,Y,
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forallpe X NZ.

Draw several examples of transversal intersections to understand better this concept.
Prove that if f is transversal to Z, then f~1(Z) is a submanifold of X of codimension equal
to dim(Y) — dim(Z2).

Hint. The set f~'(Z) is a manifold iff for every p € f~!(Z), there is some open subset,
UCX,withpeU,and f~1(Z)NU is a manifold. First, use (d) to assert that locally near
q = f(p), Z is cut out by k = dim(Y) — dim(Z) independent functions, g1, ..., gx, so that
locally near p, the preimage f~!(Z) is cut out by g1 o0 f,...,gxo f. lf welet g = (g1,...,x),
it is a submersion and the issue is to prove that 0 is a regular value of go f in order to apply
(a). Show that transversality is just what’s needed to show that 0 is a regular value of go f.

(f) With the same assumptions as in (g) (f is transversal to Z), if W = f~1(Z), prove
that for every p € W,
LW = (dfy) (T Z),
the preimage of T, Z by df,: T,X — Tjy,)Y. In particular, if f is the inclusion of X into

Y then
T,(XNZ2)=T,XNT,Z.

(g) Let X,Z C Y be two submanifolds of Y, with X compact, Z closed, dim(X) +
dim(Z) = dim(Y) and X transversal to Z. Prove that X N Z consists of a finite set of
points.

Problem 7.15. Show that a smooth map f: M — R™ from a compact manifold M to R™
has some critical point.
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Chapter 8

Construction of Manifolds From
Gluing Data ®

8.1 Sets of Gluing Data for Manifolds

The definition of a manifold given in Chapter 7 assumes that the underlying set M is already
known. However, there are situations where we only have some indirect information about
the overlap of the domains U; of the local charts defining our manifold M in terms of the
transition functions .
o = wji (Ui NU;) = ¢;(Us N U;),

but where M itself is not known. For example, this situation happens when trying to
construct a surface approximating a 3D-mesh. If we let Q;; = ¢;(U; N U;) and Q;; =
©;(U; NUj), then ¢j; can be viewed as a “gluing map”

wjit Qg — Qi

between two open subsets of (2; and (2, respectively.

For technical reasons, it is desirable to assume that the images ; = ¢;(U;) and Q;
©;(U;) of distinct charts are disjoint, but this can always be achieved for manifolds. Indeed
the map

B (1, xy) — xln =, Inn >
vV L+ 0, 2 vV L4+

is a smooth diffeomorphism from R™ to the open unit ball B(0,1), with inverse given by

_ Ty Tn
Bl (21, ) — s :
(@ ) \/1_2;;15”@2 \/1_2?:1%2

Since M has a countable basis, using compositions of # with suitable translations, we can
make sure that the €2;’s are mapped diffeomorphically to disjoint open subsets of R".

263
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Remarkably, manifolds can be constructed using the “gluing process” alluded to above
from what is often called sets of “gluing data.” In this chapter we are going to describe
this construction and prove its correctness in detail, provided some mild assumptions on the
gluing data. It turns out that this procedure for building manifolds can be made practical.
Indeed, it is the basis of a class of new methods for approximating 3D meshes by smooth
surfaces, see Siqueira, Xu and Gallier [108].

Some care must be exercised to ensure that the space obtained by gluing the pieces 2;; and
2;; is Hausdorff. Some care must also be exercised in formulating the consistency conditions
relating the ¢;;’s (the so-called “cocycle condition”). This is because the traditional condition
(for example, in bundle theory) has to do with triple overlaps of the U; = ¢; *(€;) on the
manifold M, but in our situation, we do not have M nor the parametrization maps 6; = ¢; L
and the cocycle condition on the ¢j;’s has to be stated in terms of the ;’s and the €2};’s.

Note that if the €2;; arise from the charts of a manifold, then nonempty triple intersections
U; NU; NUy, of domains of charts have images ¢;(U; NU; NUy) in Q;, ¢;(U; NU; NU) in Q,
and ¢ (U; NU; NUy) in Q, and since the ¢;’s are bijective maps, we get

e U;NU;NU) =@i(U;NU;NU;NU) =i (U; N U;) N (U NUE) = Q45 N Qg
and similarly
e;(U;NU;NU) = Q5N Qg, (U NU; NUE) = Qg N Qi
and these sets are related. Indeed, we have

3i(Quy N Qi) = @5 0 97 (iU N U;) N s (Us N Uy))
== QDJ(UZ N Uj N Uk) = jS N ij,

and similar equations relating the other “triple intersections.” In particular,
@i (i N Q) = Qi N Qi

which implies that
@5t (i N Q) = 01 (i N Qi) C Qg

This is important, because goj_il(jS N ;) is the domain of ¢y, o ;; and € is the domain
of ¢y, so the condition ¢;;(€2;; N Q1) = €;; Ny, implies that the domain of ¢y o pj; is a
subset of the domain of ¢g;. See Figure 8.1. The definition of gluing data given by Grimm
and Hughes [53, 54] misses the above condition.

Finding an easily testable necessary and sufficient criterion for the Hausdorff condition
appears to be a very difficult problem. We propose a necessary and sufficient condition, but
it is not easily testable in general. If M is a manifold, then observe that difficulties may arise
when we want to separate two distinct point p, ¢ € M such that p and ¢ neither belong to
the same open 6;(€);), (recalling that 6; = ;'), nor to two disjoint opens 6;(€2;) and 6,($;),
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Q

Figure 8.1: The domain of ¢y; is the blue region in the red circle. A subset of this domain
is goj_il(jS N €2jx), namely the pull back of the intersection of the blue and red regions from
the green circle.

but instead to the boundary points in (9(6;(£2;;)) N 6;(€2;)) U (0(0;(€2;)) N 0;(€2;)). In this

case, there are some disjoint open subsets U, and U, of M with p € U, and ¢ € U,, and

we get two disjoint open subsets V, = 0;'(U,) = ¢:(Up) € Q; and V, = 6;'(U,) C Q; with

0;(x) = p, 0;(y) = q, and such that z € 9(;;) N, y € 9(;;) N, and no point in V,, N Qy;

is the image of any point in V,N$;; by ¢j;. See Figure 8.2. Since V,, and V), are open, we may

assume that they are open balls. This necessary condition turns out to be also sufficient.
With the above motivations in mind, here is the definition of sets of gluing data.

Definition 8.1. Let n be an integer with n > 1 and let k£ be either an integer with £ > 1 or
k = o0o. A set of gluing data is a triple G = ((%)er, () @j)erxi (P5i)a.j)ek) satisfying the
following properties, where I is a (nonempty) countable set:

(1) For every i € I, the set ); is a nonempty open subset of R" called a parametrization
domain, for short, p-domain, and the §2; are pairwise disjoint (i.e., £2; N Q; = O for all

i#9)
(2) For every pair (4,7) € I x I, the set {2;; is an open subset of ;. Furthermore, €2;; = Q;
and Q;; # 0 iff Qj; # 0. Each nonempty Q;; (with @ # j) is called a gluing domain.
(3) If we let
K ={(i,j) € I x I [y # 0},

then ;;: Q;; — Qj; is a CF bijection for every (i,7) € K called a transition function
(or gluing function) and the following condition holds:

(a) i =idg,, for all i € 1.
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Figure 8.2: A schematic illustration of how to separate boundary points.

(b) wij = go;il, for all (i,7) € K.
(C) For all ’i,j,]{?, if jS N ij 7é @, then @Z](le N Q]k) = Qij N Qik; and gpkl(x) =

Condition (c) is called the cocycle condition. See Figure 8.3.

(4) For every pair (i, j) € K, with i # j, for every x € 9(£;;)NSY; and every y € 9(£2;;) N8,
there are open balls V, and V), centered at x and y so that no point of V,, N §2;; is the
image of any point of V, N ;; by ¢,;. See Figure 8.2.

Remarks.

(1) In practical applications, the index set I is of course finite and the open subsets ;
may have special properties (for example, connected; open simplicies, etc.).

(2) We are only interested in the €2;;’s that are nonempty, but empty ;;’s do arise in
proofs and constructions, and this is why our definition allows them.

(3) Observe that €2;; C €; and €;; C Q;. If i # 7, as Q; and Q; are disjoint, so are €);; and
(4) The cocycle Condition (c) may seem overly complicated but it is actually needed to
guarantee the transitivity of the relation ~ defined in the proof of Proposition 8.1.
Flawed versions of Condition (c) appear in the literature; see the discussion after the
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Figure 8.3: A schematic illustration of the cocycle condition.

proof of Proposition 8.1. The problem is that ¢;0¢;; is a partial function whose domain
goj’il(jSﬂij) is not necessarily related to the domain €2, of ;. To ensure transitivity
of ~, we must assert that whenever the composition ¢y; o ¢;; has a nonempty domain,
this domain is contained in the domain €2, of ¢g;, and that ¢y; o ;; and ¢y, agree in

Since the ¢j; are bijections, it turns out that Condition (c) implies Conditions (a) and
(b). To get (a), set i = j = k. Then Condition (b) follows from (a) and (c) by setting
k=i.

If M is a C* manifold (including k¥ = o0), then using the notation of our introduction,
it is easy to check that the open sets €2;, €);; and the gluing functions ¢j; satisfy
the conditions of Definition 8.1 (provided that we fix the charts so that the images
of distinct charts are disjoint). Proposition 8.1 will show that a manifold can be
reconstructed from a set of gluing data.

The idea of defining gluing data for manifolds is not new. André Weil introduced this
idea to define abstract algebraic varieties by gluing irreducible affine sets in his book [115]
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published in 1946. The same idea is well-known in bundle theory and can be found in
standard texts such as Steenrod [109], Bott and Tu [18], Morita [87] and Wells [117].

The beauty of the idea is that it allows the reconstruction of a manifold M without
having prior knowledge of the topology of this manifold (that is, without having explicitly
the underlying topological space M) by gluing open subets of R™ (the €2;’s) according to
prescribed gluing instructions (namely, glue €; and €2; by identifying €2;; and €2;; using ¢;;).
This method of specifying a manifold separates clearly the local structure of the manifold
(given by the €2;’s) from its global structure which is specified by the gluing functions.
Furthermore, this method ensures that the resulting manifold is C* (even for k = oo) with
no extra effort since the gluing functions ¢;; are assumed to be C*.

Grimm and Hughes [53, 54] appear to be the first to have realized the power of this latter
property for practical applications, and we wish to emphasize that this is a very significant
discovery. However, Grimm [53] uses a condition stronger than our Condition (4) to ensure
that the resulting space is Hausdorff. The cocycle condition in Grimm and Hughes [53, 54]
is also not strong enough to ensure transitivity of the relation ~. We will come back to these
points after the proof of Proposition 8.1.

Working with overlaps of open subsets of the parameter domain makes it much easier to
enforce smoothness conditions compared to the traditional approach with splines where the
parameter domain is subdivided into closed regions, and where enforcing smoothness along
boundaries is much more difficult.

Let us show that a set of gluing data defines a C* manifold in a natural way.

Proposition 8.1. For every set of gluing data G = ((%)er, (%)) ijyerxis (@ji) ek ), there
is an n-dimensional C* manifold Mg whose transition functions are the ¢j;’s.

Proof. Define the binary relation ~ on the disjoint union [, ;€ of the open sets €; as
follows: For all x,y € []..; Q,

el
r~y Mt (3(i,)) € K)(z € Qij,y € i,y = pji(x)).

We claim that ~ is an equivalence relation. This follows easily from the cocycle condition.
Clearly Condition 3a of Definition 8.1 ensures reflexivity, while Condition 3b ensures sym-
metry. To check transitivity, assume that x ~ y and y ~ z. Then there are some i, j, k such
that (1) x € Qi;, vy € QN Qjy, 2 € Uy, and (i) y = ¢ji(z) and z = ¢y;(y). Consequently,
jS N ij 7& () and = € QOJ_ll(Q]Z N ij), SO by 3c, we get QDJ_ZI(Q]Z N Q]k) = Qij N Qi € Q.
So, ¢ri(x) is defined and by 3c again, () = @i; 0 @ji(x) = z, L.e., © ~ 2z, as desired. See
Figure 8.4.

Since ~ is an equivalence relation, let

Mg = (HQ,;)/N

iel
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Figure 8.4: A schematic illustration transitivity, where z ~ y and y ~ z implies x ~ z.

be the quotient set and let p: [],.; € — Mg be the quotient map, with p(z) = [z], where
[z] denotes the equivalence class of z. Also, for every 7 € I, let in;: €; — [],.; % be the
natural injection and let

T, =poin;: ; = Mg.

Note that if v ~ y and  # y, then i # j, as ¢; = id. But then, as z € ;; C €,
yeQy CQand Q,NQ; =0 wheni # j,if v ~yand z,y € , then v = y. As a
consequence we conclude that every 7; is injective. We give Mg the largest topology that
makes the bijections, 7;: €; — 7;(£2;), into homeomorphisms. Then, if we let U; = 7;(£2;) and
p; = Ti_l, it is immediately verified that the (U;, ;) are charts and that this collection of
charts forms a C* atlas for Mg. As there are countably many charts, Mg is second-countable.

To prove that the topology is Hausdorff, we first prove the following:
Claim. For all (i,7) € I x I, we have 7;(€;) N 7;(Q;) # 0 iff (4,7) € K and if so,

7i(Q:) N7 (Qy) = 1(Qig) = 75(Lji) -

Assume that 7;(€;)N7;(Q;) # 0 and let [2] € 7:(Q;)N7;(Q;). Observe that [2] € 7;(£2;)N7;(2;)
iff z ~ 2 and z ~ y, for some = € €2; and some y € €);. Consequently, x ~ y, which implies
that (4,j) € K, z € Q;; and y € Qj;. We have [z] € 7;(Q;;) iff 2 ~ z, for some x € €2;;. Then
either i = jand z = x or i # j and z € Q;, which shows that [z] € 7;(£2};), and consequently
we get 7;(€2;;) C 7;(£2j;). Since the same argument applies by interchanging i and j, we have
that 7;(€;) = 7;(y;), for all (¢,7) € K. Furthermore, because €;; C €, ;; C €, and
7;(Q45) = 7;(;), for all (i, 5) € K, we also have that 7,(€2;;) = 7;(€;;) C 7;(;) N 7;(£2;), for
all (i,7) € K. See Figure 8.5.
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Figure 8.5: A schematic illustration of 7;(2;) N 7;(Y;) = 7(€4;) = 7;(;), where Mg is
depicted as a torus.

For the reverse inclusion, if [2] € 7;(€2;) N 7;(€2;), then we know that there is some x € Q;
and some y € j; such that z ~ z and z ~ y, so [z] = [z] € 7;,(;) and [z] = [y] € 75(Qy),
and then we get

7i(€) N 75(25) € 7)) = 75(Lje) -

This proves that if 7;(€;) N 7;(€;) # 0, then (4,7) € K and
7i(8) N 75(25) = 7i(Qi) = 75(20) -

Finally, assume that (¢, j) € K. Then, for any « € ;; C Q;, we have y = pj;(z) € ;; C
Q; and x ~ vy, so that 7;(x) = 7;(y), which proves that 7;(2;) N 7;(Q;) # 0. So, our claim is
true, and we can use it.

We now prove that the topology of Mg is Hausdorff. Pick [z],[y] € Mg with [x] # [y],
for some x € §; and some y € Q. Either 7;(€;) N 7;(€2;) = 0, in which case, as 7; and 7; are
homeomorphisms, [z] and [y] belong to the two disjoint open sets 7;(€2;) and 7;(€2;). If not,
then by the claim, (7,7) € K and

7i(Q:) N7 (Qy) = 1 (Qiy) = 75(Lji) -



8.1. SETS OF GLUING DATA FOR MANIFOLDS 271

There are several cases to consider:

1. If ¢ = j then x and y can be separated by disjoint opens V, and V,, and as 7; is
a homeomorphism, [z] and [y] are separated by the disjoint open subsets 7;(V,) and

7i(Vy)-

2. If i # j, v € O — Q5 and y € Q; — Qyy, then 7,(Q; — Qi) and 7;(; — Q) are disjoint
open subsets separating [x] and [y], where €;; and §;; are the closures of €;; and €2j;,
respectively. See Figure 8.6.

Figure 8.6: The separation of [z] and [y] when € Q; — Q,; and y € Q; — Q.

3. Iti#j, v € Q and y € Q;, as [z] # [y] and y ~ ¢;;(y), then = # ¢;;(y). We can
separate x and ;;(y) by disjoint open subsets V,, and V,,, and [z]| and [y| = [¢;;(y)] are
separated by the disjoint open subsets 7;(V,) and 73(V,,,()). See Figure 8.7.

4. It i # 5, x € 0(;) N and y € 0(£2;) N5, then we use Condition 4 of Definition 8.1.
This condition yields two disjoint open subsets V, and V,, with 2 € V, and y € V,,
such that no point of V,, N €;; is equivalent to any point of V,, N 2y;, and so 7;(V,) and
7;(V},) are disjoint open subsets separating [z] and [y]. See Figure 8.2.
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T (-o,)

Ti(Vy)

Ti(Vp, o)y

Figure 8.7: The separation of [z] and [y] when = # ¢;;(y).

Therefore, the topology of Mg is Hausdorff and Mg is indeed a manifold. Finally, it is trivial
to verify that the transition maps of Mg are the original gluing functions ¢;;, since ¢; = 7,

and pj; = @0 ¢; . O

It should be noted that as nice as it is, Proposition 8.1 is a theoretical construction that
yields an “abstract” manifold, but does not yield any information as to the geometry of this
manifold. Furthermore, the resulting manifold may not be orientable or compact, even if we
start with a finite set of p-domains.

Here is an example showing that if Condition (4) of Definition 8.1 is omitted then we
may get non-Hausdorff spaces. Cindy Grimm uses a similar example in her dissertation [53]
(Appendix C2, page 126), but her presentation is somewhat confusing because her ; and
), appear to be two disjoint copies of the real line in R?, but these are not open in R?!

Let Ql = (—3,—1), QQ = (1,3)7 ng = (—3, —2), le = (172) and @21((13) =x+ 4. The
resulting space M is a curve looking like a “fork,” and the problem is that the images of —2

and 2 in M, which are distinct points of M, cannot be separated. See Figure 8.8. Indeed,
the images of any two open intervals (=2 — €, =2 +¢) and (2 — 7,2+ n) (for ¢,n > 0) always



8.1. SETS OF GLUING DATA FOR MANIFOLDS 273

intersect, since (—2 — min(e,n), —2) and (2 — min(e, n), 2) are identified. Clearly Condition
(4) fails.

Figure 8.8: The fork construction M.

Cindy Grimm [53] (page 40) uses a condition stronger than our Condition (4) to ensure
that the quotient, Mg is Hausdorff; namely, that for all (i, j) € K with i # j, the quotient
(4 11€;)/ ~ should be embeddable in R™. This is a rather strong condition that prevents
obtaining a 2-sphere by gluing two open discs in R? along an annulus (see Grimm [53],
Appendix C2, page 126).

Remark: Readers familiar with fibre bundles may wonder why the cocycle Condition (3c) of
Definition 8.1 is more arcane than the corresponding definition found in bundle theory. The
reason is that if 7: F — B is a (smooth or C*) fibre bundle with fibre, F', then there is some
open cover, (U,), of the base space, B, and for every index, «, there is a local trivialization
map, namely a diffeomorphism,

Ya: T H(Uy) = Uy X F,

such that
T = P1 % Pa,
where p;: U, x F' — U, is the projection onto U,. Whenever U, N Uz # 0, we have a map

Pa 05" (UaNUg) X F = (Uy N Ug) X F,
and because ™ = p; 0 ¢, for all , there is a map,
gpa: Uy NUg — DIiff(F),
where Diff (F') denotes the group of diffeomorphisms of the fibre, F'| such that
Pa 095 (b,p) = (b, g5 (D)(p)),

for all b € U, NUg and all p € F. The maps, ggq, are the transition maps of the bundle.
Observe that for all b € U, N Up, the maps, gzn(b), have the same domain and the same
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range, F. So, whenever U, N Ug NU, # 0, for all b € U, N Uz N U,, the maps gga, g3
and g,, have the same domain and the same range. Consequently, in this case, the cocycle
condition can be simply stated as

Jva = 9v8°98a,

without taking any precautions about the domains of these maps. However, in our situation
(a manifold), the transition maps are of the form ¢j;: €;; — €j;, where the Q;; are various
unrelated open subsets of R", and so, the composite map, ¢i; o ¢;; only makes sense on
a subset of €;; (the domain of ¢;;). However, this subset need not be contained in the
domain of ;. So in order to avoid the extra complications we saw before, the constraints
in Condition (3c) of Definition 8.1 must be imposed. In reconstructing a fibre bundle from
B and the transition maps gs, we use the gz, to glue the spaces U, x F' and Ug x F' along
(Us NUg) x F, where two points (a,p) and (b,q) in (U, N Up) x F are identified iff a = b
and ¢ = gga(a)(p). In reconstructing a manifold from a set of gluing data, we glue the open
sets 2; and (2; along 2;; and €2;;, which are identified using the maps, ¢;;.

Grimm uses the following cocycle condition in [53] (page 40) and [54] (page 361):

(¢') For all x € Q;; N Qyy,
Pri(T) = prj © @ji(T).

This condition is not strong enough to imply transitivity of the relation ~, as shown by the
following counter-example:

Let Ql - (073)7 QQ = (475)7 Q3 = (679)7 QlQ = (071)7 QlS = (273>7 QQI = QZ?) = (47 5)7
Q32 = (8,9), Q31 = (6,7), pa1(z) =+ 4, psa(x) =+ 4 and p31(x) =z + 4.

Note that the pairwise gluings yield Hausdorff spaces. Obviously, 32091 (z) = x+8, for
all z € Qq5, but Q15 N Q3 = . Thus, 0.5 ~ 4.5 ~ 8.5, and if the relation ~ was transitive,
then we would conclude that 0.5 ~ 8.5. However, the definition of the relation ~ requires
that ¢31(0.5) be defined, which is not the case. Therefore, the relation ~ is not transitive.
See Figure 8.9. The problem is that because €15 N ;3 = (), Condition (¢’) holds vacuously,
but it is not strong enough to ensure that ¢31(0.5) is defined.

Here is another counter-example in which €5, N Q35 # 0, using a disconnected open 2.

Let Ql - (0,3), QQ - (4,5) U (6,7), Qg - (8,11), Q12 - (0,1) U (2,3), ng - (2,3),
le = Q23 = (4,5)U(6, 7), Q32 = (8,9)U(10, 11), le = (8,9), @21(33) = .T+4, @32(1’) = iL’—|—2
on (6,7), g32(x) =x 4+ 6 on (4,5), ps1(z) =z + 6.

Note that the pairwise gluings yield Hausdorff spaces. Obviously, @32 0 po1(z) =2 +6 =
w31(x) for all x € Q12 N Q3 = (2,3). Thus, 0.5 ~ 4.5 ~ 10.5, but 0.5 5 10.5 since

©31(0.5) is undefined. See Figure 8.10. This time Condition (¢’) holds and is nontrivial since
Q12 N Q3 = (2,3), but it is not strong enough to ensure that ¢3;(0.5) is defined.

It is possible to give a construction, in the case of a surface, which builds a compact man-
ifold whose geometry is “close” to the geometry of a prescribed 3D-mesh (see Siqueira, Xu
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0, ) Q,
Q Q=0,7 0y 31 Qs
o1 2 3 . u 9
(p21 (P32

Figure 8.9: A counter-example to Condition (¢’). Note 31 # @32 © @91 since these partial
functions have different domains.

Figure 8.10: Another counter-example to Condition (¢’). Once again @31 # @32 © 9 since
these partial functions have different domains.

and Gallier [108]). Actually, we are not able to guarantee, in general, that the parametriza-
tion functions #; that we obtain are injective, but we are not aware of any algorithm that
achieves this.

Given a set of gluing data, G = ((€)er, (45) G j)erxr, (¥5i),j)ek ), it is natural to consider
the collection of manifolds M parametrized by maps 6;: €2; — M whose domains are the
(2;’s and whose transitions functions are given by the ¢;;; that is, such that

pji =0, 00,

We will say that such manifolds are induced by the set of gluing data G.

The proof of Proposition 8.1 shows that the parametrization maps 7; satisfy the property:
(%) N 7;(y) # 0 iff (i,7) € K, and if so

() N 75() = 73(Q5) = 75(Q5)-
Furthermore, they also satisfy the consistency condition:

Ti = Tj © Pjis
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for all (i,7) € K. If M is a manifold induced by the set of gluing data G, because the 6;’s
are injective and ¢j; = (9]-_1 o 6;, the two properties stated above for the 7;’s also hold for the
0;’s. We will see in Section 8.2 that the manifold Mg is a “universal” manifold induced by
G, in the sense that every manifold induced by G is the image of Mg by some C* map.

Interestingly, it is possible to characterize when two manifolds induced by sets of gluing
data sharing the same sets of {2;’s and €);;’s are isomorphic in terms of a condition on their
transition functions.

Proposition 8.2. Given two sets of gluing data G = ((S%)er, (%)@ j)erxts (©ji) G j)ex) and
G = ((Uer, (j)gerxt; (i) ager) over the same sets of Q;’s and Qy;’s, for any two
manifolds M and M’ such that M is induced by G and M’ is induced by G', where M
and M’ are given by families of parametrizations (€;,0;)icr and (€, 0%);cr respectively, if
f: M — M’ is a C* isomorphism, then there are C* bijections p;: Wi; — Wi for some open
subsets Wij, Wi, € Q;, such that

¢ii(x) = pjopjiop (x),  foral xe W],

with pj; = 9]7106’1- and ;= 9;71092. Furthermore, p; = (0 "o fol;) | Wi;, and if 0, o fo#;

is a bijection from Q; to itself and /"' o f o 0:(S%ij) = Quj, for all i, j, then Wi; = Wi, = Q.
See Figure 8.11.

Figure 8.11: The construction of p; between the diffeomorphic manifolds M and M’.
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Proof. The composition 6’1’-71 o f o#; is actually a partial function with domain
dom(#, " o fol) ={xeQ|0;(x)ec fobi()})
and its “inverse” ;' o f~1 o ¢} is a partial function with domain
dom(f; o f1 o) ={z € Q| bi(z) € fobi(Q)}
The composition 9;_1 ofofjopjo 0;' o f~1 o @ is also a partial function, and we let
Wij = QNdom(0; " o fof0p,00 0 f T oll),  pi=(0"0fob) W,
and W}, = pi(Wi;). Observe that 6; o p;; = 6; o 0;1 0 0; = 0;, that is,
0i = 0; o pji.
Using this, on W;; we get

pjogpjz-o,oi_l = Héflofoﬁjogojio(ﬁflofo@l-)_l
= Hg_lofoﬁjogpjioei_loffloeg
= 0 ofofi0b o fod

_ r—1 /AN
= ‘gj Oei—@jm

as claimed. The last part of the proposition is clear. O]

Proposition 8.2 suggests defining a notion of equivalence on sets of gluing data which
yields a converse of this proposition.

Definition 8.2. Two sets of gluing data G = ((%)er, (%j) . j)erx1(¥ji)jex) and G =
(Q)er, () gerxi(P)ajyer) over the same sets of ;’s and ;s are equivalent iff there
is a family of C* bijections (p;: ; — Qi)ier, such that p;(Qy;) = Q;; and

@hi(x) = pjowjiop; (z), for all z € €y,

for all 7, 5. See Figure 8.12.

Here is the converse of Proposition 8.2. It is actually nicer than Proposition 8.2, because
we can take W;; = W, = Q.

Proposition 8.3. If two sets of gluing data G = ((2)er, (Q4j)Gjyerxi(®ji)ajex) and G =
(Q)er, (Uj)aperxi(Py)ajer) are equivalent, then there is a C* isomorphism f: Mg —
Mg between the manifolds induced by G and G'. Furthermore, f ot =1/ 0 p;, for alli € I.
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y=p"x) : t=p,@ = ¢,

z= (pji(y)

Figure 8.12: The equivalence between the two sets of gluing data G and G'.

Proof. Let fi: 7;(Q) — 7/(€;) be the C* bijection given by

! -1
fi=TiopioT,

where the p;: ; — €);’s are the maps giving the equivalence of G and G’. If we prove that f;
and f; agree on the overlap 7;(€2;) N 7;(2;) = 7(;) = 7;(£2;;), then the f; patch and yield
a C* isomorphism f: Mg — Mg. The conditions of Proposition 8.2 imply that

i © pi = pj © Pji,

and we know that

T, = T; O .
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Consequently, for every [z] € 7;(£2;;) = 7:(€;;) with x € €;;, we have

filz]) = TjopjoT;

(l
— TJ’. opjo 7'{1([%1(37)])

which shows that f; and f; agree on 7;(€;) N 7;(£2;), as claimed. O

In the next section we describe a class of spaces that can be defined by gluing data and
parametrization functions 6; that are not necessarily injective. Roughly speaking, the gluing
data specify the topology and the parametrizations define the geometry of the space. Such
spaces have more structure than spaces defined parametrically but they are not quite mani-
folds. Yet they arise naturally in practice and they are the basis of efficient implementations
of very good approximations of 3D meshes.

8.2 Parametric Pseudo-Manifolds

In practice it is often desirable to specify some n-dimensional geometric shape as a subset of
R? (usually for d = 3) in terms of parametrizations which are functions 6; from some subset
of R” into R? (usually, n = 2). For “open” shapes, this is reasonably well understood, but
dealing with a “closed” shape is a lot more difficult because the parametrized pieces should
overlap as smoothly as possible, and this is hard to achieve. Furthermore, in practice, the
parametrization functions #; may not be injective. Proposition 8.1 suggests various ways
of defining such geometric shapes. For the lack of a better term, we will call these shapes,
parametric pseudo-manifolds.

Definition 8.3. Let n, k,d be three integers with d > n > land £k > 1 or k = co. A
parametric C* pseudo-manifold of dimension n in R? is a pair M = (G, (6;)icr), Where
G = ((Y)er, (j)jyerxrs (@ji)ajer) is a set of gluing data for some finite set I, and each
0; is a C* function 6;: Q; — R? called a parametrization, such that the following property
holds:

(C) For all (i,5) € K, we have

For short we use terminology parametric pseudo-manifold. The subset M C R? given by

M = o)

iel
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is called the image of the parametric pseudo-manifold M. When n = 2 and d = 3, we say
that M is a parametric pseudo-surface.

Condition (C) obviously implies that
0:(S2i5) = 0;(S052),

for all (i,j) € K. Consequently, 6; and 6; are consistent parametrizations of the overlap
6;(S2;) = 0;(€2;). The shape M is covered by pieces U; = 6;(£2;) not necessarily open, with
each U; parametrized by 6;, and where the overlapping pieces U; N U;, are parametrized
consistently. The local structure of M is given by the 6#;’s, and the global structure is given
by the gluing data. We recover a manifold if we require the ; to be bijective and to satisfy
the following additional conditions:

(C’) For all (i,7) € K,
0:(2:) N 0;(€2) = 0;(Qiy) = 0;(;:)-

(C”) For all (i,5) ¢ K,

Even if the 6,’s are not injective, Properties (C’) and (C”) would be desirable since they
guarantee that 6;(€; —€2;;) and 6;(£2; — ;) are parametrized uniquely. Unfortunately, these
properties are difficult to enforce. Observe that any manifold induced by G is the image of
a parametric pseudo-manifold.

Although this is an abuse of language, it is more convenient to call M a parametric
pseudo-manifold, or even a pseudo-manifold.

We can also show that the parametric pseudo-manifold M is the image in R? of the
abstract manifold Mg.

Proposition 8.4. Let M = (G, (6;)ic;) be parametric C* pseudo-manifold of dimension n
in RY, where G = (()er, (j)a.yerxt, (@ji)ajer) is a set of gluing data for some finite set
I. Then the parametrization maps 0; induce a surjective map ©: Mg — M from the abstract
manifold Mg specified by G to the image M C R? of the parametric pseudo-manifold M, and
the following property holds: for every §2;,

07;:@07'@',

where the 7;: Q; — Mg are the parametrization maps of the manifold Mg (see Proposition
8.1). In particular, every manifold M induced by the gluing data G is the image of Mg by a
map ©: Mg — 