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Preface

This book is written for a wide audience ranging from upper undergraduate to advanced
graduate students in mathematics, physics, and more broadly engineering students, especially
in computer science. It covers manifolds, Riemannian geometry, and Lie groups, some central
topics of mathematics. However, computer vision, robotics, and machine learning, to list
just a few “hot” applied areas, are increasingly consumers of differential geometry tools, so
this book is also written for professionals who wish to learn about the concepts and tools
from differential geometry used to solve some of their problems.

Although there are many books covering differential geometry and Lie groups, most of
them assume that the reader is already quite familar with manifold theory, which is a severe
obstacle for a reader who does not possess such a background. In this book, we only assume
some modest background in calculus and linear algebra from the reader, and basically develop
manifold theory from scratch. Additional review chapters covering some basics of analysis,
in particular the notion of derivative of a map between two normed vector spaces, and some
basics of topology, are provided for the reader who needs to firm up her/his background in
these areas. This book is split into two parts.

1. The basic theory of manifolds and Lie groups.

2. Some of the fundamental topics of Riemannian geometry.

The culmination of the concepts and results presented in this book is the theory of nat-
urally reductive homogeneous manifolds and symmetric spaces . It is remarkable that most
familiar spaces are naturally reductive manifolds. Remarkably, they all arise from some suit-
able action of the rotation group SO(n), a Lie group, which emerges as the master player.
The machinery of naturally reductive manifolds, and of symmetric spaces (which are even
nicer!), makes it possible to compute explicitly in terms of matrices all the notions from
differential geometry (Riemannian metrics, geodesics, etc.) that are needed to generalize
optimization methods to Riemannian manifolds. Such methods are presented in Absil, Ma-
hony and Sepulchre [2], and there is even a software package (MANOPT) that implements
some of these procedures.

The interplay between Lie groups, manifolds, and analysis, yields a particularly effective
tool. We tried to explain in some detail how these theories all come together to yield such
a beautiful and useful tool.
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We have also included chapters that present material having significant practical appli-
cations. These include

1. Chapter 8, on constructing manifolds from gluing data, which has applications to
surface reconstruction from 3D meshes.

2. Chapter 21, on the “Log-Euclidean framework,” has applications in medical imaging.

3. Chapter 22, on homogeneous reductive spaces and symmetric spaces, has applications
to robotics, machine learning, and computer vision. For example, Stiefel and Grass-
mannian manifolds come up naturally. Furthermore, in these manifolds, it is possible
to compute explicitly geodesics, Riemannian distances, gradients and Hessians. This
makes it possible to actually extend optimization methods such as gradient descent
and Newton’s method to these manifolds. A very good source on these topics is Absil,
Mahony and Sepulchre [2].

Let us now give motivations for learning the concepts and tools discussed in this book.

The need to generalize concepts and tools used in “flat spaces” such as the real line, the
plane, or more generally Rn, to more general spaces (such as a sphere) arises naturally. Such
concepts and tools include

1. Defining functions.

2. Computing derivatives of functions.

3. Finding minima or maxima of functions.

4. More generally, solving optimization problems.

5. Computing the length of curves.

6. Finding shortest paths between two points.

7. Solving differential equations

8. Defining a notion of average or mean.

9. Computing areas and volumes.

10. Integrating functions.

A way to deal with a space M more complicated than Rn is to cover it with small pieces
Uα, such that each piece Uα “looks” like Rn, which means that there is a bijection ϕα from
Uα to a subset of Rn. Typically, M is a topological space, so the maps ϕα : Uα → Rn, called
charts , are homeomorphisms of Uα onto some open subset of Rn. From an intuitive point of
view, locally, M looks like a piece of Rn.
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The mathematical notion formalizing the above idea is the notion of manifold . Having a
“good” notion of what a space M is, the issue of defining real-valued functions f : M → R,
and more generally functions f : M → N between two manifolds M and N , arises. Then it
is natural to wonder what is a function with a certain degree of differentiability, and what
is the derivative of a function between manifolds.

To answer these questions, one needs to add some structure to the charts ϕα : Uα → Rn,
namely, whenever two charts ϕα : Uα → Rn and ϕβ : Uβ → Rn overlap, which means that
Uα∩Uβ 6= ∅, then the map ϕβ ◦ϕ−1

α should behave well; technically, this means that it should
be Ck (continuously differentiable up to order k), or smooth.

Another important idea coming from the notion of derivative of a function from Rn to
Rm, is the idea of linear approximation of a function f : M → N between two manifolds. To
accomplish this, we need to define the notion of tangent space TpM to the manifold M at a
point p ∈M . Similarly, we have a tangent space Tf(p)N to the manifold N at the point f(p)
(the image of p under f), and the derivative of f at p is a linear map dfp : TpM → Tf(p)N
from the tangent space TpM (with p ∈M) to the tangent space Tf(p)N (with f(p) ∈ N).

Setting up carefully and rigorously the machinery to define manifolds, maps between
them, tangent spaces, and the derivative of a function between manifolds, will occupy the
first third of this volume.

If the manifold M is already naturally a subset of RN for some N large enough, then
matters are simpler, and it is easier to define manifolds, tangent spaces, and derivatives of
functions between manifolds. For pedagogical reasons, we begin with this simpler case in
Chapters 1–3.

If the manifold M is not embedded in RN for some N , which typically occurs when
M is obtained as a quotient space, such as real projective space RPn (the space of lines
through the origin in Rn+1) or the Grassmannian G(k, n) (the space of k-dimensional linear
subspaces of Rn), then matters are technically more complicated. One needs to introduce
charts and atlases, and the definitions of the tangent space and of the derivative of a map
between manifolds are more technical. One needs to define tangent vectors in terms of various
equivalence relations (on curves, on certain triples, on germs of locally defined functions). We
do this very carefully, even in the case of a Ck manifold where 1 ≤ k <∞ (that is, a manifold
which is not necessarily smooth). We give three equivalent definitions of the tangent space
TpM to M at p, and prove their equivalence. The first definition involves equivalence classes
of curves through p. The third definition in terms of point derivations applies even to Ck-
manifolds, at the price of introducing stationary germs. In the smooth case, this definition
is equivalent to the standard definition found in Tu [112] and Warner [114]. Following J.P.
Serre, the equivalence of the first and of the third definition is elegantly proved by setting
up a bilinear pairing and showing that this pairing is nondegenerate. Chapters 7 and 9 are
devoted to the definitions of tangent spaces, tangent bundles, vector fields, and the related
concepts such as Lie derivatives and Lie brackets, in the framework of general manifolds.
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Chapter 8 presents a more constructive approach for constructing manifolds using what
we call gluing data. This chapter has applications to surface reconstruction from 3D meshes.

A very important class of manifolds is the class of groups that are also manifolds and
topological groups (which means that multiplication and the inverse operation are smooth).
Such groups are called Lie groups . The prime example is the group SO(3) of rotations in R3,
and more generally SO(n). Remarkably, a large subclass of Lie groups turns out to be the
family of closed subgroups of GL(n,R), the group of invertible n×n real matrices. This is a
famous result due to Von Neumann and Cartan, see Theorem 3.8. Such closed subgroups of
GL(n,R) are called linear Lie groups or matrix Lie groups . If G is a linear Lie group, then
its tangent space TIG at the identity, denoted g, has some additional structure besides being
a vector space. It has a noncommutative and nonassociative skew-symmetric multiplication
[X, Y ] (with X, Y ∈ g) called the Lie bracket , which satisfies a strange kind of associativity
axiom called the Jacobi identity . The vector space g with the Lie bracket as multiplication
operation has the algebraic structure of what is called a Lie algebra. In some sense, g is a
linearization of G near I, and the Lie bracket is a measure of the noncommutativity of the
group operation. Remarkably, there is a way of “recovering” G from its Lie algebra g by
making use of the (matrix) exponential exp: g→ G. This map is not injective nor surjective
in general. In many cases of interest, such as SO(n) and SE(n), it is surjective. Also, “near”
I, the exponential is bijective. Since we can move from the tangent space TIG = g at I to
to the tangent space TgG at any other element g ∈ G by left (or right) multiplication, we
obtain a way of parametrizing G using the exponential map.

As a warm-up for the discussion of linear Lie groups and Lie algebras in Chapter 3,
we present some properties of the exponential map of matrices in Chapters 1 and 2. In
particular, we give a formula for the derivative of exp. A discussion of general Lie groups
(not necessarily groups of matrices) is postponed until Chapter 18.

Another important theme of this book is the notion of group action. A manifold, such as
the sphere Sn (in Rn+1), or projective space RPn, or the Grassmannian G(k, n), may not be
a group, but may have a lot of symmetries given by a group G. For example, the sphere S2

in R3 has the group of rotations SO(3) as group of symmetries, in the sense that a rotation
in SO(3) moves any point on the sphere to another point on the sphere, so the sphere is
invariant under rotations.

The notion of symmetry of a space under the transformations of a group G is neatly
captured by the notion of action of a group on a set (or a manifold). A (left) action of a
group G on a set X is a binary operation · : G×X → X satisfying the axioms

g1 · (g2 · x) = (g1g2) · x for all g1, g2 ∈ G and all x ∈ X
1 · x = x for all x ∈ X.

Here, g1g2 denotes the product of the two elements g1 and g2 using the group multiplication
operation on G, and 1 denotes the identity element of G. Intuitively, we can think of g · x,
where g is an element of the group G and x is an element of the set X, as the result of
moving x using the “transformation” g.
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A group action is transitive if for any two elements x, y ∈ X, there is some group element
g ∈ G that moves x to y, that is, y = g · x. Many actions that arise in practice are
transitive. For example, the group SO(3) acts transitively on S2, and more generally SO(n)
acts transitively on Sn−1. The reason why transitivity is important is that if we consider
any fixed element x ∈ X, we can look at the stabilizer Gx of x, which is the set of elements
of X left fixed by the action of G, namely

Gx = {g ∈ G | g · x = x}.

It can be shown that Gx is a subgroup of G (not necessarily normal), and there is a bijection
between the set G/Gx of left cosets of G and X.

This bijection is very crucial, because it allows us to view X as the set of cosets G/Gx,
and if the group G is well understood, then this yields a way of inferring information about
X using information about G and Gx. So far, X is a just a set, and G is just a group without
any additional structure, but if X is also a topological space, and G is a topological group,
then we can ask whether the quotient space G/Gx is homeomorphic to X. In general, this
is not the case, but if G is a Lie group and if X is a manifold, then G/Gx is a manifold
diffeomorphic to X.

The above result is very significant because it allows us to study certain manifolds M
that possess a transitive action of a Lie group G in terms of the groups G and Gx. Such
spaces are called homogenous spaces , and it turns out that many familiar manifolds such as
Sn,RPn, the Grassmannians G(k, n), the space of symmetric positive definite matrices, the
Lorentz manifolds, etc., are homogenous manifolds.

We begin our study of group actions and homogenous spaces in Chapter 4. We provide
many examples of spaces having a transitive action, and compute explicitly stabilizers for
these actions. The study of homogenous spaces is continued in greater depth, also dealing
with considerations of Riemannian geometry, in Chapter 22,

As a kind of interlude, in Chapter 5, we spend some time investigating the Lorentz groups
O(n, 1), SO(n, 1) and SO0(n, 1) (and also the groups O(1, n), SO(1, n) and SO0(1, n)).
When n = 3, these groups arise in the special theory of relativity. It turns out that O(3, 1)
also comes up in computer vision in the study of catadioptric cameras (see Geyer [50],
Chapter 5), and this was one of our original motivations for getting interested in homogeneous
spaces. In Chapter 6, we also investigate the topological structure of the groups O(p, q),
SO(p, q), and SO0(p, q).

One feature of our exposition worth pointing out is that we give a complete proof of
the surjectivity of the exponential map exp: so(1, 3) → SO0(1, 3), for the Lorentz group
SO0(1, 3) (see Section 5.2, Theorem 5.18). Although we searched the literature quite thor-
oughly, we did not find a proof of this specific fact (the physics books we looked at, even the
most reputable ones, seem to take this fact as obvious, and there are also wrong proofs; see
the remark following Theorem 5.5).
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We are aware of two proofs of the surjectivity of exp: so(1, n)→ SO0(1, n) in the general
case where where n is arbitrary: One due to Nishikawa [90] (1983), and an earlier one
due to Marcel Riesz [97] (1957). In both cases, the proof is quite involved (40 pages or
so). In the case of SO0(1, 3), a much simpler argument can be made using the fact that
ϕ : SL(2,C) → SO0(1, 3) is surjective and that its kernel is {I,−I} (see Proposition 5.17).
Actually, a proof of this fact is not easy to find in the literature either (and, beware there are
wrong proofs, again see the Remark following Theorem 5.5). We have made sure to provide
all the steps of the proof of the surjectivity of exp: so(1, 3) → SO0(1, 3). For more on this
subject, see the discussion in Section 5.2, after Corollary 5.14.

What we have discussed above comprises the basic theory of manifolds, Lie groups, and
homogenous spaces. Chapter 10 gathers some technical tools needed later such as partitions
of unity and covering spaces. For the sake of the reader who feels rusty on some basics
of analysis and topology, we have included two refresher chapters: Chapter 11 on power
series and derivative of functions between normed vector spaces, and Chapter 12 on basics
of topology. These should be consulted as nedeed, but we strongly advise the reader who
has not been exposed to the notion of derivative as a linear map to review Chapter 11.

One of the main gaps in the theory of manifolds that we just sketched is that there is
no way to discuss metric notions such as the notion of length of a curve segment, or the
notion of angle between two curves. We are in a situation similar to the theory of vector
spaces before inner products are introduced. The remedy is to add an inner product to our
manifold M , but since the tangent spaces TpM (with p ∈ M) are unrelated, we actually
need to add a family (〈−,−〉p)p∈M of inner products, one for each tangent space TpM . We
also need to require that these inner products vary smoothly as p moves in M . A family
of inner products as above is called a Riemannian metric, and a pair (M, 〈−,−〉) where M
is a smooth manifold and (〈−,−〉p)p∈M is a Riemannian metric is a Riemannian manifold ,
after B. Riemann who was the first to have this idea. If a manifold is too big, then it
may not have a Riemannian metric, but “well-behaved” manifolds, namely second-countable
manifolds, always have a Riemannian metric (this is shown using a partition of unity).
Riemannian metrics are defined in Chapter 13. Having a Riemannian metric allows us to
define the gradient, the Hessian, and the Laplacian, of a function. For functions f : Rn → R,
this is automatic since Rn is equipped with the Euclidean inner product, but for a manifold
M , given a function f : M → R, to convert the linear form dfp into a vector (grad f)p ∈ TpM
such that dfp(u) = 〈(grad f)p, u〉 for all u ∈ TpM , an inner product is needed on TpM , and
so a Riemannian metric on M is needed.

The notion of Riemannian metric allows us to discuss metric properties of a manifold,
but there is still a serious gap which has to do with the fact that given a manifold M , in
general, for any two points p, q ∈M , there is no “natural” isomorphism between the tangent
spaces TpM and TqM . Given a curve c : [0, 1] → M on M , as c(t) moves on M , how does
the tangent space Tc(t)M change as c(t) moves?

If M = Rn, then the spaces Tc(t)Rn are canonically isomorphic to Rn, and any vector
v ∈ Tc(0)Rn ∼= Rn is simply moved along c by parallel transport ; that is, at c(t), the tangent
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vector v also belongs to Tc(t)Rn. However, if M is curved, for example a sphere, then it is not
obvious how to “parallel transport” a tangent vector at c(0) along a curve c. This problem
is related to the fact that it is not obvious how to define the derivative ∇XY of a vector field
X with respect to another vector field Y . If X and Y are vector fields on a surface S in R3,
then for any point p ∈ S, the derivative (DXY )p given by

DXY (p) = lim
t→0

Y (p+ tX(p))− Y (p)

t
.

(if it exists), is a vector in R3, but there is no reason why it should belong to the tangent
space TpS to S at p.

Gauss solved this problem by introducing the notion of covariant derivative, which con-
sists in keeping the projection (∇YX) of (DXY )p onto the tangent space TpS, and to discard
the normal component.

However, if M is a general manifold not embedded in RN , then it is not clear how to
perform such a projection. Instead, the notion of covariant derivative is defined in terms of a
connection, which is a bilinear map ∇ : X(M)×X(M)→ X(M) defined on vector fields and
satisfying some properties that make it a generalization of the notion of covariant derivative
on a surface. The notion of connection is defined and studied in Chapter 14. Having the
notion of connection, we can define the notion of parallel vector field along a curve, and of
parallel transport , which allows us to relate two tangent spaces TpM and TqM .

The notion of covariant derivative is also well-defined for vector fields along a curve. This
is shown in Section 14.2. Given a vector field X along a curve γ, this covariant derivative is
denoted by DX/dt. We then have the crucial notion of a vector field parallel along a curve
γ, which means that DX/dt(s) = 0 for all s (in the domain of γ).

The notion of a connection on a manifold does not assume that the manifold is equipped
with a Riemannian metric. In Section 14.3, we consider connections having additional prop-
erties, such as being compatible with a Riemannian metric or being torsion-free. Then we
have a phenomenon called by some people the “miracle” of Riemannian geometry, namely
that for every Riemannian manifold, there is a unique connection which is torsion-free and
compatible with the metric. Furthermore, this connection is determined by an implicit for-
mula known as the Koszul formula. Such a connection is called the Levi-Civita connection.

If γ is a curve on a smooth Riemannian manifold M , and if X = γ′ is the vector field of
tangent vectors γ′ to γ, we can consider the curves γ that satisfy the equation

Dγ′

dt
= 0. (∗)

Intuitively, we can view Dγ′

dt
as the tangent component of the acceleration vector γ′′ of the

curve γ, and such curves have an acceleration normal to the manifold. Curves satisfying
equation (∗) are called geodesics . Geodesics are the Riemannian equivalent of straight lines
in Rn. The notion of geodesic is one of the most crucial tools in Riemannian geometry. One



10

of the reasons is that geodesics are locally distance minimizing, and that they provide a way
to parametrize a neighborhood U of any point p on a manifold M by a neighborhood of
the origin in the tangent space TpM , using the exponential map (not to be confused with
the Lie group exponential) expp : TpM → M . If the exponential map is surjective, then the
manifold M is said to be complete. A beautiful theorem of Hopf and Rinow states that if a
manifold is complete, then any two points can be joined by a minimal geodesic (a geodesic
of minimal length). This is an important property because the shortest distance between
any two points is achieved by a geodesic. Compact Riemannian manifolds are complete, so
many of the familiar compact manifolds (Sn, RPn, G(k, n)) are complete.

Given a curve ω on a Riemannian manifold, the quantity E(ω) =
∫ 1

0
‖ω′(t)‖2 dt is called

the energy function. Geodesics between two points p and q turn out to be critical points of
the energy function E on the path space Ω(p, q) of all piecewise smooth curves from p to q.
To define the notion of critical point of the energy function, because the space Ω(p, q) is not
a finite-dimensional manifold, it is necessary to introduce the notion of variation of a curve
and to prove the first variation formula. Here, we make a link with the calculus of variation.
Geodesics are studied throroughly in Chapter 15.

Riemannian metrics, connections, and geodesics, are three of the pilars of differential
geometry. The fourth pilar is curvature.

For surfaces, the notion of curvature can be defined in terms of the curvatures of curves
drawn on the surface. The notion of Gaussian curvature (of course, introduced by Gauss)
gives a satisfactory answer. However, for manifolds of dimension greater than 2, it is not ob-
vious what curvature means. Riemann proposed a definition involving the notion of sectional
curvature, but his seminal paper (1868) did not contain proofs and did not give a general
method to compute such a curvature. It is only fifty years later that the idea emerged that
the curvature of a Riemannian manifold should be viewed as a measure R(X, Y )Z of the
extent to which the operator (X, Y ) 7→ ∇X∇YZ is symmetric.

The Riemann curvature operator R turns out to be C∞-linear in all of its three arguments,
but it is a rather complicated object. Fortunately, there is a simpler object, the sectional
curvature K(u, v). When ∇ is the Levi-Civita connection, the curvature operator R can
be recovered from the sectional curvature K. There is also an important simpler notion of
curvature Ric(x, y), called the Ricci curvature, which arises as the trace of the linear map
v 7→ R(x, v)y. An even cruder notion of curvature is the scalar curvature. These notions of
curvature are discussed in Chapter 16.

We pointed out earlier that the energy function E(ω) =
∫ 1

0
‖ω′(t)‖2 dt determines the

geodesics (between two fixed points p and q) in the sense that its critical points are the
geodesics. A deeper understanding of the energy function is achieved by investigating the
second derivative of E at critical points. To do this we need the notion of 2-parameter
variation and the second variation formula. The curvature operator shows up in this formula.
Another important technical tool is the notion of Jacobi fields, which are induced by geodesic
variations. Jacobi fields can be used to compute the sectional curvature of various manifolds.
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Another important theme of differential geometry is the influence of curvature (sectional
or Ricci) on the topology of a Riemannian manifold. This is a vast subject and we only
discuss three results, one of which being the Hadamard and Cartan theorem about complete
manifolds of non-positive curvature.

The goal of Chapter 17 is to understand the behavior of isometries and local isometries,
in particular their action on geodesics. We also intoduce Riemannian covering maps and
Riemannian submersions. If π : M → B is a submersion between two Riemannian manifolds,
then for every b ∈ B and every p ∈ π−1(b), the tangent space TpM to M at p splits into two
orthogonal components, its vertical component Vp = Ker dπp, and its horizontal component
Hp (the orthogonal complement of Vp). If the map dπp is an isometry between Hp and TbB,
then most of the differential geometry of B can be studied by lifting B to M , and then
projecting down to B again. We also introduce Killing vector fields, which play a technical
role in the study of reductive homogeneous spaces.

In Chapter 18, we return to Lie groups. Not every Lie group is a matrix group, so
in order to study general Lie groups it is necessary to introduce left-invariant (and right-
invariant) vector fields on Lie groups. It turns out that the space of left-invariant vector
fields is isomorphic to the tangent space g = TIG to G at the identity, which is a Lie algebra.
By considering integral curves of left-invariant vector fields, we define the generalization
of the exponential map exp: g → G to an arbitrary Lie group. The notion of immersed
Lie subgroup is introduced, and the correspondence between Lie groups and Lie algebra is
explored. We also consider the special classes of semidirect products of Lie algebras and Lie
groups, the universal covering of a Lie group, and the Lie algebra of Killing vector fields on
a Riemannian manifold.

Chapter 19 deals with two topics:

1. A formula for the derivative of the exponential map for a general Lie group (not
necessarily a matrix group).

2. A formula for the Taylor expansion of µ(X, Y ) = log(exp(X) exp(Y )) near the origin.

The second problem is solved by a formula known as the Campbell-Baker-Hausdorff formula.
An explicit formula was derived by Dynkin (1947), and we present this formula.

Chapter 20 is devoted to the study of metrics, connections, geodesics, and curvature, on
Lie groups. Since a Lie group G is a smooth manifold, we can endow G with a Rieman-
nian metric. Among all the Riemannian metrics on a Lie groups, those for which the left
translations (or the right translations) are isometries are of particular interest because they
take the group structure of G into account. As a consequence, it is possible to find explicit
formulae for the Levi-Civita connection and the various curvatures, especially in the case of
metrics which are both left and right-invariant.

In Section 20.2 we give four characterizations of bi-invariant metrics. The first one refines
the criterion of the existence of a left-invariant metric and states that every bi-invariant
metric on a Lie group G arises from some Ad-invariant inner product on the Lie algebra g.
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In Section 20.3 we show that if G is a Lie group equipped with a left-invariant metric,
then it is possible to express the Levi-Civita connection and the sectional curvature in terms
of quantities defined over the Lie algebra of G, at least for left-invariant vector fields. When
the metric is bi-invariant, much nicer formulae are be obtained. In particular the geodesics
coincide with the one-parameter groups induced by left-invariant vector fields.

Section 20.5 introduces simple and semisimple Lie algebras. They play a major role in
the structure theory of Lie groups

Section 20.6 is devoted to the Killing form. It is an important concept, and we establish
some of its main properties. Remarkably, the Killing form yields a simple criterion due to
Élie Cartan for testing whether a Lie algebra is semisimple.

We conclude this chapter with a section on Cartan connections (Section 20.7). Un-
fortunately, if a Lie group G does not admit a bi-invariant metric, under the Levi-Civita
connection, geodesics are generally not given by the exponential map exp: g → G. If we
are willing to consider connections not induced by a metric, then it turns out that there
is a fairly natural connection for which the geodesics coincide with integral curves of left-
invariant vector fields. These connections are called Cartan connections. This chapter makes
extensive use of results from a beautiful paper of Milnor [84].

In Chapter 21 we present an application of Lie groups and Riemannian geometry. We
describe an approach due to Arsigny, Fillard, Pennec and Ayache, to define a Lie group
structure and a class of metrics on symmetric, positive-definite matrices (SPD matrices)
which yield a new notion of mean on SPD matrices generalizing the standard notion of
geometric mean.

SPD matrices are used in diffusion tensor magnetic resonance imaging (for short, DTI),
and they are also a basic tool in numerical analysis, for example, in the generation of meshes
to solve partial differential equations more efficiently. As a consequence, there is a growing
need to interpolate or to perform statistics on SPD matrices, such as computing the mean
of a finite number of SPD matrices.

Chapter 22 provides the culmination of the theory presented in the book, the concept of
a homogeneous naturally reductive space.

The goal is to study the differential geometry of a manifold M presented as the quotient
G/H of a Lie group G by a closed subgroup H. We would like to endow G/H with a
metric that arises from an inner product on the Lie algebra g of G. To do this, we consider
G-invariant metrics, which are metrics on G/H such that the left multiplication operations
τg : G/H → G/H given by

τg(h2H) = gg2H

are isometries. The existence of G-invariant metrics on G/H depends on properties of a
certain representation of H called the isotropy representation (see Proposition 22.21). The
isotropy representation is equivalent to another representation AdG/H : H → GL(g/h) of H
involving the quotient algebra g/h.
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This representation is too complicated to deal with, so we consider the more tractable
situation where the Lie algebra g of G factors as a direct sum

g = h⊕m,

for some subspace m of g such that Adh(m) ⊆ m for all h ∈ H, where h is the Lie algebra
of H. Then g/h is isomorphic to m, and the representation AdG/H : H → GL(g/h) becomes
the representation Ad: H → GL(m), where Adh is the restriction of Adh to m for every
h ∈ H. In this situation there is an isomorphism between To(G/H) and m (where o denotes
the point in G/H corresponding to the coset H). It is also the case that if H is “nice” (for
example, compact), then M = G/H will carry G-invariant metrics, and that under such
metrics, the projection π : G→ G/H is a Riemannian submersion.

It is remarkable that a simple condition on m, namely Ad(H) invariance, yields a one-to-
one correspondence between G-invariant metrics on G/H and Ad(H)-invariant inner prod-
ucts on m (see Proposition 22.22). This is a generalization of the situation of Proposition
20.3 characterizing the existence of bi-invariant metrics on Lie groups. All this is built into
the definition of a reductive homogeneous space given by Definition 22.8.

It is possible to express the Levi-Civita connection on a reductive homogeneous space in
terms of the Lie bracket on g, but in general this formula is not very useful. A simplification
of this formula is obtained if a certain condition holds. The corresponding spaces are said
to be naturally reductive; see Definition 22.9. A naturally reductive space has the “nice”
property that its geodesics at o are given by applying the coset exponential map to m;
see Proposition 22.27. As we will see from the explicit examples provided in Section 22.7,
naturally reductive spaces “behave” just as nicely as their Lie group counterpart G, and the
coset exponential of m will provide all the necessary geometric information.

A large supply of naturally reductive homogeneous spaces are the symmetric spaces . Such
spaces arise from a Lie group G equipped with an involutive automorphism σ : G→ G (with
σ 6= id and σ2 = id). Let Gσ be the set of fixed points of σ, the subgroup of G given by

Gσ = {g ∈ G | σ(g) = g},

and let Gσ
0 be the identity component of Gσ (the connected component of Gσ containing 1).

Consider the +1 and −1 eigenspaces of the derivative dσ1 : g→ g of σ, given by

k = {X ∈ g | dσ1(X) = X}
m = {X ∈ g | dσ1(X) = −X}.

Pick a closed subgroup K of G such that Gσ
0 ⊆ K ⊆ Gσ. Then it can be shown that G/K is

a reductive homogenous space and that g factors as a direct sum k⊕m, which makes G/K
a reductive space. Furthermore, if G is connected and if both Gσ

0 and K are compact, then
G/K is naturally reductive.

There is an extensive theory of symmetric spaces and our goal is simply to show that
the additional structure afforded by an involutive automorphism of G yields spaces that are
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naturally reductive. The theory of symmetric spaces was entirely created by one person,
Élie Cartan, who accomplished the tour de force of giving a complete classification of these
spaces using the classification of semisimple Lie algebras that he had obtained earlier. In
Sections 22.8, 22.9, and 22.10, we provide an introduction to symmetric spaces.

In the past five years, we have also come to realize that Lie groups and homogeneous
manifolds , especially naturally reductive ones, are two of the most important topics for their
role in applications. It is remarkable that most familiar spaces, spheres, projective spaces,
Grassmannian and Stiefel manifolds, symmetric positive definite matrices, are naturally re-
ductive manifolds. Remarkably, they all arise from some suitable action of the rotation group
SO(n), a Lie group, who emerges as the master player. The machinery of naturally reductive
manifolds, and of symmetric spaces (which are even nicer!), makes it possible to compute
explicitly in terms of matrices all the notions from differential geometry (Riemannian met-
rics, geodesics, etc.) that are needed to generalize optimization methods to Riemannian
manifolds.

Since we discuss many topics ranging from manifolds to Lie groups, this book is already
quite big, so we resolved ourselves, not without regrets, to omit many proofs. The purist
may be chagrined, but we feel that it is more important to motivate, demystify, and explain,
the reasons for introducing various concepts and to clarify the relationship between these
notions rather than spelling out every proof in full detail. Whenever we omit a proof, we
provide precise pointers to the literature. In some cases (such as the theorem of Hopf and
Rinow), the proof is just too beautiful to be skipped, so we include it.

The motivations for writing these notes arose while the first author was coteaching a
seminar on Special Topics in Machine Perception with Kostas Daniilidis in the Spring of
2004. In the Spring of 2005, the first author gave a version of his course Advanced Geo-
metric Methods in Computer Science (CIS610), with the main goal of discussing statistics
on diffusion tensors and shape statistics in medical imaging. This is when he realized that
it was necessary to cover some material on Riemannian geometry but he ran out of time
after presenting Lie groups and never got around to doing it! Then, in the Fall of 2006 the
first author went on a wonderful and very productive sabbatical year in Nicholas Ayache’s
group (ACSEPIOS) at INRIA Sophia Antipolis, where he learned about the beautiful and
exciting work of Vincent Arsigny, Olivier Clatz, Hervé Delingette, Pierre Fillard, Grégoire
Malandin, Xavier Pennec, Maxime Sermesant, and, of course, Nicholas Ayache, on statistics
on manifolds and Lie groups applied to medical imaging. This inspired him to write chapters
on differential geometry, and after a few additions made during Fall 2007 and Spring 2008,
notably on left-invariant metrics on Lie groups, the little set of notes from 2004 had grown
into a preliminary version of this manuscript. The first author then joined forces with the
second author in 2015, and with her invaluable assistance, produced the present book, as
well, as a second volume dealing with more advanced topics.

We must acknowledge our debt to two of our main sources of inspiration: Berger’s
Panoramic View of Riemannian Geometry [14] and Milnor’s Morse Theory [81]. In our
opinion, Milnor’s book is still one of the best references on basic differential geometry. His
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exposition is remarkably clear and insightful, and his treatment of the variational approach
to geodesics is unsurpassed. We borrowed heavily from Milnor [81]. Since Milnor’s book
is typeset in “ancient” typewritten format (1973!), readers might enjoy reading parts of it
typeset in LATEX. We hope that the readers of these notes will be well prepared to read
standard differential geometry texts such as do Carmo [39], Gallot, Hulin, Lafontaine [49]
and O’Neill [91], but also more advanced sources such as Sakai [100], Petersen [93], Jost [64],
Knapp [68], and of course Milnor [81].

The chapters or sections marked with the symbol ~ contain material that is typically
more specialized or more advanced, and they can be omitted upon first (or second) reading.
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Chapter 1

The Matrix Exponential; Some
Matrix Lie Groups

Le rôle prépondérant de la théorie des groupes en mathématiques a été longtemps
insoupçonné; il y a quatre-vingts ans, le nom même de groupe était ignoré. C’est Galois
qui, le premier, en a eu une notion claire, mais c’est seulement depuis les travaux de
Klein et surtout de Lie que l’on a commencé à voir qu’il n’y a presque aucune théorie
mathématique où cette notion ne tienne une place importante.

—Henri Poincaré

The purpose of this chapter and the next two chapters is to give a “gentle” and fairly
concrete introduction to manifolds, Lie groups and Lie algebras, our main objects of study.

Most texts on Lie groups and Lie algebras begin with prerequisites in differential geometry
that are often formidable to average computer scientists (or average scientists, whatever that
means!). We also struggled for a long time, trying to figure out what Lie groups and Lie
algebras are all about, but this can be done! A good way to sneak into the wonderful world
of Lie groups and Lie algebras is to play with explicit matrix groups such as the group
of rotations in R2 (or R3) and with the exponential map. After actually computing the
exponential A = eB of a 2× 2 skew symmetric matrix B and observing that it is a rotation
matrix, and similarly for a 3× 3 skew symmetric matrix B, one begins to suspect that there
is something deep going on. Similarly, after the discovery that every real invertible n × n
matrix A can be written as A = RP , where R is an orthogonal matrix and P is a positive
definite symmetric matrix, and that P can be written as P = eS for some symmetric matrix
S, one begins to appreciate the exponential map.

Our goal in this chapter is to give an elementary and concrete introduction to Lie groups
and Lie algebras by studying a number of the so-called classical groups , such as the general
linear group GL(n,R), the special linear group SL(n,R), the orthogonal group O(n), the
special orthogonal group SO(n), and the group of affine rigid motions SE(n), and their Lie
algebras gl(n,R) (all matrices), sl(n,R) (matrices with null trace), o(n), and so(n) (skew
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symmetric matrices). Lie groups are at the same time, groups, topological spaces, and
manifolds, so we will also have to introduce the crucial notion of a manifold .

The inventors of Lie groups and Lie algebras (starting with Lie!) regarded Lie groups as
groups of symmetries of various topological or geometric objects. Lie algebras were viewed
as the “infinitesimal transformations” associated with the symmetries in the Lie group. For
example, the group SO(n) of rotations is the group of orientation-preserving isometries of
the Euclidean space En. The Lie algebra so(n,R) consisting of real skew symmetric n × n
matrices is the corresponding set of infinitesimal rotations. The geometric link between a Lie
group and its Lie algebra is the fact that the Lie algebra can be viewed as the tangent space
to the Lie group at the identity. There is a map from the tangent space to the Lie group,
called the exponential map. The Lie algebra can be considered as a linearization of the Lie
group (near the identity element), and the exponential map provides the “delinearization,”
i.e., it takes us back to the Lie group. These concepts have a concrete realization in the
case of groups of matrices and, for this reason, we begin by studying the behavior of the
exponential maps on matrices.

We begin by defining the exponential map on matrices and proving some of its properties.
The exponential map allows us to “linearize” certain algebraic properties of matrices. It also
plays a crucial role in the theory of linear differential equations with constant coefficients.
But most of all, as we mentioned earlier, it is a stepping stone to Lie groups and Lie algebras.
On the way to Lie algebras, we derive the classical “Rodrigues-like” formulae for rotations
and for rigid motions in R2 and R3. We give an elementary proof that the exponential map
is surjective for both SO(n) and SE(n), not using any topology, just certain normal forms
for matrices (see Gallier [48], Chapters 12 and 13).

In Chapter 2, in preparation for defining the Lie bracket on the Lie algebra of a Lie
group, we introduce the adjoint representations of the group GL(n,R) and of the Lie algebra
gl(n,R). The map Ad: GL(n,R)→ GL(gl(n,R)) is defined such that AdA is the derivative
of the conjugation map AdA : GL(n,R) → GL(n,R) at the identity. The map ad is the
derivative of Ad at the identity, and it turns out that adA(B) = [A,B], the Lie bracket of A
and B, and in this case, [A,B] = AB−BA. We also find a formula for the derivative of the
matrix exponential exp.

Chapter 3 gives an introduction to manifolds, Lie groups and Lie algebras. Rather than
defining abstract manifolds in terms of charts, atlases, etc., we consider the special case of
embedded submanifolds of RN . This approach has the pedagogical advantage of being more
concrete since it uses parametrizations of subsets of RN , which should be familiar to the
reader in the case of curves and surfaces. The general definition of a manifold will be given
in Chapter 7.

Also, rather than defining Lie groups in full generality, we define linear Lie groups us-
ing the famous result of Cartan (apparently actually due to Von Neumann) that a closed
subgroup of GL(n,R) is a manifold, and thus a Lie group. This way, Lie algebras can be
“computed” using tangent vectors to curves of the form t 7→ A(t), where A(t) is a matrix.



1.1. THE EXPONENTIAL MAP 27

This chapter is inspired from Artin [10], Chevalley [31], Marsden and Ratiu [77], Curtis [34],
Howe [62], and Sattinger and Weaver [102].

1.1 The Exponential Map

Given an n× n (real or complex) matrix A = (ai j), we would like to define the exponential
eA of A as the sum of the series

eA = In +
∑
p≥1

Ap

p!
=
∑
p≥0

Ap

p!
,

letting A0 = In. The problem is, Why is it well-defined? The following proposition shows
that the above series is indeed absolutely convergent. For the definition of absolute conver-
gence see Chapter 2, Section 1.

Proposition 1.1. Let A = (ai j) be a (real or complex) n× n matrix, and let

µ = max{|ai j| | 1 ≤ i, j ≤ n}.

If Ap = (a
(p)
i j ), then ∣∣a(p)

i j

∣∣ ≤ (nµ)p

for all i, j, 1 ≤ i, j ≤ n. As a consequence, the n2 series

∑
p≥0

a
(p)
i j

p!

converge absolutely, and the matrix

eA =
∑
p≥0

Ap

p!

is a well-defined matrix.

Proof. The proof is by induction on p. For p = 0, we have A0 = In, (nµ)0 = 1, and the
proposition is obvious. Assume that

|a(p)
i j | ≤ (nµ)p

for all i, j, 1 ≤ i, j ≤ n. Then we have

∣∣a(p+1)
i j

∣∣ =

∣∣∣∣∣
n∑
k=1

a
(p)
i k ak j

∣∣∣∣∣ ≤
n∑
k=1

∣∣a(p)
i k

∣∣∣∣ak j∣∣ ≤ µ
n∑
k=1

∣∣a(p)
i k

∣∣ ≤ nµ(nµ)p = (nµ)p+1,
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for all i, j, 1 ≤ i, j ≤ n. For every pair (i, j) such that 1 ≤ i, j ≤ n, since∣∣a(p)
i j

∣∣ ≤ (nµ)p,

the series ∑
p≥0

∣∣a(p)
i j

∣∣
p!

is bounded by the convergent series

enµ =
∑
p≥0

(nµ)p

p!
,

and thus it is absolutely convergent. This shows that

eA =
∑
k≥0

Ak

k!

is well defined.

It is instructive to compute explicitly the exponential of some simple matrices. As an
example, let us compute the exponential of the real skew symmetric matrix

A =

(
0 −θ
θ 0

)
.

We need to find an inductive formula expressing the powers An. Let us observe that(
0 −θ
θ 0

)
= θ

(
0 −1
1 0

)
and

(
0 −θ
θ 0

)2

= −θ2

(
1 0
0 1

)
.

Then letting

J =

(
0 −1
1 0

)
,

we have

A4n = θ4nI2,

A4n+1 = θ4n+1J,

A4n+2 = −θ4n+2I2,

A4n+3 = −θ4n+3J,

and so

eA = I2 +
θ

1!
J − θ2

2!
I2 −

θ3

3!
J +

θ4

4!
I2 +

θ5

5!
J − θ6

6!
I2 −

θ7

7!
J + · · · .
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Rearranging the order of the terms, we have

eA =

(
1− θ2

2!
+
θ4

4!
− θ6

6!
+ · · ·

)
I2 +

(
θ

1!
− θ3

3!
+
θ5

5!
− θ7

7!
+ · · ·

)
J.

We recognize the power series for cos θ and sin θ, and thus

eA = cos θI2 + sin θJ,

that is

eA =

(
cos θ − sin θ
sin θ cos θ

)
.

Thus, eA is a rotation matrix! This is a general fact. If A is a skew symmetric matrix,
then eA is an orthogonal matrix of determinant +1, i.e., a rotation matrix. Furthermore,
every rotation matrix is of this form; i.e., the exponential map from the set of skew symmetric
matrices to the set of rotation matrices is surjective. In order to prove these facts, we need
to establish some properties of the exponential map.

But before that, let us work out another example showing that the exponential map is
not always surjective. Let us compute the exponential of a real 2× 2 matrix with null trace
of the form

A =

(
a b
c −a

)
.

We need to find an inductive formula expressing the powers An. Observe that

A2 = (a2 + bc)I2 = − det(A)I2.

If a2 + bc = 0, we have

eA = I2 + A.

If a2 + bc < 0, let ω > 0 be such that ω2 = −(a2 + bc). Then, A2 = −ω2I2. We get

eA = I2 +
A

1!
− ω2

2!
I2 −

ω2

3!
A+

ω4

4!
I2 +

ω4

5!
A− ω6

6!
I2 −

ω6

7!
A+ · · · .

Rearranging the order of the terms, we have

eA =

(
1− ω2

2!
+
ω4

4!
− ω6

6!
+ · · ·

)
I2 +

1

ω

(
ω − ω3

3!
+
ω5

5!
− ω7

7!
+ · · ·

)
A.

We recognize the power series for cosω and sinω, and thus

eA = cosω I2 +
sinω

ω
A =

(
cosω + sinω

ω
a sinω

ω
b

sinω
ω
c cosω − sinω

ω
a

)
.
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Note that

det(eA) =

(
cosω +

sinω

ω
a

)(
cosω − sinω

ω
a

)
− sin2 ω

ω2
bc

= cos2 ω − sin2 ω

ω2
(a2 + bc) = cos2 ω + sin2 ω = 1.

If a2 + bc > 0, let ω > 0 be such that ω2 = a2 + bc. Then A2 = ω2I2. We get

eA = I2 +
A

1!
+
ω2

2!
I2 +

ω2

3!
A+

ω4

4!
I2 +

ω4

5!
A+

ω6

6!
I2 +

ω6

7!
A+ · · · .

Rearranging the order of the terms, we have

eA =

(
1 +

ω2

2!
+
ω4

4!
+
ω6

6!
+ · · ·

)
I2 +

1

ω

(
ω +

ω3

3!
+
ω5

5!
+
ω7

7!
+ · · ·

)
A.

If we recall that coshω =
(
eω + e−ω

)
/2 and sinhω =

(
eω − e−ω

)
/2, we recognize the power

series for coshω and sinhω, and thus

eA = coshω I2 +
sinhω

ω
A =

(
coshω + sinhω

ω
a sinhω

ω
b

sinhω
ω
c coshω − sinhω

ω
a

)
,

and

det(eA) =

(
coshω +

sinhω

ω
a

)(
coshω − sinhω

ω
a

)
− sinh2 ω

ω2
bc

= cosh2 ω − sinh2 ω

ω2
(a2 + bc) = cosh2 ω − sinh2 ω = 1.

In both cases

det
(
eA
)

= 1.

This shows that the exponential map is a function from the set of 2 × 2 matrices with null
trace to the set of 2×2 matrices with determinant 1. This function is not surjective. Indeed,
tr(eA) = 2 cosω when a2 + bc < 0, tr(eA) = 2 coshω when a2 + bc > 0, and tr(eA) = 2 when
a2 + bc = 0. As a consequence, for any matrix A with null trace,

tr
(
eA
)
≥ −2,

and any matrix B with determinant 1 and whose trace is less than −2 is not the exponential
eA of any matrix A with null trace. For example,

B =

(
a 0
0 a−1

)
,
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where a < 0 and a 6= −1, is not the exponential of any matrix A with null trace since

(a+ 1)2

a
=
a2 + 2a+ 1

a
=
a2 + 1

a
+ 2 < 0,

which in turn implies tr(B) = a+ 1
a

= a2+1
a

< −2.

A fundamental property of the exponential map is that if λ1, . . . , λn are the eigenvalues
of A, then the eigenvalues of eA are eλ1 , . . . , eλn . For this we need two propositions.

Proposition 1.2. Let A and U be (real or complex) matrices, and assume that U is invert-
ible. Then

eUAU
−1

= UeAU−1.

Proof. A trivial induction shows that

UApU−1 = (UAU−1)p,

and thus

eUAU
−1

=
∑
p≥0

(UAU−1)p

p!
=
∑
p≥0

UApU−1

p!

= U

(∑
p≥0

Ap

p!

)
U−1 = UeAU−1.

Say that a square matrix A is an upper triangular matrix if it has the following shape,

a1 1 a1 2 a1 3 . . . a1n−1 a1n

0 a2 2 a2 3 . . . a2n−1 a2n

0 0 a3 3 . . . a3n−1 a3n
...

...
...

. . .
...

...
0 0 0 . . . an−1n−1 an−1n

0 0 0 . . . 0 ann


,

i.e., ai j = 0 whenever j < i, 1 ≤ i, j ≤ n.

Proposition 1.3. Given any complex n× n matrix A, there is an invertible matrix P and
an upper triangular matrix T such that

A = PTP−1.
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Proof. We prove by induction on n that if f : Cn → Cn is a linear map, then there is a
basis (u1, . . . , un) with respect to which f is represented by an upper triangular matrix. For
n = 1 the result is obvious. If n > 1, since C is algebraically closed, f has some eigenvalue
λ1 ∈ C, and let u1 be an eigenvector for λ1. We can find n− 1 vectors (v2, . . . , vn) such that
(u1, v2, . . . , vn) is a basis of Cn, and let W be the subspace of dimension n − 1 spanned by
(v2, . . . , vn). In the basis (u1, v2 . . . , vn), the matrix of f is of the form

a1 1 a1 2 . . . a1n

0 a2 2 . . . a2n
...

...
. . .

...
0 an 2 . . . ann

 ,

since its first column contains the coordinates of λ1u1 over the basis (u1, v2, . . . , vn). Letting
p : Cn → W be the projection defined such that p(u1) = 0 and p(vi) = vi when 2 ≤ i ≤ n,
the linear map g : W → W defined as the restriction of p ◦ f to W is represented by the
(n− 1)× (n− 1) matrix (ai j)2≤i,j≤n over the basis (v2, . . . , vn). By the induction hypothesis,
there is a basis (u2, . . . , un) of W such that g is represented by an upper triangular matrix
(bi j)1≤i,j≤n−1.

However,

Cn = Cu1 ⊕W,
and thus (u1, . . . , un) is a basis for Cn. Since p is the projection from Cn = Cu1 ⊕W onto
W and g : W → W is the restriction of p ◦ f to W , we have

f(u1) = λ1u1

and

f(ui+1) = a1 iu1 +
n−1∑
j=1

bi juj+1

for some a1 i ∈ C, when 1 ≤ i ≤ n− 1. But then the matrix of f with respect to (u1, . . . , un)
is upper triangular. Thus, there is a change of basis matrix P such that A = PTP−1 where
T is upper triangular.

Remark: If E is a Hermitian space, the proof of Proposition 1.3 can be easily adapted to
prove that there is an orthonormal basis (u1, . . . , un) with respect to which the matrix of
f is upper triangular. In terms of matrices, this means that there is a unitary matrix U
and an upper triangular matrix T such that A = UTU∗. This is usually known as Schur’s
lemma. Using this result, we can immediately rederive the fact that if A is a Hermitian
matrix, i.e. A = A∗, then there is a unitary matrix U and a real diagonal matrix D such
that A = UDU∗.
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If A = PTP−1 where T is upper triangular, then A and T have the same characteristic
polynomial. This is because if A and B are any two matrices such that A = PBP−1, then

det(A− λ I) = det(PBP−1 − λP IP−1),

= det(P (B − λ I)P−1),

= det(P ) det(B − λ I) det(P−1),

= det(P ) det(B − λ I) det(P )−1,

= det(B − λ I).

Furthermore, it is well known that the determinant of a matrix of the form

λ1 − λ a1 2 a1 3 . . . a1n−1 a1n

0 λ2 − λ a2 3 . . . a2n−1 a2n

0 0 λ3 − λ . . . a3n−1 a3n
...

...
...

. . .
...

...
0 0 0 . . . λn−1 − λ an−1n

0 0 0 . . . 0 λn − λ


is (λ1 − λ) · · · (λn − λ), and thus the eigenvalues of A = PTP−1 are the diagonal entries of
T . We use this property to prove the following proposition.

Proposition 1.4. Given any complex n × n matrix A, if λ1, . . . , λn are the eigenvalues of
A, then eλ1 , . . . , eλn are the eigenvalues of eA. Furthermore, if u is an eigenvector of A for
λi, then u is an eigenvector of eA for eλi.

Proof. By Proposition 1.3 there is an invertible matrix P and an upper triangular matrix T
such that

A = PTP−1.

By Proposition 1.2,
ePTP

−1

= PeTP−1.

Note that eT =
∑

p≥0
T p

p!
is upper triangular since T p is upper triangular for all p ≥ 0. If

λ1, λ2, . . . , λn are the diagonal entries of T , the properties of matrix multiplication, when
combined with an induction on p, imply that the diagonal entries of T p are λp1, λ

p
2, . . . , λ

p
n.

This in turn implies that the diagonal entries of eT are
∑

p≥0
λpi
p!

= eλi for 1 ≤ i ≤ n. In
the preceding paragraph we showed that A and T have the same eigenvalues, which are the
diagonal entries λ1, . . . , λn of T . Since eA = ePTP

−1
= PeTP−1, and eT is upper triangular,

we use the same argument to conclude that both eA and eT have the same eigenvalues, which
are the diagonal entries of eT , where the diagonal entries of eT are of the form eλ1 , . . . , eλn .
Now, if u is an eigenvector of A for the eigenvalue λ, a simple induction shows that u is an
eigenvector of An for the eigenvalue λn, from which is follows that

eAu =

[
I +

A

1!
+
A2

2!
+
A3

3!
+ . . .

]
u = u+ Au+

A2

2!
u+

A3

3!
u+ . . .

= u+ λu+
λ2

2!
u+

λ3

3!
u+ · · · =

[
1 + λ+

λ2

2!
+
λ3

3!
+ . . .

]
u = eλu,
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which shows that u is an eigenvector of eA for eλ.

As a consequence, we can show that

det(eA) = etr(A),

where tr(A) is the trace of A, i.e., the sum a1 1 + · · · + ann of its diagonal entries, which is
also equal to the sum of the eigenvalues of A. This is because the determinant of a matrix
is equal to the product of its eigenvalues, and if λ1, . . . , λn are the eigenvalues of A, then by
Proposition 1.4, eλ1 , . . . , eλn are the eigenvalues of eA, and thus

det
(
eA
)

= eλ1 · · · eλn = eλ1+···+λn = etr(A).

This shows that eA is always an invertible matrix, since ez is never null for every z ∈ C. In

fact, the inverse of eA is e−A, but we need to prove another proposition. This is because it
is generally not true that

eA+B = eAeB,

unless A and B commute, i.e., AB = BA. We need to prove this last fact.

Proposition 1.5. Given any two complex n× n matrices A,B, if AB = BA, then

eA+B = eAeB.

Proof. Since AB = BA, we can expand (A+B)p using the binomial formula:

(A+B)p =

p∑
k=0

(
p

k

)
AkBp−k,

and thus
1

p!
(A+B)p =

p∑
k=0

AkBp−k

k!(p− k)!
.

Note that for any integer N ≥ 0, we can write

2N∑
p=0

1

p!
(A+B)p =

2N∑
p=0

p∑
k=0

AkBp−k

k!(p− k)!

=

(
N∑
p=0

Ap

p!

)(
N∑
p=0

Bp

p!

)
+

∑
max(k,l)>N
k+l≤ 2N

Ak

k!

Bl

l!
,

where there are N(N + 1) pairs (k, l) in the second term. Letting

‖A‖ = max{|ai j| | 1 ≤ i, j ≤ n}, ‖B‖ = max{|bi j| | 1 ≤ i, j ≤ n},
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and µ = max(‖A‖, ‖B‖), note that for every entry ci j in
(
Ak/k!

) (
Bl/l!

)
, the first inequality

of Proposition 1.1, along with the fact that N < max(k, l) and k + l ≤ 2N , implies that

|ci j| ≤ n
(nµ)k

k!

(nµ)l

l!
≤ n(nµ)k+l

k!l!
≤ nk+l(nµ)k+l

k!l!
≤ (n2µ)k+l

k!l!
≤ (n2µ)2N

N !
.

As a consequence, the absolute value of every entry in∑
max(k,l)>N
k+l≤ 2N

Ak

k!

Bl

l!

is bounded by

N(N + 1)
(n2µ)2N

N !
,

which goes to 0 as N 7→ ∞. To see why this is the case, note that

lim
N→∞

N(N + 1)
(n2µ)2N

N !
= lim

N→∞

N(N + 1)

N(N − 1)

(n2µ)2N

(N − 2)!
= lim

N→∞

(n4µ2)N−2+2

(N − 2)!

= (n4µ2)2 lim
N→∞

(n4µ2)N−2

(N − 2)!
= 0,

where the last equality follows from the well known identity limN→∞
xN

N !
= 0. From this it

immediately follows that
eA+B = eAeB.

Now, using Proposition 1.5, since A and −A commute, we have

eAe−A = eA+−A = e0n = In,

which shows that the inverse of eA is e−A.

We will now use the properties of the exponential that we have just established to show
how various matrices can be represented as exponentials of other matrices.

1.2 The Lie Groups GL(n,R), SL(n,R), O(n), SO(n), the

Lie Algebras gl(n,R), sl(n,R), o(n), so(n), and the

Exponential Map

First, we recall some basic facts and definitions. The set of real invertible n × n matrices
forms a group under multiplication, denoted by GL(n,R). The subset of GL(n,R) consisting
of those matrices having determinant +1 is a subgroup of GL(n,R), denoted by SL(n,R).
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It is also easy to check that the set of real n × n orthogonal matrices forms a group under
multiplication, denoted by O(n). The subset of O(n) consisting of those matrices having
determinant +1 is a subgroup of O(n), denoted by SO(n). We will also call matrices in
SO(n) rotation matrices . Staying with easy things, we can check that the set of real n× n
matrices with null trace forms a vector space under addition, and similarly for the set of
skew symmetric matrices.

Definition 1.1. The group GL(n,R) is called the general linear group, and its subgroup
SL(n,R) is called the special linear group. The group O(n) of orthogonal matrices is called
the orthogonal group, and its subgroup SO(n) is called the special orthogonal group (or group
of rotations). The vector space of real n× n matrices with null trace is denoted by sl(n,R),
and the vector space of real n× n skew symmetric matrices is denoted by so(n).

Remark: The notation sl(n,R) and so(n) is rather strange and deserves some explanation.
The groups GL(n,R), SL(n,R), O(n), and SO(n) are more than just groups. They are also
topological groups, which means that they are topological spaces (viewed as subspaces of
Rn2

) and that the multiplication and the inverse operations are continuous (in fact, smooth).
Furthermore, they are smooth real manifolds.1 Such objects are called Lie groups . The real
vector spaces sl(n) and so(n) are what is called Lie algebras . However, we have not defined
the algebra structure on sl(n,R) and so(n) yet. The algebra structure is given by what is
called the Lie bracket , which is defined as

[A, B] = AB −BA.

Lie algebras are associated with Lie groups. What is going on is that the Lie algebra of
a Lie group is its tangent space at the identity, i.e., the space of all tangent vectors at the
identity (in this case, In). In some sense, the Lie algebra achieves a “linearization” of the Lie
group. The exponential map is a map from the Lie algebra to the Lie group, for example,

exp: so(n)→ SO(n)

and

exp: sl(n,R)→ SL(n,R).

The exponential map often allows a parametrization of the Lie group elements by simpler
objects, the Lie algebra elements.

One might ask, What happened to the Lie algebras gl(n,R) and o(n) associated with the
Lie groups GL(n,R) and O(n)? We will see later that gl(n,R) is the set of all real n × n
matrices, and that o(n) = so(n).

1We refrain from defining manifolds right now, not to interrupt the flow of intuitive ideas.
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The properties of the exponential map play an important role in studying a Lie group.
For example, it is clear that the map

exp: gl(n,R)→ GL(n,R)

is well-defined, but since det(eA) = etr(A), every matrix of the form eA has a positive de-
terminant and exp is not surjective. Similarly, the fact det(eA) = etr(A) implies that the
map

exp: sl(n,R)→ SL(n,R)

is well-defined. However, we showed in Section 1.1 that it is not surjective either. As we will
see in the next theorem, the map

exp: so(n)→ SO(n)

is well-defined and surjective. The map

exp: o(n)→ O(n)

is well-defined, but it is not surjective, since there are matrices in O(n) with determinant
−1.

Remark: The situation for matrices over the field C of complex numbers is quite different,
as we will see later.

We now show the fundamental relationship between SO(n) and so(n).

Theorem 1.6. The exponential map

exp: so(n)→ SO(n)

is well-defined and surjective.

Proof. First we need to prove that if A is a skew symmetric matrix, then eA is a rotation
matrix. For this we quickly check that (

eA
)>

= eA
>
.

This is consequence of the definition eA =
∑

p≥0
Ap

p!
as a absolutely convergent series, the

observation that (Ap)> = (A>)p, and the linearity of the transpose map, i.e (A + B)> =
A> +B>. Then since A> = −A, we get(

eA
)>

= eA
>

= e−A,

and so (
eA
)>
eA = e−AeA = e−A+A = e0n = In,
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and similarly,

eA
(
eA
)>

= In,

showing that eA is orthogonal. Also,

det
(
eA
)

= etr(A),

and since A is real skew symmetric, its diagonal entries are 0, i.e., tr(A) = 0, and so
det(eA) = +1.

For the surjectivity, we use Theorem 12.5, from Chapter 12 of Gallier [48]. Theorem
12.5 says that for every orthogonal matrix R there is an orthogonal matrix P such that
R = PE P>, where E is a block diagonal matrix of the form

E =


E1 . . .

E2 . . .
...

...
. . .

...
. . . Ep

 ,

such that each block Ei is either 1, −1, or a two-dimensional matrix of the form

Ei =

(
cos θi − sin θi
sin θi cos θi

)
,

with 0 < θi < π. Furthermore, if R is a rotation matrix, then we may assume that 0 < θi ≤ π
and that the scalar entries are +1. Then we can form the block diagonal matrix

D =


D1 . . .

D2 . . .
...

...
. . .

...
. . . Dp


such that each block Di is either 0 when Ei consists of +1, or the two-dimensional matrix

Di =

(
0 −θi
θi 0

)
when

Ei =

(
cos θi − sin θi
sin θi cos θi

)
,

and we let A = PDP>. It is clear that A is skew symmetric since A> =
(
PDP>

)>
=

PD>P> = −PDP>. By Proposition 1.2,

eA = ePDP
−1

= PeDP−1,
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and since D is a block diagonal matrix, we can compute eD by computing the exponentials
of its blocks. If Di = 0, we get Ei = e0 = +1, and if

Di =

(
0 −θi
θi 0

)
,

we showed earlier that

eDi =

(
cos θi − sin θi
sin θi cos θi

)
,

exactly the block Ei. Thus, E = eD, and as a consequence,

eA = ePDP
−1

= PeDP−1 = PEP−1 = PE P> = R.

This shows the surjectivity of the exponential.

When n = 3 (and A is skew symmetric), it is possible to work out an explicit formula for
eA. For any 3× 3 real skew symmetric matrix

A =

 0 −c b
c 0 −a
−b a 0

 ,

letting θ =
√
a2 + b2 + c2 and

B =

a2 ab ac
ab b2 bc
ac bc c2

 ,

we have the following result known as Rodrigues’s formula (1840).

Proposition 1.7. The exponential map exp: so(3)→ SO(3) is given by

eA = cos θ I3 +
sin θ

θ
A+

(1− cos θ)

θ2
B,

or, equivalently, by

eA = I3 +
sin θ

θ
A+

(1− cos θ)

θ2
A2

if θ 6= 0, with e03 = I3.

Proof sketch. First observe that

A2 = −θ2I3 +B,
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since

A2 =

 0 −c b
c 0 −a
−b a 0

 0 −c b
c 0 −a
−b a 0

 =

−c2 − b2 ba ca
ab −c2 − a2 cb
ac cb −b2 − a2


=

−a2 − b2 − c2 0 0
0 −a2 − b2 − c2 0
0 0 −a2 − b2 − c2

+

a2 ba ca
ab b2 cb
ac cb c2


= −θ2I3 +B,

and that
AB = BA = 0.

From the above, deduce that
A3 = −θ2A,

and for any k ≥ 0,

A4k+1 = θ4kA,

A4k+2 = θ4kA2,

A4k+3 = −θ4k+2A,

A4k+4 = −θ4k+2A2.

Then prove the desired result by writing the power series for eA and regrouping terms so
that the power series for cos θ and sin θ show up. In particular

eA = I3 +
∑
p≥1

Ap

p!
= I3 +

∑
p≥0

A2p+1

(2p+ 1)!
+
∑
p≥1

A2p

(2p)!

= I3 +
∑
p≥0

(−1)pθ2p

(2p+ 1)!
A+

∑
p≥1

(−1)p−1θ2(p−1)

(2p)!
A2

= I3 +
A

θ

∑
p≥0

(−1)pθ2p+1

(2p+ 1)!
− A2

θ2

∑
p≥1

(−1)pθ2p

(2p)!

= I3 +
sin θ

θ
A− A2

θ2

∑
p≥0

(−1)pθ2p

(2p)!
+
A2

θ2

= I3 +
sin θ

θ
A+

(1− cos θ)

θ2
A2.

The above formulae are the well-known formulae expressing a rotation of axis specified by
the vector (a, b, c) and angle θ. Since the exponential is surjective, it is possible to write down
an explicit formula for its inverse (but it is a multivalued function!). This has applications
in kinematics, robotics, and motion interpolation.
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1.3 Symmetric Matrices, Symmetric Positive Definite

Matrices, and the Exponential Map

Recall that a real symmetric matrix is called positive (or positive semidefinite) if its eigen-
values are all positive or null, and positive definite if its eigenvalues are all strictly positive.
We denote the vector space of real symmetric n× n matrices by S(n), the set of symmetric
positive matrices by SP(n), and the set of symmetric positive definite matrices by SPD(n).

The next proposition shows that every symmetric positive definite matrix A is of the
form eB for some unique symmetric matrix B. The set of symmetric matrices is a vector
space, but it is not a Lie algebra because the Lie bracket [A,B] is not symmetric unless A
and B commute, and the set of symmetric (positive) definite matrices is not a multiplicative
group, so this result is of a different flavor as Theorem 1.6.

Proposition 1.8. For every symmetric matrix B, the matrix eB is symmetric positive defi-
nite. For every symmetric positive definite matrix A, there is a unique symmetric matrix B
such that A = eB.

Proof. We showed earlier that (
eB
)>

= eB
>
.

If B is a symmetric matrix, then since B> = B, we get(
eB
)>

= eB
>

= eB,

and eB is also symmetric. Since the eigenvalues λ1, . . . , λn of the symmetric matrix B are
real and the eigenvalues of eB are eλ1 , . . . , eλn , and since eλ > 0 if λ ∈ R, eB is positive
definite.

To show the surjectivity of the exponential map, note that if A is symmetric positive
definite, then by Theorem 12.3 from Chapter 12 of Gallier [48], there is an orthogonal
matrix P such that A = PDP>, where D is a diagonal matrix

D =


λ1 . . .

λ2 . . .
...

...
. . .

...
. . . λn

 ,

where λi > 0, since A is positive definite. Letting

L =


log λ1 . . .

log λ2 . . .
...

...
. . .

...
. . . log λn

 ,
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by using the power series representation of eL, it is obvious that eL = D, with log λi ∈ R,
since λi > 0.

Let
B = PLP>.

By Proposition 1.2, we have

eB = ePLP
>

= ePLP
−1

= PeLP−1 = PeL P> = PDP> = A.

Finally, we prove that if B1 and B2 are symmetric and A = eB1 = eB2 , then B1 = B2. We
use an argument due to Chevalley [31] (see Chapter I, Proposition 5, pages 13-14). Since B1

is symmetric, there is an orthonormal basis (u1, . . . , un) of eigenvectors of B1. Let µ1, . . . , µn
be the corresponding eigenvalues. Similarly, there is an orthonormal basis (v1, . . . , vn) of
eigenvectors of B2. We are going to prove that B1 and B2 agree on the basis (v1, . . . , vn),
thus proving that B1 = B2.

Let µ be some eigenvalue of B2, and let v = vi be some eigenvector of B2 associated with
µ. We can write

v = α1u1 + · · ·+ αnun.

Since v is an eigenvector of B2 for µ and A = eB2 , by Proposition 1.4

A(v) = eµv = eµα1u1 + · · ·+ eµαnun.

On the other hand,

A(v) = A(α1u1 + · · ·+ αnun) = α1A(u1) + · · ·+ αnA(un),

and since A = eB1 and B1(ui) = µiui, by Proposition 1.4 we get

A(v) = eµ1α1u1 + · · ·+ eµnαnun.

Therefore, αi = 0 if µi 6= µ. Letting

I = {i | µi = µ, i ∈ {1, . . . , n}},

we have
v =

∑
i∈I

αiui.

Now,

B1(v) = B1

(∑
i∈I

αiui

)
=
∑
i∈I

αiB1(ui) =
∑
i∈I

αiµiui

=
∑
i∈I

αiµui = µ

(∑
i∈I

αiui

)
= µv,
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since µi = µ when i ∈ I. Since v is an eigenvector of B2 for µ,

B2(v) = µv,

which shows that
B1(v) = B2(v).

Since the above holds for every eigenvector vi, we have B1 = B2.

Proposition 1.8 can be reformulated as stating that the map exp: S(n) → SPD(n)
is a bijection. It can be shown that it is a homeomorphism. In the case of invertible
matrices, the polar form theorem can be reformulated as stating that there is a bijection
between the topological space GL(n,R) of real n× n invertible matrices (also a group) and
O(n)× SPD(n).

As a corollary of the polar form theorem (Theorem 13.1 in Chapter 13 of Gallier [48])
and Proposition 1.8, we have the following result: For every invertible matrix A there is a
unique orthogonal matrix R and a unique symmetric matrix S such that

A = ReS.

Thus, we have a bijection between GL(n,R) and O(n)×S(n). But S(n) itself is isomorphic
to Rn(n+1)/2. Thus, there is a bijection between GL(n,R) and O(n)×Rn(n+1)/2. It can also
be shown that this bijection is a homeomorphism. This is an interesting fact. Indeed, this
homeomorphism essentially reduces the study of the topology of GL(n,R) to the study of
the topology of O(n). This is nice, since it can be shown that O(n) is compact.

In A = ReS, if det(A) > 0, then R must be a rotation matrix (i.e., det(R) = +1), since
det
(
eS
)
> 0. In particular, if A ∈ SL(n,R), since det(A) = det(R) = +1, the symmetric

matrix S must have a null trace, i.e., S ∈ S(n)∩ sl(n,R). Thus, we have a bijection between
SL(n,R) and SO(n)× (S(n) ∩ sl(n,R)).

We can also show that the exponential map is a surjective map from the skew Hermitian
matrices to the unitary matrices (use Theorem 12.7 from Chapter 12 in Gallier [48]).

1.4 The Lie Groups GL(n,C), SL(n,C), U(n), SU(n), the

Lie Algebras gl(n,C), sl(n,C), u(n), su(n), and the

Exponential Map

The set of complex invertible n×n matrices forms a group under multiplication, denoted by
GL(n,C). The subset of GL(n,C) consisting of those matrices having determinant +1 is a
subgroup of GL(n,C), denoted by SL(n,C). It is also easy to check that the set of complex
n × n unitary matrices forms a group under multiplication, denoted by U(n). The subset
of U(n) consisting of those matrices having determinant +1 is a subgroup of U(n), denoted
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by SU(n). We can also check that the set of complex n× n matrices with null trace forms
a real vector space under addition, and similarly for the set of skew Hermitian matrices and
the set of skew Hermitian matrices with null trace.

Definition 1.2. The group GL(n,C) is called the general linear group, and its subgroup
SL(n,C) is called the special linear group. The group U(n) of unitary matrices is called the
unitary group, and its subgroup SU(n) is called the special unitary group. The real vector
space of complex n× n matrices with null trace is denoted by sl(n,C), the real vector space
of skew Hermitian matrices is denoted by u(n), and the real vector space u(n) ∩ sl(n,C) is
denoted by su(n).

Remarks:

(1) As in the real case, the groups GL(n,C), SL(n,C), U(n), and SU(n) are also topo-
logical groups (viewed as subspaces of R2n2

), and in fact, smooth real manifolds. Such
objects are called (real) Lie groups . The real vector spaces sl(n,C), u(n), and su(n)
are Lie algebras associated with SL(n,C), U(n), and SU(n). The algebra structure is
given by the Lie bracket , which is defined as

[A, B] = AB −BA.

(2) It is also possible to define complex Lie groups, which means that they are topological
groups and smooth complex manifolds. It turns out that GL(n,C) and SL(n,C) are
complex manifolds, but not U(n) and SU(n).

� One should be very careful to observe that even though the Lie algebras sl(n,C),
u(n), and su(n) consist of matrices with complex coefficients, we view them as real

vector spaces. The Lie algebra sl(n,C) is also a complex vector space, but u(n) and su(n)
are not! Indeed, if A is a skew Hermitian matrix, iA is not skew Hermitian, but Hermitian!

Again the Lie algebra achieves a “linearization” of the Lie group. In the complex case,
the Lie algebras gl(n,C) is the set of all complex n× n matrices, but u(n) 6= su(n), because
a skew Hermitian matrix does not necessarily have a null trace.

The properties of the exponential map also play an important role in studying complex
Lie groups. For example, it is clear that the map

exp: gl(n,C)→ GL(n,C)

is well-defined, but this time, it is surjective! One way to prove this is to use the Jordan
normal form. Similarly, since

det
(
eA
)

= etr(A),
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the map
exp: sl(n,C)→ SL(n,C)

is well-defined, but it is not surjective! As we will see in the next theorem, the maps

exp: u(n)→ U(n)

and
exp: su(n)→ SU(n)

are well-defined and surjective.

Theorem 1.9. The exponential maps

exp: u(n)→ U(n) and exp: su(n)→ SU(n)

are well-defined and surjective.

Proof. First we need to prove that if A is a skew Hermitian matrix, then eA is a unitary

matrix. Recall that A∗ = A
>

. Then since (eA)> = eA
>

, we readily deduce that(
eA
)∗

= eA
∗
.

Then since A∗ = −A, we get (
eA
)∗

= eA
∗

= e−A,

and so (
eA
)∗
eA = e−AeA = e−A+A = e0n = In,

and similarly, eA
(
eA
)∗

= In, showing that eA is unitary. Since

det
(
eA
)

= etr(A),

if A is skew Hermitian and has null trace, then det(eA) = +1.

For the surjectivity we will use Theorem 12.7 in Chapter 12 of Gallier [48]. First assume
that A is a unitary matrix. By Theorem 12.7, there is a unitary matrix U and a diagonal
matrix D such that A = UDU∗. Furthermore, since A is unitary, the entries λ1, . . . , λn in
D (the eigenvalues of A) have absolute value +1. Thus, the entries in D are of the form
cos θ + i sin θ = eiθ. Thus, we can assume that D is a diagonal matrix of the form

D =


eiθ1 . . .

eiθ2 . . .
...

...
. . .

...
. . . eiθp

 .

If we let E be the diagonal matrix
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E =


iθ1 . . .

iθ2 . . .
...

...
. . .

...
. . . iθp


it is obvious that E is skew Hermitian and that

eE = D.

Then letting B = UEU∗, we have
eB = A,

and it is immediately verified that B is skew Hermitian, since E is.

If A is a unitary matrix with determinant +1, since the eigenvalues of A are eiθ1 , . . . , eiθp

and the determinant of A is the product

eiθ1 · · · eiθp = ei(θ1+···+θp)

of these eigenvalues, we must have

θ1 + · · ·+ θp = 0,

and so, E is skew Hermitian and has zero trace. As above, letting

B = UEU∗,

we have
eB = A,

where B is skew Hermitian and has null trace.

We now extend the result of Section 1.3 to Hermitian matrices.

1.5 Hermitian Matrices, Hermitian Positive Definite

Matrices, and the Exponential Map

Recall that a Hermitian matrix is called positive (or positive semidefinite) if its eigenvalues
are all positive or null, and positive definite if its eigenvalues are all strictly positive. We
denote the real vector space of Hermitian n×nmatrices by H(n), the set of Hermitian positive
matrices by HP(n), and the set of Hermitian positive definite matrices by HPD(n).

The next proposition shows that every Hermitian positive definite matrix A is of the
form eB for some unique Hermitian matrix B. As in the real case, the set of Hermitian
matrices is a real vector space, but it is not a Lie algebra because the Lie bracket [A,B] is
not Hermitian unless A and B commute, and the set of Hermitian (positive) definite matrices
is not a multiplicative group.
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Proposition 1.10. For every Hermitian matrix B, the matrix eB is Hermitian positive
definite. For every Hermitian positive definite matrix A, there is a unique Hermitian matrix
B such that A = eB.

Proof. It is basically the same as the proof of Theorem 1.8, except that a Hermitian matrix
can be written as A = UDU∗, where D is a real diagonal matrix and U is unitary instead of
orthogonal.

Proposition 1.10 can be reformulated as stating that the map exp: H(n)→ HPD(n) is
a bijection. In fact, it can be shown that it is a homeomorphism. In the case of complex
invertible matrices, the polar form theorem can be reformulated as stating that there is a
bijection between the topological space GL(n,C) of complex n× n invertible matrices (also
a group) and U(n) ×HPD(n). As a corollary of the polar form theorem and Proposition
1.10, we have the following result: For every complex invertible matrix A, there is a unique
unitary matrix U and a unique Hermitian matrix S such that

A = U eS.

Thus, we have a bijection between GL(n,C) and U(n)×H(n). But H(n) itself is isomorphic
to Rn2

, and so there is a bijection between GL(n,C) and U(n) × Rn2
. It can also be

shown that this bijection is a homeomorphism. This is an interesting fact. Indeed, this
homeomorphism essentially reduces the study of the topology of GL(n,C) to the study of
the topology of U(n). This is nice, since it can be shown that U(n) is compact (as a real
manifold).

In the polar decomposition A = UeS, we have | det(U)| = 1, since U is unitary, and tr(S)
is real, since S is Hermitian (since it is the sum of the eigenvalues of S, which are real), so
that det

(
eS
)
> 0. Thus, if det(A) = 1, we must have det

(
eS
)

= 1, which implies that S ∈
H(n)∩ sl(n,C). Thus, we have a bijection between SL(n,C) and SU(n)× (H(n)∩ sl(n,C)).

In the next section we study the group SE(n) of affine maps induced by orthogonal trans-
formations, also called rigid motions, and its Lie algebra. We will show that the exponential
map is surjective. The groups SE(2) and SE(3) play play a fundamental role in robotics,
dynamics, and motion planning.

1.6 The Lie Group SE(n) and the Lie Algebra se(n)

First, we review the usual way of representing affine maps of Rn in terms of (n+ 1)× (n+ 1)
matrices.

Definition 1.3. The set of affine maps ρ of Rn, defined such that

ρ(X) = RX + U,

where R is a rotation matrix (R ∈ SO(n)) and U is some vector in Rn, is a group under
composition called the group of direct affine isometries, or rigid motions , denoted by SE(n).
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Every rigid motion can be represented by the (n+ 1)× (n+ 1) matrix

(
R U
0 1

)
in the sense that (

ρ(X)

1

)
=

(
R U
0 1

)(
X

1

)
iff

ρ(X) = RX + U.

Definition 1.4. The vector space of real (n+ 1)× (n+ 1) matrices of the form

A =

(
Ω U
0 0

)
,

where Ω is an n× n skew symmetric matrix and U is a vector in Rn, is denoted by se(n).

Remark: The group SE(n) is a Lie group, and its Lie algebra turns out to be se(n).

We will show that the exponential map exp: se(n)→ SE(n) is surjective. First we prove
the following key proposition.

Proposition 1.11. Given any (n+ 1)× (n+ 1) matrix of the form

A =

(
Ω U
0 0

)
where Ω is any n× n matrix and U ∈ Rn,

Ak =

(
Ωk Ωk−1U
0 0

)
,

where Ω0 = In. As a consequence,

eA =

(
eΩ V U
0 1

)
,

where

V = In +
∑
k≥1

Ωk

(k + 1)!
=
∑
k≥1

Ωk−1

k!
.
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Proof. A trivial induction on k shows that

Ak =

(
Ωk Ωk−1U
0 0

)
.

Then we have

eA =
∑
k≥0

Ak

k!
,

= In+1 +
∑
k≥1

1

k!

(
Ωk Ωk−1U
0 0

)
,

=

(
In +

∑
k≥1

Ωk

k!

∑
k≥1

Ωk−1

k!
U

0 1

)
,

=

(
eΩ V U
0 1

)
.

We can now prove our main theorem. We will need to prove that V is invertible when Ω
is a skew symmetric matrix. It would be tempting to write V as

V = Ω−1(eΩ − I).

Unfortunately, for odd n, a skew symmetric matrix of order n is not invertible! Thus, we
have to find another way of proving that V is invertible. However, observe that we have the
following useful fact:

V = In +
∑
k≥1

Ωk

(k + 1)!
=

∫ 1

0

eΩtdt,

since eΩt is absolutely convergent and term by term integration yields∫ 1

0

eΩtdt =

∫ 1

0

∑
k≥0

(Ωt)k

k!
dt =

∑
k≥0

1

k!

∫ 1

0

(Ωt)k dt

=
∑
k≥0

Ωk

k!

∫ 1

0

tk dt =
∑
k≥0

Ωk

k!

[
tk+1

k + 1

]1

0

=
∑
k≥1

Ωk−1

k!
= In +

∑
k≥1

Ωk

(k + 1)!
.

This is what we will use in Theorem 1.12 to prove surjectivity.

Theorem 1.12. The exponential map

exp: se(n)→ SE(n)

is well-defined and surjective.
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Proof. Since Ω is skew symmetric, eΩ is a rotation matrix, and by Theorem 1.6, the expo-
nential map

exp: so(n)→ SO(n)

is surjective. Thus it remains to prove that for every rotation matrix R, there is some skew
symmetric matrix Ω such that R = eΩ and

V = In +
∑
k≥1

Ωk

(k + 1)!

is invertible. This is because Proposition 1.11 will then imply

e

Ω V −1U
0 0


=

(
eΩ V V −1U
0 1

)
=

(
R U
0 1

)
.

Theorem 12.5 from Chapter 12 of Gallier [48] says that for every orthogonal matrix R there
is an orthogonal matrix P such that R = PE P>, where E is a block diagonal matrix of the
form

E =


E1 . . .

E2 . . .
...

...
. . .

...
. . . Ep

 ,

such that each block Ei is either 1, −1, or a two-dimensional matrix of the form

Ei =

(
cos θi − sin θi
sin θi cos θi

)
.

Furthermore, if R is a rotation matrix, then we may assume that 0 < θi ≤ π and that the
scalar entries are +1. Then we can form the block diagonal matrix

D =


D1 . . .

D2 . . .
...

...
. . .

...
. . . Dp


such that each block Di is either 0 when Ei consists of +1, or the two-dimensional matrix

Di =

(
0 −θi
θi 0

)
when

Ei =

(
cos θi − sin θi
sin θi cos θi

)
,
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with 0 < θi ≤ π. If we let Ω = PDP>, then

eΩ = R,

as in the proof of Theorem 1.6. To compute V , since Ω = PDP> = PDP−1, observe that

V = In +
∑
k≥1

Ωk

(k + 1)!

= In +
∑
k≥1

PDkP−1

(k + 1)!

= P

(
In +

∑
k≥1

Dk

(k + 1)!

)
P−1

= PWP−1,

where

W = In +
∑
k≥1

Dk

(k + 1)!
.

We can compute

W = In +
∑
k≥1

Dk

(k + 1)!
=

∫ 1

0

eDtdt,

by computing

W =


W1 . . .

W2 . . .
...

...
. . .

...
. . . Wp


by blocks. Since

eDit =

(
cos(θit) − sin(θit)
sin(θit) cos(θit)

)
when Di is a 2× 2 skew symmetric matrix

Di =

(
0 −θi
θi 0

)
and Wi =

∫ 1

0
eDitdt, we get

Wi =

(∫ 1

0
cos(θit)dt

∫ 1

0
− sin(θit)dt∫ 1

0
sin(θit)dt

∫ 1

0
cos(θit)dt

)
=

1

θi

(
sin(θit) |10 cos(θit) |10
− cos(θit) |10 sin(θit) |10

)
,

that is,

Wi =
1

θi

(
sin θi −(1− cos θi)

1− cos θi sin θi

)
,
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and Wi = 1 when Di = 0. Now, in the first case, the determinant is

1

θ2
i

(
(sin θi)

2 + (1− cos θi)
2
)

=
2

θ2
i

(1− cos θi),

which is nonzero, since 0 < θi ≤ π. Thus, each Wi is invertible, and so is W , and thus,
V = PWP−1 is invertible.

In the case n = 3, given a skew symmetric matrix

Ω =

 0 −c b
c 0 −a
−b a 0

 ,

letting θ =
√
a2 + b2 + c2, it it easy to prove that if θ = 0, then

eA =

(
I3 U
0 1

)
,

and that if θ 6= 0 (using the fact that Ω3 = −θ2Ω), then by adjusting the calculation found
at the end of Section 1.2

eΩ = I3 +
sin θ

θ
Ω +

(1− cos θ)

θ2
Ω2 (∗1)

and

V = I3 +
(1− cos θ)

θ2
Ω +

(θ − sin θ)

θ3
Ω2. (∗2)

1.7 Problems

Problem 1.1. (a) Find two symmetric matrices, A and B, such that AB is not symmetric.

(b) Find two matrices A and B such that

eAeB 6= eA+B.

Hint . Try

A = π

0 0 0
0 0 −1
0 1 0

 and B = π

 0 0 1
0 0 0
−1 0 0

 ,

and use the Rodrigues formula.

(c) Find some square matrices A,B such that AB 6= BA, yet

eAeB = eA+B.

Hint . Look for 2× 2 matrices with zero trace.
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Problem 1.2. Given any matrix

B =

(
a b
c −a

)
∈ sl(2,C),

if ω2 = a2 + bc and ω is any of the two complex roots of a2 + bc, prove that if ω 6= 0, then

eB = coshω I +
sinh ω

ω
B,

and eB = I +B, if a2 + bc = 0. Observe that tr(eB) = 2 cosh ω.

Prove that the exponential map, exp: sl(2,C)→ SL(2,C), is not surjective. For instance,
prove that (

−1 1
0 −1

)
is not the exponential of any matrix in sl(2,C).

Problem 1.3. (Advanced) (a) Recall that a matrix N is nilpotent iff there is some m ≥ 0
so that Nm = 0. Let A be any n× n matrix of the form A = I −N , where N is nilpotent.
Why is A invertible? Prove that there is some B so that eB = I −N as follows: Recall that
for any y ∈ R so that |y − 1| is small enough, we have

log(y) = −(1− y)− (1− y)2

2
− · · · − (1− y)k

k
− · · · .

As N is nilpotent, we have Nm = 0, where m is the smallest integer with this propery. Then,
the expression

B = log(I −N) = −N − N2

2
− · · · − Nm−1

m− 1

is well defined. Use a formal power series argument to show that

eB = A.

We denote B by log(A).

(b) Let A ∈ GL(n,C). Prove that there is some matrix, B, so that eB = A. Thus, the
exponential map, exp: gl(n,C)→ GL(n,C), is surjective.

Hint . First, use the fact that A has a Jordan form, PJP−1. Then, show that finding a log
of A reduces to finding a log of every Jordan block of J . As every Jordan block, J , has a
fixed nonzero constant, λ, on the diagonal, with 1’s immediately above each diagonal entry
and zero’s everywhere else, we can write J as (λI)(I − N), where N is nilpotent. Find B1

and B2 so that λI = eB1 , I −N = eB2 , and B1B2 = B2B1. Conclude that J = eB1+B2 .
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Problem 1.4. (a) Let so(3) be the space of 3× 3 skew symmetric matrices

so(3) =


 0 −c b
c 0 −a
−b a 0

 ∣∣∣∣ a, b, c ∈ R

 .

For any matrix

A =

 0 −c b
c 0 −a
−b a 0

 ∈ so(3),

if we let θ =
√
a2 + b2 + c2 and

B =

a2 ab ac
ab b2 bc
ac bc c2

 ,

prove that

A2 = −θ2I +B,

AB = BA = 0.

From the above, deduce that
A3 = −θ2A.

(b) Prove that the exponential map exp: so(3)→ SO(3) is given by

expA = eA = cos θ I3 +
sin θ

θ
A+

(1− cos θ)

θ2
B,

or, equivalently, by

eA = I3 +
sin θ

θ
A+

(1− cos θ)

θ2
A2, if θ 6= 0,

with exp(03) = I3.

(c) Prove that eA is an orthogonal matrix of determinant +1, i.e., a rotation matrix.

(d) Prove that the exponential map exp: so(3)→ SO(3) is surjective. For this, proceed
as follows: Pick any rotation matrix R ∈ SO(3);

(1) The case R = I is trivial.

(2) If R 6= I and tr(R) 6= −1, then

exp−1(R) =

{
θ

2 sin θ
(R−RT )

∣∣∣∣ 1 + 2 cos θ = tr(R)

}
.

(Recall that tr(R) = r1 1 + r2 2 + r3 3, the trace of the matrix R).

Show that there is a unique skew-symmetric B with corresponding θ satisfying 0 <
θ < π such that eB = R.
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(3) If R 6= I and tr(R) = −1, then prove that the eigenvalues of R are 1,−1,−1, that
R = R>, and that R2 = I. Prove that the matrix

S =
1

2
(R− I)

is a symmetric matrix whose eigenvalues are −1,−1, 0. Thus, S can be diagonalized
with respect to an orthogonal matrix Q as

S = Q

−1 0 0
0 −1 0
0 0 0

Q>.

Prove that there exists a skew symmetric matrix

U =

 0 −d c
d 0 −b
−c b 0


so that

U2 = S =
1

2
(R− I).

Observe that

U2 =

−(c2 + d2) bc bd
bc −(b2 + d2) cd
bd cd −(b2 + c2)

 ,

and use this to conclude that if U2 = S, then b2 + c2 + d2 = 1. Then, show that

exp−1(R) =

(2k + 1)π

 0 −d c
d 0 −b
−c b 0

 , k ∈ Z

 ,

where (b, c, d) is any unit vector such that for the corresponding skew symmetric matrix
U , we have U2 = S.

(e) To find a skew symmetric matrix U so that U2 = S = 1
2
(R − I) as in (d), we can

solve the system b2 − 1 bc bd
bc c2 − 1 cd
bd cd d2 − 1

 = S.

We immediately get b2, c2, d2, and then, since one of b, c, d is nonzero, say b, if we choose the
positive square root of b2, we can determine c and d from bc and bd.

Implement a computer program to solve the above system.
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(f) The previous questions show that we can compute a log of a rotation matrix, although
when θ ≈ 0, we have to be careful in computing sin θ

θ
; in this case, we may want to use

sin θ

θ
= 1− θ2

3!
+
θ4

5!
+ · · · .

Given two rotations, R1, R2 ∈ SO(3), there are three natural interpolation formulae:

e(1−t) logR1+t logR2 ; R1e
t log(R>1 R2); et log(R2R>1 )R1,

with 0 ≤ t ≤ 1.

Write a computer program to investigate the difference between these interpolation for-
mulae.

The position of a rigid body spinning around its center of gravity is determined by a
rotation matrix, R ∈ SO(3). If R1 denotes the initial position and R2 the final position of
this rigid body, by computing interpolants of R1 and R2, we get a motion of the rigid body
and we can create an animation of this motion by displaying several interpolants. The rigid
body can be a “funny” object, for example a banana, a bottle, etc.

Problem 1.5. Consider the affine maps ρ : R2 → R2 defined such that

ρ

(
x
y

)
= α

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
w1

w2

)
,

where θ, w1, w2, α ∈ R, with α > 0. These maps are called (direct) affine similitudes (for
short, similitudes). The number α > 0 is the scale factor of the similitude. These affine
maps are the composition of a rotation of angle θ, a rescaling by α > 0, and a translation.

(a) Prove that these maps form a group that we denote by SIM(2).

Given any map ρ as above, if we let

R =

(
cos θ − sin θ
sin θ cos θ

)
, X =

(
x
y

)
, and W =

(
w1

w2

)
,

then ρ can be represented by the 3× 3 matrix

A =

(
αR W
0 1

)
=

α cos θ −α sin θ w1

α sin θ α cos θ w2

0 0 1


in the sense that (

ρ(X)
1

)
=

(
αR W
0 1

)(
X
1

)
iff

ρ(X) = αRX +W.
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(b) Consider the set of matrices of the formλ −θ u
θ λ v
0 0 0


where θ, λ, u, v ∈ R. Verify that this set of matrices is a vector space isomorphic to (R4,+).
This vector space is denoted by sim(2).

(c) Given a matrix

Ω =

(
λ −θ
θ λ

)
,

prove that

eΩ = eλ
(

cos θ − sin θ
sin θ cos θ

)
.

Hint . Write
Ω = λI + θJ,

with

J =

(
0 −1
1 0

)
.

Observe that J2 = −I, and prove by induction on k that

Ωk =
1

2

(
(λ+ iθ)k + (λ− iθ)k

)
I +

1

2i

(
(λ+ iθ)k − (λ− iθ)k

)
J.

(d) As in (c), write

Ω =

(
λ −θ
θ λ

)
,

let

U =

(
u
v

)
,

and let

B =

(
Ω U
0 0

)
.

Prove that

Bn =

(
Ωn Ωn−1U
0 0

)
where Ω0 = I2.

Prove that

eB =

(
eΩ V U
0 1

)
,
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where

V = I2 +
∑
k≥1

Ωk

(k + 1)!
.

(e) Use the formula

V = I2 +
∑
k≥1

Ωk

(k + 1)!
=

∫ 1

0

eΩtdt

to prove that if λ = θ = 0, then
V = I2,

else

V =
1

λ2 + θ2

(
λ(eλ cos θ − 1) + eλθ sin θ −θ(1− eλ cos θ)− eλλ sin θ
θ(1− eλ cos θ) + eλλ sin θ λ(eλ cos θ − 1) + eλθ sin θ

)
.

Conclude that if λ = θ = 0, then

eB =

(
I U
0 1

)
,

else

eB =

(
eΩ V U
0 1

)
,

with

eΩ = eλ
(

cos θ − sin θ
sin θ cos θ

)
,

and

V =
1

λ2 + θ2

(
λ(eλ cos θ − 1) + eλθ sin θ −θ(1− eλ cos θ)− eλλ sin θ
θ(1− eλ cos θ) + eλλ sin θ λ(eλ cos θ − 1) + eλθ sin θ

)
,

and that eB ∈ SIM(2), with scale factor eλ.

(f) Prove that the exponential map exp: sim(2)→ SIM(2) is surjective.

(g) Similitudes can be used to describe certain deformations (or flows) of a deformable
body Bt in the plane. Given some initial shape B in the plane (for example, a circle), a
deformation of B is given by a piecewise differentiable curve

D : [0, T ]→ SIM(2),

where each D(t) is a similitude (for some T > 0). The deformed body Bt at time t is given
by

Bt = D(t)(B).

The surjectivity of the exponential map exp: sim(2) → SIM(2) implies that there is a
map log : SIM(2) → sim(2), although it is multivalued. The exponential map and the log
“function” allows us to work in the simpler (noncurved) Euclidean space sim(2).
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For instance, given two similitudes A1, A2 ∈ SIM(2) specifying the shape of B at two
different times, we can compute log(A1) and log(A2), which are just elements of the Euclidean
space sim(2), form the linear interpolant (1 − t) log(A1) + t log(A2), and then apply the
exponential map to get an interpolating deformation

t 7→ e(1−t) log(A1)+t log(A2), t ∈ [0, 1].

Also, given a sequence of “snapshots” of the deformable body B, say A0, A1, . . . , Am, where
each is Ai is a similitude, we can try to find an interpolating deformation (a curve in
SIM(2)) by finding a simpler curve t 7→ C(t) in sim(2) (say, a B-spline) interpolating
logA1, logA1, . . . , logAm. Then, the curve t 7→ eC(t) yields a deformation in SIM(2) inter-
polating A0, A1, . . . , Am.

(1) Write a program interpolating between two deformations.

(2) If you know about cubic spline interpolation, write a program to interpolate a sequence
of deformations given by similitudes A0, A1, . . . , Am by a C2-curve.

Problem 1.6. Derive Equations (∗1) and (∗2) of Section 1.6.
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Chapter 2

Adjoint Representations and the
Derivative of exp

In this chapter, in preparation for defining the Lie bracket on the Lie algebra of a Lie
group, we introduce the adjoint representations of the group GL(n,R) and of the Lie algebra
gl(n,R). The map Ad: GL(n,R)→ GL(gl(n,R)) is defined such that AdA is the derivative
of the conjugation map AdA : GL(n,R) → GL(n,R) at the identity. The map ad is the
derivative of Ad at the identity, and it turns out that adA(B) = [A,B], the Lie bracket of
A and B, and in this case, [A,B] = AB − BA. We also find a formula for the derivative of
the matrix exponential exp. This formula has an interesting application to the problem of
finding a natural sets of real matrices over which the exponential is injective, which is used
in numerical linear algebra.

2.1 The Adjoint Representations Ad and ad

Given any two vector spaces E and F , recall that the vector space of all linear maps from
E to F is denoted by Hom(E,F ). The set of all invertible linear maps from E to itself is
a group (under composition) denoted GL(E). When E = Rn, we often denote GL(Rn) by
GL(n,R) (and if E = Cn, we often denote GL(Cn) by GL(n,C)). The vector space Mn(R)
of all n×n matrices is also denoted by gl(n,R) (and Mn(C) by gl(n,C)). Then GL(gl(n,R))
is the group of all invertible linear maps from gl(n,R) = Mn(R) to itself.

For any matrix A ∈ Mn(R) (or A ∈ Mn(C)), define the maps LA : Mn(R)→ Mn(R) and
RA : Mn(R)→ Mn(R) by

LA(B) = AB, RA(B) = BA, for all B ∈ Mn(R).

Observe that LA ◦RB = RB ◦ LA for all A,B ∈ Mn(R).

For any matrix A ∈ GL(n,R), let

AdA : Mn(R)→ Mn(R) (conjugation by A)

61
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be given by
AdA(B) = ABA−1 for all B ∈ Mn(R).

Observe that AdA = LA◦RA−1 and that AdA is an invertible linear map with inverse AdA−1 .
The restriction of AdA to invertible matrices B ∈ GL(n,R) yields the map

AdA : GL(n,R)→ GL(n,R)

also given by
AdA(B) = ABA−1 for all B ∈ GL(n,R).

This time, observe that AdA is a group homomorphism of GL(n,R) (with respect to mul-
tiplication), since

AdA(BC) = ABCA−1 = ABA−1ACA−1 = AdA(B)AdA(C), for all B,C ∈ GL(n,R).

In fact, AdA is a group isomorphism (since its inverse is AdA−1).

Beware that AdA is not a linear map on GL(n,R) because GL(n,R) is not a vector
space! Indeed, GL(n,R) is not closed under addition.

Nevertheless, we can define the derivative of AdA : Mn(R)→ Mn(R) with A ∈ GL(n,R)
and B,X ∈ Mn(R) by

AdA(B +X)−AdA(B) = A(B +X)A−1 − ABA−1 = AXA−1,

which shows that d(AdA)B exists and is given by

d(AdA)B(X) = AXA−1, for all X ∈ Mn(R).

In particular, for B = I, we see that the derivative d(AdA)I of AdA at I is a linear map of
gl(n,R) = Mn(R) denoted by Ad(A) or AdA (or AdA), and given by

AdA(X) = AXA−1 for all X ∈ gl(n,R).

The inverse of AdA is AdA−1 , so AdA ∈ GL(gl(n,R)). Note that

AdAB = AdA ◦ AdB,

so the map A 7→ AdA is a group homomorphism of GL(gl(n,R)) denoted

Ad: GL(n,R)→ GL(gl(n,R)).

The homomorphism Ad is called the adjoint representation of GL(n,R).

We also would like to compute the derivative d(Ad)I of Ad at I. If it exists, it is a linear
map

d(Ad)I : gl(n,R)→ Hom(gl(n,R), gl(n,R)).
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For all X, Y ∈ Mn(R), with ‖X‖ small enough we have I +X ∈ GL(n,R), and

AdI+X(Y )− AdI(Y )− (XY − Y X) = (I +X)Y (I +X)−1 − Y −XY + Y X

= [(I +X)Y − Y (I +X)−XY (I +X)

+ Y X(I +X)](I +X)−1

= [Y +XY − Y − Y X −XY −XYX
+ Y X + Y X2](I +X)−1

= (Y X2 −XYX)(I +X)−1.

If we let

ε(X, Y ) =
(Y X2 −XYX)(I +X)−1

‖X‖ ,

since ‖ ‖ is a matrix norm, we get

‖ε(X, Y )‖ =
‖Y X2 −XYX‖ ‖(I +X)−1‖

‖X‖ ≤ (‖Y X2‖+ ‖XYX‖) ‖(I +X)−1‖
‖X‖

≤
(
‖Y ‖ ‖X‖2 + ‖X‖ ‖Y ‖ ‖X‖

)
‖(I +X)−1‖

‖X‖ =
2 ‖Y ‖ ‖X‖2 ‖(I +X)−1‖

‖X‖
= 2 ‖X‖ ‖Y ‖

∥∥(I +X)−1
∥∥ .

Therefore, we proved that for ‖X‖ small enough

AdI+X(Y )− AdI(Y ) = (XY − Y X) + ε(X, Y ) ‖X‖ ,

with ‖ε(X, Y )‖ ≤ 2 ‖X‖ ‖Y ‖ ‖(I +X)−1‖, and ε(X, Y ) linear in Y .

Let adX : gl(n,R)→ gl(n,R) be the linear map given by

adX(Y ) = XY − Y X = [X, Y ],

and ad be the linear map

ad: gl(n,R)→ Hom(gl(n,R), gl(n,R))

given by
ad(X) = adX .

We also define εX : gl(n,R)→ gl(n,R) as the linear map given by

εX(Y ) = ε(X, Y ).

If ‖εX‖ is the operator norm of εX , we have

‖εX‖ = max
‖Y ‖=1

‖ε(X, Y )‖ ≤ 2 ‖X‖
∥∥(I +X)−1

∥∥ .
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Then the equation

AdI+X(Y )− AdI(Y ) = (XY − Y X) + ε(X, Y ) ‖X‖ ,

which holds for all Y , yields

AdI+X − AdI = adX + εX ‖X‖ ,

and because ‖εX‖ ≤ 2 ‖X‖ ‖(I +X)−1‖, we have limX 7→0 εX = 0, which shows that
d(Ad)I(X) = adX ; that is,

d(Ad)I = ad.

The notation ad(X) (or adX) is also used instead adX . The map ad is a linear map

ad: gl(n,R)→ Hom(gl(n,R), gl(n,R))

called the adjoint representation of gl(n,R). The Lie algebra Hom(gl(n,R), gl(n,R)) of the
group GL(gl(n,R)) is also denoted by gl(gl(n,R)).

Since

ad([X, Y ])(Z) = ad(XY − Y X)(Z) = (XY − Y X)Z − Z(XY − Y X)

= XY Z − Y XZ − ZXY + ZY X

= XY Z −XZY − Y ZX + ZY X − (Y XZ − Y ZX −XZY + ZXY )

= X(Y Z − ZY )− (Y Z − ZY )X − (Y (XZ − ZX)− (XZ − ZX)Y )

= ad(X)(Y Z − ZY )− ad(Y )(XZ − ZX)

= ad(X)ad(Y )(Z)− ad(Y )ad(X)(Z)

whenever X, Y, Z ∈ gl(n,R), we find that

ad([X, Y ]) = ad(X)ad(Y )− ad(Y )ad(X) = [ad(X), ad(Y )].

This means that ad is a Lie algebra homomorphism. It can be checked that this property is
equivalent to the following identity known as the Jacobi identity :

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z, X]] = 0,

for all X, Y, Z ∈ gl(n,R). Note that

adX = LX −RX .

Next we prove a formula relating Ad and ad through the exponential. For this, we view
adX and AdA as n2× n2 matrices, for example, over the basis (Eij) of n× n matrices whose
entries are all 0 except for the entry of index (i, j) which is equal to 1.
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Proposition 2.1. For any X ∈ Mn(R) = gl(n,R), we have

AdeX = eadX =
∞∑
k=0

(adX)k

k!
;

that is,

eXY e−X = eadXY = Y + [X, Y ] +
1

2!
[X, [X, Y ]] +

1

3!
[X, [X, [X, Y ]]] + · · ·

for all X, Y ∈ Mn(R)

Proof. Let
A(t) = AdetX ,

pick any Y ∈ Mn(R), and compute the derivative of A(t)Y . By the product rule we have

(A(t)Y )′(t) = (etXY e−tX)′(t)

= XetXY e−tX + etXY e−tX(−X)

= XetXY e−tX − etXY e−tXX
= adX(AdetXY ) = adX(A(t)Y ).

We also have A(0)Y = AdIY = Y . Therefore, the curve t 7→ A(t)Y is an integral curve for
the vector field XadX with initial condition Y , and by Proposition 11.25 (with n replaced by
n2), this unique integral curve is given by

γ(t) = etadXY,

which proves our assertion.

2.2 The Derivative of exp

It is also possible to find a formula for the derivative d expA of the exponential map at A,
but this is a bit tricky. It can be shown that

d(exp)A = eA
∞∑
k=0

(−1)k

(k + 1)!
(adA)k = eLA

∞∑
j=0

(−1)j

(j + 1)!
(LA −RA)j,

so

d(exp)A(B) = eA
(
B − 1

2!
[A,B] +

1

3!
[A, [A,B]]− 1

4!
[A, [A, [A,B]]] + · · ·

)
.

It is customary to write
id− e−adA

adA
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for the power series
∞∑
k=0

(−1)k

(k + 1)!
(adA)k,

and the formula for the derivative of exp is usually stated as

d(exp)A = eA
(

id− e−adA

adA

)
.

Most proofs I am aware of use some tricks involving ODE’s, but there is a simple and direct
way to prove the formula based on the fact that adA = LA − RA and that LA and RA

commute. First, one can show that

d(exp)A =
∑
h,k≥0

LhAR
k
A

(h+ k + 1)!
.

Thus, we need to prove that

eLA
∞∑
j=0

(−1)j

(j + 1)!
(LA −RA)j =

∑
h,k≥0

LhAR
k
A

(h+ k + 1)!
.

To simplify notation, write a for LA and b for LB. We wish to prove that

ea
∞∑
j=0

(−1)j

(j + 1)!
(a− b)j =

∑
h,k≥0

ahbk

(h+ k + 1)!
, (∗)

assuming that ab = ba. This can be done by finding the coefficient of the monomial ahbk on
the left hand side. We find that this coefficient is

1

(h+ k + 1)!

h∑
i=0

(−1)h−i
(
h+ k + 1

i

)(
h+ k − i

k

)
.

Therefore, to prove (∗), we need to prove that

h∑
i=0

(−1)h−i
(
h+ k + 1

i

)(
h+ k − i

k

)
= 1.

The above identity can be shown in various ways. A brute force method is to use induction.
One can also use “negation of the upper index” and a Vandermonde convolution to obtain
a two line proof. The details are left as an exercise.

The formula for the exponential tells us when the derivative d(exp)A is invertible. Indeed,
if the eigenvalues of the matrix X are λ1, . . . , λn, then the eigenvalues of the matrix

id− e−X
X

=
∞∑
k=0

(−1)k

(k + 1)!
Xk
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are
1− e−λj

λj
if λj 6= 0, and 1 if λj = 0.

To see why this is the case, assume λ 6= 0 is an eigenvalue of X with eigenvector u, i.e.
Xu = λu. Then (−X)ku = −λku for any nonnegative integer k and

id− e−X
X

u =
∞∑
k=0

(−X)k

(k + 1)!
u =

[
1 +
−X
2!

+
X2

3!
+
−X3

4!
+
X4

5!
+ . . .

]
u

=

[
1− 1

2!
λ+

1

3!
λ2 − 1

4!
λ3 +

1

5!
λ4 + . . .

]
u

=
∞∑
k=0

(−λ)k

(k + 1)!
u =

1

λ

∞∑
k=0

(−λ)k+1

(k + 1)!
u

=
1− e−λ

λ
u.

It follows that the matrix id−e−X
X

is invertible iff no λj is of the form k2πi for some k ∈ Z−{0},
so d(exp)A is invertible iff no eigenvalue of adA is of the form k2πi for some k ∈ Z−{0}; this
result is also found in Duistermaat and Kolk [43] (Chapter I, Section 5, Corollary 1.5.4) and
Varadarajan [113] (Chapter 2, Section 14, Theorem 2.14.3). However, it can also be shown
that if the eigenvalues of A are λ1, . . . , λn, then the eigenvalues of adA are the λi − λj, with
1 ≤ i, j ≤ n. In conclusion, d(exp)A is invertible iff for all i, j we have

λi − λj 6= k2πi, k ∈ Z− {0}. (∗)

This suggests defining the following subset E(n) of Mn(R). The set E(n) consists of all
matrices A ∈ Mn(R) whose eigenvalues λ + iµ of A (λ, µ ∈ R) lie in the horizontal strip
determined by the condition −π < µ < π. It is clear that the matrices in E(n) satisfy
Condition (∗), so d(exp)A is invertible for all A ∈ E(n). By the inverse function theorem, the
exponential map is a local diffeomorphism between E(n) and exp(E(n)). Remarkably, more
is true: the exponential map is diffeomorphism between E(n) and exp(E(n)) (in particular,
it is a bijection). This takes quite a bit of work to be proved. For example, see Mnemné
and Testard [86], Chapter 3, Theorem 3.8.4 (see also Bourbaki [19], Chapter III, Section 6.9,
Proposition 17, Theorem 6, and Varadarajan [113], Chapter 2, Section 14, Lemma 2.14.4).
We have the following result.

Theorem 2.2. The restriction of the exponential map to E(n) is a diffeomorphism of E(n)
onto its image exp(E(n)). Furthermore, exp(E(n)) consists of all invertible matrices that
have no real negative eigenvalues; it is an open subset of GL(n,R); it contains the open ball
B(I, 1) = {A ∈ GL(n,R) | ‖A− I‖ < 1}, for every matrix norm ‖ ‖ on n× n matrices.

Theorem 2.2 has some practical applications because there are algorithms for finding a
real log of a matrix with no real negative eigenvalues; for more on applications of Theorem
2.2 to medical imaging, see Section 9.4.
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2.3 Problems

Problem 2.1. Let Mn(C) denote the vector space of n×n matrices with complex coefficients
(and Mn(R) denote the vector space of n×n matrices with real coefficients). For any matrix
A ∈ Mn(C), let RA and LA be the maps from Mn(C) to itself defined so that

LA(B) = AB, RA(B) = BA, for all B ∈ Mn(C).

Check that LA and RA are linear, and that LA and RB commute for all A,B.

Let adA : Mn(C)→ Mn(C) be the linear map given by

adA(B) = LA(B)−RA(B) = AB −BA = [A,B], for all B ∈ Mn(C).

Note that [A,B] is the Lie bracket.

(1) Prove that if A is invertible, then LA and RA are invertible; in fact, (LA)−1 = LA−1

and (RA)−1 = RA−1 . Prove that if A = PBP−1 for some invertible matrix P , then

LA = LP ◦ LB ◦ L−1
P , RA = R−1

P ◦RB ◦RP .

(2) Recall that the n2 matrices Eij defined such that all entries in Eij are zero except
the (i, j)th entry, which is equal to 1, form a basis of the vector space Mn(C). Consider the
partial ordering of the Eij defined such that for i = 1, . . . , n, if n ≥ j > k ≥ 1, then then Eij
precedes Eik, and for j = 1, . . . , n, if 1 ≤ i < h ≤ n, then Eij precedes Ehj.

Draw the Hasse diagam of the partial order defined above when n = 3.

There are total orderings extending this partial ordering. How would you find them
algorithmically? Check that the following is such a total order:

(1, 3), (1, 2), (1, 1), (2, 3), (2, 2), (2, 1), (3, 3), (3, 2), (3, 1).

(3) Let the total order of the basis (Eij) extending the partial ordering defined in (2) be
given by

(i, j) < (h, k) iff

{
i = h and j > k
or i < h.

Let λ1, . . . , λn be the eigenvalues of A (not necessarily distinct). Using Schur’s theorem,
A is similar to an upper triangular matrix B, that is, A = PBP−1 with B upper triangular,
and we may assume that the diagonal entries of B in descending order are λ1, . . . , λn. If
the Eij are listed according to the above total order, prove that RB is an upper triangular
matrix whose diagonal entries are

(λn, . . . , λ1, . . . , λn, . . . , λ1︸ ︷︷ ︸
n2

),
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and that LB is an upper triangular matrix whose diagonal entries are

(λ1, . . . , λ1︸ ︷︷ ︸
n

. . . , λn, . . . , λn︸ ︷︷ ︸
n

).

Hint . Figure out what are RB(Eij) = EijB and LB(Eij) = BEij.

Use the fact that

LA = LP ◦ LB ◦ L−1
P , RA = R−1

P ◦RB ◦RP ,

to express adA = LA − RA in terms of LB − RB, and conclude that the eigenvalues of adA
are λi − λj, for i = 1, . . . , n, and for j = n, . . . , 1.

(4) (Extra Credit) Let R be the n× n permutation matrix given by

R =


0 0 . . . 0 1
0 0 . . . 1 0
...

...
. . .

...
...

0 1 . . . 0 0
1 0 . . . 0 0

 .

Observe that R−1 = R. I checked for n = 3 that in the basis (Eij) ordered as above, the
matrix of LA is given by A ⊗ I3, and the matrix of RA is given by I3 ⊗ RA>R. Here, ⊗
the Kronecker product (also called tensor product) of matrices. It is natural to conjecture
that for any n ≥ 1, the matrix of LA is given by A ⊗ In, and the matrix of RA is given by
In ⊗RA>R. Prove this conjecture.

Problem 2.2.

(i) First show that

d(exp)A =
∑
h,k≥0

LhAR
k
A

(h+ k + 1)!
.

(ii) Next show that

∑
h,k≥0

LhAR
k
A

(h+ k + 1)!
= eLA

∞∑
j=0

(−1)j

(j + 1)!
(LA −RA)j.
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Chapter 3

Introduction to Manifolds and Lie
Groups

In this chapter we define precisely manifolds, Lie groups, and Lie algebras. One of the
reasons that Lie groups are nice is that they have a differential structure, which means that
the notion of tangent space makes sense at any point of the group. Furthermore, the tangent
space at the identity happens to have some algebraic structure, that of a Lie algebra. Roughly
speaking, the tangent space at the identity provides a “linearization” of the Lie group, and
it turns out that many properties of a Lie group are reflected in its Lie algebra, and that
the loss of information is not too severe. The challenge that we are facing is that unless
our readers are already familiar with manifolds, the amount of basic differential geometry
required to define Lie groups and Lie algebras in full generality is overwhelming.

Fortunately, most of the Lie groups that we will consider are subspaces of RN for some
sufficiently large N . In fact, most of them are isomorphic to subgroups of GL(N,R) for
some suitable N , even SE(n), which is isomorphic to a subgroup of SL(n+ 1). Such groups
are called linear Lie groups (or matrix groups). Since these groups are subspaces of RN , in
a first stage, we do not need the definition of an abstract manifold. We just have to define
embedded submanifolds (also called submanifolds) of RN (in the case of GL(n,R), N = n2).
This is the path that we will follow. The general definition of manifold will be given in
Chapter 7.

3.1 Introduction to Embedded Manifolds

In this section we provide the definition of an embedded submanifold. For simplicity, we
restrict our attention to smooth manifolds. For detailed presentations, see DoCarmo [38, 39],
Milnor [83], Marsden and Ratiu [77], Berger and Gostiaux [15], or Warner [114]. For the
sake of brevity, we use the terminology manifold (but other authors would say embedded
submanifolds , or something like that).

The intuition behind the notion of a smooth manifold in RN is that a subspace M is a

71
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manifold of dimension m if every point p ∈M is contained in some open subset U of M (in
the subspace topology) that can be parametrized by some function ϕ : Ω → U from some
open subset Ω in Rm containing the origin, and that ϕ has some nice properties that allow
the definition of smooth functions on M and of the tangent space at p. For this, ϕ has to
be at least a homeomorphism, but more is needed: ϕ must be smooth, and the derivative
ϕ′(0m) at the origin must be injective (letting 0m = (0, . . . , 0)︸ ︷︷ ︸

m

).

Definition 3.1. Given any integers N,m, with N ≥ m ≥ 1, an m-dimensional smooth
manifold in RN , for short a manifold , is a nonempty subset M of RN such that for every
point p ∈ M there are two open subsets Ω ⊆ Rm and U ⊆ M , with p ∈ U , and a smooth
function ϕ : Ω→ RN such that ϕ is a homeomorphism between Ω and U = ϕ(Ω), and ϕ′(t0)
is injective, where t0 = ϕ−1(p); see Figure 3.1. The function ϕ : Ω → U is called a (local)
parametrization of M at p. If 0m ∈ Ω and ϕ(0m) = p, we say that ϕ : Ω → U is centered at
p.

Manifolds

Computational Manifolds and Applications (CMA) - 2011, IMPA, Rio de Janeiro, RJ, Brazil 3

Submanifolds embedded in RN

EN

U

p

t0
�

Em

�

M

The function
� : � � U

is called a (local) parametrization of M at p. If 0m � � and �(0m) = p, we say that � is
centered at p.

Figure 3.1: A manifold in RN .

Saying that ϕ′(t0) is injective is equivalent to saying that ϕ is an immersion at t0.

Recall that M ⊆ RN is a topological space under the subspace topology, and U is some
open subset of M in the subspace topology, which means that U = M ∩W for some open
subset W of RN . Since ϕ : Ω→ U is a homeomorphism, it has an inverse ϕ−1 : U → Ω that
is also a homeomorphism, called a (local) chart . Since Ω ⊆ Rm, for every point p ∈ M and
every parametrization ϕ : Ω→ U of M at p, we have ϕ−1(p) = (z1, . . . , zm) for some zi ∈ R,
and we call z1, . . . , zm the local coordinates of p (w.r.t. ϕ−1). We often refer to a manifold
M without explicitly specifying its dimension (the integer m).

Intuitively, a chart provides a “flattened” local map of a region on a manifold. For
instance, in the case of surfaces (2-dimensional manifolds), a chart is analogous to a planar
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map of a region on the surface. For a concrete example, consider a map giving a planar
representation of a country, a region on the earth, a curved surface.

Remark: We could allow m = 0 in Definition 3.1. If so, a manifold of dimension 0 is just
a set of isolated points, and thus it has the discrete topology. In fact, it can be shown that
a discrete subset of RN is countable. Such manifolds are not very exciting, but they do
correspond to discrete subgroups.

Example 3.1. The unit sphere S2 in R3 defined such that

S2 =
{

(x, y, z) ∈ R3 | x2 + y2 + z2 = 1
}

is a smooth 2-manifold because it can be parametrized using the following two maps ϕ1 and
ϕ2:

ϕ1 : (u, v) 7→
(

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)
and

ϕ2 : (u, v) 7→
(

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,

1− u2 − v2

u2 + v2 + 1

)
.

The map ϕ1 corresponds to the inverse of the stereographic projection from the north
pole N = (0, 0, 1) onto the plane z = 0, and the map ϕ2 corresponds to the inverse of
the stereographic projection from the south pole S = (0, 0,−1) onto the plane z = 0, as
illustrated in Figure 3.2. 1

O

N

S

ϕ1(u, v)

ϕ2(u, v)
(u, v)

z = 0

Figure 3.2: Inverse stereographic projections.

We demonstrate the algebraic constructions of ϕ1 and ϕ−1
1 , leaving the constructions of

ϕ2 and ϕ−1
2 to the reader. Take S2 and a point Z = (x1, x2, x3) ∈ S2 − {(0, 0, 1)} and form
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l, the line connecting (0, 0, 1) and Z. Line l intersects the xy-plane at point (u, v, 0) and

has equation p+ (1− t)−→v where p = (0, 0, 1) and −→v = (u, v, 0)− (0, 0, 1) = (u, v,−1). See
Figure 3.3.

Z = (  x  , x  , x  )1 2 3

( u , v,  0 )

Figure 3.3: Line l is in red.

In other words, the line segment on Line l between (u, v, 0) and (0, 0, 1) is parametrized
by ((1 − t)u, (1 − t)v, t) for 0 ≤ t ≤ 1. The intersection of this line segment and S2 is
characterized by the equation

(1− t)2u2 + (1− t)2v2 + t2 = 1, 0 < t < 1.

Take this equation, subtract t2, and divide by 1− t to obtain

(1− t)(u2 + v2) = 1 + t.

Solving this latter equation for t yields

t =
u2 + v2 − 1

u2 + v2 + 1
and 1− t =

2

u2 + v2 + 1
.

By construction we know the intersection of the line segment with S2 is Z = (x1, x2, x3).
Hence, we conclude that

x1 = (1− t)u =
2u

u2 + v2 + 1
, x2 = (1− t)v =

2v

u2 + v2 + 1
, x3 = t =

u2 + v2 − 1

u2 + v2 + 1
.
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To calculate ϕ−1
1 , we parameterize l by ((1−t)x1, (1−t)x2, (1−t)(x3−1)+1). The intersection

of Line l with the xy-plane is characterized by ((1−t)x1, (1−t)x2, (1−t)(x3−1)+1) = (u, v, 0)
and gives

(1− t)(x3 − 1) + 1 = 0.

Solving this equation for t implies that

t = − x3

1− x3

and 1− t =
1

1− x3

.

Hence ϕ−1
1 (x1, x2, x3) = (u, v), where

u = (1− t)x1 =
x1

1− x3

, v = (1− t)x2 =
x2

1− x3

.

We leave as an exercise to check that the map ϕ1 parametrizes S2 − {N} and that the
map ϕ2 parametrizes S2 − {S} (and that they are smooth, homeomorphisms, etc.). Using
ϕ1, the open lower hemisphere is parametrized by the open disk of center O and radius 1
contained in the plane z = 0.

The chart ϕ−1
1 assigns local coordinates to the points in the open lower hemisphere. If we

draw a grid of coordinate lines parallel to the x and y axes inside the open unit disk and map
these lines onto the lower hemisphere using ϕ1, we get curved lines on the lower hemisphere.
These “coordinate lines” on the lower hemisphere provide local coordinates for every point
on the lower hemisphere. For this reason, older books often talk about curvilinear coordinate
systems to mean the coordinate lines on a surface induced by a chart. See Figure 3.4.

( 0, 0, 1 )

Figure 3.4: The curvilinear coordinates on the lower hemisphere of S2 induced by ϕ1.

We urge our readers to define a manifold structure on a torus. This can be done using
four charts.
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Every open subset of RN is a manifold in a trivial way. Indeed, we can use the inclusion
map as a parametrization. In particular, GL(n,R) is an open subset of Rn2

, since its
complement is closed (the set of invertible matrices is the inverse image of the determinant
function, which is continuous). Thus, GL(n,R) is a manifold. We can view GL(n,C) as a
subset of R(2n)2 using the embedding defined as follows: For every complex n× n matrix A,
construct the real 2n× 2n matrix such that every entry a+ ib in A is replaced by the 2× 2
block (

a −b
b a

)
where a, b ∈ R. It is immediately verified that this map is in fact a group isomorphism.
Thus we can view GL(n,C) as a subgroup of GL(2n,R), and as a manifold in R(2n)2 .

A 1-manifold is called a (smooth) curve, and a 2-manifold is called a (smooth) surface
(although some authors require that they also be connected).

The following two lemmas provide the link with the definition of an abstract manifold.
The first lemma is shown using Proposition 3.4 and is Condition (2) of Theorem 3.6; see
below.

Lemma 3.1. Given an m-dimensional manifold M in RN , for every p ∈ M there are
two open sets O,W ⊆ RN with 0N ∈ O and p ∈ M ∩ W , and a smooth diffeomorphism
ϕ : O → W , such that ϕ(0N) = p and

ϕ(O ∩ (Rm × {0N−m})) = M ∩W.

There is an open subset Ω of Rm such that

O ∩ (Rm × {0N−m}) = Ω× {0N−m},

and the map ψ : Ω→ RN given by

ψ(x) = ϕ(x, 0N−m)

is an immersion and a homeomorphism onto U = W ∩M ; so ψ is a parametrization of M at
p. We can think of ϕ as a promoted version of ψ which is actually a diffeomorphism between
open subsets of RN ; see Figure 3.5.

The next lemma is easily shown from Lemma 3.1 (see Berger and Gostiaux [15], Theorem
2.1.9 or DoCarmo [39], Chapter 0, Section 4). It is a key technical result used to show that
interesting properties of maps between manifolds do not depend on parametrizations.

Lemma 3.2. Given an m-dimensional manifold M in RN , for every p ∈ M and any two
parametrizations ϕ1 : Ω1 → U1 and ϕ2 : Ω2 → U2 of M at p, if U1 ∩ U2 6= ∅, the map
ϕ−1

2 ◦ ϕ1 : ϕ−1
1 (U1 ∩ U2)→ ϕ−1

2 (U1 ∩ U2) is a smooth diffeomorphism.
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O

ON

p

W

M

φ

Ω

U

Figure 3.5: An illustration of Lemma 3.1, where M is a surface embedded in R3, namely
m = 2 and N = 3.

The maps ϕ−1
2 ◦ ϕ1 : ϕ−1

1 (U1 ∩ U2) → ϕ−1
2 (U1 ∩ U2) are called transition maps . Lemma

3.2 is illustrated in Figure 3.6.

Using Definition 3.1, it may be quite hard to prove that a space is a manifold. Therefore,
it is handy to have alternate characterizations such as those given in the next Proposition,
which is Condition (3) of Theorem 3.6. An illustration of Proposition 3.3 is given by Figure
3.7.

Proposition 3.3. A subset M ⊆ Rm+k is an m-dimensional manifold iff either

(1) For every p ∈ M , there is some open subset W ⊆ Rm+k with p ∈ W , and a (smooth)
submersion f : W → Rk, so that W ∩M = f−1(0),
or

(2) For every p ∈ M , there is some open subset W ⊆ Rm+k with p ∈ W , and a (smooth)
map f : W → Rk, so that f ′(p) is surjective and W ∩M = f−1(0).

Observe that Condition (2), although apparently weaker than Condition (1), is in fact
equivalent to it, but more convenient in practice. This is because to say that f ′(p) is surjective
means that the Jacobian matrix of f ′(p) has rank k, which means that some determinant is
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U1

U2

Ω1

Ω2

U1 ∩ U2ϕ−1
2 ◦ ϕ1

ϕ1

ϕ2

ϕ−1
1 (U1 ∩ U2)

ϕ−1
2 (U1 ∩ U2)

Figure 3.6: Parametrizations and transition functions.

nonzero, and because the determinant function is continuous this must hold in some open
subset W1 ⊆ W containing p. Consequently, the restriction f1 of f to W1 is indeed a
submersion, and f−1

1 (0) = W1 ∩ f−1(0) = W1 ∩W ∩M = W1 ∩M .
A proof of Proposition 3.3 can be found in Lafontaine [72] or Berger and Gostiaux [15].

Lemma 3.1 and Proposition 3.3 are actually equivalent to Definition 3.1. This equivalence
is also proved in Lafontaine [72] and Berger and Gostiaux [15].

Theorem 3.6, which combines Propositions 3.1 and 3.3, provides four equivalent char-
acterizations of when a subspace of RN is a manifold of dimension m. Its proof, which is
somewhat illuminating, is based on two technical lemmas that are proved using the inverse
function theorem (for example, see Guillemin and Pollack [55], Chapter 1, Sections 3 and 4).

Lemma 3.4. Let U ⊆ Rm be an open subset of Rm and pick some a ∈ U . If f : U → Rn

is a smooth immersion at a, i.e., dfa is injective (so, m ≤ n), then there is an open set
V ⊆ Rn with f(a) ∈ V , an open subset U ′ ⊆ U with a ∈ U ′ and f(U ′) ⊆ V , an open subset
O ⊆ Rn−m, and a diffeomorphism θ : V → U ′ ×O, so that

θ(f(x1, . . . , xm)) = (x1, . . . , xm, 0, . . . , 0),

for all (x1, . . . , xm) ∈ U ′, as illustrated in the diagram below

U ′ ⊆ U
f //

in1 &&

f(U ′) ⊆ V

θ
��

U ′ ×O
where in1(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0); see Figure 3.8.
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0

p

f M

W

-1
f (0) = W ∩M

Figure 3.7: An illustration of Proposition 3.3, where M is the torus, m = 2, and k = 1. Note
that f−1(0) is the pink patch of the torus, i.e. the zero level set of the open ball W .

Proof. Since f is an immersion, its Jacobian matrix J(f) (an n × m matrix) has rank m,
and by permuting coordinates if needed, we may assume that the first m rows of J(f) are
linearly independent and we let

A =

(
∂fi
∂xj

(a)

)
be this invertible m×m matrix. Define the map g : U × Rn−m → Rn by

g(x, y) = (f1(x), . . . , fm(x), y1 + fm+1(x), . . . , yn−m + fn(x)),

for all x ∈ U and all y ∈ Rn−m. The Jacobian matrix of g at (a, 0) is of the form

J =

(
A 0
B I

)
,

so det(J) = det(A) det(I) = det(A) 6= 0, since A is invertible. By the inverse function
theorem, there are some open subsets W ⊆ U × Rn−m with (a, 0) ∈ W and V ⊆ Rn such
that the restriction of g to W is a diffeomorphism between W and V . Since W ⊆ U ×Rn−m

is an open set, we can find some open subsets U ′ ⊆ U and O ⊆ Rn−m so that U ′ × O ⊆ W ,
a ∈ U ′, and we can replace W by U ′ × O and restrict further g to this open set so that we
obtain a diffeomorphism from U ′ × O to (a smaller) V . If θ : V → U ′ × O is the inverse of
this diffeomorphism, then f(U ′) ⊆ V and since g(x, 0) = f(x),

θ(g(x, 0)) = θ(f(x1, . . . , xm)) = (x1, . . . , xm, 0, . . . , 0),
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Θ

f

U
a U‘

V

f(U ‘)f(a)

U’ x O

Figure 3.8: An illustration of Lemma 3.4, where m = 2 and n = 3. Note that U ′ is the base
of the solid cylinder and θ is the diffeomorphism between the solid cylinder and the solid
gourd shaped V . The composition θ ◦ f injects U ′ into U ′ ×O.

for all x = (x1, . . . , xm) ∈ U ′.

Lemma 3.5. Let W ⊆ Rm be an open subset of Rm and pick some a ∈ W . If f : W → Rn

is a smooth submersion at a, i.e., dfa is surjective (so, m ≥ n), then there is an open set
V ⊆ W ⊆ Rm with a ∈ V , and a diffeomorphism ψ : O → V with domain O ⊆ Rm, so that

f(ψ(x1, . . . , xm)) = (x1, . . . , xn),

for all (x1, . . . , xm) ∈ O, as illustrated in the diagram below

O ⊆ Rm ψ //

π

��

V ⊆ W ⊆ Rm

fvv
Rn,

where π(x1, . . . , xm) = (x1, . . . , xn); see Figure 3.9.
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V
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Of

Ψ

a
f( )a

x = Ψ -1(a)

Figure 3.9: An illustration of Lemma 3.5, where m = 3 and n = 2. Note that ψ is the
diffeomorphism between the 0 and the solid purple ball V . The composition f ◦ ψ projects
O onto its equatorial pink disk.

Proof. Since f is a submersion, its Jacobian matrix J(f) (an n×m matrix) has rank n, and
by permuting coordinates if needed, we may assume that the first n columns of J(f) are
linearly independent and we let

A =

(
∂fi
∂xj

(a)

)
be this invertible n× n matrix. Define the map g : W → Rm by

g(x) = (f(x), xn+1, . . . , xm),

for all x ∈ W . The Jacobian matrix of g at a is of the form

J =

(
A B
0 I

)
,

so det(J) = det(A) det(I) = det(A) 6= 0, since A is invertible. By the inverse function
theorem, there are some open subsets V ⊆ W with a ∈ V and O ⊆ Rm such that the
restriction of g to V is a diffeomorphism between V and O. Let ψ : O → V be the inverse of
this diffeomorphism. Because g ◦ ψ = id, we have

(x1, . . . , xm) = g(ψ(x)) = (f(ψ(x)), ψn+1(x), . . . , ψm(x)),

that is,
f(ψ(x1, . . . , xm)) = (x1, . . . , xn)

for all (x1, . . . , xm) ∈ O, as desired.
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Using Lemmas 3.4 and 3.5, we can prove the following theorem which confirms that all
our characterizations of a manifold are equivalent.

Theorem 3.6. A nonempty subset M ⊆ RN is an m-manifold (with 1 ≤ m ≤ N) iff any of
the following conditions hold:

(1) For every p ∈ M , there are two open subsets Ω ⊆ Rm and U ⊆ M with p ∈ U ,
and a smooth function ϕ : Ω → RN such that ϕ is a homeomorphism between Ω and
U = ϕ(Ω), and ϕ′(0) is injective, where p = ϕ(0).

(2) For every p ∈ M , there are two open sets O,W ⊆ RN with 0N ∈ O and p ∈ M ∩W ,
and a smooth diffeomorphism ϕ : O → W , such that ϕ(0N) = p and

ϕ(O ∩ (Rm × {0N−m})) = M ∩W.

(3) For every p ∈ M , there is some open subset W ⊆ RN with p ∈ W , and a smooth
submersion f : W → RN−m, so that W ∩M = f−1(0).

(4) For every p ∈ M , there is some open subset W ⊆ RN with p ∈ W , and N − m
smooth functions fi : W → R, so that the linear forms df1(p), . . . , dfN−m(p) are linearly
independent, and

W ∩M = f−1
1 (0) ∩ · · · ∩ f−1

N−m(0).

See Figure 3.10.

Proof. If (1) holds, then by Lemma 3.4, replacing Ω by a smaller open subset Ω′ ⊆ Ω if
necessary, there is some open subset V ⊆ RN with p ∈ V and ϕ(Ω′) ⊆ V , an open subset
O′ ⊆ RN−m, and some diffeomorphism θ : V → Ω′ ×O′, so that

(θ ◦ ϕ)(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0),

for all (x1, . . . , xm) ∈ Ω′. Observe that the above condition implies that

(θ ◦ ϕ)(Ω′) = θ(V ) ∩ (Rm × {(0, . . . , 0)}).

Since ϕ is a homeomorphism between Ω and its image in M and since Ω′ ⊆ Ω is an open
subset, ϕ(Ω′) = M ∩W ′ for some open subset W ′ ⊆ RN , so if we let W = V ∩W ′, because
ϕ(Ω′) ⊆ V , it follows that ϕ(Ω′) = M ∩W and

θ(W ∩M) = θ(ϕ(Ω′)) = θ(V ) ∩ (Rm × {(0, . . . , 0)}).

However, θ is injective and θ(W ∩M) ⊆ θ(W ), so

θ(W ∩M) = θ(W ) ∩ θ(V ) ∩ (Rm × {(0, . . . , 0)})
= θ(W ∩ V ) ∩ (Rm × {(0, . . . , 0)})
= θ(W ) ∩ (Rm × {(0, . . . , 0)}).



3.1. INTRODUCTION TO EMBEDDED MANIFOLDS 83

M
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p

W

0

f -1(0)1

f -1(0)2

Figure 3.10: An illustration of Condition (4) in Theorem 3.6, where N = 3 and m = 1. The
manifold M is the helix in R3. The dark green portion of M is magnified in order to show
that it is the intersection of the pink surface, f−1

1 (0), and the blue surface, f−1
2 (0).

If we let O = θ(W ), we get

θ−1(O ∩ (Rm × {(0, . . . , 0)})) = M ∩W,
which is (2).

If (2) holds, we can write ϕ−1 = (f1, . . . , fN) and because ϕ−1 : W → O is a diffeomor-
phism, df1(q), . . . , dfN(q) are linearly independent for all q ∈ W , so the map

f = (fm+1, . . . , fN)

is a submersion f : W → RN−m, and we have f(x) = 0 iff fm+1(x) = · · · = fN(x) = 0 iff

ϕ−1(x) = (f1(x), . . . , fm(x), 0, . . . , 0)

iff ϕ−1(x) ∈ O ∩ (Rm × {0N−m}) iff x ∈ ϕ(O ∩ (Rm × {0N−m}) = M ∩W , because

ϕ(O ∩ (Rm × {0N−m})) = M ∩W.
Thus, M ∩W = f−1(0), which is (3).

The proof that (3) implies (2) uses Lemma 3.5 instead of Lemma 3.4. If f : W → RN−m

is the submersion such that M ∩W = f−1(0) given by (3), then by Lemma 3.5, there are
open subsets V ⊆ W , O ⊆ RN and a diffeomorphism ψ : O → V , so that

f(ψ(x1, . . . , xN)) = (x1, . . . , xN−m)
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for all (x1, . . . , xN) ∈ O. If σ is the permutation of variables given by

σ(x1, . . . , xm, xm+1, . . . , xN) = (xm+1, . . . , xN , x1, . . . , xm),

then ϕ = ψ ◦ σ is a diffeomorphism such that

f(ϕ(x1, . . . , xN)) = (xm+1, . . . , xN)

for all (x1, . . . , xN) ∈ O. If we denote the restriction of f to V by g, it is clear that

M ∩ V = g−1(0),

and because g(ϕ(x1, . . . , xN)) = 0 iff (xm+1, . . . , xN) = 0N−m and ϕ is a bijection,

M ∩ V = {(y1, . . . , yN) ∈ V | g(y1, . . . , yN) = 0}
= {ϕ(x1, . . . , xN) | (∃(x1, . . . , xN) ∈ O)(g(ϕ(x1, . . . , xN)) = 0)}
= ϕ(O ∩ (Rm × {0N−m})),

which is (2).

If (2) holds, then ϕ : O → W is a diffeomorphism,

O ∩ (Rm × {0N−m}) = Ω× {0N−m}

for some open subset Ω ⊆ Rm, and the map ψ : Ω→ RN given by

ψ(x) = ϕ(x, 0N−m)

is an immersion on Ω and a homeomorphism onto W ∩M , which implies (1).

If (3) holds, then if we write f = (f1, . . . , fN−m), with fi : W → R, then the fact that
df(p) is a submersion is equivalent to the fact that the linear forms df1(p), . . . , dfN−m(p) are
linearly independent and

M ∩W = f−1(0) = f−1
1 (0) ∩ · · · ∩ f−1

N−m(0).

Finally, if (4) holds, then if we define f : W → RN−m by

f = (f1, . . . , fN−m),

because df1(p), . . . , dfN−m(p) are linearly independent we get a smooth map which is a sub-
mersion at p such that

M ∩W = f−1(0).

Now, f is a submersion at p iff df(p) is surjective, which means that a certain determinant
is nonzero, and since the determinant function is continuous, this determinant is nonzero on
some open subset W ′ ⊆ W containing p, so if we restrict f to W ′, we get a submersion on
W ′ such that M ∩W ′ = f−1(0).
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Condition (4) says that locally (that is, in a small open set of M containing p ∈ M),
M is “cut out” by N − m smooth functions fi : W → R, in the sense that the portion of
the manifold M ∩W is the intersection of the N −m hypersurfaces f−1

i (0) (the zero-level
sets of the fi), and that this intersection is “clean,” which means that the linear forms
df1(p), . . . , dfN−m(p) are linearly independent.

As an illustration of Theorem 3.6, we can show again that the sphere

Sn = {x ∈ Rn+1 | ‖x‖2
2 − 1 = 0}

is an n-dimensional manifold in Rn+1. Indeed, the map f : Rn+1 → R given by f(x) = ‖x‖2
2−1

is a submersion (for x 6= 0), since

df(x)(y) = 2
n+1∑
k=1

xkyk.

We can also show that the rotation group SO(n) is an n(n−1)
2

-dimensional manifold in

Rn2
.

Indeed, GL+(n) is an open subset of Rn2
of dimension n2 (recall, GL+(n) = {A ∈

GL(n) | det(A) > 0}), and if f is defined by

f(A) = A>A− I,

where A ∈ GL+(n), then f(A) is symmetric, so f(A) ∈ S(n) = R
n(n+1)

2 . We proved in
Section 11.2 that

df(A)(H) = A>H +H>A.

But then, df(A) is surjective for all A ∈ SO(n), because if S is any symmetric matrix, we
see that

df(A)(AS/2) = A>
AS

2
+

(
AS

2

)>
A = A>A

S

2
+
S>

2
A>A =

S

2
+
S>

2
= S.

As SO(n) = f−1(0), we conclude that SO(n) is indeed a manifold.

A similar argument proves that O(n) is an n(n−1)
2

-dimensional manifold.

Using the map f : GL(n) → R given by A 7→ det(A), we can prove that SL(n) is a
manifold of dimension n2 − 1.

Remark: We have df(A)(B) = det(A)tr(A−1B) for every A ∈ GL(n), where f(A) =
det(A).

A class of manifolds generalizing the spheres and the orthogonal groups are the Stiefel
manifolds . For any n ≥ 1 and any k with 1 ≤ k ≤ n, let S(k, n) be the set of all orthonormal
k-frames ; that is, of k-tuples of orthonormal vectors (u1, . . . , uk) with ui ∈ Rn. Obviously
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S(1, n) = Sn−1, and S(n, n) = O(n). Every orthonormal k-frame (u1, . . . , uk) can be repre-
sented by an n × k matrix Y over the canonical basis of Rn, and such a matrix Y satisfies
the equation

Y >Y = I.

Thus, S(k, n) can be viewed as a subspace of Mn,k(R), where Mn,k(R) denotes the vector
space of all n × k matrices with real entries. We claim that S(k, n) is a manifold. Let
W = {A ∈ Mn,k(R) | det(A>A) > 0}, an open subset of Mn,k(R) such that S(k, n) ⊆ W
(since if A ∈ S(k, n), then A>A = I, so det(A>A) = 1). Generalizing the situation involving
SO(n), define the function f : W → S(k) by

f(A) = A>A− I.

Basically the same computation as in the case of SO(n) yields

df(A)(H) = A>H +H>A.

The proof that df(A) is surjective for all A ∈ S(k, n) is the same as before, because only the

equation A>A = I is needed. Indeed, given any symmetric matrix S ∈ S(k) ∼= R
k(k+1)

2 , we
have from our previous calculation that

df(A)

(
AS

2

)
= S.

As S(k, n) = f−1(0), we conclude that S(k, n) is a smooth manifold of dimension

nk − k(k + 1)

2
= k(n− k) +

k(k − 1)

2
.

The third characterization of Theorem 3.6 suggests the following definition.

Definition 3.2. Let f : Rm+k → Rk be a smooth function. A point p ∈ Rm+k is called a
critical point (of f) iff dfp is not surjective, and a point q ∈ Rk is called a critical value (of
f) iff q = f(p) for some critical point p ∈ Rm+k. A point p ∈ Rm+k is a regular point (of f)
iff p is not critical, i.e., dfp is surjective, and a point q ∈ Rk is a regular value (of f) iff it is
not a critical value. In particular, any q ∈ Rk−f(Rm+k) is a regular value, and q ∈ f(Rm+k)
is a regular value iff every p ∈ f−1(q) is a regular point (in contrast, q is a critical value iff
some p ∈ f−1(q) is critical).

Part (3) of Theorem 3.6 implies the following useful proposition:

Proposition 3.7. Given any smooth function f : Rm+k → Rk, for every regular value q ∈
f(Rm+k), the preimage Z = f−1(q) is a manifold of dimension m.



3.1. INTRODUCTION TO EMBEDDED MANIFOLDS 87

Definition 3.2 and Proposition 3.7 can be generalized to manifolds. Regular and critical
values of smooth maps play an important role in differential topology. Firstly, given a smooth
map f : Rm+k → Rk, almost every point of Rk is a regular value of f . To make this statement
precise, one needs the notion of a set of measure zero. Then Sard’s theorem says that the
set of critical values of a smooth map has measure zero. Secondly, if we consider smooth
functions f : Rm+1 → R, a point p ∈ Rm+1 is critical iff dfp = 0. Then we can use second
order derivatives to further classify critical points. The Hessian matrix of f (at p) is the
matrix of second-order partials

Hf (p) =

(
∂2f

∂xi∂xj
(p)

)
,

and a critical point p is a nondegenerate critical point if Hf (p) is a nonsingular matrix.
The remarkable fact is that, at a nondegenerate critical point p, the local behavior of f is
completely determined, in the sense that after a suitable change of coordinates (given by a
smooth diffeomorphism)

f(x) = f(p)− x2
1 − · · · − x2

λ + x2
λ+1 + · · ·+ x2

m+1

near p, where λ, called the index of f at p, is an integer which depends only on p (in fact, λ
is the number of negative eigenvalues of Hf (p)). This result is known as Morse lemma (after
Marston Morse, 1892-1977).

Smooth functions whose critical points are all nondegenerate are called Morse functions .
It turns out that every smooth function f : Rm+1 → R gives rise to a large supply of Morse
functions by adding a linear function to it. More precisely, the set of a ∈ Rm+1 for which
the function fa given by

fa(x) = f(x) + a1x1 + · · ·+ am+1xm+1

is not a Morse function has measure zero.

Morse functions can be used to study topological properties of manifolds. In a sense
to be made precise and under certain technical conditions, a Morse function can be used to
reconstruct a manifold by attaching cells, up to homotopy equivalence. However, these results
are way beyond the scope of this book. A fairly elementary exposition of nondegenerate
critical points and Morse functions can be found in Guillemin and Pollack [55] (Chapter 1,
Section 7). Sard’s theorem is proved in Appendix 1 of Guillemin and Pollack [55] and also
in Chapter 2 of Milnor [83]. Morse theory (starting with Morse lemma) and much more,
is discussed in Milnor [81], widely recognized as a mathematical masterpiece. An excellent
and more leisurely introduction to Morse theory is given in Matsumoto [80], where a proof
of Morse lemma is also given.

Let us now introduce the definitions of a smooth curve in a manifold and the tangent
vector at a point of a curve.
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Definition 3.3. Let M be an m-dimensional manifold in RN . A smooth curve γ in M is
any function γ : I → M where I is an open interval in R and such that for every t ∈ I,
letting p = γ(t), there is some parametrization ϕ : Ω→ U of M at p and some open interval
(t− ε, t+ ε) ⊆ I such that the curve ϕ−1 ◦ γ : (t− ε, t+ ε)→ Rm is smooth.

The notion of a smooth curve is illustrated in Figure 3.11.

Using Lemma 3.2, it is easily shown that Definition 3.3 does not depend on the choice of
the parametrization ϕ : Ω→ U at p.

Lemma 3.2 also implies that γ viewed as a curve γ : I → RN is smooth. Then the tangent
vector to the curve γ : I → RN at t, denoted by γ′(t), is the value of the derivative of γ at t
(a vector in RN) computed as usual:

γ′(t) = lim
h7→0

γ(t+ h)− γ(t)

h
.

Given any point p ∈M , we will show that the set of tangent vectors to all smooth curves
in M through p is a vector space isomorphic to the vector space Rm. The tangent vector at
p to a curve γ on a manifold M is illustrated in Figure 3.12.

Given a smooth curve γ : I → M , for any t ∈ I, letting p = γ(t), since M is a manifold,
there is a parametrization ϕ : Ω→ U such that ϕ(0m) = p ∈ U and some open interval J ⊆ I
with t ∈ J and such that the function

ϕ−1 ◦ γ : J → Rm

is a smooth curve, since γ is a smooth curve. Letting α = ϕ−1 ◦ γ, the derivative α′(t) is
well-defined, and it is a vector in Rm. But ϕ ◦ α : J → M is also a smooth curve, which
agrees with γ on J , and by the chain rule,

γ′(t) = ϕ′(0m)(α′(t)),

since α(t) = 0m (because ϕ(0m) = p and γ(t) = p). See Figure 3.11. Observe that γ′(t) is a
vector in RN . Now for every vector v ∈ Rm, the curve α : J → Rm defined such that

α(u) = (u− t)v
for all u ∈ J is clearly smooth, and α′(t) = v. This shows that the set of tangent vectors at t
to all smooth curves (in Rm) passing through 0m is the entire vector space Rm. Since every
smooth curve γ : I → M agrees with a curve of the form ϕ ◦ α : J → M for some smooth
curve α : J → Rm (with J ⊆ I) as explained above, and since it is assumed that ϕ′(0m) is
injective, ϕ′(0m) maps the vector space Rm injectively to the set of tangent vectors to γ at
p, as claimed. All this is summarized in the following definition.

Definition 3.4. Let M be an m-dimensional manifold in RN . For every point p ∈ M , the
tangent space TpM at p is the set of all vectors in RN of the form γ′(0), where γ : I →M is
any smooth curve in M such that p = γ(0). The set TpM is a vector space isomorphic to
Rm. Every vector v ∈ TpM is called a tangent vector to M at p.
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Figure 3.11: A smooth curve in a manifold M .
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Figure 3.12: Tangent vector to a curve on a manifold.
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Remark: The definition of a tangent vector at p involves smooth curves, where a smooth
curve is defined in Definition 3.3. Actually, because of Lemma 3.1, it is only necessary
to use curves that are C1 viewed as curves in RN . The potential problem is that if ϕ is a
parametrization at p and γ is a C1 curve, it is not obvious that ϕ−1◦γ is C1 in Rm. However,
Lemma 3.1 allows us to promote ϕ to a diffeomorphism between open subsets of RN , and
since both γ and (this new) ϕ−1 are C1, so is ϕ−1 ◦ γ. However, in the more general case of
an abstract manifold M not assumed to be contained in some RN , smooth curves have to
be defined as in Definition 3.3.

3.2 Linear Lie Groups

We can now define Lie groups (postponing defining smooth maps). In general, the difficult
part in proving that a subgroup of GL(n,R) is a Lie group is to prove that it is a manifold.
Fortunately, there is a characterization of the linear groups that obviates much of the work.
This characterization rests on two theorems. First, a Lie subgroup H of a Lie group G
(where H is an embedded submanifold of G) is closed in G (see Warner [114], Chapter
3, Theorem 3.21, page 97). Second, a theorem of Von Neumann and Cartan asserts that
a closed subgroup of GL(n,R) is an embedded submanifold, and thus, a Lie group (see
Warner [114], Chapter 3, Theorem 3.42, page 110). Thus, a linear Lie group G is a closed
subgroup of GL(n,R). Recall that this means that for every sequence (An)n≥1 of matrices
An ∈ G, if this sequence converges to a limit A ∈ GL(n,R), then actually A ∈ G.

Since our Lie groups are subgroups (or isomorphic to subgroups) of GL(n,R) for some
suitable n, it is easy to define the Lie algebra of a Lie group using curves. This approach to
define the Lie algebra of a matrix group is followed by a number of authors, such as Curtis
[34]. However, Curtis is rather cavalier, since he does not explain why the required curves
actually exist, and thus, according to his definition, Lie algebras could be the trivial vector
space reduced to the zero element.

A small annoying technical problem will arise in our approach, the problem with discrete
subgroups. If A is a subset of RN , recall that A inherits a topology from RN called the
subspace topology , defined such that a subset V of A is open if

V = A ∩ U

for some open subset U of RN . A point a ∈ A is said to be isolated if there is some open
subset U of RN such that

{a} = A ∩ U,
in other words, if {a} is an open set in A.

The group GL(n,R) of real invertible n×n matrices can be viewed as a subset of Rn2
, and

as such, it is a topological space under the subspace topology (in fact, a dense open subset
of Rn2

). One can easily check that multiplication and the inverse operation are continuous,
and in fact smooth (i.e., C∞-continuously differentiable). This makes GL(n,R) a topological
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group. Any subgroup G of GL(n,R) is also a topological space under the subspace topology.
A subgroup G is called a discrete subgroup if it has some isolated point. This turns out
to be equivalent to the fact that every point of G is isolated, and thus, G has the discrete
topology (every subset of G is open). Because GL(n,R) is a topological group, every discrete
subgroup of GL(n,R) is closed (which means that its complement is open); see Proposition
4.5. Moreover, since GL(n,R) is the union of countably many compact subsets, discrete
subgroups of GL(n,R) must be countable. Thus, discrete subgroups of GL(n,R) are Lie
groups (and countable)! But these are not very interesting Lie groups, and so we will consider
only closed subgroups of GL(n,R) that are not discrete.

Definition 3.5. A Lie group is a nonempty subset G of RN (N ≥ 1) satisfying the following
conditions:

(a) G is a group.

(b) G is a manifold in RN .

(c) The group operation · : G×G→ G and the inverse map −1 : G→ G are smooth.

(Smooth maps are defined in Definition 3.8). It is immediately verified that GL(n,R) is
a Lie group. Since all the Lie groups that we are considering are subgroups of GL(n,R), the
following definition is in order.

Definition 3.6. A linear Lie group is a subgroup G of GL(n,R) (for some n ≥ 1) which is
a smooth manifold in Rn2

.

Let Mn(R) denote the set of all real n× n matrices (invertible or not). If we recall that
the exponential map

exp: A 7→ eA

is well defined on Mn(R), we have the following crucial theorem due to Von Neumann and
Cartan.

Theorem 3.8. (Von Neumann and Cartan, 1927) A closed subgroup G of GL(n,R) is a
linear Lie group. Furthermore, the set g defined such that

g = {X ∈ Mn(R) | etX ∈ G for all t ∈ R}

is a nontrivial vector space equal to the tangent space TIG at the identity I, and g is closed
under the Lie bracket [−,−] defined such that [A,B] = AB −BA for all A,B ∈ Mn(R).

Theorem 3.8 applies even when G is a discrete subgroup, but in this case, g is trivial (i.e.,
g = {0}). For example, the set of nonnull reals R∗ = R − {0} = GL(1,R) is a Lie group
under multiplication, and the subgroup

H = {2n | n ∈ Z}
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is a discrete subgroup of R∗. Thus, H is a Lie group. On the other hand, the set Q∗ = Q−{0}
of nonnull rational numbers is a multiplicative subgroup of R∗, but it is not closed, since Q
is dense in R. Hence Q∗ is not a Lie subgroup of GL(1,R).

The first step in proving Theorem 3.8 is to show that if G is a closed and nondiscrete
subgroup of GL(n,R) and if we define g just as TIG (even though we don’t know yet that G
is a manifold), then g is a vector space satisfying the properties of Theorem 3.8. We follow
the treatment in Kosmann [70], which we find one of the simplest and clearest.

Proposition 3.9. Given any closed subgroup G in GL(n,R), the set

g = {X ∈ Mn(R) | X = γ′(0), γ : J → G is a C1 curve in Mn(R) such that γ(0) = I}

satisfies the following properties:

(1) g is a vector subspace of Mn(R).

(2) For every X ∈ Mn(R), we have X ∈ g iff etX ∈ G for all t ∈ R.

(3) For every X ∈ g and for every g ∈ G, we have gXg−1 ∈ g.

(4) g is closed under the Lie bracket.

Proof. If γ is a C1 curve in G such that γ(0) = I and γ′(0) = X, then for any λ ∈ R, the
curve α(t) = γ(λt) passes through I and α′(0) = λX. If γ1 and γ2 are two C1 curves in G
such that γ1(0) = γ2(0) = I, γ′1(0) = X, and γ′2(0) = Y , then the curve α(t) = γ1(t)γ2(t)
passes through I and the product rule implies

α′(0) = (γ1(t)γ2(t))′(0) = X + Y.

Therefore, g is a vector space.

(2) If etX ∈ G for all t ∈ R, then γ : t 7→ etX is a smooth curve through I in G such that
γ′(0) = X, so X ∈ g.

Conversely, if X = γ′(0) for some C1 curve in G such that γ(0) = I, using the Taylor
expansion of γ near 0, for every t ∈ R and for any positive integer k large enough t/k is
small enough so that γ(t/k) ∈ G and we have

γ

(
t

k

)
= I +

t

k
X + ε1(k) = exp

(
t

k
X + ε2(k)

)
,

where ε1(k) is O(1/k2), i.e. |ε1(k)| ≤ C
k2

for some nonnegative C, and ε2(k) is also O(1/k2).
Raising to the kth power, we deduce that

γ

(
t

k

)k
= exp (tX + ε3(k)) ,
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where ε3(k) is O(1/k), and by the continuity of the exponential, we get

lim
k 7→∞

γ

(
t

k

)k
= exp(tX).

For all k large enough, since G is a closed subgroup, (γ(t/k))k ∈ G and

lim
k 7→∞

γ

(
t

k

)k
∈ G,

and thus etX ∈ G.

(3) We know by Proposition 1.2 that

etgXg
−1

= getXg−1,

and by (2), if X ∈ g, then etX ∈ G for all t, and since g ∈ G, we have etgXg
−1

= getXg−1 ∈ G.
Since (getXg−1)′(t) = gXetXg−1, the definition of g implies that

(etgXg
−1

)′(0) = (getXg−1)′(0) = gXg−1 ∈ g.

(4) if X, Y ∈ g, then by (2), for all t ∈ R we have etX ∈ G, and by (3), etXY e−tX ∈ g.
By the product rule we obtain

(etXY e−tX)′(t) = XetXY e−tX − etXY Xe−tX ,
which in turn implies

(etXY e−tX)′(0) = XY − Y X
and proves that g is a Lie algebra.

The second step in the proof of Theorem 3.8 is to prove that when G is not a discrete
subgroup, there is an open subset Ω ⊆ Mn(R) such that 0 ∈ Ω, an open subsetW ⊆ GL(n,R)
such that I ∈ W , and a diffeomorphism Φ: Ω→ W such that

Φ(Ω ∩ g) = W ∩G.
If G is closed and not discrete, we must have m ≥ 1, and g has dimension m.

We begin by observing that the exponential map is a diffeomorphism between some open
subset of 0 and some open subset of I. This is because d(exp)0 = id, which is easy to see
since

eX − I = X + ‖X‖ ε(X)

with

ε(X) =
1

‖X‖
∞∑
k=0

Xk+2

(k + 2)!
,

and so limX 7→0 ε(X) = 0. By the inverse function theorem, exp is a diffeomorphism between
some open subset U0 of Mn(R) containing 0 and some open subset V0 of GL(n,R) containing
I.
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Proposition 3.10. Let G be a subgroup of GL(n,R), and assume that G is closed and not
discrete. Then dim(g) ≥ 1, and the exponential map is a diffeomorphism of a neighborhood
of 0 in g onto a neighborhood of I in G. Furthermore, there is an open subset Ω ⊆ Mn(R)
with 0 ∈ Ω, an open subset W ⊆ GL(n,R) with I ∈ W , and a diffeomorphism Φ: Ω → W
such that

Φ(Ω ∩ g) = W ∩G.

Proof. We follow the proof in Kosmann [70] (Chapter 4, Section 5). A similar proof is given
in Helgason [58] (Chapter 2, §2), Mneimné and Testard [86] (Chapter 3, Section 3.4), and
in Duistermaat and Kolk [43] (Chapter 1, Section 10). As explained above, by the inverse
function theorem, exp is a diffeomorphism between some open subset U0 of Mn(R) containing
0 and some open subset V0 of GL(n,R) containing I. Let p be any subspace of Mn(R) such
that g and p form a direct sum

Mn(R) = g⊕ p,

and let Φ: g⊕ p→ G be the map defined by

Φ(X + Y ) = eXeY .

We claim that dΦ0 = id. One way to prove this is to observe that for ‖X‖ and ‖Y ‖ small,

eX = I +X + ‖X‖ ε1(X) eY = I + Y + ‖Y ‖ ε2(Y ),

with limX 7→0 ε1(X) = 0 and limY 7→0 ε2(Y ) = 0, so we get

eXeY = I +X + Y +XY

+ ‖X‖ ε1(X)(I + Y ) + ‖Y ‖ ε2(Y )(I +X) + ‖X‖ ‖Y ‖ ε1(X)ε2(X)

= I +X + Y +
(√
‖X‖2 + ‖Y ‖2

)
ε(X, Y ),

with

ε(X, Y ) =
‖X‖√

‖X‖2 + ‖Y ‖2
ε1(X)(I + Y ) +

‖Y ‖√
‖X‖2 + ‖Y ‖2

ε2(Y )(I +X)

+
XY + ‖X‖ ‖Y ‖ ε1(X)ε2(X)√

‖X‖2 + ‖Y ‖2
.

Since limX 7→0 ε1(X) = 0 and limY 7→0 ε2(Y ) = 0, the first two terms go to 0 when X and Y
go to 0, and since

‖XY + ‖X‖ ‖Y ‖ ε1(X)ε2(X)‖ ≤ ‖X‖ ‖Y ‖ (1 + ‖ε1(X)ε2(X)‖)

≤ 1

2
(‖X‖2 + ‖Y ‖2)(1 + ‖ε1(X)ε2(X)‖),
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we have ∥∥∥∥∥∥XY + ‖X‖ ‖Y ‖ ε1(X)ε2(X)√
‖X‖2 + ‖Y ‖2

∥∥∥∥∥∥ ≤ 1

2

(√
‖X‖2 + ‖Y ‖2

)
(1 + ‖ε1(X)ε2(X)‖),

so the third term also goes to 0 when X and Y to 0. Therefore, limX 7→0,Y 7→0 ε(X, Y ) = 0,
and dΦ0(X + Y ) = X + Y , as claimed.

By the inverse function theorem, there exists an open subset of Mn(R) containing 0 of
the form U ′ + U ′′ with U ′ ⊆ g and U ′′ ⊆ p and some open subset W ′ of GL(n,R) such that
Φ is a diffeomorphism of U ′ + U ′′ onto W ′. By considering U0 ∩ (U ′ + U ′′), we may assume
that U0 = U ′ + U ′′, and write W ′ = Φ(U0); the maps exp and Φ are diffeomorphisms on U0.

Since U ′ ⊆ g, we have exp(U ′) ⊆ W ′ ∩G, but we would like equality to hold.

Suppose we can show that there is some open subset U ′′0 ⊆ U ′′ ⊆ p such that for all
X ∈ U ′′0 , if eX ∈ G, then X = 0. If so, consider the restriction of Φ to U ′ ⊕ U ′′0 , and let
W = Φ(U ′ ⊕ U ′′0 ); clearly, exp(U ′) ⊆ W ∩G. Then, since Φ maps U ′ + U ′′0 onto W , for any
g ∈ W ∩ G, we have g = eX

′
eX
′′

for some X ′ ∈ U ′ ⊆ g and some X ′′ ∈ U ′′0 ⊆ p. Then,
eX
′ ∈ G since X ′ ∈ g, so eX

′′
= e−X

′
g ∈ G. However, as X ′′ ∈ U ′′0 , we must have X ′′ = 0,

and thus W ∩G = exp(U ′). This proves that exp is a diffeomorphism of U ′ ⊆ g onto W ∩G,
which is the first statement of Proposition 3.10.

For the second part of Proposition 3.10, if we let Ω = U ′ + U ′′0 and W = exp(Ω), then
Ω is an open subset of Mn(R) containing 0, W is an open subset of GL(n,R) containing I,
U ′ = Ω∩g, and Φ is a diffeomorphism of Ω onto W such that Φ(Ω∩g) = W ∩G, as desired.

We still need to prove the following claim:

Claim. There exists an open subset U ′′0 ⊆ U ′′ ⊆ p such that for all X ∈ U ′′0 , if eX ∈ G,
then X = 0

The proof of the claim relies on the fact that G is closed.

Proof of the Claim. We proceed by contradiction. If the claim is false, then in every open
subset of p containing 0, there is some X 6= 0 such that eX ∈ G. In particular, for every
positive integer n, there is some Xn ∈ B(0, 1/n) ∩ p such that Xn 6= 0 and eXn ∈ G (where
B(0, 1/n) denotes the open ball of center 0 and radius 1/n). We obtain a sequence (Xn) in
p whose limit is 0, and thus the sequence (eXn) converges to I in G. Define the sequence
(Zn) by

Zn =
Xn

‖Xn‖
,

so that ‖Zn‖ = 1. Since the unit sphere is compact, there is some subsequence of (Zn)
that converges to a limit Z in p of unit norm (since p is closed); from now on, consider
this converging subsequence of (Zn) and the corresponding subsequence of Xn (which still
converges to 0, with Xn 6= 0 for all n).
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Lemma 3.11. Let G be a closed subgroup of GL(n,R) and let m be any subspace of Mn(R).
For any sequence (Xn) of nonzero matrices in m, if eXn ∈ G for all n, if (Xn) converges to
0, and if the sequence (Zn) given by

Zn =
Xn

‖Xn‖
converges to a limit Z (necessarily in m and with ‖Z‖ = 1), then Z ∈ g.

Proof. We would like to prove that etZ ∈ G for all t ∈ R, because then, by Proposition
3.9(2), Z ∈ g. For any t ∈ R, write

t

‖Xn‖
= pn(t) + un(t), with pn(t) ∈ Z and un(t) ∈ [0, 1).

Then we have
etZn = e(

t
‖Xn‖

Xn) = (eXn)pn(t)eun(t)Xn .

Since un(t) ∈ [0, 1) and since the sequence (Xn) converges to 0, the sequence (un(t)Xn)
also converges to 0, so the sequence eun(t)Xn converges to I. Furthermore, since pn(t) is an
integer, eXn ∈ G, and G is a group, we have (eXn)pn(t) ∈ G. Since G is closed, the limit
of the sequence etZn = (eXn)pn(t)eun(t)Xn belongs to G, and since limn7→∞ Zn = Z, by the
continuity of the exponential, we conclude that etZ ∈ G. Since this holds for all t ∈ R, we
have Z ∈ g.

Applying Lemma 3.11 to m = p, we deduce that Z ∈ g∩p = (0), so Z = 0, contradicting
the fact that ‖Z‖ = 1. Therefore, the claim holds.

It remains to prove that g is nontrivial. This is where the assumption that G is not
discrete is needed. Indeed, if G is not discrete, we can find a sequence (gn) of elements of G
such that gn 6= I and the sequence converges to I. Since the exponential is a diffeomorphism
between a neighborhood of 0 and a neighborhood of I, we may assume by dropping some
initial segment of the sequence that gn = eXn for some nonzero matrices Xn, and that the
sequence (Xn) converges to 0. For n large enough, the sequence

Zn =
Xn

‖Xn‖
makes sense and belongs to the unit sphere. By compactness of the unit sphere, (Zn) has some
subsequence that converges to some matrix Z with ‖Z‖ = 1. The corresponding subsequence
of Xn still consists of nonzero matrices and converges to 0. We can apply Lemma 3.11 to
m = Mn(R) and to the converging subsequences of (Xn) and (Zn) to conclude that Z ∈ g,
with Z 6= 0. This proves that dim(g) ≥ 1, and completes the proof of Proposition 3.10.

Remark: The first part of Proposition 3.10 shows that exp is a diffeomorphism of an open
subset U ′ ⊆ g containing 0 onto W ∩G, which is Condition (1) of Theorem 3.6; that is, the
restriction of exp to U ′ is a parametrization of G.

Theorem 3.8 now follows immediately from Propositions 3.9 and 3.10.
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Proof of Theorem 3.8. Proposition 3.9 shows that g = TIG and that it is a Lie algebra.
Proposition 3.10 shows that Condition (2) of Theorem 3.6 holds; that is, there is an open
subset Ω ⊆ Mn(R) with 0 ∈ Ω, an open subset W ⊆ GL(n,R) with I ∈ W , and a diffeo-
morphism Φ: Ω→ W such that

Φ(Ω ∩ g) = W ∩G.

To prove that this condition holds for every g ∈ G besides I is easy. Indeed, Lg : G→ G is
a diffeomorphism, so Lg ◦ Φ: Ω→ Lg(W ) is a diffeomorphism such that

(Lg ◦ Φ)(Ω ∩ g) = Lg(W ) ∩G,

which shows that Condition (2) of Theorem 3.6 also holds for any g ∈ G, and thus G is a
manifold.

It should be noted that the assumption that G is closed is crucial, as shown by the
following example from Tapp [111].

Pick any irrational multiple λ of 2π, and define

G =

{
gt =

(
eti 0
0 eλti

) ∣∣∣∣ t ∈ R
}
.

It is clear that G is a subgroup of GL(2,C). We leave it as an exercise to prove that the map
ϕ : t 7→ gt is a continuous isomorphism of (R,+) onto G, but that ϕ−1 is not continuous.
Geometrically, ϕ is a curve embedded in R4 (by viewing C2 as R4). It is easy to check that
g (as defined in Proposition 3.9) is the one dimensional vector space spanned by

W =

(
i 0
0 λi

)
,

and that etW = gt for all t ∈ R. For every r > 0 (r ∈ R), we leave it as an exercise to prove
that

exp({tW | t ∈ (−r, r)}) = {gt | t ∈ (−r, r)}
is not a neighborhood of I in G. The problem is that there are elements of G of the form
g2πn for some large n that are arbitrarily close to I, so they are exponential images of very
short vectors in M2(C), but they are exponential images only of very long vectors in g. The
reader should prove that the closure of the group G is the group

G =

{(
eti 0
0 esi

) ∣∣∣∣ t, s ∈ R
}
,

and that G is dense in G. Geometrically, G is a curve in R4 and G is the product of two
circles, that is, a torus (in R4). Due to the the irrationality of λ, the curve G winds around
the torus and forms a dense subset.
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With the help of Theorem 3.8 it is now very easy to prove that SL(n), O(n), SO(n),
SL(n,C), U(n), and SU(n) are Lie groups and to figure out what are their Lie algebras.
(Of course, GL(n,R) is a Lie group, as we already know.) It suffices to show that these
subgroups of GL(n,R) (GL(2n,R) in the case of SL(n,C), U(n), and SU(n)) are closed,
which is easy to show since these groups are zero sets of simple continuous functions. For
example, SL(n) is the zero set of the function A 7→ det(A) − 1, O(n) is the zero set of the
function R 7→ R>R− I, SO(n) = SL(n) ∩O(n), etc.

For example, if G = GL(n,R), as etA is invertible for every matrix A ∈ Mn(R), we
deduce that the Lie algebra gl(n,R) of GL(n,R) is equal to Mn(R). We also claim that the
Lie algebra sl(n,R) of SL(n,R) is the set of all matrices with zero trace. Indeed, sl(n,R) is
the subalgebra of gl(n,R) consisting of all matrices X ∈ gl(n,R) such that

det(etX) = 1

for all t ∈ R, and because det(etX) = etr(tX), for t = 1, we get tr(X) = 0, as claimed.

We can also prove that SE(n) is a Lie group as follows. Recall that we can view every
element of SE(n) as a real (n+ 1)× (n+ 1) matrix(

R U
0 1

)
where R ∈ SO(n) and U ∈ Rn. In fact, such matrices belong to SL(n+ 1). This embedding
of SE(n) into SL(n + 1) is a group homomorphism, since the group operation on SE(n)
corresponds to multiplication in SL(n+ 1):(

RS RV + U
0 1

)
=

(
R U
0 1

)(
S V
0 1

)
.

Note that the inverse of

(
R U
0 1

)
is given by(

R−1 −R−1U
0 1

)
=

(
R> −R>U
0 1

)
.

It is easy to show that SE(n) is a closed subgroup of GL(n+1,R) (because SO(n) and Rn

are closed). Also note that the embedding shows that, as a manifold, SE(n) is diffeomorphic
to SO(n)×Rn (given a manifold M1 of dimension m1 and a manifold M2 of dimension m2,
the product M1 ×M2 can be given the structure of a manifold of dimension m1 + m2 in a
natural way). Thus, SE(n) is a Lie group with underlying manifold SO(n) × Rn, and in
fact, a closed subgroup of SL(n+ 1).

� Even though SE(n) is diffeomorphic to SO(n)×Rn as a manifold, it is not isomorphic
to SO(n) × Rn as a group, because the group multiplication on SE(n) is not the

multiplication on SO(n)× Rn. Instead, SE(n) is a semidirect product of SO(n) by Rn; see
Section 18.5 or Gallier [48] (Chapter 2, Problem 2.19).



3.2. LINEAR LIE GROUPS 99

An application of Theorem 3.8 shows that the Lie algebra of SE(n), se(n), is as described
in Section 1.6; is easily determined as the subalgebra of sl(n + 1) consisting of all matrices
of the form (

B U
0 0

)
where B ∈ so(n) and U ∈ Rn. Thus, se(n) has dimension n(n + 1)/2. The Lie bracket is
given by (

B U
0 0

)(
C V
0 0

)
−
(
C V
0 0

)(
B U
0 0

)
=

(
BC − CB BV − CU

0 0

)
.

Returning to Theorem 3.8, the vector space g is called the Lie algebra of the Lie group
G. Lie algebras are defined as follows.

Definition 3.7. A (real) Lie algebra A is a real vector space together with a bilinear map
[·, ·] : A×A → A called the Lie bracket on A such that the following two identities hold for
all a, b, c ∈ A:

[a, a] = 0,

and the so-called Jacobi identity

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0.

By using the Jacobi identity, it is readily verified that [b, a] = −[a, b].

In view of Theorem 3.8, the vector space g = TIG associated with a Lie group G is indeed
a Lie algebra. Furthermore, the exponential map exp: g → G is well-defined. In general,
exp is neither injective nor surjective, as we observed earlier. Theorem 3.8 also provides a
kind of recipe for “computing” the Lie algebra g = TIG of a Lie group G. Indeed, g is the
tangent space to G at I, and thus we can use curves to compute tangent vectors. Actually,
for every X ∈ TIG, the map

γX : t 7→ etX

is a smooth curve in G, and it is easily shown that γ′X(0) = X. Thus, we can use these curves.
As an illustration, we show that the Lie algebras of SL(n) and SO(n) are the matrices with
null trace and the skew symmetric matrices.

Let t 7→ R(t) be a smooth curve in SL(n) such that R(0) = I. We have det(R(t)) = 1
for all t ∈ (−ε, ε). Using the chain rule, we can compute the derivative of the function

t 7→ det(R(t))

at t = 0, and since det(R(t)) = 1 we get

det′I(R
′(0)) = 0.
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We leave it as an exercise for the reader to prove that

det′I(X) = tr(X),

and thus tr(R′(0)) = 0, which says that the tangent vector X = R′(0) has null trace. Clearly,
sl(n,R) has dimension n2 − 1.

Let t 7→ R(t) be a smooth curve in SO(n) such that R(0) = I. Since each R(t) is
orthogonal, we have

R(t)R(t)> = I

for all t ∈ (−ε, ε). By using the product rule and taking the derivative at t = 0, we get

R′(0)R(0)> +R(0)R′(0)> = 0,

but since R(0) = I = R(0)>, we get

R′(0) +R′(0)> = 0,

which says that the tangent vector X = R′(0) is skew symmetric. Since the diagonal elements
of a skew symmetric matrix are null, the trace is automatically null, and the condition
det(R) = 1 yields nothing new. This shows that o(n) = so(n). It is easily shown that so(n)
has dimension n(n− 1)/2.

By appropriately adjusting the above methods, we readily calculate gl(n,C), sl(n,C),
u(n), and su(n), confirming the claims of Section 1.4. It is easy to show that gl(n,C) has
dimension 2n2, sl(n,C) has dimension 2(n2 − 1), u(n) has dimension n2, and su(n) has
dimension n2 − 1.

As a concrete example, the Lie algebra so(3) of SO(3) is the real vector space consisting
of all 3× 3 real skew symmetric matrices. Every such matrix is of the form 0 −d c

d 0 −b
−c b 0


where b, c, d ∈ R. The Lie bracket [A,B] in so(3) is also given by the usual commutator,
[A,B] = AB −BA.

Let × represent the cross product of two vectors in R3 where for u = (u1, u2, u3) and
v = (v1, v2, v3), we have

u× v = −v × u = (u2v3 − u3v2,−u1v3 + u3v1, u1v2 − u2v1).

It is easily checked that the vector space R3 is a Lie algebra if we define the Lie bracket on
R3 as the usual cross product u×v of vectors. We can define an isomorphism of Lie algebras
ψ : (R3,×)→ so(3) by the formula

ψ(b, c, d) =

 0 −d c
d 0 −b
−c b 0

 .
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A basic algebraic computation verifies that

ψ(u× v) = [ψ(u), ψ(v)].

It is also verified that for any two vectors u = (b, c, d) and v = (b′, c′, d′) in R3

ψ(u)(v) =

 0 −d c
d 0 −b
−c b 0

b′c′
d′

 =

−dc′ + cd′

db′ − bd′
−cb′ + bc′

 = u× v.

In robotics and in computer vision, ψ(u) is often denoted by u×.

The exponential map exp: so(3)→ SO(3) is given by Rodrigues’s formula (see Proposi-
tion 1.7):

eA = cos θ I3 +
sin θ

θ
A+

(1− cos θ)

θ2
B,

or equivalently by

eA = I3 +
sin θ

θ
A+

(1− cos θ)

θ2
A2

if θ 6= 0, where

A =

 0 −d c
d 0 −b
−c b 0

 ,

θ =
√
b2 + c2 + d2, B = A2 + θ2I3, and with e0 = I3.

For another concrete example, the Lie algebra su(2) of SU(2) (or S3) is the real vector
space consisting of all 2 × 2 (complex) skew Hermitian matrices of null trace. Every such
matrix is of the form

i(dσ1 + cσ2 + bσ3) =

(
ib c+ id

−c+ id −ib

)
,

where b, c, d ∈ R, and σ1, σ2, σ3 are the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and thus the matrices iσ1, iσ2, iσ3 form a basis of the Lie algebra su(2). The Lie bracket
[A,B] in su(2) is given by the usual commutator, [A,B] = AB −BA.

Let × represent the cross product of two vectors in R3 . Then we can define an isomor-
phism of Lie algebras ϕ : (R3,×)→ su(2) by the formula

ϕ(b, c, d) =
i

2
(dσ1 + cσ2 + bσ3) =

1

2

(
ib c+ id

−c+ id −ib

)
.
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A tedious but basic algebraic computation verifies that

ϕ(u× v) = [ϕ(u), ϕ(v)].

Returning to su(2), letting θ =
√
b2 + c2 + d2, we can write

dσ1 + cσ2 + bσ3 =

(
b −ic+ d

ic+ d −b

)
= θA,

where

A =
1

θ
(dσ1 + cσ2 + bσ3) =

1

θ

(
b −ic+ d

ic+ d −b

)
,

so that A2 = I, and it can be shown that the exponential map exp: su(2)→ SU(2) is given
by

exp(iθA) = cos θ I + i sin θ A.

In view of the isomorphism ϕ : (R3,×)→ su(2), where

ϕ(b, c, d) =
1

2

(
ib c+ id

−c+ id −ib

)
= i

θ

2
A,

the exponential map can be viewed as a map exp: (R3,×)→ SU(2) given by the formula

exp(θv) =

[
cos

θ

2
, sin

θ

2
v

]
,

for every vector θv, where v is a unit vector in R3 and θ ∈ R. Recall that [a, (b, c, d)] is
another way of denoting the quaternion a1 + bi + cj + dk; see Section 5.3 and Problem 18.16
for the definition of the quaternions and their properties. In this form, exp(θv) is a unit
quaternion corresponding to a rotation of axis v and angle θ.

3.3 Homomorphisms of Linear Lie groups and Lie Al-

gebras

In this section we will discuss the relationship between homomorphisms of Lie groups and
homomorphisms of Lie algebras. But in order to do so, we first need to explain what is
meant by a smooth map between manifolds.

Definition 3.8. Let M1 (m1-dimensional) and M2 (m2-dimensional) be manifolds in RN . A
function f : M1 →M2 is smooth if for every p ∈M1 there are parameterizations ϕ : Ω1 → U1

of M1 at p and ψ : Ω2 → U2 of M2 at f(p) such that f(U1) ⊆ U2 and

ψ−1 ◦ f ◦ ϕ : Ω1 → Rm2

is smooth; see Figure 3.13.



3.3. HOMOMORPHISMS OF LINEAR LIE GROUPS AND LIE ALGEBRAS 103

Using Lemma 3.2, it is easily shown that Definition 3.8 does not depend on the choice of
the parametrizations ϕ : Ω1 → U1 and ψ : Ω2 → U2. A smooth map f between manifolds is
a smooth diffeomorphism if f is bijective and both f and f−1 are smooth maps.

We now define the derivative of a smooth map between manifolds.

Definition 3.9. Let M1 (m1-dimensional) and M2 (m2-dimensional) be manifolds in RN .
For any smooth function f : M1 → M2 and any p ∈ M1, the function f ′p : TpM1 → Tf(p)M2,
called the tangent map of f at p, or derivative of f at p, or differential of f at p, is defined
as follows: For every v ∈ TpM1 and every smooth curve γ : I → M1 such that γ(0) = p and
γ′(0) = v,

f ′p(v) = (f ◦ γ)′(0).

See Figure 3.14.

p

f(p)

M

M

1

2

U1

U2

Ω

Ω

1

2

φ

ψ ψ

½
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m

m

1

2

f

-1

Figure 3.13: An illustration of a smooth map from the torus, M1, to the solid ellipsoid M2.
The pink patch on M1 is mapped into interior pink ellipsoid of M2.

The map f ′p is also denoted by dfp or Tpf . Doing a few calculations involving the facts
that

f ◦ γ = (f ◦ ϕ) ◦ (ϕ−1 ◦ γ) and γ = ϕ ◦ (ϕ−1 ◦ γ)

and using Lemma 3.2, it is not hard to show that f ′p(v) does not depend on the choice of the
curve γ. It is easily shown that f ′p is a linear map.
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f(p)

p

Tp M1

M

M

1
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f

0

γ

γ

(0) = p

I

Figure 3.14: An illustration of the tangent map from TpM1 to Tf(p)M2.

Given a linear Lie group G, since La and Ra are diffeomorphisms for every a ∈ G, the
maps d(La)I : g → TaG and d(Ra)I : g → TaG are linear isomorphisms between the Lie
algebra g and the tangent space TaG to G at a. Since G is a linear group, both La and Ra

are linear, we have (dLa)b = La and (dRa)b = Ra for all b ∈ G, and so

TaG = ag = {aX | X ∈ g} = {Xa | X ∈ g} = ga.

Finally we define homomorphisms of Lie groups and Lie algebras and see how they are
related.

Definition 3.10. Given two Lie groups G1 and G2, a homomorphism (or map) of Lie groups
is a function f : G1 → G2 that is a homomorphism of groups and a smooth map (between
the manifolds G1 and G2). Given two Lie algebras A1 and A2, a homomorphism (or map)
of Lie algebras is a function f : A1 → A2 that is a linear map between the vector spaces A1

and A2 and that preserves Lie brackets, i.e.,

f([A,B]) = [f(A), f(B)]

for all A,B ∈ A1.

An isomorphism of Lie groups is a bijective function f such that both f and f−1 are
homomorphisms of Lie groups, and an isomorphism of Lie algebras is a bijective function
f such that both f and f−1 are maps of Lie algebras. If f : G1 → G2 is a homomorphism
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of linear Lie groups, then f ′I : g1 → g2 is a homomorphism of Lie algebras, but in order to
prove this, we need the adjoint representation Ad, so we postpone the proof.

The notion of a one-parameter group plays a crucial role in Lie group theory.

Definition 3.11. A smooth homomorphism h : (R,+)→ G from the additive group R to a
Lie group G is called a one-parameter group in G.

All one-parameter groups of a linear Lie group can be determined explicitly.

Proposition 3.12. Let G be any linear Lie group.

1. For every X ∈ g, the map h(t) = etX is a one-parameter group in G.

2. Every one-parameter group h : R→ G is of the form h(t) = etZ, with Z = h′(0).

In summary, for every Z ∈ g, there is a unique one-parameter group h such that h′(0) = Z
given by h(t) = eZt.

Proof. The proof of (1) is easy and left as an exercise. To prove (2), since h is a homomor-
phism, for all s, t ∈ R, we have

h(s+ t) = h(s)h(t).

Taking the derivative with respect to s for s = 0 and holding t constant, the product rule
implies that

h′(t) = h′(0)h(t).

If we write Z = h′(0) we we have

h′(t) = Zh(t) = XZ(h(t)) for all t ∈ R.

This means that h(t) is an integral curve for all t passing through I for the linear vector field
XZ , and by Proposition 11.25, it must be equal to etZ .

The exponential map is natural in the following sense:

Proposition 3.13. Given any two linear Lie groups G and H, for every Lie group homo-
morphism f : G→ H, the following diagram commutes:

G
f // H

g
dfI
//

exp

OO

h

exp

OO

Proof. Observe that for every v ∈ g, the map h : t 7→ f(etv) is a homomorphism from (R,+)
to G such that h′(0) = dfI(v). On the other hand, by Proposition 3.12 the map t 7→ etdfI(v)

is the unique one-parameter group whose tangent vector at 0 is dfI(v), so f(ev) = edfI(v).
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Alert readers must have noticed that in Theorem 3.8 we only defined the Lie algebra of
a linear group. In the more general case, we can still define the Lie algebra g of a Lie group
G as the tangent space TIG at the identity I. The tangent space g = TIG is a vector space,
but we need to define the Lie bracket. This can be done in several ways. We explain briefly
how this can be done in terms of so-called adjoint representations. This has the advantage
of not requiring the definition of left-invariant vector fields, but it is still a little bizarre!

Given a Lie group G, for every a ∈ G we define left translation as the map La : G → G
such that La(b) = ab for all b ∈ G, and right translation as the map Ra : G → G such that
Ra(b) = ba for all b ∈ G. The maps La and Ra are diffeomorphisms, and their derivatives
play an important role.

The inner automorphisms Ada : G → G defined by Ada = Ra−1 ◦ La (= Ra−1La) also
play an important role. Note that

Ada(b) = aba−1.

The derivative
(Ada)

′
I : TIG→ TIG

of Ada at I is an isomorphism of Lie algebras, and since TIG = g, if we denote (Ada)
′
I by

Ada, we get a map
Ada : g→ g.

The map a 7→ Ada is a map of Lie groups

Ad: G→ GL(g),

called the adjoint representation of G (where GL(g) denotes the Lie group of all bijective
linear maps on g).

In the case of a linear group, we have

Ad(a)(X) = Ada(X) = aXa−1

for all a ∈ G and all X ∈ g. Indeed, for any X ∈ g, the curve γ(t) = etX is a curve in G
such that γ(0) = I and γ′(0) = X. Then by the definition of the tangent map, we have

d(Ada)I(X) = (Ada(γ(t)))′(0)

= (aetXa−1)′(0)

= aXa−1.

We are now almost ready to prove that if f : G1 → G2 is a homomorphism of linear
Lie groups, then f ′I : g1 → g2 is a homomorphism of Lie algebras. What we need is to
express the Lie bracket [A,B] in terms of the derivative of an expression involving the
adjoint representation Ad. For any A,B ∈ g, we have(

AdetA(B)
)′

(0) = (etABe−tA)′(0) = AB −BA = [A,B].
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Proposition 3.14. If f : G1 → G2 is a homomorphism of linear Lie groups, then the linear
map dfI : g1 → g2 satisfies the equation

dfI(Ada(X)) = Adf(a)(dfI(X)), for all a ∈ G and all X ∈ g1,

that is, the following diagram commutes

g1
dfI //

Ada
��

g2

Adf(a)

��
g1 dfI

// g2

Furthermore, dfI is a homomorphism of Lie algebras.

Proof. Since f is a group homomorphism, for all X ∈ g1, we have

f(aetXa−1) = f(a)f(etX)f(a−1) = f(a)f(etX)f(a)−1.

The curve α given by α(t) = aetXa−1 passes through I and α′(0) = aXa−1 = Ada(X), so we
have

dfI(Ada(X)) = (f(α(t)))′(0)

= (f(aetXa−1))′(0)

= (f(a)f(etX)f(a)−1)′(0)

= Adf(a)(dfI(X)),

as claimed. Now pick any X, Y ∈ g1. The plan is to use the identity we just proved with
a = etX and X = Y , namely

dfI(AdetX (Y )) = Adf(etX)(dfI(Y )), (∗)

and to take the derivative of both sides for t = 0. We make use of the fact that since
dfI : g→ g is linear, for any Z ∈ g1, we have

d(dfI)Z = dfI .

Then, if we write β(t) = AdetXY , we have dfI(AdetXY ) = dfI(β(t)), and as dfI is linear, the
derivative of the left hand side of (∗) is

(dfI(β(t)))′(0) = d(dfI)β(0)(β
′(0)) = dfI(β

′(0)).

On the other hand, by the fact proven just before stating Proposition 3.14,

β′(0) = (AdetXY )′(0) = [X, Y ],
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so the the derivative of the left hand side of (∗) is equal to dfI(β
′(0)) = dfI([X, Y ]). When

we take the derivative of the right hand side, since f is a group homomorphism, we get

(Adf(etX)(dfI(Y )))′(0) = (f(etX)dfI(Y )(f(etX))−1)′(0)

= (f(etX)dfI(Y )f(e−tX))′(0) = [dfI(X), dfI(Y )],

and we conclude that
dfI([X, Y ]) = [dfI(X), dfI(Y )];

that is, fI is a Lie algebra homomorphism.

If some additional assumptions are made about G1 and G2 (for example, connected,
simply connected), it can be shown that f is pretty much determined by f ′I .

The derivative
Ad′I : g→ gl(g)

of Ad: G→ GL(g) at I is map of Lie algebras, and if we denote Ad′I by ad, it is a map

ad: g→ gl(g),

called the adjoint representation of g. (Recall that Theorem 3.8 immediately implies that
the Lie algebra gl(g) of GL(g) is the vector space Hom(g, g) of all linear maps on g).

In the case of linear Lie groups, if we apply Proposition 3.13 to Ad: G → GL(g), we
obtain the equation

AdeA = eadA for all A ∈ g,

or equivalently

G
Ad // GL(g)

g
ad
//

exp

OO

gl(g)

exp

OO
,

which is a generalization of the identity of Proposition 2.1.

In the case of a linear group we have

ad(A)(B) = [A, B]

for all A,B ∈ g. This can be shown as follows.

Proof. For any A,B ∈ g, the curve γ(t) = etA is a curve in G passing through I and such
that γ′(0) = A, so we have

adA(B) = ((AdetA)′(0))(B)

=
(
(AdetA)(B)

)′
(0)

= (etABe−tA)′(0)

= AB −BA,
which proves our result.
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Remark: The equation

((AdetA)′(0))(B) =
(
(AdetA)(B)

)′
(0)

requires some justification. Define evalB : Hom(g, g) → g by evalB(f) = f(B) for any f ∈
Hom(g, g). Note that evalB is a linear map, and hence d(evalB)f = evalB for all f ∈
Hom(g, g). By definition AdetA(B) = evalB(AdetA), and an application of the chain rule
implies that (

(AdetA)(B)
)′

(0) =
(
evalB(AdetA)

)′
(0) = d(evalB)Ade0

◦
(
AdetA

)′
(0)

= evalB(AdetA
)′

(0) = ((AdetA)′(0))(B).

Another proof of the fact that adA(B) = [A,B] can be given using Propositions 2.1 and
3.13. To avoid confusion, let us temporarily write adA(B) = [A,B] to distinguish it from
adA(B) = (d(Ad)I(A))(B). Both ad and ad are linear. For any fixed t ∈ R, by Proposition
2.1 we have

AdetA = eadtA = etadA ,

and by Proposition 3.13 applied to Ad, we have

AdetA = eadtA = etadA .

It follows that
etadA = etadA for all t ∈ R,

and by taking the derivative at t = 0, we get adA = adA.

One can also check that the Jacobi identity on g is equivalent to the fact that ad preserves
Lie brackets, i.e., ad is a map of Lie algebras:

ad([A, B]) = [ad(A), ad(B)]

for all A,B ∈ g (where on the right, the Lie bracket is the commutator of linear maps on g).
Thus we recover the Lie bracket from ad.

This is the key to the definition of the Lie bracket in the case of a general Lie group (not
just a linear Lie group). We define the Lie bracket on g as

[A, B] = ad(A)(B).

To be complete, we have to define the exponential map exp: g → G for a general Lie
group. For this we need to introduce some left-invariant vector fields induced by the deriva-
tives of the left translations, and integral curves associated with such vector fields. We will
do this in Chapter 18 but for this we will need a deeper study of manifolds (see Chapters 7
and 9).
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We conclude this section by computing explicitly the adjoint representations ad of so(3)
and Ad of SO(3). Recall that for every X ∈ so(3), adX is a linear map adX : so(3)→ so(3).
Also, for every R ∈ SO(3), the map AdR : so(3) → so(3) is an invertible linear map of
so(3). As we saw at the end of Section 3.2, so(3) is isomorphic to (R3,×), where × is the
cross-product on R3, via the isomorphism ψ : (R3,×)→ so(3) given by the formula

ψ(a, b, c) =

 0 −c b
c 0 −a
−b a 0

 .

In robotics and in computer vision, ψ(u) is often denoted by u×. Recall that

ψ(u)v = u×v = u× v for all u, v ∈ R3.

The image of the canonical basis (e1, e2, e3) of R3 is the following basis of so(3):E1 =

0 0 0
0 0 −1
0 1 0

 , E2 =

 0 0 1
0 0 0
−1 0 0

 , E3 =

0 −1 0
1 0 0
0 0 0

 .

Observe that

[E1, E2] = E3, [E2, E3] = E1, [E3, E1] = E2.

Using the isomorphism ψ, we obtain an isomorphism Ψ between Hom(so(3), so(3)) and
M3(R) = gl(3,R) such that every linear map f : so(3)→ so(3) corresponds to the matrix of
the linear map

Ψ(f) = ψ−1 ◦ f ◦ ψ
in the basis (e1, e2, e3). By restricting Ψ to GL(so(3)), we obtain an isomorphism between
GL(so(3)) and GL(3,R). It turns out that if we use the basis (E1, E2, E3) in so(3), for
every X ∈ so(3), the matrix representing adX ∈ Hom(so(3), so(3)) is X itself, and for every
R ∈ SO(3), the matrix representing AdR ∈ GL(so(3)) is R itself.

Proposition 3.15. For all X ∈ so(3) and all R ∈ SO(3), we have

Ψ(adX) = X, Ψ(AdR) = R,

which means that Ψ ◦ ad is the inclusion map from so(3) to M3(R) = gl(3,R), and that
Ψ ◦Ad is the inclusion map from SO(3) to GL(3,R). Equivalently, for all u ∈ R3, we have

adX(ψ(u)) = ψ(Xu), AdR(ψ(u)) = ψ(Ru).

These equations can also be written as

[X, u×] = (Xu)×, Ru×R
−1 = (Ru)×.
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Proof. Since ad is linear, it suffices to prove the equation for the basis (E1, E2, E3). For E1,
since ψ(ei) = Ei, we have

adE1(ψ(ei)) = [E1, ψ(ei)] =


0 if i = 1

E3 if i = 2

−E2 if i = 3.

Since

E1e1 = 0, E1e2 = e3, E1e3 = −e2, ψ(0) = 0, ψ(e3) = E3, ψ(e2) = E2,

we proved that
adE1(ψ(ei)) = ψ(E1ei), i = 1, 2, 3.

Similarly, the reader should check that

adEj(ψ(ei)) = ψ(Ejei), j = 2, 3, i = 1, 2, 3,

and so,
adX(ψ(u)) = ψ(Xu) for all X ∈ so(3) and all u ∈ R3,

or equivalently

ψ−1(adX(ψ(u))) = X(u) for all X ∈ so(3) and all u ∈ R3;

that is, Ψ ◦ ad is the inclusion map from so(3) to M3(R) = gl(3,R).

Since every one-parameter group in SO(3) is of the form t 7→ etX for some X ∈ so(3)
and since Ψ ◦ ad is the inclusion map from so(3) to M3(R) = gl(3,R), the map Ψ ◦ Ad
maps every one-parameter group in SO(3) to itself in GL(3,R). Since the exponential
map exp: so(3) → SO(3) is surjective, every R ∈ SO(3) is of the form R = eX for some
X ∈ so(3), so R is contained in some one-parameter group, and thus R is mapped to itself
by Ψ ◦ Ad.

Readers who wish to learn more about Lie groups and Lie algebras should consult (more
or less listed in order of difficulty) Tapp [111], Rossmann [98], Kosmann [70], Curtis [34],
Sattinger and Weaver [102], Hall [56], and Marsden and Ratiu [77]. The excellent lecture
notes by Carter, Segal, and Macdonald [29] constitute a very efficient (although somewhat
terse) introduction to Lie algebras and Lie groups. Classics such as Weyl [118] and Chevalley
[31] are definitely worth consulting, although the presentation and the terminology may seem
a bit old fashioned. For more advanced texts, one may consult Abraham and Marsden [1],
Warner [114], Sternberg [110], Bröcker and tom Dieck [24], and Knapp [68]. For those who
read French, Mneimné and Testard [86] is very clear and quite thorough, and uses very little
differential geometry, although it is more advanced than Curtis. Chapter 1, by Bryant, in
Freed and Uhlenbeck [25] is also worth reading, but the pace is fast.
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3.4 Problems

Problem 3.1. Recall that

S2 =
{

(x, y, z) ∈ R3 | x2 + y2 + z2 = 1
}
.

Let N = (0, 0, 1) and S = (0, 0,−1). Define two maps ϕ1 : R2 → S2 − {N} and ϕ2 : R2 →
S2 − {S} as follows:

ϕ1 : (u, v) 7→
(

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,
u2 + v2 − 1

u2 + v2 + 1

)

ϕ2 : (u, v) 7→
(

2u

u2 + v2 + 1
,

2v

u2 + v2 + 1
,

1− u2 − v2

u2 + v2 + 1

)
.

(i) Prove that both of these maps are smooth homeomorphisms.

(ii) Prove that ϕ1 and ϕ2 are immersions for each point in their respective domains.

Problem 3.2. Show that the torus T 2 = S1 × S1 is an embedded manifold in R3.

Problem 3.3. Prove Lemma 3.1.

Problem 3.4. (a) Consider the map f : GL(n,R)→ R, given by

f(A) = det(A).

Prove that df(I)(B) = tr(B), the trace of B, for any matrix B (here, I is the identity
matrix). Then, prove that

df(A)(B) = det(A)tr(A−1B),

where A ∈ GL(n,R).

(b) Use the map A 7→ det(A) − 1 to prove that SL(n,R) is a manifold of dimension
n2 − 1.

(c) Let J be the (n+ 1)× (n+ 1) diagonal matrix

J =

(
In 0
0 −1

)
.

We denote by SO(n, 1) the group of real (n+ 1)× (n+ 1) matrices

SO(n, 1) = {A ∈ GL(n+ 1,R) | A>JA = J and det(A) = 1}.

Check that SO(n, 1) is indeed a group with the inverse of A given by A−1 = JA>J (this is
the special Lorentz group.) Consider the function f : GL+(n+ 1)→ S(n+ 1), given by

f(A) = A>JA− J,
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where S(n+ 1) denotes the space of (n+ 1)× (n+ 1) symmetric matrices. Prove that

df(A)(H) = A>JH +H>JA

for any matrix, H. Prove that df(A) is surjective for all A ∈ SO(n, 1) and that SO(n, 1) is

a manifold of dimension n(n+1)
2

.

Problem 3.5. Prove Proposition 3.7.

Problem 3.6. Recall that a matrix B ∈ Mn(R) is skew-symmetric if

B> = −B.

Check that the set so(n) of skew-symmetric matrices is a vector space of dimension n(n−1)/2,
and thus is isomorphic to Rn(n−1)/2.

(a) Given a rotation matrix

R =

(
cos θ − sin θ
sin θ cos θ

)
,

where 0 < θ < π, prove that there is a skew symmetric matrix B such that

R = (I −B)(I +B)−1.

(b) Prove that the eigenvalues of a skew-symmetric matrix are either 0 or pure imaginary
(that is, of the form iµ for µ ∈ R.).

Let C : so(n)→ Mn(R) be the function given by

C(B) = (I −B)(I +B)−1.

Prove that if B is skew-symmetric, then I − B and I + B are invertible, and so C is well-
defined. Prove that

(I +B)(I −B) = (I −B)(I +B),

and that
(I +B)(I −B)−1 = (I −B)−1(I +B).

Prove that
(C(B))>C(B) = I

and that
detC(B) = +1,

so that C(B) is a rotation matrix. Furthermore, show that C(B) does not admit −1 as an
eigenvalue.
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(c) Let SO(n) be the group of n× n rotation matrices. Prove that the map

C : so(n)→ SO(n)

is bijective onto the subset of rotation matrices that do not admit −1 as an eigenvalue. Show
that the inverse of this map is given by

B = (I +R)−1(I −R) = (I −R)(I +R)−1,

where R ∈ SO(n) does not admit −1 as an eigenvalue. Check that C is a homeomorphism
between so(n) and C(so(n)).

(d) Use Problem 11.9 to prove that

dC(B)(A) = −[I + (I −B)(I +B)−1]A(I +B)−1 = −2(I +B)−1A(I +B)−1.

Prove that dC(B) is injective, for every skew-symmetric matrix B. Prove that C a
parametrization of SO(n).

Problem 3.7. Recall from Problem 3.6, the Cayley parametrization of rotation matrices in
SO(n) given by

C(B) = (I −B)(I +B)−1,

where B is any n× n skew symmetric matrix.

(a) Now, consider n = 3, i.e., SO(3). Let E1, E2 and E3 be the rotations about the
x-axis, y-axis, and z-axis, respectively, by the angle π, i.e.,

E1 =

1 0 0
0 −1 0
0 0 −1

 , E2 =

−1 0 0
0 1 0
0 0 −1

 , E3 =

−1 0 0
0 −1 0
0 0 1

 .

Prove that the four maps

B 7→ C(B)

B 7→ E1C(B)

B 7→ E2C(B)

B 7→ E3C(B)

where B is skew symmetric, are parametrizations of SO(3) and that the union of the images
of C, E1C, E2C and E3C covers SO(3), so that SO(3) is a manifold.

(b) Let A be any matrix (not necessarily invertible). Prove that there is some diagonal
matrix, E, with entries +1 or −1, so that EA+ I is invertible.

(c) Prove that every rotation matrix, A ∈ SO(n), is of the form

A = E(I −B)(I +B)−1,
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for some skew symmetric matrix, B, and some diagonal matrix, E, with entries +1 and
−1, and where the number of −1 is even. Moreover, prove that every orthogonal matrix
A ∈ O(n) is of the form

A = E(I −B)(I +B)−1,

for some skew symmetric matrix, B, and some diagonal matrix, E, with entries +1 and
−1. The above provide parametrizations for SO(n) (resp. O(n)) that show that SO(n) and
O(n) are manifolds. However, observe that the number of these charts grows exponentially
with n.

Problem 3.8. Consider the parametric surface given by

x(u, v) =
8uv

(u2 + v2 + 1)2
,

y(u, v) =
4v(u2 + v2 − 1)

(u2 + v2 + 1)2
,

z(u, v) =
4(u2 − v2)

(u2 + v2 + 1)2
.

The trace of this surface is called a crosscap. In order to plot this surface, make the change
of variables

u = ρ cos θ

v = ρ sin θ.

Prove that we obtain the parametric definition

x =
4ρ2

(ρ2 + 1)2
sin 2θ,

y =
4ρ(ρ2 − 1)

(ρ2 + 1)2
sin θ,

z =
4ρ2

(ρ2 + 1)2
cos 2θ.

Show that the entire trace of the surface is obtained for ρ ∈ [0, 1] and θ ∈ [−π, π].

Hint . What happens if you change ρ to 1/ρ?

Plot the trace of the surface using the above parametrization. Show that there is a line
of self-intersection along the portion of the z-axis corresponding to 0 ≤ z ≤ 1. What can
you say about the point corresponding to ρ = 1 and θ = 0?

Plot the portion of the surface for ρ ∈ [0, 1] and θ ∈ [0, π].
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(b) Express the trigonometric functions in terms of u = tan(θ/2), and letting v = ρ, show
that we get

x =
16uv2(1− u2)

(u2 + 1)2(v2 + 1)2
,

y =
8uv(u2 + 1)(v2 − 1)

(u2 + 1)2(v2 + 1)2
,

z =
4v2(u4 − 6u2 + 1)

(u2 + 1)2(v2 + 1)2
.

Problem 3.9. Consider the parametric surface given by

x(u, v) =
4v(u2 + v2 − 1)

(u2 + v2 + 1)2
,

y(u, v) =
4u(u2 + v2 − 1)

(u2 + v2 + 1)2
,

z(u, v) =
4(u2 − v2)

(u2 + v2 + 1)2
.

The trace of this surface is called the Steiner Roman surface. In order to plot this surface,
make the change of variables

u = ρ cos θ

v = ρ sin θ.

Prove that we obtain the parametric definition

x =
4ρ(ρ2 − 1)

(ρ2 + 1)2
sin θ,

y =
4ρ(ρ2 − 1)

(ρ2 + 1)2
cos θ,

z =
4ρ2

(ρ2 + 1)2
cos 2θ.

Show that the entire trace of the surface is obtained for ρ ∈ [0, 1] and θ ∈ [−π, π]. Plot
the trace of the surface using the above parametrization.

Plot the portion of the surface for ρ ∈ [0, 1] and θ ∈ [0, π].

Prove that this surface has five singular points.

(b) Express the trigonometric functions in terms of u = tan(θ/2), and letting v = ρ, show
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that we get

x =
8uv(u2 + 1)(v2 − 1)

(u2 + 1)2(v2 + 1)2
,

y =
4v(1− u4)(v2 − 1)

(u2 + 1)2(v2 + 1)2
,

z =
4v2(u4 − 6u2 + 1)

(u2 + 1)2(v2 + 1)2
.

Problem 3.10. Consider the map H : R3 → R4 defined such that

(x, y, z) 7→ (xy, yz, xz, x2 − y2).

Prove that when it is restricted to the sphere S2 (in R3), we have H(x, y, z) = H(x′, y′, z′) iff
(x′, y′, z′) = (x, y, z) or (x′, y′, z′) = (−x,−y,−z). In other words, the inverse image of every
point in H(S2) consists of two antipodal points.

(a) Prove that the map H induces an injective map from the projective plane onto H(S2),
and that it is a homeomorphism.

(b) The map H allows us to realize concretely the projective plane in R4 as an embedded
manifold. Consider the three maps from R2 to R4 given by

ψ1(u, v) =

(
uv

u2 + v2 + 1
,

v

u2 + v2 + 1
,

u

u2 + v2 + 1
,

u2 − v2

u2 + v2 + 1

)
,

ψ2(u, v) =

(
u

u2 + v2 + 1
,

v

u2 + v2 + 1
,

uv

u2 + v2 + 1
,

u2 − 1

u2 + v2 + 1

)
,

ψ3(u, v) =

(
u

u2 + v2 + 1
,

uv

u2 + v2 + 1
,

v

u2 + v2 + 1
,

1− u2

u2 + v2 + 1

)
.

Observe that ψ1 is the composition H ◦ α1, where α1 : R2 −→ S2 is given by

(u, v) 7→
(

u√
u2 + v2 + 1

,
v√

u2 + v2 + 1
,

1√
u2 + v2 + 1

)
,

that ψ2 is the composition H ◦ α2, where α2 : R2 −→ S2 is given by

(u, v) 7→
(

u√
u2 + v2 + 1

,
1√

u2 + v2 + 1
,

v√
u2 + v2 + 1

)
.

and ψ3 is the composition H ◦ α3, where α3 : R2 −→ S2 is given by

(u, v) 7→
(

1√
u2 + v2 + 1

,
u√

u2 + v2 + 1
,

v√
u2 + v2 + 1

)
,

Prove that each ψi is injective, continuous and nonsingular (i.e., the Jacobian has rank 2).
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(c) Prove that if ψ1(u, v) = (x, y, z, t), then

y2 + z2 ≤ 1

4
and y2 + z2 =

1

4
iff u2 + v2 = 1.

Prove that if ψ1(u, v) = (x, y, z, t), then u and v satisfy the equations

(y2 + z2)u2 − zu+ z2 = 0

(y2 + z2)v2 − yv + y2 = 0.

Prove that if y2 + z2 6= 0, then

u =
z(1−

√
1− 4(y2 + z2))

2(y2 + z2)
if u2 + v2 ≤ 1,

else

u =
z(1 +

√
1− 4(y2 + z2))

2(y2 + z2)
if u2 + v2 ≥ 1,

and there are similar formulae for v. Prove that the expression giving u in terms of y and z
is continuous everywhere in {(y, z) | y2 + z2 ≤ 1

4
} and similarly for the expression giving v

in terms of y and z. Conclude that ψ1 : R2 → ψ1(R2) is a homeomorphism onto its image.
Therefore, U1 = ψ1(R2) is an open subset of H(S2).

Prove that if ψ2(u, v) = (x, y, z, t), then

x2 + y2 ≤ 1

4
and x2 + y2 =

1

4
iff u2 + v2 = 1.

Prove that if ψ2(u, v) = (x, y, z, t), then u and v satisfy the equations

(x2 + y2)u2 − xu+ x2 = 0

(x2 + y2)v2 − yv + y2 = 0.

Conclude that ψ2 : R2 → ψ2(R2) is a homeomorphism onto its image and that the set
U2 = ψ2(R2) is an open subset of H(S2).

Prove that if ψ3(u, v) = (x, y, z, t), then

x2 + z2 ≤ 1

4
and x2 + z2 =

1

4
iff u2 + v2 = 1.

Prove that if ψ3(u, v) = (x, y, z, t), then u and v satisfy the equations

(x2 + z2)u2 − xu+ x2 = 0

(x2 + z2)v2 − zv + z2 = 0.
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Conclude that ψ3 : R2 → ψ3(R2) is a homeomorphism onto its image and that the set
U3 = ψ3(R2) is an open subset of H(S2).

Prove that the union of the Ui’s covers H(S2). Conclude that ψ1, ψ2, ψ3 are parametriza-
tions of RP2 as a smooth manifold in R4.

(d) Plot the surfaces obtained by dropping the fourth coordinate and the third coordi-
nates, respectively (with u, v ∈ [−1, 1]).

(e) Prove that if (x, y, z, t) ∈ H(S2), then

x2y2 + x2z2 + y2z2 = xyz

x(z2 − y2) = yzt.

Prove that the zero locus of these equations strictly contains H(S2). This is a “famous
mistake” of Hilbert and Cohn-Vossen in Geometry and the Immagination!

Finding a set of equations defining exactly H(S2) appears to be an open problem.

Problem 3.11. Pick any irrational multiple λ of 2π, and define

G =

{
gt =

(
eti 0
0 eλti

) ∣∣∣∣ t ∈ R
}
.

(1) Check that G is a subgroup of GL(2,C).

(2) Prove that the map ϕ : t 7→ gt is a continuous isomorphism of (R,+) onto G, but that
ϕ−1 is not continuous.

Check that g (as defined in Proposition 3.9) is the one dimensional vector space spanned
by

W =

(
i 0
0 λi

)
,

and that etW = gt for all t ∈ R.

(3) For every r > 0 (r ∈ R), prove that

exp({tW | t ∈ (−r, r)}) = {gt | t ∈ (−r, r)}
is not a neighborhood of I in G.

The problem is that there are elements of G of the form g2πn for some large n that are
arbitrarily close to I, so they are exponential images of very short vectors in M2(C), but
they are exponential images only of very long vectors in g.

(4) Prove that the closure of the group G is the group

G =

{(
eti 0
0 esi

) ∣∣∣∣ t, s ∈ R
}
,

and that G is dense in G.
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Chapter 4

Groups and Group Actions

This chapter provides the foundations for deriving a class of manifolds known as homogeneous
spaces. It begins with a short review of group theory, introduces the concept of a group acting
on a set, and defines the Grassmanians and Stiefel manifolds as homogenous manifolds arising
from group actions of Lie groups. The last section provides an overview of topological groups,
of which Lie groups are a special example, and contains more advanced material that may
be skipped upon first reading.

4.1 Basic Concepts of Groups

We begin with a brief review of the group theory necessary for understanding the concept of
a group acting on a set. Readers familiar with this material may proceed to the next section.

Definition 4.1. A group is a set G equipped with a binary operation · : G × G → G that
associates an element a · b ∈ G to every pair of elements a, b ∈ G, and having the following
properties: · is associative, has an identity element e ∈ G, and every element in G is invertible
(w.r.t. ·). More explicitly, this means that the following equations hold for all a, b, c ∈ G:

(G1) a · (b · c) = (a · b) · c. (associativity)

(G2) a · e = e · a = a. (identity)

(G3) For every a ∈ G, there is some a−1 ∈ G such that a · a−1 = a−1 · a = e. (inverse)

A group G is abelian (or commutative) if

a · b = b · a for all a, b ∈ G.

A set M together with an operation · : M ×M → M and an element e satisfying only
conditions (G1) and (G2) is called a monoid . For example, the set N = {0, 1, . . . , n, . . .} of
natural numbers is a (commutative) monoid under addition. However, it is not a group.

Some examples of groups are given below.

121
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Example 4.1.

1. The set Z = {. . . ,−n, . . . ,−1, 0, 1, . . . , n, . . .} of integers is an abelian group under
addition, with identity element 0. However, Z∗ = Z − {0} is not a group under
multiplication, but rather a commutative monoid.

2. The set Q of rational numbers (fractions p/q with p, q ∈ Z and q 6= 0) is an abelian
group under addition, with identity element 0. The set Q∗ = Q−{0} is also an abelian
group under multiplication, with identity element 1.

3. Similarly, the sets R of real numbers and C of complex numbers are abelian groups
under addition (with identity element 0), and R∗ = R − {0} and C∗ = C − {0} are
abelian groups under multiplication (with identity element 1).

4. The sets Rn and Cn of n-tuples of real or complex numbers are groups under compo-
nentwise addition:

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn),

with identity element (0, . . . , 0). All these groups are abelian.

5. Given any nonempty set S, the set of bijections f : S → S, also called permutations
of S, is a group under function composition (i.e., the multiplication of f and g is the
composition g ◦ f), with identity element the identity function idS. This group is not
abelian as soon as S has more than two elements.

6. The set of n×n matrices with real (or complex) coefficients is an abelian group under
addition of matrices, with identity element the null matrix. It is denoted by Mn(R)
(or Mn(C)).

7. The set R[X] of all polynomials in one variable with real coefficients is an abelian group
under addition of polynomials.

8. The set of n×n invertible matrices with real (or complex) coefficients is a group under
matrix multiplication, with identity element the identity matrix In. This group is
called the general linear group and is usually denoted by GL(n,R) (or GL(n,C)).

9. The set of n×n invertible matrices with real (or complex) coefficients and determinant
+1 is a group under matrix multiplication, with identity element the identity matrix
In. This group is called the special linear group and is usually denoted by SL(n,R)
(or SL(n,C)).

10. The set of n × n invertible matrices with real coefficients such that RR> = In and
of determinant +1 is a group called the orthogonal group and is usually denoted by
SO(n) (where R> is the transpose of the matrix R, i.e., the rows of R> are the columns
of R). It corresponds to the rotations in Rn.
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11. Given an open interval (a, b), the set C((a, b)) of continuous functions f : (a, b)→ R is
an abelian group under the operation f + g defined such that

(f + g)(x) = f(x) + g(x)

for all x ∈ (a, b).

It is customary to denote the operation of an abelian group G by +, in which case the
inverse a−1 of an element a ∈ G is denoted by −a.

The identity element of a group is unique. In fact, we can prove a more general fact:

Fact 1. If a binary operation · : M ×M → M is associative and if e′ ∈ M is a left identity
and e′′ ∈M is a right identity, which means that

e′ · a = a for all a ∈M (G2l)

and
a · e′′ = a for all a ∈M, (G2r)

then e′ = e′′.

Proof. If we let a = e′′ in equation (G2l), we get

e′ · e′′ = e′′,

and if we let a = e′ in equation (G2r), we get

e′ · e′′ = e′,

and thus
e′ = e′ · e′′ = e′′,

as claimed.

Fact 1 implies that the identity element of a monoid is unique, and since every group is
a monoid, the identity element of a group is unique. Furthermore, every element in a group
has a unique inverse. This is a consequence of a slightly more general fact:

Fact 2. In a monoid M with identity element e, if some element a ∈M has some left inverse
a′ ∈M and some right inverse a′′ ∈M , which means that

a′ · a = e (G3l)

and
a · a′′ = e, (G3r)

then a′ = a′′.
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Proof. Using (G3l) and the fact that e is an identity element, we have

(a′ · a) · a′′ = e · a′′ = a′′.

Similarly, Using (G3r) and the fact that e is an identity element, we have

a′ · (a · a′′) = a′ · e = a′.

However, since M is monoid, the operation · is associative, so

a′ = a′ · (a · a′′) = (a′ · a) · a′′ = a′′,

as claimed.

Remark: Axioms (G2) and (G3) can be weakened a bit by requiring only (G2r) (the exis-
tence of a right identity) and (G3r) (the existence of a right inverse for every element) (or
(G2l) and (G3l)). It is a good exercise to prove that the group axioms (G2) and (G3) follow
from (G2r) and (G3r).

Given a group G, for any two subsets R, S ⊆ G, we let

RS = {r · s | r ∈ R, s ∈ S}.

In particular, for any g ∈ G, if R = {g}, we write

gS = {g · s | s ∈ S},

and similarly, if S = {g}, we write

Rg = {r · g | r ∈ R}.

From now on, we will drop the multiplication sign and write g1g2 for g1 · g2.

Definition 4.2. Given a group G, a subset H of G is a subgroup of G iff

(1) The identity element e of G also belongs to H (e ∈ H);

(2) For all h1, h2 ∈ H, we have h1h2 ∈ H;

(3) For all h ∈ H, we have h−1 ∈ H.

It is easily checked that a subset H ⊆ G is a subgroup of G iff H is nonempty and
whenever h1, h2 ∈ H, then h1h

−1
2 ∈ H.
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Definition 4.3. If H is a subgroup of G and g ∈ G is any element, the sets of the form gH
are called left cosets of H in G and the sets of the form Hg are called right cosets of H in
G.

The left cosets (resp. right cosets) of H induce an equivalence relation ∼ defined as
follows: For all g1, g2 ∈ G,

g1 ∼ g2 iff g1H = g2H

(resp. g1 ∼ g2 iff Hg1 = Hg2).

Obviously, ∼ is an equivalence relation. It is easy to see that g1H = g2H iff g−1
2 g1 ∈ H,

so the equivalence class of an element g ∈ G is the coset gH (resp. Hg). The set of left
cosets of H in G (which, in general, is not a group) is denoted G/H. The “points” of G/H
are obtained by “collapsing” all the elements in a coset into a single element. This is the
same intuition used for constructing the quotient space topology. The set of right cosets is
denoted by H\G.

It is tempting to define a multiplication operation on left cosets (or right cosets) by
setting

(g1H)(g2H) = (g1g2)H,

but this operation is not well defined in general, unless the subgroup H possesses a special
property. This property is typical of the kernels of group homomorphisms, so we are led to

Definition 4.4. Given any two groups G and G′, a function ϕ : G→ G′ is a homomorphism
iff

ϕ(g1g2) = ϕ(g1)ϕ(g2), for all g1, g2 ∈ G.

Taking g1 = g2 = e (in G), we see that

ϕ(e) = e′,

and taking g1 = g and g2 = g−1, we see that

ϕ(g−1) = ϕ(g)−1.

If ϕ : G→ G′ and ψ : G′ → G′′ are group homomorphisms, then ψ ◦ ϕ : G→ G′′ is also a
homomorphism. If ϕ : G→ G′ is a homomorphism of groups, and H ⊆ G, H ′ ⊆ G′ are two
subgroups, then it is easily checked that

Im H = ϕ(H) = {ϕ(g) | g ∈ H}

is a subgroup of G′ called the image of H by ϕ, and

ϕ−1(H ′) = {g ∈ G | ϕ(g) ∈ H ′}
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is a subgroup of G. In particular, when H ′ = {e′}, we obtain the kernel Ker ϕ of ϕ. Thus,

Ker ϕ = {g ∈ G | ϕ(g) = e′}.

It is immediately verified that ϕ : G → G′ is injective iff Ker ϕ = {e}. (We also write
Ker ϕ = (0).) We say that ϕ is an isomorphism if there is a homomorphism ψ : G′ → G, so
that

ψ ◦ ϕ = idG and ϕ ◦ ψ = idG′ .

In this case, ψ is unique and it is denoted ϕ−1. When ϕ is an isomorphism, we say the the
groups G and G′ are isomorphic and we write G ∼= G′ (or G ≈ G′). When G′ = G, a group
isomorphism is called an automorphism.

We claim that H = Ker ϕ satisfies the following property:

gH = Hg, for all g ∈ G. (∗)

Note that (∗) is equivalent to

gHg−1 = H, for all g ∈ G,

and the above is equivalent to

gHg−1 ⊆ H, for all g ∈ G. (∗∗)

This is because gHg−1 ⊆ H implies H ⊆ g−1Hg, and this for all g ∈ G. But

ϕ(ghg−1) = ϕ(g)ϕ(h)ϕ(g−1) = ϕ(g)e′ϕ(g)−1 = ϕ(g)ϕ(g)−1 = e′,

for all h ∈ H = Ker ϕ and all g ∈ G. Thus, by definition of H = Ker ϕ, we have gHg−1 ⊆ H.

Definition 4.5. For any group G, a subgroup N of G is a normal subgroup of G iff

gNg−1 = N, for all g ∈ G.

This is denoted by N CG.

If N is a normal subgroup of G, the equivalence relation induced by left cosets is the
same as the equivalence induced by right cosets. Furthermore, this equivalence relation ∼ is
a congruence, which means that: For all g1, g2, g

′
1, g
′
2 ∈ G,

(1) If g1N = g′1N and g2N = g′2N , then g1g2N = g′1g
′
2N , and

(2) If g1N = g2N , then g−1
1 N = g−1

2 N .
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As a consequence, we can define a group structure on the set G/ ∼ of equivalence classes
modulo ∼, by setting

(g1N)(g2N) = (g1g2)N.

This group is denoted G/N . The equivalence class gN of an element g ∈ G is also denoted
g. The map π : G→ G/N , given by

π(g) = g = gN

is clearly a group homomorphism called the canonical projection.

Given a homomorphism of groups ϕ : G→ G′, we easily check that the groups G/Ker ϕ
and Im ϕ = ϕ(G) are isomorphic.

4.2 Group Actions: Part I, Definition and Examples

If X is a set (usually some kind of geometric space, for example, the sphere in R3, the upper
half-plane, etc.), the “symmetries” of X are often captured by the action of a group G on
X. In fact, if G is a Lie group and the action satisfies some simple properties, the set X
can be given a manifold structure which makes it a projection (quotient) of G, a so-called
“homogeneous space.”

Definition 4.6. Given a set X and a group G, a left action of G on X (for short, an action
of G on X) is a function ϕ : G×X → X, such that:

(1) For all g, h ∈ G and all x ∈ X,

ϕ(g, ϕ(h, x)) = ϕ(gh, x),

(2) For all x ∈ X,
ϕ(1, x) = x,

where 1 ∈ G is the identity element of G.

To alleviate the notation, we usually write g · x or even gx for ϕ(g, x), in which case the
above axioms read:

(1) For all g, h ∈ G and all x ∈ X,

g · (h · x) = gh · x,

(2) For all x ∈ X,
1 · x = x.

The set X is called a (left) G-set . The action ϕ is faithful or effective iff for every g, if
g · x = x for all x ∈ X, then g = 1. Faithful means that if the action of some element g
behaves like the identity, then g must be the identity element. The action ϕ is transitive iff
for any two elements x, y ∈ X, there is some g ∈ G so that g · x = y.
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Given an action ϕ : G×X → X, for every g ∈ G, we have a function ϕg : X → X defined
by

ϕg(x) = g · x, for all x ∈ X.
Observe that ϕg has ϕg−1 as inverse, since

ϕg−1(ϕg(x)) = ϕg−1(g · x) = g−1 · (g · x) = (g−1g) · x = 1 · x = x,

and similarly, ϕg ◦ ϕg−1 = id. Therefore, ϕg is a bijection of X; that is, ϕg is a permutation
of X. Moreover, we check immediately that

ϕg ◦ ϕh = ϕgh,

so the map g 7→ ϕg is a group homomorphism from G to SX , the group of permutations of
X. With a slight abuse of notation, this group homomorphism G −→ SX is also denoted ϕ.

Conversely, it is easy to see that any group homomorphism ϕ : G → SX yields a group
action · : G×X −→ X, by setting

g · x = ϕ(g)(x).

Observe that an action ϕ is faithful iff the group homomorphism ϕ : G → SX is injective,
i.e. iff ϕ has a trivial kernel. Also, we have g · x = y iff g−1 · y = x, since (gh) · x = g · (h · x)
and 1 · x = x, for all g, h ∈ G and all x ∈ X.

Definition 4.7. Given two G-sets X and Y , a function f : X → Y is said to be equivariant ,
or a G-map, iff for all x ∈ X and all g ∈ G, we have

f(g · x) = g · f(x).

Equivalently, if the G-actions are denoted by ϕ : G×X → X and ψ : G× Y → Y , we have
the following commutative diagram for all g ∈ G:

X
ϕg //

f

��

X

f

��
Y

ψg
// Y.

Remark: We can also define a right action · : X × G → X of a group G on a set X as a
map satisfying the conditions

(1) For all g, h ∈ G and all x ∈ X,

(x · g) · h = x · gh,

(2) For all x ∈ X,
x · 1 = x.

Every notion defined for left actions is also defined for right actions in the obvious way.
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� However, one change is necessary. For every g ∈ G, the map ϕg : X → X must be
defined as

ϕg(x) = x · g−1,

in order for the map g 7→ ϕg from G to SX to be a homomorphism (ϕg ◦ ϕh = ϕgh).
Conversely, given a homomorphism ϕ : G → SX , we get a right action · : X × G −→ X by
setting

x · g = ϕ(g−1)(x).

Here are some examples of (left) group actions.

Example 4.2. The unit sphere S2 (more generally, Sn−1).

Recall that for any n ≥ 1, the (real) unit sphere Sn−1 is the set of points in Rn given by

Sn−1 = {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n = 1}.
In particular, S2 is the usual sphere in R3. Since the group SO(3) = SO(3,R) consists of
(orientation preserving) linear isometries, i.e., linear maps that are distance preserving (and
of determinant +1), and every linear map leaves the origin fixed, we see that any rotation
maps S2 into itself.

� Beware that this would be false if we considered the group of affine isometries SE(3) of
E3. For example, a screw motion does not map S2 into itself, even though it is distance

preserving, because the origin is translated.

Thus, for X = S2 and G = SO(3), we have an action · : SO(3)× S2 → S2, given by the
matrix multiplication

R · x = Rx.

The verification that the above is indeed an action is trivial. This action is transitive.
This is because, for any two points x, y on the sphere S2, there is a rotation whose axis is
perpendicular to the plane containing x, y and the center O of the sphere (this plane is not
unique when x and y are antipodal, i.e., on a diameter) mapping x to y. See Figure 4.1.

Similarly, for any n ≥ 1, let X = Sn−1 and G = SO(n) and define the action · : SO(n)×
Sn−1 → Sn−1 as R · x = Rx. It is easy to show that this action is transitive.

Analogously, we can define the (complex) unit sphere Σn−1, as the set of points in Cn

given by
Σn−1 = {(z1, . . . , zn) ∈ Cn | z1z1 + · · ·+ znzn = 1}.

If we write zj = xj + iyj, with xj, yj ∈ R, then

Σn−1 = {(x1, . . . , xn, y1, . . . , yn) ∈ R2n | x2
1 + · · ·+ x2

n + y2
1 + · · ·+ y2

n = 1}.
Therefore, we can view the complex sphere Σn−1 (in Cn) as the real sphere S2n−1 (in R2n).
By analogy with the real case, we can define for X = Σn−1 and G = SU(n) an action
· : SU(n)×Σn−1 → Σn−1 of the group SU(n) of linear maps of Cn preserving the Hermitian
inner product (and the origin, as all linear maps do), and this action is transitive.
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x

y

Figure 4.1: The rotation which maps x to y.

� One should not confuse the unit sphere Σn−1 with the hypersurface Sn−1
C , given by

Sn−1
C = {(z1, . . . , zn) ∈ Cn | z2

1 + · · ·+ z2
n = 1}.

For instance, one should check that a line L through the origin intersects Σn−1 in a circle,
whereas it intersects Sn−1

C in exactly two points! Recall for a fixed u = (x1, . . . xn, y1, . . . yn) ∈
Cn, that L = {γu | γ ∈ C}. Since γ = ρ(cos θ + i sin θ), we deduce that L is actu-
ally the two dimensional subspace through the origin spanned by the orthogonal vectors
(x1, . . . xn, y1, . . . yn) and (−y1, · · · − yn, x1, . . . xn).

Example 4.3. The upper half-plane.

The upper half-plane H is the open subset of R2 consisting of all points (x, y) ∈ R2, with
y > 0. It is convenient to identifyH with the set of complex numbers z ∈ C such that = z > 0.
Then we can let X = H and G = SL(2,R) and define an action · : SL(2,R) × H → H of
the group SL(2,R) on H, as follows: For any z ∈ H, for any A ∈ SL(2,R),

A · z =
az + b

cz + d
,

where

A =

(
a b
c d

)
with ad− bc = 1.

It is easily verified that A · z is indeed always well defined and in H when z ∈ H (check
this). To see why this action is transitive, let z and w be two arbitrary points of H where
z = x + iy and w = u + iv with x, u ∈ R and y, v ∈ R+ (i.e. y and v are positive real

numbers). Define A =

(√
v
y

uy−vx√
yv

0
√

y
v

)
. Note that A ∈ SL(2,R). A routine calculation shows

that A · z = w.
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Before introducing Example 4.4, we need to define the groups of Möbius transformations
and the Riemann sphere. Maps of the form

z 7→ az + b

cz + d
,

where z ∈ C and ad− bc = 1, are called Möbius transformations . Here, a, b, c, d ∈ R, but in
general, we allow a, b, c, d ∈ C. Actually, these transformations are not necessarily defined
everywhere on C, for example, for z = −d/c if c 6= 0. To fix this problem, we add a “point
at infinity”∞ to C, and define Möbius transformations as functions C∪{∞} −→ C∪{∞}.
If c = 0, the Möbius transformation sends ∞ to itself, otherwise, −d/c 7→ ∞ and ∞ 7→ a/c.

The space C∪{∞} can be viewed as the plane R2 extended with a point at infinity. Using
a stereographic projection from the sphere S2 to the plane (say from the north pole to the
equatorial plane), we see that there is a bijection between the sphere S2 and C∪{∞}. More
precisely, the stereographic projection σN of the sphere S2 from the north pole N = (0, 0, 1)
to the plane z = 0 (extended with the point at infinity ∞) is given by

(x, y, z) ∈ S2 − {(0, 0, 1)} 7→
(

x

1− z ,
y

1− z

)
=
x+ iy

1− z ∈ C, with (0, 0, 1) 7→ ∞.

The inverse stereographic projection σ−1
N is given by

(x, y) 7→
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
, with ∞ 7→ (0, 0, 1).

Intuitively, the inverse stereographic projection “wraps” the equatorial plane around the
sphere. See Figure 3.3.

The space C ∪ {∞} is known as the Riemann sphere. We will see shortly that C ∪
{∞} ∼= S2 is also the complex projective line CP1. In summary, Möbius transformations
are bijections of the Riemann sphere. It is easy to check that these transformations form a
group under composition for all a, b, c, d ∈ C, with ad − bc = 1. This is the Möbius group,
denoted Möb+. The Möbius transformations corresponding to the case a, b, c, d ∈ R, with
ad− bc = 1 form a subgroup of Möb+ denoted Möb+

R .

The map from SL(2,C) to Möb+ that sends A ∈ SL(2,C) to the corresponding Möbius
transformation is a surjective group homomorphism, and one checks easily that its kernel
is {−I, I} (where I is the 2 × 2 identity matrix). Therefore, the Möbius group Möb+ is
isomorphic to the quotient group SL(2,C)/{−I, I}, denoted PSL(2,C). This latter group
turns out to be the group of projective transformations of the projective space CP1. The
same reasoning shows that the subgroup Möb+

R is isomorphic to SL(2,R)/{−I, I}, denoted
PSL(2,R).

Example 4.4. The Riemann sphere C ∪ {∞}.
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Let X = C ∪ {∞} and G = SL(2,C). The group SL(2,C) acts on C ∪ {∞} ∼= S2 the
same way that SL(2,R) acts on H, namely: For any A ∈ SL(2,C), for any z ∈ C ∪ {∞},

A · z =
az + b

cz + d
,

where

A =

(
a b
c d

)
with ad− bc = 1.

This action is transitive, an exercise we leave for the reader.

Example 4.5. The unit disk.

One may recall from complex analysis that the scaled (complex) Möbius transformation

z 7→ z − i
z + i

is a biholomorphic or analytic isomorphism between the upper half plane H and the open
unit disk

D = {z ∈ C | |z| < 1}.
As a consequence, it is possible to define a transitive action of SL(2,R) on D. This can be
done in a more direct fashion, using a group isomorphic to SL(2,R), namely, SU(1, 1) (a
group of complex matrices), but we don’t want to do this right now.

Example 4.6. The unit Riemann sphere revisited.

Another interesting action is the action of SU(2) on the extended plane C∪{∞}. Recall
that the group SU(2) consists of all complex matrices of the form

A =

(
α β

−β α

)
α, β ∈ C, αα + ββ = 1,

Let X = C ∪ {∞} and G = SU(2). The action · : SU(2)× (C ∪ {∞})→ C ∪ {∞} is given
by

A · w =
αw + β

−βw + α
, w ∈ C ∪ {∞}.

This action is transitive, but the proof of this fact relies on the surjectivity of the group
homomorphism

ρ : SU(2)→ SO(3)

defined below, and the stereographic projection σN from S2 onto C ∪ {∞}. In particular,
take z, w ∈ C ∪ {∞}, use the inverse stereographic projection to obtain two points on S2,
namely σ−1

N (z) and σ−1
N (w). Then apply the appropriate rotation R ∈ SO(3) to map σ−1

N (z)
onto σ−1

N (w). Such a rotation exists by the argument presented in Example 4.2. Since
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ρ : SU(2)→ SO(3) is surjective (see below), we know there must exist A ∈ SU(2) such that
ρ(A) = R and A · z = w.

Using the stereographic projection σN from S2 onto C∪{∞} and its inverse σ−1
N , we can

define an action of SU(2) on S2 by

A · (x, y, z) = σ−1
N (A · σN(x, y, z)), (x, y, z) ∈ S2.

Although this is not immediately obvious, it turns out that SU(2) acts on S2 by maps that are
restrictions of linear maps to S2, and since these linear maps preserve S2, they are orthogonal
transformations. Thus, we obtain a continuous (in fact, smooth) group homomorphism

ρ : SU(2)→ O(3).

Since SU(2) is connected and ρ is continuous, the image of SU(2) is contained in the
connected component of I in O(3), namely SO(3), so ρ is a homomorphism

ρ : SU(2)→ SO(3).

We will see that this homomorphism is surjective and that its kernel is {I,−I}. The upshot
is that we have an isomorphism

SO(3) ∼= SU(2)/{I,−I}.

The homomorphism ρ is a way of describing how a unit quaternion (any element of SU(2))
induces a rotation, via the stereographic projection and its inverse. If we write α = a + ib
and β = c+ id, a rather tedious computation yields

ρ(A) =

a2 − b2 − c2 + d2 −2ab− 2cd −2ac+ 2bd
2ab− 2cd a2 − b2 + c2 − d2 −2ad− 2bc
2ac+ 2bd 2ad− 2bc a2 + b2 − c2 − d2

 .

One can check that ρ(A) is indeed a rotation matrix which represents the rotation whose
axis is the line determined by the vector (d,−c, b) and whose angle θ ∈ [−π, π] is determined
by

cos
θ

2
= |a|.

We can also compute the derivative dρI : su(2)→ so(3) of ρ at I as follows. Recall that
su(2) consists of all complex matrices of the form(

ib c+ id
−c+ id −ib

)
, b, c, d ∈ R,

so pick the following basis for su(2),

X1 =

(
i 0
0 −i

)
, X2 =

(
0 1
−1 0

)
, X3 =

(
0 i
i 0

)
,
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and define the curves in SU(2) through I given by

c1(t) =

(
eit 0
0 e−it

)
, c2(t) =

(
cos t sin t
− sin t cos t

)
, c3(t) =

(
cos t i sin t
i sin t cos t

)
.

It is easy to check that c′i(0) = Xi for i = 1, 2, 3, and that

dρI(X1) = 2

0 −1 0
1 0 0
0 0 0

 , dρI(X2) = 2

0 0 −1
0 0 0
1 0 0

 , dρI(X3) = 2

0 0 0
0 0 −1
0 1 0

 .

Thus we have
dρI(X1) = 2E3, dρI(X2) = −2E2, dρI(X3) = 2E1,

where (E1, E2, E3) is the basis of so(3) given in Section 3.1, which means that dρI is an
isomorphism between the Lie algebras su(2) and so(3).

Recall from Proposition 3.13 that we have the commutative diagram

SU(2)
ρ // SO(3)

su(2)
dρI

//

exp

OO

so(3) .

exp

OO

Since dρI is surjective and the exponential map exp: so(3) → SO(3) is surjective, we con-
clude that ρ is surjective. (We also know from Section 3.1 that exp: su(2) → SU(2) is
surjective.) Observe that ρ(−A) = ρ(A), and it is easy to check that Ker ρ = {I,−I}.
Example 4.7. The set of n× n symmetric, positive, definite matrices, SPD(n).

Let X = SPD(n) and G = GL(n). The group GL(n) = GL(n,R) acts on SPD(n) as
follows: for all A ∈ GL(n) and all S ∈ SPD(n),

A · S = ASA>.

It is easily checked that ASA> is in SPD(n) if S is in SPD(n). First observe that ASA> is
symmetric since

(ASA>)> = AS>A> = ASA>.

Next recall the following characterization of positive definite matrix, namely

y>Sy > 0, whenever y 6= 0.

We want to show x>(A>SA)x > 0 for all x 6= 0. Since A is invertible, we have x = A−1y for
some nonzero y, and hence

x>(A>SA)x = y>(A−1)>A>SAA−1y

= y>Sy > 0.
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Hence A>SA is positive definite. This action is transitive because every SPD matrix S can
be written as S = AA>, for some invertible matrix A (prove this as an exercise). Given any
two SPD matrices S1 = A1A

>
1 and S2 = A2A

>
2 with A1 and A2 invertible, if A = A2A

−1
1 , we

have

A · S1 = A2A
−1
1 S1(A2A

−1
1 )> = A2A

−1
1 S1(A>1 )−1A>2

= A2A
−1
1 A1A

>
1 (A>1 )−1A>2 = A2A

>
2 = S2.

Example 4.8. The projective spaces RPn and CPn.

The (real) projective space RPn is the set of all lines through the origin in Rn+1; that
is, the set of one-dimensional subspaces of Rn+1 (where n ≥ 0). Since a one-dimensional
subspace L ⊆ Rn+1 is spanned by any nonzero vector u ∈ L, we can view RPn as the set of
equivalence classes of nonzero vectors in Rn+1 − {0} modulo the equivalence relation

u ∼ v iff v = λu, for some λ ∈ R, λ 6= 0.

In terms of this definition, there is a projection pr : (Rn+1 − {0})→ RPn, given by pr(u) =
[u]∼, the equivalence class of u modulo ∼. Write [u] for the line defined by the nonzero
vector u. Since every line L in Rn+1 intersects the sphere Sn in two antipodal points, we can
view RPn as the quotient of the sphere Sn by identification of antipodal points. See Figures
4.2 and 4.3.

Let X = RPn and G = SO(n+ 1). We define an action of SO(n+ 1) on RPn as follows:
For any line L = [u], for any R ∈ SO(n+ 1),

R · L = [Ru].

Since R is linear, the line [Ru] is well defined; that is, does not depend on the choice of
u ∈ L. The reader can show that this action is transitive.

The (complex) projective space CPn is defined analogously as the set of all lines through
the origin in Cn+1; that is, the set of one-dimensional subspaces of Cn+1 (where n ≥ 0). This
time, we can view CPn as the set of equivalence classes of vectors in Cn+1−{0} modulo the
equivalence relation

u ∼ v iff v = λu, for some λ 6= 0 ∈ C.

We have the projection pr : Cn+1 − {0} → CPn, given by pr(u) = [u]∼, the equivalence
class of u modulo ∼. Again, write [u] for the line defined by the nonzero vector u. Let
X = CPn and G = SU(n + 1). We define an action of SU(n + 1) on CPn as follows: For

any line L = [u], for any R ∈ SU(n+ 1),

R · L = [Ru].

Again, this action is well defined and it is transitive. (Check this.)
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y = 1

L ∞

u

[u] ~

v

[v]~

(i.)

x

x
y

y

(ii.)

x x
x

(iii.)

Figure 4.2: Three constructions for RP1 ∼= S1. Illustration (i.) applies the equivalence
relation. Since any line through the origin, excluding the x-axis, intersects the line y = 1,
its equivalence class is represented by its point of intersection on y = 1. Hence, RPn is the
disjoint union of the line y = 1 and the point of infinity given by the x-axis. Illustration
(ii.) represents RP1 as the quotient of the circle S1 by identification of antipodal points.
Illustration (iii.) is a variation which glues the equatorial points of the upper semicircle.

Before progressing to our final example of group actions, we take a moment to construct
CPn as a quotient space of S2n+1. Recall that Σn ⊆ Cn+1, the unit sphere in Cn+1, is defined
by

Σn = {(z1, . . . , zn+1) ∈ Cn+1 | z1z1 + · · ·+ zn+1zn+1 = 1}.
For any line L = [u], where u ∈ Cn+1 is a nonzero vector, writing u = (u1, . . . , un+1), a point
z ∈ Cn+1 belongs to L iff z = λ(u1, . . . , un+1), for some λ ∈ C. Therefore, the intersection
L ∩ Σn of the line L and the sphere Σn is given by

L ∩ Σn = {λ(u1, . . . , un+1) ∈ Cn+1 | λ ∈ C, λλ(u1u1 + · · ·+ un+1un+1) = 1},

i.e.,

L ∩ Σn =

{
λ(u1, . . . , un+1) ∈ Cn+1

∣∣∣∣∣ λ ∈ C, |λ| = 1√
|u1|2 + · · ·+ |un+1|2

}
.
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z = 1

[u]~[v]~

x

x

(i.)

(ii.)

x

x

(iii.)

Figure 4.3: Three constructions for RP2. Illustration (i.) applies the equivalence relation.
Since any line through the origin which is not contained in the xy-plane intersects the plane
z = 1, its equivalence class is represented by its point of intersection on z = 1. Hence,
RP2 is the disjoint union of the plane z = 1 and the copy of RP1 provided by the xy-plane.
Illustration (ii.) represents RP2 as the quotient of the sphere S2 by identification of antipodal
points. Illustration (iii.) is a variation which glues the antipodal points on boundary of the
unit disk, which is represented as as the upper hemisphere.

Thus, we see that there is a bijection between L∩Σn and the circle S1; that is, geometrically
L ∩ Σn is a circle. Moreover, since any line L through the origin is determined by just one
other point, we see that for any two lines L1 and L2 through the origin,

L1 6= L2 iff (L1 ∩ Σn) ∩ (L2 ∩ Σn) = ∅.

However, Σn is the sphere S2n+1 in R2n+2. It follows that CPn is the quotient of S2n+1 by
the equivalence relation ∼ defined such that

y ∼ z iff y, z ∈ L ∩ Σn, for some line, L, through the origin.

Therefore, we can write
S2n+1/S1 ∼= CPn.

The case n = 1 is particularly interesting, as it turns out that

S3/S1 ∼= S2.
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This is the famous Hopf fibration. To show this, proceed as follows: As

S3 ∼= Σ1 = {(z, z′) ∈ C2 | |z|2 + |z′|2 = 1},

define a map, HF: S3 → S2, by

HF((z, z′)) = (2zz′, |z|2 − |z′|2).

We leave as a homework exercise to prove that this map has range S2 and that

HF((z1, z
′
1)) = HF((z2, z

′
2)) iff (z1, z

′
1) = λ(z2, z

′
2), for some λ with |λ| = 1.

In other words, for any point, p ∈ S2, the inverse image HF−1(p) (also called fibre over p) is a
circle on S3. Consequently, S3 can be viewed as the union of a family of disjoint circles. This
is the Hopf fibration. It is possible to visualize the Hopf fibration using the stereographic
projection from S3 onto R3. This is a beautiful and puzzling picture. For example, see
Berger [13]. Therefore, HF induces a bijection from CP1 to S2, and it is a homeomorphism.

Example 4.9. Affine spaces.

Let X be a set and E a real vector space. A transitive and faithful action · : E×X → X
of the additive group of E on X makes X into an affine space. The intuition is that the
members of E are translations.

Those familiar with affine spaces as in Gallier [48] (Chapter 2) or Berger [13] will point
out that if X is an affine space, then not only is the action of E on X transitive, but more
is true: For any two points a, b ∈ E, there is a unique vector u ∈ E, such that u · a = b.
By the way, the action of E on X is usually considered to be a right action and is written
additively, so u · a is written a + u (the result of translating a by u). Thus, it would seem
that we have to require more of our action. However, this is not necessary because E (under
addition) is abelian. More precisely, we have the proposition

Proposition 4.1. If G is an abelian group acting on a set X and the action · : G×X → X
is transitive and faithful, then for any two elements x, y ∈ X, there is a unique g ∈ G so
that g · x = y (the action is simply transitive).

Proof. Since our action is transitive, there is at least some g ∈ G so that g · x = y. Assume
that we have g1, g2 ∈ G with

g1 · x = g2 · x = y.

We shall prove that
g1 · z = g2 · z, for all z ∈ X.

This implies that

g1g
−1
2 · z = z, for all z ∈ X.

As our action is faithful, g1g
−1
2 = 1, and we must have g1 = g2, which proves our proposition.
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Pick any z ∈ X. As our action is transitive, there is some h ∈ G so that z = h · x. Then,
we have

g1 · z = g1 · (h · x)

= (g1h) · x
= (hg1) · x (since G is abelian)

= h · (g1 · x)

= h · (g2 · x) (since g1 · x = g2 · x)

= (hg2) · x
= (g2h) · x (since G is abelian)

= g2 · (h · x)

= g2 · z.
Therefore, g1 · z = g2 · z for all z ∈ X, as claimed.

4.3 Group Actions: Part II, Stabilizers and Homoge-

neous Spaces

Now that we have an understanding of how a group G acts on a set X, we may use this
action to form new topological spaces, namely homogeneous spaces. In the construction of
homogeneous spaces, the subset of group elements that leaves some given element x ∈ X
fixed plays an important role.

Definition 4.8. Given an action · : G ×X → X of a group G on a set X, for any x ∈ X,
the group Gx (also denoted StabG(x)), called the stabilizer of x or isotropy group at x, is
given by

Gx = {g ∈ G | g · x = x}.

We have to verify that Gx is indeed a subgroup of G, but this is easy. Indeed, if g ·x = x
and h · x = x, then we also have h−1 · x = x and so, we get gh−1 · x = x, proving that Gx is
a subgroup of G. In general, Gx is not a normal subgroup.

Observe that
Gg·x = gGxg

−1,

for all g ∈ G and all x ∈ X. Indeed,

Gg·x = {h ∈ G | h · (g · x) = g · x}
= {h ∈ G | hg · x = g · x}
= {h ∈ G | g−1hg · x = x},
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which shows g−1Gg·xg ⊆ Gx, or equivalently that Gg·x ⊆ gGxg
−1. It remains to show that

gGxg
−1 ⊆ Gg·x. Take an element of gGxg

−1, which has the form ghg−1 with h · x = x. Since
h · x = x, we have (ghg−1) · gx = gx, which shows that ghg−1 ∈ Gg·x.

Because Gg·x = gGxg
−1, the stabilizers of x and g · x are conjugate of each other.

When the action of G on X is transitive, for any fixed x ∈ G, the set X is a quotient (as
a set, not as group) of G by Gx. Indeed, we can define the map, πx : G→ X, by

πx(g) = g · x, for all g ∈ G.
Observe that

πx(gGx) = (gGx) · x = g · (Gx · x) = g · x = πx(g).

This shows that πx : G→ X induces a quotient map πx : G/Gx → X, from the set G/Gx of
(left) cosets of Gx to X, defined by

πx(gGx) = g · x.
Since

πx(g) = πx(h) iff g · x = h · x iff g−1h · x = x iff g−1h ∈ Gx iff gGx = hGx,

we deduce that πx : G/Gx → X is injective. However, since our action is transitive, for every
y ∈ X, there is some g ∈ G so that g · x = y, and so πx(gGx) = g · x = y; that is, the map
πx is also surjective. Therefore, the map πx : G/Gx → X is a bijection (of sets, not groups).
The map πx : G→ X is also surjective. Let us record this important fact as

Proposition 4.2. If · : G×X → X is a transitive action of a group G on a set X, for every
fixed x ∈ X, the surjection πx : G→ X given by

πx(g) = g · x
induces a bijection

πx : G/Gx → X,

where Gx is the stabilizer of x. See Figure 4.4.

The map πx : G → X (corresponding to a fixed x ∈ X) is sometimes called a projection
of G onto X. Proposition 4.2 shows that for every y ∈ X, the subset π−1

x (y) of G (called
the fibre above y) is equal to some coset gGx of G, and thus is in bijection with the group
Gx itself. We can think of G as a moving family of fibres Gx parametrized by X. This
point of view of viewing a space as a moving family of simpler spaces is typical in (algebraic)
geometry, and underlies the notion of (principal) fibre bundle.

Note that if the action · : G × X → X is transitive, then the stabilizers Gx and Gy of
any two elements x, y ∈ X are isomorphic, as they are conjugates. Thus, in this case, it is
enough to compute one of these stabilizers for a “convenient” x.

As the situation of Proposition 4.2 is of particular interest, we make the following defi-
nition:
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x

Gx

G/Gx =~ X

Figure 4.4: A schematic representation of G/Gx
∼= X, where G is the gray solid, X is its

purple circular base, and Gx is the pink vertical strand. The dotted strands are the fibres
gGx.

Definition 4.9. A set X is said to be a homogeneous space if there is a transitive action
· : G×X → X of some group G on X.

We see that all the spaces of Examples 4.2–4.9, are homogeneous spaces. Another example
that will play an important role when we deal with Lie groups is the situation where we have
a group G, a subgroup H of G (not necessarily normal), and where X = G/H, the set of
left cosets of G modulo H. The group G acts on G/H by left multiplication:

a · (gH) = (ag)H,

where a, g ∈ G. This action is clearly transitive and one checks that the stabilizer of gH
is gHg−1. If G is a topological group and H is a closed subgroup of G (see later for an
explanation), it turns out that G/H is Hausdorff. If G is a Lie group, we obtain a manifold.

� Even if G and X are topological spaces and the action · : G×X → X is continuous, in
general, the space G/Gx under the quotient topology is not homeomorphic to X.

We will give later sufficient conditions that insure that X is indeed a topological space
or even a manifold. In particular, X will be a manifold when G is a Lie group.

In general, an action · : G × X → X is not transitive on X, but for every x ∈ X, it is
transitive on the set

O(x) = G · x = {g · x | g ∈ G}.
Such a set is called the orbit of x. The orbits are the equivalence classes of the following
equivalence relation:
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Definition 4.10. Given an action · : G ×X → X of some group G on X, the equivalence
relation ∼ on X is defined so that, for all x, y ∈ X,

x ∼ y iff y = g · x, for some g ∈ G.

For every x ∈ X, the equivalence class of x is the orbit of x, denoted O(x) or G · x, with

G · x = O(x) = {g · x | g ∈ G}.

The set of orbits is denoted X/G.

We warn the reader that some authors use the notation G\X for the the set of orbits
G ·x, because these orbits can be considered as right orbits, by analogy with right cosets Hg
of a subgroup H of G.

The orbit space X/G is obtained from X by an identification (or merging) process: For
every orbit, all points in that orbit are merged into a single point. This akin to the process
of forming the identification topology. For example, if X = S2 and G is the group consisting
of the restrictions of the two linear maps I and −I of R3 to S2 (where (−I)(x) = −x for all
x ∈ R3), then

X/G = S2/{I,−I} ∼= RP2.

See Figure 4.3. More generally, if Sn is the n-sphere in Rn+1, then we have a bijection
between the orbit space Sn/{I,−I} and RPn:

Sn/{I,−I} ∼= RPn.

Many manifolds can be obtained in this fashion, including the torus, the Klein bottle, the
Möbius band, etc.

Since the action of G is transitive on O(x), by Proposition 4.2, we see that for every
x ∈ X, we have a bijection

O(x) ∼= G/Gx.

As a corollary, if both X and G are finite, for any set A ⊆ X of representatives from
every orbit, we have the orbit formula:

|X| =
∑
a∈A

[G : Ga] =
∑
a∈A
|G|/|Ga|.

Even if a group action · : G × X → X is not transitive, when X is a manifold, we can
consider the set of orbits X/G, and if the action of G on X satisfies certain conditions,
X/G is actually a manifold. Manifolds arising in this fashion are often called orbifolds . In
summary, we see that manifolds arise in at least two ways from a group action:

(1) As homogeneous spaces G/Gx, if the action is transitive.
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(2) As orbifolds X/G (under certain conditions on the action).

Of course, in both cases, the action must satisfy some additional properties.

For the rest of this section, we reconsider Examples 4.2–4.9 in the context of homogeneous
space by determining some stabilizers for those actions.

(a) Consider the action · : SO(n) × Sn−1 → Sn−1 of SO(n) on the sphere Sn−1 (n ≥ 1)
defined in Example 4.2. Since this action is transitive, we can determine the stabilizer of
any convenient element of Sn−1, say e1 = (1, 0, . . . , 0). In order for any R ∈ SO(n) to leave
e1 fixed, the first column of R must be e1, so R is an orthogonal matrix of the form

R =

(
1 U
0 S

)
, with det(S) = 1,

where U is a 1 × (n − 1) row vector. As the rows of R must be unit vectors, we see that
U = 0 and S ∈ SO(n − 1). Therefore, the stabilizer of e1 is isomorphic to SO(n − 1), and
we deduce the bijection

SO(n)/SO(n− 1) ∼= Sn−1.

� Strictly speaking, SO(n − 1) is not a subgroup of SO(n), and in all rigor, we should

consider the subgroup S̃O(n− 1) of SO(n) consisting of all matrices of the form(
1 0
0 S

)
, with det(S) = 1,

and write
SO(n)/S̃O(n− 1) ∼= Sn−1.

However, it is common practice to identify SO(n− 1) with S̃O(n− 1).

When n = 2, as SO(1) = {1}, we find that SO(2) ∼= S1, a circle, a fact that we already
knew. When n = 3, we find that SO(3)/SO(2) ∼= S2. This says that SO(3) is somehow the
result of glueing circles to the surface of a sphere (in R3), in such a way that these circles do
not intersect. This is hard to visualize!

A similar argument for the complex unit sphere Σn−1 shows that

SU(n)/SU(n− 1) ∼= Σn−1 ∼= S2n−1.

Again, we identify SU(n− 1) with a subgroup of SU(n), as in the real case. In particular,
when n = 2, as SU(1) = {1}, we find that

SU(2) ∼= S3;

that is, the group SU(2) is topologically the sphere S3! Actually, this is not surprising if we
remember that SU(2) is in fact the group of unit quaternions.
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(b) We saw in Example 4.3 that the action · : SL(2,R)×H → H of the group SL(2,R)
on the upper half plane is transitive. Let us find out what the stabilizer of z = i is. We
should have

ai+ b

ci+ d
= i,

that is, ai+ b = −c+ di, i.e.,
(d− a)i = b+ c.

Since a, b, c, d are real, we must have d = a and b = −c. Moreover, ad − bc = 1, so we get
a2 + b2 = 1. We conclude that a matrix in SL(2,R) fixes i iff it is of the form(

a −b
b a

)
, with a2 + b2 = 1.

Clearly, these are the rotation matrices in SO(2), and so the stabilizer of i is SO(2). We
conclude that

SL(2,R)/SO(2) ∼= H.

This time we can view SL(2,R) as the result of glueing circles to the upper half plane.
This is not so easy to visualize. There is a better way to visualize the topology of SL(2,R)
by making it act on the open disk D. We will return to this action in a little while.

(c) Now consider the action of SL(2,C) on C∪ {∞} ∼= S2 given in Example 4.4. As it is
transitive, let us find the stabilizer of z = 0. We must have

b

d
= 0,

and as ad− bc = 1, we must have b = 0 and ad = 1. Thus the stabilizer of 0 is the subgroup
SL(2,C)0 of SL(2,C) consisting of all matrices of the form(

a 0
c a−1

)
, where a ∈ C− {0} and c ∈ C.

We get
SL(2,C)/SL(2,C)0

∼= C ∪ {∞} ∼= S2,

but this is not very illuminating.

(d) In Example 4.7 we considered the action · : GL(n)× SPD(n)→ SPD(n) of GL(n)
on SPD(n), the set of symmetric positive definite matrices. As this action is transitive, let
us find the stabilizer of I. For any A ∈ GL(n), the matrix A stabilizes I iff

AIA> = AA> = I.

Therefore the stabilizer of I is O(n), and we find that

GL(n)/O(n) = SPD(n).
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Observe that if GL+(n) denotes the subgroup of GL(n) consisting of all matrices with
a strictly positive determinant, then we have an action · : GL+(n)×SPD(n)→ SPD(n) of
GL+(n) on SPD(n). This action is transitive and we find that the stabilizer of I is SO(n);
consequently, we get

GL+(n)/SO(n) = SPD(n).

(e) In Example 4.8 we considered the action · : SO(n+ 1)×RPn → RPn of SO(n+ 1) on
the (real) projective space RPn. As this action is transitive, let us find the stabilizer of the
line L = [e1], where e1 = (1, 0, . . . , 0). For any R ∈ SO(n + 1), the line L is fixed iff either
R(e1) = e1 or R(e1) = −e1, since e1 and −e1 define the same line. As R is orthogonal with
det(R) = 1, this means that R is of the form

R =

(
α 0
0 S

)
, with α = ±1 and det(S) = α.

But, S must be orthogonal, so we conclude S ∈ O(n). Therefore, the stabilizer of L = [e1]
is isomorphic to the group O(n), and we find that

SO(n+ 1)/O(n) ∼= RPn.

� Strictly speaking, O(n) is not a subgroup of SO(n+ 1), so the above equation does not
make sense. We should write

SO(n+ 1)/Õ(n) ∼= RPn,

where Õ(n) is the subgroup of SO(n+ 1) consisting of all matrices of the form(
α 0
0 S

)
, with S ∈ O(n), α = ±1 and det(S) = α.

This group is also denoted S(O(1)×O(n)). However, the common practice is to write O(n)
instead of S(O(1)×O(n)).

We should mention that RP3 and SO(3) are homeomorphic spaces. This is shown using
the quaternions; for example, see Gallier [48], Chapter 8.

A similar argument applies to the action · : SU(n + 1) × CPn → CPn of SU(n + 1) on
the (complex) projective space CPn. We find that

SU(n+ 1)/U(n) ∼= CPn.

Again, the above is a bit sloppy as U(n) is not a subgroup of SU(n + 1). To be rigorous,

we should use the subgroup Ũ(n) consisting of all matrices of the form(
α 0
0 S

)
, with S ∈ U(n), |α| = 1 and det(S) = α.
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This group is also denoted S(U(1)×U(n)). The common practice is to write U(n) instead
of S(U(1)×U(n)). In particular, when n = 1, we find that

SU(2)/U(1) ∼= CP1.

But, we know that SU(2) ∼= S3, and clearly U(1) ∼= S1. So, again, we find that S3/S1 ∼= CP1

(we know more, namely, S3/S1 ∼= S2 ∼= CP1.)

Observe that CPn can also be viewed as the orbit space of the action · : S1×S2n+1 → S2n+1

given by
λ · (z1, . . . , zn+1) = (λz1, . . . , λzn+1),

where S1 = U(1) (the group of complex numbers of modulus 1) and S2n+1 is identified with
Σn.

We now return to Case (b) to give a better picture of SL(2,R). Instead of having
SL(2,R) act on the upper half plane, we define an action of SL(2,R) on the open unit disk
D as we did in Example 4.5. Technically, it is easier to consider the group SU(1, 1), which
is isomorphic to SL(2,R), and to make SU(1, 1) act on D. The group SU(1, 1) is the group
of 2× 2 complex matrices of the form(

a b

b a

)
, with aa− bb = 1.

The reader should check that if we let

g =

(
1 −i
1 i

)
,

then the map from SL(2,R) to SU(1, 1) given by

A 7→ gAg−1

is an isomorphism. Observe that the scaled Möbius transformation associated with g is

z 7→ z − i
z + i

,

which is the holomorphic isomorphism mapping H to D mentionned earlier! We can define
a bijection between SU(1, 1) and S1 ×D given by(

a b

b a

)
7→ (a/|a|, b/a).

We conclude that SL(2,R) ∼= SU(1, 1) is topologically an open solid torus (i.e., with the
surface of the torus removed). It is possible to further classify the elements of SL(2,R) into
three categories and to have geometric interpretations of these as certain regions of the torus.



4.4. THE GRASSMANN AND STIEFEL MANIFOLDS 147

For details, the reader should consult Carter, Segal and Macdonald [29] or Duistermatt and
Kolk [43] (Chapter 1, Section 1.2).

The group SU(1, 1) acts on D by interpreting any matrix in SU(1, 1) as a Möbius tran-
formation; that is, (

a b

b a

)
7→
(
z 7→ az + b

bz + a

)
.

The reader should check that these transformations preserve D.

Both the upper half-plane and the open disk are models of Lobachevsky’s non-Euclidean
geometry (where the parallel postulate fails). They are also models of hyperbolic spaces
(Riemannian manifolds with constant negative curvature, see Gallot, Hulin and Lafontaine
[49], Chapter III). According to Dubrovin, Fomenko, and Novikov [41] (Chapter 2, Section
13.2), the open disk model is due to Poincaré and the upper half-plane model to Klein,
although Poincaré was the first to realize that the upper half-plane is a hyperbolic space.

4.4 The Grassmann and Stiefel Manifolds

In this section we introduce two very important homogeneous manifolds, the Grassmann
manifolds and the Stiefel manifolds. The Grassmann manifolds are generalizations of pro-
jective spaces (real and complex), while the Stiefel manifold are generalizations of O(n).
Both of these manifolds are examples of reductive homogeneous spaces; see Chapter 22. We
begin by defining the Grassmann manifolds G(k, n).

First consider the real case.

Definition 4.11. Given any n ≥ 1, for any k with 0 ≤ k ≤ n, the set G(k, n) of all linear k-
dimensional subspaces of Rn (also called k-planes) is called a Grassmannian (or Grassmann
manifold).

Any k-dimensional subspace U of Rn is spanned by k linearly independent vectors
u1, . . . , uk in Rn; write U = span(u1, . . . , uk). We can define an action · : O(n)×G(k, n)→
G(k, n) as follows: For any R ∈ O(n), for any U = span(u1, . . . , uk), let

R · U = span(Ru1, . . . , Ruk).

We have to check that the above is well defined. If U = span(v1, . . . , vk) for any other k
linearly independent vectors v1, . . . , vk, we have

vi =
k∑
j=1

aijuj, 1 ≤ i ≤ k,

for some aij ∈ R, and so

Rvi =
k∑
j=1

aijRuj, 1 ≤ i ≤ k,



148 CHAPTER 4. GROUPS AND GROUP ACTIONS

which shows that
span(Ru1, . . . , Ruk) = span(Rv1, . . . , Rvk);

that is, the above action is well defined.

We claim this action is transitive. This is because if U and V are any two k-planes,
we may assume that U = span(u1, . . . , uk) and V = span(v1, . . . , vk), where the ui’s form
an orthonormal family and similarly for the vi’s. Then we can extend these families to
orthonormal bases (u1, . . . , un) and (v1, . . . , vn) on Rn, and w.r.t. the orthonormal basis
(u1, . . . , un), the matrix of the linear map sending ui to vi is orthogonal. Hence G(k, n) is a
homogeneous space.

In order to represent G(k, n) as a quotient space, Proposition 4.2 implies it is enough
to find the stabilizer of any k-plane. Pick U = span(e1, . . . , ek), where (e1, . . . , en) is the
canonical basis of Rn (i.e., ei = (0, . . . , 0, 1, 0, . . . , 0), with the 1 in the ith position). Any
R ∈ O(n) stabilizes U iff R maps e1, . . . , ek to k linearly independent vectors in the subspace
U = span(e1, . . . , ek), i.e., R is of the form

R =

(
S 0
0 T

)
,

where S is k × k and T is (n − k) × (n − k). Moreover, as R is orthogonal, S and T must
be orthogonal, that is S ∈ O(k) and T ∈ O(n − k). We deduce that the stabilizer of U is
isomorphic to O(k)×O(n− k) and we find that

O(n)/(O(k)×O(n− k)) ∼= G(k, n).

It turns out that this makes G(k, n) into a smooth manifold of dimension

n(n− 1)

2
− k(k − 1)

2
− (n− k)(n− k − 1)

2
= k(n− k)

called a Grassmannian.

The restriction of the action of O(n) on G(k, n) to SO(n) yields an action
· : SO(n) × G(k, n) → G(k, n) of SO(n) on G(k, n). Then it is easy to see that this action
is transitive and that the stabilizer of the subspace U is isomorphic to the subgroup
S(O(k)×O(n− k)) of SO(n) consisting of the rotations of the form

R =

(
S 0
0 T

)
,

with S ∈ O(k), T ∈ O(n− k) and det(S) det(T ) = 1. Thus, we also have

SO(n)/S(O(k)×O(n− k)) ∼= G(k, n).

If we recall the projection map of Example 4.8 in Section 4.2, namely pr : Rn+1 − {0} →
RPn, by definition, a k-plane in RPn is the image under pr of any (k + 1)-plane in Rn+1.
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So, for example, a line in RPn is the image of a 2-plane in Rn+1, and a hyperplane in RPn is
the image of a hyperplane in Rn+1. The advantage of this point of view is that the k-planes
in RPn are arbitrary; that is, they do not have to go through “the origin” (which does not
make sense, anyway!). Then we see that we can interpret the Grassmannian, G(k+1, n+1),
as a space of “parameters” for the k-planes in RPn. For example, G(2, n + 1) parametrizes
the lines in RPn. In this viewpoint, G(k + 1, n+ 1) is usually denoted G(k, n).

It can be proved (using some exterior algebra) that G(k, n) can be embedded in RP(nk)−1.
Much more is true. For example, G(k, n) is a projective variety, which means that it can be

defined as a subset of RP(nk)−1 equal to the zero locus of a set of homogeneous equations.
There is even a set of quadratic equations known as the Plücker equations defining G(k, n).
In particular, when n = 4 and k = 2, we have G(2, 4) ⊆ RP5, and G(2, 4) is defined by
a single equation of degree 2. The Grassmannian G(2, 4) = G(1, 3) is known as the Klein
quadric. This hypersurface in RP5 parametrizes the lines in RP3.

Complex Grassmannians are defined in a similar way, by replacing R by C and O(n) by
U(n) throughout. The complex Grassmannian GC(k, n) is a complex manifold as well as a
real manifold, and we have

U(n)/(U(k)×U(n− k)) ∼= GC(k, n).

As in the case of the real Grassmannians, the action of U(n) on GC(k, n) yields an action of
SU(n) on GC(k, n), and we get

SU(n)/S(U(k)×U(n− k)) ∼= GC(k, n),

where S(U(k)×U(n− k)) is the subgroup of SU(n) consisting of all matrices R ∈ SU(n)
of the form

R =

(
S 0
0 T

)
,

with S ∈ U(k), T ∈ U(n− k) and det(S) det(T ) = 1.

Closely related to Grassmannians are the Stiefel manifolds S(k, n). Again we begin with
the real case.

Definition 4.12. For any n ≥ 1 and any k with 1 ≤ k ≤ n, the set S(k, n) of all orthonormal
k-frames, that is, of k-tuples of orthonormal vectors (u1, . . . , uk) with ui ∈ Rn, is called a
Stiefel manifold .

Obviously, S(1, n) = Sn−1 and S(n, n) = O(n), so assume k ≤ n− 1. There is a natural
action · : SO(n)× S(k, n)→ S(k, n) of SO(n) on S(k, n) given by

R · (u1, . . . , uk) = (Ru1, . . . , Ruk).

This action is transitive, because if (u1, . . . , uk) and (v1, . . . , vk) are any two orthonormal
k-frames, then they can be extended to orthonormal bases (for example, by Gram-Schmidt)
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(u1, . . . , un) and (v1, . . . , vn) with the same orientation (since we can pick un and vn so
that our bases have the same orientation), and there is a unique orthogonal transformation
R ∈ SO(n) such that Rui = vi for i = 1, . . . , n.

In order to apply Proposition 4.2, we need to find the stabilizer of the orthonormal k-
frame (e1, . . . , ek) consisting of the first canonical basis vectors of Rn. A matrix R ∈ SO(n)
stabilizes (e1, . . . , ek) iff it is of the form

R =

(
Ik 0
0 S

)
where S ∈ SO(n− k). Therefore, for 1 ≤ k ≤ n− 1, we have

SO(n)/SO(n− k) ∼= S(k, n).

This makes S(k, n) a smooth manifold of dimension

n(n− 1)

2
− (n− k)(n− k − 1)

2
= nk − k(k + 1)

2
= k(n− k) +

k(k − 1)

2
.

Remark: It should be noted that we can define another type of Stiefel manifolds, denoted
by V (k, n), using linearly independent k-tuples (u1, . . . , uk) that do not necessarily form an
orthonormal system. In this case, there is an action · : GL(n,R) × V (k, n) → V (k, n), and
the stabilizer H of the first k canonical basis vectors (e1, . . . , ek) is a closed subgroup of
GL(n,R), but it doesn’t have a simple description (see Warner [114], Chapter 3). We get
an isomorphism

V (k, n) ∼= GL(n,R)/H.

The version of the Stiefel manifold S(k, n) using orthonormal frames is sometimes denoted
by V 0(k, n) (Milnor and Stasheff [85] use the notation V 0

k (Rn)). Beware that the notation
is not standardized. Certain authors use V (k, n) for what we denote by S(k, n)!

Complex Stiefel manifolds are defined in a similar way by replacing R by C and SO(n)
by SU(n). For 1 ≤ k ≤ n − 1, the complex Stiefel manifold SC(k, n) is isomorphic to the
quotient

SU(n)/SU(n− k) ∼= SC(k, n).

If k = 1, we have SC(1, n) = S2n−1, and if k = n, we have SC(n, n) = U(n).

The Grassmannians can also be viewed as quotient spaces of the Stiefel manifolds. Every
orthonomal k-frame (u1, . . . , uk) can be represented by an n×k matrix Y over the canonical
basis of Rn, and such a matrix Y satisfies the equation

Y >Y = I.

We have a right action · : S(k, n)×O(k)→ S(k, n) given by

Y ·R = Y R,
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for any R ∈ O(k). This action is well defined since

(Y R)>Y R = R>Y >Y R = I.

However, this action is not transitive (unless k = 1), but the orbit space S(k, n)/O(k) is
isomorphic to the Grassmannian G(k, n), so we can write

G(k, n) ∼= S(k, n)/O(k).

Similarly, the complex Grassmannian is isomorphic to the orbit space SC(k, n)/U(k):

GC(k, n) ∼= SC(k, n)/U(k).

4.5 Topological Groups ~

Since Lie groups are topological groups (and manifolds), it is useful to gather a few basic
facts about topological groups.

Definition 4.13. A set G is a topological group iff

(a) G is a Hausdorff topological space;

(b) G is a group (with identity 1);

(c) Multiplication · : G × G → G, and the inverse operation G −→ G : g 7→ g−1, are
continuous, where G×G has the product topology.

It is easy to see that the two requirements of Condition (c) are equivalent to

(c′) The map G×G −→ G : (g, h) 7→ gh−1 is continuous.

Proposition 4.3. If G is a topological group and H is any subgroup of G, then the closure
H of H is a subgroup of G.

Proof. We use the fact that if f : X → Y is a continuous map between two topological spaces
X and Y , then f(A) ⊆ f(A) for any subset A of X. For any a ∈ A, we need to show that
for any open subset W ⊆ Y containing f(a), we have W ∩ f(A) 6= ∅. Since f is continuous,
V = f−1(W ) is an open subset containing a, and since a ∈ A, we have f−1(W ) ∩ A 6= ∅,
so there is some x ∈ f−1(W ) ∩ A, which implies that f(x) ∈ W ∩ f(A), so W ∩ f(A) 6= ∅,
as desired. The map f : G × G → G given by f(x, y) = xy−1 is continuous, and since H is
a subgroup of G, f(H × H) ⊆ H. By the above property, if a ∈ H and if b ∈ H, that is,
(a, b) ∈ H ×H, then f(a, b) = ab−1 ∈ H, which shows that H is a subgroup of G.
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Given a topological group G, for every a ∈ G we define the left translation La as the map
La : G → G such that La(b) = ab, for all b ∈ G, and the right translation Ra as the map
Ra : G→ G such that Ra(b) = ba, for all b ∈ G. Observe that La−1 is the inverse of La and
similarly, Ra−1 is the inverse of Ra. As multiplication is continuous, we see that La and Ra

are continuous. Moreover, since they have a continuous inverse, they are homeomorphisms.
As a consequence, if U is an open subset of G, then so is gU = Lg(U) (resp. Ug = RgU), for
all g ∈ G. Therefore, the topology of a topological group is determined by the knowledge of
the open subsets containing the identity 1.

Given any subset S ⊆ G, let S−1 = {s−1 | s ∈ S}; let S0 = {1}, and Sn+1 = SnS, for all
n ≥ 0. Property (c) of Definition 4.13 has the following useful consequences, which shows
there exists an open set containing 1 which has a special symmetrical structure.

Proposition 4.4. If G is a topological group and U is any open subset containing 1, then
there is some open subset V ⊆ U , with 1 ∈ V , so that V = V −1 and V 2 ⊆ U . Furthermore,
V ⊆ U .

Proof. Since multiplication G × G −→ G is continuous and G × G is given the product
topology, there are open subsets U1 and U2, with 1 ∈ U1 and 1 ∈ U2, so that U1U2 ⊆ U . Let
W = U1 ∩U2 and V = W ∩W−1. Then V is an open set containing 1, and clearly V = V −1

and V 2 ⊆ U1U2 ⊆ U . If g ∈ V , then gV is an open set containing g (since 1 ∈ V ) and
thus, gV ∩ V 6= ∅. This means that there are some h1, h2 ∈ V so that gh1 = h2, but then,
g = h2h

−1
1 ∈ V V −1 = V V ⊆ U .

Definition 4.14. A subset U containing 1 and such that U = U−1 is called symmetric.

Proposition 4.4 is used in the proofs of many the propositions and theorems on the
structure of topological groups. For example, it is key in verifying the following proposition
regarding discrete topological subgroups.

Definition 4.15. A subgroup H of a topological group G is discrete iff the induced topology
on H is discrete; that is, for every h ∈ H, there is some open subset U of G so that
U ∩H = {h}.
Proposition 4.5. If G is a topological group and H is a discrete subgroup of G, then H is
closed.

Proof. As H is discrete, there is an open subset U of G so that U ∩ H = {1}, and by
Proposition 4.4, we may assume that U = U−1. Our goal is to show H = H. Clearly
H ⊆ H. Thus it remains to show H ⊆ H. If g ∈ H, as gU is an open set containing g, we
have gU ∩ H 6= ∅. Consequently, there is some y ∈ gU ∩ H = gU−1 ∩ H, so g ∈ yU with
y ∈ H. We claim that yU ∩H = {y}. Note that x ∈ yU ∩H means x = yu1 with yu1 ∈ H
and u1 ∈ U . Since H is a subgroup of G and y ∈ H, y−1yu1 = u1 ∈ H. Thus u1 ∈ U ∩H,
which implies u1 = 1 and x = yu1 = y, and we have

g ∈ yU ∩H ⊆ yU ∩H = {y} = {y}.
since G is Hausdorff. Therefore, g = y ∈ H.
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Using Proposition 4.4, we can give a very convenient characterization of the Hausdorff
separation property in a topological group.

Proposition 4.6. If G is a topological group, then the following properties are equivalent:

(1) G is Hausdorff;

(2) The set {1} is closed;

(3) The set {g} is closed, for every g ∈ G.

Proof. The implication (1) −→ (2) is true in any Hausdorff topological space. We just have
to prove that G − {1} is open, which goes as follows: For any g 6= 1, since G is Hausdorff,
there exists disjoint open subsets Ug and Vg, with g ∈ Ug and 1 ∈ Vg. Thus,

⋃
Ug = G−{1},

showing that G − {1} is open. Since Lg is a homeomorphism, (2) and (3) are equivalent.
Let us prove that (3) −→ (1). Let g1, g2 ∈ G with g1 6= g2. Then, g−1

1 g2 6= 1 and if U and
V are disjoint open subsets such that 1 ∈ U and g−1

1 g2 ∈ V , then g1 ∈ g1U and g2 ∈ g1V ,
where g1U and g1V are still open and disjoint. Thus, it is enough to separate 1 and g 6= 1.
Pick any g 6= 1. If every open subset containing 1 also contained g, then 1 would be in the
closure of {g}, which is absurd since {g} is closed and g 6= 1. Therefore, there is some open
subset U such that 1 ∈ U and g /∈ U . By Proposition 4.4, we can find an open subset V
containing 1, so that V V ⊆ U and V = V −1. We claim that V and gV are disjoint open
sets with 1 ∈ V and g ∈ gV .

Since 1 ∈ V , it is clear that g ∈ gV . If we had V ∩ gV 6= ∅, then by the last sentence in
the proof of Proposition 4.4 we would have g ∈ V V −1 = V V ⊆ U , a contradiction.

If H is a subgroup of G (not necessarily normal), we can form the set of left cosets G/H,
and we have the projection p : G→ G/H, where p(g) = gH = g. If G is a topological group,
then G/H can be given the quotient topology , where a subset U ⊆ G/H is open iff p−1(U) is
open in G. With this topology, p is continuous. The trouble is that G/H is not necessarily
Hausdorff. However, we can neatly characterize when this happens.

Proposition 4.7. If G is a topological group and H is a subgroup of G, then the following
properties hold:

(1) The map p : G → G/H is an open map, which means that p(V ) is open in G/H
whenever V is open in G.

(2) The space G/H is Hausdorff iff H is closed in G.

(3) If H is open, then H is closed and G/H has the discrete topology (every subset is open).

(4) The subgroup H is open iff 1 ∈
◦
H (i.e., there is some open subset U so that

1 ∈ U ⊆ H).
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Proof. (1) Observe that if V is open in G, then V H =
⋃
h∈H V h is open, since each V h is

open (as right translation is a homeomorphism). However, it is clear that

p−1(p(V )) = V H,

i.e., p−1(p(V )) is open which, by definition of the quotient topology, means that p(V ) is
open.

(2) If G/H is Hausdorff, then by Proposition 4.6, every point of G/H is closed, i.e., each
coset gH is closed, so H is closed. Conversely, assume H is closed. Let x and y be two
distinct point in G/H and let x, y ∈ G be some elements with p(x) = x and p(y) = y. As
x 6= y, the elements x and y are not in the same coset, so x /∈ yH. As H is closed, so is
yH, and since x /∈ yH, there is some open containing x which is disjoint from yH, and we
may assume (by translation) that it is of the form Ux, where U is an open containing 1. By
Proposition 4.4, there is some open V containing 1 so that V V ⊆ U and V = V −1. Thus,
we have

V 2x ∩ yH = ∅
and in fact,

V 2xH ∩ yH = ∅,
since H is a group; if z ∈ V 2xH ∩ yH, then z = v1v2xh1 = yh2 for some v1, v2 ∈ V , and
some h1, h2 ∈ H, but then v1v2x = yh2h

−1
1 so that V 2x ∩ yH 6= ∅, a contradiction. Since

V = V −1, we get
V xH ∩ V yH = ∅,

and then, since V is open, both V xH and V yH are disjoint, open, so p(V xH) and p(V yH)
are open sets (by (1)) containing x and y respectively and p(V xH) and p(V yH) are disjoint
(because p−1(p(V xH)) = V xHH = V xH, p−1(p(V yH)) = V yHH = V yH, and V xH ∩
V yH = ∅). See Figure 4.5.

(3) If H is open, then every coset gH is open, so every point of G/H is open and G/H
is discrete. Also,

⋃
g/∈H gH is open, i.e., H is closed.

(4) Say U is an open subset such that 1 ∈ U ⊆ H. Then for every h ∈ H, the set hU is
an open subset of H with h ∈ hU , which shows that H is open. The converse is trivial.

We next provide a criterion relating the connectivity of G with that of G/H.

Proposition 4.8. Let G be a topological group and H be any subgroup of G. If H and G/H
are connected, then G is connected.

Proof. It is a standard fact of topology that a space G is connected iff every continuous
function f from G to the discrete space {0, 1} is constant; see Proposition 12.15. Pick
any continuous function f from G to {0, 1}. As H is connected and left translations are
homeomorphisms, all cosets gH are connected. Thus, f is constant on every coset gH. It
follows that the function f : G → {0, 1} induces a continuous function f : G/H → {0, 1}
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p(x) = x-
p(y) = y-

x

1
V

VxH

y

VyH

Figure 4.5: A schematic illustration of V xH ∩ V yH = ∅, where G is the pink cylinder, H is
the vertical edge, and G/H is the circular base. Note xH and yH are vertical fibres.

such that f = f ◦ p (where p : G→ G/H; the continuity of f follows immediately from the
definition of the quotient topology on G/H). As G/H is connected, f is constant, and so
f = f ◦ p is constant.

The next three propositions describe how to generate a topological group from its sym-
metric neighborhoods of 1.

Proposition 4.9. If G is a connected topological group, then G is generated by any sym-
metric neighborhood V of 1. In fact,

G =
⋃
n≥1

V n.

Proof. Since V = V −1, it is immediately checked that H =
⋃
n≥1 V

n is the group generated
by V . As V is a neighborhood of 1, there is some open subset U ⊆ V , with 1 ∈ U , and

so 1 ∈
◦
H. From Proposition 4.7 (3), the subgroup H is open and closed, and since G is

connected, H = G.

Proposition 4.10. Let G be a topological group and let V be any connected symmetric open
subset containing 1. Then, if G0 is the connected component of the identity, we have

G0 =
⋃
n≥1

V n,

and G0 is a normal subgroup of G. Moreover, the group G/G0 is discrete.

Proof. First, as V is open, every V n is open, so the group
⋃
n≥1 V

n is open, and thus closed,
by Proposition 4.7 (3). For every n ≥ 1, we have the continuous map

V × · · · × V︸ ︷︷ ︸
n

−→ V n : (g1, . . . , gn) 7→ g1 · · · gn.
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As V is connected, V × · · · × V is connected, and so V n is connected; see Theorem 12.18
and Proposition 12.11. Since 1 ∈ V n for all n ≥ 1 and every V n is connected, we use
Lemma 12.12 to conclude that

⋃
n≥1 V

n is connected. Now,
⋃
n≥1 V

n is connected, open and
closed, so it is the connected component of 1. Finally, for every g ∈ G, the group gG0g

−1 is
connected and contains 1, so it is contained in G0, which proves that G0 is normal. Since
G0 is open, Proposition 4.7 (3) implies that the group G/G0 is discrete.

Recall that a topological space X is locally compact iff for every point p ∈ X, there is a
compact neighborhood C of p; that is, there is a compact C and an open U , with p ∈ U ⊆ C.
For example, manifolds are locally compact.

Proposition 4.11. Let G be a topological group and assume that G is connected and locally
compact. Then, G is countable at infinity, which means that G is the union of a countable
family of compact subsets. In fact, if V is any symmetric compact neighborhood of 1, then

G =
⋃
n≥1

V n.

Proof. Since G is locally compact, there is some compact neighborhood K of 1. Then,
V = K ∩K−1 is also compact and a symmetric neighborhood of 1. By Proposition 4.9, we
have

G =
⋃
n≥1

V n.

An argument similar to the one used in the proof of Proposition 4.10 to show that V n is
connected if V is connected proves that each V n compact if V is compact.

We end this section by combining the various properties of a topological group G to
characterize when G/Gx is homeomorphic to X. In order to do so, we need two definitions.

Definition 4.16. Let G be a topological group and let X be a topological space. An action
ϕ : G×X → X is continuous (and G acts continuously on X) if the map ϕ is continuous.

If an action ϕ : G×X → X is continuous, then each map ϕg : X → X is a homeomorphism
of X (recall that ϕg(x) = g · x, for all x ∈ X).

Under some mild assumptions on G and X, the quotient space G/Gx is homeomorphic
to X. For example, this happens if X is a Baire space.

Definition 4.17. A Baire space X is a topological space with the property that if {F}i≥1

is any countable family of closed sets Fi such that each Fi has empty interior, then
⋃
i≥1 Fi

also has empty interior. By complementation, this is equivalent to the fact that for every
countable family of open sets Ui such that each Ui is dense in X (i.e., U i = X), then

⋂
i≥1 Ui

is also dense in X.
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Remark: A subset A ⊆ X is rare if its closure A has empty interior. A subset Y ⊆ X is
meager if it is a countable union of rare sets. Then, it is immediately verified that a space
X is a Baire space iff every nonempty open subset of X is not meager.

The following theorem shows that there are plenty of Baire spaces:

Theorem 4.12. (Baire) (1) Every locally compact topological space is a Baire space.

(2) Every complete metric space is a Baire space.

A proof of Theorem 4.12 can be found in Bourbaki [21], Chapter IX, Section 5, Theorem
1.

We can now greatly improve Proposition 4.2 when G and X are topological spaces having
some “nice” properties.

Theorem 4.13. Let G be a topological group which is locally compact and countable at
infinity, X a Hausdorff topological space which is a Baire space, and assume that G acts
transitively and continuously on X. Then, for any x ∈ X, the map ϕ : G/Gx → X is a
homeomorphism.

Proof. We follow the proof given in Bourbaki [21], Chapter IX, Section 5, Proposition 6
(Essentially the same proof can be found in Mneimné and Testard [86], Chapter 2). First,
observe that if a topological group acts continuously and transitively on a Hausdorff topo-
logical space, then for every x ∈ X, the stabilizer Gx is a closed subgroup of G. This is
because, as the action is continuous, the projection πx : G −→ X : g 7→ g ·x is continuous, and
Gx = π−1({x}), with {x} closed. Therefore, by Proposition 4.7, the quotient space G/Gx

is Hausdorff. As the map πx : G −→ X is continuous, the induced map ϕx : G/Gx → X is
continuous, and by Proposition 4.2, it is a bijection. Therefore, to prove that ϕx is a home-
omorphism, it is enough to prove that ϕx is an open map. For this, it suffices to show that
πx is an open map. Given any open U in G, we will prove that for any g ∈ U , the element
πx(g) = g · x is contained in the interior of U · x. However, observe that this is equivalent
to proving that x belongs to the interior of (g−1 · U) · x. Therefore, we are reduced to the
following case: if U is any open subset of G containing 1, then x belongs to the interior of
U · x.

Since G is locally compact, using Proposition 4.4, we can find a compact neighborhood
of the form W = V , such that 1 ∈ W , W = W−1 and W 2 ⊆ U , where V is open with
1 ∈ V ⊆ U . As G is countable at infinity, G =

⋃
i≥1Ki, where each Ki is compact. Since V

is open, all the cosets gV are open, and as each Ki is covered by the gV ’s, by compactness
of Ki, finitely many cosets gV cover each Ki, and so

G =
⋃
i≥1

giV =
⋃
i≥1

giW,

for countably many gi ∈ G, where each giW is compact. As our action is transitive, we
deduce that

X =
⋃
i≥1

giW · x,
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where each giW · x is compact, since our action is continuous and the giW are compact. As
X is Hausdorff, each giW · x is closed, and as X is a Baire space expressed as a union of
closed sets, one of the giW · x must have nonempty interior; that is, there is some w ∈ W ,
with giw · x in the interior of giW · x, for some i. But then, as the map y 7→ g · y is a
homeomorphism for any given g ∈ G (where y ∈ X), we see that x is in the interior of

w−1g−1
i · (giW · x) = w−1W · x ⊆ W−1W · x = W 2 · x ⊆ U · x,

as desired.

By Theorem 4.12, we get the following important corollary:

Theorem 4.14. Let G be a topological group which is locally compact and countable at
infinity, X a Hausdorff locally compact topological space, and assume that G acts transitively
and continuously on X. Then, for any x ∈ X, the map ϕx : G/Gx → X is a homeomorphism.

Readers who wish to learn more about topological groups may consult Sagle and Walde
[99] and Chevalley [31] for an introductory account, and Bourbaki [20], Weil [116] and Pon-
tryagin [94, 95], for a more comprehensive account (especially the last two references).

4.6 Problems

Problem 4.1. Recall that the group SU(2) consists of all complex matrices of the form

A =

(
α β

−β α

)
α, β ∈ C, αα + ββ = 1,

and the action · : SU(2)× (C ∪ {∞})→ C ∪ {∞} is given by

A · w =
αw + β

−βw + α
, w ∈ C ∪ {∞}.

This is a transitive action. Using the stereographic projection σN from S2 onto C∪{∞}
and its inverse σ−1

N , we can define an action of SU(2) on S2 by

A · (x, y, z) = σ−1
N (A · σN(x, y, z)), (x, y, z) ∈ S2,

and we denote by ρ(A) the corresponding map from S2 to S2.

(1) If we write α = a+ ib and β = c+ id, prove that ρ(A) is given by the matrix

ρ(A) =

a2 − b2 − c2 + d2 −2ab− 2cd −2ac+ 2bd
2ab− 2cd a2 − b2 + c2 − d2 −2ad− 2bc
2ac+ 2bd 2ad− 2bc a2 + b2 − c2 − d2

 .



4.6. PROBLEMS 159

Prove that ρ(A) is indeed a rotation matrix which represents the rotation whose axis is
the line determined by the vector (d,−c, b) and whose angle θ ∈ [−π, π] is determined by

cos
θ

2
= |a|.

Hint . Recall that the axis of a rotation matrix R ∈ SO(3) is specified by any eigenvector of
1 for R, and that the angle of rotation θ satisfies the equation

tr(R) = 2 cos θ + 1.

(2) We can compute the derivative dρI : su(2) → so(3) of ρ at I as follows. Recall that
su(2) consists of all complex matrices of the form(

ib c+ id
−c+ id −ib

)
, b, c, d ∈ R,

so pick the following basis for su(2),

X1 =

(
i 0
0 −i

)
, X2 =

(
0 1
−1 0

)
, X3 =

(
0 i
i 0

)
,

and define the curves in SU(2) through I given by

c1(t) =

(
eit 0
0 e−it

)
, c2(t) =

(
cos t sin t
− sin t cos t

)
, c3(t) =

(
cos t i sin t
i sin t cos t

)
.

Prove that c′i(0) = Xi for i = 1, 2, 3, and that

dρI(X1) = 2

0 −1 0
1 0 0
0 0 0

 , dρI(X2) = 2

0 0 −1
0 0 0
1 0 0

 , dρI(X3) = 2

0 0 0
0 0 −1
0 1 0

 .

Thus, we have
dρI(X1) = 2E3, dρI(X2) = −2E2, dρI(X3) = 2E1,

where (E1, E2, E3) is the basis of so(3) given in Section 2.5. Conclude that dρI is an isomor-
phism between the Lie algebras su(2) and so(3).

(3) Recall from Proposition 3.13 that we have the commutative diagram

SU(2)
ρ // SO(3)

su(2)
dρI

//

exp

OO

so(3) .

exp

OO

Since dρI is surjective and the exponential map exp: so(3)→ SO(3) is surjective, conclude
that ρ is surjective. Prove that Ker ρ = {I,−I}.
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Problem 4.2. Consider the action of the group SL(2,R) on the upper half-plane, H = {z =
x+ iy ∈ C | y > 0}, given by (

a b
c d

)
· z =

az + b

cz + d
.

(a) Check that for any g ∈ SL(2,R),

=(g · z) =
=(z)

|cz + d|2 ,

and conclude that if z ∈ H, then g · z ∈ H, so that the action of SL(2,R) on H is indeed
well-defined (Recall, <(z) = x and =(z) = y, where z = x+ iy.)

(b) Check that if c 6= 0, then

az + b

cz + d
=

−1

c2z + cd
+
a

c
.

Prove that the group of Möbius transformations induced by SL(2,R) is generated by Möbius
transformations of the form

1. z 7→ z + b,

2. z 7→ kz,

3. z 7→ −1/z,

where b ∈ R and k ∈ R, with k > 0. Deduce from the above that the action of SL(2,R) on
H is transitive and that transformations of type (1) and (2) suffice for transitivity.

(c) Now, consider the action of the discrete group SL(2,Z) on H, where SL(2,Z) consists
of all matrices (

a b
c d

)
, ad− bc = 1, a, b, c, d ∈ Z.

Why is this action not transitive? Consider the two transformations

S : z 7→ −1/z

associated with

(
0 −1
1 0

)
and

T : z 7→ z + 1

associated with

(
1 1
0 1

)
.

Define the subset, D, of H, as the set of points, z = x+ iy, such that −1/2 ≤ x ≤ −1/2
and x2 + y2 ≥ 1. Observe that D contains the three special points, i, ρ = e2πi/3 and
−ρ = eπi/3.
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Draw a picture of this set, known as a fundamental domain of the action of G = SL(2,Z)
on H.

Remark: Gauss proved that the group G = SL(2,Z) is generated by S and T .

Problem 4.3. Let J be the 2× 2 matrix

J =

(
1 0
0 −1

)
and let SU(1, 1) be the set of 2× 2 complex matrices

SU(1, 1) = {A | A∗JA = J, det(A) = 1},
where A∗ is the conjugate transpose of A.

(a) Prove that SU(1, 1) is the group of matrices of the form

A =

(
a b

b a

)
, with aa− bb = 1.

If

g =

(
1 −i
1 i

)
prove that the map from SL(2,R) to SU(1, 1) given by

A 7→ gAg−1

is a group isomorphism.

(b) Prove that the Möbius transformation associated with g,

z 7→ z − i
z + i

is a bijection between the upper half-plane, H, and the unit open disk, D = {z ∈ C | |z| < 1}.
Prove that the map from SU(1, 1) to S1 ×D given by(

a b

b a

)
7→ (a/|a|, b/a)

is a continuous bijection (in fact, a homeomorphism). Conclude that SU(1, 1) is topologically
an open solid torus.

(c) Check that SU(1, 1) acts transitively on D by(
a b

b a

)
· z =

az + b

bz + a
.

Find the stabilizer of z = 0 and conclude that

SU(1, 1)/SO(2) ∼= D.
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Chapter 5

The Lorentz Groups ~

In this chapter we study a class of linear Lie groups known as the Lorentz groups. As we
will see, the Lorentz groups provide interesting examples of homogeneous spaces. Moreover,
the Lorentz group SO(3, 1) shows up in an interesting way in computer vision.

5.1 The Lorentz Groups O(n, 1), SO(n, 1) and SO0(n, 1)

Denote the p× p-identity matrix by Ip, for p, q,≥ 1, and define

Ip,q =

(
Ip 0
0 −Iq

)
.

If n = p+ q, the matrix Ip,q is associated with the nondegenerate symmetric bilinear form

ϕp,q((x1, . . . , xn), (y1, . . . , yn)) =

p∑
i=1

xiyi −
n∑

j=p+1

xjyj

with associated quadratic form

Φp,q((x1, . . . , xn)) =

p∑
i=1

x2
i −

n∑
j=p+1

x2
j .

In particular, when p = 1 and q = 3, we have the Lorentz metric

x2
1 − x2

2 − x2
3 − x2

4.

In physics, x1 is interpreted as time and written t, and x2, x3, x4 as coordinates in R3 and
written x, y, z. Thus, the Lorentz metric is usually written a

t2 − x2 − y2 − z2,

163
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although it also appears as

x2 + y2 + z2 − t2,
which is equivalent but slightly less convenient for certain purposes, as we will see later. The
space R4 with the Lorentz metric is called Minkowski space. It plays an important role in
Einstein’s theory of special relativity.

Definition 5.1. For any p, q ≥ 1, the group O(p, q) is the set of all n× n-matrices

O(p, q) = {A ∈ GL(n,R) | A>Ip,qA = Ip,q}.

This is the group of all invertible linear maps of Rn that preserve the quadratic form Φp,q,
i.e., the group of isometries of Φp,q.

Let us check that O(p, q) is indeed a group.

Proposition 5.1. For any p, q ≥ 1, the set O(p, q) is a group, with the inverse A−1 of any
element A ∈ O(p, q) given by A−1 = Ip,qA

>Ip,q. If A ∈ O(p, q), then A> ∈ O(p, q).

Proof. If A,B ∈ O(p, q), then A>Ip,qA = Ip,q and B>Ip,qB = Ip,q, so we get

(AB>)Ip,qAB = B>A>Ip,qAB = B>Ip,qB = Ip,q,

which shows that AB ∈ O(p, q). Since I2
p,q = I we have, I ∈ O(p, q). Since I2

p,q = I, the
condition A>Ip,qA = Ip,q is equivalent to Ip,qA

>Ip,qA = I, which means that

A−1 = Ip,qA
>Ip,q.

Consequently I = AA−1 = AIp,qA
>Ip,q, so

AIp,qA
> = Ip,q (∗)

also holds, which shows that O(p, q) is closed under transposition (i.e., if A ∈ O(p, q), then
A> ∈ O(p, q)). Using the fact that I2

p,q = I and I>p,q = Ip,q, we have

(A−1)>Ip,qA
−1 = (Ip,qA

>Ip,q)
>Ip,qA

−1 = Ip,qAIp,qIp,qA
−1 = Ip,qAA

−1 = Ip,q.

Therefore, A−1 ∈ O(p, q), so O(p, q) is indeed a subgroup of GL(n,R) with inverse given by
A−1 = Ip,qA

>Ip,q.

Definition 5.2. For any p, q ≥ 1, the subgroup SO(p, q) of O(p, q) consisting of the isome-
tries of (Rn,Φp,q) with determinant +1 is given by

SO(p, q) = {A ∈ O(p, q) | det(A) = 1}.
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It is clear that SO(p, q) is indeed a subgroup of of O(p, q) also closed under transposition.

The condition A>Ip,qA = Ip,q has an interpretation in terms of the inner product ϕp,q
and the columns (and rows) of A. Indeed, if we denote the jth column of A by Aj, then

A>Ip,qA = (ϕp,q(Ai, Aj)),

so A ∈ O(p, q) iff the columns of A form an “orthonormal basis” w.r.t. ϕp,q, i.e.,

ϕp,q(Ai, Aj) =

{
δij if 1 ≤ i, j ≤ p;
−δij if p+ 1 ≤ i, j ≤ p+ q.

The difference with the usual orthogonal matrices is that ϕp,q(Ai, Ai) = −1, if
p + 1 ≤ i ≤ p + q. As O(p, q) is closed under transposition, the rows of A also form an
orthonormal basis w.r.t. ϕp,q.

It turns out that SO(p, q) has two connected components, and the component containing
the identity is a subgroup of SO(p, q) denoted SO0(p, q). The group SO0(p, q) is actually
homeomorphic to SO(p) × SO(q) × Rpq. This is not immediately obvious. A way to prove
this fact is to work out the polar decomposition for matrices in O(p, q). This is nicely done
in Dragon [40] (see Section 6.2). A close examination of the factorization obtained in Section
6.1 also shows that there is bijection between O(p, q) and O(p)×O(q)×Rpq. Another way
to prove these results (in a stronger form, namely that there is a homeomorphism) is to use
results on pseudo-algebraic subgroups of GL(n,C); see Sections 6.2 and 6.3. It can also
be shown that there are isomorphisms ψ : O(p, q) → O(q, p), ψ : SO(p, q) → SO(q, p), and
ψ : SO0(p, q)→ SO0(q, p); see Proposition 6.8.

We will now determine the polar decomposition and the SVD decomposition of matrices
in the Lorentz groups O(n, 1) and SO(n, 1). Write J = In,1, and given any A ∈ O(n, 1),
write

A =

(
B u
v> c

)
,

where B is an n× n matrix, u, v are (column) vectors in Rn and c ∈ R. We begin with the
polar decomposition of matrices in the Lorentz groups O(n, 1).

Proposition 5.2. Every matrix A ∈ O(n, 1) has a polar decomposition of the form

A =

(
Q 0
0 1

)(√
In + vv> v
v> c

)
or A =

(
Q 0
0 −1

)(√
In + vv> v
v> c

)
,

where Q ∈ O(n) and c =
√
‖v‖2 + 1.

Proof. Write A in block form as above. As the condition for A to be in O(n, 1) is A>JA = J ,
we get (

B> v
u> c

)(
B u
−v> −c

)
=

(
In 0
0 −1

)
,



166 CHAPTER 5. THE LORENTZ GROUPS ~

i.e.,

B>B = In + vv>

u>u = c2 − 1

B>u = cv.

If we remember that we also have AJA> = J , then(
B u
v> c

)(
B> v
−u> −c

)
=

(
In 0
0 −1

)
,

and

BB> = In + uu>

v>v = c2 − 1

Bv = cu.

From u>u = ‖u‖2 = c2 − 1, we deduce that |c| ≥ 1. From B>B = In + vv>, we deduce that
B>B is clearly symmetric; we also deduce that B>B positive definite since

x>(In + vv>)x = ‖x‖2 + x>vv>x = ‖x‖2 +
∥∥v>x∥∥2

,

and ‖x‖2 +
∥∥v>x∥∥2

whenever x 6= 0. Now, geometrically, it is well known that vv>/v>v is
the orthogonal projection onto the line determined by v. Consequently, the kernel of vv> is
the orthogonal complement of v, and vv> has the eigenvalue 0 with multiplicity n − 1 and
the eigenvalue c2 − 1 = ‖v‖2 = v>v with multiplicity 1. The eigenvectors associated with 0
are orthogonal to v, and the eigenvectors associated with c2−1 are proportional with v since(
vv>/ ‖v‖2) v = (c2 − 1)v. It follows that In + vv> has the eigenvalue 1 with multiplicity
n − 1 and the eigenvalue c2 with multiplicity 1, the eigenvectors being as before. Now, B
has polar form B = QS1, where Q is orthogonal and S1 is symmetric positive definite and
S2

1 = B>B = In + vv>. Therefore, if c > 0, then S1 =
√
In + vv> is a symmetric positive

definite matrix with eigenvalue 1 with multiplicity n− 1 and eigenvalue c with multiplicity
1, the eigenvectors being as before. If c < 0, then change c to −c.

Case 1: c > 0. Then v is an eigenvector of S1 for c and we must also have Bv = cu,
which implies

Bv = QS1v = Q(cv) = cQv = cu,

so
Qv = u.

It follows that

A =

(
B u
v> c

)
=

(
QS1 Qv
v> c

)
=

(
Q 0
0 1

)(√
In + vv> v
v> c

)
,
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where Q ∈ O(n) and c =
√
‖v‖2 + 1.

Case 2: c < 0. Then v is an eigenvector of S1 for −c and we must also have Bv = cu,
which implies

Bv = QS1v = Q(−cv) = cQ(−v) = cu,

so

Q(−v) = u.

It follows that

A =

(
B u
v> c

)
=

(
QS1 Q(−v)
v> c

)
=

(
Q 0
0 −1

)(√
In + vv> −v
−v> −c

)
,

where Q ∈ O(n) and c = −
√
‖v‖2 + 1.

We conclude that any A ∈ O(n, 1) has a factorization of the form

A =

(
Q 0
0 1

)(√
In + vv> v
v> c

)
or A =

(
Q 0
0 −1

)(√
In + vv> v
v> c

)
,

where Q ∈ O(n) and c =
√
‖v‖2 + 1. Note that the matrix

(
Q 0
0 ±1

)
is orthogonal and(√

In + vv> v
v> c

)
is symmetric. Proposition 5.3 will show that

(√
In + vv> v
v> c

)
is positive

definite. Hence the above factorizations are polar decompositions.

In order to show that S =

(√
In + vv> v
v> c

)
is positive definite, we show that the eigen-

values are strictly positive. Such a matrix is called a Lorentz boost . Observe that if v = 0,
then c = 1 and S = In+1.

Proposition 5.3. Assume v 6= 0. The eigenvalues of the symmetric positive definite matrix

S =

(√
In + vv> v
v> c

)
,

where c =
√
‖v‖2 + 1, are 1 with multiplicity n− 1, and eα and e−α each with multiplicity 1

(for some α ≥ 0). An orthonormal basis of eigenvectors of S consists of vectors of the form(
u1

0

)
, . . . ,

(
un−1

0

)
,

( v√
2‖v‖
1√
2

)
,

( v√
2‖v‖
− 1√

2

)
,

where the ui ∈ Rn are all orthogonal to v and pairwise orthogonal.
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Proof. Let us solve the linear system(√
In + vv> v
v> c

)(
v

d

)
= λ

(
v

d

)
.

We get (√
In + vv>

)
v + dv = λv

v>v + cd = λd.

Since the proof of Proposition 5.2 implies that c =
√
‖v‖2 + 1 and

(√
In + vv>

)
v = cv, the

previous two equations are equivalent to

(c+ d)v = λv

c2 − 1 + cd = λd.

Because v 6= 0, we get λ = c+ d. Substituting in the second equation, we get

c2 − 1 + cd = (c+ d)d,

that is,
d2 = c2 − 1.

In other words d = ±
√
c2 − 1, which in turn implies λ = c + d = c±

√
c2 − 1. Thus, either

λ1 = c+
√
c2 − 1 and d =

√
c2 − 1, or λ2 = c−

√
c2 − 1 and d = −

√
c2 − 1. Since c ≥ 1 and

λ1λ2 = 1, set α = log(c +
√
c2 − 1) ≥ 0, so that −α = log(c −

√
c2 − 1), and then λ1 = eα

and λ2 = e−α. On the other hand, if u is orthogonal to v, observe that(√
In + vv> v
v> c

)(
u

0

)
=

(
u

0

)
,

since the kernel of vv> is the orthogonal complement of v. The rest is clear.

Corollary 5.4. The singular values of any matrix A ∈ O(n, 1) are 1 with multiplicity n−1,
eα, and e−α, for some α ≥ 0.

Note that the case α = 0 is possible, in which case A is an orthogonal matrix of the form(
Q 0
0 1

)
or

(
Q 0
0 −1

)
,

with Q ∈ O(n). The two singular values eα and e−α tell us how much A deviates from being
orthogonal.

By using Proposition 5.2 we see that O(n, 1) has four components corresponding to the
cases:
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(1) Q ∈ O(n); det(Q) < 0; +1 as the lower right entry of the orthogonal matrix;

(2) Q ∈ SO(n); −1 as the lower right entry of the orthogonal matrix;

(3) Q ∈ O(n); det(Q) < 0; −1 as the lower right entry of the orthogonal matrix;

(4) Q ∈ SO(n); +1 as the lower right entry of the orthogonal matrix.

Observe that det(A) = −1 in Cases (1) and (2) and that det(A) = +1 in Cases (3) and
(4). Thus, Cases (3) and (4) correspond to the group SO(n, 1), in which case the polar
decomposition is of the form

A =

(
Q 0
0 −1

)(√
In + vv> v
v> c

)
,

where Q ∈ O(n), with det(Q) = −1 and c =
√
‖v‖2 + 1, or

A =

(
Q 0
0 1

)(√
In + vv> v
v> c

)

where Q ∈ SO(n) and c =
√
‖v‖2 + 1.

The components in Cases (1), (2) and (3) are not groups. We will show later that all four
components are connected and that Case (4) corresponds to a group (Proposition 5.7). This
group is the connected component of the identity and it is denoted SO0(n, 1) (see Corollary
5.11). For the time being, note that A ∈ SO0(n, 1) iff A ∈ SO(n, 1) and an+1n+1 = c > 0
(here, A = (ai j).) In fact, we proved above that if an+1n+1 > 0, then an+1n+1 ≥ 1.

Remark: If we let

ΛP =

(
In−1,1 0

0 1

)
and ΛT = In,1, where In,1 =

(
In 0
0 −1

)
,

then we have the disjoint union

O(n, 1) = SO0(n, 1) ∪ ΛPSO0(n, 1) ∪ ΛTSO0(n, 1) ∪ ΛPΛTSO0(n, 1).

We can now determine a convenient form for the SVD of matrices in O(n, 1).

Theorem 5.5. Every matrix A ∈ O(n, 1) can be written as

A =

(
P 0
0 ε

)


1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 coshα sinhα
0 · · · 0 sinhα coshα


(
Q> 0
0 1

)
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with ε = ±1, P ∈ O(n) and Q ∈ SO(n). When A ∈ SO(n, 1), we have det(P )ε = +1, and
when A ∈ SO0(n, 1), we have ε = +1 and P ∈ SO(n); that is,

A =

(
P 0
0 1

)


1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 coshα sinhα
0 · · · 0 sinhα coshα


(
Q> 0
0 1

)

with P ∈ SO(n) and Q ∈ SO(n).

Proof. By Proposition 5.2, any matrix A ∈ O(n, 1) can be written as

A =

(
R 0
0 ε

)(√
In + vv> v
v> c

)

where ε = ±1, R ∈ O(n) and c =
√
‖v‖2 + 1. The case where c = 1 is trivial, so assume

c > 1, which means that α from Proposition 5.3 is such that α > 0. The key fact is that the
eigenvalues of the matrix (

coshα sinhα
sinhα coshα

)
are eα and e−α. To verify this fact, observe that

det

(
coshα− λ sinhα

sinhα coshα− λ

)
= (coshα− λ)2 − sinh2 α = λ2 − 2λ coshα + 1 = 0,

which in turn implies

λ = coshα± sinhα,

and the conclusion follows from the definitions of coshα = eα+e−α

2
and sinhα = eα−e−α

2
.

Also observe that the definitions of coshα and sinhα imply that(
eα 0
0 e−α

)
=

(
1√
2

1√
2

1√
2
− 1√

2

)(
coshα sinhα
sinhα coshα

)( 1√
2

1√
2

1√
2
− 1√

2

)
,

which is equivalent to the observation that

(
1√
2

1√
2

)
is the eigenvector associated with eα, while(

1√
2

− 1√
2

)
is the eigenvector associated with e−α.
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From these two facts we see that the diagonal matrix

D =


1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 eα 0
0 · · · 0 0 e−α


of eigenvalues of S =

(√
In + vv> v
v> c

)
is given by

D =


1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 1√

2
1√
2

0 · · · 0 1√
2
− 1√

2




1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 coshα sinhα
0 · · · 0 sinhα coshα




1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 1√

2
1√
2

0 · · · 0 1√
2
− 1√

2

 .

By Proposition 5.3, an orthonormal basis of eigenvectors of S consists of vectors of the form(
u1

0

)
, . . . ,

(
un−1

0

)
,

( v√
2‖v‖
1√
2

)
,

( v√
2‖v‖
− 1√

2

)
,

where the ui ∈ Rn are all orthogonal to v and pairwise orthogonal. Now, if we multiply the
matrices

(
u1 · · · un−1

v√
2‖v‖

v√
2‖v‖

0 · · · 0 1√
2
− 1√

2

)
1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 1√

2
1√
2

0 · · · 0 1√
2
− 1√

2

 ,

we get an orthogonal matrix of the form (
Q 0
0 1

)
where the columns of Q are the vectors

u1, · · · , un−1,
v

‖v‖ .

By flipping u1 to −u1 if necessary, we can make sure that this matrix has determinant +1.
Consequently,

S =

(
Q 0
0 1

)


1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 coshα sinhα
0 · · · 0 sinhα coshα


(
Q> 0
0 1

)
,
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so

A =

(
R 0
0 ε

)(
Q 0
0 1

)


1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 coshα sinhα
0 · · · 0 sinhα coshα


(
Q> 0
0 1

)
,

and if we let P = RQ, we get the desired decomposition.

Remark: We warn our readers about Chapter 6 of Baker’s book [12]. Indeed, this chapter
is seriously flawed. The main two Theorems (Theorem 6.9 and Theorem 6.10) are false,
and as consequence, the proof of Theorem 6.11 is wrong too. Theorem 6.11 states that the
exponential map exp: so(n, 1)→ SO0(n, 1) is surjective, which is correct, but known proofs
are nontrivial and quite lengthy (see Section 5.2). The proof of Theorem 6.12 is also false,
although the theorem itself is correct (this is our Theorem 5.18, see Section 5.2). The main
problem with Theorem 6.9 (in Baker) is that the existence of the normal form for matrices
in SO0(n, 1) claimed by this theorem is unfortunately false on several accounts. Firstly, it
would imply that every matrix in SO0(n, 1) can be diagonalized, but this is false for n ≥ 2.
Secondly, even if a matrix A ∈ SO0(n, 1) is diagonalizable as A = PDP−1, Theorem 6.9
(and Theorem 6.10) miss some possible eigenvalues and the matrix P is not necessarily in
SO0(n, 1) (as the case n = 1 already shows). For a thorough analysis of the eigenvalues of
Lorentz isometries (and much more), one should consult Riesz [97] (Chapter III).

Clearly, a result similar to Theorem 5.5 also holds for the matrices in the groups O(1, n),
SO(1, n) and SO0(1, n). For example, every matrix A ∈ SO0(1, n) can be written as

A =

(
1 0
0 P

)


coshα sinhα 0 · · · 0
sinhα coshα 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


(

1 0
0 Q>

)
,

where P,Q ∈ SO(n).

In the case n = 3, we obtain the proper orthochronous Lorentz group SO0(1, 3), also
denoted Lor(1, 3). By the way, O(1, 3) is called the (full) Lorentz group and SO(1, 3) is the
special Lorentz group.

Theorem 5.5 (really, the version for SO0(1, n)) shows that the Lorentz group SO0(1, 3)
is generated by the matrices of the form(

1 0
0 P

)
with P ∈ SO(3)
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and the matrices of the form 
coshα sinhα 0 0
sinhα coshα 0 0

0 0 1 0
0 0 0 1

 .

This fact will be useful when we prove that the homomorphism ϕ : SL(2,C)→ SO0(1, 3) is
surjective.

Remark: Unfortunately, unlike orthogonal matrices which can always be diagonalized over
C, not every matrix in SO(1, n) can be diagonalized for n ≥ 2. This has to do with the fact
that the Lie algebra so(1, n) has non-zero idempotents (see Section 5.2).

It turns out that the group SO0(1, 3) admits another interesting characterization involv-
ing the hypersurface

H = {(t, x, y, z) ∈ R4 | t2 − x2 − y2 − z2 = 1}.

This surface has two sheets, and it is not hard to show that SO0(1, 3) is the subgroup of
SO(1, 3) that preserves these two sheets (does not swap them). Actually, we will prove this
fact for any n. In preparation for this, we need some definitions and a few propositions.

Let us switch back to SO(n, 1). First, as a matter of notation, we write every u ∈ Rn+1

as u = (u, t), where u ∈ Rn and t ∈ R, so that the Lorentz inner product can be expressed
as

〈u, v〉 = 〈(u, t), (v, s)〉 = u · v − ts,
where u · v is the standard Euclidean inner product (the Euclidean norm of x is denoted
‖x‖). Then we can classify the vectors in Rn+1 as follows:

Definition 5.3. A nonzero vector u = (u, t) ∈ Rn+1 is called

(a) spacelike iff 〈u, u〉 > 0, i.e., iff ‖u‖2 > t2;

(b) timelike iff 〈u, u〉 < 0, i.e., iff ‖u‖2 < t2;

(c) lightlike or isotropic iff 〈u, u〉 = 0, i.e., iff ‖u‖2 = t2.

A spacelike (resp. timelike, resp. lightlike) vector is said to be positive iff t > 0 and negative
iff t < 0. The set of all isotropic vectors

Hn(0) = {u = (u, t) ∈ Rn+1 | ‖u‖2 = t2}

is called the light cone. For every r > 0, let

Hn(r) = {u = (u, t) ∈ Rn+1 | ‖u‖2 − t2 = −r},

a hyperboloid of two sheets.
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It is easy to check that Hn(r) has two connected components as follows: First, since
r > 0 and

‖u‖2 + r = t2,

we have |t| ≥ √r. For any x = (x1, . . . , xn, t) ∈ Hn(r) with t ≥ √r, we have the continuous
path from (0, . . . , 0,

√
r) to x given by

λ 7→ (λx1, . . . , λxn,
√
r + λ2(t2 − r)),

where λ ∈ [0, 1], proving that the component of (0, . . . , 0,
√
r) is connected. Similarly, when

t ≤ −√r, we have the continuous path from (0, . . . , 0,−√r) to x given by

λ 7→ (λx1, . . . , λxn,−
√
r + λ2(t2 − r)),

where λ ∈ [0, 1], proving that the component of (0, . . . , 0,−√r) is connected. We denote the
sheet containing (0, . . . , 0,

√
r) by H+

n (r) and sheet containing (0, . . . , 0,−√r) by H−n (r)

Since every Lorentz isometry A ∈ SO(n, 1) preserves the Lorentz inner product, we
conclude that A globally preserves every hyperboloid Hn(r), for r > 0. We claim that every
A ∈ SO0(n, 1) preserves both H+

n (r) and H−n (r). This follows immediately from

Proposition 5.6. If an+1n+1 > 0, then every isometry A ∈ O(n, 1) preserves all positive
(resp. negative) timelike vectors and all positive (resp. negative) lightlike vectors. Moreover,
if A ∈ O(n, 1) preserves all positive timelike vectors, then an+1n+1 > 0.

Proof. Let u = (u, t) be a nonzero timelike or lightlike vector. This means that

‖u‖2 ≤ t2 and t 6= 0.

Since A ∈ O(n, 1), the matrix A preserves the inner product; if 〈u, u〉 = ‖u‖2 − t2 < 0,
we get 〈Au,Au〉 < 0, which shows that Au is also timelike. Similarly, if 〈u, u〉 = 0, then
〈Au,Au〉 = 0. Define An+1 = (An+1, an+1n+1) is the (n + 1)th row of the matrix A. As
A ∈ O(n, 1), we know that

〈An+1, An+1〉 = −1,

that is,
‖An+1‖2 − a2

n+1n+1 = −1,

or equivalently

‖An+1‖2 = a2
n+1n+1 − 1.

The (n+ 1)th component of the vector Au is

u ·An+1 + an+1n+1t.

By Cauchy-Schwarz,
(u ·An+1)2 ≤ ‖u‖2 ‖An+1‖2 ,
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so we get,

(u ·An+1)2 ≤ ‖u‖2 ‖An+1‖2 = ‖u‖2 (a2
n+1n+1 − 1)

≤ t2(a2
n+1n+1 − 1) = t2a2

n+1n+1 − t2
< t2a2

n+1n+1,

since t 6= 0. These calculations imply that

(u ·An+1)2 − t2a2
n+1n+1 = (u ·An+1 − tan+1n+1)(u ·An+1 + tan+1n+1) < 0,

and that

|u ·An+1| < |t|an+1n+1.

Note that either (u ·An+1 − tan+1n+1) < 0 or (u ·An+1 + tan+1n+1) < 0, but not both. If
t < 0, since |u ·An+1| < |t|an+1n+1 and an+1n+1 > 0, then (u ·An+1 − tan+1n+1) > 0 and
(u ·An+1 + tan+1n+1) < 0. On the other hand, if t > 0, the fact that |u ·An+1| < |t|an+1n+1

and an+1n+1 > 0 implies (u ·An+1− tan+1n+1) < 0 and (u ·An+1 + tan+1n+1) > 0. From this
it follows that u ·An+1 +an+1, n+1t has the same sign as t, since an+1n+1 > 0. Consequently, if
an+1n+1 > 0, we see that A maps positive timelike (resp. lightlike) vectors to positive timelike
(resp. lightlike) vectors and similarly with negative timelight (resp. lightlike) vectors.

Conversely, as en+1 = (0, . . . , 0, 1) is timelike and positive, if A preserves all positive
timelike vectors, then Aen+1 is timelike positive, which implies an+1n+1 > 0.

Let O+(n, 1) denote the subset of O(n, 1) consisting of all matrices A = (ai j) such that
an+1n+1 > 0. Using Proposition 5.6, we can now show that O+(n, 1) is a subgroup of O(n, 1)
and that SO0(n, 1) is a subgroup of SO(n, 1). Recall that

SO0(n, 1) = {A ∈ SO(n, 1) | an+1n+1 > 0}.

Note that SO0(n, 1) = O+(n, 1) ∩ SO(n, 1).

Proposition 5.7. The set O+(n, 1) is a subgroup of O(n, 1) and the set SO0(n, 1) is a
subgroup of SO(n, 1).

Proof. Let A ∈ O+(n, 1) ⊆ O(n, 1), so that an+1n+1 > 0. The inverse of A in O(n, 1) is
JA>J , where

J =

(
In 0
0 −1

)
,

which implies that a−1
n+1n+1 = an+1n+1 > 0, and so A−1 ∈ O+(n, 1). If A,B ∈ O+(n, 1), then

by Proposition 5.6, both A and B preserve all positive timelike vectors, so AB preserves all
positive timelike vectors. By Proposition 5.6 again, AB ∈ O+(n, 1). Therefore, O+(n, 1) is
a group. But then, SO0(n, 1) = O+(n, 1) ∩ SO(n, 1) is also a group.
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Since any matrix A ∈ SO0(n, 1) preserves the Lorentz inner product and all positive
timelike vectors and sinceH+

n (1) consists of timelike vectors, we see that every A ∈ SO0(n, 1)
maps H+

n (1) into itself. Similarly, every A ∈ SO0(n, 1) maps H−n (1) into itself. Thus, we
can define an action · : SO0(n, 1)×H+

n (1) −→ H+
n (1) by

A · u = Au

and similarly, we have an action · : SO0(n, 1)×H−n (1) −→ H−n (1).

Proposition 5.8. The group SO0(n, 1) is the subgroup of SO(n, 1) that preserves H+
n (1)

(and H−n (1)); that is,

SO0(n, 1) = {A ∈ SO(n, 1) | A(H+
n (1)) = H+

n (1) and A(H−n (1)) = H−n (1)}.

Proof. We already observed that A(H+
n (1)) = H+

n (1) if A ∈ SO0(n, 1) (and similarly,
A(H−n (1)) = H−n (1)). Conversely, for any A ∈ SO(n, 1) such that A(H+

n (1)) = H+
n (1),

as en+1 = (0, . . . , 0, 1) ∈ H+
n (1), the vector Aen+1 must be positive timelike, but this says

that an+1n+1 > 0, i.e., A ∈ SO0(n, 1).

Next we wish to prove that the action SO0(n, 1) × H+
n (1) −→ H+

n (1) is transitive. For
this, we need the next two propositions.

Proposition 5.9. Let u = (u, t) and v = (v, s) be nonzero vectors in Rn+1 with 〈u, v〉 = 0.
If u is timelike, then v is spacelike (i.e., 〈v, v〉 > 0).

Proof. Since u is timelike, we have ‖u‖2 < t2, so t 6= 0. The condition 〈u, v〉 = 0 is
equivalent to u · v − ts = 0. If u = 0, then ts = 0, and since t 6= 0, then s = 0. Then
〈v, v〉 = ‖v‖2 − s2 = ‖v‖2 > 0 since v is a nonzero vector in Rn+1. We now assume u 6= 0.
In this case u · v − ts = 0, and we get

〈v, v〉 = ‖v‖2 − s2 = ‖v‖2 − (u · v)2

t2
.

But when u 6= 0 Cauchy-Schwarz implies that (u · v)2/ ‖u‖2 ≤ ‖v‖2, so we get

〈v, v〉 = ‖v‖2 − (u · v)2

t2
> ‖v‖2 − (u · v)2

‖u‖2 ≥ 0,

as ‖u‖2 < t2.

Lemma 5.9 also holds if u = (u, t) is a nonzero isotropic vector and v = (v, s) is a nonzero
vector that is not collinear with u: If 〈u, v〉 = 0, then v is spacelike (i.e., 〈v, v〉 > 0). The
proof is left as an exercise to the reader.

Proposition 5.10. The action SO0(n, 1)×H+
n (1) −→ H+

n (1) is transitive.
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Proof. Let en+1 = (0, . . . , 0, 1) ∈ H+
n (1). It is enough to prove that for every u = (u, t) ∈

H+
n (1), there is some A ∈ SO0(n, 1) such that Aen+1 = u. By hypothesis,

〈u, u〉 = ‖u‖2 − t2 = −1.

We show that we can construct an orthonormal basis, e1, . . . , en, u, with respect to the
Lorentz inner product. Consider the hyperplane

H = {v ∈ Rn+1 | 〈u, v〉 = 0}.

Since u is timelike, by Proposition 5.9, every nonzero vector v ∈ H is spacelike, that is
〈v, v〉 > 0. Let v1, . . . , vn be a basis of H. Since all (nonzero) vectors in H are spacelike, we
can apply the Gram-Schmidt orthonormalization procedure and we get a basis e1, . . . , en of
H, such that

〈ei, ej〉 = δi j, 1 ≤ i, j ≤ n.

By construction, we also have

〈ei, u〉 = 0, 1 ≤ i ≤ n, and 〈u, u〉 = −1.

Therefore, e1, . . . , en, u are the column vectors of a Lorentz matrix A such that Aen+1 = u,
proving our assertion.

Let us find the stabilizer of en+1 = (0, . . . , 0, 1). We must have Aen+1 = en+1, and the
polar form implies that

A =

(
P 0
0 1

)
, with P ∈ SO(n).

Therefore, the stabilizer of en+1 is isomorphic to SO(n), and we conclude that H+
n (1), as a

homogeneous space, is
H+
n (1) ∼= SO0(n, 1)/SO(n).

We will return to this homogeneous space in Chapter 22, and see that it is actually a
symmetric space.

We end this section by showing that the Lorentz group SO0(n, 1) is connected. Firstly, it
is easy to check that SO0(n, 1) and H+

n (1) satisfy the assumptions of Theorem 4.14 because
they are both manifolds, although this notion has not been discussed yet (but will be in
Chapter 7). Since the action · : SO0(n, 1) × H+

n (1) −→ H+
n (1) of SO0(n, 1) on H+

n (1) is
transitive, Theorem 4.14 implies that as topological spaces,

SO0(n, 1)/SO(n) ∼= H+
n (1).

We already showed that H+
n (1) is connected, so by Proposition 4.8, the connectivity of

SO0(n, 1) follows from the connectivity of SO(n) for n ≥ 1. The connectivity of SO(n)
is a consequence of the surjectivity of the exponential map (for instance, see Gallier [48],
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Chapter 14) but we can also give a quick proof using Proposition 4.8. Indeed, SO(n + 1)
and Sn are both manifolds and we saw in Section 4.2 that

SO(n+ 1)/SO(n) ∼= Sn.

Now, Sn is connected for n ≥ 1 and SO(1) ∼= S1 is connected. We finish the proof by
induction on n.

Corollary 5.11. The Lorentz group SO0(n, 1) is connected; it is the component of the
identity in O(n, 1).

5.2 The Lie Algebra of the Lorentz Group SO0(n, 1)

In this section we take a closer look at the Lorentz group SO0(n, 1), and in particular, at the
relationship between SO0(n, 1) and its Lie algebra so(n, 1). The Lie algebra of SO0(n, 1) is
easily determined by computing the tangent vectors to curves t 7→ A(t) on SO0(n, 1) through
the identity I. Since A(t) satisfies

A>JA = J, J = In,1 =

(
In 0
0 −1

)
,

differentiating and using the fact that A(0) = I, we get

A′
>
J + JA′ = 0.

Therefore,
so(n, 1) = {A ∈ Mn+1(R) | A>J + JA = 0}.

Since J = J>, this means that JA is skew-symmetric, and so

so(n, 1) =

{(
B u
u> 0

)
∈ Mn+1(R) | u ∈ Rn, B> = −B

}
.

Since J2 = I, the condition A>J + JA = 0 is equivalent to

A> = −JAJ.

Observe that every matrix A ∈ so(n, 1) can be written uniquely as(
B u
u> 0

)
=

(
B 0
0 0

)
+

(
0 u
u> 0

)
,

where the first matrix is skew-symmetric, the second one is symmetric, and both belong to
so(n, 1). Thus, it is natural to define

k =

{(
B 0
0 0

)
| B ∈ Mn(R), B> = −B

}
,
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and

p =

{(
0 u
u> 0

)
| u ∈ Rn

}
.

It is immediately verified that both k and p are subspaces of so(n, 1) (as vector spaces) and
that k is a Lie subalgebra isomorphic to so(n), but p is not a Lie subalgebra of so(n, 1)
because it is not closed under the Lie bracket. Still, we have

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k.

Clearly, we have the direct sum decomposition

so(n, 1) = k⊕ p,

known as Cartan decomposition.

There is also an automorphism of so(n, 1) known as the Cartan involution, namely

θ(A) = −A> = JAJ,

and we see that

k = {A ∈ so(n, 1) | θ(A) = A} and p = {A ∈ so(n, 1) | θ(A) = −A}.

The involution θ defined on so(n, 1) is the derivative at I of the involutive isomorphism σ of
the group SO0(n, 1) also defined by

σ(A) = JAJ, A ∈ SO0(n, 1).

To justify this claim, let γ(t) be a curve in SO0(n, 1) through I. Define h(t) = σ ◦ γ(t) =
Jγ(t)J . The product rule implies h′(0) = Jγ′(0)J . On the other hand, the chain rule implies
h′(0) = DσI ◦ γ′(0). Combining the two equivalent forms of h′(0) implies DσI(X) = JXJ ,
whenever X ∈ SO0(n, 1).

Since the inverse of an element A ∈ SO0(n, 1) is given by A−1 = JA>J , we see that σ is
also given by

σ(A) = (A−1)>.

Unfortunately, there does not appear to be any simple way of obtaining a formula for
exp(A), where A ∈ so(n, 1) (except for small n–there is such a formula for n = 3 due to
Chris Geyer). However, it is possible to obtain an explicit formula for the matrices in p.

This is because for such matrices A, if we let ω = ‖u‖ =
√
u>u, we have

A3 = ω2A.

Thus we get
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Proposition 5.12. For every matrix A ∈ p of the form

A =

(
0 u
u> 0

)
,

we have

eA =

(
In + (coshω−1)

ω2 uu> sinhω
ω
u

sinhω
ω
u> coshω

)
=

(√
In + sinh2 ω

ω2 uu> sinhω
ω
u

sinhω
ω
u> coshω

)
.

Proof. Using the fact that A3 = ω2A, we easily prove (by adjusting the calculations of
Section 1.1) that

eA = I +
sinhω

ω
A+

coshω − 1

ω2
A2,

which is the first equation of the proposition, since

A2 =

(
uu> 0

0 u>u

)
=

(
uu> 0

0 ω2

)
.

We leave as an exercise the fact that(
In +

(coshω − 1)

ω2
uu>

)2

= In +
sinh2 ω

ω2
uu>.

It clear from the above formula that each eB with B ∈ p is a Lorentz boost. Conversely,
every Lorentz boost is the exponential of some B ∈ p, as shown below.

Proposition 5.13. Every Lorentz boost

A =

(√
In + vv> v
v> c

)
,

with c =
√
‖v‖2 + 1, is of the form A = eB for some B ∈ p; that is, for some B ∈ so(n, 1)

of the form

B =

(
0 u
u> 0

)
.

Proof. Given

A =

(√
In + vv> v
v> c

)
,

we need to find some

B =

(
0 u
u> 0

)
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such that A = eB. This is done by solving the equation(√
In + sinh2 ω

ω2 uu> sinhω
ω
u

sinhω
ω
u> coshω

)
=

(√
In + vv> v
v> c

)
,

with ω = ‖u‖ and c =
√
‖v‖2 + 1. When v = 0, we have A = I, and the matrix B = 0

corresponding to u = 0 works. So assume v 6= 0. In this case, c > 1. We have to solve the
equation coshω = c, that is,

e2ω − 2ceω + 1 = 0.

The roots of the corresponding algebraic equation X2 − 2cX + 1 = 0 are

X = c±
√
c2 − 1.

As c > 1, both roots are strictly positive, so we can solve for ω, say ω = log(c+
√
c2 − 1) 6= 0.

Then, sinhω 6= 0, so we can solve the equation

sinhω

ω
u = v

for u, which yields a B ∈ so(n, 1) of the right form with A = eB.

Combining Proposition 5.2 and Proposition 5.13, we have the corollary:

Corollary 5.14. Every matrix A ∈ O(n, 1) can be written as

A =

(
Q 0
0 ε

)
e

 0 u
u> 0


,

where Q ∈ O(n), ε = ±1, and u ∈ Rn.

Remarks:

(1) It is easy to show that the eigenvalues of matrices

B =

(
0 u
u> 0

)
are 0, with multiplicity n− 1, ‖u‖, and −‖u‖. In particular, the eigenvalue relation(

0 u
u> 0

)(
c
d

)
= λ

(
c
d

)
, c ∈ Rn, d, λ ∈ R

implies

du = λc, u>c = λd.

If λ 6= 0, c = du
λ

, which in turn implies u>ud = λ2d, i.e. λ2 = u>u = ‖u‖2. If λ = 0,
u>c = 0, which implies that c is in the n− 1-dimensional hyperplane perpendicular to
u. Eigenvectors are then easily determined.
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(2) The matrices B ∈ so(n, 1) of the form

B =


0 · · · 0 0
...

. . .
...

...
0 · · · 0 α
0 · · · α 0


are easily seen to form an abelian Lie subalgebra a of so(n, 1) (which means that for
all B,C ∈ a, [B,C] = 0, i.e., BC = CB). Proposition 5.12 implies that any B ∈ a as
above, we get

eB =


1 · · · 0 0 0
...

. . .
...

...
...

0 · · · 1 0 0
0 · · · 0 coshα sinhα
0 · · · 0 sinhα coshα


The matrices of the form eB with B ∈ a form an abelian subgroup A of SO0(n, 1)
isomorphic to SO0(1, 1). As we already know, the matrices B ∈ so(n, 1) of the form(

B 0
0 0

)
,

where B is skew-symmetric, form a Lie subalgebra k of so(n, 1). Clearly, k is isomorphic
to so(n), and using the exponential, we get a subgroup K of SO0(n, 1) isomorphic to
SO(n). It is also clear that k∩ a = (0), but k⊕ a is not equal to so(n, 1). What is the
missing piece?

Consider the matrices N ∈ so(n, 1) of the form

N =

 0 −u u
u> 0 0
u> 0 0

 ,

where u ∈ Rn−1. The reader should check that these matrices form an abelian Lie
subalgebra n of so(n, 1). Furthermore, since

so(n, 1) =

 B1 u1 u
−u>1 0 α
u> α 0


=

 B1 u1 + u 0
−u>1 − u> 0 0

0 0 0

+

0 0 0
0 0 α
0 α 0

+

 0 −u u
u> 0 0
u> 0 0

 ,
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where B1 ∈ so(n− 1), u, u1 ∈ Rn−1, and α ∈ R, we conclude that

so(n, 1) = k⊕ a⊕ n.

This is the Iwasawa decomposition of the Lie algebra so(n, 1). Furthermore, the reader
should check that every N ∈ n is nilpotent; in fact, N3 = 0. (It turns out that n is a
nilpotent Lie algebra, see Knapp [68]).

The connected Lie subgroup of SO0(n, 1) associated with n is denoted N and it can
be shown that we have the Iwasawa decomposition of the Lie group SO0(n, 1):

SO0(n, 1) = KAN.

It is easy to check that [a, n] ⊆ n, so a ⊕ n is a Lie subalgebra of so(n, 1) and n is an
ideal of a⊕n. This implies that N is normal in the group corresponding to a⊕n, so AN
is a subgroup (in fact, solvable) of SO0(n, 1). For more on the Iwasawa decomposition,
see Knapp [68].

Observe that the image n of n under the Cartan involution θ is the Lie subalgebra

n =


 0 u u
−u> 0 0
u> 0 0

 | u ∈ Rn−1

 .

By using the Iwasawa decomposition, we can show that the centralizer of a, namely
{m ∈ so(n, 1) | ma = am whenever a ∈ a}, is the Lie subalgebra

m =

{(
B 0
0 0

)
∈ Mn+1(R) | B ∈ so(n− 1)

}
.

Hence

so(n, 1) = m⊕ a⊕ n⊕ n,

since

so(n, 1) =

 B1 u1 u
−u>1 0 α
u> α 0


=

B1 0 0
0 0 0
0 0 0

+

0 0 0
0 0 α
0 α 0

+

 0 (u1 − u)/2 (u− u1)/2
(u> − u>1 )/2 0 0
(u> − u>1 )/2 0 0


+

 0 (u+ u1)/2 (u+ u1)/2
(−u> − u>1 )/2 0 0
(u> + u>1 )/2 0 0


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where B1 ∈ so(n− 1), u, u1 ∈ Rn−1, and α ∈ R. We also have

[m, n] ⊆ n,

so m⊕ a⊕ n is a subalgebra of so(n, 1).

The group M associated with m is isomorphic to SO(n− 1), and it can be shown that
B = MAN is a subgroup of SO0(n, 1). In fact,

SO0(n, 1)/(MAN) = KAN/MAN = K/M = SO(n)/SO(n− 1) = Sn−1.

It is customary to denote the subalgebra m ⊕ a by g0, the algebra n by g1, and n by
g−1, so that so(n, 1) = m⊕ a⊕ n⊕ n is also written

so(n, 1) = g0 ⊕ g−1 ⊕ g1.

By the way, if N ∈ n, then

eN = I +N +
1

2
N2,

and since N + 1
2
N2 is also nilpotent, eN can’t be diagonalized when N 6= 0. This

provides a simple example of matrices in SO0(n, 1) that can’t be diagonalized.

Observe that Corollary 5.14 proves that every matrix A ∈ SO0(n, 1) can be written as

A = PeS, with P ∈ K ∼= SO(n) and S ∈ p,

i.e.,

SO0(n, 1) = K exp(p),

a version of the polar decomposition for SO0(n, 1).

5.3 The Surjectivity of exp : so(1, 3)→ SO0(1, 3)

It is known that the exponential map exp: so(n) → SO(n) is surjective. So when A ∈
SO0(n, 1), since then Q ∈ SO(n) and ε = +1, the matrix(

Q 0
0 1

)
is the exponential of some skew symmetric matrix

C =

(
B 0
0 0

)
∈ so(n, 1),
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and we can write A = eCeZ , with C ∈ k and Z ∈ p. Unfortunately, C and Z generally don’t
commute, so it is generally not true that A = eC+Z . Thus, we don’t get an “easy” proof of
the surjectivity of the exponential, exp: so(n, 1)→ SO0(n, 1).

This is not too surprising because to the best of our knowledge, proving surjectivity for
all n is not a simple matter. One proof is due to Nishikawa [90] (1983). Nishikawa’s paper is
rather short, but this is misleading. Indeed, Nishikawa relies on a classic paper by Djokovic
[37], which itself relies heavily on another fundamental paper by Burgoyne and Cushman
[26], published in 1977. Burgoyne and Cushman determine the conjugacy classes for some
linear Lie groups and their Lie algebras, where the linear groups arise from an inner product
space (real or complex). This inner product is nondegenerate, symmetric, or Hermitian
or skew-symmetric or skew-Hermitian. Altogether, one has to read over 40 pages to fully
understand the proof of surjectivity.

In his introduction, Nishikawa states that he is not aware of any other proof of the
surjectivity of the exponential for SO0(n, 1). However, such a proof was also given by Marcel
Riesz as early as 1957, in some lectures notes that he gave while visiting the University of
Maryland in 1957-1958. These notes were probably not easily available until 1993, when
they were published in book form, with commentaries, by Bolinder and Lounesto [97].

Interestingly, these two proofs use very different methods. The Nishikawa–Djokovic–
Burgoyne and Cushman proof makes heavy use of methods in Lie groups and Lie algebra,
although not far beyond linear algebra. Riesz’s proof begins with a deep study of the
structure of the minimal polynomial of a Lorentz isometry (Chapter III). This is a beautiful
argument that takes about 10 pages. The story is not over, as it takes most of Chapter IV
(some 40 pages) to prove the surjectivity of the exponential (actually, Riesz proves other
things along the way). In any case, the reader can see that both proofs are quite involved.

It is worth noting that Milnor (1969) also uses techniques very similar to those used by
Riesz (in dealing with minimal polynomials of isometries) in his paper on isometries of inner
product spaces [82].

What we will do to close this section is to give a relatively simple proof that the expo-
nential map exp: so(1, 3) → SO0(1, 3) is surjective. The reader may wonder why we are
considering the groups SO0(1, 3) instead of the group SO0(3, 1). This is simply a matter of
technical convenience, for instance, in the proof of Proposition 5.17.

In the case of SO0(1, 3), we can use the fact that SL(2,C) is a two-sheeted covering
space of SO0(1, 3), which means that there is a homomorphism φ : SL(2,C) → SO0(1, 3)
which is surjective and that Ker φ = {−I, I}. Then the small miracle is that, although the
exponential exp: sl(2,C) → SL(2,C) is not surjective, for every A ∈ SL(2,C), either A or
−A is in the image of the exponential!

Proposition 5.15. Given any matrix

B =

(
a b
c −a

)
∈ sl(2,C),
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let ω be any of the two complex roots of a2 + bc. If ω 6= 0, then

eB = coshω I +
sinh ω

ω
B,

and eB = I + B if a2 + bc = 0. Furthermore, every matrix A ∈ SL(2,C) is in the image of
the exponential map, unless A = −I +N , where N is a nonzero nilpotent (i.e., N2 = 0 with
N 6= 0). Consequently, for any A ∈ SL(2,C), either A or −A is of the form eB, for some
B ∈ sl(2,C).

Proof. Observe that

B2 =

(
a b
c −a

)(
a b
c −a

)
= (a2 + bc)I.

Then, it is straightforward to prove that

eB = coshω I +
sinh ω

ω
B,

where ω is a square root of a2 + bc if ω 6= 0, otherwise, eB = I +B.

Let

A =

(
α β
γ δ

)
, αδ − γβ = 1

be any matrix in SL(2,C). We would like to find a matrix B ∈ sl(2,C) so that A = eB. In
view of the above, we need to solve the system

coshω +
sinhω

ω
a = α

coshω − sinhω

ω
a = δ

sinhω

ω
b = β

sinhω

ω
c = γ

for a, b, c, and ω. From the first two equations we get

coshω =
α + δ

2
sinhω

ω
a =

α− δ
2

.

Thus, we see that we need to know whether complex cosh is surjective and when complex
sinh is zero. We claim:

(1) cosh is surjective.
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(2) sinh z = 0 iff z = nπi, where n ∈ Z.

Given any c ∈ C, we have coshω = c iff

e2ω − 2eωc+ 1 = 0.

The corresponding algebraic equation

Z2 − 2cZ + 1 = 0

has discriminant 4(c2 − 1) and it has two complex roots

Z = c±
√
c2 − 1

where
√
c2 − 1 is some square root of c2 − 1. Observe that these roots are never zero.

Therefore, we can find a complex log of c +
√
c2 − 1, say ω, so that eω = c +

√
c2 − 1 is a

solution of e2ω − 2eωc+ 1 = 0. This proves the surjectivity of cosh.

We have sinhω = 0 iff e2ω = 1; this holds iff 2ω = n2πi, i.e., ω = nπi.

Observe that

sinhnπi

nπi
= 0 if n 6= 0, but

sinhnπi

nπi
= 1 when n = 0.

We know that

coshω =
α + δ

2
can always be solved.

Case 1. If ω 6= nπi, with n 6= 0, then

sinhω

ω
6= 0

and the other equations can also be solved (this includes the case ω = 0). We still have to
check that

a2 + bc = ω2.

This is because, using the fact that coshω = α+δ
2

, αδ − βγ = 1, and cosh2 ω − sinh2 ω = 1,
we have

a2 + bc =
(α− δ)2ω2

4 sinh2 ω
+

βγω2

sinh2 ω

=
ω2(α2 + δ2 − 2αδ + 4βγ)

4 sinh2 ω

=
ω2(α2 + δ2 + 2αδ − 4(αδ − βγ))

4 sinh2 ω

=
ω2((α + δ)2 − 4(αδ − βγ))

4 sinh2 ω

=
4ω2(cosh2 ω − 1)

4 sinh2 ω
= ω2.
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Therefore, in this case, the exponential is surjective. It remains to examine the other case.

Case 2. Assume ω = nπi, with n 6= 0. If n is even, then eω = 1, which implies

α + δ = 2.

However, αδ − βγ = 1 (since A ∈ SL(2,C)), so from the facts that det(A) is the product
of the eigenvalues and tr(A) is the sum of the eigenvalues, we deduce that A has the double
eigenvalue 1. Thus, N = A − I is nilpotent (i.e., N2 = 0) and has zero trace; but then,
N ∈ sl(2,C) and

eN = I +N = I + A− I = A.

If n is odd, then eω = −1, which implies

α + δ = −2.

In this case, A has the double eigenvalue −1 and A + I = N is nilpotent. So A = −I + N ,
where N is nilpotent. If N 6= 0, then A cannot be diagonalized. We claim that there is no
B ∈ sl(2,C) so that eB = A.

Indeed, any matrix B ∈ sl(2,C) has zero trace, which means that if λ1 and λ2 are the
eigenvalues of B, then λ1 = −λ2. If λ1 6= 0, then λ1 6= λ2 so B can be diagonalized, but then
Proposition 1.4 implies that eB can also be diagonalized, contradicting the fact that A can’t
be diagonalized. If λ1 = λ2 = 0, then eB has the double eigenvalue +1, but by Proposition
1.4, A has eigenvalues −1. Therefore, the only matrices A ∈ SL(2,C) that are not in the
image of the exponential are those of the form A = −I+N , where N is a nonzero nilpotent.
However, note that −A = I −N is in the image of the exponential.

Remark: If we restrict our attention to SL(2,R), then we have the following proposition
that can be used to prove that the exponential map exp: so(1, 2)→ SO0(1, 2) is surjective:

Proposition 5.16. Given any matrix

B =

(
a b
c −a

)
∈ sl(2,R),

if a2 + bc > 0, then let ω =
√
a2 + bc > 0, and if a2 + bc < 0, then let ω =

√
−(a2 + bc) > 0

(i.e., ω2 = −(a2 + bc)). In the first case (a2 + bc > 0), we have

eB = coshω I +
sinh ω

ω
B,

and in the second case (a2 + bc < 0), we have

eB = cosω I +
sin ω

ω
B.

If a2 + bc = 0, then eB = I + B. Furthermore, every matrix A ∈ SL(2,R) whose trace
satisfies tr(A) ≥ −2 is in the image of the exponential map, unless A = −I +N with N 6= 0
nilpotent. Consequently, for any A ∈ SL(2,R), either A or −A is of the form eB, for some
B ∈ sl(2,R).
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Proof. For any matrix

B =

(
a b
c −a

)
∈ sl(2,R),

some simple calculations show that if a2 + bc > 0, then

eB = coshω I +
sinh ω

ω
B

with ω =
√
a2 + bc > 0, and if a2 + bc < 0, then

eB = cosω I +
sin ω

ω
B

with ω =
√
−(a2 + bc) > 0 (and eB = I +B when a2 + bc = 0). Let

A =

(
α β
γ δ

)
, αδ − βγ = 1

be any matrix in SL(2,R).

First, assume that tr(A) = α + δ > 2. We would like to find a matrix B ∈ sl(2,R) so
that A = eB. In view of the above, we need to solve the system

coshω +
sinhω

ω
a = α

coshω − sinhω

ω
a = δ

sinhω

ω
b = β

sinhω

ω
c = γ

for a, b, c, and ω. From the first two equations we get

coshω =
α + δ

2
sinhω

ω
a =

α− δ
2

.

As in the proof of Proposition 5.15, coshω = c iff eω is a root of the quadratic equation

Z2 − 2cZ + 1 = 0.

This equation has real roots iff c2 ≥ 1, and since c = α+δ
2

and α + δ > 2, our equation has

real roots. Furthermore, the root c +
√
c2 − 1 is greater than 1, so log c is a positive real

number. Then, as in the proof of Proposition 5.15, we find solutions of our system above.
Moreover, these solutions are real and satisfy a2 + bc = ω2.
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Let us now consider the case where −2 ≤ α+δ ≤ 2. This time we try to solve the system

cosω +
sinω

ω
a = α

cosω − sinω

ω
a = δ

sinω

ω
b = β

sinω

ω
c = γ.

We get

cosω =
α + δ

2
sinω

ω
a =

α− δ
2

.

Because −2 ≤ α + δ ≤ 2, the first equation has (real) solutions, and we may assume that
0 ≤ ω ≤ π.

If ω = 0 is a solution, then α + β = 2 and we already know via the arguments of
Proposition 5.15 that N = A − I is nilpotent and that eN = I + N = A. If ω = π, then
α+β = −2 and we know that N = A+I is nilpotent. If N = 0, then A = −I, and otherwise
we already know that A = −I +N is not in the image of the exponential.

If 0 < ω < π, then sinω 6= 0 and the other equations have a solution. We still need to
check that

a2 + bc = −ω2.

Because cosω = α+δ
2

, αδ − βγ = 1 and cos2 ω + sin2 ω = 1, we have

a2 + bc =
(α− δ)2ω2

4 sin2 ω
+
βγω2

sin2 ω

=
ω2(α2 + δ2 − 2αδ + 4βγ)

4 sinh2 ω

=
ω2(α2 + δ2 + 2αδ − 4(αδ − βγ))

4 sin2 ω

=
ω2((α + δ)2 − 4(αδ − βγ))

4 sin2 ω

=
4ω2(cos2 ω − 1)

4 sin2 ω
= −ω2.

This proves that every matrix A ∈ SL(2,R) whose trace satisfies tr(A) ≥ −2 is in the image
of the exponential map, unless A = −I +N with N 6= 0 nilpotent.
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We now return to the relationship between SL(2,C) and SO0(1, 3). In order to define a
homomorphism φ : SL(2,C)→ SO0(1, 3), we begin by defining a linear bijection h between
R4 and H(2), the set of complex 2× 2 Hermitian matrices, by

(t, x, y, z) 7→
(
t+ x y − iz
y + iz t− x

)
.

Those familiar with quantum physics will recognize a linear combination of the Pauli matri-
ces! The inverse map is easily defined For instance, given a Hermitian matrix(

a b
c d

)
, a, d ∈ R, c = b ∈ C

by setting (
a b

b d

)
=

(
t+ x y − iz
y + iz t− x

)
,

we find that

t =
a+ d

2
, x =

a− d
2

, y =
b+ b

2
, z =

b− b
2i

.

For any A ∈ SL(2,C), we define a map lA : H(2)→ H(2), via

S 7→ ASA∗.

(Here, A∗ = A
>

.) Using the linear bijection h : R4 → H(2) and its inverse, we obtain a map
lorA : R4 → R4, where

lorA = h−1 ◦ lA ◦ h.

As ASA∗ is Hermitian, we see that lA is well defined. It is obviously linear and since
det(A) = 1 (recall, A ∈ SL(2,C)) and

det

(
t+ x y − iz
y + iz t− x

)
= t2 − x2 − y2 − z2,

we see that lorA preserves the Lorentz metric! Furthermore, it is not hard to prove that
SL(2,C) is connected (use the polar form or analyze the eigenvalues of a matrix in SL(2,C),
for example, as in Duistermatt and Kolk [43] (Chapter 1, Section 1.2)) and that the map
φ : SL(2,C)→ GL(4,R) with

φ : A 7→ lorA

is a continuous group homomorphism. Thus the range of φ is a connected subgroup of
SO0(1, 3). This shows that φ : SL(2,C)→ SO0(1, 3) is indeed a homomorphism. It remains
to prove that it is surjective and that its kernel is {I,−I}.
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Proposition 5.17. The homomorphism φ : SL(2,C)→ SO0(1, 3) is surjective and its kernel
is {I,−I}.

Proof. Recall that from Theorem 5.5, the Lorentz group SO0(1, 3) is generated by the ma-
trices of the form (

1 0
0 P

)
with P ∈ SO(3)

and the matrices of the form 
coshα sinhα 0 0
sinhα coshα 0 0

0 0 1 0
0 0 0 1

 .

Thus, to prove the surjectivity of φ, it is enough to check that the above matrices are in the
range of φ. For matrices of the second kind

A =

(
e

1
2
α 0

0 e−
1
2
α

)
does the job. Let e1, e2, e3, and e4 be the standard basis for R4. Then

lorA(e1) = h−1 ◦ lA ◦ h(e1) = h−1 ◦ lA
((

1 0
0 1

))
= h−1

((
eα 0
0 e−α

))
=

(
eα + e−α

2
,
eα − e−α

2
, 0, 0

)
= (coshα, sinhα, 0, 0).

Similar calculations show that

lorA(e2) = (sinhα, coshα, 0, 0)

lorA(e3) = (0, 0, 1, 0) lorA(e4) = (0, 0, 0, 1).

For matrices of the first kind, we recall that the group of unit quaternions q = a1+bi+cj+dk
can be viewed as SU(2), via the correspondence

a1 + bi + cj + dk 7→
(
a+ ib c+ id
−c+ id a− ib

)
,

where a, b, c, d ∈ R and a2 + b2 + c2 + d2 = 1. Moreover, the algebra of quaternions H is
the real algebra of matrices as above, without the restriction a2 + b2 + c2 + d2 = 1, and R3

is embedded in H as the pure quaternions , i.e., those for which a = 0. Observe that when
a = 0, (

ib c+ id
−c+ id −ib

)
= i

(
b d− ic

d+ ic −b

)
= ih(0, b, d, c).
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Therefore, we have a bijection between the pure quaternions and the subspace of the Her-
mitian matrices (

b d− ic
d+ ic −b

)
for which a = 0, the inverse being division by i, i.e., multiplication by −i. Also, when q is a
unit quaternion, let q = a1− bi− cj− dk, and observe that q = q−1. Using the embedding
R3 ↪→ H, for every unit quaternion q ∈ SU(2), define the map ρq : R3 → R3 by

ρq(X) = qXq = qXq−1,

for all X ∈ R3 ↪→ H. It is well known that ρq is a rotation (i.e., ρq ∈ SO(3)), and moreover
the map q 7→ ρq is a surjective homomorphism ρ : SU(2) → SO(3), and Ker φ = {I,−I}
(For example, see Gallier [48], Chapter 8).

Now consider a matrix A of the form(
1 0
0 P

)
with P ∈ SO(3).

We claim that we can find a matrix B ∈ SL(2,C), such that φ(B) = lorB = A. We claim
that we can pick B ∈ SU(2) ⊆ SL(2,C). Indeed, if B ∈ SU(2), then B∗ = B−1, so

B

(
t+ x y − iz
y + iz t− x

)
B∗ = t

(
1 0
0 1

)
− iB

(
ix z + iy

−z + iy −ix

)
B−1.

The above shows that lorB leaves the coordinate t invariant. The term

B

(
ix z + iy

−z + iy −ix

)
B−1

is a pure quaternion corresponding to the application of the rotation ρB induced by the unit
quaternion B to the pure quaternion associated with (x, y, z) and multiplication by −i is
just the corresponding Hermitian matrix, as explained above. But, we know that for any
P ∈ SO(3), there is a unit quaternion B so that ρB = P , so we can find our B ∈ SU(2) so
that

lorB =

(
1 0
0 P

)
= A.

Finally, assume that φ(A) = lorA = I. This means that

ASA∗ = S,

for all Hermitian matrices S defined above. In particular, for S = I, we get AA∗ = I, i.e.,
A ∈ SU(2). Thus

AS = SA
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for all Hermitian matrices S defined above, so in particular, this holds for diagonal matrices
of the form (

t+ x 0
0 t− x

)
,

with t+ x 6= t− x. We deduce that A is a diagonal matrix, and since it is unitary, we must
have A = ±I. Therefore, Kerφ = {I,−I}.

Remark: The group SL(2,C) is isomorphic to the group Spin(1, 3), which is a (simply-
connected) double-cover of SO0(1, 3). This is a standard result of Clifford algebra theory;
see Bröcker and tom Dieck [24] or Fulton and Harris [46]. What we just did is to provide a
direct proof of this fact.

We just proved that there is an isomorphism

SL(2,C)/{I,−I} ∼= SO0(1, 3).

However, the reader may recall that SL(2,C)/{I,−I} = PSL(2,C) ∼= Möb+. Therefore,
the Lorentz group is isomorphic to the Möbius group.

We now have all the tools to prove that the exponential map exp: so(1, 3) → SO0(1, 3)
is surjective.

Theorem 5.18. The exponential map exp: so(1, 3)→ SO0(1, 3) is surjective.

Proof. First recall from Proposition 3.13 that the following diagram commutes:

SL(2,C)
φ // SO0(1, 3)

sl(2,C)
dφ1

//

exp

OO

so(1, 3)

exp

OO
.

Pick any A ∈ SO0(1, 3). By Proposition 5.17, the homomorphism φ is surjective and as
Kerφ = {I,−I}, there exists some B ∈ SL(2,C) so that

φ(B) = φ(−B) = A.

Now by Proposition 5.15, for any B ∈ SL(2,C), either B or −B is of the form eC , for some
C ∈ sl(2,C). By the commutativity of the diagram, if we let D = dφ1(C) ∈ so(1, 3), we get

A = φ(±eC) = edφ1(C) = eD,

with D ∈ so(1, 3), as required.
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Remark: We can restrict the bijection h : R4 → H(2) defined earlier to a bijection between
R3 and the space of real symmetric matrices of the form(

t+ x y
y t− x

)
.

Then, if we also restrict ourselves to SL(2,R), for any A ∈ SL(2,R) and any symmetric
matrix S as above, we get a map

S 7→ ASA>.

The reader should check that these transformations correspond to isometries in SO0(1, 2)
and we get a homomorphism φ : SL(2,R) → SO0(1, 2). Just as SL(2,C) is connected, the
group SL(2,R) is also connected (but not simply connected, unlike SL(2,C)). Then we have
a version of Proposition 5.17 for SL(2,R) and SO0(1, 2):

Proposition 5.19. The homomorphism φ : SL(2,R)→ SO0(1, 2) is surjective and its kernel
is {I,−I}.

Using Proposition 5.19, Proposition 5.16, and the commutative diagram

SL(2,R)
φ // SO0(1, 2)

sl(2,R)
dφ1

//

exp

OO

so(1, 2)

exp

OO
,

we get a version of Theorem 5.18 for SO0(1, 2):

Theorem 5.20. The exponential map exp: so(1, 2)→ SO0(1, 2) is surjective.

Also observe that SO0(1, 1) consists of the matrices of the form

A =

(
coshα sinhα
sinhα coshα

)
,

and a direct computation shows that

e

0 α
α 0


=

(
coshα sinhα
sinhα coshα

)
.

Thus, we see that the map exp: so(1, 1) → SO0(1, 1) is also surjective. Therefore, we have
proved that exp: so(1, n) → SO0(1, n) is surjective for n = 1, 2, 3. This actually holds for
all n ≥ 1, but the proof is much more involved, as we already discussed earlier.
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5.4 Problems

Problem 5.1. Define k and p by

k =

{(
B 0
0 0

)
| B ∈ Mn(R), B> = −B

}
,

and

p =

{(
0 u
u> 0

)
| u ∈ Rn

}
.

(1) Check that both k and p are subspaces of so(n, 1) (as vector spaces) and that k is a
Lie subalgebra isomorphic to so(n).

(2) Show that p is not a Lie subalgebra of so(n, 1) because it is not closed under the Lie
bracket. Still, check that

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k.

Problem 5.2. Consider the subset n of so(n, 1) consisting of the matrices of the form

N =

 0 −u u
u> 0 0
u> 0 0

 ,

where u ∈ Rn−1.

(1) Check that n is an abelian Lie subalgebra of so(n, 1).

(2) Prove that every N ∈ n is nilpotent; in fact, N3 = 0.

(3) Prove that [a, n] ⊆ n, and that a⊕ n is a Lie subalgebra of so(n, 1) and n is an ideal
of a⊕ n.

Problem 5.3. The map

(x, y, t) 7→
(
t+ x y
y t− x

)
is a bijection between R3 and the space of real symmetric matrices of the above form. For
any A ∈ SL(2,R) and any symmetric matrix S as above, we get a map

S 7→ ASA>.

(1) Check that these transformations correspond to isometries in SO0(1, 2), and that we
get a homomorphism φ : SL(2,R)→ SO0(1, 2).

(2) Prove Proposition 5.19, namely that the homomorphism φ : SL(2,R)→ SO0(1, 2) is
surjective and its kernel is {I,−I}.



Chapter 6

The Structure of O(p, q) and SO(p, q)

In this chapter, we take a closer look at the stucture of the groups O(p, q) and SO(p, q)
(also SO0(p, q)). We begin with the polar form of matrices in O(p, q), and then we describe
the topological structure of the groups O(p, q), SO(p, q), and SO0(p, q). For this, we briefly
investigate a class of groups called pseudo-algebraic groups.

6.1 Polar Forms for Matrices in O(p, q)

Recall from Section 5.1 that the group O(p, q) is the set of all n× n-matrices

O(p, q) = {A ∈ GL(n,R) | A>Ip,qA = Ip,q}.

We deduce immediately that | det(A)| = 1, and we also know that AIp,qA
> = Ip,q holds.

Unfortunately, when p 6= 0, 1 and q 6= 0, 1, it does not seem possible to obtain a formula as
nice as that given in Proposition 5.2. Nevertheless, we can obtain a formula for a polar form
factorization of matrices in O(p, q).

Recall (for example, see Gallier [48], Chapter 12) that if S is a symmetric positive definite
matrix, then there is a unique symmetric positive definite matrix, T , so that

S = T 2.

We denote T by S
1
2 or
√
S. By S−

1
2 , we mean the inverse of S

1
2 . In order to obtain the polar

form of a matrix in O(p, q), we begin with the following proposition:

Proposition 6.1. Every matrix X ∈ O(p, q) can be written as

X =

(
U 0
0 V

)(
α

1
2 α

1
2Z>

δ
1
2Z δ

1
2

)
,

where α = (Ip − Z>Z)−1 and δ = (Iq − ZZ>)−1, for some orthogonal matrices U ∈ O(p),
V ∈ O(q) and for some q × p matrix, Z, such that Ip − Z>Z and Iq − ZZ> are symmetric
positive definite matrices. Moreover, U, V, Z are uniquely determined by X.

197
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Proof. If we write

X =

(
A B
C D

)
,

with A a p× p matrix, D a q × q matrix, B a p× q matrix and C a q × p matrix, then the
equations X>Ip,qX = Ip,q and XIp,qX

> = Ip,q yield the (not independent) conditions

A>A = Ip + C>C

D>D = Iq +B>B

A>B = C>D

AA> = Ip +BB>

DD> = Iq + CC>

AC> = BD>.

Since C>C is symmetric and since

x>C>Cx = ‖Cx‖2 ≥ 0,

we see that C>C is a positive semi-definite matrix with nonnegative eigenvalues. We then
deduce, (via the argument used in Proposition 5.2), that A>A is symmetric positive definite
and similarly for D>D. If we assume that the above decomposition of X holds, we deduce
that

A = Uα
1
2 = U(Ip − Z>Z)−

1
2

B = Uα
1
2Z> = U(Ip − Z>Z)−

1
2Z>

C = V δ
1
2Z = V (Iq − ZZ>)−

1
2Z

D = V δ
1
2 = V (Iq − ZZ>)−

1
2 ,

which implies
Z = D−1C and Z> = A−1B.

We must check that
(D−1C)> = A−1B

i.e.,
C>(D>)−1 = A−1B,

namely,
AC> = BD>,

which is indeed the last of our identities. Thus, we must have Z = D−1C = (A−1B)>. The
above expressions for A and D also imply that

A>A = (Ip − Z>Z)−1 and D>D = (Iq − ZZ>)−1,
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so we must check that the choice Z = D−1C = (A−1B)> yields the above equations.

Since Z> = A−1B, we have

Z>Z = A−1BB>(A>)−1

= A−1(AA> − Ip)(A>)−1, since AA> = Ip +BB>

= Ip − A−1(A>)−1

= Ip − (A>A)−1.

Therefore,
(A>A)−1 = Ip − Z>Z,

i.e.,
A>A = (Ip − Z>Z)−1,

as desired. We also have, this time, with Z = D−1C,

ZZ> = D−1CC>(D>)−1

= D−1(DD> − Iq)(D>)−1, since DD> = Ip + CC>

= Iq −D−1(D>)−1

= Iq − (D>D)−1.

Therefore,
(D>D)−1 = Iq − ZZ>,

i.e.,
D>D = (Iq − ZZ>)−1,

as desired. Now since A>A and D>D are positive definite, the polar form implies that

A = U(A>A)
1
2 = U(Ip − Z>Z)−

1
2

and
D = V (D>D)

1
2 = V (Iq − ZZ>)−

1
2 ,

for some unique matrices, U ∈ O(p) and V ∈ O(q). Since Z = D−1C and Z> = A−1B, we
get C = DZ and B = AZ>, but this is

B = U(Ip − Z>Z)−
1
2Z>

C = V (Iq − ZZ>)−
1
2Z,

as required. Therefore, the unique choice of Z = D−1C = (A−1B)>, U and V does yield the
formula of the proposition.

We next show that the matrix(
α

1
2 α

1
2Z>

δ
1
2Z δ

1
2

)
=

(
(Ip − Z>Z)−

1
2 (Ip − Z>Z)−

1
2Z>

(Iq − ZZ>)−
1
2Z (Iq − ZZ>)−

1
2

)
is symmetric. To prove this we use power series.
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Proposition 6.2. For any q× p matrix Z such that Ip−Z>Z and Iq−ZZ> are symmetric
positive definite, the matrix

S =

(
α

1
2 α

1
2Z>

δ
1
2Z δ

1
2

)
is symmetric, where α = (Ip − Z>Z)−1 and δ = (Iq − ZZ>)−1.

Proof. The matrix S is symmetric iff Zα
1
2 = δ

1
2Z, that is iff Z(Ip−Z>Z)−

1
2 = (Iq−ZZ>)−

1
2Z

iff
(Iq − ZZ>)

1
2Z = Z(Ip − Z>Z)

1
2 .

If Z = 0, the equation holds trivially. If Z 6= 0, we know from linear algebra that ZZ>

and Z>Z are symmetric positive semidefinite, and they have the same positive eigenvalues.
Thus, Ip − Z>Z is positive definite iff Iq − ZZ> is positive definite, and if so, we must have
ρ(ZZ>) = ρ(Z>Z) < 1 (where ρ(ZZ>) denotes the largest modulus of the eigenvalues of
ZZ>; in this case, since the eigenvalues of ZZ> are nonnegative, this is the largest eigenvalue
of ZZ>). If we use the spectral norm ‖ ‖ (the operator norm induced by the 2-norm), we
have ∥∥ZZ>∥∥ =

√
ρ((ZZ>)>ZZ>) = ρ(ZZ>) < 1,

and similarly ∥∥Z>Z∥∥ = ρ(Z>Z) < 1.

Therefore, the following series converge absolutely:

(Ip − Z>Z)
1
2 = 1 +

1

2
Z>Z − 1

8
(Z>Z)2 + · · ·+

1
2

(
1
2
− 1
)
· · ·
(

1
2
− k + 1

)
k!

(Z>Z)k + · · ·

and

(Iq − ZZ>)
1
2 = 1 +

1

2
ZZ> − 1

8
(ZZ>)2 + · · ·+

1
2

(
1
2
− 1
)
· · ·
(

1
2
− k + 1

)
k!

(ZZ>)k + · · · .

We get

Z(Ip − Z>Z)
1
2 = Z +

1

2
ZZ>Z − 1

8
Z(Z>Z)2 + · · ·+

1
2

(
1
2
− 1
)
· · ·
(

1
2
− k + 1

)
k!

Z(Z>Z)k + · · ·

and

(Iq−ZZ>)
1
2Z = Z +

1

2
ZZ>Z− 1

8
(ZZ>)2Z + · · ·+

1
2

(
1
2
− 1
)
· · ·
(

1
2
− k + 1

)
k!

(ZZ>)kZ + · · · .

However
Z(Z>Z)k = Z Z>Z · · ·Z>Z︸ ︷︷ ︸

k

= ZZ> · · ·ZZ>︸ ︷︷ ︸
k

Z = (ZZ>)kZ,

which proves that (Iq − ZZ>)
1
2Z = Z(Ip − Z>Z)

1
2 , as required.
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Another proof of Proposition 6.2 can be given using the SVD of Z. Indeed, we can write

Z = PDQ>

where P is a q×q orthogonal matrix, Q is a p×p orthogonal matrix, and D is a q×p matrix
whose diagonal entries are (strictly) positive and all other entries zero. Then,

Ip − Z>Z = Ip −QD>P>PDQ> = Q(Ip −D>D)Q>,

a symmetric positive definite matrix by assumption. Furthermore,
(Ip − Z>Z)

1
2 = Q(Iq −DD>)

1
2Q> since

Q(Iq −DD>)
1
2Q>Q(Iq −DD>)

1
2Q> = Q(Ip −D>D)Q>.

We also have
Iq − ZZ> = Iq − PDQ>QD>P> = P (Iq −DD>)P>,

another symmetric positive definite matrix by assumption, which has unique square root
(Iq − ZZ>)

1
2 = P (Iq −DD>)

1
2P>. Then,

Z(Ip − Z>Z)−
1
2 = PDQ>Q(Ip −D>D)−

1
2Q> = PD(Ip −D>D)−

1
2Q>

and
(Iq − ZZ>)−

1
2Z = P (Iq −DD>)−

1
2P>PDQ> = P (Iq −DD>)−

1
2DQ>,

so it suffices to prove that

D(Ip −D>D)−
1
2 = (Iq −DD>)−

1
2D.

However, D is essentially a diagonal matrix and the above is easily verified, as the reader
should check.

Remark: The polar form of matrices in O(p, q) can be obtained via the exponential map
and the Lie algebra, o(p, q), of O(p, q), see Section 6.3. Indeed, every matrix X ∈ O(p, q)
has a polar form of the form

X =

(
P 0
0 Q

)(
S1 S2

S>2 S3

)
,

with P ∈ O(p), Q ∈ O(q), and with

(
S1 S2

S>2 S3

)
symmetric positive definite. This implies

that

x>S1x =
(
x> 0

)(S1 S2

S>2 S3

)(
x
0

)
> 0

for all x ∈ Rp, x 6= 0, and that

y>S3y =
(
0 y>

)(S1 S2

S>2 S3

)(
0
y

)
> 0
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for all y ∈ Rq, y 6= 0. Therefore, S1 and S3 are symmetric positive definite. But then if we
write

X =

(
A B
C D

)
,

from (
A B
C D

)
=

(
P 0
0 Q

)(
S1 S2

S>2 S3

)
,

we get A = PS1 and D = QS3, which are polar decompositions of A and D respectively. On
the other hand, our factorization(

A B
C D

)
=

(
U 0
0 V

)(
α

1
2 α

1
2Z>

δ
1
2Z δ

1
2

)
yields A = Uα

1
2 and D = V δ

1
2 , with U ∈ O(p), V ∈ O(q), and α

1
2 , δ

1
2 symmetric positive

definite. By uniqueness of the polar form, P = U,Q = V (S1 = α
1
2 and S3 = δ

1
2 ), which

shows that our factorization is the polar decomposition of X after all! This can also be
proved more directly using the fact that I − Z>Z (and I − ZZ>) being positive definite
implies that the spectral norms ‖Z‖ and

∥∥Z>∥∥ of Z and Z> are both strictly less than one.

We also have the following amusing property of the determinants of A and D:

Proposition 6.3. For any matrix X ∈ O(p, q), if we write

X =

(
A B
C D

)
,

then

det(X) = det(A) det(D)−1 and | det(A)| = | det(D)| ≥ 1.

Proof. Using the identities A>B = C>D and D>D = Iq + B>B proven in Proposition 6.1,
observe that(

A> 0
B> −D>

)(
A B
C D

)
=

(
A>A A>B

B>A−D>C B>B −D>D

)
=

(
A>A A>B

0 −Iq

)
.

If we compute determinants, we get

det(A)(−1)q det(D) det(X) = det(A)2(−1)q.

It follows that

det(X) = det(A) det(D)−1.

From A>A = Ip+C
>C and D>D = Iq+B

>B, we conclude, via an eigenvalue argument, that
| det(A)| ≥ 1 and | det(D)| ≥ 1. Since | det(X)| = 1, we have | det(A)| = | det(D)| ≥ 1.
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Remark: It is easy to see that the equations relating A,B,C,D established in the proof of
Proposition 6.1 imply that

det(A) = ±1 iff C = 0 iff B = 0 iff det(D) = ±1.

We end this section by exhibiting a bijection between O(p, q) and O(p)×O(q)×Rpq, and
in essence justifying the statement that SO0(p,q) is homeomorphic to SO(p)×SO(q)×Rpq.
The construction of the bijection begins with the following claim: for every q × p matrix Y ,
there is a unique q × p matrix Z such that Iq − ZZ> is positive definite symmetric matrix
and

(Iq − ZZ>)−
1
2Z = Y, (∗)

given by
Z = (Iq + Y Y >)−

1
2Y.

To verify the claim, we start with a given Y and define Z = (Iq + Y Y >)−
1
2Y , and show

that Z satisfies (∗). Indeed, Iq + Y Y > is symmetric positive definite, and we have

ZZ> = (Iq + Y Y >)−
1
2Y Y >(Iq + Y Y >)−

1
2

= (Iq + Y Y >)−
1
2 (Iq + Y Y > − Iq)(Iq + Y Y >)−

1
2

= Iq − (Iq + Y Y >)−1,

so
Iq − ZZ> = (Iq + Y Y >)−1,

from which we deduce that Iq −ZZ> is positive definite (since it is the inverse of a positive
definite matrix, and hence must have positive eigenvalues). Note that Iq − ZZ> is also
symmetric since it is the inverse of a symmetric matrix. It follows that

(Iq − ZZ>)−
1
2Z = (Iq + Y Y >)

1
2 (Iq + Y Y >)−

1
2Y = Y,

which shows that Z = (Iq + Y Y >)−
1
2Y is a solution of (∗).

We now verify the uniqueness of the solution. Assume that Z is a solution of (∗). Then
we have

Y Y > = (Iq − ZZ>)−
1
2ZZ>(Iq − ZZ>)−

1
2

= (Iq − ZZ>)−
1
2 (Iq − (Iq − ZZ>))(Iq − ZZ>)−

1
2

= (Iq − ZZ>)−1 − Iq,
so (Iq − ZZ>)−1 = Iq + Y Y >, which implies that

Z = (Iq − ZZ>)
1
2Y = (Iq + Y Y >)−

1
2Y.

Therefore, the map Y 7→ (Iq + Y Y >)−
1
2Y is a bijection between Rqp and the set of q × p

matrices Z such that Iq − ZZ> is symmetric positive definite, whose inverse is the map

Z 7→ (Iq − ZZ>)−
1
2Z = δ

1
2Z.

As a corollary, there is a bijection between O(p, q) and O(p)×O(q)× Rpq.
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6.2 Pseudo-Algebraic Groups

The topological structure of certain linear Lie groups determined by equations among the
real and the imaginary parts of their entries can be determined by refining the polar form of
matrices. Such groups are called pseudo-algebraic groups. For example, the groups SO(p, q)
and SU(p, q) are pseudo-algebraic, where U(p, q) is the set of all n× n-matrices

U(p, q) = {A ∈ GL(n,C) | A∗Ip,qA = Ip,q},
and SU(p, q) is the subgroup

SU(p, q) = {A ∈ U(p, q) | det(A) = 1}.

Consider the group GL(n,C) of invertible n × n matrices with complex coefficients. If
A = (akl) is such a matrix, denote by xkl the real part (resp. ykl, the imaginary part) of akl
(so, akl = xkl + iykl).

Definition 6.1. A subgroup G of GL(n,C) is pseudo-algebraic iff there is a finite set of
polynomials in 2n2 variables with real coefficients {Pj(X1, . . . , Xn2 , Y1, . . . , Yn2)}tj=1, so that

A = (xkl + iykl) ∈ G iff Pj(x11, . . . , xnn, y11, . . . , ynn) = 0, for j = 1, . . . , t.

Since a pseudo-algebraic subgroup is the zero locus of a set of polynomials, it is a closed
subgroup, and thus a Lie group.

Recall that if A is a complex n × n-matrix, its adjoint A∗ is defined by A∗ = (A)>.
Also, U(n) denotes the group of unitary matrices, i.e., those matrices A ∈ GL(n,C) so
that AA∗ = A∗A = I, and H(n) denotes the vector space of Hermitian matrices i.e., those
matrices A so that A∗ = A.

The following proposition is needed.

Proposition 6.4. Let P (x1, . . . , xn) be a polynomial with real coefficients. For any (a1, . . .,
an) ∈ Rn, assume that P (eka1 , . . . , ekan) = 0 for all k ∈ N. Then,

P (eta1 , . . . , etan) = 0 for all t ∈ R.

Proof. Any monomial αxi11 · · ·xinn in P when evaluated at (eta1 , . . . , etan) becomes αet
∑
ajij .

Collecting terms with the same exponential part, we may assume that we have an expression
of the form

P (eta1 , . . . , etan) =
N∑
k=1

αke
tbk = αNe

tbN +
N−1∑
k=1

αke
tbk

which vanishes for all t ∈ N. We may also assume that αk 6= 0 for all k and that the bk are
sorted so that b1 < b2 < · · · < bN . Assume by contradiction that N > 0. If we multiply
the above expression by e−tbN , by relabeling the coefficients bk in the exponentials, we may
assume that b1 < b2 < · · · < bN−1 < 0 = bN . Now, if we let t go to +∞, the terms αke

tbk go
to 0 for k = 1, . . . , N − 1, and we get αN = 0, a contradiction.
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We now have the following theorem which is essentially a refined version of the polar
decomposition of matrices:

Theorem 6.5. Let G be a pseudo-algebraic subgroup of GL(n,C) stable under adjunction
(i.e., we have A∗ ∈ G whenever A ∈ G). There is some integer d ∈ N so that G is
homeomorphic to (G ∩U(n))× Rd. Moreover, if g is the Lie algebra of G, the map

(U(n) ∩G)× (H(n) ∩ g) −→ G given by (U,H) 7→ UeH ,

is a homeomorphism onto G.

Proof. We follow the proof in Mneimné and Testard [86] (Chapter 3); a similar proof is given
in Knapp [68] (Chapter 1). First we observe that for every invertible matrix P , the group
G is pseudo-algebraic iff PGP−1 is pseudo-algebraic, since the map X 7→ PXP−1 is linear.

By the polar decomposition, every matrix A ∈ G can be written uniquely as A = US,
where U ∈ U(n) and S ∈ HPD(n). Furthermore, by Proposition 1.10, the matrix S can
be written (uniquely) as S = eH , for some unique Hermitian matrix H ∈ H(n), so we have
A = UeH . We need to prove that H ∈ g and that U ∈ G. Since G is closed under adjunction,
A∗ ∈ G, that is eHU∗ ∈ G, so eHU∗UeH = e2H ∈ G. If we can prove that etH ∈ G for all
t ∈ R, then H ∈ g and eH ∈ G, so U ∈ e−HA ∈ G.

Since 2H is Hermitian, it has real eigenvalues λ1, . . . , λn and it can be diagonalized as
2H = V ΛV −1, where V is unitary and Λ = diag(λ1, . . . , λn). By a previous observation,
the group V GV −1 is also pseudo-algebraic, so we may assume that 2H is a diagonal matrix
with real entries, and to say that e2H ∈ G means that eλ1 , . . . , eλn satisfy a set of algebraic
equations. Since G is a group, for every k ∈ Z, we have ek2H ∈ G, so ekλ1 , . . . , ekλn satisfy
the same set of algebraic equations. By Proposition 6.4, etλ1 , . . . , etλn satisfy the same set
of algebraic equations for all t ∈ R, which means that etH ∈ G for all t ∈ R. It follows that
H ∈ g, eH ∈ G, and thus U ∈ e−HA ∈ G.

For invertible matrices, the polar decomposition is unique, so we found a unique U ∈
U(n) ∩G and a unique matrix H ∈ H(n) ∩ g so that

A = UeH .

The fact that the map (U,H) 7→ UeH is a homeomorphism takes a little bit of work. This
follows from the fact that polar decomposition and the bijection between H(n) and HPD(n)
are homeomorphisms (see Section 1.5); these facts are proved in Mneimné and Testard
[86]; see Theorem 1.6.3 for the first homeomorphism and Theorem 3.3.4 for the second
homeomorphism. Since H(n) ∩ g is a real vector space, it is isomorphic to Rd for some
d ∈ N, and so G is homeomorphic to (G ∩U(n))× Rd.

Observe that if G is also compact then d = 0, and G ⊆ U(n).
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Remark: A subgroup G of GL(n,R) is called algebraic if there is a finite set of polynomials
in n2 variables with real coefficients {Pj(X1, . . . , Xn2)}tj=1, so that

A = (xkl) ∈ G iff Pj(x11, . . . , xnn) = 0, for j = 1, . . . , t.

Then it can be shown that every compact subgroup of GL(n,R) is algebraic. The proof
is quite involved and uses the existence of the Haar measure on a compact Lie group; see
Mneimné and Testard [86] (Theorem 3.7).

6.3 More on the Topology of O(p, q) and SO(p, q)

It turns out that the topology of the group O(p, q) is completely determined by the topology
of O(p) and O(q). This result can be obtained as a simple consequence of some standard
Lie group theory. The key notion is that of a pseudo-algebraic group defined in Section 6.2.

We can apply Theorem 6.5 to determine the structure of the space O(p, q). We know
that O(p, q) consists of the matrices A in GL(p+ q,R) such that

A>Ip,qA = Ip,q,

and so O(p, q) is clearly pseudo-algebraic. Using the above equation, and the curve technique
demonstrated at the beginning of Section 5.2, it is easy to determine the Lie algebra o(p, q)
of O(p, q). We find that o(p, q) is given by

o(p, q) =

{(
X1 X2

X>2 X3

) ∣∣∣∣ X>1 = −X1, X
>
3 = −X3, X2 arbitrary

}
where X1 is a p× p matrix, X3 is a q × q matrix, and X2 is a p× q matrix.

Consequently, it immediately follows that

o(p, q) ∩H(p+ q) =

{(
0 X2

X>2 0

) ∣∣∣∣ X2 arbitrary

}
,

a vector space of dimension pq.

Some simple calculations also show that

O(p, q) ∩U(p+ q) =

{(
X1 0
0 X2

) ∣∣∣∣ X1 ∈ O(p), X2 ∈ O(q)

}
∼= O(p)×O(q).

Therefore, we obtain the structure of O(p, q):

Proposition 6.6. The topological space O(p, q) is homeomorphic to O(p)×O(q)× Rpq.
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Since O(p) has two connected components when p ≥ 1, we deduce (via the decomposition
of Proposition 6.1) that O(p, q) has four connected components when p, q ≥ 1. It is also
obvious that

SO(p, q) ∩U(p+ q) =

{(
X1 0
0 X2

) ∣∣∣∣ X1 ∈ O(p), X2 ∈ O(q), det(X1) det(X2) = 1

}
.

This is a subgroup of O(p)×O(q) that we denote S(O(p)×O(q)). Furthermore, it can be
shown that so(p, q) = o(p, q). Thus, we also have

Proposition 6.7. The topological space SO(p, q) is homeomorphic to S(O(p)×O(q))×Rpq.

Observe that the dimension of all these spaces depends only on p+ q. It is p(p− 1)/2 +
q(q−1)/2+pq = (p+q)(p+q−1)/2, where we used the fact that O(n) is a smooth manifold
of dimension n(n− 1)/2. Also, SO(p, q) has two connected components when p, q ≥ 1. The
connected component of Ip+q is the group SO0(p, q). This latter space is homeomorphic to
SO(p)× SO(q)× Rpq. If we write

A =

(
P Q
R S

)
,

then it is shown in O’Neill [91] (Chapter 9, Lemma 6) that the connected component
SO0(p, q) of SO(p, q) containing I is given by

SO0(p, q) = {A ∈ GL(n,R) | A>Ip,qA = Ip,q, det(P ) > 0, det(S) > 0}.

For both SO(p, q) and SO0(p, q), the inverse is given by

A−1 = Ip,qA
>Ip,q.

We can show that SO(p, q) and SO(q, p) are isomorphic (similarly, O(p, q) and O(q, p)
are isomorphic, and SO0(p, q) and SO0(q, p) are isomorphic) as follows. Let Jp,q be the
permutation matrix

Jp,q =

(
0 Iq
Ip 0

)
.

Observe that Jp,qJq,p = Ip+q and that J>p,q = Jq,p.

Proposition 6.8. If ψ is the map given by ψ(A) = Jp,qAJq,p, then ψ : O(p, q) → O(q, p),
ψ : SO(p, q)→ SO(q, p), and ψ : SO0(p, q)→ SO0(q, p), are isomorphisms.

Proof sketch. Since Jp,qJq,p = Ip+q, we have

ψ(A)ψ(B) = Jp,qAJq,pJp,qBJq,p = Jp,qABJq,p.

Observe that
Jq,pIq,pJ

>
q,p = Jq,pIq,pJp,q = −Ip,q.
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Using the above equation, if A ∈ O(p, q), that is, A>Ip,qA = Ip,q, then we have

(ψ(A))>Iq,pψ(A) = (Jp,qAJq,p)
>Iq,pJp,qAJq,p

= Jp,qA
>Jq,pIq,pJp,qAJq,p

= −Jp,qA>Ip,qAJq,p
= −Jp,qIp,qJq,p
= −− Iq,p = Iq,p.

Therefore ψ(A) ∈ O(q, p), and ψ : O(p, q)→ O(q, p) is a homomorphism.

Since J>p,q = Jq,p, and since det(Jp,q) = ±1 because Jp,q is a permutation matrix, we have
Jp,qAJq,p = Jp,qAJ

>
p,q, so

det(ψ(A)) = det(Jp,qAJ
>
p,q) = det(Jp,q) det(A) det(J>p,q) = det(A).

Therefore, if A ∈ SO(p, q), then det(A) = 1, so det(ψ(A)) = det(A) = 1, so ψ(A) ∈ SO(q, p),
and ψ : SO(p, q)→ SO(q, p) is a homomorphism.

If we write

A =

(
P Q
R S

)
,

then we have

ψ(A) = Jp,qAJq,p =

(
0 Iq
Ip 0

)(
P Q
R S

)(
0 Ip
Iq 0

)
=

(
S R
Q P

)
.

If A ∈ SO0(p, q) then det(P ) > 0 and det(S) > 0, so ψ(A) ∈ SO0(q, p), and ψ : SO0(p, q)→
SO0(q, p) is a homomorphism. It is easy to verify that the inverse of ψ is given by ψ−1(B) =
Jq,pBJp,q, so the above maps are indeed isomorphisms.

Theorem 6.5 gives the polar form of a matrix A ∈ O(p, q). We have

A = UeS, with U ∈ O(p)×O(q) and S ∈ so(p, q) ∩ S(p+ q),

where U is of the form

U =

(
P 0
0 Q

)
, with P ∈ O(p) and Q ∈ O(q),

and so(p, q) ∩ S(p+ q) consists of all (p+ q)× (p+ q) symmetric matrices of the form

S =

(
0 X
X> 0

)
,

with X an arbitrary p× q matrix.
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It turns out that it is not very hard to compute explicitly the exponential eS of such
matrices (see Mneimné and Testard [86]). Recall that the functions cosh and sinh also make
sense for matrices (since the exponential makes sense) and are given by

cosh(A) =
eA + e−A

2
= I +

A2

2!
+ · · ·+ A2k

(2k)!
+ · · ·

and

sinh(A) =
eA − e−A

2
= A+

A3

3!
+ · · ·+ A2k+1

(2k + 1)!
+ · · · .

We also set
sinh(A)

A
= I +

A2

3!
+ · · ·+ A2k

(2k + 1)!
+ · · · ,

which is defined for all matrices A (even when A is singular). Then we have

Proposition 6.9. For any matrix S of the form

S =

(
0 X
X> 0

)
,

we have

eS =

cosh((XX>)
1
2 ) sinh((XX>)

1
2 )X

(XX>)
1
2

sinh((X>X)
1
2 )X>

(X>X)
1
2

cosh((X>X)
1
2 )

 .

Proof. By induction, it is easy to see that

S2k =

(
(XX>)k 0

0 (X>X)k

)
and

S2k+1 =

(
0 (XX>)kX

(X>X)kX> 0

)
.

The rest is left as an exercise.

Remark: Although at first glance, eS does not look symmetric, it is!

As a consequence of Proposition 6.9, every matrix A ∈ O(p, q) has the polar form

A =

(
P 0
0 Q

)cosh((XX>)
1
2 ) sinh((XX>)

1
2 )X

(XX>)
1
2

sinh((X>X)
1
2 )X>

(X>X)
1
2

cosh((X>X)
1
2 )

 ,

with P ∈ O(p), Q ∈ O(q), and X an arbitrary p× q matrix.
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6.4 Problems

Problem 6.1. Finish the proof of Proposition 6.8.

Problem 6.2. Provide the details of the proof of Proposition 6.9.



Chapter 7

Manifolds, Tangent Spaces, Cotangent
Spaces, Submanifolds

In Chapter 3 we defined the notion of a manifold embedded in some ambient space RN . In
order to maximize the range of applications of the theory of manifolds, it is necessary to
generalize the concept of a manifold to spaces that are not a priori embedded in some RN .
The basic idea is still that, whatever a manifold is, it is a topological space that can be
covered by a collection of open subsets Uα, where each Uα is isomorphic to some “standard
model,” e.g., some open subset of Euclidean space Rn. Of course, manifolds would be very
dull without functions defined on them and between them. This is a general fact learned from
experience: Geometry arises not just from spaces but from spaces and interesting classes of
functions between them. In particular, we still would like to “do calculus” on our manifold
and have good notions of curves, tangent vectors, differential forms, etc.

The small drawback with the more general approach is that the definition of a tangent
vector is more abstract. We can still define the notion of a curve on a manifold, but such
a curve does not live in any given Rn, so it it not possible to define tangent vectors in a
simple-minded way using derivatives. Instead, we have to resort to the notion of chart. This
is not such a strange idea. For example, a geography atlas gives a set of maps of various
portions of the earth and this provides a very good description of what the earth is, without
actually imagining the earth embedded in 3-space.

The material of this chapter borrows from many sources, including Warner [114], Berger
and Gostiaux [15], O’Neill [91], Do Carmo [39, 38], Gallot, Hulin and Lafontaine [49], Lang
[75], Schwartz [104], Hirsch [61], Sharpe [107], Guillemin and Pollack [55], Lafontaine [72],
Dubrovin, Fomenko and Novikov [42] and Boothby [16]. A nice (not very technical) ex-
position is given in Morita [87] (Chapter 1). The recent book by Tu [112] is also highly
recommended for its clarity. Among the many texts on manifolds and differential geometry,
the book by Choquet-Bruhat, DeWitt-Morette and Dillard-Bleick [32] stands apart because
it is one of the clearest and most comprehensive. (Many proofs are omitted, but this can
be an advantage!) Being written for (theoretical) physicists, it contains more examples and
applications than most other sources.

211
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7.1 Charts and Manifolds

Given Rn, recall that the projection functions pri : Rn → R are defined by

pri(x1, . . . , xn) = xi, 1 ≤ i ≤ n.

For technical reasons (in particular, to ensure the existence of partitions of unity, a crucial
tool in manifold theory; see Section 10.1) and to avoid “esoteric” manifolds that do not arise
in practice, from now on, all topological spaces under consideration will be assumed
to be Hausdorff and second-countable (which means that the topology has a countable
basis).

The first step in generalizing the notion of a manifold is to define charts, a way to say
that locally a manifold “looks like” an open subset of Rn.

Definition 7.1. Given a topological space M , a chart (or local coordinate map) is a pair
(U,ϕ), where U is an open subset of M and ϕ : U → Ω is a homeomorphism onto an open
subset Ω = ϕ(U) of Rnϕ (for some nϕ ≥ 1). For any p ∈M , a chart (U,ϕ) is a chart at p iff
p ∈ U . If (U,ϕ) is a chart, then the functions xi = pri ◦ϕ are called local coordinates and for
every p ∈ U , the tuple (x1(p), . . . , xn(p)) is the set of coordinates of p w.r.t. the chart. The
inverse (Ω, ϕ−1) of a chart is called a local parametrization. Given any two charts (Ui, ϕi)

p

φ (p)

U

Ω

(U)

φ

φ = Ω

M

Figure 7.1: A chart (U,ϕ) on M .

and (Uj, ϕj), if Ui ∩Uj 6= ∅, we have the transition maps ϕji : ϕi(Ui ∩Uj)→ ϕj(Ui ∩Uj) and
ϕij : ϕj(Ui ∩ Uj)→ ϕi(Ui ∩ Uj), defined by

ϕji = ϕj ◦ ϕ−1
i and ϕij = ϕi ◦ ϕ−1

j .
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p

Ui

U i

U i

Uj

U j

U j

φ
φ

φ

φ

φ

φ
φ

i
( )

h U i U jhφ
i
( )

j ( )

φj ( )

i

i
-1

j

j
-1

φ
i
j

j
i

M

Figure 7.2: The transition maps ϕji and ϕij.

Clearly, ϕij = (ϕji )
−1. Observe that the transition maps ϕji (resp. ϕij) are maps between

open subsets of Rn. This is good news! Indeed, the whole arsenal of calculus is available
for functions on Rn, and we will be able to promote many of these results to manifolds by
imposing suitable conditions on transition functions.

As in Section 3.1, whatever our generalized notion of a manifold is, we would like to
define the notion of tangent space at a point of manifold, the notion of smooth function
between manifolds, and the notion of derivative of a function (at a point) between manifolds.
Unfortunately, even though our parametrizations ϕ−1 : Ω → U are homeomorphisms, since
U is a subset of a space M which is not assumed to be contained in RN (for any N), the
derivative dϕ−1

t0 does not make sense, unlike in the situation of Definition 3.1. Therefore,
some extra conditions on the charts must be imposed in order to recapture the fact that
for manifolds embedded in RN , the parametrizations are immersions. An invaluable hint is
provided by Lemma 3.2: we require the transition maps ϕji : ϕi(Ui∩Uj)→ ϕj(Ui∩Uj) to be
sufficiently differentiable. This makes perfect sense since the ϕji are functions between open
subsets of Rn. It also turns out that these conditions on transition maps guarantee that
notions, such as tangent vectors, whose definition seems to depend on the choice of a chart,
are in fact independent of the choice of charts. The above motivations suggest the following
requirements on charts.
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Definition 7.2. Given a topological space M , given some integer n ≥ 1 and given some k
such that k is either an integer k ≥ 1 or k =∞, a Ck n-atlas (or n-atlas of class Ck) A is a
family of charts {(Ui, ϕi)}, such that

(1) ϕi(Ui) ⊆ Rn for all i;

(2) The Ui cover M , i.e.,

M =
⋃
i

Ui;

(3) Whenever Ui ∩Uj 6= ∅, the transition map ϕji (and ϕij) is a Ck-diffeomorphism. When

k =∞, the ϕji are smooth diffeomorphisms.

We must ensure that we have enough charts in order to carry out our program of gener-
alizing calculus on Rn to manifolds. For this, we must be able to add new charts whenever
necessary, provided that they are consistent with the previous charts in an existing atlas.

Definition 7.3. Given a Ck n-atlas A on a topological space M , for any other chart (U,ϕ),
we say that (U,ϕ) is compatible with the atlas A iff every map ϕi ◦ ϕ−1 and ϕ ◦ ϕ−1

i is Ck

(whenever U ∩ Ui 6= ∅). Two atlases A and A′ on M are compatible iff every chart of one
is compatible with the other atlas. This is equivalent to saying that the union of the two
atlases is still an atlas.

It is immediately verified that compatibility induces an equivalence relation on Ck n-
atlases on M . In fact, given an atlas A for M , it is easy to see that the collection Ã of all
charts compatible with A is a maximal atlas in the equivalence class of atlases compatible
with A. Finally we have our generalized notion of a manifold.

Definition 7.4. Given some integer n ≥ 1 and given some k such that k is either an integer
k ≥ 1 or k = ∞, a Ck-manifold of dimension n consists of a topological space M together
with an equivalence class A of Ck n-atlases on M . Any atlas A in the equivalence class A
is called a differentiable structure of class Ck (and dimension n) on M . We say that M is
modeled on Rn. When k =∞, we say that M is a smooth manifold .

Remark: It might have been better to use the terminology abstract manifold rather than
manifold to emphasize the fact that the space M is not a priori a subspace of RN , for some
suitable N .

We can allow k = 0 in the above definitions. In this case, Condition (3) in Defini-
tion 7.2 is void, since a C0-diffeomorphism is just a homeomorphism, but ϕji is always a
homeomorphism.

Definition 7.5. If k = 0 in Definition 7.4, then M is called a topological manifold of
dimension n.
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We do not require a manifold to be connected but we require all the components to have
the same dimension n.

On every connected component of M , it can be shown that the dimension nϕ of the range
of every chart is the same. This is quite easy to show if k ≥ 1 (use Proposition 11.20) but for
k = 0 this requires a deep theorem of Brouwer. (Brouwer’s Invariance of Domain Theorem
states that if U ⊆ Rn is an open set and if f : U → Rn is a continuous and injective map, then
f(U) is open in Rn. Using Brouwer’s theorem, we can show the following fact: If U ⊆ Rm and
V ⊆ Rn are two open subsets and if f : U → V is a homeomorphism between U and V , then
m = n. If m > n, then consider the injection, i : Rn → Rm, where i(x) = (x, 0m−n). Clearly,
i is injective and continuous, so i ◦ f : U → i(V ) is injective and continuous and Brouwer’s
Theorem implies that i(V ) is open in Rm, which is a contradiction, as i(V ) = V × {0m−n}
is not open in Rm. If m < n, consider the homeomorphism f−1 : V → U .)

What happens if n = 0? In this case, every one-point subset of M is open, so every
subset of M is open; that is, M is any (countable if we assume M to be second-countable)
set with the discrete topology!

Observe that since Rn is locally compact and locally connected, so is every manifold
(check this!).

In order to get a better grasp of the notion of manifold it is useful to consider examples
of non-manifolds. First, consider the curve in R2 given by the zero locus of the equation

y2 = x2 − x3,

namely, the set of points

M1 = {(x, y) ∈ R2 | y2 = x2 − x3}. 1

Figure 7.3: A nodal cubic; not a manifold.

This curve, shown in Figure 7.3, is called a nodal cubic and is also defined as the para-
metric curve

x = 1− t2
y = t(1− t2).
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We claim that M1 is not even a topological manifold. The problem is that the nodal cubic
has a self-intersection at the origin. If M1 was a topological manifold, then there would be a
connected open subset U ⊆M1 containing the origin O = (0, 0), namely the intersection of a
small enough open disc centered at O with M1, and a local chart ϕ : U → Ω, where Ω is some
connected open subset of R (that is, an open interval), since ϕ is a homeomorphism. However,
U − {O} consists of four disconnected components, and Ω − ϕ(O) of two disconnected
components, contradicting the fact that ϕ is a homeomorphism.

Let us now consider the curve in R2 given by the zero locus of the equation

y2 = x3,

namely, the set of points

M2 = {(x, y) ∈ R2 | y2 = x3}.
1

Figure 7.4: A cuspidal cubic.

This curve showed in Figure 7.4 and called a cuspidal cubic is also defined as the para-
metric curve

x = t2

y = t3.

Consider the map, ϕ : M2 → R, given by

ϕ(x, y) = y1/3.

Since x = y2/3 on M2, we see that ϕ−1 is given by

ϕ−1(t) = (t2, t3)

and clearly ϕ is a homeomorphism, so M2 is a topological manifold. However, with the atlas
consisting of the single chart {ϕ : M2 → R}, the space M2 is also a smooth manifold! Indeed,
as there is a single chart, Condition (3) of Definition 7.2 holds vacuously.
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This fact is somewhat unexpected because the cuspidal cubic is not smooth at the origin,
since the tangent vector of the parametric curve c : t 7→ (t2, t3) at the origin is the zero
vector (the velocity vector at t is c′(t) = (2t, 3t2)). However, this apparent paradox has
to do with the fact that, as a parametric curve, M2 is not immersed in R2 since c′ is not
injective (see Definition 7.27 (a)), whereas as an abstract manifold, with this single chart,
M2 is diffeomorphic to R.

We also have the chart ψ : M2 → R, given by

ψ(x, y) = y,

with ψ−1 given by
ψ−1(u) = (u2/3, u).

With the atlas consisting of the single chart {ψ : M2 → R}, the space M2 is also a smooth
manifold. Observe that

ϕ ◦ ψ−1(u) = u1/3,

a map that is not differentiable at u = 0. Therefore, the atlas {ϕ : M2 → R, ψ : M2 → R}
is not C1, and thus with respect to that atlas, M2 is not a C1-manifold. This example also
shows that the atlases {ϕ : M2 → R} and {ψ : M2 → R} are inequivalent.

The example of the cuspidal cubic reveals one of the subtleties of the definition of a Ck (or
C∞) manifold: whether a topological space is a Ck-manifold or a smooth manifold depends
on the choice of atlas. As a consequence, if a space M happens to be a topological manifold
because it has an atlas consisting of a single chart, or more generally if it has an atlas whose
transition functions “avoid” singularities, then it is automatically a smooth manifold. In
particular, if f : U → Rm is any continuous function from some open subset U of Rn to Rm,
then the graph Γ(f) ⊆ Rn+m of f given by

Γ(f) = {(x, f(x)) ∈ Rn+m | x ∈ U}

is a smooth manifold of dimension n with respect to the atlas consisting of the single chart
ϕ : Γ(f)→ U , given by

ϕ(x, f(x)) = x,

with its inverse ϕ−1 : U → Γ(f) given by

ϕ−1(x) = (x, f(x)).

The notion of a submanifold using the concept of “adapted chart” (see Definition 7.26 in
Section 7.6) gives a more satisfactory treatment of Ck (or smooth) submanifolds of Rn.

It should also be noted that determining the number of inequivalent differentiable struc-
tures on a topological space is a very difficult problem, even for Rn. In the case of Rn, it
turns out that any two smooth differentiable structures are diffeomorphic, except for n = 4.
For n = 4, it took some very hard and deep work to show that there are uncountably many
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distinct diffeomorphism classes of smooth differentiable structures. The case of the spheres
Sn is even more mysterious. It is known that there is a single diffeomorphism class for
n = 1, 2, 3, but for n = 4 the answer is unknown! For n = 15, there are 16, 256 distinct
classes; for more about these issues, see Conlon [33] (Chapter 3). It is also known that every
topological manifold admits a smooth structure for n = 1, 2, 3. However, for n = 4, there
exist nonsmoothable manifolds; see Conlon [33] (Chapter 3).

In some cases, M does not come with a topology in an obvious (or natural) way and a
slight variation of Definition 7.2 is more convenient in such a situation:

Definition 7.6. Given a set M , given some integer n ≥ 1 and given some k such that k
is either an integer k ≥ 1 or k = ∞, a Ck n-atlas (or n-atlas of class Ck) A is a family of
charts {(Ui, ϕi)}, such that

(1) Each Ui is a subset of M and ϕi : Ui → ϕi(Ui) is a bijection onto an open subset
ϕi(Ui) ⊆ Rn, for all i;

(2) The Ui cover M ; that is,

M =
⋃
i

Ui;

(3) Whenever Ui ∩ Uj 6= ∅, the sets ϕi(Ui ∩ Uj) and ϕj(Ui ∩ Uj) are open in Rn and the
transition maps ϕji and ϕij are Ck-diffeomorphisms.

Then the notion of a chart being compatible with an atlas and of two atlases being
compatible is just as before, and we get a new definition of a manifold analogous to Definition
7.4. But this time we give M the topology in which the open sets are arbitrary unions of
domains of charts Ui, more precisely, the Ui’s of the maximal atlas defining the differentiable
structure on M .

It is not difficult to verify that the axioms of a topology are verified, and M is indeed a
topological space with this topology. It can also be shown that when M is equipped with the
above topology, then the maps ϕi : Ui → ϕi(Ui) are homeomorphisms, so M is a manifold
according to Definition 7.4. We also require that under this topology, M is Hausdorff and
second-countable. A sufficient condition (in fact, also necessary!) for being second-countable
is that some atlas be countable. A sufficient condition of M to be Hausdorff is that for all
p, q ∈ M with p 6= q, either p, q ∈ Ui for some Ui, or p ∈ Ui and q ∈ Uj for some disjoint
Ui, Uj. Thus, we are back to the original notion of a manifold where it is assumed that M is
already a topological space.

One can also define the topology on M in terms of any of the atlases A defining M (not
only the maximal one) by requiring U ⊆M to be open iff ϕi(U ∩Ui) is open in Rn, for every
chart (Ui, ϕi) in the atlas A. Then one can prove that we obtain the same topology as the
topology induced by the maximal atlas. For details, see Berger and Gostiaux [15], Chapter
2.



7.1. CHARTS AND MANIFOLDS 219

If the underlying topological space of a manifold is compact, then M has some finite
atlas. Also, if A is some atlas for M and (U,ϕ) is a chart in A, for any (nonempty) open
subset V ⊆ U , we get a chart (V, ϕ � V ), and it is obvious that this chart is compatible with
A. Thus, (V, ϕ � V ) is also a chart for M . This observation shows that if U is any open
subset of a Ck-manifold M , then U is also a Ck-manifold whose charts are the restrictions
of charts on M to U .

We are now fully prepared to present a variety of examples.

Example 7.1. The sphere Sn.

Using the stereographic projections (from the north pole and the south pole), we can
define two charts on Sn and show that Sn is a smooth manifold. Let σN : Sn − {N} → Rn

and σS : Sn − {S} → Rn, where N = (0, · · · , 0, 1) ∈ Rn+1 (the north pole) and S =
(0, · · · , 0,−1) ∈ Rn+1 (the south pole) be the maps called respectively stereographic projec-
tion from the north pole and stereographic projection from the south pole, given by

σN(x1, . . . , xn+1) =
1

1− xn+1

(x1, . . . , xn) and σS(x1, . . . , xn+1) =
1

1 + xn+1

(x1, . . . , xn).

The inverse stereographic projections are given by

σ−1
N (x1, . . . , xn) =

1(∑n
i=1 x

2
i

)
+ 1

(
2x1, . . . , 2xn,

( n∑
i=1

x2
i

)
− 1
)

and

σ−1
S (x1, . . . , xn) =

1(∑n
i=1 x

2
i

)
+ 1

(
2x1, . . . , 2xn,−

( n∑
i=1

x2
i

)
+ 1
)
.

See Example 3.1 for the case of n = 2. Thus, if we let UN = Sn − {N} and US = Sn −
{S}, we see that UN and US are two open subsets covering Sn, both homeomorphic to Rn.
Furthermore, it is easily checked that on the overlap UN ∩US = Sn − {N,S}, the transition
maps

I = σS ◦ σ−1
N = σN ◦ σ−1

S

defined on ϕN(UN ∩ US) = ϕS(UN ∩ US) = Rn − {0}, are given by

(x1, . . . , xn) 7→ 1∑n
i=1 x

2
i

(x1, . . . , xn);

that is, the inversion I of center O = (0, . . . , 0) and power 1. Clearly, this map is smooth on
Rn − {O}, so we conclude that (UN , σN) and (US, σS) form a smooth atlas for Sn.

Example 7.2. Smooth manifolds in RN .

Any m-dimensional embeddded manifold M in RN is a smooth manifold, because by
Lemma 3.2, the inverse maps ϕ−1 : U → Ω of the parametrizations ϕ : Ω → U are charts
that yield smooth transition functions. In particular, by Theorem 3.8, any linear Lie group
is a smooth manifold.
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Example 7.3. The projective space RPn. To define an atlas on RPn, it is convenient to

view RPn as the set of equivalence classes of vectors in Rn+1 − {0} modulo the equivalence
relation

u ∼ v iff v = λu, for some λ 6= 0 ∈ R.

Given any p = [x1, . . . , xn+1] ∈ RPn, we call (x1, . . . , xn+1) the homogeneous coordinates
of p. It is customary to write (x1 : · · · : xn+1) instead of [x1, . . . , xn+1]. (Actually, in most
books, the indexing starts with 0, i.e., homogeneous coordinates for RPn are written as
(x0 : · · · : xn).) Now, RPn can also be viewed as the quotient of the sphere Sn under the
equivalence relation where any two antipodal points x and −x are identified. It is not hard
to show that the projection π : Sn → RPn is both open and closed. Since Sn is compact
and second-countable, we can apply Propositions 12.31 and 12.33 to prove that under the
quotient topology, RPn is Hausdorff, second-countable, and compact.

We define charts in the following way. For any i, with 1 ≤ i ≤ n+ 1, let

Ui = {(x1 : · · · : xn+1) ∈ RPn | xi 6= 0}.

Observe that Ui is well defined, because if (y1 : · · · : yn+1) = (x1 : · · · : xn+1), then there is
some λ 6= 0 so that yj = λxj, for j = 1, . . . , n+ 1. We can define a homeomorphism ϕi of Ui
onto Rn as follows:

ϕi(x1 : · · · : xn+1) =

(
x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn+1

xi

)
,

where the ith component is omitted. Again, it is clear that this map is well defined since it
only involves ratios. We can also define the maps ψi from Rn to Ui ⊆ RPn, given by

ψi(x1, . . . , xn) = (x1 : · · · : xi−1 : 1 : xi : · · · : xn),

where the 1 goes in the ith slot, for i = 1, . . . , n+ 1.

One easily checks that ϕi and ψi are mutual inverses, so the ϕi are homeomorphisms.
On the overlap Ui ∩ Uj, (where i 6= j), as xj 6= 0, we have

(ϕj ◦ ϕ−1
i )(x1, . . . , xn) =

(
x1

xj−1

, . . . ,
xi−1

xj−1

,
1

xj−1

,
xi
xj−1

, . . . ,
xj
xj−1

,
xj+1

xj−1

, . . . ,
xn
xj−1

)
.

(We assumed that i < j; the case j < i is similar.) This is clearly a smooth function from
ϕi(Ui ∩ Uj) to ϕj(Ui ∩ Uj). As the Ui cover RPn, we conclude that the (Ui, ϕi) are n + 1
charts making a smooth atlas for RPn. Intuitively, the space RPn is obtained by gluing the
open subsets Ui on their overlaps. Even for n = 3, this is not easy to visualize!
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Example 7.4. The Grassmannian G(k, n). Recall that G(k, n) is the set of all k-dimensional

linear subspaces of Rn, also called k-planes. Every k-plane W is the linear span of k linearly
independent vectors u1, . . . , uk in Rn; furthermore, u1, . . . , uk and v1, . . . , vk both span W iff
there is an invertible k × k-matrix Λ = (λij) such that

vj =
k∑
i=1

λijui, 1 ≤ j ≤ k.

Obviously there is a bijection between the collection of k linearly independent vectors
u1, . . . , uk in Rn and the collection of n × k matrices of rank k. Furthermore, two n × k
matrices A and B of rank k represent the same k-plane iff

B = AΛ, for some invertible k × k matrix, Λ. (∗)

The Grassmannian G(k, n) can be viewed of the set of equivalence classes of n× k matrices
of rank k under the equivalence relation given by (∗). (Note the analogy with projective
spaces where two vectors u, v represent the same point iff v = λu for some invertible λ ∈ R.)

The set of n× k matrices of rank k is a subset of Rn×k, in fact an open subset.

One can show that the equivalence relation on n× k matrices of rank k given by

B = AΛ, for some invertible k × k matrix, Λ,

is open, and that the graph of this equivalence relation is closed. For some help proving
these facts, see Problem 7.2 in Tu [112]. By Proposition 12.32, the Grassmannian G(k, n) is
Hausdorff and second-countable.

We can define the domain of charts (according to Definition 7.2) on G(k, n) as follows:
For every subset S = {i1, . . . , ik} of {1, . . . , n}, let US be the subset of equivalence classes of
n× k matrices A of rank k whose rows of index in S = {i1, . . . , ik} form an invertible k × k
matrix denoted AS. Note US is open in the quotient topology of G(k, n) since the existence
of an invertible k× k matrix is equivalent to the open condition of detAS 6= 0. Observe that
the k × k matrix consisting of the rows of the matrix AA−1

S whose index belong to S is the
identity matrix Ik. Therefore, we can define a map ϕS : US → R(n−k)×k where ϕS(A) is equal
to the (n− k)× k matrix obtained by deleting the rows of index in S from AA−1

S .

We need to check that this map is well defined, i.e., that it does not depend on the matrix
A representing W . Let us do this in the case where S = {1, . . . , k}, which is notationally
simpler. The general case can be reduced to this one using a suitable permutation.

If B = AΛ, with Λ invertible, if we write

A =

(
A1

A2

)
and B =

(
B1

B2

)
,
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where A1 and B1 are k × k matrices and A2 and B2 are (n − k) × k matrices, as B = AΛ,
we get B1 = A1Λ and B2 = A2Λ, from which we deduce that(

B1

B2

)
B−1

1 =

(
Ik

B2B
−1
1

)
=

(
Ik

A2ΛΛ−1A−1
1

)
=

(
Ik

A2A
−1
1

)
=

(
A1

A2

)
A−1

1 .

Therefore, our map is indeed well-defined.

Here is an example for n = 6 and k = 3. Let A be the matrix

A =


2 3 5
1 1 1
1 1 0
1 −1 2
1 0 0
2 −1 2


and let

S = {2, 3, 5}.
Then we have

A{2,3,5} =

1 1 1
1 1 0
1 0 0

 ,

and we find that

A−1
{2,3,5} =

0 0 1
0 1 −1
1 −1 0

 ,

and

AA−1
{2,3,5} =


5 −2 −1
1 0 0
0 1 0
2 −3 2
0 0 1
2 −3 3

 .

Therefore,

ϕ{2,3,5}(A) =

5 −2 −1
2 −3 2
2 −3 3

 .

We can define its inverse ψS as follows: let πS be the permutation of {1, . . . , n} sending
{1, . . . , k} to S defined such that if S = {i1 < · · · < ik}, then πS(j) = ij for j = 1, . . . , k,
and if {h1 < · · · < hn−k} = {1, . . . , n} − S, then πS(k + j) = hj for j = 1, . . . , n− k (this is
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a k-shuffle). If PS is the permutation matrix associated with πS, for any (n− k)× k matrix
M , let

ψS(M) = PS

(
Ik
M

)
,

actually the equivalence class of PS
(
Ik
M

)
in US. The effect of ψS is to “insert into M” the

rows of the identity matrix Ik as the rows of index from S. Using our previous example
where n = 6, k = 3 and S = {2, 3, 5}, we have

M =

5 −2 −1
2 −3 2
2 −3 3

 ,

the permutation πS is given by

πS =

(
1 2 3 4 5 6
2 3 5 1 4 6

)
,

whose permutation matrix is

P{2,3,5} =


0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

 ,

and

ψ{2,3,5}(M) = P{2,3,5}

(
I3

M

)
=


0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1




1 0 0
0 1 0
0 0 1
5 −2 −1
2 −3 2
2 −3 3

 =


5 −2 −1
1 0 0
0 1 0
2 −3 2
0 0 1
2 −3 3

 .

Since the permutation πS is a k-shuffle that sends {1, . . . , k} to S, we see that ϕS(A) is
also obtained by first forming P−1

S A, which brings the rows of index in S to the first k rows,
then forming P−1

S A(P−1
S A)−1

{1,...,k}, and finally deleting the first k rows. If we write A and

P−1
S in block form as

A =

(
A1

A2

)
, P−1

S =

(
P1 P2

P3 P4

)
,

with A1 a k × k matrix, A2 a (n− k)× k matrix, P1 a k × k matrix, P4 a (n− k)× (n− k)
matrix, P2 a k × (n− k) matrix, and P3 a (n− k)× k matrix, then

P−1
S A =

(
P1 P2

P3 P4

)(
A1

A2

)
=

(
P1A1 + P2A2

P3A1 + P4A2

)
,



224 CHAPTER 7. MANIFOLDS, TANGENT SPACES, COTANGENT SPACES

so

P−1
S A(P−1

S A)−1
{1,...,k} =

(
P1A1 + P2A2

P3A1 + P4A2

)
(P1A1 + P2A2)−1

=

(
Ik

(P3A1 + P4A2)(P1A1 + P2A2)−1

)
,

and thus,
ϕS(A) = (P3A1 + P4A2)(P1A1 + P2A2)−1.

With the above example,

P−1
{2,3,5} =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 ,

and then

P−1
{2,3,5}A =


1 1 1
1 1 0
1 0 0
2 3 5
1 −1 2
2 −1 2

 ,

(P−1
{2,3,5}A)−1

{1,2,3} =

0 0 1
0 1 −1
1 −1 0

 ,

and

P−1
{2,3,5}A(P−1

{2,3,5}A)−1
{1,2,3} =


1 0 0
0 1 0
0 0 1
5 −2 −1
2 −3 2
2 −3 3

 ,

which does yield

ϕ{2,3,5}(A) =

5 −2 −1
2 −3 2
2 −3 3

 .

At this stage, we have charts that are bijections from subsets US of G(k, n) to open
subsets, namely, R(n−k)×k. The reader can check that the transition map ϕT ◦ ϕ−1

S from
ϕS(US ∩ UT ) to ϕT (US ∩ UT ) is given by

M 7→ (P3 + P4M)(P1 + P2M)−1,
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where (
P1 P2

P3 P4

)
= P−1

T PS

is the matrix of the permutation π−1
T ◦ πS and M is an (n − k) × k matrix. This map is

smooth, as the inversion of a matrix uses the cofactor matrix which relies on the smoothness
of the determinant, and so the charts (US, ϕS) form a smooth atlas for G(k, n). Finally, one
can check that the conditions of Definition 7.2 are satisfied, so the atlas just defined makes
G(k, n) into a topological space and a smooth manifold.

The Grassmannian G(k, n) is actually compact. To see this, observe that if W is any
k-plane, then using the Gram-Schmidt orthonormalization procedure, every basis B =
(b1, . . . , bk) for W yields an orthonormal basis U = (u1, . . . , uk), and there is an invertible
k × k matrix Λ such that

U = BΛ,

where the the columns of B are the bj’s and the columns of U are the uj’s. Thus we may
assume that the representatives of W are matrices U which have orthonormal columns and
are characterized by the equation

U>U = Ik.

The space of such matrices is closed and clearly bounded in Rn×k, and thus compact. In fact,
the space of n × k matrices U satisfying U>U = I is the Stiefel manifold S(k, n). Observe
that if U and V are two n × k matrices such that U>U = I and V >V = I and if V = UΛ
for some invertible k× k matrix Λ, then Λ ∈ O(k). Then G(k, n) is the orbit space obtained
by making O(k) act on S(k, n) on the right, i.e. S(k, n)/O(k) ∼= G(k, n), and since S(k, n)
is compact, we conclude that G(k, n) is also compact as it is the continuous image of a
projection map.

Remark: The reader should have no difficulty proving that the collection of k-planes repre-
sented by matrices in US is precisely the set of k-planes W supplementary to the (n−k)-plane
spanned by the canonical basis vectors ejk+1

, . . . , ejn (i.e., span(W ∪ {ejk+1
, . . . , ejn}) = Rn,

where S = {i1, . . . , ik} and {jk+1, . . . , jn} = {1, . . . , n} − S).

Example 7.5. Product Manifolds.

Let M1 and M2 be two Ck-manifolds of dimension n1 and n2, respectively. The topological
space M1 ×M2 with the product topology (the open sets of M1 ×M2 are arbitrary unions
of sets of the form U × V , where U is open in M1 and V is open in M2) can be given the
structure of a Ck-manifold of dimension n1 + n2 by defining charts as follows: For any two
charts (Ui, ϕi) on M1 and (Vj, ψj) on M2, we declare that (Ui × Vj, ϕi × ψj) is a chart on
M1 ×M2, where ϕi × ψj : Ui × Vj → Rn1+n2 is defined so that

ϕi × ψj(p, q) = (ϕi(p), ψj(q)), for all (p, q) ∈ Ui × Vj.

See Figure 7.5.
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p
qU V

(p,q)

U x V

M1
M2

M1 M2x

φ

φ

φ

Ψ

Ψ

Ψ

(p)
(q)

x

φ Ψx (p,q)

Figure 7.5: A chart for the torus as the product manifold S1 × S1.

We define Ck-maps between manifolds as follows:

Definition 7.7. Given any two Ck-manifolds M and N of dimension m and n respectively,
a Ck-map is a continuous function h : M → N satisfying the following property: For every
p ∈ M , there is some chart (U,ϕ) at p and some chart (V, ψ) at q = h(p), with h(U) ⊆ V
and

ψ ◦ h ◦ ϕ−1 : ϕ(U) −→ ψ(V )

a Ck-function. See Figure 7.6.

It is easily shown that Definition 7.7 does not depend on the choice of charts.

The requirement in Definition 7.7 that h : M → N should be continuous is actually
redundant. Indeed, since ϕ and ψ are homeomorphisms, ϕ and ψ−1 are continuous, and
since ϕ(U) is an open subset of Rm and ψ(V ) is an open subset of Rn, the function ψ ◦ h ◦
ϕ−1 : ϕ(U) → ψ(V ) being a Ck-function is continuous, so the restriction of h to U being
equal to the composition of the three continuous maps

ψ−1 ◦ (ψ ◦ h ◦ ϕ−1) ◦ ϕ
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h(p)
h(U)

V

N

M

U

p

φ (U)

h

φφ -1

Ψ

Ψ (V)

Figure 7.6: The Ck map from M to N , where M is a 2-dimensional manifold and N is a
3-dimensional manifold.

is also continuous on U . Since this holds on some open subset containing p, for every p ∈M ,
the function h is continuous on M .

Other definitions of a Ck-map appear in the literature, some requiring continuity. The
following proposition from Berger and Gostiaux [15] (Theorem 2.3.3) helps clarifying how
these definitions relate.

Proposition 7.1. Let h : M → N be a function between two manifolds M and N . The
following equivalences hold.

(1) The map h is continuous, and for every p ∈ M , for every chart (U,ϕ) at p and every
chart (V, ψ) at h(p), the function ψ ◦ h ◦ ϕ−1 from ϕ(U ∩ h−1(V )) to ψ(V ) is a Ck-
function.

(2) The map h is continuous, and for every p ∈ M , for every chart (U,ϕ) at p and every
chart (V, ψ) at h(p), if h(U) ⊆ V , then the function ψ ◦ h ◦ ϕ−1 from ϕ(U) to ψ(V ) is
a Ck-function.
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(3) For every p ∈ M , there is some chart (U,ϕ) at p and some chart (V, ψ) at q = h(p)
with h(U) ⊆ V , such that the function ψ ◦h◦ϕ−1 from ϕ(U) to ψ(V ) is a Ck-function.

Observe that Condition (3) states exactly the conditions of Definition 7.7, with the con-
tinuity requirement omitted. Condition (1) is used by many texts. The continuity of h is
required to ensure that h−1(V ) is an open set. The implication (2) ⇒ (3) also requires the
continuity of h.

Even though the continuity requirement in Definition 7.7 is redundant, it seems to us
that it does not hurt to emphasize that Ck-maps are continuous.

In the special case where N = R, we obtain the notion of a Ck-function on M . One
checks immediately that a function f : M → R is a Ck-map iff the following condition holds.

Definition 7.8. A function f : M → R is a Ck-map iff for every p ∈M , there is some chart
(U,ϕ) at p so that

f ◦ ϕ−1 : ϕ(U) −→ R

is a Ck-function. See Figure 7.7.

M

U

p

φ (U)

φφ -1

f

R

Figure 7.7: A schematic illustration of a Ck-function on the torus M .

If U is an open subset of M , the set of Ck-functions on U is denoted by Ck(U). In
particular, Ck(M) denotes the set of Ck-functions on the manifold, M . Observe that Ck(U)
is a commutative ring.

On the other hand, if M is an open interval of R, say M = (a, b), then γ : (a, b)→ N is
called a Ck-curve in N . One checks immediately that a function γ : (a, b)→ N is a Ck-map
iff the following condition holds.
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Definition 7.9. A function γ : (a, b) → N is a Ck-map iff for every q ∈ N , there is some
chart (V, ψ) at q and some open subinterval (c, d) of (a, b), so that γ((c, d)) ⊆ V and

ψ ◦ γ : (c, d) −→ ψ(V )

is a Ck-function. See Figure 7.8.

h(p)
h(U)

V

N

Ψ

Ψ (V)

V

N

Ψ

Ψ (V)

a bc d

γ

Figure 7.8: A schematic illustration of a Ck-curve in the solid spheroid N .

It is clear that the composition of Ck-maps is a Ck-map.

Definition 7.10. A Ck-map h : M → N between two manifolds is a Ck-diffeomorphism iff
h has an inverse h−1 : N → M (i.e., h−1 ◦ h = idM and h ◦ h−1 = idN), and both h and h−1

are Ck-maps (in particular, h and h−1 are homeomorphisms).

Next we define tangent vectors.

7.2 Tangent Vectors, Tangent Spaces

Let M be a Ck manifold of dimension n, with k ≥ 1. The purpose of the next three sections is
to define the tangent space Tp(M) at a point p of a manifold M . We provide three definitions
of the notion of a tangent vector to a manifold and prove their equivalence.

The first definition uses equivalence classes of curves on a manifold and is the most
intuitive.
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The second definition makes heavy use of the charts and of the transition functions. It is
also quite intuitive and it is easy to see that that it is equivalent to the first definition. The
second definition is the most convenient one to define the manifold structure of the tangent
bundle T (M) (see Section 9.1).

The third definition (given in the next section) is based on the view that a tangent
vector v, at p, induces a differential operator on real-valued functions f , defined locally near
p; namely, the map f 7→ v(f) is a linear form satisfying an additional property akin to the
rule for taking the derivative of a product (the Leibniz property). Such linear forms are
called point-derivations . This third definition is more intrinsic than the first two but more
abstract. However, for any point p on the manifold M and for any chart whose domain
contains p, there is a convenient basis of the tangent space Tp(M). The third definition is
also the most convenient one to define vector fields. A few technical complications arise when
M is not a smooth manifold (when k 6=∞), but these are easily overcome using “stationary
germs.”

As pointed out by Serre in [105] (Chapter III, Section 8), the relationship between the
first definition and the third definition of the tangent space at p is best described by a
nondegenerate pairing which shows that Tp(M) is the dual of the space of point derivations
at p that vanish on stationary germs. This pairing is presented in Section 7.4.

The most intuitive method to define tangent vectors is to use curves. Let p ∈M be any
point on M and let γ : (−ε, ε)→M be a C1-curve passing through p, that is, with γ(0) = p.
Unfortunately, if M is not embedded in any RN , the derivative γ′(0) does not make sense.
However, for any chart, (U,ϕ), at p, the map ϕ◦γ is a C1-curve in Rn and the tangent vector
v = (ϕ ◦ γ)′(0) is well defined. The trouble is that different curves may yield the same v!

To remedy this problem, we define an equivalence relation on curves through p as follows:

Definition 7.11. Given a Ck manifold, M , of dimension n, for any p ∈ M , two C1-curves,
γ1 : (−ε1, ε1)→M and γ2 : (−ε2, ε2)→M , through p (i.e., γ1(0) = γ2(0) = p) are equivalent
iff there is some chart, (U,ϕ), at p so that

(ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0).

See Figure 7.9.

The problem is that this definition seems to depend on the choice of the chart. Fortu-
nately, this is not the case. For if (V, ψ) is another chart at p, as p belongs both to U and
V , we have U ∩ V 6= 0, so the transition function η = ψ ◦ ϕ−1 is Ck and, by the chain rule,
we have

(ψ ◦ γ1)′(0) = (η ◦ ϕ ◦ γ1)′(0)

= η′(ϕ(p))((ϕ ◦ γ1)′(0))

= η′(ϕ(p))((ϕ ◦ γ2)′(0))

= (η ◦ ϕ ◦ γ2)′(0)

= (ψ ◦ γ2)′(0).
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p
0

0

γ

γ
1

2 M

φ (p)

φ

Figure 7.9: Equivalent curves γ1, in blue, and γ2, in pink.

This leads us to the first definition of a tangent vector.

Definition 7.12. (Tangent Vectors, Version 1) Given any Ck-manifold, M , of dimension
n, with k ≥ 1, for any p ∈ M , a tangent vector to M at p is any equivalence class u = [γ]
of C1-curves γ through p on M , modulo the equivalence relation defined in Definition 7.11.
The set of all tangent vectors at p is denoted by Tp(M) (or TpM).

In order to make TpM into a vector space, given a chart (U,ϕ) with p ∈ U , we observe
that the map ϕU : TpM → Rn given by

ϕU([γ]) = (ϕ ◦ γ)′(0)

is a bijection, where [γ] is the equivalence class of a curve γ in M through p (with γ(0) = p).
The map ϕU is injective by definition of the equivalence relation on curves; it is surjective,
because for every vector v ∈ Rn, if γv is the curve given by γv(t) = ϕ−1(ϕ(p) + tv), then
(ϕ ◦ γv)′(0) = v, and so ϕU([γv]) = v.

Observe that for any chart (U,ϕ) at p, the equivalence class [γ] of all curves through p
such that (ϕ ◦ γ)′(0) = v for some given vector v ∈ Rn is determined by the special curve γv
defined above.

The vector space structure on TpM is defined as follows. For any chart (U,ϕ) at p, given
any two equivalences classes [γ1] and [γ2] in TpM , for any real λ, we set

[γ1] + [γ2] = ϕ−1
U (ϕU([γ1]) + ϕU([γ2]))

λ[γ1] = ϕ−1
U (λϕU([γ1])).
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If (V, ψ) is any other chart at p, since by the chain rule

(ψ ◦ γ)′(0) = (ψ ◦ ϕ−1)′ϕ(p) ◦ (ϕ ◦ γ)′(0),

it follows that
ψV = (ψ ◦ ϕ−1)′ϕ(p) ◦ ϕU .

Since (ψ ◦ ϕ−1)′ϕ(p) is a linear isomorphism, we see that the vector space structure defined
above does not depend on the choice of chart at p. Therefore, with this vector space structure
on TpM , the map ϕU : TpM → Rn is a linear isomorphism. This shows that TpM is a vector
space of dimension n = dimension of M .

In particular, if M is an n-dimensional smooth embedded manifold in RN and if γ is a
curve in M through p, then γ′(0) = u is well defined as a vector in RN , and the equivalence
class of all curves γ through p such that (ϕ◦γ)′(0) is the same vector in some chart ϕ : U → Ω
can be identified with u. Thus, the tangent space TpM to M at p is isomorphic to

{γ′(0) | γ : (−ε, ε)→M is a C1-curve with γ(0) = p}.

In the special case of a linear Lie group G, Proposition 3.10 shows that the exponential
map exp: g→ G is a diffeomorphism from some open subset of g containing 0 to some open
subset of G containing I. For every g ∈ G, since Lg : G → G is a diffeomorphism, the map
Lg ◦ exp: g→ G is a diffeomorphism from some open subset of g containing 0 to some open
subset of G containing g. Furthermore,

dLg(g) = Lg(g) = gg = {gX | X ∈ g}.

Thus, we obtain smooth parametrizations of G whose inverses are charts on G, and since by
definition of g, for every X ∈ g, the curve γ(t) = getX is a curve through g in G such that
γ′(0) = gX, we see that the tangent space TgG to G at g is isomorphic to gg.

One should observe that unless M = Rn, in which case, for any p, q ∈ Rn, the tangent
space Tq(M) is naturally isomorphic to the tangent space Tp(M) by the translation q − p,
for an arbitrary manifold, there is no relationship between Tp(M) and Tq(M) when p 6= q.

The second way of defining tangent vectors has the advantage that it makes it easier to
define tangent bundles (see Section 9.1).

Definition 7.13. (Tangent Vectors, Version 2) Given any Ck-manifold, M , of dimension n,
with k ≥ 1, for any p ∈M , consider the triples, (U,ϕ, u), where (U,ϕ) is any chart at p and
u is any vector in Rn. Say that two such triples (U,ϕ, u) and (V, ψ, v) are equivalent iff

(ψ ◦ ϕ−1)′ϕ(p)(u) = v.

See Figure 7.10. A tangent vector to M at p is an equivalence class of triples, [(U,ϕ, u)], for
the above equivalence relation.
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p

U

V

u v
φ

φ

φ

(p)

-1

Ψ

Ψ (p)

Figure 7.10: Two equivalent tangent vector u and v.

The intuition behind Definition 7.13 is quite clear: The vector u is considered as a
tangent vector to Rn at ϕ(p). If (U,ϕ) is a chart on M at p, we can define a natural bijection
θU,ϕ,p : Rn → Tp(M) between Rn and Tp(M), as follows: For any u ∈ Rn,

θU,ϕ,p : u 7→ [(U,ϕ, u)].

As for Version 1 of tangent vectors, we can use the bijection θU,ϕ,p to transfer the vector
space structure on Rn to TpM so that θU,ϕ,p becomes a linear isomorphism. Given a chart
(U,ϕ), for simplicity of notation if we denote the equivalence class of the triple (U,ϕ, u) by
[u], we set

[u] + [v] = θU,ϕ,p(θ
−1
U,ϕ,p([u]) + θ−1

U,ϕ,p([v]))

λ[u] = θU,ϕ,p(λθ
−1
U,ϕ,p([u])).

Since the equivalence between triples (U,ϕ, u) and (V, ψ, v) is given by

(ψ ◦ ϕ−1)′ϕ(p)(u) = v,

we have
θ−1
V,ψ,p = (ψ ◦ ϕ−1)′ϕ(p) ◦ θ−1

U,ϕ,p,

so the vector space structure on TpM does not depend on the choice of chart at p.

The equivalence of this definition with the definition in terms of curves (Definition 7.12)
is easy to prove.
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Proposition 7.2. Let M be any Ck-manifold of dimension n, with k ≥ 1. For every
p ∈ M , for every chart, (U,ϕ), at p, if x = [γ] is any tangent vector (Version 1) given by
some equivalence class of C1-curves γ : (−ε,+ε) → M through p (i.e., p = γ(0)), then the
map

x 7→ [(U,ϕ, (ϕ ◦ γ)′(0))]

is an isomorphism between Tp(M)-Version 1 and Tp(M)-Version 2.

Proof. If σ is another curve equivalent to γ, then (ϕ ◦ γ)′(0) = (ϕ ◦ σ)′(0), so the map is
well-defined. It is clearly injective. As for surjectivity, define the curve γu on M through p
by

γu(t) = ϕ−1(ϕ(p) + tu);

see Figure 7.11. Then, (ϕ ◦ γu)(t) = ϕ(p) + tu and

(ϕ ◦ γu)′(0) = u,

as desired.

p

M

φ(p) + tu u
φ(p)

φ

φ

-1

γ(t)

Figure 7.11: The tangent vector u is in one-to-one correspondence with the line through
ϕ(p) with direction u.

7.3 Tangent Vectors as Derivations

One of the defects of the above definitions of a tangent vector is that it has no clear relation
to the Ck-differential structure of M . In particular, the definition does not seem to have



7.3. TANGENT VECTORS AS DERIVATIONS 235

anything to do with the functions defined locally at p. There is another way to define tangent
vectors that reveals this connection more clearly. Moreover, such a definition is more intrinsic,
i.e., does not refer explicitly to charts. Our presentation of this second approach is heavily
inspired by Schwartz [104] (Chapter 3, Section 9) but also by Warner [114] and Serre [105]
(Chapter III, Sections 7 and 8).

As a first step, consider the following: Let (U,ϕ) be a chart at p ∈ M (where M is
a Ck-manifold of dimension n, with k ≥ 1) and let xi = pri ◦ ϕ, the ith local coordinate
(1 ≤ i ≤ n). For any real-valued function f defined on p ∈ U , set(

∂

∂xi

)
p

f =
∂(f ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

, 1 ≤ i ≤ n.

(Here, (∂g/∂Xi)|y denotes the partial derivative of a function g : Rn → R with respect to
the ith coordinate, evaluated at y.)

We would expect that the function that maps f to the above value is a linear map on the
set of functions defined locally at p, but there is technical difficulty: The set of real-valued
functions defined locally at p is not a vector space! To see this, observe that if f is defined
on an open p ∈ U and g is defined on a different open p ∈ V , then we do not know how to
define f + g. The problem is that we need to identify functions that agree on a smaller open
subset. This leads to the notion of germs .

Definition 7.14. Given any Ck-manifold M of dimension n, with k ≥ 1, for any p ∈ M , a
locally defined function at p is a pair (U, f), where U is an open subset of M containing p
and f is a real-valued function defined on U . Two locally defined functions (U, f) and (V, g)
at p are equivalent iff there is some open subset W ⊆ U ∩ V containing p, so that

f � W = g � W.

The equivalence class of a locally defined function at p, denoted [f ] or f , is called a germ at
p.

One should check that the relation of Definition 7.14 is indeed an equivalence relation. Of
course, the value at p of all the functions f in any germ f , is f(p). Thus, we set f(p) = f(p),
for any f ∈ f .

For example, for every a ∈ (−1, 1), the locally defined functions (R−{1}, 1/(1−x)) and
((−1, 1),

∑∞
n=0 x

n) at a are equivalent.

We can define addition of germs, multiplication of a germ by a scalar, and multiplication
of germs as follows. If (U, f) and (V, g) are two locally defined functions at p, we define
(U∩V, f+g), (U∩V, fg) and (U, λf) as the locally defined functions at p given by (f+g)(q) =
f(q) + g(q) and (fg)(q) = f(q)g(q) for all q ∈ U ∩ V , and (λf)(q) = λf(q) for all q ∈ U ,
with λ ∈ R. Then, if f = [f ] and g = [g] are two germs at p, we define

[f ] + [g] = [f + g]

λ[f ] = [λf ]

[f ][g] = [fg].
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However, we have to check that these definitions make sense, that is, that they don’t depend
on the choice of representatives chosen in the equivalence classes [f ] and [g]. Let us give the
details of this verification for the sum of two germs, [f ] and [g].

We need to check that for any locally defined functions (U1, f1), (U2, f2), (V1, g1), and
(V2, g2), at p, if (U1, f1) and (U2, f2) are equivalent and if (V1, g1) and (V2, g2) are equivalent,
then (U1∩V1, f1 + g1) and (U2∩V2, f2 + g2) are equivalent. However, as (U1, f1) and (U2, f2)
are equivalent, there is some W1 ⊆ U1 ∩ U2 so that f1 � W1 = f2 � W1 and as (V1, g1) and
(V2, g2) are equivalent, there is some W2 ⊆ V1 ∩V2 so that g1 � W2 = g2 � W2. Then, observe
that (f1 + g1) � (W1 ∩W2) = (f2 + g2) � (W1 ∩W2), which means that [f1 + g1] = [f2 + g2].
Therefore, [f + g] does not depend on the representatives chosen in the equivalence classes
[f ] and [g] and it makes sense to set

[f ] + [g] = [f + g].

We can proceed in a similar fashion to define λ[f ] and [f ][g]. Therefore, the germs at p form
a ring.

Definition 7.15. Given a Ck-manifold M , the commutative ring of germs of Ck-functions
at p is denoted O(k)

M,p. When k =∞, we usually drop the superscript ∞.

Remark: Most readers will most likely be puzzled by the notation O(k)
M,p. In fact, it is

standard in algebraic geometry, but it is not as commonly used in differential geometry. For
any open subset U of a manifold M , the ring Ck(U) of Ck-functions on U is also denoted

O(k)
M (U) (certainly by people with an algebraic geometry bent!). Then it turns out that the

map U 7→ O(k)
M (U) is a sheaf , denoted O(k)

M , and the ring O(k)
M,p is the stalk of the sheaf O(k)

M

at p. Such rings are called local rings . Roughly speaking, all the “local” information about
M at p is contained in the local ring O(k)

M,p. (This is to be taken with a grain of salt. In the

Ck-case where k <∞, we also need the “stationary germs,” as we will see shortly.)

Now that we have a rigorous way of dealing with functions locally defined at p, observe
that the map

vi : f 7→
(
∂

∂xi

)
p

f

yields the same value for all functions f in a germ f at p. Furthermore, the above map is
linear on O(k)

M,p. More is true:

(1) For any two functions f, g locally defined at p, we have(
∂

∂xi

)
p

(fg) =

((
∂

∂xi

)
p

f

)
g(p) + f(p)

(
∂

∂xi

)
p

g.

(2) If (f ◦ ϕ−1)′(ϕ(p)) = 0, then (
∂

∂xi

)
p

f = 0.
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The first property says that vi is a point-derivation; it is also known as the Leibniz
property . As to the second property, when (f ◦ ϕ−1)′(ϕ(p)) = 0, we say that f is stationary
at p.

It is easy to check (using the chain rule) that being stationary at p does not depend
on the chart (U,ϕ) at p or on the function chosen in a germ f . Therefore, the notion of a
stationary germ makes sense.

Definition 7.16. We say that a germ f at p ∈M is a stationary germ iff (f ◦ϕ−1)′(ϕ(p)) = 0
for some chart (U,ϕ), at p and some function f in the germ f . The Ck-stationary germs

form a subring of O(k)
M,p (but not an ideal) denoted S(k)

M,p.

Remarkably, it turns out that the set of linear forms on O(k)
M,p that vanish on S(k)

M,p is iso-

morphic to the tangent space Tp(M). First we prove that this space has
(

∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p

as a basis.

Proposition 7.3. Given any Ck-manifold M of dimension n, with k ≥ 1, for any p ∈ M
and any chart (U,ϕ) at p, the n functions

(
∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p

defined on O(k)
M,p by(

∂

∂xi

)
p

f =
∂(f ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

1 ≤ i ≤ n,

are linear forms that vanish on S(k)
M,p. Every linear form L on O(k)

M,p that vanishes on S(k)
M,p

can be expressed in a unique way as

L =
n∑
i=1

λi

(
∂

∂xi

)
p

,

where λi ∈ R. Therefore, the linear forms(
∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

form a basis of the vector space of linear forms on O(k)
M,p that vanish on S(k)

M,p.

Proof. The first part of the proposition is trivial by definition of
(

∂
∂xi

)
p
f , since for a sta-

tionary germ f , we have (f ◦ ϕ−1)′(ϕ(p)) = 0.

Next assume that L is a linear form on O(k)
M,p that vanishes on S(k)

M,p. For any function
(U, f) locally defined at p, consider the function (U, g) locally defined at p given by

g(q) = f(q)−
n∑
i=1

(pri ◦ ϕ)(q)

(
∂

∂xi

)
p

f, q ∈ U.
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Observe that the germ of g is stationary at p. Indeed, if we let X = ϕ(q), then q = ϕ−1(X),
and we can write

(g ◦ ϕ−1)(X) = (f ◦ ϕ−1)(X)−
n∑
i=1

pri(X)

(
∂

∂xi

)
p

f

= (f ◦ ϕ−1)(X1 . . . , Xn)−
n∑
i=1

Xi

(
∂

∂xi

)
p

f.

By definition it follows that

∂(g ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

=
∂(f ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

−
(
∂

∂xi

)
p

f = 0.

But then as L vanishes on stationary germs, and the germ of

g = f −
n∑
i=1

(pri ◦ ϕ)

(
∂

∂xi

)
p

f

is stationary at p, we have L(g) = 0, so

L(f) =
n∑
i=1

L(pri ◦ ϕ)

(
∂

∂xi

)
p

f,

as desired. We still have to prove linear independence. If

n∑
i=1

λi

(
∂

∂xi

)
p

= 0,

then if we apply this relation to the functions xi = pri ◦ ϕ, as(
∂

∂xi

)
p

xj = δij,

we get λi = 0, for i = 1, . . . , n.

To define our third version of tangent vectors, we need to define point-derivations.

Definition 7.17. Given any Ck-manifold M of dimension n, with k ≥ 1, for any p ∈ M , a
derivation at p in M or point-derivation on O(k)

M,p is a linear form v on O(k)
M,p, such that

v(fg) = v(f)g(p) + f(p)v(g),

for all germs f ,g ∈ O(k)
M,p. The above is called the Leibniz property . Let D(k)

p (M) denote the

set of point-derivations on O(k)
M,p.
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As expected, point-derivations vanish on constant functions.

Proposition 7.4. Every point-derivation v on O(k)
M,p vanishes on germs of constant functions.

Proof. If g is a germ of a constant function at p, then there is some λ ∈ R so that g = λ (a
constant function with value λ) for all g ∈ g. Since v is linear,

v(g) = v(λ1) = λv(1),

where 1 is the germ of constant functions with value 1, so we just have to show that v(1) = 0.
However, because 1 = 1 · 1 and v is a point-derivation, we get

v(1) = v(1 · 1)

= v(1)1(p) + 1(p)v(1)

= v(1)1 + 1v(1) = 2v(1)

from which we conclude that v(1) = 0, as claimed.

Recall that we observed earlier that the
(

∂
∂xi

)
p

are point-derivations at p. Therefore, we

have

Proposition 7.5. Given any Ck-manifold M of dimension n, with k ≥ 1, for any p ∈ M ,
the linear forms on O(k)

M,p that vanish on S(k)
M,p are exactly the point-derivations on O(k)

M,p that

vanish on S(k)
M,p.

Proof. By Proposition 7.3, (
∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

form a basis of the linear forms on O(k)
M,p that vanish on S(k)

M,p. Since each
(

∂
∂xi

)
p

is a also a

point-derivation at p, the result follows.

Remark: Proposition 7.5 says that any linear form on O(k)
M,p that vanishes on S(k)

M,p belongs

to D(k)
p (M), the set of point-derivations on O(k)

M,p. However, in general, when k 6= ∞, a

point-derivation on O(k)
M,p does not necessarily vanish on S(k)

M,p. We will see in Proposition 7.9
that this is true for k =∞.

Here is now our third definition of a tangent vector.

Definition 7.18. (Tangent Vectors, Version 3) Given any Ck-manifold M of dimension n,

with k ≥ 1, for any p ∈M , a tangent vector to M at p is any point-derivation on O(k)
M,p that

vanishes on S(k)
M,p, the subspace of stationary germs.
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Let us consider the simple case where M = R. In this case, for every x ∈ R, the tangent
space Tx(R) is a one-dimensional vector space isomorphic to R and

(
∂
∂t

)
x

= d
dt

∣∣
x

is a basis

vector of Tx(R). For every Ck-function f locally defined at x, we have(
∂

∂t

)
x

f =
df

dt

∣∣∣∣
x

= f ′(x).

Thus,
(
∂
∂t

)
x

is: compute the derivative of a function at x.

We now prove the equivalence of Version 1 and Version 3 of a tangent vector.

Proposition 7.6. Let M be any Ck-manifold of dimension n, with k ≥ 1. For any p ∈
M , let u be any tangent vector (Version 1) given by some equivalence class of C1-curves

γ : (−ε,+ε)→M through p (i.e., p = γ(0)). Then the map Lu defined on O(k)
M,p by

Lu(f) = (f ◦ γ)′(0)

is a point-derivation that vanishes on S(k)
M,p. Furthermore, the map u 7→ Lu defined above is

an isomorphism between Tp(M) and the space of linear forms on O(k)
M,p that vanish on S(k)

M,p.

Proof. (After L. Schwartz) Clearly, Lu(f) does not depend on the representative f chosen in
the germ f . If γ and σ are equivalent curves defining u, then (ϕ ◦ σ)′(0) = (ϕ ◦ γ)′(0), so
from the chain rule we get

(f ◦ σ)′(0) = (f ◦ ϕ−1)′(ϕ(p))((ϕ ◦ σ)′(0)) = (f ◦ ϕ−1)′(ϕ(p))((ϕ ◦ γ)′(0)) = (f ◦ γ)′(0),

which shows that Lu(f) does not depend on the curve γ defining u. If f is a stationary germ,
then pick any chart (U,ϕ) at p, and let ψ = ϕ ◦ γ. We have

Lu(f) = (f ◦ γ)′(0) = ((f ◦ ϕ−1) ◦ (ϕ ◦ γ))′(0) = (f ◦ ϕ−1)′(ϕ(p))(ψ′(0)) = 0,

since (f ◦ ϕ−1)′(ϕ(p)) = 0, as f is a stationary germ. The definition of Lu makes it clear
that Lu is a point-derivation at p. If u 6= v are two distinct tangent vectors, then there exist
some curves γ and σ through p so that

(ϕ ◦ γ)′(0) 6= (ϕ ◦ σ)′(0).

Thus, there is some i, with 1 ≤ i ≤ n, so that if we let f = pri ◦ ϕ, then

(f ◦ γ)′(0) 6= (f ◦ σ)′(0),

and so, Lu 6= Lv. This proves that the map u 7→ Lu is injective.

For surjectivity, recall that every linear map L on O(k)
M,p that vanishes on S(k)

M,p can be
uniquely expressed as

L =
n∑
i=1

λi

(
∂

∂xi

)
p

.
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Define the curve γ on M through p by

γ(t) = ϕ−1(ϕ(p) + t(λ1, . . . , λn)),

for t in a small open interval containing 0. See Figure 7.11. Then we have

f(γ(t)) = (f ◦ ϕ−1)(ϕ(p) + t(λ1, . . . , λn)),

and by the chain rule we get

(f ◦ γ)′(0) = (f ◦ ϕ−1)′(ϕ(p))(λ1, . . . , λn) =
n∑
i=1

λi
∂(f ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

= L(f).

This proves that Tp(M) is isomorphic to the space of linear forms on O(k)
M,p that vanish on

S(k)
M,p.

We show in the next section that the the space of linear forms on O(k)
M,p that vanish on

S(k)
M,p is isomorphic to (O(k)

M,p/S
(k)
M,p)

∗ (the dual of the quotient space O(k)
M,p/S

(k)
M,p).

Even though this is just a restatement of Proposition 7.3, we state the following propo-
sition because of its practical usefulness:

Proposition 7.7. Given any Ck-manifold M of dimension n, with k ≥ 1, for any p ∈ M
and any chart (U,ϕ) at p, the n tangent vectors(

∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

form a basis of TpM .

When M is a smooth manifold, things get a little simpler. Indeed, it turns out that in
this case, every point-derivation vanishes on stationary germs. To prove this, we recall the
following result from calculus (see Warner [114]):

Proposition 7.8. If g : Rn → R is a Ck-function (k ≥ 2) on a convex open U about p ∈ Rn,
then for every q ∈ U , we have

g(q) = g(p) +
n∑
i=1

∂g

∂Xi

∣∣∣∣
p

(qi − pi) +
n∑

i,j=1

(qi − pi)(qj − pj)
∫ 1

0

(1− t) ∂2g

∂Xi∂Xj

∣∣∣∣
(1−t)p+tq

dt.

In particular, if g ∈ C∞(U), then the integral as a function of q is C∞.

Proposition 7.9. Let M be any C∞-manifold of dimension n. For any p ∈ M , any point-
derivation on O(∞)

M,p vanishes on S(∞)
M,p , the ring of stationary germs. Consequently, Tp(M) =

D(∞)
p (M).
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Proof. Pick some chart (U,ϕ) at p, where ϕ(U) is convex (for instance, an open ball) and
let f be any stationary germ. If we apply Proposition 7.8 to f ◦ϕ−1 (for any f ∈ f) and then
compose f ◦ ϕ−1 with ϕ, we get

f(q) = f(p) +
n∑
i=1

∂(f ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

(xi(q)− xi(p)) +
n∑

i,j=1

(xi(q)− xi(p))(xj(q)− xj(p))h,

near p, where h is C∞ and xi = pri ◦ ϕ. Since f is a stationary germ, this yields

f(q) = f(p) +
n∑

i,j=1

(xi(q)− xi(p))(xj(q)− xj(p))h.

If v is any point-derivation, since f(p) is constant, Proposition 7.4 implies v(f(p)) = 0, and
we get

v(f) = v(f(p)) +
n∑

i,j=1

[
(xi(q)− xi(p))(p)(xj(q)− xj(p))(p)v(h)

+ (xi(q)− xi(p))(p)v(xj(q)− xj(p))h(p) + v(xi(q)− xi(p))(xj(q)− xj(p))(p)h(p)
]

= 0,

where the three terms in the summand vanish since

(xi(q)− xi(p))(p) = xi(p)− xi(p) = 0 = xj(p)− xj(p) = (xj(q)− xj(p))(p).

We conclude that v vanishes on stationary germs.

Proposition 7.9 shows that in the case of a smooth manifold, in Definition 7.18, we
can omit the requirement that point-derivations vanish on stationary germs, since this is
automatic.

Remark: In the case of smooth manifolds (k = ∞) some authors, including Morita [87]
(Chapter 1, Definition 1.32) and O’Neil [91] (Chapter 1, Definition 9), define derivations as
linear derivations with domain C∞(M), the set of all smooth funtions on the entire manifold,
M . This definition is simpler in the sense that it does not require the definition of the notion
of germ but it is not local, because it is not obvious that if v is a point-derivation at p, then
v(f) = v(g) whenever f, g ∈ C∞(M) agree locally at p. In fact, if two smooth locally defined
functions agree near p it may not be possible to extend both of them to the whole of M .
However, it can be proved that this property is local because on smooth manifolds, “bump
functions” exist (see Section 10.1, Proposition 10.2). Unfortunately, this argument breaks
down for Ck-manifolds with k <∞ and in this case the ring of germs at p can’t be avoided.
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7.4 Tangent and Cotangent Spaces Revisited ~

The space of linear forms on O(k)
M,p that vanish on S(k)

M,p turns out to be isomorphic to the dual

of the quotient space O(k)
M,p/S

(k)
M,p, and this fact shows that the dual (TpM)∗ of the tangent

space TpM , called the cotangent space to M at p, can be viewed as the quotient space

O(k)
M,p/S

(k)
M,p. This provides a fairly intrinsic definition of the cotangent space to M at p. For

notational simplicity, we write T ∗pM instead of (TpM)∗. This section is quite technical and
can be safely skipped upon first (or second!) reading.

Let us refresh the reader’s memory and review quotient vector spaces. If E is a vector
space, the set of all linear forms f : E → R on E is a vector space called the dual of E and
denoted by E∗. If H ⊆ E is any subspace of E, we define the equivalence relation ∼ so that
for all u, v ∈ E,

u ∼ v iff u− v ∈ H.
Every equivalence class [u], is equal to the subset u + H = {u + h | h ∈ H}, called a coset ,
and the set of equivalence classes E/H modulo ∼ is a vector space under the operations

[u] + [v] = [u+ v]

λ[u] = [λu].

The space E/H is called the quotient of E by H or for short, a quotient space.

Denote by L(E/H) the set of linear forms f : E → R that vanish on H (this means that
for every f ∈ L(E/H), we have f(h) = 0 for all h ∈ H). The following proposition plays a
crucial role.

Proposition 7.10. Given a vector space E and a subspace H of E, there is an isomorphism

L(E/H) ∼= (E/H)∗

between the set L(E/H) of linear forms f : E → R that vanish on H and the dual of the
quotient space E/H.

Proof. To see this, define the map f 7→ f̂ from L(E/H) to (E/H)∗ as follows: for any
f ∈ L(E/H),

f̂([u]) = f(u), [u] ∈ E/H.
This function is well-defined because it does not depend on the representative u, chosen in
the equivalence class [u]. Indeed, if v ∼ u, then v = u+ h some h ∈ H and so

f(v) = f(u+ h) = f(u) + f(h) = f(u),

since f(h) = 0 for all h ∈ H. The formula f̂([u]) = f(u) makes it obvious that f̂ is linear

since f is linear. The mapping f 7→ f̂ is injective. This is because if f̂1 = f̂2, then

f̂1([u]) = f̂2([u])
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for all u ∈ E, and because f̂1([u]) = f1(u) and f̂2([u]) = f2(u), we get f1(u) = f2(u) for all

u ∈ E, that is, f1 = f2. The mapping f 7→ f̂ is surjective because given any linear form
ϕ ∈ (E/H)∗, if we define f by

f(u) = ϕ([u])

for all u ∈ E, then f is linear, vanishes on H and clearly, f̂ = ϕ. Therefore, we have the
isomorphism,

L(E/H) ∼= (E/H)∗,

as claimed.

As a consequence of Proposition 7.10 the subspace of linear forms on O(k)
M,p that vanish on

S(k)
M,p is isomorphic to the dual (O(k)

M,p/S
(k)
M,p)

∗ of the space O(k)
M,p/S

(k)
M,p, we see that the linear

forms (
∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

also form a basis of (O(k)
M,p/S

(k)
M,p)

∗.

There is a conceptually clearer way to define a canonical isomorphism between Tp(M) and

the dual of O(k)
M,p/S

(k)
M,p in terms of a nondegenerate pairing between Tp(M) and O(k)

M,p/S
(k)
M,p.

This pairing is described by Serre in [105] (Chapter III, Section 8) for analytic manifolds
and can be adapted to our situation.

Define the map ω : Tp(M)×O(k)
M,p → R, so that

ω([γ], f) = (f ◦ γ)′(0),

for all [γ] ∈ Tp(M) and all f ∈ O(k)
M,p (with f ∈ f). It is easy to check that the above

expression does not depend on the representatives chosen in the equivalences classes [γ], and
f and that ω is bilinear. However, as defined, ω is degenerate because ω([γ], f) = 0 if f is a

stationary germ. Thus, we are led to consider the pairing with domain Tp(M)× (O(k)
M,p/S

(k)
M,p)

given by
ω([γ], [f ]) = (f ◦ γ)′(0),

where [γ] ∈ Tp(M) and [f ] ∈ O(k)
M,p/S

(k)
M,p, which we also denote ω : Tp(M)×(O(k)

M,p/S
(k)
M,p)→ R.

Then the following result holds.

Proposition 7.11. The map ω : Tp(M)× (O(k)
M,p/S

(k)
M,p)→ R defined so that

ω([γ], [f ]) = (f ◦ γ)′(0),

for all [γ] ∈ Tp(M) and all [f ] ∈ O(k)
M,p/S

(k)
M,p, is a nondegenerate pairing (with f ∈ f).

Consequently, there is a canonical isomorphism between Tp(M) and (O(k)
M,p/S

(k)
M,p)

∗ and a

canonical isomorphism between T ∗p (M) and O(k)
M,p/S

(k)
M,p.
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Proof. This is basically a replay of the proof of Proposition 7.6. First assume that given some
[γ] ∈ Tp(M), we have ω([γ], [f ]) = 0 for all [f ] ∈ O(k)

M,p/S
(k)
M,p. Pick a chart (U,ϕ), with p ∈ U

and let xi = pri ◦ϕ. Then, the xi’s are not stationary germs, since xi ◦ϕ−1 = pri ◦ϕ ◦ϕ−1 =
pri and (pri)

′(0) = pri (because pri is a linear form). By hypothesis, ω([γ], [xi]) = 0 for
i = 1, . . . , n, which means that

(xi ◦ γ)′(0) = (pri ◦ ϕ ◦ γ)′(0) = 0

for i = 1, . . . , n, namely, pri((ϕ ◦ γ)′(0)) = 0 for i = 1, . . . , n; that is,

(ϕ ◦ γ)′(0) = 0n,

proving that [γ] = 0.

Next assume that given some [f ] ∈ O(k)
M,p/S

(k)
M,p, we have ω([γ], [f ]) = 0 for all [γ] ∈ Tp(M).

Again pick a chart (U,ϕ). For every z ∈ Rn, we have the curve γz given by

γz(t) = ϕ−1(ϕ(p) + tz)

for all t in a small open interval containing 0. See Figure 7.11. By hypothesis,

ω([γz], [f ]) = (f ◦ γz)′(0) = (f ◦ ϕ−1)′(ϕ(p))(z) = 0

for all z ∈ Rn, which means that

(f ◦ ϕ−1)′(ϕ(p)) = 0.

But then, f is a stationary germ and so, [f ] = 0. Therefore, we proved that ω is a nonde-

generate pairing. Since Tp(M) and O(k)
M,p/S

(k)
M,p have finite dimension n, it follows that there

is are canonical isomorphisms between Tp(M) and (O(k)
M,p/S

(k)
M,p)

∗ and between T ∗p (M) and

O(k)
M,p/S

(k)
M,p.

In view of Proposition 7.11, we can identify Tp(M) with (O(k)
M,p/S

(k)
M,p)

∗ and T ∗p (M) with

O(k)
M,p/S

(k)
M,p.

Remark: Also recall that if E is a finite dimensional space, the map evalE : E → E∗∗ defined
so that,

evalE(v)(f) = f(v), for all v ∈ E and for all f ∈ E∗,
is a linear isomorphism.

Observe that we can view ω(u, f) = ω([γ], [f ]) as the result of computing the directional
derivative of the locally defined function f ∈ f in the direction u (given by a curve γ).
Proposition 7.11 suggests the following definition:
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Definition 7.19. (Tangent and Cotangent Spaces, Version 4) Given any Ck-manifold M
of dimension n, with k ≥ 1, for any p ∈ M , the tangent space at p denoted Tp(M) is the

space of point-derivations on O(k)
M,p that vanish on S(k)

M,p. Thus, Tp(M) can be identified with

(O(k)
M,p/S

(k)
M,p)

∗, the dual of the quotient space O(k)
M,p/S

(k)
M,p. The space O(k)

M,p/S
(k)
M,p is called

the cotangent space at p; it is isomorphic to the dual T ∗p (M), of Tp(M). (For simplicity of
notation we also denote Tp(M) by TpM and T ∗p (M) by T ∗pM .)

We can consider any Ck-function f on some open subset U of M as a representative of
the germ f ∈ O(k)

M,p, so the image of f in O(k)
M,p/S

(k)
M,p under the canonical projection of O(k)

M,p

onto O(k)
M,p/S

(k)
M,p makes sense. Observe that if xi = pri ◦ ϕ, as(

∂

∂xi

)
p

xj = δi,j,

the images of x1, . . . , xn in O(k)
M,p/S

(k)
M,p form the dual basis of the basis

(
∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p

of Tp(M).

Definition 7.20. Given any Ck-function f on U , we denote the image of f in T ∗p (M) =

O(k)
M,p/S

(k)
M,p by dfp. This is the differential of f at p.

Using the isomorphism between O(k)
M,p/S

(k)
M,p and (O(k)

M,p/S
(k)
M,p)

∗∗ described above, dfp cor-
responds to the linear map in T ∗p (M) defined by

dfp(v) = v(f),

for all v ∈ Tp(M). With this notation, we see that (dx1)p, . . . , (dxn)p is a basis of T ∗p (M),

and this basis is dual to the basis
(

∂
∂x1

)
p
, . . . ,

(
∂
∂xn

)
p

of Tp(M). For simplicity of notation,

we often omit the subscript p unless confusion arises.

Remark: Strictly speaking, a tangent vector v ∈ Tp(M) is defined on the space of germs

O(k)
M,p, at p. However, it is often convenient to define v on Ck-functions f ∈ Ck(U), where U

is some open subset containing p. This is easy: set

v(f) = v(f).

Given any chart (U,ϕ) at p, since v can be written in a unique way as

v =
n∑
i=1

λi

(
∂

∂xi

)
p

,

we get

v(f) =
n∑
i=1

λi

(
∂

∂xi

)
p

f.
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This shows that v(f) is the directional derivative of f in the direction v. The directional
derivative, v(f), is also denoted v[f ].

It is also possible to define Tp(M) just in terms of O(∞)
M,p, and we get a fifth definition of

TpM .

Definition 7.21. Let mM,p ⊆ O(∞)
M,p be the ideal of germs that vanish at p. We also have the

ideal m2
M,p, which consists of all finite sums of products of two elements in mM,p.

It turns out that T ∗p (M) is isomorphic to mM,p/m
2
M,p (see Warner [114], Lemma 1.16).

Definition 7.22. Let m
(k)
M,p ⊆ O

(k)
M,p denote the ideal of Ck-germs that vanish at p and

s
(k)
M,p ⊆ S

(k)
M,p denote the ideal of stationary Ck-germs that vanish at p.

Adapting Warner’s argument, we can prove the following proposition:

Proposition 7.12. We have the inclusion, (m
(k)
M,p)

2 ⊆ s
(k)
M,p and the isomorphism

(O(k)
M,p/S

(k)
M,p)

∗ ∼= (m
(k)
M,p/s

(k)
M,p)

∗.

As a consequence, Tp(M) ∼= (m
(k)
M,p/s

(k)
M,p)

∗ and T ∗p (M) ∼= m
(k)
M,p/s

(k)
M,p.

Proof. Given any two germs, f ,g ∈ m
(k)
M,p, for any two locally defined functions, f ∈ f and

g ∈ g, since f(p) = g(p) = 0, for any chart (U,ϕ) with p ∈ U , by definition of the product
fg of two functions, for any q ∈M near p, we have

(fg ◦ ϕ−1)(q) = (fg)(ϕ−1(q))

= f(ϕ−1(q))g(ϕ−1(q))

= (f ◦ ϕ−1)(q)(g ◦ ϕ−1)(q),

so
fg ◦ ϕ−1 = (f ◦ ϕ−1)(g ◦ ϕ−1),

and by the product rule for derivatives, we get

(fg ◦ ϕ−1)′(0) = (f ◦ ϕ−1)′(0)(g ◦ ϕ−1)(0) + (f ◦ ϕ−1)(0)(g ◦ ϕ−1)′(0) = 0,

because (g ◦ ϕ−1)(0) = g(ϕ−1(0)) = g(p) = 0 and (f ◦ ϕ−1)(0) = f(ϕ−1(0)) = f(p) = 0.

Therefore, fg is stationary at p and since fg(p) = 0, we have fg ∈ s
(k)
M,p, which implies the

inclusion (m
(k)
M,p)

2 ⊆ s
(k)
M,p.

Now the key point is that any constant germ is stationary, since the derivative of a
constant function is zero. Consequently, if v is a linear form on O(k)

M,p vanishing on S(k)
M,p, then

v(f) = v(f − f(p)),
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for all f ∈ O(k)
M,p, where f(p) denotes the germ of constant functions with value f(p). We use

this fact to define two functions between (O(k)
M,p/S

(k)
M,p)

∗ and (m
(k)
M,p/s

(k)
M,p)

∗ which are mutual
inverses.

The map from (O(k)
M,p/S

(k)
M,p)

∗ to (m
(k)
M,p/s

(k)
M,p)

∗ is restriction to m
(k)
M,p: every linear form v

on O(k)
M,p vanishing on S(k)

M,p yields a linear form on m
(k)
M,p that vanishes on s

(k)
M,p.

Conversely, for any linear form ` on m
(k)
M,p vanishing on s

(k)
M,p, define the function v` so that

v`(f) = `(f − f(p)),

for any germ f ∈ O(k)
M,p. Since ` is linear, it is clear that v` is also linear. If f is stationary at

p, then f−f(p) is also stationary at p because the derivative of a constant is zero. Obviously,
f − f(p) vanishes at p. It follows that v` vanishes on stationary germs at p.

Using the fact that v(f) = v(f − f(p)), it is easy to check that the above maps between

(O(k)
M,p/S

(k)
M,p)

∗ and (m
(k)
M,p/s

(k)
M,p)

∗ are mutual inverses, establishing the desired isomorphism.

Because (O(k)
M,p/S

(k)
M,p)

∗ is finite-dimensional, we also have the isomorphism

O(k)
M,p/S

(k)
M,p
∼= m

(k)
M,p/s

(k)
M,p

which yields the isomorphims Tp(M) ∼= (m
(k)
M,p/s

(k)
M,p)

∗ and T ∗p (M) ∼= m
(k)
M,p/s

(k)
M,p.

When k = ∞, Proposition 7.8 shows that every stationary germ that vanishes at p
belongs to m2

M,p. Therefore, when k =∞, we have s
(∞)
M,p = m2

M,p and so, we obtain the result
quoted above (from Warner):

T ∗p (M) = O(∞)
M,p/S

(∞)
M,p
∼= mM,p/m

2
M,p.

Remarks:

(1) The isomorphism

(O(k)
M,p/S

(k)
M,p)

∗ ∼= (m
(k)
M,p/s

(k)
M,p)

∗

yields another proof that the linear forms in (O(k)
M,p/S

(k)
M,p)

∗ are point-derivations, using
the argument from Warner [114] (Lemma 1.16). It is enough to prove that every linear

form of the form v` is a point-derivation. Indeed, if ` is a linear form on m
(k)
M,p vanishing

on s
(k)
M,p, we have

v`(fg) = `(fg − f(p)g(p))

= `
(
(f − f(p))(g − g(p)) + (f − f(p))g(p) + f(p)(g − g(p))

)
= `
(
(f − f(p))(g − g(p))

)
+ `(f − f(p))g(p) + f(p)`(g − g(p))

= v`(f)g(p) + f(p)v`(g),

using the fact that `
(
(f − f(p))(g− g(p))

)
= 0 since (m

(k)
M,p)

2 ⊆ s
(k)
M,p and ` vanishes on

s
(k)
M,p, which proves that v` is a point-derivation.
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(2) The ideal m
(k)
M,p is in fact the unique maximal ideal of O(k)

M,p. This is because if f ∈ O(k)
M,p

does not vanish at p, then 1/f belongs to O(k)
M,p (because if f does not vanish at p,

then by continuity, f does not vanish in some open subset containing p, for all f ∈ f),

and any proper ideal containing m
(k)
M,p and f would be equal to O(k)

M,p, which is absurd.

Thus, O(k)
M,p is a local ring (in the sense of commutative algebra) called the local ring

of germs of Ck-functions at p. These rings play a crucial role in algebraic geometry.

(3) Using the map f 7→ f − f(p), it is easy to see that

O(k)
M,p
∼= R⊕m

(k)
M,p and S(k)

M,p
∼= R⊕ s

(k)
M,p.

7.5 Tangent Maps

After having explored thoroughly the notion of tangent vector, we show how a Ck-map
h : M → N , between Ck manifolds, induces a linear map dhp : Tp(M)→ Th(p)(N), for every
p ∈ M . We find it convenient to use Version 3 of the definition of a tangent vector. Let
u ∈ Tp(M) be a point-derivation on O(k)

M,p that vanishes on S(k)
M,p. We would like dhp(u) to be

a point-derivation on O(k)
N,h(p) that vanishes on S(k)

N,h(p). For every germ g ∈ O(k)
N,h(p), if g ∈ g

is any locally defined function at h(p), it is clear that g ◦ h is locally defined at p and is Ck,
and that if g1, g2 ∈ g then g1 ◦ h and g2 ◦ h are equivalent. The germ of all locally defined
functions at p of the form g ◦ h, with g ∈ g, will be denoted g ◦ h. We set

dhp(u)(g) = u(g ◦ h).

In any chart (U,ϕ) at p, if u =
∑n

i=1 λi

(
∂
∂xi

)
p
, then

dhp(u)(g) =
n∑
i=1

λi

(
∂

∂xi

)
p

g ◦ h

for any g ∈ g. Moreover, if g is a stationary germ at h(p), then for some chart (V, ψ) on N
at q = h(p), we have (g ◦ ψ−1)′(ψ(q)) = 0 and, for any chart (U,ϕ) at p on M , we use the
chain rule to obtain

(g ◦ h ◦ ϕ−1)′(ϕ(p)) = (g ◦ ψ−1)′(ψ(q))((ψ ◦ h ◦ ϕ−1)′(ϕ(p))) = 0,

which means that g ◦ h is stationary at p. Therefore, dhp(u) ∈ Th(p)(N). It is also clear that
dhp is a linear map. We summarize all this in the following definition.

Definition 7.23. (Using Version 3 of a tangent vector) Given any two Ck-manifolds M
and N , of dimension m and n respectively, for any Ck-map h : M → N and for every
p ∈ M , the differential of h at p or tangent map dhp : Tp(M) → Th(p)(N) (also denoted
Tph : Tp(M)→ Th(p)(N)), is the linear map defined so that

dhp(u)(g) = Tph(u)(g) = u(g ◦ h)
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for every u ∈ Tp(M) and every germ g ∈ O(k)
N,h(p). The linear map dhp (= Tph) is sometimes

denoted h′p or Dph. See Figure 7.12.

p

h(p)

g

R

h

M

N

Tp (M)

Th(p) (N)

dhp

∂
∂

∂
∂

_

_

x

x

1

2

φ

φ

(p)

φ

-1

Figure 7.12: The tangent map dhp(u)(g) =
∑n

i=1 λi

(
∂
∂xi

)
p
g ◦ h.

The chain rule is easily generalized to manifolds.

Proposition 7.13. Given any two Ck-maps f : M → N and g : N → P between smooth
Ck-manifolds, for any p ∈M , we have

d(g ◦ f)p = dgf(p) ◦ dfp.

In the special case where N = R, a Ck-map between the manifolds M and R is just a
Ck-function on M . It is interesting to see what Tpf is explicitly. Since N = R, germs (of
functions on R) at t0 = f(p) are just germs of Ck-functions g : R→ R locally defined at t0.
Then for any u ∈ Tp(M) and every germ g at t0,

Tpf(u)(g) = u(g ◦ f).

If we pick a chart (U,ϕ) on M at p, we know that the
(

∂
∂xi

)
p

form a basis of Tp(M), with

1 ≤ i ≤ n. Therefore, it is enough to figure out what Tpf(u)(g) is when u =
(

∂
∂xi

)
p
. In this

case,

Tpf

((
∂

∂xi

)
p

)
(g) =

(
∂

∂xi

)
p

g ◦ f =
∂(g ◦ f ◦ ϕ−1)

∂Xi

∣∣∣∣
ϕ(p)

.
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Using the chain rule, we find that

Tpf

((
∂

∂xi

)
p

)
(g) =

(
∂

∂xi

)
p

f
dg

dt

∣∣∣∣
t0

.

Therefore, we have

Tpf(u) = u(f)
d

dt

∣∣∣∣
t0

.

This shows that we can identify Tpf with the linear form in T ∗p (M) defined by

dfp(u) = u(f), u ∈ TpM,

by identifying Tt0R with R. This is consistent with our previous definition of dfp as the image

of f in T ∗p (M) = O(k)
M,p/S

(k)
M,p (as Tp(M) is isomorphic to (O(k)

M,p/S
(k)
M,p)

∗).

Again, even though this is just a restatement of facts we already showed, we state the
following proposition because of its practical usefulness.

Proposition 7.14. Given any Ck-manifold M of dimension n, with k ≥ 1, for any p ∈ M
and any chart (U,ϕ) at p, the n linear maps

(dx1)p, . . . , (dxn)p

form a basis of T ∗pM , where (dxi)p, the differential of xi at p, is identified with the linear
form in T ∗pM such that (dxi)p(v) = v(xi), for every v ∈ TpM (by identifying TλR with R).

In preparation for the definition of the flow of a vector field (which will be needed to
define the exponential map in Lie group theory), we need to define the tangent vector to
a curve on a manifold. Given a Ck-curve γ : (a, b) → M on a Ck-manifold M , for any
t0 ∈ (a, b), we would like to define the tangent vector to the curve γ at t0 as a tangent vector
to M at p = γ(t0). We do this as follows: Recall that d

dt

∣∣
t0

is a basis vector of Tt0(R) = R.

Definition 7.24. The tangent vector to the curve γ at t0, denoted γ̇(t0) (or γ′(t0), or dγ
dt

(t0)),
is given by

γ̇(t0) = dγt0

(
d

dt

∣∣∣∣
t0

)
=

(
∂

∂t

)
t0

γ.

We find it necessary to define curves (in a manifold) whose domain is not an open
interval. A map γ : [a, b] → M , is a Ck-curve in M if it is the restriction of some Ck-curve
γ̃ : (a − ε, b + ε) → M , for some (small) ε > 0. Note that for such a curve (if k ≥ 1) the
tangent vector γ̇(t) is defined for all t ∈ [a, b]. A continuous curve γ : [a, b]→M is piecewise
Ck iff there a sequence a0 = a, a1, . . . , am = b, so that the restriction γi of γ to each [ai, ai+1]
is a Ck-curve, for i = 0, . . . ,m− 1. This implies that γ′i(ai+1) and γ′i+1(ai+1) are defined for
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i = 0, . . . ,m − 1, but there may be a jump in the tangent vector to γ at ai+1, that is, we
may have γ′i(ai+1) 6= γ′i+1(ai+1).

Sometimes, especially in the case of a linear Lie group, it is more convenient to define
the tangent map in terms of Version 1 of a tangent vector. Given any Ck-map h : M → N ,
for every p ∈ M , for any two curves γ1 and γ2 such that γ1(0) = γ2(0) = p, if γ1 and γ2 are
equivalent, then for any chart ϕ : U → Ω1 at p, we have (ϕ ◦ γ1)′(0) = (ϕ ◦ γ2)′(0), and since
f is Ck, for some (in fact, any) chart ψ : V → Ω2 at q = h(p), the map ψ ◦ h ◦ ϕ−1 is Ck, so

(ψ ◦ h ◦ γ1)′(0) = (ψ ◦ h ◦ ϕ−1)′ϕ(p)((ϕ ◦ γ1)′(0))

= (ψ ◦ h ◦ ϕ−1)′ϕ(p)((ϕ ◦ γ2)′(0))

= (ψ ◦ h ◦ γ2)′(0),

which shows that h ◦ γ1 and h ◦ γ2 are equivalent. As a consequence, for every equivalence
class u = [γ] of curves through p in M , all curves of the form h ◦ γ (with γ ∈ u) through
h(p) in N belong to the same equivalence class, and can make the following definition.

Definition 7.25. (Using Version 1 of a tangent vector) Given any two Ck-manifolds M
and N , of dimension m and n respectively, for any Ck-map h : M → N and for every
p ∈ M , the differential of h at p or tangent map dhp : Tp(M) → Th(p)(N) (also denoted
Tph : Tp(M) → Th(p)(N)), is the linear map defined such that for every equivalence class
u = [γ] of curves γ in M with γ(0) = p,

dhp(u) = Tph(u) = v,

where v is the equivalence class of all curves through h(p) in N of the form h◦γ, with γ ∈ u.
See Figure 7.13.

If M is a manifold in RN1 and N is a manifold in RN2 (for some N1, N2 ≥ 1), then
γ′(0) ∈ RN1 and (h ◦ γ)′(0) ∈ RN2 , so in this case the definition of dhp = Tph is just
Definition 3.9; namely, for any curve γ in M such that γ(0) = p and γ′(0) = u,

dhp(u) = Tph(u) = (h ◦ γ)′(0).

Example 7.6. For example, consider the linear Lie group SO(3), pick any vector u ∈ R3,
and let f : SO(3)→ R3 be given by

f(R) = Ru, R ∈ SO(3).

To compute dfR : TRSO(3) → TRuR3, since TRSO(3) = Rso(3) and TRuR3 = R3, pick any
tangent vector RB ∈ Rso(3) = TRSO(3) (where B is any 3× 3 skew symmetric matrix), let
γ(t) = RetB be the curve through R such that γ′(0) = RB, and compute

dfR(RB) = (f(γ(t)))′(0) = (RetBu)′(0) = RBu.
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M

N

Tp (M)

h

dhp

p

h(p)

u

v

Figure 7.13: The tangent map dhp(u) = v defined via equivalent curves.

Therefore, we see that

dfR(X) = Xu, X ∈ TRSO(3) = Rso(3).

If we express the skew symmetric matrix B ∈ so(3) as B = ω× for some vector ω ∈ R3, then
we have

dfR(Rω×) = Rω×u = R(ω × u).

Using the isomorphism of the Lie algebras (R3,×) and so(3), the tangent map dfR is given
by

dfR(Rω) = R(ω × u).

Here is another example inspired by an optimization problem investigated by Taylor and
Kriegman.

Example 7.7. Pick any two vectors u, v ∈ R3, and let f : SO(3)→ R be the function given
by

f(R) = (u>Rv)2.

To compute dfR : TRSO(3)→ Tf(R)R, since TRSO(3) = Rso(3) and Tf(R)R = R, again pick
any tangent vector RB ∈ Rso(3) = TRSO(3) (where B is any 3×3 skew symmetric matrix),
let γ(t) = RetB be the curve through R such that γ′(0) = RB, and compute via the product
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rule

dfR(RB) = (f(γ(t)))′(0)

= ((u>RetBv)2)′(0)

= u>RBvu>Rv + u>Rvu>RBv

= 2u>RBvu>Rv,

where the last equality used the observation that u>RBv and u>Rv are real numbers. There-
fore,

dfR(X) = 2u>Xvu>Rv, X ∈ Rso(3).

Unlike the case of functions defined on vector spaces, in order to define the gradient of
f , a function defined on SO(3), a “nonflat” manifold, we need to pick a Riemannian metric
on SO(3). We will explain how to do this in Chapter 13.

7.6 Submanifolds, Immersions, Embeddings

Although the notion of submanifold is intuitively rather clear, technically, it is a bit tricky.
In fact, the reader may have noticed that many different definitions appear in books and
that it is not obvious at first glance that these definitions are equivalent. What is important
is that a submanifold M of a given manifold N has the topology induced by N but also that
the charts of M are somehow induced by those of N .

Given m,n, with 0 ≤ m ≤ n, we can view Rm as a subspace of Rn using the inclusion

Rm ∼= Rm × {(0, . . . , 0)︸ ︷︷ ︸
n−m

} ↪→ Rm × Rn−m = Rn, (x1, . . . , xm) 7→ (x1, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
n−m

).

Definition 7.26. Given a Ck-manifold N of dimension n, a subset M of N is an m-
dimensional submanifold of N (where 0 ≤ m ≤ n) iff for every point p ∈ M , there is a
chart (U,ϕ) of N (in the maximal atlas for N), with p ∈ U , so that

ϕ(U ∩M) = ϕ(U) ∩ (Rm × {0n−m}).

(We write 0n−m = (0, . . . , 0)︸ ︷︷ ︸
n−m

.)

The subset U ∩M of Definition 7.26 is sometimes called a slice of (U,ϕ) and we say that
(U,ϕ) is adapted to M (See O’Neill [91] or Warner [114]).

� Other authors, including Warner [114], use the term submanifold in a broader sense than
us and they use the word embedded submanifold for what is defined in Definition 7.26.
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Figure 7.14: The red circle M is a 1-dimensional submanifold of the torus N .

The following proposition has an almost trivial proof but it justifies the use of the word
submanifold.

Proposition 7.15. Given a Ck-manifold N of dimension n, for any submanifold M of N
of dimension m ≤ n, the family of pairs (U ∩ M,ϕ � U ∩ M), where (U,ϕ) ranges over
the charts over any atlas for N , is an atlas for M , where M is given the subspace topology.
Therefore, M inherits the structure of a Ck-manifold.

In fact, every chart on M arises from a chart on N in the following precise sense.

Proposition 7.16. Given a Ck-manifold N of dimension n and a submanifold M of N of
dimension m ≤ n, for any p ∈M and any chart (W, η) of M at p, there is some chart (U,ϕ)
of N at p, so that

ϕ(U ∩M) = ϕ(U) ∩ (Rm × {0n−m}) and ϕ � U ∩M = η � U ∩M,

where p ∈ U ∩M ⊆ W .

Proof. See Berger and Gostiaux [15] (Chapter 2).

It is also useful to define more general kinds of “submanifolds.”

Definition 7.27. Let h : M → N be a Ck-map of manifolds.

(a) The map h is an immersion of M into N iff dhp is injective for all p ∈M .
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(b) The set h(M) is an immersed submanifold of N iff h is an injective immersion.

(c) The map h is an embedding of M into N iff h is an injective immersion such that the
induced map, M −→ h(M), is a homeomorphism, where h(M) is given the subspace
topology (equivalently, h is an open map from M into h(M) with the subspace topol-
ogy). We say that h(M) (with the subspace topology) is an embedded submanifold of
N .

(d) The map h is a submersion of M into N iff dhp is surjective for all p ∈M .

� Again, we warn our readers that certain authors (such as Warner [114]) call h(M), in
(b), a submanifold of N ! We prefer the terminology immersed submanifold .

The notion of immersed submanifold arises naturally in the framework of Lie groups.
Indeed, the fundamental correspondence between Lie groups and Lie algebras involves Lie
subgroups that are not necessarily closed. But, as we will see later, subgroups of Lie groups
that are also submanifolds are always closed. It is thus necessary to have a more inclusive
notion of submanifold for Lie groups and the concept of immersed submanifold is just what’s
needed.

Immersions of R into R3 are parametric curves and immersions of R2 into R3 are para-
metric surfaces. These have been extensively studied, for example, see DoCarmo [38], Berger
and Gostiaux [15], or Gallier [48].

Immersions (i.e., subsets of the form h(M), where h is an immersion) are generally neither
injective immersions (i.e., subsets of the form h(M), where h is an injective immersion) nor
embeddings (or submanifolds). For example, immersions can have self-intersections, as the
plane curve (nodal cubic) shown in Figure 7.15 and given by x = t2 − 1; y = t(t2 − 1). 1

Figure 7.15: A nodal cubic; an immersion, but not an immersed submanifold.

Note that the cuspidal cubic, t 7→ (t2, t3), (see Figure 7.4), is an injective map, but it is
not an immersion since its derivative at the origin is zero.
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Injective immersions are generally not embeddings (or submanifolds) because h(M) may
not be homeomorphic to M . An example is given by the lemniscate of Bernoulli shown in
Figure 7.16, an injective immersion of R into R2:

x =
t(1 + t2)

1 + t4
,

y =
t(1− t2)

1 + t4
.

Figure 7.16: Lemniscate of Bernoulli; an immersed submanifold, but not an embedding.

When t = 0, the curve passes through the origin. When t 7→ −∞, the curve tends to the
origin from the left and from above, and when t 7→ +∞, the curve tends tends to the origin
from the right and from below. Therefore, the inverse of the map defining the lemniscate of
Bernoulli is not continuous at the origin.

Another interesting example is the immersion of R into the 2-torus, T 2 = S1 × S1 ⊆ R4,
given by

t 7→ (cos t, sin t, cos ct, sin ct),

where c ∈ R. One can show that the image of R under this immersion is closed in T 2 iff
c is rational. Moreover, the image of this immersion is dense in T 2 but not closed iff c is
irrational. The above example can be adapted to the torus in R3: One can show that the
immersion given by

t 7→ ((2 + cos t) cos(
√

2 t), (2 + cos t) sin(
√

2 t), sin t),

is dense but not closed in the torus (in R3) given by

(s, t) 7→ ((2 + cos s) cos t, (2 + cos s) sin t, sin s),

where s, t ∈ R.

There is, however, a close relationship between submanifolds and embeddings.

Proposition 7.17. If M is a submanifold of N , then the inclusion map j : M → N is an
embedding. Conversely, if h : M → N is an embedding, then h(M) with the subspace topology
is a submanifold of N and h is a diffeomorphism between M and h(M).
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Proof. See O’Neill [91] (Chapter 1) or Berger and Gostiaux [15] (Chapter 2).

In summary, embedded submanifolds and (our) submanifolds coincide. Some
authors refer to spaces of the form h(M), where h is an injective immersion, as immersed
submanifolds and we have adopted this terminology. However, in general, an immersed sub-
manifold is not a submanifold. One case where this holds is when M is compact, since then, a
bijective continuous map is a homeomorphism. For yet a notion of submanifold intermediate
between immersed submanifolds and (our) submanifolds, see Sharpe [107] (Chapter 1).

7.7 Problems

Problem 7.1. Prove that the collection Ã of all charts compatible with an atlas A is a
maximal atlas in the equivalence class of atlases compatible with A.

Problem 7.2. Prove that every Ck-manifold (k = 0, . . . ,∞) is locally connected and locally
compact.

Problem 7.3. Consider a Ck n-atlas on a set M as defined in Definition 7.6. Give M the
topology in which the open sets are arbitrary unions of domains of charts Ui, more precisely,
the Ui’s of the maximal atlas defining the differentiable structure on M .

(1) Check that the axioms of a topology are verified, and M is indeed a topological space
with this topology.

(2) Check that that when M is equipped with the above topology, then the maps ϕi : Ui →
ϕi(Ui) are homeomorphisms, so M is a manifold according to Definition 7.4.

Problem 7.4. Referring to Example 7.1, show that on the overlap UN ∩US = Sn−{N,S},
the transition maps

I = σS ◦ σ−1
N = σN ◦ σ−1

S

defined on ϕN(UN ∩ US) = ϕS(UN ∩ US) = Rn − {0}, are given by

(x1, . . . , xn) 7→ 1∑n
i=1 x

2
i

(x1, . . . , xn);

that is, the inversion I of center O = (0, . . . , 0) and power 1.

Problem 7.5. In Example 7.4, check that the transition map ϕT ◦ ϕ−1
S from ϕS(US ∩ UT )

to ϕT (US ∩ UT ) is given by

M 7→ (P3 + P4M)(P1 + P2M)−1,

where (
P1 P2

P3 P4

)
= P−1

T PS

is the matrix of the permutation π−1
T ◦ πS and M is an (n− k)× k matrix.
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Problem 7.6. Referring to Example 7.4, prove that the collection of k-planes represented
by matrices in US is precisely the set of k-planes W supplementary to the (n − k)-plane
spanned by the canonical basis vectors ejk+1

, . . . , ejn (i.e., span(W ∪ {ejk+1
, . . . , ejn}) = Rn,

where S = {i1, . . . , ik} and {jk+1, . . . , jn} = {1, . . . , n} − S).

Problem 7.7. Prove that the condition of Definition 7.7 does not depend on the choice of
charts.

Problem 7.8. Check that the relation of Definition 7.14 is an equivalence relation.

Problem 7.9. Prove that the operations λ[f ] and [f ][g] are well defined on germs of Ck-
functions at a point p of a manifold.

Problem 7.10. Check that being stationary at a point p does not depend on the chart
(U,ϕ) at p or on the function chosen in the germ f .

Problem 7.11. Consider the immersion of R in the torus T 2 = S1 × S1 ⊆ R4, given by

t 7→ (cos t, sin t, cos ct, sin ct),

where c ∈ R. Show that the image of R under this immersion is closed in T 2 iff c is rational.
Moreover, show that the image of this immersion is dense in T 2 but not closed iff c is
irrational.

Problem 7.12. Show that the immersion given by

t 7→ ((2 + cos t) cos(
√

2 t), (2 + cos t) sin(
√

2 t), sin t),

is dense but not closed in the torus (in R3) given by

(s, t) 7→ ((2 + cos s) cos t, (2 + cos s) sin t, sin s),

where s, t ∈ R.

Problem 7.13. Prove that if N is a compact manifold, then an injective immersion f : N →
M is an embedding.

Problem 7.14. Let f : M → N be a map of smooth manifolds. A point, p ∈ M , is called
a critical point (of f) iff dfp is not surjective and a point q ∈ N is called a critical value (of
f) iff q = f(p), for some critical point, p ∈M . A point p ∈M is a regular point (of f) iff p
is not critical, i.e., dfp is surjective, and a point q ∈ N is a regular value (of f) iff it is not a
critical value. In particular, any q ∈ N − f(M) is a regular value and q ∈ f(M) is a regular
value iff every p ∈ f−1(q) is a regular point (but, in contrast, q is a critical value iff some
p ∈ f−1(q) is critical).

(a) Prove that for every regular value, q ∈ f(M), the preimage Z = f−1(q) is a manifold
of dimension dim(M)− dim(N).
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Hint . Pick any p ∈ f−1(q) and some parametrizations ϕ at p and ψ at q, with ϕ(0) = p and
ψ(0) = q, and consider h = ψ−1 ◦ f ◦ ϕ. Prove that dh0 is surjective and then apply Lemma
3.5.

(b) Under the same assumptions as (a), prove that for every point p ∈ Z = f−1(q), the
tangent space, TpZ, is the kernel of dfp : TpM → TqN .

(c) If X,Z ⊆ RN are manifolds and Z ⊆ X, we say that Z is a submanifold of X. Assume
there is a smooth function, g : X → Rk, and that 0 ∈ Rk is a regular value of g. Then, by
(a), Z = g−1(0) is a submanifold of X of dimension dim(X)− k. Let g = (g1, . . . , gk), with
each gi a function, gi : X → R. Prove that for any p ∈ X, dgp is surjective iff the linear
forms, (dgi)p : TpX → R, are linearly independent. In this case, we say that g1, . . . , gk are
independent at p. We also say that Z is cut out by g1, . . . , gk when

Z = {p ∈ X | g1(p) = 0, . . . , gk(p) = 0}
with g1, . . . , gk independent for all p ∈ Z.

Let f : X → Y be a smooth maps of manifolds and let q ∈ f(X) be a regular value.
Prove that Z = f−1(q) is a submanifold of X cut out by k = dim(X)− dim(Y ) independent
functions.

Hint . Pick some parametrization, ψ, at q, so that ψ(0) = q and check that 0 is a regular
value of g = ψ−1 ◦ f , so that g1, . . . , gk work.

(d) Now, assume Z is a submanifold of X. Prove that locally, Z is cut out by independent
functions. This means that if k = dim(X) − dim(Z), the codimension of Z in X, then for
every z ∈ Z, there are k independent functions, g1, . . . , gk, defined on some open subset,
W ⊆ X, with z ∈ W , so that Z ∩W is the common zero set of the gi’s.

Hint . Apply Lemma 3.4 to the immersion Z −→ X.

(e) We would like to generalize our result in (a) to the more general situation where we
have a smooth map, f : X → Y , but this time, we have a submanifold, Z ⊆ Y and we are
investigating whether f−1(Z) is a submanifold of X. In particular, if X is also a submanifold
of Y and f is the inclusion of X into Y , then f−1(Z) = X ∩ Z.

Convince yourself that, in general, the intersection of two submanifolds is not a subman-
ifold. Try examples involving curves and surfaces and you will see how bad the situation can
be. What is needed is a notion generalizing that of a regular value, and this turns out to be
the notion of transversality.

We say that f is transversal to Z iff

dfp(TpX) + Tf(p)Z = Tf(p)Y,

for all p ∈ f−1(Z). (Recall, if U and V are subspaces of a vector space, E, then U + V is
the subspace U + V = {u+ v ∈ E | u ∈ U, v ∈ V }). In particular, if f is the inclusion of X
into Y , the transversality condition is

TpX + TpZ = TpY,
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for all p ∈ X ∩ Z.

Draw several examples of transversal intersections to understand better this concept.
Prove that if f is transversal to Z, then f−1(Z) is a submanifold of X of codimension equal
to dim(Y )− dim(Z).

Hint . The set f−1(Z) is a manifold iff for every p ∈ f−1(Z), there is some open subset,
U ⊆ X, with p ∈ U , and f−1(Z) ∩ U is a manifold. First, use (d) to assert that locally near
q = f(p), Z is cut out by k = dim(Y ) − dim(Z) independent functions, g1, . . . , gk, so that
locally near p, the preimage f−1(Z) is cut out by g1 ◦ f, . . . , gk ◦ f . If we let g = (g1, . . . , gk),
it is a submersion and the issue is to prove that 0 is a regular value of g ◦ f in order to apply
(a). Show that transversality is just what’s needed to show that 0 is a regular value of g ◦ f .

(f) With the same assumptions as in (g) (f is transversal to Z), if W = f−1(Z), prove
that for every p ∈ W ,

TpW = (dfp)
−1(Tf(p)Z),

the preimage of Tf(p)Z by dfp : TpX → Tf(p)Y . In particular, if f is the inclusion of X into
Y , then

Tp(X ∩ Z) = TpX ∩ TpZ.

(g) Let X,Z ⊆ Y be two submanifolds of Y , with X compact, Z closed, dim(X) +
dim(Z) = dim(Y ) and X transversal to Z. Prove that X ∩ Z consists of a finite set of
points.

Problem 7.15. Show that a smooth map f : M → Rm from a compact manifold M to Rm

has some critical point.
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Chapter 8

Construction of Manifolds From
Gluing Data ~

8.1 Sets of Gluing Data for Manifolds

The definition of a manifold given in Chapter 7 assumes that the underlying set M is already
known. However, there are situations where we only have some indirect information about
the overlap of the domains Ui of the local charts defining our manifold M in terms of the
transition functions

ϕji = ϕji : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj),
but where M itself is not known. For example, this situation happens when trying to
construct a surface approximating a 3D-mesh. If we let Ωij = ϕi(Ui ∩ Uj) and Ωji =
ϕj(Ui ∩ Uj), then ϕji can be viewed as a “gluing map”

ϕji : Ωij → Ωji

between two open subsets of Ωi and Ωj, respectively.

For technical reasons, it is desirable to assume that the images Ωi = ϕi(Ui) and Ωj =
ϕj(Uj) of distinct charts are disjoint, but this can always be achieved for manifolds. Indeed,
the map

β : (x1, . . . , xn) 7→
(

x1√
1 +

∑n
i=1 x

2
i

, . . . ,
xn√

1 +
∑n

i=1 x
2
i

)
is a smooth diffeomorphism from Rn to the open unit ball B(0, 1), with inverse given by

β−1 : (x1, . . . , xn) 7→
(

x1√
1−∑n

i=1 x
2
i

, . . . ,
xn√

1−∑n
i=1 x

2
i

)
.

Since M has a countable basis, using compositions of β with suitable translations, we can
make sure that the Ωi’s are mapped diffeomorphically to disjoint open subsets of Rn.

263
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Remarkably, manifolds can be constructed using the “gluing process” alluded to above
from what is often called sets of “gluing data.” In this chapter we are going to describe
this construction and prove its correctness in detail, provided some mild assumptions on the
gluing data. It turns out that this procedure for building manifolds can be made practical.
Indeed, it is the basis of a class of new methods for approximating 3D meshes by smooth
surfaces, see Siqueira, Xu and Gallier [108].

Some care must be exercised to ensure that the space obtained by gluing the pieces Ωij and
Ωji is Hausdorff. Some care must also be exercised in formulating the consistency conditions
relating the ϕji’s (the so-called “cocycle condition”). This is because the traditional condition
(for example, in bundle theory) has to do with triple overlaps of the Ui = ϕ−1

i (Ωi) on the
manifold M , but in our situation, we do not have M nor the parametrization maps θi = ϕ−1

i ,
and the cocycle condition on the ϕji’s has to be stated in terms of the Ωi’s and the Ωji’s.

Note that if the Ωij arise from the charts of a manifold, then nonempty triple intersections
Ui ∩Uj ∩Uk of domains of charts have images ϕi(Ui ∩Uj ∩Uk) in Ωi, ϕj(Ui ∩Uj ∩Uk) in Ωj,
and ϕk(Ui ∩ Uj ∩ Uk) in Ωk, and since the ϕi’s are bijective maps, we get

ϕi(Ui ∩ Uj ∩ Uk) = ϕi(Ui ∩ Uj ∩ Ui ∩ Uk) = ϕi(Ui ∩ Uj) ∩ ϕi(Ui ∩ Uk) = Ωij ∩ Ωik,

and similarly

ϕj(Ui ∩ Uj ∩ Uk) = Ωji ∩ Ωjk, ϕk(Ui ∩ Uj ∩ Uk) = Ωki ∩ Ωkj,

and these sets are related. Indeed, we have

ϕji(Ωij ∩ Ωik) = ϕj ◦ ϕ−1
i (ϕi(Ui ∩ Uj) ∩ ϕi(Ui ∩ Uk))

= ϕj(Ui ∩ Uj ∩ Uk) = Ωji ∩ Ωjk,

and similar equations relating the other “triple intersections.” In particular,

ϕij(Ωji ∩ Ωjk) = Ωij ∩ Ωik,

which implies that
ϕ−1
ji (Ωji ∩ Ωjk) = ϕij(Ωji ∩ Ωjk) ⊆ Ωik.

This is important, because ϕ−1
ji (Ωji ∩ Ωjk) is the domain of ϕkj ◦ ϕji and Ωik is the domain

of ϕki, so the condition ϕij(Ωji ∩ Ωjk) = Ωij ∩ Ωik implies that the domain of ϕkj ◦ ϕji is a
subset of the domain of ϕki. See Figure 8.1. The definition of gluing data given by Grimm
and Hughes [53, 54] misses the above condition.

Finding an easily testable necessary and sufficient criterion for the Hausdorff condition
appears to be a very difficult problem. We propose a necessary and sufficient condition, but
it is not easily testable in general. If M is a manifold, then observe that difficulties may arise
when we want to separate two distinct point p, q ∈ M such that p and q neither belong to
the same open θi(Ωi), (recalling that θi = ϕ−1

i ), nor to two disjoint opens θi(Ωi) and θj(Ωj),
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Figure 8.1: The domain of ϕki is the blue region in the red circle. A subset of this domain
is ϕ−1

ji (Ωji ∩ Ωjk), namely the pull back of the intersection of the blue and red regions from
the green circle.

but instead to the boundary points in (∂(θi(Ωij)) ∩ θi(Ωi)) ∪ (∂(θj(Ωji)) ∩ θj(Ωj)). In this
case, there are some disjoint open subsets Up and Uq of M with p ∈ Up and q ∈ Uq, and
we get two disjoint open subsets Vx = θ−1

i (Up) = ϕi(Up) ⊆ Ωi and Vy = θ−1
j (Uq) ⊆ Ωj with

θi(x) = p, θj(y) = q, and such that x ∈ ∂(Ωij)∩Ωi, y ∈ ∂(Ωji)∩Ωj, and no point in Vy ∩Ωji

is the image of any point in Vx∩Ωij by ϕji. See Figure 8.2. Since Vx and Vy are open, we may
assume that they are open balls. This necessary condition turns out to be also sufficient.

With the above motivations in mind, here is the definition of sets of gluing data.

Definition 8.1. Let n be an integer with n ≥ 1 and let k be either an integer with k ≥ 1 or
k = ∞. A set of gluing data is a triple G = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K) satisfying the
following properties, where I is a (nonempty) countable set:

(1) For every i ∈ I, the set Ωi is a nonempty open subset of Rn called a parametrization
domain, for short, p-domain, and the Ωi are pairwise disjoint (i.e., Ωi ∩Ωj = ∅ for all
i 6= j).

(2) For every pair (i, j) ∈ I× I, the set Ωij is an open subset of Ωi. Furthermore, Ωii = Ωi

and Ωij 6= ∅ iff Ωji 6= ∅. Each nonempty Ωij (with i 6= j) is called a gluing domain.

(3) If we let
K = {(i, j) ∈ I × I | Ωij 6= ∅},

then ϕji : Ωij → Ωji is a Ck bijection for every (i, j) ∈ K called a transition function
(or gluing function) and the following condition holds:

(a) ϕii = idΩi , for all i ∈ I.
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Figure 8.2: A schematic illustration of how to separate boundary points.

(b) ϕij = ϕ−1
ji , for all (i, j) ∈ K.

(c) For all i, j, k, if Ωji ∩ Ωjk 6= ∅, then ϕij(Ωji ∩ Ωjk) = Ωij ∩ Ωik, and ϕki(x) =
ϕkj ◦ ϕji(x), for all x ∈ Ωij ∩ Ωik.

Condition (c) is called the cocycle condition. See Figure 8.3.

(4) For every pair (i, j) ∈ K, with i 6= j, for every x ∈ ∂(Ωij)∩Ωi and every y ∈ ∂(Ωji)∩Ωj,
there are open balls Vx and Vy centered at x and y so that no point of Vy ∩ Ωji is the
image of any point of Vx ∩ Ωij by ϕji. See Figure 8.2.

Remarks.

(1) In practical applications, the index set I is of course finite and the open subsets Ωi

may have special properties (for example, connected; open simplicies, etc.).

(2) We are only interested in the Ωij’s that are nonempty, but empty Ωij’s do arise in
proofs and constructions, and this is why our definition allows them.

(3) Observe that Ωij ⊆ Ωi and Ωji ⊆ Ωj. If i 6= j, as Ωi and Ωj are disjoint, so are Ωij and
Ωij.

(4) The cocycle Condition (c) may seem overly complicated but it is actually needed to
guarantee the transitivity of the relation ∼ defined in the proof of Proposition 8.1.
Flawed versions of Condition (c) appear in the literature; see the discussion after the
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Figure 8.3: A schematic illustration of the cocycle condition.

proof of Proposition 8.1. The problem is that ϕkj◦ϕji is a partial function whose domain
ϕ−1
ji (Ωji∩Ωjk) is not necessarily related to the domain Ωik of ϕki. To ensure transitivity

of ∼, we must assert that whenever the composition ϕkj ◦ϕji has a nonempty domain,
this domain is contained in the domain Ωik of ϕki, and that ϕkj ◦ ϕji and ϕki agree in
ϕ−1
ji (Ωji ∩ Ωjk).

Since the ϕji are bijections, it turns out that Condition (c) implies Conditions (a) and
(b). To get (a), set i = j = k. Then Condition (b) follows from (a) and (c) by setting
k = i.

(5) If M is a Ck manifold (including k =∞), then using the notation of our introduction,
it is easy to check that the open sets Ωi, Ωij and the gluing functions ϕji satisfy
the conditions of Definition 8.1 (provided that we fix the charts so that the images
of distinct charts are disjoint). Proposition 8.1 will show that a manifold can be
reconstructed from a set of gluing data.

The idea of defining gluing data for manifolds is not new. André Weil introduced this
idea to define abstract algebraic varieties by gluing irreducible affine sets in his book [115]
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published in 1946. The same idea is well-known in bundle theory and can be found in
standard texts such as Steenrod [109], Bott and Tu [18], Morita [87] and Wells [117].

The beauty of the idea is that it allows the reconstruction of a manifold M without
having prior knowledge of the topology of this manifold (that is, without having explicitly
the underlying topological space M) by gluing open subets of Rn (the Ωi’s) according to
prescribed gluing instructions (namely, glue Ωi and Ωj by identifying Ωij and Ωji using ϕji).
This method of specifying a manifold separates clearly the local structure of the manifold
(given by the Ωi’s) from its global structure which is specified by the gluing functions.
Furthermore, this method ensures that the resulting manifold is Ck (even for k = ∞) with
no extra effort since the gluing functions ϕji are assumed to be Ck.

Grimm and Hughes [53, 54] appear to be the first to have realized the power of this latter
property for practical applications, and we wish to emphasize that this is a very significant
discovery. However, Grimm [53] uses a condition stronger than our Condition (4) to ensure
that the resulting space is Hausdorff. The cocycle condition in Grimm and Hughes [53, 54]
is also not strong enough to ensure transitivity of the relation ∼. We will come back to these
points after the proof of Proposition 8.1.

Working with overlaps of open subsets of the parameter domain makes it much easier to
enforce smoothness conditions compared to the traditional approach with splines where the
parameter domain is subdivided into closed regions, and where enforcing smoothness along
boundaries is much more difficult.

Let us show that a set of gluing data defines a Ck manifold in a natural way.

Proposition 8.1. For every set of gluing data G = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K), there
is an n-dimensional Ck manifold MG whose transition functions are the ϕji’s.

Proof. Define the binary relation ∼ on the disjoint union
∐

i∈I Ωi of the open sets Ωi as
follows: For all x, y ∈∐i∈I Ωi,

x ∼ y iff (∃(i, j) ∈ K)(x ∈ Ωij, y ∈ Ωji, y = ϕji(x)).

We claim that ∼ is an equivalence relation. This follows easily from the cocycle condition.
Clearly Condition 3a of Definition 8.1 ensures reflexivity, while Condition 3b ensures sym-
metry. To check transitivity, assume that x ∼ y and y ∼ z. Then there are some i, j, k such
that (i) x ∈ Ωij, y ∈ Ωji ∩ Ωjk, z ∈ Ωkj, and (ii) y = ϕji(x) and z = ϕkj(y). Consequently,
Ωji ∩ Ωjk 6= ∅ and x ∈ ϕ−1

ji (Ωji ∩ Ωjk), so by 3c, we get ϕ−1
ji (Ωji ∩ Ωjk) = Ωij ∩ Ωik ⊆ Ωik.

So, ϕki(x) is defined and by 3c again, ϕki(x) = ϕkj ◦ ϕji(x) = z, i.e., x ∼ z, as desired. See
Figure 8.4.

Since ∼ is an equivalence relation, let

MG =

(∐
i∈I

Ωi

)
/ ∼
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Figure 8.4: A schematic illustration transitivity, where x ∼ y and y ∼ z implies x ∼ z.

be the quotient set and let p :
∐

i∈I Ωi → MG be the quotient map, with p(x) = [x], where
[x] denotes the equivalence class of x. Also, for every i ∈ I, let ini : Ωi →

∐
i∈I Ωi be the

natural injection and let
τi = p ◦ ini : Ωi →MG .

Note that if x ∼ y and x 6= y, then i 6= j, as ϕii = id. But then, as x ∈ Ωij ⊆ Ωi,
y ∈ Ωji ⊆ Ωj and Ωi ∩ Ωj = ∅ when i 6= j, if x ∼ y and x, y ∈ Ωi, then x = y. As a
consequence we conclude that every τi is injective. We give MG the largest topology that
makes the bijections, τi : Ωi → τi(Ωi), into homeomorphisms. Then, if we let Ui = τi(Ωi) and
ϕi = τ−1

i , it is immediately verified that the (Ui, ϕi) are charts and that this collection of
charts forms a Ck atlas for MG. As there are countably many charts, MG is second-countable.

To prove that the topology is Hausdorff, we first prove the following:

Claim. For all (i, j) ∈ I × I, we have τi(Ωi) ∩ τj(Ωj) 6= ∅ iff (i, j) ∈ K and if so,

τi(Ωi) ∩ τj(Ωj) = τi(Ωij) = τj(Ωji) .

Assume that τi(Ωi)∩τj(Ωj) 6= ∅ and let [z] ∈ τi(Ωi)∩τj(Ωj). Observe that [z] ∈ τi(Ωi)∩τj(Ωj)
iff z ∼ x and z ∼ y, for some x ∈ Ωi and some y ∈ Ωj. Consequently, x ∼ y, which implies
that (i, j) ∈ K, x ∈ Ωij and y ∈ Ωji. We have [z] ∈ τi(Ωij) iff z ∼ x, for some x ∈ Ωij. Then
either i = j and z = x or i 6= j and z ∈ Ωji, which shows that [z] ∈ τj(Ωji), and consequently
we get τi(Ωij) ⊆ τj(Ωji). Since the same argument applies by interchanging i and j, we have
that τi(Ωij) = τj(Ωji), for all (i, j) ∈ K. Furthermore, because Ωij ⊆ Ωi, Ωji ⊆ Ωj, and
τi(Ωij) = τj(Ωji), for all (i, j) ∈ K, we also have that τi(Ωij) = τj(Ωji) ⊆ τi(Ωi) ∩ τj(Ωj), for
all (i, j) ∈ K. See Figure 8.5.
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Figure 8.5: A schematic illustration of τi(Ωi) ∩ τj(Ωj) = τi(Ωij) = τj(Ωji), where MG is
depicted as a torus.

For the reverse inclusion, if [z] ∈ τi(Ωi)∩ τj(Ωj), then we know that there is some x ∈ Ωij

and some y ∈ Ωji such that z ∼ x and z ∼ y, so [z] = [x] ∈ τi(Ωij) and [z] = [y] ∈ τj(Ωji),
and then we get

τi(Ωi) ∩ τj(Ωj) ⊆ τi(Ωij) = τj(Ωji) .

This proves that if τi(Ωi) ∩ τj(Ωj) 6= ∅, then (i, j) ∈ K and

τi(Ωi) ∩ τj(Ωj) = τi(Ωij) = τj(Ωji) .

Finally, assume that (i, j) ∈ K. Then, for any x ∈ Ωij ⊆ Ωi, we have y = ϕji(x) ∈ Ωji ⊆
Ωj and x ∼ y, so that τi(x) = τj(y), which proves that τi(Ωi) ∩ τj(Ωj) 6= ∅. So, our claim is
true, and we can use it.

We now prove that the topology of MG is Hausdorff. Pick [x], [y] ∈ MG with [x] 6= [y],
for some x ∈ Ωi and some y ∈ Ωj. Either τi(Ωi)∩ τj(Ωj) = ∅, in which case, as τi and τj are
homeomorphisms, [x] and [y] belong to the two disjoint open sets τi(Ωi) and τj(Ωj). If not,
then by the claim, (i, j) ∈ K and

τi(Ωi) ∩ τj(Ωj) = τi(Ωij) = τj(Ωji) .
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There are several cases to consider:

1. If i = j then x and y can be separated by disjoint opens Vx and Vy, and as τi is
a homeomorphism, [x] and [y] are separated by the disjoint open subsets τi(Vx) and
τj(Vy).

2. If i 6= j, x ∈ Ωi −Ωij and y ∈ Ωj −Ωji, then τi(Ωi −Ωij) and τj(Ωj −Ωji) are disjoint
open subsets separating [x] and [y], where Ωij and Ωji are the closures of Ωij and Ωji,
respectively. See Figure 8.6.
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= [y]

Figure 8.6: The separation of [x] and [y] when x ∈ Ωi − Ωij and y ∈ Ωj − Ωji.

3. If i 6= j, x ∈ Ωij and y ∈ Ωji, as [x] 6= [y] and y ∼ ϕij(y), then x 6= ϕij(y). We can
separate x and ϕij(y) by disjoint open subsets Vx and Vy, and [x] and [y] = [ϕij(y)] are
separated by the disjoint open subsets τi(Vx) and τi(Vϕij(y)). See Figure 8.7.

4. If i 6= j, x ∈ ∂(Ωij)∩Ωi and y ∈ ∂(Ωji)∩Ωj, then we use Condition 4 of Definition 8.1.
This condition yields two disjoint open subsets Vx and Vy with x ∈ Vx and y ∈ Vy,
such that no point of Vx ∩Ωij is equivalent to any point of Vy ∩Ωji, and so τi(Vx) and
τj(Vy) are disjoint open subsets separating [x] and [y]. See Figure 8.2.
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Figure 8.7: The separation of [x] and [y] when x 6= ϕij(y).

Therefore, the topology of MG is Hausdorff and MG is indeed a manifold. Finally, it is trivial
to verify that the transition maps of MG are the original gluing functions ϕij, since ϕi = τ−1

i

and ϕji = ϕj ◦ ϕ−1
i .

It should be noted that as nice as it is, Proposition 8.1 is a theoretical construction that
yields an “abstract” manifold, but does not yield any information as to the geometry of this
manifold. Furthermore, the resulting manifold may not be orientable or compact, even if we
start with a finite set of p-domains.

Here is an example showing that if Condition (4) of Definition 8.1 is omitted then we
may get non-Hausdorff spaces. Cindy Grimm uses a similar example in her dissertation [53]
(Appendix C2, page 126), but her presentation is somewhat confusing because her Ω1 and
Ω2 appear to be two disjoint copies of the real line in R2, but these are not open in R2!

Let Ω1 = (−3,−1), Ω2 = (1, 3), Ω12 = (−3,−2), Ω21 = (1, 2) and ϕ21(x) = x + 4. The
resulting space M is a curve looking like a “fork,” and the problem is that the images of −2
and 2 in M , which are distinct points of M , cannot be separated. See Figure 8.8. Indeed,
the images of any two open intervals (−2− ε,−2 + ε) and (2− η, 2 + η) (for ε, η > 0) always
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intersect, since (−2−min(ε, η),−2) and (2−min(ε, η), 2) are identified. Clearly Condition
(4) fails.

-3 -2 -1 1 2 3

1 2 3

-1

Ω Ω

Ω Ω

1 2

12 21

-3 -2

M

φ
21

Figure 8.8: The fork construction M .

Cindy Grimm [53] (page 40) uses a condition stronger than our Condition (4) to ensure
that the quotient, MG is Hausdorff; namely, that for all (i, j) ∈ K with i 6= j, the quotient
(Ωi

∐
Ωj)/ ∼ should be embeddable in Rn. This is a rather strong condition that prevents

obtaining a 2-sphere by gluing two open discs in R2 along an annulus (see Grimm [53],
Appendix C2, page 126).

Remark: Readers familiar with fibre bundles may wonder why the cocycle Condition (3c) of
Definition 8.1 is more arcane than the corresponding definition found in bundle theory. The
reason is that if π : E → B is a (smooth or Ck) fibre bundle with fibre, F , then there is some
open cover, (Uα), of the base space, B, and for every index, α, there is a local trivialization
map, namely a diffeomorphism,

ϕα : π−1(Uα)→ Uα × F,

such that
π = p1 ◦ ϕα,

where p1 : Uα × F → Uα is the projection onto Uα. Whenever Uα ∩ Uβ 6= ∅, we have a map

ϕα ◦ ϕ−1
β : (Uα ∩ Uβ)× F → (Uα ∩ Uβ)× F,

and because π = p1 ◦ ϕα for all α, there is a map,

gβ α : Uα ∩ Uβ → Diff(F ),

where Diff(F ) denotes the group of diffeomorphisms of the fibre, F , such that

ϕα ◦ ϕ−1
β (b, p) = (b, gβ α(b)(p)),

for all b ∈ Uα ∩ Uβ and all p ∈ F . The maps, gβ α, are the transition maps of the bundle.
Observe that for all b ∈ Uα ∩ Uβ, the maps, gβ α(b), have the same domain and the same
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range, F . So, whenever Uα ∩ Uβ ∩ Uγ 6= ∅, for all b ∈ Uα ∩ Uβ ∩ Uγ, the maps gβ α, gγ β
and gγ α have the same domain and the same range. Consequently, in this case, the cocycle
condition can be simply stated as

gγ α = gγ β ◦ gβ α ,

without taking any precautions about the domains of these maps. However, in our situation
(a manifold), the transition maps are of the form ϕji : Ωij → Ωji, where the Ωij are various
unrelated open subsets of Rn, and so, the composite map, ϕkj ◦ ϕji only makes sense on
a subset of Ωij (the domain of ϕji). However, this subset need not be contained in the
domain of ϕki. So in order to avoid the extra complications we saw before, the constraints
in Condition (3c) of Definition 8.1 must be imposed. In reconstructing a fibre bundle from
B and the transition maps gβ α, we use the gβ α to glue the spaces Uα×F and Uβ ×F along
(Uα ∩ Uβ) × F , where two points (a, p) and (b, q) in (Uα ∩ Uβ) × F are identified iff a = b
and q = gβ α(a)(p). In reconstructing a manifold from a set of gluing data, we glue the open
sets Ωi and Ωj along Ωij and Ωji, which are identified using the maps, ϕji.

Grimm uses the following cocycle condition in [53] (page 40) and [54] (page 361):

(c′) For all x ∈ Ωij ∩ Ωik,
ϕki(x) = ϕkj ◦ ϕji(x).

This condition is not strong enough to imply transitivity of the relation ∼, as shown by the
following counter-example:

Let Ω1 = (0, 3), Ω2 = (4, 5), Ω3 = (6, 9), Ω12 = (0, 1), Ω13 = (2, 3), Ω21 = Ω23 = (4, 5),
Ω32 = (8, 9), Ω31 = (6, 7), ϕ21(x) = x+ 4, ϕ32(x) = x+ 4 and ϕ31(x) = x+ 4.

Note that the pairwise gluings yield Hausdorff spaces. Obviously, ϕ32◦ϕ21(x) = x+8, for
all x ∈ Ω12, but Ω12 ∩ Ω13 = ∅. Thus, 0.5 ∼ 4.5 ∼ 8.5, and if the relation ∼ was transitive,
then we would conclude that 0.5 ∼ 8.5. However, the definition of the relation ∼ requires
that ϕ31(0.5) be defined, which is not the case. Therefore, the relation ∼ is not transitive.
See Figure 8.9. The problem is that because Ω12 ∩ Ω13 = ∅, Condition (c′) holds vacuously,
but it is not strong enough to ensure that ϕ31(0.5) is defined.

Here is another counter-example in which Ω12 ∩ Ω13 6= ∅, using a disconnected open Ω2.

Let Ω1 = (0, 3), Ω2 = (4, 5) ∪ (6, 7), Ω3 = (8, 11), Ω12 = (0, 1) ∪ (2, 3), Ω13 = (2, 3),
Ω21 = Ω23 = (4, 5)∪ (6, 7), Ω32 = (8, 9)∪ (10, 11), Ω31 = (8, 9), ϕ21(x) = x+4, ϕ32(x) = x+2
on (6, 7), ϕ32(x) = x+ 6 on (4, 5), ϕ31(x) = x+ 6.

Note that the pairwise gluings yield Hausdorff spaces. Obviously, ϕ32 ◦ϕ21(x) = x+ 6 =
ϕ31(x) for all x ∈ Ω12 ∩ Ω13 = (2, 3). Thus, 0.5 ∼ 4.5 ∼ 10.5, but 0.5 6∼ 10.5 since
ϕ31(0.5) is undefined. See Figure 8.10. This time Condition (c′) holds and is nontrivial since
Ω12 ∩ Ω13 = (2, 3), but it is not strong enough to ensure that ϕ31(0.5) is defined.

It is possible to give a construction, in the case of a surface, which builds a compact man-
ifold whose geometry is “close” to the geometry of a prescribed 3D-mesh (see Siqueira, Xu
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Figure 8.9: A counter-example to Condition (c′). Note ϕ31 6= ϕ32 ◦ ϕ21 since these partial
functions have different domains.
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Figure 8.10: Another counter-example to Condition (c′). Once again ϕ31 6= ϕ32 ◦ ϕ21 since
these partial functions have different domains.

and Gallier [108]). Actually, we are not able to guarantee, in general, that the parametriza-
tion functions θi that we obtain are injective, but we are not aware of any algorithm that
achieves this.

Given a set of gluing data, G = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K), it is natural to consider
the collection of manifolds M parametrized by maps θi : Ωi → M whose domains are the
Ωi’s and whose transitions functions are given by the ϕji; that is, such that

ϕji = θ−1
j ◦ θi.

We will say that such manifolds are induced by the set of gluing data G.

The proof of Proposition 8.1 shows that the parametrization maps τi satisfy the property:
τi(Ωi) ∩ τj(Ωj) 6= ∅ iff (i, j) ∈ K, and if so

τi(Ωi) ∩ τj(Ωj) = τi(Ωij) = τj(Ωji).

Furthermore, they also satisfy the consistency condition:

τi = τj ◦ ϕji,



276 CHAPTER 8. CONSTRUCTION OF MANIFOLDS FROM GLUING DATA ~

for all (i, j) ∈ K. If M is a manifold induced by the set of gluing data G, because the θi’s
are injective and ϕji = θ−1

j ◦ θi, the two properties stated above for the τi’s also hold for the
θi’s. We will see in Section 8.2 that the manifold MG is a “universal” manifold induced by
G, in the sense that every manifold induced by G is the image of MG by some Ck map.

Interestingly, it is possible to characterize when two manifolds induced by sets of gluing
data sharing the same sets of Ωi’s and Ωij’s are isomorphic in terms of a condition on their
transition functions.

Proposition 8.2. Given two sets of gluing data G = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K) and
G ′ = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕ′ji)(i,j)∈K) over the same sets of Ωi’s and Ωij’s, for any two
manifolds M and M ′ such that M is induced by G and M ′ is induced by G ′, where M
and M ′ are given by families of parametrizations (Ωi, θi)i∈I and (Ωi, θ

′
i)i∈I respectively, if

f : M →M ′ is a Ck isomorphism, then there are Ck bijections ρi : Wij → W ′
ij for some open

subsets Wij,W
′
ij ⊆ Ωi, such that

ϕ′ji(x) = ρj ◦ ϕji ◦ ρ−1
i (x), for all x ∈ W ′

ij,

with ϕji = θ−1
j ◦θi and ϕ′ji = θ′−1

j ◦θ′i. Furthermore, ρi = (θ′i
−1◦f ◦θi) � Wij, and if θ′i

−1◦f ◦θi
is a bijection from Ωi to itself and θ′i

−1 ◦ f ◦ θi(Ωij) = Ωij, for all i, j, then Wij = W ′
ij = Ωi.

See Figure 8.11.
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Figure 8.11: The construction of ρi between the diffeomorphic manifolds M and M ′.
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Proof. The composition θ′i
−1 ◦ f ◦ θi is actually a partial function with domain

dom(θ′i
−1 ◦ f ◦ θi) = {x ∈ Ωi | θi(x) ∈ f−1 ◦ θ′i(Ωi)},

and its “inverse” θ−1
i ◦ f−1 ◦ θ′i is a partial function with domain

dom(θ−1
i ◦ f−1 ◦ θ′i) = {x ∈ Ωi | θ′i(x) ∈ f ◦ θi(Ωi)}.

The composition θ′j
−1 ◦ f ◦ θj ◦ ϕji ◦ θ−1

i ◦ f−1 ◦ θ′i is also a partial function, and we let

Wij = Ωij ∩ dom(θ′j
−1 ◦ f ◦ θj ◦ ϕji ◦ θ−1

i ◦ f−1 ◦ θ′i), ρi = (θ′i
−1 ◦ f ◦ θi) � Wij

and W ′
ij = ρi(Wij). Observe that θj ◦ ϕji = θj ◦ θ−1

j ◦ θi = θi, that is,

θi = θj ◦ ϕji.

Using this, on Wij we get

ρj ◦ ϕji ◦ ρ−1
i = θ′j

−1 ◦ f ◦ θj ◦ ϕji ◦ (θ′i
−1 ◦ f ◦ θi)−1

= θ′j
−1 ◦ f ◦ θj ◦ ϕji ◦ θ−1

i ◦ f−1 ◦ θ′i
= θ′j

−1 ◦ f ◦ θi ◦ θ−1
i ◦ f−1 ◦ θ′i

= θ′j
−1 ◦ θ′i = ϕ′ji,

as claimed. The last part of the proposition is clear.

Proposition 8.2 suggests defining a notion of equivalence on sets of gluing data which
yields a converse of this proposition.

Definition 8.2. Two sets of gluing data G = ((Ωi)∈I , (Ωij)(i,j)∈I×I(ϕji)(i,j)∈K) and G ′ =
((Ωi)∈I , (Ωij)(i,j)∈I×I(ϕ′ji)(i,j)∈K) over the same sets of Ωi’s and Ωij’s are equivalent iff there
is a family of Ck bijections (ρi : Ωi → Ωi)i∈I , such that ρi(Ωij) = Ωij and

ϕ′ji(x) = ρj ◦ ϕji ◦ ρ−1
i (x), for all x ∈ Ωij,

for all i, j. See Figure 8.12.

Here is the converse of Proposition 8.2. It is actually nicer than Proposition 8.2, because
we can take Wij = W ′

ij = Ωi.

Proposition 8.3. If two sets of gluing data G = ((Ωi)∈I , (Ωij)(i,j)∈I×I(ϕji)(i,j)∈K) and G ′ =
((Ωi)∈I , (Ωij)(i,j)∈I×I(ϕ′ji)(i,j)∈K) are equivalent, then there is a Ck isomorphism f : MG →
MG′ between the manifolds induced by G and G ′. Furthermore, f ◦ τi = τ ′i ◦ ρi, for all i ∈ I.
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Figure 8.12: The equivalence between the two sets of gluing data G and G ′.

Proof. Let fi : τi(Ωi)→ τ ′i(Ωi) be the Ck bijection given by

fi = τ ′i ◦ ρi ◦ τ−1
i ,

where the ρi : Ωi → Ωi’s are the maps giving the equivalence of G and G ′. If we prove that fi
and fj agree on the overlap τi(Ωi) ∩ τj(Ωj) = τi(Ωij) = τj(Ωji), then the fi patch and yield
a Ck isomorphism f : MG →MG′ . The conditions of Proposition 8.2 imply that

ϕ′ji ◦ ρi = ρj ◦ ϕji,

and we know that

τ ′i = τ ′j ◦ ϕ′ji.
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Consequently, for every [x] ∈ τj(Ωji) = τi(Ωij) with x ∈ Ωij, we have

fj([x]) = τ ′j ◦ ρj ◦ τ−1
j ([x])

= τ ′j ◦ ρj ◦ τ−1
j ([ϕji(x)])

= τ ′j ◦ ρj ◦ ϕji(x)

= τ ′j ◦ ϕ′ji ◦ ρi(x)

= τ ′i ◦ ρi(x)

= τ ′i ◦ ρi ◦ τ−1
i ([x])

= fi([x]),

which shows that fi and fj agree on τi(Ωi) ∩ τj(Ωj), as claimed.

In the next section we describe a class of spaces that can be defined by gluing data and
parametrization functions θi that are not necessarily injective. Roughly speaking, the gluing
data specify the topology and the parametrizations define the geometry of the space. Such
spaces have more structure than spaces defined parametrically but they are not quite mani-
folds. Yet they arise naturally in practice and they are the basis of efficient implementations
of very good approximations of 3D meshes.

8.2 Parametric Pseudo-Manifolds

In practice it is often desirable to specify some n-dimensional geometric shape as a subset of
Rd (usually for d = 3) in terms of parametrizations which are functions θi from some subset
of Rn into Rd (usually, n = 2). For “open” shapes, this is reasonably well understood, but
dealing with a “closed” shape is a lot more difficult because the parametrized pieces should
overlap as smoothly as possible, and this is hard to achieve. Furthermore, in practice, the
parametrization functions θi may not be injective. Proposition 8.1 suggests various ways
of defining such geometric shapes. For the lack of a better term, we will call these shapes,
parametric pseudo-manifolds .

Definition 8.3. Let n, k, d be three integers with d > n ≥ 1 and k ≥ 1 or k = ∞. A
parametric Ck pseudo-manifold of dimension n in Rd is a pair M = (G, (θi)i∈I), where
G = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K) is a set of gluing data for some finite set I, and each
θi is a Ck function θi : Ωi → Rd called a parametrization, such that the following property
holds:

(C) For all (i, j) ∈ K, we have
θi = θj ◦ ϕji.

For short we use terminology parametric pseudo-manifold . The subset M ⊆ Rd given by

M =
⋃
i∈I
θi(Ωi)
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is called the image of the parametric pseudo-manifold M. When n = 2 and d = 3, we say
that M is a parametric pseudo-surface.

Condition (C) obviously implies that

θi(Ωij) = θj(Ωji),

for all (i, j) ∈ K. Consequently, θi and θj are consistent parametrizations of the overlap
θi(Ωij) = θj(Ωji). The shape M is covered by pieces Ui = θi(Ωi) not necessarily open, with
each Ui parametrized by θi, and where the overlapping pieces Ui ∩ Uj, are parametrized
consistently. The local structure of M is given by the θi’s, and the global structure is given
by the gluing data. We recover a manifold if we require the θi to be bijective and to satisfy
the following additional conditions:

(C’) For all (i, j) ∈ K,
θi(Ωi) ∩ θj(Ωj) = θi(Ωij) = θj(Ωji).

(C”) For all (i, j) /∈ K,
θi(Ωi) ∩ θj(Ωj) = ∅.

Even if the θi’s are not injective, Properties (C’) and (C”) would be desirable since they
guarantee that θi(Ωi−Ωij) and θj(Ωj−Ωji) are parametrized uniquely. Unfortunately, these
properties are difficult to enforce. Observe that any manifold induced by G is the image of
a parametric pseudo-manifold.

Although this is an abuse of language, it is more convenient to call M a parametric
pseudo-manifold, or even a pseudo-manifold .

We can also show that the parametric pseudo-manifold M is the image in Rd of the
abstract manifold MG.

Proposition 8.4. Let M = (G, (θi)i∈I) be parametric Ck pseudo-manifold of dimension n
in Rd, where G = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K) is a set of gluing data for some finite set
I. Then the parametrization maps θi induce a surjective map Θ: MG →M from the abstract
manifold MG specified by G to the image M ⊆ Rd of the parametric pseudo-manifoldM, and
the following property holds: for every Ωi,

θi = Θ ◦ τi,

where the τi : Ωi → MG are the parametrization maps of the manifold MG (see Proposition
8.1). In particular, every manifold M induced by the gluing data G is the image of MG by a
map Θ: MG →M .

Proof. Recall that

MG =
(∐
i∈I

Ωi

)
/ ∼,
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where ∼ is the equivalence relation defined so that, for all x, y ∈∐i∈I Ωi,

x ∼ y iff (∃(i, j) ∈ K)(x ∈ Ωij, y ∈ Ωji, y = ϕji(x)).

The proof of Proposition 8.1 also showed that τi(Ωi) ∩ τj(Ωj) 6= ∅ iff (i, j) ∈ K, and if so,

τi(Ωi) ∩ τj(Ωj) = τi(Ωij) = τj(Ωji).

In particular,
τi(Ωi − Ωij) ∩ τj(Ωj − Ωji) = ∅

for all (i, j) ∈ I × I (Ωij = Ωji = ∅ when (i, j) /∈ K). These properties with the fact
that the τi’s are injections show that for all (i, j) /∈ K, we can define Θi : τi(Ωi) → Rd and
Θj : τi(Ωj)→ Rd by

Θi([x]) = θi(x), x ∈ Ωi Θj([y]) = θj(y), y ∈ Ωj.

For (i, j) ∈ K, as the the τi’s are injections we can define Θi : τi(Ωi − Ωij) → Rd and
Θj : τi(Ωj − Ωji)→ Rd by

Θi([x]) = θi(x), x ∈ Ωi − Ωij Θj([y]) = θj(y), y ∈ Ωj − Ωji.

It remains to define Θi on τi(Ωij) and Θj on τj(Ωji) in such a way that they agree on
τi(Ωij) = τj(Ωji). However, Condition (C) in Definition 8.3 says that for all x ∈ Ωij,

θi(x) = θj(ϕji(x)).

Consequently, if we define Θi on τi(Ωij) and Θj on τj(Ωji) by

Θi([x]) = θi(x), x ∈ Ωij, Θj([y]) = θj(y), y ∈ Ωji,

as x ∼ ϕji(x), we have

Θi([x]) = θi(x) = θj(ϕji(x)) = Θj([ϕji(x)]) = Θj([x]),

which means that Θi and Θj agree on τi(Ωij) = τj(Ωji). But then the functions Θi agree
whenever their domains overlap, and so they patch to yield a function Θ with domain MG
and image M . By construction, θi = Θ ◦ τi, and as a manifold induced by G is a parametric
pseudo-manifold, the last statement is obvious.

The function Θ: MG → M given by Proposition 8.4 shows how the parametric pseudo-
manifold M differs from the abstract manifold MG. As we said before, a practical method
for approximating 3D meshes based on parametric pseudo surfaces is described in Siqueira,
Xu and Gallier [108].
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Chapter 9

Vector Fields, Lie Derivatives,
Integral Curves, Flows

Our goal in this chapter is to generalize the concept of a vector field to manifolds and to
promote some standard results about ordinary differential equations to manifolds.

9.1 Tangent and Cotangent Bundles

Let M be a Ck-manifold (with k ≥ 2). Roughly speaking, a vector field on M is the
assignment p 7→ X(p), of a tangent vector X(p) ∈ Tp(M), to a point p ∈ M . Generally,
we would like such assignments to have some smoothness properties when p varies in M ,
for example, to be C l, for some l related to k. If the collection T (M) of all tangent spaces
Tp(M) was a C l-manifold, then it would be very easy to define what we mean by a C l-vector
field: we would simply require the map X : M → T (M) to be C l.

If M is a Ck-manifold of dimension n, then we can indeed make T (M) into a Ck−1-
manifold of dimension 2n, and we now sketch this construction.

We find it most convenient to use Version 2 of the definition of tangent vectors, i.e., as
equivalence classes of triples (U,ϕ, x), where (U,ϕ) is a chart at p and x ∈ Rn. Recall that
(U,ϕ, x) and (V, ψ, y) are equivalent iff

(ψ ◦ ϕ−1)′ϕ(p)(x) = y.

First we let T (M) be the disjoint union of the tangent spaces Tp(M), for all p ∈M . Formally,

T (M) = {(p, v) | p ∈M, v ∈ Tp(M)}.

See Figure 9.1.
There is a natural projection

π : T (M)→M, with π(p, v) = p.

283
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Figure 9.1: The tangent bundle of S1.

We still have to give T (M) a topology and to define a Ck−1-atlas. For every chart (U,ϕ) of
M (with U open in M), we define the function ϕ̃ : π−1(U)→ R2n, by

ϕ̃(p, v) = (ϕ(p), θ−1
U,ϕ,p(v)),

where (p, v) ∈ π−1(U) and θU,ϕ,p is the isomorphism between Rn and Tp(M) described just
after Definition 7.13. It is obvious that ϕ̃ is a bijection between π−1(U) and ϕ(U)× Rn, an
open subset of R2n. See Figure 9.2.
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Figure 9.2: A chart for T (S1).

We give T (M) the weakest topology that makes all the ϕ̃ continuous, i.e., we take the
collection of subsets of the form ϕ̃−1(W ), where W is any open subset of ϕ(U) × Rn, as a
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basis of the topology of T (M). One may check that T (M) is Hausdorff and second-countable
in this topology. If (U,ϕ) and (V, ψ) are two overlapping charts of M , then the definition of
the equivalence relation on triples (U,ϕ, x) and (V, ψ, y) immediately implies that

θ−1
(V,ψ,p) ◦ θ(U,ϕ,p) = (ψ ◦ ϕ−1)′z

for all p ∈ U ∩ V , with z = ϕ(p), so the transition map,

ψ̃ ◦ ϕ̃−1 : ϕ(U ∩ V )× Rn −→ ψ(U ∩ V )× Rn

is given by

ψ̃ ◦ ϕ̃−1(z, x) = (ψ ◦ ϕ−1(z), (ψ ◦ ϕ−1)′z(x)), (z, x) ∈ ϕ(U ∩ V )× Rn.

It is clear that ψ̃ ◦ ϕ̃−1 is a Ck−1-map.

Definition 9.1. The space T (M) resulting from the previous construction from a Ck (k ≥ 2)
manifold M is a Ck−1-manifold of dimension 2n called the tangent bundle of M .

Remark: Even if the manifoldM is naturally embedded in RN (for someN ≥ n = dim(M)),
it is not at all obvious how to view the tangent bundle T (M) as embedded in RN ′ , for some
suitable N ′. Hence, we see that the definition of an abstract manifold is unavoidable.

A similar construction can be carried out for the cotangent bundle. In this case, we let
T ∗(M) be the disjoint union of the cotangent spaces T ∗p (M), that is,

T ∗(M) = {(p, ω) | p ∈M,ω ∈ T ∗p (M)}.

We also have a natural projection π : T ∗(M) → M with π(p, ω) = p, and we can define
charts in several ways. One method used by Warner [114] goes as follows: for any chart,
(U,ϕ), on M , we define the function,
ϕ̃ : π−1(U)→ R2n, by

ϕ̃(p, ω) =

(
ϕ(p), ω

((
∂

∂x1

)
p

)
, . . . , ω

((
∂

∂xn

)
p

))
,

where (p, ω) ∈ π−1(U) and the
(

∂
∂xi

)
p

are the basis of Tp(M) associated with the chart (U,ϕ).

Again, one can make T ∗(M) into a Ck−1-manifold of dimension 2n, called the cotangent
bundle We leave the details as an exercise to the reader (or look at Berger and Gostiaux
[15]).

Another way of obtaining the manifold structure of T ∗(M) is as follows. For each chart
(U,ϕ) on M , we obtain a chart

ϕ̃∗ : π−1(U)→ ϕ(U)× Rn ⊆ R2n
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on T ∗(M) given by
ϕ̃∗(p, ω) = (ϕ(p), θ∗U,ϕ,p(ω))

for all (p, ω) ∈ π−1(U), where

θ∗U,ϕ,p = ι ◦ θ>U,ϕ,p : T ∗p (M)→ Rn.

Here, θ>U,ϕ,p : T ∗p (M) → (Rn)∗ is obtained by dualizing the map, θU,ϕ,p : Rn → Tp(M) and
ι : (Rn)∗ → Rn is the isomorphism induced by the canonical basis (e1, . . . , en) of Rn and its
dual basis. Recall that the transpose θ>U,ϕ,p of the linear map θU,ϕ,p is given by θ>U,ϕ,p(ω) =
ω ◦ θU,ϕ,p, for every linear form ω : Tp(M)→ R in T ∗p (M).

For simplicity of notation, we also use the notation TM for T (M) (resp. T ∗M for T ∗(M)).

Observe that for every chart (U,ϕ) on M , there is a bijection

τU : π−1(U)→ U × Rn,

given by
τU(p, v) = (p, θ−1

U,ϕ,p(v)).

Clearly, pr1 ◦ τU = π on π−1(U), as illustrated by the following commutative diagram.

π−1(U)
τU //

π
##

U × Rn

pr1
{{

U

Thus locally, that is over U , the bundle T (M) looks like the product manifold U × Rn. We
say that T (M) is locally trivial (over U) and we call τU a trivializing map. For any p ∈ M ,
the vector space π−1(p) = {p} × Tp(M) ∼= Tp(M) is called the fibre above p. Observe that
the restriction of τU to π−1(p) is a linear isomorphism between {p} × Tp(M) ∼= Tp(M) and
{p} × Rn ∼= Rn, for any p ∈ M . Furthermore, for any two overlapping charts (U,ϕ) and
(V, ψ), there is a function gUV : U ∩ V → GL(n,R) such that

(τU ◦ τ−1
V )(p, x) = (p, gUV (p)(x))

for all p ∈ U ∩ V and all x ∈ Rn, with gUV (p) given by

gUV (p) = (ϕ ◦ ψ−1)′ψ(p).

Obviously, gUV (p) is a linear isomorphism of Rn for all p ∈ U ∩ V . The maps gUV (p) are
called the transition functions of the tangent bundle.

For example, if M = Sn, the n-sphere in Rn+1, we have two charts given by the stereo-
graphic projection (UN , σN) from the north pole, and the stereographic projection (US, σS)
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from the south pole (with UN = Sn − {N} and US = Sn − {S}), and on the overlap,
UN ∩ US = Sn − {N,S}, the transition maps

I = σS ◦ σ−1
N = σN ◦ σ−1

S

defined on ϕN(UN ∩ US) = ϕS(UN ∩ US) = Rn − {0}, are given by

(x1, . . . , xn) 7→ 1∑n
i=1 x

2
i

(x1, . . . , xn);

that is, the inversion I of center O = (0, . . . , 0) and power 1. We leave it as an exercise to
prove that for every point u ∈ Rn − {0}, we have

dIu(h) = ‖u‖−2

(
h− 2

〈u, h〉
‖u‖2 u

)
,

the composition of the hyperplane reflection about the hyperplane u⊥ ⊆ Rn with the
magnification of center O and ratio ‖u‖−2. (Hint: Write I(u) = u/ ‖u‖2 and compute
I(u+h)−I(u).) This is a similarity transformation. Therefore, the transition function gNS
(defined on UN ∩ US) of the tangent bundle TSn is given by

gNS(p)(h) = ‖σS(p)‖−2

(
h− 2

〈σS(p), h〉
‖σS(p)‖2 σS(p)

)
.

All these ingredients are part of being a vector bundle. For more on bundles, Lang [75],
Gallot, Hulin and Lafontaine [49], Lafontaine [72], or Bott and Tu [18].

When M = Rn, observe that T (M) = M × Rn = Rn × Rn, i.e., the bundle T (M) is
(globally) trivial.

Given a Ck-map h : M → N between two Ck-manifolds, we can define the function
dh : T (M)→ T (N) (also denoted Th, or h∗, or Dh), by setting

dh(u) = dhp(u), iff u ∈ Tp(M).

We leave the next proposition as an exercise to the reader. (A proof can be found in
Berger and Gostiaux [15].)

Proposition 9.1. Given a Ck-map h : M → N between two Ck-manifolds M and N (with
k ≥ 1), the map dh : T (M)→ T (N) is a Ck−1 map.

We are now ready to define vector fields.
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9.2 Vector Fields, Lie Derivative

In Section 11.3 we introduced the notion of a vector field in Rn. We now generalize the
notion of a vector field to a manifold. Let M be a Ck+1 manifold. A Ck-vector field on M
is an assignment p 7→ X(p) of a tangent vector X(p) ∈ Tp(M) to a point p ∈ M , so that
X(p) varies in a Ck-fashion in terms of p. This notion is captured rigorously by the following
definition.

Definition 9.2. Let M be a Ck+1 manifold, with k ≥ 1. For any open subset U of M , a
vector field on U is any section X of T (M) over U , that is, any function X : U → T (M),
such that π ◦ X = idU (i.e., X(p) ∈ Tp(M), for every p ∈ U). We also say that X is a
lifting of U into T (M). We say that X is a Ck-vector field on U iff X is a section over U
and a Ck-map. The set of Ck-vector fields over U is denoted Γ(k)(U, T (M)); see Figure 9.3.
Given a curve, γ : [a, b]→M , a vector field X along γ is any section of T (M) over γ, i.e., a
Ck-function X : [a, b]→ T (M), such that π ◦X = γ. We also say that X lifts γ into T (M).

U

X

=~

Figure 9.3: A vector field on S1 represented as the section X in T (S1).

Clearly, Γ(k)(U, T (M)) is a real vector space. For short, the space Γ(k)(M,T (M)) is also
denoted by Γ(k)(T (M)) (or X(k)(M), or even Γ(T (M)) or X(M)).

Remark: We can also define a Cj-vector field on U as a section, X, over U which is a
Cj-map, where 0 ≤ j ≤ k. Then we have the vector space Γ(j)(U, T (M)), etc.

If M = Rn and U is an open subset of M , then T (M) = Rn×Rn and a section of T (M)
over U is simply a function, X, such that

X(p) = (p, u), with u ∈ Rn,

for all p ∈ U . In other words, X is defined by a function, f : U → Rn (namely, f(p) = u).
This corresponds to the “old” definition of a vector field in the more basic case where the
manifold, M , is just Rn.
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For any vector field X ∈ Γ(k)(U, T (M)) and for any p ∈ U , we have X(p) = (p, v) for
some v ∈ Tp(M), and it is convenient to denote the vector v by Xp so that X(p) = (p,Xp).

In fact, in most situations it is convenient to identify X(p) with Xp ∈ Tp(M), and we will
do so from now on. This amounts to identifying the isomorphic vector spaces {p} × Tp(M)
and Tp(M), which we always do. Let us illustrate the advantage of this convention with the
next definition.

Given any Ck-function f ∈ Ck(U) and a vector field X ∈ Γ(k)(U, T (M)), we define the
vector field fX by

(fX)p = f(p)Xp, p ∈ U.
Obviously, fX ∈ Γ(k)(U, T (M)), which shows that Γ(k)(U, T (M)) is also a Ck(U)-module.

Definition 9.3. For any chart (U,ϕ) on M it is easy to check that the map

p 7→
(
∂

∂xi

)
p

, p ∈ U,

is a Ck-vector field on U (with 1 ≤ i ≤ n). This vector field is denoted
(

∂
∂xi

)
or ∂

∂xi
.

Definition 9.4. Let M be a Ck+1 manifold and let X be a Ck vector field on M . If U is any
open subset of M and f is any function in Ck(U), then the Lie derivative of f with respect
to X, denoted X(f) or LXf , is the function on U given by

X(f)(p) = Xp(f) = Xp(f), p ∈ U.

In particular, if (U,ϕ) is any chart at p and Xp =
∑n

i=1 λi

(
∂
∂xi

)
p
, then

Xp(f) =
n∑
i=1

λi

(
∂

∂xi

)
p

f.

Observe that
X(f)(p) = dfp(Xp),

where dfp is identified with the linear form in T ∗p (M) defined by

dfp(v) = v(f), v ∈ TpM,

by identifying Tt0R with R (see the discussion following Proposition 7.13). The Lie derivative,
LXf , is also denoted X[f ].

As a special case, when (U,ϕ) is a chart on M , the vector field, ∂
∂xi

, just defined above
induces the function

p 7→
(
∂

∂xi

)
p

f, p ∈ U,
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denoted ∂
∂xi

(f) or
(

∂
∂xi

)
f .

It is easy to check that X(f) ∈ Ck−1(U). As a consequence, every vector field X ∈
Γ(k)(U, T (M)) induces a linear map,

LX : Ck(U) −→ Ck−1(U),

given by f 7→ X(f). It is immediate to check that LX has the Leibniz property, i.e.,

LX(fg) = LX(f)g + fLX(g).

Linear maps with this property are called derivations . Thus, we see that every vector field
induces some kind of differential operator, namely, a linear derivation. Unfortunately, not
every linear derivation of the above type arises from a vector field, although this turns out to
be true in the smooth case i.e., when k = ∞ (for a proof, see Gallot, Hulin and Lafontaine
[49] or Lafontaine [72]).

In the rest of this section, unless stated otherwise, we assume that k ≥ 1. The following
easy proposition holds (c.f. Warner [114]).

Proposition 9.2. Let X be a vector field on the Ck+1-manifold M , of dimension n. Then
the following are equivalent:

(a) X is Ck.

(b) If (U,ϕ) is a chart on M and if f1, . . . , fn are the functions on U uniquely defined by

X � U =
n∑
i=1

fi
∂

∂xi
,

then each fi is a Ck-map.

(c) Whenever U is open in M and f ∈ Ck(U), then X(f) ∈ Ck−1(U).

Given any two Ck-vector field X, Y on M , for any function f ∈ Ck(M), we defined above
the function X(f) and Y (f). Thus, we can form X(Y (f)) (resp. Y (X(f))), which are in
Ck−2(M). Unfortunately, even in the smooth case, there is generally no vector field Z such
that

Z(f) = X(Y (f)), for all f ∈ Ck(M).

This is because X(Y (f)) (and Y (X(f))) involve second-order derivatives. However, if we
consider X(Y (f))−Y (X(f)), then second-order derivatives cancel out and there is a unique
vector field inducing the above differential operator. Intuitively, XY − Y X measures the
“failure of X and Y to commute.”

Proposition 9.3. Given any Ck+1-manifold M , of dimension n, for any two Ck-vector fields
X, Y on M , there is a unique Ck−1-vector field [X, Y ], such that

[X, Y ](f) = X(Y (f))− Y (X(f)), for all f ∈ Ck−1(M).
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Proof. First we prove uniqueness. For this it is enough to prove that [X, Y ] is uniquely
defined on Ck(U), where (U,ϕ) is a chart over U . For this chart, we know that

X =
n∑
i=1

Xi
∂

∂xi
and Y =

n∑
i=1

Yi
∂

∂xi
,

where Xi, Yi ∈ Ck(U). Then for any f ∈ Ck(M), we have

X(Y (f)) = X

(
n∑
j=1

Yj
∂

∂xj
(f)

)
=

n∑
i,j=1

Xi
∂

∂xi
(Yj)

∂

∂xj
(f) +

n∑
i,j=1

XiYj
∂2

∂xi∂xj
(f)

Y (X(f)) = Y

(
n∑
i=1

Xi
∂

∂xi
(f)

)
=

n∑
i,j=1

Yj
∂

∂xj
(Xi)

∂

∂xi
(f) +

n∑
i,j=1

XiYj
∂2

∂xj∂xi
(f).

However, as f ∈ Ck(M), with k ≥ 2, we have

n∑
i,j=1

XiYj
∂2

∂xj∂xi
(f) =

n∑
i,j=1

XiYj
∂2

∂xi∂xj
(f),

and we deduce that

X(Y (f))− Y (X(f)) =
n∑

i,j=1

(
Xi

∂

∂xi
(Yj)− Yi

∂

∂xi
(Xj)

)
∂

∂xj
(f).

This proves that [X, Y ] = XY − Y X is uniquely defined on U and that it is Ck−1. Thus, if
[X, Y ] exists, it is unique.

To prove existence, we use the above expression to define [X, Y ]U , locally on U , for every
chart, (U,ϕ). On any overlap, U ∩ V , by the uniqueness property that we just proved,
[X, Y ]U and [X, Y ]V must agree. Then we can define the vector field [X, Y ] as follows: for
every chart (U,ϕ), the restriction [X, Y ] to U is equal to [X, Y ]U . This well defined because
whenever two charts with domains U and V overlap, we know that [X, Y ]U = [X, Y ]V agree.
Therefore, [X, Y ] is a Ck−1-vector field defined on the whole of M .

Definition 9.5. Given any Ck+1-manifold M , of dimension n, for any two Ck-vector fields
X, Y on M , the Lie bracket [X, Y ] of X and Y , is the Ck−1 vector field defined so that

[X, Y ](f) = X(Y (f))− Y (X(f)), for all f ∈ Ck−1(M).

An an example in R3, if X and Y are the two vector fields,

X =
∂

∂x
+ y

∂

∂z
and Y =

∂

∂y
,
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then to compute [X, Y ], set g = Y (f) = ∂f
∂y

and observe that

X(Y (f)) = X(g) =
∂g

∂x
+ y

∂g

∂z
=

∂2f

∂x∂y
+ y

∂2f

∂z∂y
.

Next set h = X(f) = ∂f
∂x

+ y ∂f
∂z

and calculate

Y (X(f)) = Y (h) =
∂

∂y

(
∂f

∂x
+ y

∂f

∂z

)
=

∂2f

∂y∂x
+
∂f

∂z
+ y

∂2f

∂y∂z
.

Then

[X, Y ](f) = X(Y (f))− Y (X(f))

=
∂2f

∂x∂y
+ y

∂2f

∂z∂y
− ∂2f

∂y∂x
− ∂f

∂z
− y ∂

2f

∂y∂z

= −∂f
∂z
.

Hence

[X, Y ] = − ∂

∂z
.

We also have the following simple proposition whose proof is left as an exercise (or, see
Do Carmo [39]).

Proposition 9.4. Given any Ck+1-manifold M , of dimension n, for any Ck-vector fields
X, Y, Z on M , for all f, g ∈ Ck(M), we have:

(a) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 (Jacobi identity).

(b) [X,X] = 0.

(c) [fX, gY ] = fg[X, Y ] + fX(g)Y − gY (f)X.

(d) [−,−] is bilinear.

As a consequence, for smooth manifolds (k =∞), the space of vector fields Γ(∞)(T (M))
is a vector space equipped with a bilinear operation [−,−] that satisfies the Jacobi identity.
This makes Γ(∞)(T (M)) a Lie algebra.

Let h : M → N be a diffeomorphism between two manifolds. Then vector fields can be
transported from N to M and conversely.

Definition 9.6. Let h : M → N be a diffeomorphism between two Ck+1-manifolds. For
every Ck-vector field Y on N , the pull-back of Y along h is the vector field h∗Y on M , given
by

(h∗Y )p = dh−1
h(p)(Yh(p)), p ∈M.
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See Figure 9.4. For every Ck-vector field X on M , the push-forward of X along h is the
vector field h∗X on N , given by

h∗X = (h−1)∗X,

that is, for every p ∈M , (h∗X)h(p) = dhp(Xp), or equivalently,

(h∗X)q = dhh−1(q)(Xh−1(q)), q ∈ N.

See Figure 9.5.

h(p)

Yh(p)

Y

p

h*Y
(h*Y)p

h

N

dh -1
h(p) h(p)(Y      )

M

Figure 9.4: The pull-back of the vector field Y .

We have the following result.

Proposition 9.5. For any diffeomorphism h : M → N , for every Ck vector field X on M ,
we have

Lh∗Xf = LX(f ◦ h) ◦ h−1,

for any function f ∈ Ck(N).
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p

X p

X

h(p)

(h* X)h(p)

h* X

h

dh (X  )p p

M

N

f

Figure 9.5: The push-forward of the vector field X.

Proof. We have

(Lh∗Xf)h(p) = (h∗X)h(p)(f) by Definition 9.4

= dfh(p)

(
(h∗X)h(p)

)
, by remark after Definition 9.4

= dfh(p) (dhp(Xp)) , by Definition 9.6

= d(f ◦ h)p(Xp), by the chain rule

= d(f ◦ h)h−1(q)(Xh−1(q)), p = h−1(q)

= Xh−1(q)(f ◦ h), by remark after Definition 9.4

= (LX(f ◦ h))h−1(q)

as claimed.

One more notion will be needed when we deal with Lie algebras.

Definition 9.7. Let h : M → N be a Ck+1-map of manifolds. If X is a Ck-vector field on
M and Y is a Ck-vector field on N , we say that X and Y are h-related iff

dh ◦X = Y ◦ h.

The basic result about h-related vector fields is:
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Proposition 9.6. Let h : M → N be a Ck+1-map of manifolds, let X and Y be Ck-vector
fields on M and let X1, Y1 be Ck-vector fields on N . If X is h-related to X1 and Y is h-related
to Y1, then [X, Y ] is h-related to [X1, Y1].

Proof. Basically, one needs to unwind the definitions; see Warner [114] (Chapter 1, Propo-
sition 1.55).

There is another way to characterize when two vector fields are h-related which is often
more convenient than the definition. Recall that Xpf = dfp(Xp) for any f ∈ Ck(M) and any
Ck-vector field X on M .

Proposition 9.7. Let h : M → N be a Ck+1-map of manifolds, and let X be a Ck-vector
fields on M and Y be a Ck-vector field on N . Then X and Y are h-related iff

X(g ◦ h) = Y g ◦ h
for all g ∈ Ck(N).

Proof. We have the following sequence of equivalences

X(g ◦ h) = Y g ◦ h
Xp(g ◦ h) = (Y g)h(p) for all p ∈M

d(g ◦ h)p(Xp) = dgh(p)(Yh(p))

dgh(p)(dhp(Xp)) = dgh(p)(Yh(p)) by the chain rule

(dh ◦X)pg = Yh(p)g,

and the last equation says that dh ◦X = Y ◦h, which means that X and Y are h-related.

Since by definition of h∗X, we have

(h∗X)h(p) = dhp(Xp),

the vector fields X and h∗X are h-related, and the proof of Proposition 9.7 shows that X
are Y are h-related iff

(h∗X)h(p)g = Yh(p)g for all g ∈ Ck(N),

for short, h∗X = Y .

Proposition 9.7 can also be used to prove Proposition 9.6; see Tu [112] (Chapter 14,
Proposition 14.19). Here is the proof:

Proof of Proposition 9.6. For every function g ∈ Ck(N), we have

[X, Y ](g ◦ h) = XY (g ◦ h)− Y X(g ◦ h) by definition of [X, Y ]

= X((Y1g) ◦ h)− Y ((X1g) ◦ h) by Proposition 9.7

= (X1Y1g) ◦ h− (Y1X1g) ◦ h by Proposition 9.7

= ((X1Y1 − Y1X1)g) ◦ h
= ([X1, Y1]g) ◦ h.

By Proposition 9.7 again, this shows that [X, Y ] and [X1, Y1] are h-related.
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As a corollary of Proposition 9.6, for any two vector fields X, Y on M , the vector fields
[X, Y ] and [h∗X, h∗Y ] are h-related, which means that

h∗[X, Y ] = [h∗X, h∗Y ];

that is,
dhp([X, Y ]p) = [dhp(Xp), dhp(Yp]).

9.3 Integral Curves, Flow of a Vector Field,

One-Parameter Groups of Diffeomorphisms

We begin with integral curves and (local) flows of vector fields on a manifold.

Definition 9.8. Let X be a Ck−1 vector field on a Ck-manifold M (k ≥ 2), and let p0 be a
point on M . An integral curve (or trajectory) for X with initial condition p0 is a Ck−1-curve
γ : I →M , so that

γ̇(t) = Xγ(t)
1 for all t ∈ I, and γ(0) = p0,

where I = (a, b) ⊆ R is an open interval containing 0. See Figure 11.7.

What Definition 9.8 says is that an integral curve γ with initial condition p0 is a curve
on the manifold M passing through p0, and such that for every point p = γ(t) on this curve,
the tangent vector to this curve at p, that is γ̇(t), coincides with the value Xp of the vector
field X at p.

Given a vector field X as above, and a point p0 ∈M , is there an integral curve through
p0? Is such a curve unique? If so, how large is the open interval I? We provide some answers
to the above questions below.

Definition 9.9. Let X be a Ck−1 vector field on a Ck-manifold M (k ≥ 2), and let p0 be a
point on M . A local flow for X at p0 is a map

ϕ : J × U →M,

where J ⊆ R is an open interval containing 0 and U is an open subset of M containing p0,
so that for every p ∈ U , the curve t 7→ ϕ(t, p) is an integral curve of X with initial condition
p. See Figure 11.8.

Thus, a local flow for X is a family of integral curves for all points in some small open set
around p0 such that these curves all have the same domain J , independently of the initial
condition p ∈ U .

1Recall our convention: if X is a vector field on M , then for every point q ∈M we identify X(q) = (q,Xq)
and Xq.
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The following theorem is the main existence theorem of local flows. This is a promoted
version of a similar theorem in the classical theory of ODE’s in the case where M is an open
subset of Rn. For a full account of this theory, see Lang [75] or Berger and Gostiaux [15].

Theorem 9.8. (Existence of a local flow) Let X be a Ck−1 vector field on a Ck-manifold M
(k ≥ 2), and let p0 be a point on M . There is an open interval J ⊆ R containing 0 and an
open subset U ⊆M containing p0, so that there is a unique local flow ϕ : J ×U →M for X
at p0. What this means is that if ϕ1 : J × U → M and ϕ2 : J × U → M are both local flows
with domain J × U , then ϕ1 = ϕ2. Furthermore, ϕ is Ck−1.

We know that for any initial condition p0, there is some integral curve through p0. How-
ever, there could be two (or more) integral curves γ1 : I1 → M and γ2 : I2 → M with initial
condition p0. This leads to the natural question: How do γ1 and γ2 differ on I1 ∩ I2? The
next proposition shows they don’t!

Proposition 9.9. Let X be a Ck−1 vector field on a Ck-manifold M (k ≥ 2), and let p0 be
a point on M . If γ1 : I1 → M and γ2 : I2 → M are any two integral curves both with initial
condition p0, then γ1 = γ2 on I1 ∩ I2. See Figure 9.6.

0

0

p
0

γ

γ

1

2

M

Figure 9.6: Two integral curves, γ1 and γ2, with initial condition p0, which agree on the
domain overlap I1 ∩ I2.

Proof. Let Q = {t ∈ I1∩I2 | γ1(t) = γ2(t)}. Since γ1(0) = γ2(0) = p0, the set Q is nonempty.
If we show that Q is both closed and open in I1 ∩ I2, as I1 ∩ I2 is connected since it is an
open interval of R, we will be able to conclude that Q = I1 ∩ I2.

Since by definition, a manifold is Hausdorff, it is a standard fact in topology that the
diagonal ∆ = {(p, p) | p ∈M} ⊆M ×M is closed, and since

Q = I1 ∩ I2 ∩ (γ1, γ2)−1(∆)
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where (γ1, γ2) : I1 ∩ I2 → M ×M is the curve given by (γ1, γ2)(t) = (γ1(t), γ2(t)), and since
γ1 and γ2 are continuous, we see that Q is closed in I1 ∩ I2.

Pick any u ∈ Q and consider the curves β1 and β2 given by

β1(t) = γ1(t+ u) and β2(t) = γ2(t+ u),

where t ∈ I1 − u in the first case, and t ∈ I2 − u in the second. (Here, if I = (a, b), we have
I − u = (a− u, b− u).) Observe that

β̇1(t) = γ̇1(t+ u) = X(γ1(t+ u)) = X(β1(t)),

and similarly β̇2(t) = X(β2(t)). We also have

β1(0) = γ1(u) = γ2(u) = β2(0) = q,

since u ∈ Q (where γ1(u) = γ2(u)). Thus, β1 : (I1 − u) → M and β2 : (I2 − u) → M are
two integral curves with the same initial condition q. By Theorem 9.8, the uniqueness of
local flow implies that there is some open interval Ĩ ⊆ I1 ∩ I2 − u, such that β1 = β2 on Ĩ.
Consequently, γ1 and γ2 agree on Ĩ + u, an open subset of Q, proving that Q is indeed open
in I1 ∩ I2.

Proposition 9.9 implies the important fact that there is a unique maximal integral curve
with initial condition p. Indeed, if {γj : Ij →M}j∈K is the family of all integral curves with
initial condition p (for some big index set K), if we let I(p) =

⋃
j∈K Ij, we can define a curve

γp : I(p)→M so that
γp(t) = γj(t), if t ∈ Ij.

Since γj and γl agree on Ij ∩ Il for all j, l ∈ K, the curve γp is indeed well defined, and it is
clearly an integral curve with initial condition p with the largest possible domain (the open
interval, I(p)).

Definition 9.10. The curve γp defined above is called the maximal integral curve with initial
condition p, and it is also denoted by γ(p, t). The domain of γp is I(p).

Note that Proposition 9.9 implies that any two distinct integral curves are disjoint, i.e.,
do not intersect each other.

Consider the vector field in R2 given by

X(x,y) = −y ∂
∂x

+ x
∂

∂y

shown in Figure 9.7. If we write γ(t) = (x(t), y(t)), the differential equation γ̇(t) = X(γ(t))
is expressed by

x′(t) = −y(t)

y′(t) = x(t),
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Figure 9.7: A vector field in R2.

or in matrix form, (
x′

y′

)
=

(
0 −1
1 0

)(
x

y

)
.

If we write X =
(
x
y

)
and A =

(
0 −1
1 0

)
, then the above equation is written as

X ′ = AX.

Now as

etA = I +
A

1!
t+

A2

2!
t2 + · · ·+ An

n!
tn + · · · ,

we get
d

dt
(etA) = A+

A2

1!
t+

A3

2!
t2 + · · ·+ An

(n− 1)!
tn−1 + · · · = AetA,

so we see that etAp is a solution of the ODE X ′ = AX with initial condition X = p, and
by uniqueness, X = etAp is the solution of our ODE starting at X = p. Thus, our integral
curve γp through p =

(
x0
y0

)
is the circle given by(

x

y

)
=

(
cos t − sin t
sin t cos t

)(
x0

y0

)
.

Observe that I(p) = R, for every p ∈ R2.

If we delete the points (−1, 0) and (1, 0) on the x-axis, then for every point p0 not on the
unit circle S1 (given by x2 + y2 = 1), the maximal integral curve through p0 is the circle of
center O through p0, as before. However, for every point p0 on the open upper half unit circle
S1

+ , the maximal integral curve through p0 is S1
+, and for every point p0 on the open lower

half unit circle S1
−, the maximal integral curve through p0 is S1

−. In both cases, the domain
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of the integral curve is an open interval properly contained in R. This example shows that
it may not be possible to extend the domain of an integral curve to the entire real line.

Here is one more example of a vector field on M = R that has integral curves not defined
on the whole of R. Let X be the vector field on R given by

X(x) = (1 + x2)
∂

∂x
.

By solving the differential equation γ′(t) = x′(t) = 1 + x2, it is easy to see that the maximal
integral curve with initial condition p0 = 0 is the curve γ : (−π/2, π/2)→ R given by

γ(t) = tan t.

The following interesting question now arises. Given any p0 ∈M , if γp0 : I(p0)→M is the
maximal integral curve with initial condition p0, and for any t1 ∈ I(p0), if p1 = γp0(t1) ∈M ,
then there is a maximal integral curve γp1 : I(p1)→M with initial condition p1; what is the
relationship between γp0 and γp1 , if any? The answer is given by

Proposition 9.10. Let X be a Ck−1 vector field on a Ck-manifold M (k ≥ 2), and let p0

be a point on M . If γp0 : I(p0)→ M is the maximal integral curve with initial condition p0,
for any t1 ∈ I(p0), if p1 = γp0(t1) ∈ M and γp1 : I(p1) → M is the maximal integral curve
with initial condition p1, then

I(p1) = I(p0)− t1 and γp1(t) = γγp0 (t1)(t) = γp0(t+ t1), for all t ∈ I(p0)− t1.

See Figure 9.8.

0 t1

t1

b

0 b - t1- t1

a

a -

p

p

0

1

γ
p

γ
p1

0

M

Figure 9.8: The integral curve γp1 is a reparametrization of γp0 .
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Proof. Let γ(t) be the curve given by

γ(t) = γp0(t+ t1), for all t ∈ I(p0)− t1.

Clearly γ is defined on I(p0)− t1, and

γ̇(t) = γ̇p0(t+ t1) = X(γp0(t+ t1)) = X(γ(t))

and γ(0) = γp0(t1) = p1. Thus, γ is an integal curve defined on I(p0) − t1 with initial

condition p1. If γ was defined on an interval Ĩ ⊇ I(p0) − t1 with Ĩ 6= I(p0) − t1, then γp0
would be defined on Ĩ + t1 ⊃ I(p0), an interval strictly bigger than I(p0), contradicting the
maximality of I(p0). Therefore, I(p0)− t1 = I(p1).

Proposition 9.10 says that the traces γp0(I(p0)) and γp1(I(p1)) in M of the maximal
integral curves γp0 and γp1 are identical; they only differ by a simple reparametrization
(u = t+ t1).

It is useful to restate Proposition 9.10 by changing point of view. So far, we have been
focusing on integral curves: given any p0 ∈ M , we let t vary in I(p0) and get an integral
curve γp0 with domain I(p0). Instead of holding p0 ∈ M fixed, we can hold t ∈ R fixed and
consider the set

Dt(X) = {p ∈M | t ∈ I(p)},
the set of points such that it is possible to “travel for t units of time from p” along the
maximal integral curve γp with initial condition p (It is possible that Dt(X) = ∅). By
definition, if Dt(X) 6= ∅, the point γp(t) is well defined, and so we obtain a map
ΦX
t : Dt(X)→M with domain Dt(X), given by

ΦX
t (p) = γp(t).

The above suggests the following definition.

Definition 9.11. Let X be a Ck−1 vector field on a Ck-manifold M (k ≥ 2). For any t ∈ R,
let

Dt(X) = {p ∈M | t ∈ I(p)} and D(X) = {(t, p) ∈ R×M | t ∈ I(p)},
and let ΦX : D(X)→M be the map given by

ΦX(t, p) = γp(t).

The map ΦX is called the (global) flow of X, and D(X) is called its domain of definition.
For any t ∈ R such that Dt(X) 6= ∅, the map p ∈ Dt(X) 7→ ΦX(t, p) = γp(t) is denoted by
ΦX
t (i.e., ΦX

t (p) = ΦX(t, p) = γp(t)).
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Observe that
D(X) =

⋃
p∈M

(I(p)× {p}).

Also, using the ΦX
t notation, the property of Proposition 9.10 reads

ΦX
s ◦ ΦX

t = ΦX
s+t, (∗)

whenever both sides of the equation make sense. Indeed, the above says

ΦX
s (ΦX

t (p)) = ΦX
s (γp(t)) = γγp(t)(s) = γp(s+ t) = ΦX

s+t(p).

Using the above property, we can easily show that the ΦX
t are invertible. In fact, the

inverse of ΦX
t is ΦX

−t. First, note that

D0(X) = M and ΦX
0 = id,

because, by definition, ΦX
0 (p) = γp(0) = p, for every p ∈M . Then, (∗) implies that

ΦX
t ◦ ΦX

−t = ΦX
t+(−t) = ΦX

0 = id,

which shows that ΦX
t : Dt(X) → D−t(X) and ΦX

−t : D−t(X) → Dt(X) are inverse of each
other. Moreover, each ΦX

t is a Ck−1-diffeomorphism. We summarize in the following propo-
sition some additional properties of the domains D(X), Dt(X) and the maps ΦX

t . (For a
proof, see Lang [75] or Warner [114].)

Theorem 9.11. Let X be a Ck−1 vector field on a Ck-manifold M (k ≥ 2). The following
properties hold:

(a) For every t ∈ R, if Dt(X) 6= ∅, then Dt(X) is open (this is trivially true if Dt(X) = ∅).

(b) The domain D(X) of the flow ΦX is open, and the flow is a Ck−1 map
ΦX : D(X)→M .

(c) Each ΦX
t : Dt(X)→ D−t(X) is a Ck−1-diffeomorphism with inverse ΦX

−t.

(d) For all s, t ∈ R, the domain of definition of ΦX
s ◦ ΦX

t is contained but generally not
equal to Ds+t(X). However, dom(ΦX

s ◦ ΦX
t ) = Ds+t(X) if s and t have the same sign.

Moreover, on dom(ΦX
s ◦ ΦX

t ), we have

ΦX
s ◦ ΦX

t = ΦX
s+t.

Remarks:

(1) We may omit the superscript X and write Φ instead of ΦX if no confusion arises.
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(2) The reason for using the terminology flow in referring to the map ΦX can be clarified
as follows. For any t such that Dt(X) 6= ∅, every integral curve γp with initial condition
p ∈ Dt(X) is defined on some open interval containing [0, t], and we can picture these
curves as “flow lines” along which the points p flow (travel) for a time interval t. Then,
ΦX(t, p) is the point reached by “flowing” for the amount of time t on the integral
curve γp (through p) starting from p. Intuitively, we can imagine the flow of a fluid
through M , and the vector field X is the field of velocities of the flowing particles.

Given a vector field X as above, it may happen that Dt(X) = M , for all t ∈ R.

Definition 9.12. When D(X) = R×M , we say that the vector field X is complete. Then
the ΦX

t are diffeomorphisms of M , and they form a group under composition. The family
{ΦX

t }t∈R a called a 1-parameter group of X.

If the vector field X is complete, then ΦX induces a group homomorphism (R,+) −→
Diff(M), from the additive group R to the group of Ck−1-diffeomorphisms of M .

By abuse of language, even when it is not the case that Dt(X) = M for all t, the family
{ΦX

t }t∈R is called a local 1-parameter group generated by X, even though it is not a group,
because the composition ΦX

s ◦ ΦX
t may not be defined.

If we go back to the vector field in R2 given by

X = −y ∂
∂x

+ x
∂

∂y
,

since the integral curve γp(t), through p =
(
x0
x0

)
is given by(

x

y

)
=

(
cos t − sin t
sin t cos t

)(
x0

y0

)
,

the global flow associated with X is given by

ΦX(t, p) =

(
cos t − sin t
sin t cos t

)
p,

and each diffeomorphism ΦX
t is the rotation

ΦX
t =

(
cos t − sin t
sin t cos t

)
.

The 1-parameter group {ΦX
t }t∈R generated by X is the group of rotations in the plane,

SO(2).

More generally, if B is an n× n invertible matrix that has a real logarithm A (that is, if
eA = B), then the matrix A defines a vector field X in Rn, with

X =
n∑

i,j=1

(aijxj)
∂

∂xi
,
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whose integral curves are of the form

γp(t) = etAp,

and we have
γp(1) = Bp.

The one-parameter group {ΦX
t }t∈R generated by X is given by {etA}t∈R.

When M is compact, it turns out that every vector field is complete, a nice and useful
fact.

Proposition 9.12. Let X be a Ck−1 vector field on a Ck-manifold M (k ≥ 2). If M
is compact, then X is complete, which means that D(X) = R × M . Moreover, the map
t 7→ ΦX

t is a homomorphism from the additive group R to the group Diff(M) of (Ck−1)
diffeomorphisms of M .

Proof. Pick any p ∈M . By Theorem 9.8, there is a local flow ϕp : J(p)×U(p)→M , where
J(p) ⊆ R is an open interval containing 0 and U(p) is an open subset of M containing p, so
that for all q ∈ U(p), the map t 7→ ϕ(t, q) is an integral curve with initial condition q (where
t ∈ J(p)). Thus, we have J(p)× U(p) ⊆ D(X). Now, the U(p)’s form an open cover of M ,
and since M is compact, we can extract a finite subcover

⋃
q∈F U(q) = M , for some finite

subset F ⊆ M . But then, we can find ε > 0 so that (−ε,+ε) ⊆ J(q), for all q ∈ F and for
all t ∈ (−ε,+ε), and for all p ∈M , if γp is the maximal integral curve with initial condition
p, then (−ε,+ε) ⊆ I(p).

For any t ∈ (−ε,+ε), consider the integral curve γγp(t), with initial condition γp(t). This
curve is well defined for all t ∈ (−ε,+ε), and by Proposition 9.10 we have

γγp(t)(t) = γp(t+ t) = γp(2t),

which shows that γp is in fact defined for all t ∈ (−2ε,+2ε). By induction we see that

(−2nε,+2nε) ⊆ I(p),

for all n ≥ 0, which proves that I(p) = R. As this holds for all p ∈ M , we conclude that
D(X) = R×M .

Remarks:

(1) The proof of Proposition 9.12 also applies when X is a vector field with compact
support (this means that the closure of the set {p ∈M | X(p) 6= 0} is compact).

(2) If h : M → N is a diffeomorphism and X is a vector field on M , then it can be shown
that the local 1-parameter group associated with the vector field h∗X is

{h ◦ ΦX
t ◦ h−1}t∈R.
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A point p ∈M where a vector field vanishes (i.e., X(p) = 0) is called a critical point of X.
Critical points play a major role in the study of vector fields, in differential topology (e.g.,
the celebrated Poincaré–Hopf index theorem), and especially in Morse theory, but we won’t
go into this here (curious readers should consult Milnor [81], Guillemin and Pollack [55] or
DoCarmo [38], which contains an informal but very clear presentation of the Poincaré–Hopf
index theorem). Another famous theorem about vector fields says that every smooth vector
field on a sphere of even dimension (S2n) must vanish in at least one point (the so-called
“hairy-ball theorem.” A proof of this result can be found in Milnor [83]. On S2, it says that
you can’t comb your hair without having a singularity somewhere. Try it, it’s true!).

Let us just observe that if an integral curve γ passes through a critical point p, then γ
is reduced to the point p; that is, γ(t) = p, for all t. Indeed, such a curve is an integral
curve with initial condition p. By the uniqueness property, it is the only one. Then we see
that if a maximal integral curve is defined on the whole of R, either it is injective (it has no
self-intersection), or it is simply periodic (i.e., there is some T > 0 so that γ(t + T ) = γ(t),
for all t ∈ R and γ is injective on [0, T )), or it is reduced to a single point.

We conclude this section with the definition of the Lie derivative of a vector field with
respect to another vector field.

Say we have two vector fields X and Y on M . For any p ∈ M , we can flow along the
integral curve of X with initial condition p to Φt(p) (for t small enough) and then evaluate
Y there, getting Y (Φt(p)). Now, this vector belongs to the tangent space TΦt(p)(M), but
Y (p) ∈ Tp(M). So, to “compare” Y (Φt(p)) and Y (p), we bring back Y (Φt(p)) to Tp(M) by
applying the tangent map dΦ−t at Φt(p) to Y (Φt(p)). (Note that to alleviate the notation,
we use the slight abuse of notation dΦ−t instead of d(Φ−t)Φt(p).) We can then form the
difference dΦ−t(Y (Φt(p)))− Y (p), divide by t, and consider the limit as t goes to 0.

Definition 9.13. Let M be a Ck+1 manifold. Given any two Ck vector fields X and Y on
M , for every p ∈M , the Lie derivative of Y with respect to X at p denoted (LX Y )p, is given
by

(LX Y )p = lim
t−→0

dΦ−t(Y (Φt(p)))− Y (p)

t
=

d

dt
(dΦ−t(Y (Φt(p))))

∣∣∣∣
t=0

.

It can be shown that (LX Y )p is our old friend the Lie bracket; that is,

(LX Y )p = [X, Y ]p.

For a proof, see Warner [114] (Chapter 2, Proposition 2.25) or O’Neill [91] (Chapter 1,
Proposition 58).

In terms of Definition 9.6, observe that

(LX Y )p = lim
t−→0

(
(Φ−t)∗Y

)
(p)− Y (p)

t
= lim

t−→0

(
Φ∗tY

)
(p)− Y (p)

t
=

d

dt

(
Φ∗tY

)
(p)

∣∣∣∣
t=0

,
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since (Φ−t)−1 = Φt.

Next we discuss the application of vector fields and integral curves to the blending of
locally affine transformations, known as Log-Euclidean polyaffine transformations, as pre-
sented in Arsigny, Commowick, Pennec and Ayache [7].

9.4 Log-Euclidean Polyaffine Transformations

The registration of medical images is an important and difficult problem. The work described
in Arsigny, Commowick, Pennec and Ayache [7] (and Arsigny’s thesis [6]) makes an orginal
and valuable contribution to this problem by describing a method for parametrizing a class
of non-rigid deformations with a small number of degrees of freedom. After a global affine
alignment, this sort of parametrization allows a finer local registration with very smooth
transformations. This type of parametrization is particularly well adpated to the registration
of histological slices, see Arsigny, Pennec and Ayache [9].

The goal is to fuse some affine or rigid transformations in such a way that the resulting
transformation is invertible and smooth. The direct approach which consists in blending
N global affine or rigid transformations T1, . . . , TN using weights w1, . . . , wN does not work,
because the resulting transformation

T =
N∑
i=1

wiTi

is not necessarily invertible. The purpose of the weights is to define the domain of influence
in space of each Ti.

The key idea is to associate to each rigid (or affine) transformation T of Rn a vector field
V on Rn viewed as a manifold, and to view T as the diffeomorphism ΦV

1 corresponding to
the time t = 1, where ΦV

t is the global flow associated with V . In other words, T is the
result of integrating an ODE

X ′ = V (X, t),

starting with some initial condition X0, and T = X(1).

It would be highly desirable if the vector field V did not depend on the time parameter,
and this is indeed possible for a large class of affine transformations, which is one of the nice
contributions of the work of Arsigny, Commowick, Pennec and Ayache [7]. Recall that an
affine transformation X 7→ LX + v (where L is an n × n matrix and X, v ∈ Rn) can be
conveniently represented as a linear transformation from Rn+1 to itself if we write(

X

1

)
7→
(
L v
0 1

)(
X

1

)
.

Then the ODE with constant coefficients

X ′ = LX + v
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can be written (
X ′

0

)
=

(
L v
0 0

)(
X

1

)
,

and for every initial condition X = X0, its unique solution is given by(
X(t)

1

)
= exp

(
t

(
L v
0 0

))(
X0

1

)
.

Therefore, if we can find reasonable conditions on matrices T =

(
M u
0 1

)
to ensure that

they have a unique real logarithm

log(T ) =

(
L v
0 0

)
,

then we will be able to associate a vector field V (X) = LX + v to T in such a way that T
is recovered by integrating the ODE X ′ = LX + v. Furthermore, given N transformations
T1, . . . , TN such that log(T1), . . . , log(TN) are uniquely defined, we can fuse T1, . . . , TN at the
infinitesimal level by defining the ODE obtained by blending the vector fields V1, . . . , VN
associated with T1, . . . , TN (with Vi(X) = LiX + vi), namely

V (X) =
N∑
i=1

wi(X)(LiX + vi).

Then it is easy to see that the ODE

X ′ = V (X)

has a unique solution for every X = X0 defined for all t, and the fused transformation is just
T = X(1). Thus, the fused vector field

V (X) =
N∑
i=1

wi(X)(LiX + vi)

yields a one-parameter group of diffeomorphisms Φt. Each transformation Φt is smooth
and invertible, and is called a Log-Euclidean polyaffine transformation, for short, LEPT . Of
course, we have the equation

Φs+t = Φs ◦ Φt,

for all s, t ∈ R, so in particular, the inverse of Φt is Φ−t. We can also interpret Φs as (Φ1)s,
which will yield a fast method for computing Φs. Observe that when the weight are scalars,
the one-parameter group is given by(

Φt(X)

1

)
= exp

(
t

N∑
i=1

wi

(
Li vi
0 0

))(
X

1

)
,
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which is the Log-Euclidean mean of the affine transformations Ti’s (w.r.t. the weights wi).

Fortunately, there is a sufficient condition for a real matrix to have a unique real logarithm
and this condition is not too restrictive in practice.

Recall that E(n) denotes the set of all real matrices whose eigenvalues λ + iµ lie in the
horizontal strip determined by the condition −π < µ < π. We have the following version of
Theorem 2.2.

Theorem 9.13. The image exp(E(n)) of E(n) by the exponential map is the set of real
invertible matrices with no negative eigenvalues and exp: E(n)→ exp(E(n)) is a bijection.

Theorem 9.13 is stated in Kenney and Laub [65] without proof. Instead, Kenney and
Laub cite DePrima and Johnson [35] for a proof, but this latter paper deals with complex
matrices and does not contain a proof of our result either. The injectivity part of Theorem
9.13 can be found in Mmeimné and Testard [86], Chapter 3, Theorem 3.8.4.

In fact, exp: E(n) → exp(E(n)) is a diffeomorphism, a result proved in Bourbaki [19];
see Chapter III, Section 6.9, Proposition 17 and Theorem 6. Curious readers should read
Gallier [47] for the full story.

For any matrix A ∈ exp(E(n)), we refer to the unique matrix X ∈ E(n) such that eX = A
as the principal logarithm of A, and we denote it as logA.

Observe that if T is an affine transformation given in matrix form by

T =

(
M t
0 1

)
,

since the eigenvalues of T are those of M plus the eigenvalue 1, the matrix T has no negative
eigenvalues iff M has no negative eigenvalues, and thus the principal logarithm of T exists
iff the principal logarithm of M exists.

It is proved in Arsigny, Commowick, Pennec and Ayache that LEPT’s are affine invariant;
see [7], Section 2.3. This shows that LEPT’s are produced by a truly geometric kind of
blending, since the result does not depend at all on the choice of the coordinate system.

In the next section, we describe a fast method for computing due to Arsigny, Commowick,
Pennec and Ayache [7].

9.5 Fast Polyaffine Transforms

Recall that since LEPT’s are members of the one-parameter group (Φt)t∈R, we have

Φ2t = Φt+t = Φ2
t ,

and thus,
Φ1 = (Φ1/2N )2N .
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Observe the formal analogy of the above formula with the formula

exp(M) = exp

(
M

2N

)2N

for computing the exponential of a matrix M by the scaling and squaring method .

It turns out that the “scaling and squaring method” is one of the most efficient methods
for computing the exponential of a matrix; see Kenney and Laub [65] and Higham [59]. The
key idea is that exp(M) is easy to compute if M is close zero, since in this case, one can use
a few terms of the exponential series, or better a Padé approximant (see Higham [59]). The
scaling and squaring method for computing the exponential of a matrix M can be sketched
as follows:

1. Scaling Step: Divide M by a factor 2N , so that M
2N

is close enough to zero.

2. Exponentiation Step: Compute exp
(
M
2N

)
with high precision, for example using a Padé

approximant.

3. Squaring Step: Square exp
(
M
2N

)
repeatedly N times to obtain exp

(
M
2N

)2N
, a very

accurate approximation of eM .

There is also a so-called inverse scaling and squaring method to compute efficiently the
principal logarithm of a real matrix; see Cheng, Higham, Kenney and Laub [30].

Arsigny, Commowick, Pennec and Ayache made the very astute observation that the
scaling and squaring method can be adapted to compute LEPT’s very efficiently [7]. This
method called fast polyaffine transform computes the values of a Log-Euclidean polyaffine
transformation T = Φ1 at the vertices of a regular n-dimensional grid (in practice, for n = 2
or n = 3). Recall that T is obtained by integrating an ODE X ′ = V (X), where the vector
field V is obtained by blending the vector fields associated with some affine transformations
T1, . . . , Tn, having a principal logarithm.

Here are the three steps of the fast polyaffine transform:

1. Scaling Step: Divide the vector field V by a factor 2N , so that V
2N

is close enough to
zero.

2. Exponentiation Step: Compute Φ1/2N , using some adequate numerical integration
method.

3. Squaring Step: Compose Φ1/2N with itself recursively N times to obtain an accurate
approximation of T = Φ1.
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Of course, one has to provide practical methods to achieve Step 2 and Step 3. Several
methods to achieve Step 2 and Step 3 are proposed in Arsigny, Commowick, Pennec and
Ayache [7]. One also has to worry about boundary effects, but this problem can be alleviated
too, using bounding boxes. At this point, the reader is urged to read the full paper [7] for
complete details and beautiful pictures illustrating the use of LEPT’s in medical imaging.

For more details regarding the LEPT, including the Log-Euclidean framework for locally
rigid or affine deformation, the reader should read Arsigny, Commowick, Pennec and Ayache
[7].

9.6 Problems

Problem 9.1. The inversion I (in Rn) of center O = (0, . . . , 0) and power 1 is given by

(x1, . . . , xn) 7→ 1∑n
i=1 x

2
i

(x1, . . . , xn).

Prove that for every point u ∈ Rn − {0}, we have

dIu(h) = ‖u‖−2

(
h− 2

〈u, h〉
‖u‖2 u

)
.

Problem 9.2. Check that Γ(k)(U, T (M)) is a real vector space.

Problem 9.3. Prove Proposition 9.6.

Problem 9.4. Check that LX has the Leibniz property, that is,

LX(fg) = LX(f)g + fLX(g).

Problem 9.5. Let X be the vector field on R given by

X(x) = (1 + x2)
∂

∂x
.

Prove that maximal integral curve with initial condition p0 = 0 is the curve γ : (−π/2, π/2)→
R given by

γ(t) = tan t.

Problem 9.6. If B is an n × n invertible matrix that has a real logarithm A (that is, if
eA = B), then the matrix A defines a vector field X in Rn, with

X =
n∑

i,j=1

(aijxj)
∂

∂xi
.
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Show that the integral curves are of the form

γp(t) = etAp,

and that
γp(1) = Bp.

Show that the one-parameter group {ΦX
t }t∈R generated by X is given by {etA}t∈R.

Problem 9.7. Prove that two smooth vector fields X and Y on a smooth manifold M are
equal if and only if for every smooth function f on M , we have Xf = Y f .

Problem 9.8. Let x1, y1, . . . , xn, yn denote the standard coordinates on R2n. Prove that the
vector field X defined on the sphere S2n−1 of equation

∑n
i=1(x2

i + y2
i ) = 1 given by

X =
n∑
i=1

−yi
∂

∂xi
+

n∑
i=1

xi
∂

∂yi

is a nowhere-vanishing smooth vector field.

On the other hand, it can be shown that every continuous vector field on an even-
dimensional sphere S2n ⊆ R2n+1 must vanish at some point. A proof of this result can be
found in Milnor [83].

Problem 9.9. Let M be a smooth manifold and let f : M → R be a smooth function on
M . Recall that a crititical point p ∈M of f is a point such that dfp = 0.

(1) Prove that if p is a critical point of f then there exists a function H : TpM×TpM → R
(called a Hessian) such that

H(Xp, Yp) = Xp(Y f) = Yp(Xf)

for all smooth vector fields X, Y ∈ X(M).

(2) Prove that H is bilinear, symmetric, and satisfies

H

(
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
=

∂2f

∂xi∂xj
(p),

relative to a coordinate system.

(3) Prove that

H(v, v) =
d2(f ◦ α)

ds2
(0)

for every curve α through p such that α′(0) = v.

Problem 9.10. Read Arsigny, Commowick, Pennec and Ayache [7] and implement the
method for fusing affine transformations described in Section 2 of that paper.
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Chapter 10

Partitions of Unity, Covering Maps ~

This chapter contains a selection of technical tools. It is preparatory for best understanding
certain proofs which occur in the remaining chapters.

10.1 Partitions of Unity

To study manifolds, it is often necessary to construct various objects such as functions, vector
fields, Riemannian metrics, volume forms, etc., by gluing together items constructed on the
domains of charts. Partitions of unity are a crucial technical tool in this gluing process.

The first step is to define “bump functions” (also called plateau functions). For any
r > 0, we denote by B(r) the open ball

B(r) = {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n < r},
and by B(r) = {(x1, . . . , xn) ∈ Rn | x2

1 + · · ·+ x2
n ≤ r} its closure.

Proposition 10.1. There is a smooth function b : Rn → R, so that

b(x) =

{
1 if x ∈ B(1)
0 if x ∈ Rn −B(2).

See Figures 10.1 and 10.2.

Proof. There are many ways to construct such a function. We can proceed as follows.
Consider the function h : R→ R given by

h(x) =

{
e−1/x if x > 0
0 if x ≤ 0.

It is easy to show that h is C∞ (but not analytic!). For details, see Section 1.1 of Tu
[112]. Define b : Rn → R by

b(x1, . . . , xn) =
h((4− x2

1 − · · · − x2
n)/3)

h((4− x2
1 − · · · − x2

n)/3) + h((x2
1 + · · ·+ x2

n − 1)/3)
.

313
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Figure 10.1: The graph of b : R→ R used in Proposition 10.1.

It is immediately verified that b satisfies the required conditions.

Remark: The function obtained by omitting the factor 1/3 also yields a smooth bump
function, but it looks a little different; its cross-section by a plane through the xn+1-axis has
four inflection points instead of two. See Figures 10.4 and 10.5.

Definition 10.1. Given a topological space X, for any function f : X → R, the support of
f , denoted supp f , is the closed set

supp f = {x ∈ X | f(x) 6= 0}.

Proposition 10.1 yields the following useful technical result, which says that a smooth
partial function f defined on an open subset U of a smooth manifold M can be extended to
the whole of M as a function f̃ that vanishes outside U and agrees with f on some compact
subset contained in U .

Proposition 10.2. Let M be a smooth manifold. For any open subset U ⊆ M , any p ∈ U
and any smooth function f : U → R, there exist an open subset V with p ∈ V and a smooth
function f̃ : M → R defined on the whole of M , so that V is compact,

V ⊆ U, supp f̃ ⊆ U,

and
f̃(q) = f(q), for all q ∈ V .

Proof. Using a scaling function, it is easy to find a chart (W,ϕ) at p so that W ⊆ U ,

B(3) ⊆ ϕ(W ), and ϕ(p) = 0. Let b̃ = b ◦ ϕ, where b is the function given by Proposition

10.1. Then b̃ is a smooth function on W with support ϕ−1(B(2)) ⊆ W . We can extend b̃
outside W , by setting it to be 0, and we get a smooth function on the whole M . If we let
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> 

Figure 10.2: The graph of b : R2 → R used in Proposition 10.1.

Figure 10.3: The graph of h(x) used in Proposition 10.1.

V = ϕ−1(B(1)), then V is an open subset around p, V = ϕ−1(B(1)) ⊆ W is compact, and

clearly, b̃ = 1 on V . Therefore, if we set

f̃(q) =

{
b̃(q)f(q) if q ∈ W
0 if q ∈M −W ,

we see that f̃ satisfies the required properties.

Definition 10.2. If X is a (Hausdorff) topological space, a family {Uα}α∈I of subsets Uα of
X is a cover (or covering) of X iff X =

⋃
α∈I Uα. A cover {Uα}α∈I such that each Uα is open

is an open cover . If {Uα}α∈I is a cover of X, for any subset J ⊆ I, the subfamily {Uα}α∈J
is a subcover of {Uα}α∈I if X =

⋃
α∈J Uα, i.e., {Uα}α∈J is still a cover of X. Given a cover

{Uβ}β∈J , we say that a family {Vα}α∈I is a refinement of {Uβ}β∈J if it is a cover and if there
is a function h : I → J so that Vα ⊆ Uh(α), for all α ∈ I. See Figure 10.6.
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Figure 10.4: The graph of b : R→ R with 1/3 omitted.

Definition 10.3. A family {Uα}α∈I of subsets of X is locally finite iff for every point p ∈ X,
there is some open subset U with p ∈ U , so that U ∩ Uα 6= ∅ for only finitely many α ∈ I.
See Figure 10.7. A space X is paracompact iff every open cover has an open locally finite
refinement.

Remark: Recall that a space X is compact iff it is Hausdorff and if every open cover
has a finite subcover. Thus, the notion of paracompactness (due to Jean Dieudonné) is a
generalization of the notion of compactness.

Definition 10.4. A topological space X is second-countable if it has a countable basis; that
is, if there is a countable family of open subsets {Ui}i≥1, so that every open subset of X is
the union of some of the Ui’s. A topological space X is locally compact iff it is Hausdorff,
and for every a ∈ X, there is some compact subset K and some open subset U , with a ∈ U
and U ⊆ K.

As we will see shortly, every locally compact and second-countable topological space is
paracompact.

The following fact is important.

Proposition 10.3. Every manifold (even not second-countable) is locally compact.

Proof. For every p ∈ M , if we pick a chart (U,ϕ) around p, then ϕ(U) = Ω for some open
Ω ⊆ Rn (n = dimM). So, we can pick a small closed ball B(q, ε) ⊆ Ω of center q = ϕ(p)
and radius ε, and as ϕ is a homeomorphism, we see that

p ∈ ϕ−1(B(q, ε/2)) ⊆ ϕ−1(B(q, ε)),

where ϕ−1(B(q, ε)) is compact and ϕ−1(B(q, ε/2)) is open.
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Figure 10.5: The graph of b : R2 → R with 1/3 omitted.

Finally we define partitions of unity.

Definition 10.5. Let M be a (smooth) manifold. A partition of unity on M is a family
{fi}i∈I of smooth functions on M (the index set I may be uncountable), such that:

(a) The family of supports {supp fi}i∈I is locally finite.

(b) For all i ∈ I and all p ∈M , we have 0 ≤ fi(p) ≤ 1, and∑
i∈I

fi(p) = 1, for every p ∈M.

Note that Condition (b) implies that for every p ∈ M , there must be some i ∈ I such that
fi(p) > 0. Thus {supp fi}i∈I is a cover of M . If {Uα}α∈J is a cover of M , we say that the
partition of unity {fi}i∈I is subordinate to the cover {Uα}α∈J if {supp fi}i∈I is a refinement
of {Uα}α∈J . When I = J and supp fi ⊆ Ui, we say that {fi}i∈I is subordinate to {Uα}α∈I
with the same index set as the partition of unity .

In Definition 10.5, by Condition (a), for every p ∈ M , there is some open set U with
p ∈ U , and U meets only finitely many of the supports supp fi. So fi(p) 6= 0 for only finitely
many i ∈ I, and the infinite sum

∑
i∈I fi(p) is well defined.

Proposition 10.4. Let X be a topological space which is second-countable and locally com-
pact (thus, also Hausdorff). Then X is paracompact. Moreover, every open cover has a
countable, locally finite refinement consisting of open sets with compact closures.
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Figure 10.6: Let U = U1 ∪ U2 ∪ U3. Let V = V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 ∪ V6. Then V is a
refinement of U with h : {1, 2, 3, 4, 5, 6} → {1, 2, 3} where h(1) = 1, h(2) = 1, h(3) = 2,
h(4) = 2, h(5) = 3, h(6) = 3 since V1 ⊆ U1, V2 ⊆ U1, V3 ⊆ U2, V4 ⊆ U2, V5 ⊆ U3, V6 ⊆ U3.

Proof. The proof is quite technical, but since this is an important result, we reproduce
Warner’s proof for the reader’s convenience (Warner [114], Lemma 1.9).

The first step is to construct a sequence of open sets Gi, such that

1. Gi is compact,

2. Gi ⊆ Gi+1,

3. X =
⋃∞
i=1 Gi.

As X is second-countable, there is a countable basis of open sets {Ui}i≥1 for X. Since X
is locally compact, we can find a subfamily of {Ui}i≥1 consisting of open sets with compact
closures such that this subfamily is also a basis of X. Therefore, we may assume that we
start with a countable basis {Ui}i≥1 of open sets with compact closures. Set G1 = U1, and
assume inductively that

Gk = U1 ∪ · · · ∪ Ujk .
Since Gk is compact, it is covered by finitely many of the Uj’s. So, let jk+1 be the smallest
integer greater than jk so that

Gk ⊆ U1 ∪ · · · ∪ Ujk+1
,
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p
U

Figure 10.7: Let X = R2 and {Uα}α∈I be the open cover of pink unit disks centered at
lattice points (p, q), where p, q,∈ Z. For any point p ∈ R2, there exists a purple open set U
containing p which intersects only finitely many of the pink disks.

and set
Gk+1 = U1 ∪ · · · ∪ Ujk+1

.

See Figure 10.8.
Obviously, the family {Gi}i≥1 satisfies Conditions (1)–(3).

Let {Uα}α∈I be an arbitrary open cover of M . For any i ≥ 3, the set Gi−Gi−1 is compact
and contained in the open Gi+1 − Gi−2. See Figure 10.9. For each i ≥ 3, choose a finite
subcover of the open cover {Uα∩(Gi+1−Gi−2)}α∈I of Gi−Gi−1, and choose a finite subcover
of the open cover {Uα ∩ G3}α∈I of the compact set G2. We leave it to the reader to check
that this family of open sets is indeed a countable, locally finite refinement of the original
open cover {Uα}α∈I and consists of open sets with compact closures.

Remarks:

1. Proposition 10.4 implies that a second-countable, locally compact (Hausdorff) topo-
logical space is the union of countably many compact subsets. Thus, X is countable at
infinity , a notion that we already encountered in Proposition 4.11 and Theorem 4.14.
The reason for this odd terminology is that in the Alexandroff one-point compactifica-
tion of X, the family of open subsets containing the point at infinity (ω) has a countable
basis of open sets. (The open subsets containing ω are of the form (X − K) ∪ {ω},
where K is compact.)

2. A manifold that is countable at infinity has a countable open cover by domains of
charts. This is because, if M =

⋃
i≥1Ki, where the Ki ⊆M are compact, then for any

open cover of M by domains of charts, for every Ki, we can extract a finite subcover,
and the union of these finite subcovers is a countable open cover of M by domains
of charts. But then, since for every chart (Ui, ϕi), the map ϕi is a homeomorphism
onto some open subset of Rn, which is second-countable, so we deduce easily that M
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Figure 10.8: The construction of {Gi}4
i=1 for X = R2 and {Ui}i≥1, the open disks with

rational radius centered at points with rational coordinates.

is second-countable. Thus, for manifolds, second-countable is equivalent to countable
at infinity.

We can now prove the main theorem stating the existence of partitions of unity. Recall
that we are assuming that our manifolds are Hausdorff and second-countable.

Theorem 10.5. Let M be a smooth manifold and let {Uα}α∈I be an open cover for M .
Then there is a countable partition of unity {fi}i≥1 subordinate to the cover {Uα}α∈I , and
the support supp fi of each fi is compact. If one does not require compact supports, then
there is a partition of unity {fα}α∈I subordinate to the cover {Uα}α∈I with at most countably
many of the fα not identically zero. (In the second case, supp fα ⊆ Uα.)

Proof. Again, we reproduce Warner’s proof (Warner [114], Theorem 1.11). As our manifolds
are second-countable, Hausdorff and locally compact, from the proof of Proposition 10.4, we
have the sequence of open subsets {Gi}i≥1, and we set G0 = ∅. For any p ∈M , let ip be the
largest integer such that p ∈M −Gip . Choose an αp such that p ∈ Uαp ; we can find a chart
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G3 G2

G G
4 1

3

G3 G2

G G
4 1

Figure 10.9: The illustration G3−G2 ⊂ G4−G1, where {Gi}4
i=1 is illustrated in Figure 10.8.

(U,ϕ) centered at p such that U ⊆ Uαp ∩ (Gip+2 −Gip) and such that B(2) ⊆ ϕ(U). Define

ψp =

{
b ◦ ϕ on U
0 on M − U ,

where b is the bump function defined just before Proposition 10.1. Then, ψp is a smooth
function on M which has value 1 on some open subset Wp containing p and has compact
support lying in U ⊆ Uαp ∩ (Gip+2−Gip). For each i ≥ 1, choose a finite set of points p ∈M ,

whose corresponding open Wp cover Gi − Gi−1. Order the corresponding ψp functions in a
sequence ψj, j = 1, 2, . . .. The supports of the ψj form a locally finite family of subsets of
M . Thus, the function

ψ =
∞∑
j=1

ψj

is well-defined on M and smooth. Moreover, ψ(p) > 0 for each p ∈M . For each i ≥ 1, set

fi =
ψi
ψ
.

Then the family {fi}i≥1 is a partition of unity subordinate to the cover {Uα}α∈I , and supp fi
is compact for all i ≥ 1. When we don’t require compact support, if we let fα be identically

zero if no fi has support in Uα and otherwise let fα be the sum of the fi with support in Uα,
then we obtain a partition of unity subordinate to {Uα}α∈I with at most countably many
of the fα not identically zero. We must have supp fα ⊆ Uα, because for any locally finite
family of closed sets {Fβ}β∈J , we have

⋃
β∈J Fβ =

⋃
β∈J Fβ.
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We close this section by stating a famous theorem of Whitney whose proof uses partitions
of unity.

Theorem 10.6. (Whitney, 1935) Any smooth manifold (Hausdorff and second-countable)
M of dimension n is diffeomorphic to a closed submanifold of R2n+1.

For a proof, see Hirsch [61], Chapter 2, Section 2, Theorem 2.14.

10.2 Covering Maps and Universal Covering Manifolds

Covering maps are an important technical tool in algebraic topology, and more generally in
geometry. This brief section only gives some basic definitions and states a few major facts.
Appendix A of O’Neill [91] gives a review of definitions and main results about covering
manifolds. Expositions including full details can be found in Hatcher [57], Greenberg [52],
Munkres [89], Fulton [45], and Massey [78, 79] (the most extensive).

We begin with covering maps.

Definition 10.6. A map π : M → N between two smooth manifolds is a covering map (or
cover) iff

(1) The map π is smooth and surjective.

(2) For any q ∈ N , there is some open subset V ⊆ N so that q ∈ V and

π−1(V ) =
⋃
i∈I
Ui,

where the Ui are pairwise disjoint open subsets Ui ⊆ M , and π : Ui → V is a diffeo-
morphism for every i ∈ I. We say that V is evenly covered .

The manifold M is called a covering manifold of N . See Figure 10.10.

It is useful to note that a covering map π : M → N is a local diffeomorphism (which
means that dπp : TpM → Tπ(p)N is a bijective linear map for every p ∈ M). Indeed, given
any p ∈ M , if q = π(p), then there is some open subset V ⊆ N containing q so that V is
evenly covered by a family of disjoint open subsets {Ui}i∈I , with each Ui ⊆M diffeomorphic
to V under π. As p ∈ Ui for some i, we have a diffeomorphism π � Ui : Ui −→ V , as required.

Definition 10.7. A homomorphism of coverings π1 : M1 → N and π2 : M2 → N is a smooth
map φ : M1 →M2, so that

π1 = π2 ◦ φ;

that is, the following diagram commutes.

M1
φ //

π1 !!

M2

π2}}
N
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Figure 10.10: Two examples of a covering map. The left illustration is π : R → S1 with
π(t) = (cos(2πt), sin(2πt)), while the right illustration is the 2-fold antipodal covering of
RP2 by S2.

We say that the coverings π1 : M1 → N and π2 : M2 → N are equivalent iff there is a
homomorphism φ : M1 →M2 between the two coverings, and φ is a diffeomorphism.

As usual, the inverse image π−1(q) of any element q ∈ N is called the fibre over q, the
space N is called the base, and M is called the covering space. As π is a covering map, each
fibre is a discrete space. Note that a homomorphism maps each fibre π−1

1 (q) in M1 to the
fibre π−1

2 (φ(q)) in M2, for every q ∈M1.

Proposition 10.7. Let π : M → N be a covering map. If N is connected, then all fibres
π−1(q) have the same cardinality for all q ∈ N . Furthermore, if π−1(q) is not finite, then it
is countably infinite.

Proof. Pick any point, p ∈ N . We claim that the set

S = {q ∈ N | |π−1(q)| = |π−1(p)|}

is open and closed.

If q ∈ S, then there is some open subset V with q ∈ V , so that π−1(V ) is evenly covered
by some family {Ui}i∈I of disjoint open subsets Ui, each diffeomorphic to V under π. Then
every s ∈ V must have a unique preimage in each Ui, so

|I| = |π−1(s)|, for all s ∈ V .
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However, as q ∈ S, |π−1(q)| = |π−1(p)|, so

|I| = |π−1(p)| = |π−1(s)|, for all s ∈ V ,

and thus, V ⊆ S. Therefore, S is open. Similarly the complement of S is open. As N is
connected, S = N .

Since M is a manifold, it is second-countable, that is every open subset can be written
as some countable union of open subsets. But then, every family {Ui}i∈I of pairwise dis-
joint open subsets forming an even cover must be countable, and since |I| is the common
cardinality of all the fibres, every fibre is countable.

When the common cardinality of fibres is finite, it is called the multiplicity of the covering
(or the number of sheets).

For any integer, n > 0, the map z 7→ zn from the unit circle S1 = U(1) to itself is a
covering with n sheets. The map,

t : 7→ (cos(2πt), sin(2πt)),

is a covering R→ S1, with infinitely many sheets.

Definition 10.8. Let π : M → N be a covering map, and let P be a Hausdorff topological
space. For any map φ : P → N , a lift of φ through π is a map φ̃ : P →M so that

φ = π ◦ φ̃,

as in the following commutative diagram.

M

π

��
P

φ̃
==

φ
// N

The crucial property of covering manifolds is that curves in N can be lifted to M , in a
unique way.

We would like to state three propositions regarding covering spaces. However, two of
these propositions use the notion of a simply connected manifold. Intuitively, a manifold is
simply connected if it has no “holes.” More precisely, a manifold is simply connected if it
has a trivial fundamental group. Those readers familiar with the fundamental group may
proceed directly to Proposition 10.12 as we now provide a brief review of the fundamental
group construction based on Sections 5.1 and 5.2 of Armstrong [5].

A fundamental group is a homotopic loop group. Therefore, given topological spaces X
and Y , we need to define a homotopy between two continuous functions f : X → Y and
g : X → Y .
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Definition 10.9. Let X and Y be topological spaces, f : X → Y and g : X → Y be two
continuous functions, and let I = [0, 1]. We say that f is homotopic to g if there exists a
continuous function F : X × I → Y (where X × I is given the product topology) such that
F (x, 0) = f(x) and F (x, 1) = g(x) for all x ∈ X. The map F is a homotopy from f to g,
and this is denoted f ∼F g. If f and g agree on A ⊆ X, i.e. f(a) = g(a) whenever a ∈ A,
we say f is homotopic to g relative A, and this is denoted f ∼F g rel A.

A homotopy provides a means of continuously deforming f into g through a family {ft}
of continuous functions ft : X → Y where t ∈ [0, 1] and f0(x) = f(x) and f1(x) = g(x) for
all x ∈ X. For example, let D be the unit disk in R2 and consider two continuous functions
f : I → D and g : I → D. Then f ∼F g via the straight line homotopy F : I× I → D, where
F (x, t) = (1− t)f(x) + tg(x).

Proposition 10.8. Let X and Y be topological spaces and let A ⊆ X. Homotopy (or
homotopy rel A) is an equivalence relation on the set of all continuous functions from X to
Y .

The next two propositions show that homotopy behaves well with respect to composition.

Proposition 10.9. Let X, Y , and Z be topological spaces and let A ⊆ X. For any continu-
ous functions f : X → Y , g : X → Y , and h : Y → Z, if f ∼F g rel A, then h ◦ f ∼h◦F h ◦ g
rel A as maps from X to Z.

X
f //

g
// Y

h // Z.

Proposition 10.10. Let X, Y , and Z be topological spaces and let B ⊆ Y . For any
continuous functions f : X → Y , g : Y → Z, and h : Y → Z, if g ∼G h rel B, then
g ◦ f ∼F h ◦ f rel f−1B, where F (x, t) = G(f(x), t).

X
f // Y

g //

h
// Z.

In order to define the fundamental group of a topological space X, we recall the definition
of a loop.

Definition 10.10. Let X be a topological space, p be a point in X, and let I = [0, 1]. We
say α is a loop based at p = α(0) if α is a continuous map α : I → X with α(0) = α(1).

Given a topological space X, choose a point p ∈ X and form S, the set of all loops in X
based at p. By applying Proposition 10.8, we know that the relation of homotopy relative
to {0, 1} is an equivalence relation on S. This leads to the following definition.

Definition 10.11. Let X be a topological space, p be a point in X, and let α be a loop in
X based at p. The set of all loops homotopic to α relative to {0, 1} is the homotopy class of
α and is denoted 〈α〉.
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Definition 10.12. Given two loops α and β in a topological space X based at p, the product
α · β is a loop in X based at p defined by

α · β(t) =

{
α(2t), 0 ≤ t ≤ 1

2

β(2t− 1), 1
2
< t ≤ 1.

The product of loops gives rise to the product of homotopy classes where

〈α〉 · 〈β〉 = 〈α · β〉.

We leave it the reader to check that the multiplication of homotopy classes is well defined
and associative, namely 〈α ·β〉 · 〈γ〉 = 〈α〉 · 〈β ·γ〉 whenever α, β, and γ are loops in X based
at p.

Let 〈e〉 be the homotopy class of the constant loop in X based at p, and define the
inverse of 〈α〉 as 〈α〉−1 = 〈α−1〉, where α−1(t) = α(1 − t). With these conventions, the
product operation between homotopy classes gives rise to a group. In particular,

Proposition 10.11. Let X be a topological space and let p be a point in X. The set of
homotopy classes of loops in X based at p is a group with multiplication given by 〈α〉 · 〈β〉 =
〈α · β〉
Definition 10.13. Let X be a topological space and p a point in X. The group of homotopy
classes of loops in X based at p is the fundamental group of X based at p, and is denoted by
π1(X, p).

If we assume X is path connected, we can show that π1(X, p) ∼= π1(X, q) for any points
p and q in X. Therefore, when X is path connected, we simply write π1(X).

Definition 10.14. If X is path connected topological space and π1(X) = 〈e〉, (which is also
denoted as π1(X) = (0)), we say X is simply connected.

In other words, every loop in X can be shrunk in a continuous manner within X to its
basepoint. Examples of simply connected spaces include Rn and Sn whenever n ≥ 2. On
the other hand, the torus and the circle are not simply connected. See Figures 10.11 and
10.12.

We now state without proof the following results regarding covering spaces.

Proposition 10.12. If π : M → N is a covering map, then for every smooth curve α : I → N
in N (with 0 ∈ I) and for any point q ∈M such that π(q) = α(0), there is a unique smooth
curve α̃ : I →M lifting α through π such that α̃(0) = q. See Figure 10.13.

Proposition 10.13. Let π : M → N be a covering map and let φ : P → N be a smooth
map. For any p0 ∈ P , any q0 ∈ M and any r0 ∈ N with π(q0) = φ(p0) = r0, the following
properties hold:
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p

q

Figure 10.11: The torus is not simply connected. The loop at p is homotopic to a point, but
the loop at q is not.

(1) If P is connected then there is at most one lift φ̃ : P → M of φ through π such that

φ̃(p0) = q0.

(2) If P is simply connected, then such a lift exists.

M 3 q0

π

��
p0 ∈ P

φ̃
99

φ
// N 3 r0

Theorem 10.14. Every connected manifold M possesses a simply connected covering map
π : M̃ → M ; that is, with M̃ simply connected. Any two simply connected coverings of N
are equivalent.

Definition 10.15. In view of Theorem 10.14, it is legitimate to speak of the simply connected
cover M̃ of M , also called universal covering (or cover) of M .

Given any point p ∈M , let π1(M, p) denote the fundamental group of M with basepoint
p. See Definition 10.13. If φ : M → N is a smooth map, for any p ∈M , if we write q = φ(p),
then we have an induced group homomorphism

φ∗ : π1(M, p)→ π1(N, q).

Proposition 10.15. If π : M → N is a covering map, for every p ∈ M , if q = π(p), then
the induced homomorphism π∗ : π1(M, p)→ π1(N, q) is injective.

The next proposition is a stronger version of Part (1) of Proposition 10.13.
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p

α

α

p

p p F

Figure 10.12: The unit sphere S2 is simply connected since every loop can be continuously
deformed to a point. This deformation is represented by the map F : I × I → S2 where
F (x, 0) = α and F (x, 1) = p.

Proposition 10.16. Let π : M → N be a covering map and let φ : P → N be a smooth map.
For any p0 ∈ P , any q0 ∈ M and any r0 ∈ N with π(q0) = φ(p0) = r0, if P is connected,

then a lift φ̃ : P →M of φ such that φ̃(p0) = q0 exists iff

φ∗(π1(P, p0)) ⊆ π∗(π1(M, q0)),

as illustrated in the diagram below.

M

π

��
P

φ̃
==

φ
// N iff

π1(M, q0)

π∗
��

π1(P, p0)

88

φ∗
// π1(N, r0)

Basic Assumption: For any covering π : M → N , if N is connected then we also assume
that M is connected.

Using Proposition 10.15, we get

Proposition 10.17. If π : M → N is a covering map and N is simply connected, then π
is a diffeomorphism (recall that M is connected); thus, M is diffeomorphic to the universal

cover Ñ , of N .

Proof. Pick any p ∈ M and let q = π(p). As N is simply connected, π1(N, q) = (0). By
Proposition 10.15, since π∗ : π1(M, p)→ π1(N, q) is injective, π1(M, p) = (0), so M is simply
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q

π

M

N

I

0
π (q) α

α

α

α

= (0)

~
= (0)

~

Figure 10.13: The lift of a curve α when π : R→ S1 is π(t) = (cos(2πt), sin(2πt)).

connected (by hypothesis, M is connected). But then, by Theorem 10.14, M and N are
diffeomorphic.

The following proposition shows that the universal covering of a space covers every other
covering of that space. This justifies the terminology “universal covering.”

Proposition 10.18. Say π1 : M1 → N and π2 : M2 → N are two coverings of N , with N
connected. Every homomorphism φ : M1 → M2 between these two coverings is a covering
map.

M1
φ //

π1 !!

M2

π2}}
N

.

As a consequence, if π : Ñ → N is a universal covering of N , then for every covering
π′ : M → N of N , there is a covering φ : Ñ →M of M .

The notion of deck-transformation group of a covering is also useful because it yields a
way to compute the fundamental group of the base space.
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Definition 10.16. If π : M → N is a covering map, a deck-transformation is any diffeomor-
phism φ : M →M such that π = π ◦ φ; that is, the following diagram commutes.

M
φ //

π
  

M

π
~~

N

Note that deck-transformations are just automorphisms of the covering map. The com-
mutative diagram of Definition 10.16 means that a deck transformation permutes every fibre.
It is immediately verified that the set of deck transformations of a covering map is a group
under composition denoted Γπ (or simply Γ), called the deck-transformation group of the
covering.

Observe that any deck transformation φ is a lift of π through π. Consequently, if M is
connected, by Proposition 10.13 (1), every deck-transformation is determined by its value at
a single point. So, the deck-transformations are determined by their action on each point of
any fixed fibre π−1(q), with q ∈ N . Since the fibre π−1(q) is countable, Γ is also countable,
that is, a discrete Lie group. Moreover, if M is compact, as each fibre π−1(q) is compact and
discrete, it must be finite and so, the deck-transformation group is also finite.

The following proposition gives a useful method for determining the fundamental group
of a manifold.

Proposition 10.19. If π : M̃ → M is the universal covering of a connected manifold M ,
then the deck-transformation group Γ̃ is isomorphic to the fundamental group π1(M) of M .

Remark: When π : M̃ →M is the universal covering of M , it can be shown that the group
Γ̃ acts simply and transitively on every fibre π−1(q). This means that for any two elements

x, y ∈ π−1(q), there is a unique deck-transformation φ ∈ Γ̃ such that φ(x) = y. So, there is

a bijection between π1(M) ∼= Γ̃ and the fibre π−1(q).

Proposition 10.14 together with previous observations implies that if the universal cover
of a connected (compact) manifold is compact, then M has a finite fundamental group. We
will use this fact later, in particular in the proof of Myers’ Theorem.

10.3 Problems

Problem 10.1. Consider the function h : R→ R given by

h(x) =

{
e−1/x if x > 0

0 if x ≤ 0.
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Show by induction that for all k ≥ 0 and all x > 0, the kth derivative h(k)(x) is of the form
P2k(1/x)e−1/x for some polynomial P2k(X) of degree 2k in X. Prove that h is smooth on R
and that h(k)(0) = 0 for all k ≥ 0.

Problem 10.2. Define b : Rn → R by

b(x1, . . . , xn) =
h((4− x2

1 − · · · − x2
n)/3)

h((4− x2
1 − · · · − x2

n)/3) + h((x2
1 + · · ·+ x2

n − 1)/3)
.

Verify that b satisfies the conditions of Proposition 10.1.

Problem 10.3. Let (Ai)i∈I be a locally finite family of subsets of a topological space X.
Show that every compact set K in X has a neighborhood W that intersects only finitely
many of the Ai.

Problem 10.4. Let (Ai)i∈I be a locally finite family of subsets of a topological space X.
Show that ⋃

i∈I
Ai =

⋃
i∈I
Ai.

Note that the inclusion ⋃
i∈I
Ai ⊆

⋃
i∈I
Ai

holds for any family (Ai)i∈I of subsets of X, but the inclusion⋃
i∈I
Ai ⊆

⋃
i∈I
Ai

is not true in general. For example, let Ai = [0, 1− 1/i], for i ∈ N− {0}.

Problem 10.5. Provide the details at the end of the proof of Proposition 10.4.

Problem 10.6. Check that the supports of the functions ψj constructed during the proof
of Theorem 10.5 form a locally finite family.

Problem 10.7. Check that the multiplication of homotopy classes given after Definition
10.11 is well defined and associative. Show that setting 〈α〉−1 = 〈α−1〉 defines an inverse
with respect to multiplication of homotopy classes.

Problem 10.8. Prove Proposition 10.8.

Problem 10.9. Prove Propositions 10.9 and 10.10.

Problem 10.10. Prove that if X is path connected, then π1(X, p) ∼= π1(X, q) for any points
p and q in X.
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Chapter 11

Basic Analysis: Review of Series and
Derivatives

The goal of Chapter 3 is to define embedded submanifolds and linear Lie groups. Before
doing this, we believe that some readers might appreciate a review of the basic properties
of power series involving matrix coefficients and a review of the notion of the derivative of
a function between two normed vector spaces. Those readers familiar with these concepts
may proceed directly to Chapter 3.

11.1 Series and Power Series of Matrices

Since a number of important functions on matrices are defined by power series, in particular
the exponential, we review quickly some basic notions about series in a complete normed
vector space.

Given a normed vector space (E, ‖ ‖), a series is an infinite sum
∑∞

k=0 ak of elements
ak ∈ E. We denote by Sn the partial sum of the first n+ 1 elements,

Sn =
n∑
k=0

ak.

Definition 11.1. We say that the series
∑∞

k=0 ak converges to the limit a ∈ E if the sequence
(Sn) converges to a, i.e., given any ε > 0, there exists a positive integer N such that for all
n ≥ N ,

‖Sn − a‖ < ε.

In this case, we say that the series is convergent . We say that the series
∑∞

k=0 ak converges
absolutely if the series of norms

∑∞
k=0 ‖ak‖ is convergent.

If the series
∑∞

k=0 ak converges to a, since for all m,n with m > n we have

m∑
k=0

ak − Sn =
m∑
k=0

ak −
n∑
k=0

ak =
m∑

k=n+1

ak,

333
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if we let m go to infinity (with n fixed), we see that the series
∑∞

k=n+1 ak converges and that

a− Sn =
∞∑

k=n+1

ak.

To intuitively understand Definition 11.1, think of (an) as a long string or “snake” of
vector entries. We subdivide this snake into head, body, and tail by choosing m > n ≥ 0
and writing

∞∑
k=0

ak = H +B + T,

where

H =
n∑
k=0

ak = a0 + a1 + · · ·+ an,

B =
m∑

k=n+1

ak = an+1 + an+2 + · · ·+ am,

T =
∞∑

k=m+1

ak = am+1 + am+2 + . . . .

Note H stands for head, B stands for body, and T stands for tail. The convergence of∑∞
k=0 ak means T is arbitrarily small whenever m is “large enough”. See Figure 11.1.

n
n+1

n+2

m
m+1
m+2

BodyHead Tail

a
a

0

a
a

a
a
a

Figure 11.1: The “snake” view of the sequence (an).

In particular, we have the following useful proposition.
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Proposition 11.1. If
∑∞

k=0 ak converges, then limk 7→∞ ak = limk 7→∞ ‖ak‖ = 0. Given N ≥ 0
and a fixed positive value s, if ‖ak‖ > s > 0 infinitely many times whenever k ≥ N , then∑∞

k=0 ak diverges.

The “belly” of the snake may be characterized in terms of a Cauchy sequence.

Definition 11.2. Given a normed vector space, E, we say that a sequence, (an), with an ∈ E,
is a Cauchy sequence iff for every ε > 0, there is some N > 0 so that for all m,n ≥ N ,

‖an − am‖ < ε.

Definition 11.3. A normed vector space, E, is complete iff every Cauchy sequence converges.
A complete normed vector space is also called a Banach space, after Stefan Banach (1892-
1945).

There are series that are convergent but not absolutely convergent; for example, the series

∞∑
k=1

(−1)k−1

k
.

If E is complete, the converse is an enormously useful result.

Proposition 11.2. Assume (E, ‖ ‖) is a complete normed vector space. If a series
∑∞

k=0 ak
is absolutely convergent, then it is convergent.

Proof. If
∑∞

k=0 ak is absolutely convergent, then we prove that the sequence (Sm) is a Cauchy
sequence; that is, for every ε > 0, there is some p > 0 such that for all n ≥ m ≥ p,

‖Sn − Sm‖ ≤ ε.

Observe that
‖Sn − Sm‖ = ‖am+1 + · · ·+ an‖ ≤ ‖am+1‖+ · · ·+ ‖an‖ ,

and since the sequence
∑∞

k=0 ‖ak‖ converges, it satisfies Cauchy’s criterion. Thus, the se-
quence (Sm) also satisfies Cauchy’s criterion, and since E is a complete vector space, the
sequence (Sm) converges.

Remark: It can be shown that if (E, ‖ ‖) is a normed vector space such that every absolutely
convergent series is also convergent, then E must be complete (see Schwartz [103]).

An important corollary of absolute convergence is that if the terms in series
∑∞

k=0 ak
are rearranged, then the resulting series is still absolutely convergent, and has the same
sum. More precisely, let σ be any permutation (bijection) of the natural numbers. The
series

∑∞
k=0 aσ(k) is called a rearrangement of the original series. The following result can be

shown (see Schwartz [103]).
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Proposition 11.3. Assume (E, ‖ ‖) is a normed vector space. If a series
∑∞

k=0 ak is conver-
gent as well as absolutely convergent, then for every permutation σ of N, the series

∑∞
k=0 aσ(k)

is convergent and absolutely convergent, and its sum is equal to the sum of the original series:

∞∑
k=0

aσ(k) =
∞∑
k=0

ak.

In particular, if (E, ‖ ‖) is a complete normed vector space, then Proposition 11.3 holds.
A series

∑∞
k=0 ak is said to be unconditionally convergent (or commutatively convergent) if

the series
∑∞

k=0 aσ(k) is convergent for every permutation σ of N, and if all these rearrange-
ments have the same sum. It can be shown that if E has finite dimension, then a series
is absolutely convergent iff it is unconditionally convergent. However, this is false if E has
infinite dimension (but hard to prove).

If E = C, there are several conditions that imply the absolute convergence of a series. In
the rest of this section we omit most proofs, details of which can be found in introductory
analysis books such as Apostol [4] and Schwartz [103].

The ratio test is the following test. Suppose there is some N > 0 such that an 6= 0 for
all n ≥ N , and either

r = lim
n7→∞

∣∣∣∣an+1

an

∣∣∣∣
exists, or the sequence of ratios diverges to infinity, in which case we write r =∞. Then, if
0 ≤ r < 1, the series

∑n
k=0 ak converges absolutely, else if 1 < r ≤ ∞, the series diverges.

If (rn) is a sequence of real numbers, recall that

lim sup
n7→∞

rn = lim
n7→∞

sup
k≥n
{rk}.

If rn ≥ 0 for all n, then either the sequence (rn) is unbounded, in which case supk≥n{rk}
is infinite for all n and lim supn7→∞ rn = ∞, or the sequence (rn) is bounded, and since
supk≥n+1{rk} ≤ supk≥n{rk}, the sequence (supk≥n)n≥0 is nonincreasing and bounded from
below by 0, so lim supn 7→∞ rn = r exists and is finite. In this case, it is easy to see that r is
characterized as follows:

For every ε > 0, there is some N ∈ N such that rn < r + ε for all n ≥ N , and rn > r − ε
for infinitely many n.

The notion of lim supn7→∞ rn may also be characterized in terms of limits of subsequences.
Take the family of all subsequences {(rnj)} of (rn). Consider the set, L, of all possible limits
of these subsequences. Then lim supn 7→∞ rn is the largest element (possibly infinity) of L.
For example if (rn) = (1,−1, 1,−1, . . . ), then L = {−1, 1} and lim supn7→∞ rn = 1.

The root test is this. Let
r = lim sup

n7→∞
|an|1/n
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if the limit exists (is finite), else write r = ∞. Then, if 0 ≤ r < 1, the series
∑n

k=0 ak
converges absolutely, else if 1 < r ≤ ∞, the series diverges.

The root test also applies if (E, ‖ ‖) is a complete normed vector space by replacing |an|
by ‖an‖. Let

∑∞
k≥0 ak be a series of elements ak ∈ E and let

r = lim sup
n7→∞

‖an‖1/n

if the limit exists (is finite), else write r = ∞. Then, if 0 ≤ r < 1, the series
∑n

k=0 ak
converges absolutely, else if 1 < r ≤ ∞, the series diverges.

A power series with coefficients ak ∈ C in the indeterminate z is a formal expression f(z)
of the form

f(z) =
∞∑
k=0

akz
k,

For any fixed value z ∈ C, the series f(z) may or may not converge. It always converges for
z = 0, since f(0) = a0. A fundamental fact about power series is that they have a radius of
convergence.

Proposition 11.4. Given any power series

f(z) =
∞∑
k=0

akz
k,

there is a nonnegative real R, possibly infinite, called the radius of convergence of the
power series, such that if |z| < R, then f(z) converges absolutely, else if |z| > R, then f(z)
diverges. Moreover (Hadamard), we have

R =
1

lim supn 7→∞ |an|1/n
.

Note that Proposition 11.4 does not say anything about the behavior of the power series
for boundary values, that is, values of z such that |z| = R.

Proof. Given
∑∞

n=0An, where (An) is an arbitrary sequence of complex numbers, note that∑∞
n=0 |An| =

∑∞
n=0

[
|An|

1
n

]n
. If lim supn 7→∞ |An|

1
n < 1, then

∑∞
n=0 An converges absolutely.

To see why this is the case, observe that the definition of lim supn7→∞ |An|
1
n implies that

given ε > 0, there exists N(ε) such that

|An|
1
n ≤ lim sup

n7→∞
|An|

1
n + ε, whenever n > N(ε).

Choose ε small enough so that

|An|
1
n ≤ lim sup

n7→∞
|An|

1
n + ε ≤ r1 < 1.
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Then
∞∑

n=N(ε)+1

|An| ≤
∑

n=N(ε)+1

[
|An|

1
n

]n
≤

∞∑
n=N(ε)+1

rn1 =
r
N(ε)+1
1

1− r1

,

and an application of the comparison test implies that
∑∞

n=0An converges absolutely. It is
then a matter of setting An = anz

n and requiring that

lim sup
n 7→∞

|An|
1
n = |z| lim sup

n7→∞
|an|

1
n < 1.

If lim supn7→∞ |An|
1
n = |z| lim supn 7→∞ |an|

1
n > 1, the definition of lim supn7→∞ |an|

1
n implies

that
1 < |z|[lim sup

n 7→∞
|an|

1
n − ε], for infinitely many n.

Then Proposition 11.1 implies that
∑∞

n=0An =
∑∞

n=0 anz
n diverges.

Even though the ratio test does not apply to every power series, it provides a useful way
of computing the radius of convergence of a power series.

Proposition 11.5. Let f(z) =
∑∞

k=0 akz
k be a power series with coefficients ak ∈ C. Sup-

pose there is some N > 0 such that an 6= 0 for all n ≥ N , and either

R = lim
n7→∞

∣∣∣∣ anan+1

∣∣∣∣
exists, or the sequence on the righthand side diverges to infinity, in which case we write
R =∞. Then the power series

∑∞
k=0 akz

k has radius of convergence R.

For example, for the power series

exp(z) =
∞∑
k=0

zk

k!
,

we have ∣∣∣∣ akak+1

∣∣∣∣ =
(k + 1)!

k!
= k + 1,

whose limit is ∞, so the exponential is defined for all z ∈ C; its radius of convergence is ∞.
For the power series

f(z) =
∞∑
k=0

zk

(k + 1)!
,

we have ∣∣∣∣ akak+1

∣∣∣∣ =
(k + 2)!

(k + 1)!
= k + 2,

so f(z) also has infinite radius of convergence.
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For the power series

log(1 + x) =
∞∑
k=1

(−1)k+1x
k

k
,

if k ≥ 1 we have ∣∣∣∣ akak+1

∣∣∣∣ =
k + 1

k

whose limit is 1, so log(1 + x) has radius of convergence 1. For x = 1, the series converges
to log(2), but for x = −1, the series diverges.

Power series behave very well with respect to term by term differentiation and term by
term integration.

Proposition 11.6. Suppose the power series f(z) =
∑∞

k=0 akz
k (with complex coefficients)

has radius of convergence R > 0. Then, f ′(z) exists if |z| < R, the power series
∑∞

k=1 kakz
k−1

has radius of convergence R, and

f ′(z) =
∞∑
k=1

kakz
k−1.

Proposition 11.7. Suppose the power series f(z) =
∑∞

k=0 akz
k (with complex coefficients)

has radius of convergence R > 0. Then F (z) =
∫ z

0
f(t) dt exists if |z| < R, the power series∑∞

k=0
ak
k+1

zk+1 has radius of convergence R, and

F (z) =
∞∑
k=0

ak
k + 1

zk+1.

Let us now assume that f(z) =
∑∞

k=0 akz
k is a power series with coefficients ak ∈ C, and

that its radius of convergence is R. Given any matrix A ∈ Mn(C) we can form the power
series obtained by substituting A for z,

f(A) =
∞∑
k=0

akA
k.

Let ‖ ‖ be any matrix norm on Mn(C). Then the following proposition regarding the con-
vergence of the power series f(A) holds.

Proposition 11.8. Let f(z) =
∑∞

k=1 akz
k be a power series with complex coefficients, write

R for its radius of convergence, and assume that R > 0. For every ρ such that 0 < ρ < R,
the series f(A) =

∑∞
k=1 akA

k is absolutely convergent for all A ∈ Mn(C) such that ‖A‖ ≤ ρ.
Furthermore, f is continuous on the open ball B(R) = {A ∈ Mn(C) | ‖A‖ < R}.
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Note that unlike the case where A ∈ C, if ‖A‖ > R, we cannot claim that the series
f(A) diverges. This has to do with the fact that even for the operator norm we may have
‖An‖ < ‖A‖n, a fact which should be contrasted to situation in C where |a|n = |an|. We
leave it as an exercise to find an example of a series and a matrix A with ‖A‖ > R, and yet
f(A) converges. Hint: Consider A to be nilpotent, i.e. A 6= 0 but Ak = 0 for some positive
integer k.

As an application of Proposition 11.8, the exponential power series

eA = exp(A) =
∞∑
k=0

Ak

k!

is absolutely convergent for all A ∈ Mn(C), and continuous everywhere. Proposition 11.8
also implies that the series

log(I + A) =
∞∑
k=1

(−1)k+1A
k

k

is absolutely convergent if ‖A‖ < 1.

Next, let us consider the generalization of the notion of a power series f(t) =
∑∞

k=1 akt
k

of a complex variable t, where the coefficients ak belong to a complete normed vector space
(F, ‖ ‖). Then it is easy to see that Proposition 11.4 generalizes to this situation.

Proposition 11.9. Let (F, ‖ ‖) be a complete normed vector space. Given any power series

f(t) =
∞∑
k=0

akt
k,

with t ∈ C and ak ∈ F , there is a nonnegative real R, possibly infinite, called the radius of
convergence of the power series, such that if |t| < R, then f(t) converges absolutely, else
if |t| > R, then f(t) diverges. Moreover, we have

R =
1

lim supn7→∞ ‖an‖1/n
.

Propositions 11.6 and 11.7 also holds in this more general setting and the proofs are the
same.

Proposition 11.10. Let (F, ‖ ‖) be a complete normed vector space. Suppose the power
series f(t) =

∑∞
k=0 akt

k (with coefficients ak ∈ F ) has radius of convergence R. Then, f ′(t)
exists if |t| < R, the power series

∑∞
k=1 kakt

k−1 has radius of convergence R, and

f ′(t) =
∞∑
k=1

kakt
k−1.
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Proposition 11.11. Let (F, ‖ ‖) be a complete normed vector space. Suppose the power
series f(t) =

∑∞
k=0 akt

k (with coefficients ak ∈ F ) has radius of convergence R > 0. Then

F (t) =
∫ t

0
f(z) dz exists if |t| < R, the power series

∑∞
k=0

ak
k+1

tk+1 has radius of convergence
R, and

F (t) =
∞∑
k=0

ak
k + 1

tk+1.

So far we have considered series as individual entities. We end this section with a discus-
sion on ways to combine pairs of series through addition, multiplication, and composition.
Given a complete normed vector space (E, ‖ ‖), if

∑∞
k=0 ak and

∑∞
k=0 bk are two series with

ak, bk ∈ E, we can form the series
∑∞

k=0(ak+bk) whose kth terms is ak+bk, and for any scalar
λ, the series

∑∞
k=0 λak, whose kth terms is λak. It is easy to see that if

∑∞
k=0 ak and

∑∞
k=0 bk

are absolutely convergent with sums A and B, respectively, then the series
∑∞

k=0(ak + bk)
and

∑∞
k=0 λak are absolutely convergent, and their sums are given by

∞∑
k=0

(ak + bk) = A+B =
∞∑
k=0

ak +
∞∑
k=0

bk

∞∑
k=0

λak = λA = λ
∞∑
k=0

ak.

If f(z) =
∑∞

k=0 akz
k and g(z) =

∑∞
k=0 bkz

k are two power series with ak, bk ∈ E, we
can form the power series h(z) =

∑∞
k=0(ak + bk)z

k, and for any scalar λ, the power series
s(z) =

∑∞
k=0 λakz

k. We can show easily that if f(z) has radius of convergence R(f) and g(z)
has radius of convergence R(g), then h(z) has radius of convergence ≥ min(R(f), R(g)), and
for every z such that |z| < min(R(f), R(g)), we have

h(z) = f(z) + g(z).

Furthermore, s(z) has radius of convergence ≥ R(f), and for every z such that |z| < R(f),
we have

s(z) = λf(z).

The above also applies to power series f(A) =
∑∞

k=0 akA
k and g(A) =

∑∞
k=0 bkA

k with
matrix argument A ∈ Mn(C), with |z| replaced by ‖A‖.

Let us now consider the product of two series
∑∞

k=0 ak and
∑∞

k=0 bk where ak, bk ∈ C.
The Cauchy product of these two series is the series

∑∞
k=0 ck, where

ck =
k∑
i=0

aibk−i k ∈ N.

The following result can be shown (for example, see Cartan [27]).
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Proposition 11.12. Let
∑∞

k=0 ak and
∑∞

k=0 bk be two series with coefficients ak, bk ∈ C. If
both series converge absolutely to limits A and B, respectively, then their Cauchy product∑∞

k=0 ck, converges absolutely, and if C is the limit of the Cauchy product, then C = AB.

Next, if f(z) =
∑∞

k=0 akz
k and g(z) =

∑∞
k=0 bkz

k are two power series with coefficients
ak, bk ∈ C, the product of the power series f(z) and g(z) is the power series h(z) =

∑∞
k=0 ckz

k

where ck is the Cauchy product

ck =
k∑
i=0

aibk−i k ∈ N.

Proposition 11.13. Let f(z) =
∑∞

k=0 akz
k and g(z) =

∑∞
k=0 bkz

k be two series with coeffi-
cients ak, bk ∈ C. If both series have a radius of convergence ≥ ρ, then their Cauchy product
h(z) =

∑∞
k=0 ckz

k has radius of convergence ≥ ρ. Furthermore, for all z, if |z| < ρ, then

h(z) = f(z)g(z).

Proposition 11.13 still holds for power series f(A) =
∑∞

k=0 akA
k and g(A) =

∑∞
k=0 bkA

k

with matrix argument A ∈ Mn(R), with |z| < ρ replaced by ‖A‖ < ρ.

Finally, let us consider the substitution of power series. Let f(z) =
∑∞

k=0 akz
k and

g(z) =
∑∞

k=0 bkz
k be two series with coefficients ak, bk ∈ C, and assume that a0 = 0. Then

if we substitute f(z) for z in g(z), we get an expression

g(f(z)) =
∞∑
k=0

bk

( ∞∑
n=0

anz
n

)k
,

and because a0 = 0, when we expand the powers, there are only finitely many terms involving

any monomial zm, since for k > m, the power

(∑∞
n=0 anz

n

)k
has no terms of degree less

than m. Thus, we can regroup the terms of g(f(z)) involving each monomial zm, and the
resulting power series is denoted by (g ◦ f)(z). We have the following result (for example,
see Cartan [27]).

Proposition 11.14. Let f(z) =
∑∞

k=0 akz
k and g(z) =

∑∞
k=0 bkz

k be two power series with
coefficients ak, bk ∈ C, and write R(f) for the radius of convergence of f(z) and R(g) for
the radius of convergence of g(z). If R(f) > 0, R(g) > 0, and a0 = 0, then for any r > 0
chosen so that

∑∞
k=1 |ak|rk < R(g), the following hold:

1. The radius of convergence R(h) of h(z) = (g ◦ f)(z) is at least r.

2. For every z, if |z| ≤ r, then |f(z)| < R(g), and

h(z) = g(f(z)).



11.2. THE DERIVATIVE OF A FUNCTION BETWEEN NORMED SPACES 343

Proposition 11.14 still holds for power series f(A) =
∑∞

k=0 akA
k and g(A) =

∑∞
k=0 bkA

k

with matrix argument A ∈ Mn(C), with |z| ≤ r replaced by ‖A‖ ≤ r and |f(z)| < R(g)
replaced by ‖f(z)‖ < R(g).

As an application of Proposition 11.14, (see Cartan [27]) note that the formal power
series

E(A) =
∞∑
k=1

Ak

k!

and

L(A) =
∞∑
k=1

(−1)k+1A
k

k

are mutual inverses; that is,

E(L(A)) = A, L(E(A)) = A, for all A.

Observe that E(A) = eA − I = exp(A)− I and L(A) = log(I + A). It follows that

log(exp(A)) = A for all A with ‖A‖ < log(2)

exp(log(I + A)) = I + A for all A with ‖A‖ < 1.

11.2 The Derivative of a Function Between

Normed Vector Spaces

In this section we review some basic notions of differential calculus, in particular, the deriva-
tive of a function f : E → F , where E and F are normed vector spaces. In most cases,
E = Rn and F = Rm. However, if we need to deal with infinite dimensional manifolds, then
it is necessary to allow E and F to be infinite dimensional. We omit most proofs and refer the
reader to standard analysis textbooks such as Lang [74, 73], Munkres [88], Choquet-Bruhat
[32] or Schwartz [103, 104], for a complete exposition.

Let E and F be two normed vector spaces , let A ⊆ E be some open subset of E, and let
a ∈ A be some element of A. Even though a is a vector, we may also call it a point.

The idea behind the derivative of the function f at a is that it is a linear approximation
of f in a small open set around a. The difficulty is to make sense of the quotient

f(a+ h)− f(a)

h

where h is a vector. We circumvent this difficulty in two stages.

A first possibility is to consider the directional derivative with respect to a vector u 6= 0
in E.
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We can consider the vector f(a+ tu)− f(a), where t ∈ R (or t ∈ C). Now,

f(a+ tu)− f(a)

t

makes sense.

The idea is that in E, the points of the form a+ tu for t in some small interval [−ε, +ε] in
R form a line segment [r, s] in A containing a, and that the image of this line segment defines
a small curve segment on f(A). This curve segment is defined by the map t 7→ f(a + tu),
from [r, s] to F , and the directional derivative Duf(a) defines the direction of the tangent
line at a to this curve. See Figure 11.2.

u
a

a + tu

a + tu

a

f(a)

f(a+tu)

D   f(a)
u

Figure 11.2: Let f : R2 → R. The graph of f is the peach surface in R3, and t 7→ f(a + tu)
is the embedded orange curve connecting f(a) to f(a+ tu). Then Duf(a) is the slope of the
pink tangent line in the direction of u.

Definition 11.4. Let E and F be two normed vector spaces, let A be a nonempty open
subset of E, and let f : A → F be any function. For any a ∈ A, for any u 6= 0 in E, the
directional derivative of f at a w.r.t. the vector u, denoted by Duf(a), is the limit (if it
exists)

lim
t→0, t∈U

f(a+ tu)− f(a)

t
,

where U = {t ∈ R | a+ tu ∈ A, t 6= 0} (or U = {t ∈ C | a+ tu ∈ A, t 6= 0}).

Since the map t 7→ a+ tu is continuous, and since A− {a} is open, the inverse image U
of A − {a} under the above map is open, and the definition of the limit in Definition 11.4
makes sense.
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Remark: Since the notion of limit is purely topological, the existence and value of a di-
rectional derivative is independent of the choice of norms in E and F , as long as they are
equivalent norms.

The directional derivative is sometimes called the Gâteaux derivative.

In the special case where E = R, F = R and we let u = 1 (i.e., the real number 1, viewed
as a vector), it is immediately verified that D1f(a) = f ′(a). When E = R (or E = C) and F
is any normed vector space, the derivative D1f(a), also denoted by f ′(a), provides a suitable
generalization of the notion of derivative.

However, when E has dimension ≥ 2, directional derivatives present a serious problem,
which is that their definition is not sufficiently uniform. Indeed, there is no reason to believe
that the directional derivatives w.r.t. all nonzero vectors u share something in common. As
a consequence, a function can have all directional derivatives at a, and yet not be continuous
at a. Two functions may have all directional derivatives in some open sets, and yet their
composition may not. Thus we introduce a more uniform notion.

Given two normed vector spaces E and F , recall that a linear map f : E → F is contin-
uous iff there is some constant C ≥ 0 such that

‖f(u)‖ ≤ C ‖u‖ for all u ∈ E.

The set of continuous linear maps from E to F is a vector space denoted L(E;F ), and
the set of all linear maps from E to F is a vector space denoted by Hom(E,F ). If E is
finite-dimensional, then L(E;F ) = Hom(E,F ), but if E is infinite-dimensional, then there
may be linear maps that are not continuous, and in general the space L(E;F ) is a proper
subspace of Hom(E,F ).

Definition 11.5. Let E and F be two normed vector spaces, let A be a nonempty open
subset of E, and let f : A→ F be any function. For any a ∈ A, we say that f is differentiable
at a ∈ A if there is a continuous linear map, L : E → F , and a function, ε(h), such that

f(a+ h) = f(a) + L(h) + ε(h)‖h‖

for every a+ h ∈ A, where
lim

h→0, h∈U
ε(h) = 0,

with U = {h ∈ E | a + h ∈ A, h 6= 0}. The linear map L is denoted by Df(a), or Dfa, or
df(a), or dfa, or f ′(a), and it is called the Fréchet derivative, or total derivative, or derivative,
or total differential , or differential , of f at a. See Figure 11.3.

Since the map h 7→ a+h from E to E is continuous, and since A is open in E, the inverse
image U of A− {a} under the above map is open in E, and it makes sense to say that

lim
h→0, h∈U

ε(h) = 0.
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a

h

h

f(a)

f(a+h)

f(a)
L(h)

f(a+h) -

Figure 11.3: Let f : R2 → R. The graph of f is the green surface in R3. The linear map
L = Df(a) is the pink tangent plane. For any vector h ∈ R2, L(h) is approximately equal
to f(a+ h)− f(a). Note that L(h) is also the direction tangent to the curve t 7→ f(a+ tu).

Note that for every h ∈ U , since h 6= 0, ε(h) is uniquely determined since

ε(h) =
f(a+ h)− f(a)− L(h)

‖h‖ ,

and the value ε(0) plays absolutely no role in this definition. It does no harm to assume that
ε(0) = 0, and we will assume this from now on.

Remark: Since the notion of limit is purely topological, the existence and value of a deriva-
tive is independent of the choice of norms in E and F , as long as they are equivalent norms.

The following proposition shows that our new definition is consistent with the definition
of the directional derivative and that the continuous linear map L is unique, if it exists.

Proposition 11.15. Let E and F be two normed vector spaces, let A be a nonempty open
subset of E, and let f : A→ F be any function. For any a ∈ A, if Df(a) is defined, then f is
continuous at a and f has a directional derivative Duf(a) for every u 6= 0 in E. Furthermore,

Duf(a) = Df(a)(u)

and thus, Df(a) is uniquely defined.

Proof. If L = Df(a) exists, then for any nonzero vector u ∈ E, because A is open, for any
t ∈ R− {0} (or t ∈ C− {0}) small enough, a+ tu ∈ A, so

f(a+ tu) = f(a) + L(tu) + ε(tu)‖tu‖
= f(a) + tL(u) + |t|ε(tu)‖u‖
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which implies that

L(u) =
f(a+ tu)− f(a)

t
− |t|

t
ε(tu)‖u‖,

and since limt7→0 ε(tu) = 0, we deduce that

L(u) = Df(a)(u) = Duf(a).

Because
f(a+ h) = f(a) + L(h) + ε(h)‖h‖

for all h such that ‖h‖ is small enough, L is continuous, and limh7→0 ε(h)‖h‖ = 0, we have
limh7→0 f(a+ h) = f(a), that is, f is continuous at a.

Observe that the uniqueness of Df(a) follows from Proposition 11.15. Also when E is of
finite dimension, it is easily shown that every linear map is continuous and this assumption
is then redundant.

As an example, consider the map f : Mn(R)→ Mn(R) given by

f(A) = A>A− I,

where Mn(R) denotes the vector space of all n × n matrices with real entries equipped
with any matrix norm, since they are all equivalent; for example, pick the Frobenius norm
‖A‖F =

√
tr(A>A). We claim that

Df(A)(H) = A>H +H>A, for all A and H in Mn(R).

We have

f(A+H)− f(A)− (A>H +H>A) = (A+H)>(A+H)− I − (A>A− I)− A>H −H>A
= A>A+ A>H +H>A+H>H − A>A− A>H −H>A
= H>H.

It follows that

ε(H) =
f(A+H)− f(A)− (A>H +H>A)

‖H‖ =
H>H

‖H‖ ,

and since our norm is the Frobenius norm,

‖ε(H)‖ =

∥∥∥∥H>H‖H‖
∥∥∥∥ ≤

∥∥H>∥∥ ‖H‖
‖H‖ =

∥∥H>∥∥ = ‖H‖ ,

so
lim
H 7→0

ε(H) = 0,

and we conclude that
Df(A)(H) = A>H +H>A.



348 CHAPTER 11. BASIC ANALYSIS: REVIEW OF SERIES AND DERIVATIVES

If Df(a) exists for every a ∈ A, we get a map Df : A→ L(E;F ), called the derivative of
f on A, and also denoted by df . Here L(E;F ) denotes the vector space of continuous linear
maps from E to F .

We now consider a number of standard results about derivatives. A function f : E → F

is said to be affine if there is some linear map
−→
f : E → F and some fixed vector c ∈ F , such

that

f(u) =
−→
f (u) + c

for all u ∈ E. We call
−→
f the linear map associated with f .

Proposition 11.16. Given two normed vector spaces E and F , if f : E → F is a constant
function, then Df(a) = 0, for every a ∈ E. If f : E → F is a continuous affine map, then

Df(a) =
−→
f , for every a ∈ E, where

−→
f denotes the linear map associated with f .

Proposition 11.17. Given a normed vector space E and a normed vector space F , for any
two functions f, g : E → F , for every a ∈ E, if Df(a) and Dg(a) exist, then D(f +g)(a) and
D(λf)(a) exist, and

D(f + g)(a) = Df(a) + Dg(a),

D(λf)(a) = λDf(a).

Given two normed vector spaces (E1, ‖ ‖1) and (E2, ‖ ‖2), there are three natural and
equivalent norms that can be used to make E1 × E2 into a normed vector space:

1. ‖(u1, u2)‖1 = ‖u1‖1 + ‖u2‖2.

2. ‖(u1, u2)‖2 = (‖u1‖2
1 + ‖u2‖2

2)1/2.

3. ‖(u1, u2)‖∞ = max(‖u1‖1 , ‖u2‖2).

We usually pick the first norm. If E1, E2, and F are three normed vector spaces, recall that
a bilinear map f : E1 × E2 → F is continuous iff there is some constant C ≥ 0 such that

‖f(u1, u2)‖ ≤ C ‖u1‖1 ‖u2‖2 for all u1 ∈ E1 and all u2 ∈ E2.

Proposition 11.18. Given three normed vector spaces E1, E2, and F , for any continuous
bilinear map f : E1 × E2 → F , for every (a, b) ∈ E1 × E2, Df(a, b) exists, and for every
u ∈ E1 and v ∈ E2,

Df(a, b)(u, v) = f(u, b) + f(a, v).
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Proof. Since f is bilinear, a simple computation implies that

f((a, b) + (u, v))− f(a, b)− (f(u, b) + f(a, v)) = f(a+ u, b+ v)− f(a, b)− f(u, b)− f(a, v)

= f(a+ u, b) + f(a+ u, v)− f(a, b)− f(u, b)− f(a, v)

= f(a, b) + f(u, b) + f(a, v) + f(u, v)− f(a, b)− f(u, b)− f(a, v)

= f(u, v).

We define

ε(u, v) =
f((a, b) + (u, v))− f(a, b)− (f(u, b) + f(a, v))

‖(u, v)‖1

,

and observe that the continuity of f implies

‖f((a, b) + (u, v))− f(a, b)− (f(u, b) + f(a, v))‖ = ‖f(u, v)‖
≤ C ‖u‖1 ‖v‖2 ≤ C (‖u‖1 + ‖v‖2)2 .

Hence

‖ε(u, v)‖ =

∥∥∥∥ f(u, v)

‖(u, v)‖1

∥∥∥∥ =
‖f(u, v)‖
‖(u, v)‖1

≤ C (‖u‖1 + ‖v‖2)2

‖u‖1 + ‖v‖2

= C (‖u‖1 + ‖v‖2) = C ‖(u, v)‖1 ,

which in turn implies lim(u,v)7→(0,0) ε(u, v) = 0.

We now state the very useful chain rule.

Theorem 11.19. Given three normed vector spaces E, F , and G, let A be an open set in
E, and let B an open set in F . For any functions f : A → F and g : B → G, such that
f(A) ⊆ B, for any a ∈ A, if Df(a) exists and Dg(f(a)) exists, then D(g ◦ f)(a) exists, and

D(g ◦ f)(a) = Dg(f(a)) ◦Df(a).

Theorem 11.19 has many interesting consequences. We mention one corollary.

Proposition 11.20. Given two normed vector spaces E and F , let A be some open subset
in E, let B be some open subset in F , let f : A→ B be a bijection from A to B, and assume
that Df exists on A and that Df−1 exists on B. Then for every a ∈ A,

Df−1(f(a)) = (Df(a))−1.

Proposition 11.20 has the remarkable consequence that the two vector spaces E and F
have the same dimension. In other words, a local property, the existence of a bijection f
between an open set A of E and an open set B of F , such that f is differentiable on A and
f−1 is differentiable on B, implies a global property, that the two vector spaces E and F
have the same dimension. Let us mention two more rules about derivatives that are used all
the time.
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Let ι : GL(n,C)→ Mn(C) be the function (inversion) defined on invertible n×n matrices
by ι(A) = A−1. Then we have

dιA(H) = −A−1HA−1,

for all A ∈ GL(n,C) and for all H ∈ Mn(C).

To prove the preceding line observe that for H with sufficiently small norm, we have

ι(A+H)− ι(A) + A−1HA−1 = (A+H)−1 − A−1 + A−1HA−1

= (A+H)−1[I − (A+H)A−1 + (A+H)A−1HA−1]

= (A+H)−1[I − I −HA−1 +HA−1 +HA−1HA−1]

= (A+H)−1HA−1HA−1.

Consequently, we get

ε(H) =
ι(A+H)− ι(A) + A−1HA−1

‖H‖ =
(A+H)−1HA−1HA−1

‖H‖ ,

and since ∥∥(A+H)−1HA−1HA−1
∥∥ ≤ ‖H‖2

∥∥A−1
∥∥2 ∥∥(A+H)−1

∥∥ ,
it is clear that limH 7→0 ε(H) = 0, which proves that

dιA(H) = −A−1HA−1.

In particular, if A = I, then dιI(H) = −H.

Next, if f : Mn(C)→ Mn(C) and g : Mn(C)→ Mn(C) are differentiable matrix functions,
then

d(fg)A(B) = dfA(B)g(A) + f(A)dgA(B),

for all A,B ∈ Mn(C). This is known as the product rule.

When E is of finite dimension n, for any basis, (u1, . . . , un), of E, we can define the
directional derivatives with respect to the vectors in the basis (u1, . . . , un) (actually, we can
also do it for an infinite basis). This way we obtain the definition of partial derivatives, as
follows:

Definition 11.6. For any two normed spaces E and F , if E is of finite dimension n, for
every basis (u1, . . . , un) for E, for every a ∈ E, for every function f : E → F , the directional
derivatives Dujf(a) (if they exist) are called the partial derivatives of f with respect to the

basis (u1, . . . , un). The partial derivative Dujf(a) is also denoted by ∂jf(a), or
∂f

∂xj
(a).
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The notation
∂f

∂xj
(a) for a partial derivative, although customary and going back to

Leibniz, is a “logical obscenity.” Indeed, the variable xj really has nothing to do with the
formal definition. This is just another of these situations where tradition is just too hard to
overthrow!

If both E and F are of finite dimension, for any basis (u1, . . . , un) of E and any basis
(v1, . . . , vm) of F , every function f : E → F is determined by m functions fi : E → R (or
fi : E → C), where

f(x) = f1(x)v1 + · · ·+ fm(x)vm,

for every x ∈ E. Then we get

Df(a)(uj) = Df1(a)(uj)v1 + · · ·+ Dfi(a)(uj)vi + · · ·+ Dfm(a)(uj)vm,

that is,
Df(a)(uj) = ∂jf1(a)v1 + · · ·+ ∂jfi(a)vi + · · ·+ ∂jfm(a)vm.

Since the j-th column of the m× n-matrix representing Df(a) w.r.t. the bases (u1, . . . , un)
and (v1, . . . ,vm) is equal to the components of the vector Df(a)(uj) over the basis (v1, . . . , vm),
the linear map Df(a) is determined by the m× n-matrix

J(f)(a) = (∂jfi(a)), or J(f)(a) =

(
∂fi
∂xj

(a)

)
:

J(f)(a) =


∂1f1(a) ∂2f1(a) . . . ∂nf1(a)
∂1f2(a) ∂2f2(a) . . . ∂nf2(a)

...
...

. . .
...

∂1fm(a) ∂2fm(a) . . . ∂nfm(a)


or

J(f)(a) =



∂f1

∂x1

(a)
∂f1

∂x2

(a) . . .
∂f1

∂xn
(a)

∂f2

∂x1

(a)
∂f2

∂x2

(a) . . .
∂f2

∂xn
(a)

...
...

. . .
...

∂fm
∂x1

(a)
∂fm
∂x2

(a) . . .
∂fm
∂xn

(a)


.

This matrix is called the Jacobian matrix of Df at a. When m = n, the determinant,
det(J(f)(a)), of J(f)(a) is called the Jacobian of Df(a).

We know that this determinant only depends on Df(a), and not on specific bases. How-
ever, partial derivatives give a means for computing it.

When E = Rn and F = Rm, for any function f : Rn → Rm, it is easy to compute the

partial derivatives
∂fi
∂xj

(a). We simply treat the function fi : Rn → R as a function of its j-th

argument, leaving the others fixed, and compute the derivative as the usual derivative.
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Example 11.1. For example, consider the function f : R2 → R2, defined by

f(r, θ) = (r cos θ, r sin θ).

Then we have

J(f)(r, θ) =

(
cos θ −r sin θ
sin θ r cos θ

)
and the Jacobian (determinant) has value det(J(f)(r, θ)) = r.

In the case where E = R (or E = C), for any function f : R → F (or f : C → F ), the
Jacobian matrix of Df(a) is a column vector. In fact, this column vector is just D1f(a).
Then for every λ ∈ R (or λ ∈ C), Df(a)(λ) = λD1f(a). This case is sufficiently important
to warrant a definition.

Definition 11.7. Given a function f : R → F (or f : C → F ), where F is a normed space,
the vector

Df(a)(1) = D1f(a)

is called the vector derivative or velocity vector (in the real case) at a. We usually identify
Df(a) with its Jacobian matrix D1f(a), which is the column vector corresponding to D1f(a).
By abuse of notation, we also let Df(a) denote the vector Df(a)(1) = D1f(a).

When E = R, the physical interpretation is that f defines a (parametric) curve that is
the trajectory of some particle moving in Rm as a function of time, and the vector D1f(a)
is the velocity of the moving particle f(t) at t = a. See Figure 11.4.

Example 11.2.

1. When A = (0, 1) and F = R3, a function
f : (0, 1) → R3 defines a (parametric) curve in R3. If f = (f1, f2, f3), its Jacobian
matrix at a ∈ R is

J(f)(a) =



∂f1

∂t
(a)

∂f2

∂t
(a)

∂f3

∂t
(a)

 .

See Figure 11.4.

The velocity vectors J(f)(a) =

− sin(t)
cos(t)

1

 are represented by the blue arrows.
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Figure 11.4: The red space curve f(t) = (cos(t), sin(t), t).

2. When E = R2 and F = R3, a function ϕ : R2 → R3 defines a parametric surface.
Letting ϕ = (f, g, h), its Jacobian matrix at a ∈ R2 is

J(ϕ)(a) =



∂f

∂u
(a)

∂f

∂v
(a)

∂g

∂u
(a)

∂g

∂v
(a)

∂h

∂u
(a)

∂h

∂v
(a)

 .

See Figure 11.5. The Jacobian matrix is J(f)(a) =

 1 0
0 1

2u 2v

. The first column is

the vector tangent to the pink u-direction curve, while the second column is the vector
tangent to the blue v-direction curve.

3. When E = R3 and F = R, for a function f : R3 → R, the Jacobian matrix at a ∈ R3 is

J(f)(a) =

(
∂f

∂x
(a)

∂f

∂y
(a)

∂f

∂z
(a)

)
.

More generally, when f : Rn → R, the Jacobian matrix at a ∈ Rn is the row vector

J(f)(a) =

(
∂f

∂x1

(a) · · · ∂f
∂xn

(a)

)
.

Its transpose is a column vector called the gradient of f at a, denoted by gradf(a) or ∇f(a).
Then given any v ∈ Rn, note that

Df(a)(v) =
∂f

∂x1

(a) v1 + · · ·+ ∂f

∂xn
(a) vn = gradf(a) · v,
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Figure 11.5: The parametric surface x = u, y = v, z = u2 + v2.

the scalar product of gradf(a) and v.

When E, F , and G have finite dimensions, where (u1, . . . , up) is a basis for E, (v1, . . . , vn)
is a basis for F , and (w1, . . . , wm) is a basis for G, if A is an open subset of E, B is an open
subset of F , for any functions f : A→ F and g : B → G, such that f(A) ⊆ B, for any a ∈ A,
letting b = f(a), and h = g ◦ f , if Df(a) exists and Dg(b) exists, by Theorem 11.19, the
Jacobian matrix J(h)(a) = J(g ◦ f)(a) w.r.t. the bases (u1, . . . , up) and (w1, . . . , wm) is the
product of the Jacobian matrices J(g)(b) w.r.t. the bases (v1, . . . , vn) and (w1, . . . , wm), and
J(f)(a) w.r.t. the bases (u1, . . . , up) and (v1, . . . , vn):

J(h)(a) =



∂g1

∂y1

(b)
∂g1

∂y2

(b) . . .
∂g1

∂yn
(b)

∂g2

∂y1

(b)
∂g2

∂y2

(b) . . .
∂g2

∂yn
(b)

...
...

. . .
...

∂gm
∂y1

(b)
∂gm
∂y2

(b) . . .
∂gm
∂yn

(b)





∂f1

∂x1

(a)
∂f1

∂x2

(a) . . .
∂f1

∂xp
(a)

∂f2

∂x1

(a)
∂f2

∂x2

(a) . . .
∂f2

∂xp
(a)

...
...

. . .
...

∂fn
∂x1

(a)
∂fn
∂x2

(a) . . .
∂fn
∂xp

(a)


.

Thus we have the familiar formula

∂hi
∂xj

(a) =
n∑
k=1

∂gi
∂yk

(b)
∂fk
∂xj

(a).

Given two normed vector spaces E and F of finite dimension, given an open subset A of
E, if a function f : A→ F is differentiable at a ∈ A, then its Jacobian matrix is well defined.
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� One should be warned that the converse is false. There are functions such that all the
partial derivatives exist at some a ∈ A, but yet, the function is not differentiable at a,

and not even continuous at a.

However, there are sufficient conditions on the partial derivatives for Df(a) to exist,
namely, continuity of the partial derivatives. If f is differentiable on A, then f defines a
function Df : A→ L(E;F ). It turns out that the continuity of the partial derivatives on A
is a necessary and sufficient condition for Df to exist and to be continuous on A. To prove
this, we need an important result known as the mean value theorem.

If E is a vector space (over R or C), given any two points a, b ∈ E, the closed segment
[a, b] is the set of all points a + λ(b − a), where 0 ≤ λ ≤ 1, λ ∈ R, and the open segment
(a, b) is the set of all points a + λ(b − a), where 0 < λ < 1, λ ∈ R. The following result is
known as the mean value theorem.

Proposition 11.21. Let E and F be two normed vector spaces, let A be an open subset of
E, and let f : A → F be a continuous function on A. Given any a ∈ A and any h 6= 0 in
E, if the closed segment [a, a + h] is contained in A, if f : A → F is differentiable at every
point of the open segment (a, a+ h), and if

sup
x∈(a,a+h)

‖Df(x)‖ ≤M

for some M ≥ 0, then
‖f(a+ h)− f(a)‖ ≤M‖h‖.

As a corollary, if L : E → F is a continuous linear map, then

‖f(a+ h)− f(a)− L(h)‖ ≤M‖h‖,
where M = supx∈(a,a+h) ‖Df(x)− L‖.

A very useful result which is proved using the mean value theorem is the proposition
below.

Proposition 11.22. Let f : A → F be any function between two normed vector spaces E
and F , where A is an open subset of E. If A is connected and if Df(a) = 0 for all a ∈ A,
then f is a constant function on A.

The mean value theorem also implies the following important result.

Theorem 11.23. Given two normed vector spaces E and F , where E is of finite dimension
n and where (u1, . . . , un) is a basis of E, given any open subset A of E, given any function
f : A → F , the derivative Df : A → L(E;F ) is defined and continuous on A iff every

partial derivative ∂jf (or
∂f

∂xj
) is defined and continuous on A, for all j, 1 ≤ j ≤ n. As

a corollary, if F is of finite dimension m, and (v1, . . . , vm) is a basis of F , the derivative

Df : A→ L(E;F ) is defined and continuous on A iff every partial derivative ∂jfi

(
or

∂fi
∂xj

)
is defined and continuous on A, for all i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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Definition 11.8. Given two normed vector spaces E and F , and an open subset A of E,
we say that a function f : A → F is a C0-function on A if f is continuous on A. We say
that f : A→ F is a C1-function on A if Df exists and is continuous on A.

Let E and F be two normed vector spaces, let U ⊆ E be an open subset of E and let
f : E → F be a function such that Df(a) exists for all a ∈ U . If Df(a) is injective for all
a ∈ U , we say that f is an immersion (on U) and if Df(a) is surjective for all a ∈ U , we say
that f is a submersion (on U).

When E and F are finite dimensional with dim(E) = n and dim(F ) = m, if m ≥ n,
then f is an immersion iff the Jacobian matrix, J(f)(a), has full rank n for all a ∈ E and
if n ≥ m, then f is a submersion iff the Jacobian matrix, J(f)(a), has full rank m for all
a ∈ E.

For example, f : R→ R2 defined by f(t) = (cos(t), sin(t)) is an immersion since J(f)(t) =(
− sin(t)
cos(t)

)
has rank 1 for all t. On the other hand, f : R → R2 defined by f(t) = (t2, t2)

is not an immersion since J(f)(t) =

(
2t
2t

)
vanishes at t = 0. See Figure 11.6. An example

of a submersion is given by the projection map f : R2 → R, where f(x, y) = x, since
J(f)(x, y) =

(
1 0

)
.

A very important theorem is the inverse function theorem. In order for this theorem to
hold for infinite dimensional spaces, it is necessary to assume that our normed vector spaces
are complete. Fortunately, R,C, and every finite dimensional (real or complex) normed
vector space is complete. A real (resp. complex) vector space, E, is a real (resp. complex)
Hilbert space if it is complete as a normed space with the norm ‖u‖ =

√
〈u, u〉 induced by

its Euclidean (resp. Hermitian) inner product (of course, positive definite).

Definition 11.9. Given two topological spaces E and F and an open subset A of E, we
say that a function f : A → F is a local homeomorphism from A to F if for every a ∈ A,
there is an open set U ⊆ A containing a and an open set V containing f(a) such that f is
a one-to-one, onto, continuous function from U to V = f(U) which has continuous inverse
f−1 : V → U . If B is an open subset of F , we say that f : A→ F is a (global) homeomorphism
from A to B if f is a homeomorphism from A to B = f(A).

If E and F are normed vector spaces, we say that f : A → F is a local diffeomorphism
from A to F if for every a ∈ A, there is an open set U ⊆ A containing a and an open set
V containing f(a) such that f is a bijection from U to V , f is a C1-function on U , and f−1

is a C1-function on V = f(U). We say that f : A → F is a (global) diffeomorphism from A
to B if f is a homeomorphism from A to B = f(A), f is a C1-function on A, and f−1 is a
C1-function on B.

Note that a local diffeomorphism is a local homeomorphism. As a consequence of Propo-
sition 11.20, if f is a diffeomorphism on A, then Df(a) is a linear isomorphism for every
a ∈ A.
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(i.)

(ii.)

Figure 11.6: Figure (i.) is the immersion of R into R2 given by f(t) = (cos(t), sin(t)). Figure
(ii.), the parametric curve f(t) = (t2, t2), is not an immersion since the tangent vanishes at
the origin.

Theorem 11.24. (Inverse Function Theorem) Let E and F be complete normed vector
spaces, let A be an open subset of E, and let f : A → F be a C1-function on A. The
following properties hold:

(1) For every a ∈ A, if Df(a) is a linear isomorphism (which means that both Df(a)
and (Df(a))−1 are linear and continuous),1 then there exist some open subset U ⊆ A
containing a, and some open subset V of F containing f(a), such that f is a diffeo-
morphism from U to V = f(U). Furthermore,

Df−1(f(a)) = (Df(a))−1.

For every neighborhood N of a, the image f(N) of N is a neighborhood of f(a), and
for every open ball U ⊆ A of center a, the image f(U) of U contains some open ball
of center f(a).

(2) If Df(a) is invertible for every a ∈ A, then B = f(A) is an open subset of F , and
f is a local diffeomorphism from A to B. Furthermore, if f is injective, then f is a
diffeomorphism from A to B.

1Actually, since E and F are Banach spaces, by the Open Mapping Theorem, it is sufficient to assume
that Df(a) is continuous and bijective; see Lang [73].
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Proofs of the inverse function theorem can be found in Lang [73], Abraham and Marsden
[1], Schwartz [104], and Cartan [28]. Part (1) of Theorem 11.24 is often referred to as the
“(local) inverse function theorem.” It plays an important role in the study of manifolds and
(ordinary) differential equations.

If E and F are both of finite dimension, the case where Df(a) is just injective or just
surjective is also important for defining manifolds, using implicit definitions.

Suppose as before that f : A → F is a function from some open subset A of E, with E
and F two normed vector spaces. If Df : A → L(E;F ) exists for all a ∈ A, then we can
consider taking the derivative DDf(a) of Df at a. If it exists, DDf(a) is a continuous linear
map in L(E;L(E;F )), and we denote DDf(a) as D2f(a). It is known that the vector space
L(E;L(E;F )) is isomorphic to the vector space of continuous bilinear maps L2(E2;F ), so we
can view D2f(a) as a bilinear map in L2(E2;F ). It is also known by Schwarz’s lemma that
D2f(a) is symmetric (partial derivatives commute; see Schwartz [104]). Therefore, for every
a ∈ A, where it exists, D2f(a) belongs to the space Sym2(E2;F ) of continuous symmetric
bilinear maps from E2 to F . If E has finite dimension n and F = R, with respect to any
basis (e1, . . . , en) of E, D2f(a)(u, v) is the value of the quadratic form u>Hessf(a)v, where

Hessf(a) =

(
∂2f

∂xi∂xj
(a)

)
is the Hessian matrix of f at a.

By induction, if Dmf : A → Symm(Em;F ) exists for m ≥ 1, where Symm(Em;F )
denotes the vector space of continuous symmetric multilinear maps from Em to F , and
if DDmf(a) exists for all a ∈ A, we obtain the (m + 1)th derivative Dm+1f of f , and
Dm+1f ∈ Symm+1(Em+1;F ), where Symm+1(Em+1;F ) is the vector space of continuous
symmetric multilinear maps from Em+1 to F .

For any m ≥ 1, we say that the map f : A → F is a Cm-function (or simply that f is
Cm) if Df,D2f, . . . ,Dmf exist and are continuous on A.

We say that f is C∞ or smooth if Dmf exists and is continuous on A for all m ≥ 1. If E
has finite dimension n, it can be shown that f is smooth iff all of its partial derivatives

∂mf

∂xi1 · · · ∂xim
(a)

are defined and continuous for all a ∈ A, all m ≥ 1, and all i1, . . . , im ∈ {1, . . . , n}.

The function f : A → F is a Cm-diffeomorphism between A and B = f(A) if f is a
bijection from A to B and if f and f−1 are Cm. Similarly, f is a smooth diffeomorphism
between A and B = f(A) if f is a bijection from A to B and if f and f−1 are smooth.
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11.3 Linear Vector Fields and the Exponential

Definition 11.10. Given some open subset A of Rn, a vector field X on A is a function
X : A→ Rn, which assigns to every point p ∈ A a vector X(p) ∈ Rn.

Usually we assume that X is at least C1 on A. For example, if f : R2 → R is f(x, y) =
cos(xy2), the gradient vector field X is (−y2 sin(xy2),−2xy sin(xy2)) = (X1, X2). Note that

∂X1

∂y
= −2y sin(xy2)− 2xy3 cos(xy2) =

∂X2

∂x
.

This example is easily generalized to Rn. In particular, if f : A → R is a C1 function,
then its gradient defines a vector field X; namely, p 7→ grad f(p). In general, if f is C2, then
its second partials commute; that is,

∂2f

∂xi∂xj
(p) =

∂2f

∂xj∂xi
(p), 1 ≤ i, j ≤ n,

so this gradient vector field X = (X1, . . . , Xn) has a very special property:

∂Xi

∂xj
=
∂Xj

∂xi
, 1 ≤ i, j ≤ n.

This is a necessary condition for a vector field to be the gradient of some function, but not a
sufficient condition in general. The existence of such a function depends on the topological
shape of the domain A. Understanding what are sufficient conditions to answer the above
question led to the development of differential forms and cohomology.

Definition 11.11. Given a vector field X : A → Rn, for any point p0 ∈ A, a C1 curve
γ : (−ε, ε)→ Rn (with ε > 0) is an integral curve for X with initial condition p0 if γ(0) = p0,
and

γ′(t) = X(γ(t)) for all t ∈ (−ε, ε).

An integral curve has the property that for every time t ∈ (−ε, ε), the tangent vector
γ′(t) to the curve γ at the point γ(t) coincides with the vector X(γ(t)) given by the vector
field at the point γ(t). See Figure 11.7.

Definition 11.12. Given a C1 vector field X : A → Rn, for any point p0 ∈ A, a local flow
for X at p0 is a function

ϕ : J × U → Rn,

where J ⊆ R is an open interval containing 0 and U is an open subset of A containing p0, so
that for every p ∈ U , the curve t 7→ ϕ(t, p) is an integral curve of X with initial condition p.
See Figure 11.8
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p
o

A 0

Ȗ

Figure 11.7: An integral curve in R2.

The theory of ODE tells us that if X is C1, then for every p0 ∈ A, there is a pair (J, U)
as above such that there is a unique C1 local flow ϕ : J × U → Rn for X at p0.

Let us now consider the special class of vector fields induced by matrices in Mn(R). For
any matrix A ∈ Mn(R), let XA be the vector field given by

XA(p) = Ap for all p ∈ Rn.

Such vector fields are obviously C1 (in fact, C∞).

The vector field induced by the matrix

A =

(
0 −1
1 0

)
is shown in Figure 11.9. Integral curves are circles of center (0, 0).

It turns out that the local flows of XA are global, in the sense that J = R and U = Rn,
and that they are given by the matrix exponential. The proof of this fact relies on the
observation that the map f : t 7→ etA, where A is any matrix A ∈ Mn(C), is represented by
a power series with infinite radius of convergence. An application of Propositions 11.9 and
11.10 to this power series implies that

f ′(t) =
∞∑
k=1

k
tk−1Ak

k!
= A

∞∑
k=1

tk−1Ak−1

(k − 1)!
= AetA.

Note that

AetA = etAA.
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p
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p

1

2

U

Figure 11.8: A portion of local flow ϕ : J × U → R2. If p is fixed and t varies, the flow
moves along one of the colored curves. If t is fixed and p varies, p acts as a parameter for
the individually colored curves.

Proposition 11.25. For any matrix A ∈ Mn(R), for any p0 ∈ Rn, there is a unique local
flow ϕ : R× Rn → Rn for the vector field XA given by

ϕ(t, p) = etAp,

for all t ∈ R and all p ∈ Rn.

Proof. For any p ∈ Rn, write γp(t) = ϕ(t, p). We claim that γp(t) = etAp is the unique
integral curve for XA with initial condition p.

We have
γ′p(t) = (etAp)′(t) = AetAp = Aγp(t) = XA(γp(t)),

which shows that γp is an integral curve for XA with initial condition p.

Say θ is another integral curve for XA with initial condition p. Let us compute the
derivative of the function t 7→ e−tAθ(t). Using the product rule and the fact that θ′(t) =
XA(θ(t)) = Aθ(t), we have

(e−tAθ)′(t) = (e−tA)′(t)θ(t) + e−tAθ′(t)

= e−tA(−A)θ(t) + e−tAAθ(t)

= −e−tAAθ(t) + e−tAAθ(t) = 0.

Therefore, by Proposition 11.22, the function t 7→ e−tAθ(t) is constant on R. Furthermore,
since θ(0) = p, its value is p, so

e−tAθ(t) = p for all t ∈ R.

Therefore, θ(t) = etAp = γp(t), establishing uniqueness.
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Figure 11.9: A vector field in R2.

For t fixed, the map Φt : p 7→ etAp is a smooth diffeomorphism of Rn (with inverse given
by e−tA). We can think of Φt as the map which, given any p, moves p along the integral
curve γp from p to γp(t) = etAp. For the vector field of Figure 11.9, each Φt is the rotation

etA =

(
cos t − sin t
sin t cos t

)
.

The map Φ: R→ Diff(Rn) is a group homomorphism, because

Φs ◦ Φt = esAetAp = e(s+t)Ap = Φs+t for all s, t ∈ R.

Observe that Φt(p) = ϕ(t, p). If we hold p fixed, we obtain the integral curve with initial
condition p, which is also called a flow line of the local flow. If we hold t fixed, we obtain
a smooth diffeomorphism of Rn (moving p to ϕ(t, p)). The family {Φt}t∈R is called the
1-parameter group generated by XA, and Φ is called the (global) flow generated by XA.

In the case of 2× 2 matrices, it is possible to describe explicitly the shape of all integral
curves; see Rossmann [98] (Section 1.1).

11.4 Problems

Problem 11.1. Prove Proposition 11.3.

Problem 11.2.

(i) Let (E, ‖ ‖) be a finite dimensional normed vector space. Prove that a a series is
absolutely convergence iff it is unconditionally convergent.

(ii) (Advanced) Now assume E has infinite dimension. Find a counter example to Part (i),
namely find a series that is unconditionally convergent yet not absolutely convergent.
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Problem 11.3. Let f(z) =
∑∞

k=1 akz
k be a power series with complex coefficients and radius

of convergence R, with R > 0. Find an example of a series and a matrix A with ‖A‖ > R
such that f(A) converges.

Problem 11.4. Prove Propositions 11.12 and 11.13.

Problem 11.5. Prove Proposition 11.14.

Problem 11.6. Let E be a finite dimensional normed vector space and let F be a (possibly
infinite) normed vector space. Show that every linear map f : E → F is continuous.

Problem 11.7. Prove Propositions 11.16 and 11.17.

Problem 11.8. Prove Theorem 11.19.

Problem 11.9. Prove the following: if f : Mn(C) → Mn(C) and g : Mn(C) → Mn(C) are
differentiable matrix functions, then

d(fg)A(B) = dfA(B)g(A) + f(A)dgA(B),

for all A,B ∈ Mn(C).

Problem 11.10. Consider the function f : R2 → R defined by f(0, 0) = 0 and

f(x, y) =
x2y

x4 + y2
if (x, y) 6= (0, 0).

Show that the partial derivatives of the function f exist at a = (0, 0) ∈ R2, but yet, f is not
differentiable at a, and not even continuous at a.
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Chapter 12

A Review of Point Set Topology

This chapter contains a review of the topological concepts necessary for studying differential
geometry and includes the following material:

1. The definition of a topological space in terms of open sets;

2. The definition of a basis for a topology;

3. The definition of the subspace topology;

4. The definition of the product topology;

5. The definition of continuity and notion of a homeomorphism;

6. The definition of a limit of a sequence;

7. The definition of connectivity and path-wise connectivity;

8. The definition of compactness;

9. The definition of the quotient topology.

Readers familiar with this material may proceed to Chapter 3.

12.1 Topological Spaces

We begin with the notion of a topological space.

Definition 12.1. Given a set E, a topology on E (or a topological structure on E), is defined
as a family O of subsets of E, called open sets , which satisfy the following three properties:

(1) For every finite family (Ui)1≤i≤n of sets Ui ∈ O, we have U1 ∩ · · · ∩ Un ∈ O, i.e., O is
closed under finite intersections.

365
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(2) For every arbitrary family (Ui)i∈I of sets Ui ∈ O, we have
⋃
i∈I Ui ∈ O, i.e., O is closed

under arbitrary unions.

(3) ∅ ∈ O, and E ∈ O, i.e., ∅ and E belong to O.

A set E together with a topology O on E is called a topological space. Given a topological
space (E,O), a subset F of E is a closed set if F = E − U for some open set U ∈ O, i.e., F
is the complement of some open set.

By taking complements, we can state properties of the closed sets dual to those of Defi-
nition 12.1. Thus, ∅ and E are closed sets, and the closed sets are closed under finite unions
and arbitrary intersections.

� It is possible that an open set is also a closed set. For example, ∅ and E are both open
and closed. When a topological space contains a proper nonempty subset U which is

both open and closed, the space E is said to be disconnected .

The reader is probably familiar with a certain class of topological spaces known as metric
spaces. Recall that a metric space is a set E together with a function d : E × E → R+,
called a metric, or distance, assigning a nonnegative real number d(x, y) to any two points
x, y ∈ E, and satisfying the following conditions for all x, y, z ∈ E:

(D1) d(x, y) = d(y, x). (symmetry)

(D2) d(x, y) ≥ 0, and d(x, y) = 0 iff x = y. (positivity)

(D3) d(x, z) ≤ d(x, y) + d(y, z). (triangle inequality)

For example, let E = Rn (or E = Cn). We have the Euclidean metric

d2(x, y) =
(
|x1 − y1|2 + · · ·+ |xn − yn|2

) 1
2 .

This particular metric is called the Euclidean norm, ‖x − y‖2, where a norm on E is a
function ‖ ‖ : E → R+, assigning a nonnegative real number ‖u‖ to any vector u ∈ E, and
satisfying the following conditions for all x, y, z ∈ E:

(N1) ‖x‖ ≥ 0, and ‖x‖ = 0 iff x = 0. (positivity)

(N2) ‖λx‖ = |λ| ‖x‖. (scaling)

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖. (triangle inequality)

Given a metric space E with metric d, for every a ∈ E, for every ρ ∈ R, with ρ > 0, the set

B(a, ρ) = {x ∈ E | d(a, x) ≤ ρ}
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is called the closed ball of center a and radius ρ, the set

B0(a, ρ) = {x ∈ E | d(a, x) < ρ}

is called the open ball of center a and radius ρ, and the set

S(a, ρ) = {x ∈ E | d(a, x) = ρ}

is called the sphere of center a and radius ρ. It should be noted that ρ is finite (i.e., not
+∞). Clearly, B(a, ρ) = B0(a, ρ)∪S(a, ρ). Furthermore, any metric space E is a topological
space with O being the family of arbitrary unions of open balls. See Figure 12.1.

U

a

BO
(a,    )ρ

Figure 12.1: An open set U in E = R2 under the standard Euclidean metric. Any point in
the peach set U is surrounded by a small raspberry open ball B0(a, ρ) which lies within U .

� One should be careful that, in general, the family of open sets is not closed under infinite
intersections. For example, in R under the metric |x − y|, letting Un = (−1/n, +1/n),

each Un is open, but
⋂
n Un = {0}, which is not open.

A topological space (E,O) is said to satisfy the Hausdorff separation axiom (or T2-
separation axiom) if for any two distinct points a 6= b in E, there exist two open sets Ua and
Ub such that, a ∈ Ua, b ∈ Ub, and Ua ∩ Ub = ∅. When the T2-separation axiom is satisfied,
we also say that (E,O) is a Hausdorff space. See Figure 12.2.

Any metric space is a topological Hausdorff space. Similarly, any normed vector space is
a topological Hausdorff space, the family of open sets being the family of arbitrary unions
of open balls. The topology O consisting of all subsets of E is called the discrete topology .

Remark: Most (if not all) spaces used in analysis are Hausdorff spaces. Intuitively, the
Hausdorff separation axiom says that there are enough “small” open sets. Without this
axiom, some counter-intuitive behaviors may arise. For example, a sequence may have more
than one limit point (or a compact set may not be closed).

It is also worth noting that the Hausdorff separation axiom implies that for every a ∈ E,
the set {a} is closed. Indeed, if x ∈ E − {a}, then x 6= a, and so there exist open sets Ua
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a

x

U

U

a

x

E

Figure 12.2: A schematic illustration of the Hausdorff separation property.

and Ux such that a ∈ Ua, x ∈ Ux, and Ua ∩Ux = ∅. Thus, for every x ∈ E −{a}, there is an
open set Ux containing x and contained in E − {a}, showing by (O3) that E − {a} is open,
and thus that the set {a} is closed.

Given a topological space, (E,O), given any subset A of E, since E ∈ O and E is a closed
set, the family CA = {F | A ⊆ F, F a closed set} of closed sets containing A is nonempty,
and since any arbitrary intersection of closed sets is a closed set, the intersection

⋂ CA of
the sets in the family CA is the smallest closed set containing A. By a similar reasoning, the
union of all the open subsets contained in A is the largest open set contained in A.

Definition 12.2. Given a topological space (E,O), for any subset A of E, the smallest
closed set containing A is denoted by A, and is called the closure or adherence of A. See
Figure 12.3. A subset A of E is dense in E if A = E. The largest open set contained in A

is denoted by
◦
A, and is called the interior of A. See Figure 12.4. The set FrA = A ∩E − A

is called the boundary (or frontier) of A. See Figure 12.5. We also denote the boundary of
A by ∂A.

Remark: The notation A for the closure of a subset A of E is somewhat unfortunate,
since A is often used to denote the set complement of A in E. Still, we prefer it to more
cumbersome notations such as clo(A), and we denote the complement of A in E by E − A
(or sometimes, Ac).

By definition, it is clear that a subset A of E is closed iff A = A. The set Q of rationals

is dense in R. It is easily shown that A =
◦
A ∪ ∂A and

◦
A ∩ ∂A = ∅. Another useful

characterization of A is given by the following proposition. Since this a review chapter, we
will not provide proofs of the theorems and propositions and instead refer the reader to
Massey [78, 79], Armstrong [5], and Munkres [89].

Proposition 12.1. Given a topological space (E,O), given any subset A of E, the closure
A of A is the set of all points x ∈ E such that for every open set U containing x, U ∩A 6= ∅.
See Figure 12.6.
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A

A
_

(1,1)

(1,1)

(1,-1)

(1,-1)

Figure 12.3: The topological space (E,O) is R2 with topology induced by the Euclidean
metric. The subset A is the section B0(1) in the first and fourth quadrants bound by the
lines y = x and y = −x. The closure of A is obtained by the intersection of A with the
closed unit ball.

Often it is necessary to consider a subset A of a topological space E, and to view the
subset A as a topological space. The following definition shows how to define a topology on
a subset.

Definition 12.3. Given a topological space (E,O), given any subset A of E, the subspace
topology on A induced by O is the family U of open sets defined such that

U = {U ∩ A | U ∈ O}

is the family of all subsets of A obtained as the intersection of any open set in O with A.
We say that (A,U) has the subspace topology . If (E, d) is a metric space, the restriction
dA : A× A→ R+ of the metric d to A is called the subspace metric.

For example, if E = Rn and d is the Euclidean metric, we obtain the subspace topology
on the closed n-cube

{(x1, . . . , xn) ∈ E | ai ≤ xi ≤ bi, 1 ≤ i ≤ n}.

See Figure 12.7.

� One should realize that every open set U ∈ O which is entirely contained in A is also in
the family U , but U may contain open sets that are not in O. For example, if E = R

with |x− y|, and A = [a, b], then sets of the form [a, c), with a < c < b belong to U , but they
are not open sets for R under |x−y|. However, there is agreement in the following situation.
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A

(1,1)

(1,-1)

(1,1)

(1,-1) A

(1,1)

(1,-1)

o

Figure 12.4: The topological space (E,O) is R2 with topology induced by the Euclidean
metric. The subset A is the section B0(1) in the first and fourth quadrants bound by the
lines y = x and y = −x. The interior of A is obtained by covering A with small open balls.

Proposition 12.2. Given a topological space (E,O), given any subset A of E, if U is the
subspace topology, then the following properties hold.

(1) If A is an open set A ∈ O, then every open set U ∈ U is an open set U ∈ O.

(2) If A is a closed set in E, then every closed set w.r.t. the subspace topology is a closed
set w.r.t. O.

The concept of product topology is also useful.

Definition 12.4. Given n topological spaces (Ei,Oi), the product topology on E1×· · ·×En
is the family P of subsets of E1 × · · · × En defined as follows: if

B = {U1 × · · · × Un | Ui ∈ Oi, 1 ≤ i ≤ n},

then P is the family consisting of arbitrary unions of sets in B, including ∅. The set,
E1×· · ·×En, when given the product topology, is called the product space. See Figure 12.8.

It can be verified that when Ei = R, with the standard topology induced by |x − y|,
the product topology on Rn is the standard topology induced by the Euclidean norm. This
equality between the two topologies suggestion the following definition.

Definition 12.5. Two metrics d and d′ on a space E are equivalent if they induce the same
topology O on E (i.e., they define the same family O of open sets). Similarly, two norms ‖ ‖
and ‖ ‖′ on a space E are equivalent if they induce the same topology O on E.
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A

(1,1)

(1,-1) A

(1,1)

(1,-1) д

Figure 12.5: The topological space (E,O) is R2 with topology induced by the Euclidean
metric. The subset A is the section B0(1) in the first and fourth quadrants bound by the

lines y = x and y = −x. The boundary of A is A∩
◦
A.

Given a topological space (E,O), it is often useful, as in Definition 12.4, to define the
topology O in terms of a subfamily B of subsets of E.

Definition 12.6. We say that a family B of subsets of E is a basis for the topology O, if
B is a subset of O, and if every open set U in O can be obtained as some union (possibly
infinite) of sets in B (agreeing that the empty union is the empty set). A subbasis for O
is a family S of subsets of E, such that the family B of all finite intersections of sets in S
(including E itself, in case of the empty intersection) is a basis of O.

For example, given any metric space (E, d), B = {B0(a, ρ)}. In particular, if d = ‖ ‖2,
the open intervals form a basis for R, while the open disks form a basis for R2. The open
rectangles also form a basis for R2 with the standard topology. See Figure 12.9.

It is immediately verified that if a family B = (Ui)i∈I is a basis for the topology of (E,O),
then E =

⋃
i∈I Ui, and the intersection of any two sets Ui, Uj ∈ B is the union of some sets in

the family B (again, agreeing that the empty union is the empty set). Conversely, a family
B with these properties is the basis of the topology obtained by forming arbitrary unions of
sets in B.

The following proposition gives useful criteria for determining whether a family of open
subsets is a basis of a topological space.

Proposition 12.3. Given a topological space (E,O) and a family B of open subsets in O
the following properties hold:

(1) The family B is a basis for the topology O iff for every open set U ∈ O and every
x ∈ U , there is some B ∈ B such that x ∈ B and B ⊆ U . See Figure 12.10.

(2) The family B is a basis for the topology O iff

(a) For every x ∈ E, there is some B ∈ B such that x ∈ B.
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A

A

Figure 12.6: The topological space (E,O) is R2 with topology induced by the Euclidean
metric. The purple subset A is illustrated with three red points, each in its closure since the
open ball centered at each point has nontrivial intersection with A.

(b) For any two open subsets, B1, B2 ∈ B, for every x ∈ E, if x ∈ B1∩B2, then there
is some B3 ∈ B such that x ∈ B3 and B3 ⊆ B1 ∩B2. See Figure 12.11.

We now consider the fundamental property of continuity.

12.2 Continuous Functions, Limits

Definition 12.7. Let (E,OE) and (F,OF ) be topological spaces, and let f : E → F be a
function. For every a ∈ E, we say that f is continuous at a, if for every open set V ∈ OF
containing f(a), there is some open set U ∈ OE containing a, such that, f(U) ⊆ V . We say
that f is continuous if it is continuous at every a ∈ E.

Define a neighborhood of a ∈ E as any subset N of E containing some open set O ∈ O
such that a ∈ O.

It is easy to see that Definition 12.7 is equivalent to the following statements.

Proposition 12.4. Let (E,OE) and (F,OF ) be topological spaces, and let f : E → F be a
function. For every a ∈ E, the function f is continuous at a ∈ E iff for every neighborhood
N of f(a) ∈ F , then f−1(N) is a neighborhood of a. The function f is continuous on E iff
f−1(V ) is an open set in OE for every open set V ∈ OF .
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A = (1,1,1)

B = (1,1,0)

C = (1,0,1)

D = (0,1,1)

Figure 12.7: An example of an open set in the subspace topology for {(x, y, z) ∈ R3 | −1 ≤
x ≤ 1,−1 ≤ y ≤ 1,−1 ≤ z ≤ 1}. The open set is the corner region ABCD and is obtained
by intersection the cube B0((1, 1, 1), 1).

If E and F are metric spaces defined by metrics dE and dF , we can show easily that f is
continuous at a iff

for every ε > 0, there is some η > 0, such that, for every x ∈ E,

if dE(a, x) ≤ η, then dF (f(a), f(x)) ≤ ε.

Similarly, if E and F are normed vector spaces defined by norms ‖ ‖E and ‖ ‖F , we can
show easily that f is continuous at a iff

for every ε > 0, there is some η > 0, such that, for every x ∈ E,

if ‖x− a‖E ≤ η, then ‖f(x)− f(a)‖F ≤ ε.

It is worth noting that continuity is a topological notion, in the sense that equivalent
metrics (or equivalent norms) define exactly the same notion of continuity.
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Figure 12.8: Examples of open sets in the product topology for R2 and R3 induced by the
Euclidean metric.

a b

(i.)

(ii.)

Figure 12.9: Figure (i.) shows that the set of infinite open intervals forms a subbasis for R.
Figure (ii.) shows that the infinite open strips form a subbasis for R2.

If (E,OE) and (F,OF ) are topological spaces, and f : E → F is a function, for every
nonempty subset A ⊆ E of E, we say that f is continuous on A if the restriction of f to A
is continuous with respect to (A,U) and (F,OF ), where U is the subspace topology induced
by OE on A.

Given a product E1×· · ·×En of topological spaces, as usual, we let πi : E1×· · ·×En → Ei
be the projection function such that, πi(x1, . . . , xn) = xi. It is immediately verified that each
πi is continuous. In fact, it can be shown that the product topology is the smallest topology
on E1 × · · · × En for which each πi is continuous.

Given a topological space (E,O), we say that a point a ∈ E is isolated if {a} is an
open set in O. If (E,OE) and (F,OF ) are topological spaces, any function f : E → F is
continuous at every isolated point a ∈ E. In the discrete topology, every point is isolated.

The following proposition is easily shown.



12.2. CONTINUOUS FUNCTIONS, LIMITS 375

x

U

B

B1

Figure 12.10: Given an open subset U of R2 and x ∈ U , there exists an open ball B containing
x with B ⊂ U . There also exists an open rectangle B1 containing x with B1 ⊂ U .

x

B1

B2

B3

Figure 12.11: A schematic illustration of Condition (b) in Proposition 12.3.

Proposition 12.5. Given topological spaces (E,OE), (F,OF ), and (G,OG), and two func-
tions f : E → F and g : F → G, if f is continuous at a ∈ E and g is continuous at f(a) ∈ F ,
then g ◦ f : E → G is continuous at a ∈ E. Given n topological spaces (Fi,Oi), for every
function f : E → F1 × · · · × Fn, f is continuous at a ∈ E iff every fi : E → Fi is continuous
at a, where fi = πi ◦ f .

One can also show that in a metric space (E, d), d : E × E → R is continuous, where
E × E has the product topology, and that for a normed vector space (E, ‖ ‖), the norm
‖ ‖ : E → R is continuous.

Given a function f : E1 × · · · × En → F , we can fix n − 1 of the arguments, say
a1, . . . , ai−1, ai+1, . . . , an, and view f as a function of the remaining argument,

xi 7→ f(a1, . . . , ai−1, xi, ai+1, . . . , an),

where xi ∈ Ei. If f is continuous, it is clear that each fi is continuous.

� One should be careful that the converse is false! For example, consider the function
f : R× R→ R, defined such that,

f(x, y) =
xy

x2 + y2
if (x, y) 6= (0, 0), and f(0, 0) = 0.
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a

f(a)

U
f(U)

Vf

Figure 12.12: A schematic illustration of Definition 12.7

The function f is continuous on R× R− {(0, 0)}, but on the line y = mx, with m 6= 0, we
have f(x, y) = m

1+m2 6= 0, and thus, on this line, f(x, y) does not approach 0 when (x, y)
approaches (0, 0). See Figure 12.13.
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with plots ;
animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d,
conformal, conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot,
display, dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d,
inequal, interactive, interactiveparams, intersectplot, listcontplot, listcontplot3d,
listdensityplot, listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto,
plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d,
polyhedra_supported, polyhedraplot, rootlocus, semilogplot, setcolors, setoptions,
setoptions3d, spacecurve, sparsematrixplot, surfdata, textplot, textplot3d, tubeplot

?plot3d
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Figure 12.13: The graph of f(x, y) = xy
x2+y2

for (x, y) 6= (0, 0). The bottom of this graph,
which shows the approach along the line y = −x, does not have a z value of 0.

The following proposition is useful for showing that real-valued functions are continuous.

Proposition 12.6. If E is a topological space, and (R, |x−y|) is the reals under the standard
topology, for any two functions f : E → R and g : E → R, for any a ∈ E, for any λ ∈ R, if
f and g are continuous at a, then f+g, λf , f ·g, are continuous at a, and f/g is continuous
at a if g(a) 6= 0.

Remark: Proposition 12.6 is true if R is replaced with C, where the C has the topology
induced by the Euclidean norm on R2.
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Using Proposition 12.6, we can show easily that every real or complex polynomial function
is continuous.

The notion of isomorphism of topological spaces is defined as follows.

Definition 12.8. Let (E,OE) and (F,OF ) be topological spaces, and let f : E → F be a
function. We say that f is a homeomorphism between E and F if f is bijective, and both
f : E → F and f−1 : F → E are continuous.

� One should be careful that a bijective continuous function f : E → F is not necessarily
an homeomorphism. For example, if E = R with the discrete topology, and F = R with

the standard topology, the identity is not a homeomorphism.

We now introduce the concept of limit of a sequence. Given any set E, a sequence is any
function x : N→ E, usually denoted by (xn)n∈N, or (xn)n≥0, or even by (xn).

Definition 12.9. Given a topological space, (E,O), we say that a sequence (xn)n∈N con-
verges to some a ∈ E if for every open set U containing a, there is some n0 ≥ 0, such that,
xn ∈ U , for all n ≥ n0. We also say that a is a limit of (xn)n∈N. See Figure 12.14.

an0

an0+1

an0+2

an

a

U

E

Figure 12.14: A schematic illustration of Definition 12.9.

When E is a metric space with metric d, it is easy to show that this is equivalent to the
fact that,

for every ε > 0, there is some n0 ≥ 0, such that, d(xn, a) ≤ ε, for all n ≥ n0.

When E is a normed vector space with norm ‖‖, it is easy to show that this is equivalent
to the fact that,

for every ε > 0, there is some n0 ≥ 0, such that, ‖xn − a‖ ≤ ε, for all n ≥ n0.

The following proposition shows the importance of the Hausdorff separation axiom.
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Proposition 12.7. Given a topological space (E,O), if the Hausdorff separation axiom
holds, then every sequence has at most one limit.

It is worth noting that the notion of limit is topological, in the sense that a sequence
converge to a limit b iff it converges to the same limit b in any equivalent metric (and similarly
for equivalent norms).

We still need one more concept of limit for functions.

Definition 12.10. Let (E,OE) and (F,OF ) be topological spaces, let A be some nonempty
subset of E, and let f : A→ F be a function. For any a ∈ A and any b ∈ F , we say that f(x)
approaches b as x approaches a with values in A if for every open set V ∈ OF containing b,
there is some open set U ∈ OE containing a, such that, f(U ∩ A) ⊆ V . See Figure 12.15.
This is denoted by

lim
x→a,x∈A

f(x) = b.

b
a

b

A
U V

f(U     A)h

E
F

f

Figure 12.15: A schematic illustration of Definition 12.10.

First, note that by Proposition 12.1, since a ∈ A, for every open set U containing a, we
have U ∩ A 6= ∅, and the definition is nontrivial. Also, even if a ∈ A, the value f(a) of f at
a plays no role in this definition. When E and F are metric space with metrics dE and dF ,
it can be shown easily that the definition can be stated as follows:

For every ε > 0, there is some η > 0, such that, for every x ∈ A,

if dE(x, a) ≤ η, then dF (f(x), b) ≤ ε.

When E and F are normed vector spaces with norms ‖ ‖E and ‖ ‖F , it can be shown
easily that the definition can be stated as follows:

For every ε > 0, there is some η > 0, such that, for every x ∈ A,

if ‖x− a‖E ≤ η, then ‖f(x)− b‖F ≤ ε.

We have the following result relating continuity at a point and the previous notion.
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Proposition 12.8. Let (E,OE) and (F,OF ) be two topological spaces, and let f : E → F be
a function. For any a ∈ E, the function f is continuous at a iff f(x) approaches f(a) when
x approaches a (with values in E).

Another important proposition relating the notion of convergence of a sequence to con-
tinuity is stated without proof.

Proposition 12.9. Let (E,OE) and (F,OF ) be two topological spaces, and let f : E → F
be a function.

(1) If f is continuous, then for every sequence (xn)n∈N in E, if (xn) converges to a, then
(f(xn)) converges to f(a).

(2) If E is a metric space, and (f(xn)) converges to f(a) whenever (xn) converges to a,
for every sequence (xn)n∈N in E, then f is continuous.

We now turn to connectivity properties of topological spaces.

12.3 Connected Sets

Connectivity properties of topological spaces play a very important role in understanding
the topology of surfaces.

Definition 12.11. A topological space (E,O) is connected if the only subsets of E that are
both open and closed are the empty set and E itself. Equivalently, (E,O) is connected if
E cannot be written as the union E = U ∪ V of two disjoint nonempty open sets U, V , or
if E cannot be written as the union E = U ∪ V of two disjoint nonempty closed sets. A
topological space (E,O) is disconnected if is not connected.

Definition 12.12. A subset S ⊆ E is connected if it is connected in the subspace topology
on S induced by (E,O). Otherwise the subset S is disconnected which means there exits
open subsets G and H of X such that S is the disjoint union of the two nonempty subsets
S ∩H and S ∩G. See Figure 12.16. A connected open set is called a region and a closed set
is a closed region if its interior is a connected (open) set.

Most readers have an intuitive notion of the meaning of connectivity, namely that the
space E is in “one piece.” In particular, the following standard proposition characterizing
the connected subsets of R can be found in most topology texts (for example, Munkres [89],
Schwartz [103]).

Proposition 12.10. A subset of the real line, R, is connected iff it is an interval, i.e., of
the form [a, b], (a, b], where a = −∞ is possible, [a, b), where b = +∞ is possible, or (a, b),
where a = −∞ or b = +∞ is possible.
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Figure 12.16: The graph of z2− x2− y2 = 1 is disconnected in R3. Let G = {(x, y, z)|z > 0}
and H = {(x, y, z)|z < 0}.

A characterization of the connected subsets of Rn is harder and requires the notion of
arcwise connectedness which we discuss at the end of this section.

One of the most important properties of connected sets is that they are preserved by
continuous maps.

Proposition 12.11. Given any continuous map f : E → F , if A ⊆ E is connected, then
f(A) is connected.

An important corollary of Proposition 12.11 is that for every continuous function f : E →
R, where E is a connected space, f(E) is an interval. Indeed, this follows from Proposition
12.10. Thus, if f takes the values a and b where a < b, then f takes all values c ∈ [a, b].
This is property is the intermediate value theorem.

Here are two more properties of connected subsets.

Lemma 12.12. Given a topological space, E, for any family, (Ai)i∈I , of (nonempty) con-
nected subsets of E, if Ai ∩Aj 6= ∅ for all i, j ∈ I, then the union A =

⋃
i∈I Ai of the family

(Ai)i∈I is also connected.

In particular, the above lemma applies when the connected sets in a family (Ai)i∈I have
a point in common.

Lemma 12.13. If A is a connected subset of a topological space, E, then for every subset,
B, such that A ⊆ B ⊆ A, where A is the closure of A in E, the set B is connected.
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In particular, Lemma 12.13 shows that if A is a connected subset, then its closure, A, is
also connected.

Connectivity provides a equivalence relation among the points of E.

Definition 12.13. Given a topological space, (E,O), we say that two points a, b ∈ E are
connected if there is some connected subset A of E such that a ∈ A and b ∈ A.

An application of Lemma 12.12 verifies that “a and b are connected in E” is an equivalence
relation. The above equivalence relation defines a partition of E into nonempty disjoint
connected components . The following proposition, proven via Lemmas 12.12 and 12.13,
provides a way of constructing the connected components of E.

Proposition 12.14. Given any topological space, E, for any a ∈ E, the connected component
containing a is the largest connected set containing a. The connected components of E are
closed.

The connected components are the “pieces” of E. Intuitively, if a space is not connected,
it is possible to define a continuous function which is constant on disjoint connected compo-
nents and which takes possibly distinct values on disjoint components. This can be stated
in terms of the concept of a locally constant function.

Definition 12.14. Given two topological spaces X and Y , a function f : X → Y is locally
constant if for every x ∈ X, there is an open set U ⊆ X such that x ∈ U and f is constant
on U .

We claim that a locally constant function is continuous. In fact, we will prove that
f−1(V ) is open for every subset, V ⊆ Y (not just for an open set V ). It is enough to show
that f−1(y) is open for every y ∈ Y , since for every subset V ⊆ Y ,

f−1(V ) =
⋃
y∈V

f−1(y),

and open sets are closed under arbitrary unions. However, either f−1(y) = ∅ if y ∈ Y −f(X)
or f is constant on U = f−1(y) if y ∈ f(X) (with value y), and since f is locally constant,
for every x ∈ U , there is some open set, W ⊆ X, such that x ∈ W and f is constant on W ,
which implies that f(w) = y for all w ∈ W and thus, that W ⊆ U , showing that U is a union
of open sets and thus, is open. The following proposition shows that a space is connected iff
every locally constant function is constant.

Proposition 12.15. A topological space is connected iff every locally constant function is
constant. See Figure 12.17.

The notion of a locally connected space is also useful.
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0 1

f
f

Figure 12.17: An example of a locally constant, but not constant, real-valued function f
over the disconnected set consisting of the disjoint union of the two solid balls. On the pink
ball, f is 0, while on the purple ball, f is 1.

Definition 12.15. A topological space, (E,O), is locally connected if for every a ∈ E, for
every neighborhood V of a, there is a connected neighborhood U of a such that U ⊆ V . See
Figure 12.18

As we shall see in a moment, it would be equivalent to require that E has a basis of
connected open sets.

� There are connected spaces that are not locally connected and there are locally connected
spaces that are not connected. The two properties are independent. For example, let

X be a set with the discrete topology. Since {x} is open for every x ∈ X, the topological
space X is locally connected. However, if |X| > 1, then X, with the discrete topology, is not
connected. On the other hand, the space consisting of the graph of the function

f(x) = sin(1/x),

where x > 0, together with the portion of the y-axis, for which −1 ≤ y ≤ 1, is connected,
but not locally connected. The open disk centered at (0, 1) with radius 1

4
does not contain

a connected neighborhood of (0, 1). See Figure 12.19.

Proposition 12.16. A topological space, E, is locally connected iff for every open subset A
of E, the connected components of A are open.

Proposition 12.16 shows that in a locally connected space, the connected open sets form
a basis for the topology. It is easily seen that Rn is locally connected. Manifolds are also
locally connected.

Another very important property of surfaces and more generally, manifolds, is to be
arcwise connected. The intuition is that any two points can be joined by a continuous arc
of curve. This is formalized as follows.
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a

E

V

U

Figure 12.18: The topological space E, which is homeomorphic to an annulus, is locally
connected since each point is surrounded by a small disk contained in E.

Definition 12.16. Given a topological space, (E,O), an arc (or path) is a continuous map
γ : [a, b]→ E, where [a, b] is index[sub]γ : [a, b]]→ Ea closed interval of the real line, R. The
point γ(a) is the initial point of the arc and the point γ(b) is the terminal point of the arc.
We say that γ is an arc joining γ(a) and γ(b). See Figure 12.20. An arc is a closed curve if
γ(a) = γ(b). The set γ([a, b]) is the trace of the arc γ.

Typically, a = 0 and b = 1.

� One should not confuse an arc γ : [a, b] → E with its trace. For example, γ could be
constant, and thus, its trace reduced to a single point.

An arc is a Jordan arc if γ is a homeomorphism onto its trace. An arc γ : [a, b] → E
is a Jordan curve if γ(a) = γ(b) and γ is injective on [a, b). Since [a, b] is connected, by
Proposition 12.11, the trace γ([a, b]) of an arc is a connected subset of E.

Given two arcs γ : [0, 1]→ E and δ : [0, 1]→ E such that γ(1) = δ(0), we can form a new
arc defined as follows:

Definition 12.17. Given two arcs, γ : [0, 1] → E and δ : [0, 1] → E, such that γ(1) = δ(0),
we can form their composition (or product), γδ, defined such that

γδ(t) =

{
γ(2t) if 0 ≤ t ≤ 1/2;
δ(2t− 1) if 1/2 ≤ t ≤ 1.

The inverse γ−1 of the arc γ is the arc defined such that γ−1(t) = γ(1− t), for all t ∈ [0, 1].

It is trivially verified that Definition 12.17 yields continuous arcs.

Definition 12.18. A topological space, E, is arcwise connected if for any two points a, b ∈
E, there is an arc γ : [0, 1] → E joining a and b, such that γ(0) = a and γ(1) = b. A
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Figure 12.19: Let S be the graph of f(x) = sin(1/x) union the y-axis between −1 and 1.
This space is connected, but not locally connected.

topological space, E, is locally arcwise connected if for every a ∈ E, for every neighborhood
V of a, there is an arcwise connected neighborhood U of a such that U ⊆ V . See Figure
12.20.

The space Rn is locally arcwise connected, since for any open ball, any two points in this
ball are joined by a line segment. Manifolds and surfaces are also locally arcwise connected.
Proposition 12.11 also applies to arcwise connectedness. The following theorem is crucial to
the theory of manifolds and surfaces.

Theorem 12.17. If a topological space, E, is arcwise connected, then it is connected. If a
topological space, E, is connected and locally arcwise connected, then E is arcwise connected.

If E is locally arcwise connected, the above argument shows that the connected compo-
nents of E are arcwise connected.

� It is not true that a connected space is arcwise connected. For example, the space
consisting of the graph of the function

f(x) = sin(1/x),

where x > 0, together with the portion of the y-axis, for which −1 ≤ y ≤ 1, is connected,
but not arcwise connected. See Figure 12.19.
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γ(a)

(b)γ
E

Figure 12.20: Let E be the torus with subspace topology induced from R3 with red arc
γ([a, b]). The torus is both arcwise connected and locally arcwise connected.

A trivial modification of the proof of Theorem 12.17 shows that in a normed vector
space, E, a connected open set is arcwise connected by polygonal lines (arcs consisting of
line segments). This is because in every open ball, any two points are connected by a line
segment. Furthermore, if E is finite dimensional, these polygonal lines can be forced to be
parallel to basis vectors.

We conclude this section with the following theorem regarding the connectivity of product
spaces.

Theorem 12.18. Let X and Y be topological spaces. The product space X ×Y is connected
if and only if X and Y are connected.

Remark: Theorem 12.18 can be extended to the set {Xi}ni=1, where n is a positive integer,
n ≥ 2.

We now consider compactness.

12.4 Compact Sets

The property of compactness is very important in topology and analysis. We provide a quick
review geared towards the study of manifolds and for details, we refer the reader to Munkres
[89], Schwartz [103]. In this section we will need to assume that the topological spaces are
Hausdorff spaces. This is not a luxury, as many of the results are false otherwise.

There are various equivalent ways of defining compactness. For our purposes, the most
convenient way involves the notion of open cover.
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Definition 12.19. Given a topological space, E, for any subset A of E, an open cover,
(Ui)i∈I of A, is a family of open subsets of E such that A ⊆ ⋃i∈I Ui. An open subcover of an
open cover, (Ui)i∈I of A, is any subfamily, (Uj)j∈J , which is an open cover of A, with J ⊆ I.
An open cover, (Ui)i∈I of A, is finite if I is finite. See Figure 12.21.

U1
U2

Figure 12.21: An open cover of S2 using two open sets induced by the Euclidean topology
of R3.

Definition 12.20. The topological space, E, is compact if it is Hausdorff and for every open
cover, (Ui)i∈I of E, there is a finite open subcover (Uj)j∈J of E. Given any subset A of E,
we say that A is compact if it is compact with respect to the subspace topology. We say
that A is relatively compact if its closure A is compact.

It is immediately verified that a subset, A, of E is compact in the subspace topology
relative to A iff for every open cover, (Ui)i∈I of A by open subsets of E, there is a finite open
subcover (Uj)j∈J of A. The property that every open cover contains a finite open subcover
is often called the Heine-Borel-Lebesgue property. By considering complements, a Hausdorff
space is compact iff for every family, (Fi)i∈I of closed sets, if

⋂
i∈I Fi = ∅, then

⋂
j∈J Fj = ∅

for some finite subset J of I.

� Definition 12.20 requires that a compact space be Hausdorff. There are books in which a
compact space is not necessarily required to be Hausdorff. Following Schwartz, we prefer

calling such a space quasi-compact .
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Another equivalent and useful characterization can be given in terms of families having
the finite intersection property. A family (Fi)i∈I of sets has the finite intersection property
if
⋂
j∈J Fj 6= ∅ for every finite subset J of I. We have the following proposition.

Proposition 12.19. A topological Hausdorff space, E, is compact iff for every family (Fi)i∈I
of closed sets having the finite intersection property, then

⋂
i∈I Fi 6= ∅.

Another useful consequence of compactness is as follows. For any family (Fi)i∈I of closed
sets such that Fi+1 ⊆ Fi for all i ∈ I, if

⋂
i∈I Fi = ∅, then Fi = ∅ for some i ∈ I. Indeed,

there must be some finite subset J of I such that
⋂
j∈J Fj = ∅, and since Fi+1 ⊆ Fi for all

i ∈ I, we must have Fj = ∅ for the smallest Fj in (Fj)j∈J . Using this fact, we note that R
is not compact. Indeed, the family of closed sets, ([n,+∞))n≥0, is decreasing and has an
empty intersection.

Given a metric space, if we define a bounded subset to be a subset that can be enclosed
in some closed ball (of finite radius), then any nonbounded subset of a metric space is not
compact. However, a closed interval [a, b] of the real line is compact, and by extension every
closed set, [a1, b1]× · · · × [am, bm], when considered as a subspace of Rm, is compact.

The following two propositions give very important properties of the compact sets, and
they only hold for Hausdorff spaces.

Proposition 12.20. Given a topological Hausdorff space, E, for every compact subset, A,
and every point b not in A, there exist disjoint open sets, U and V , such that A ⊆ U and
b ∈ V . See Figure 12.22. As a consequence, every compact subset is closed.

b V

U

A

Figure 12.22: The compact set of R2, A, is separated by any point in its complement.

Proposition 12.21. Given a topological Hausdorff space, E, for every pair of compact
disjoint subsets, A and B, there exist disjoint open sets, U and V , such that A ⊆ U and
B ⊆ V .

The following proposition shows that in a compact topological space, every closed set is
compact.
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Proposition 12.22. Given a compact topological space, E, every closed set is compact.

Remark: Proposition 12.22 also holds for quasi-compact spaces, i.e., the Hausdorff separa-
tion property is not needed.

Putting Proposition 12.21 and Proposition 12.22 together, we note that if X is compact,
then for every pair of disjoint closed, sets A and B, there exist disjoint open sets, U and V ,
such that A ⊆ U and B ⊆ V . We say that X is a normal space.

Proposition 12.23. Given a compact topological space, E, for every a ∈ E, and for every
neighborhood V of a, there exists a compact neighborhood U of a such that U ⊆ V . See
Figure 12.23.

aa

E
V

U

Figure 12.23: Let E be the peach square of R2. Each point of E is contained in a compact
neighborhood U , in this case the small closed yellow disk.

It can be shown that in a normed vector space of finite dimension, a subset is compact
iff it is closed and bounded. This is what we use to show that SO(n) is compact in Rn2

. For
Rn, the proof is simple.

� In a normed vector space of infinite dimension, there are closed and bounded sets that
are not compact!

Another crucial property of compactness is that it is preserved under continuity.

Proposition 12.24. Let E be a topological space and let F be a topological Hausdorff space.
For every compact subset, A of E, and for every continuous map, f : E → F , the subspace
f(A) is compact.
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As a corollary of Proposition 12.24, if E is compact, F is Hausdorff, and f : E → F
is continuous and bijective, then f is a homeomorphism. Indeed, it is enough to show
that f−1 is continuous, which is equivalent to showing that f maps closed sets to closed
sets. However, closed sets are compact and Proposition 12.24 shows that compact sets are
mapped to compact sets, which, by Proposition 12.20, are closed.

It can also be shown that if E is a compact nonempty space and f : E → R is a continuous
function, then there are points a, b ∈ E such that f(a) is the minimum of f(E) and f(b)
is the maximum of f(E). Indeed, f(E) is a compact subset of R and thus, a closed and
bounded set which contains its greatest lower bound and its least upper bound.

Another useful notion is that of local compactness. Indeed, manifolds and surfaces are
locally compact.

Definition 12.21. A topological space, E, is locally compact if it is Hausdorff and for every
a ∈ E, there is some compact neighborhood, K, of a. See Figure 12.23.

From Proposition 12.23, every compact space is locally compact but the converse is false.
For example, the real line R, which is not compact, is locally compact since each x ∈ R, given
any neighborhood N of x, there exist ε > 0 such that x ∈ [x− ε, x + ε] ⊆ N . Furthermore,
it can be shown that a normed vector space of finite dimension is locally compact.

Proposition 12.25. Given a locally compact topological space, E, for every a ∈ E, and for
every neighborhood N of a, there exists a compact neighborhood U of a such that U ⊆ N .

Finally, in studying surfaces and manifolds, an important property is the existence of a
countable basis for the topology.

Definition 12.22. A topological space E is called second-countable if there is a countable
basis for its topology, i.e., if there is a countable family (Ui)i≥0 of open sets such that every
open set of E is a union of open sets Ui.

It is easily seen that Rn is second-countable and more generally, that every normed vector
space of finite dimension is second-countable. We have the following property regarding
second-countablility.

Proposition 12.26. Given a second-countable topological space E, every open cover (Ui)i∈I
of E contains some countable subcover.

As an immediate corollary of Proposition 12.26, a locally connected second-countable
space has countably many connected components.

In second-countable Hausdorff spaces, compactness can be characterized in terms of ac-
cumulation points (this is also true for metric spaces).
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Figure 12.24: The space E is the closed, bounded pink subset of R2. The sequence (xn) has
two accumulation points, one for the subsequence (x2n+1) and one for (x2n).

Definition 12.23. Given a topological Hausdorff space, E, and given any sequence (xn) of
points in E, a point, l ∈ E, is an accumulation point (or cluster point) of the sequence (xn)
if every open set, U , containing l contains xn for infinitely many n. See Figure 12.24.

Clearly, if l is a limit of the sequence (xn), then it is an accumulation point, since every
open set, U , containing a contains all xn except for finitely many n. The following proposition
provides another characterization of an accumulation point.

Proposition 12.27. Given a second-countable topological Hausdorff space, E, a point, l,
is an accumulation point of the sequence (xn) iff l is the limit of some subsequence (xnk),of
(xn).

Remark: Proposition 12.27 also holds for metric spaces.

As an illustration of Proposition 12.27, let E = R and let (xn) be the sequence (1,−1, 1,
−1, . . . ). This sequence has two accumulation points, namely 1 and −1 since (x2n+1) = (1)
and (x2n) = (−1).

The next proposition relates the existence of accumulation points to the notion of com-
pactness.

Proposition 12.28. A second-countable topological Hausdorff space, E, is compact iff every
sequence (xn) has some accumulation point.

Remark: It should be noted that the proof showing that if E is compact, then every se-
quence has some accumulation point, holds for any arbitrary compact space (the proof does
not use a countable basis for the topology). The converse also holds for metric spaces.
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Closely related to Proposition 12.28 is the Bolzano-Weierstrass property which states
that an infinite subset of a compact space has a limit point.

We end this section with a result about the product of compact spaces. But first we state
the following proposition.

Proposition 12.29. Let X and Y be topological spaces. The product space X × Y is a
Hausdorff space iff X and Y are Hausdorff spaces.

Remark: Proposition 12.29 is true for finite set of topological spaces, {Xi}ni=1, with n ≥ 2.

Proposition 12.30. Let {Xi}ni=1 be a family of topological spaces. The product space X1 ×
· · · ×Xn is compact iff Xi is compact for all 1 ≤ i ≤ n.

12.5 Quotient Spaces

In the final section of this chapter we discuss a topological construction, the quotient space,
which plays important role in the study of orbifolds and homogenous manifolds. For example,
real projective spaces and Grassmannians are obtained this way. In this situation, the natural
topology on the quotient object is the quotient topology, but unfortunately, even if the
original space is Hausdorff, the quotient topology may not be. Therefore, it is useful to have
criteria that insure that a quotient topology is Hausdorff (or second-countable). We will
present two criteria. First, let us review the notion of quotient topology. For more details,
consult Munkres [89], Massey [78, 79], Armstrong [5], or Tu [112].

Definition 12.24. Given any topological space X and any set Y , for any surjective function
f : X → Y , we define the quotient topology on Y determined by f (also called the identifica-
tion topology on Y determined by f), by requiring a subset V of Y to be open if f−1(V ) is an
open set in X. Given an equivalence relation R on a topological space X, if π : X → X/R
is the projection sending every x ∈ X to its equivalence class [x] in X/R, the space X/R
equipped with the quotient topology determined by π is called the quotient space of X mod-
ulo R. Thus, a set V of equivalence classes in X/R is open iff π−1(V ) is open in X, which
is equivalent to the fact that

⋃
[x]∈V [x] is open in X.

It is immediately verified that Definition 12.24 defines topologies and that f : X → Y
and π : X → X/R are continuous when Y and X/R are given these quotient topologies.

To intuitively understand the quotient space construction, start with a topological space
X, and form a partition R of X, where R is a collection of pairwise disjoint nonempty
subsets whose union is X. The elements of R are subsets of X. This partition R defines the
equivalent relation R, where x ∼R y iff x and y are in the same element of R. Define a new
topological space Y as follows. The points of Y are elements R, and Y is formed by “gluing”
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together equivalent points of X into a single point. In other words, Y is homeomorphic to
X/R and if π : X → Y maps each point in X to the subset of R which contains it, the
topology of Y is the largest for which π is continuous.

We demonstrate this construction by building a cylinder as a quotient of the rectangle
Q = [0, 2]× [0, 1]. The partition R = ∪i∈IRi of Q is defined as follows:

i. R(x,y) = {(x, y)} where 0 < x < 2 and 0 ≤ y ≤ 1.

ii. Ry = {(0, y), (2, y)} where 0 ≤ y ≤ 1

Each Ri is a point in Y and the function π : Q → Y maps (x, y) to the Ri which contains
it. The map π “glues” together the left and right vertical edges of Q and forms a cylinder.
See Figure 12.25.

(x,y)

(0,y) (2,y)

(0,y)(2,y)

Q Y

π

Figure 12.25: Constructing a cylinder as a quotient of a rectangle.

A similar construction creates a Möbius strip as a quotient of Q = [0, 2] × [0, 1]. This
time the partition R = ∪i∈IRi of Q is

i. R(x,y) = {(x, y)} where 0 < x < 2 and 0 ≤ y ≤ 1,

ii. Ry = {(0, y), (2, 1− y)} where 0 ≤ y ≤ 1.

This time the map π : Q→ Y “glues” the left and right vertical edges with a twist and forms
a Möbius strip. See Figure 12.26.

We can also build a torus as quotient of the unit square S = [0, 1]× [0, 1] by giving S the
following partition R = ∪i∈IRi:

i. R(0,0) = {(0, 0), (0, 1), (1, 1), (1, 0)}.

ii. Ry = {(0, y), (1, y)} for 0 < y < 1.
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Figure 12.26: Constructing a Möbius strip as a quotient of a rectangle.

iii. Rx = {(x, 0), (x, 1)} for 0 < x < 1.

iv. R(x,y) = {(x, y)} for 0 < x < 1 and 0 < y < 1.

Once again eachRi is a point in Y and the function π : Q→ Y maps (x, y) to the equivalence
class Ri containing it. Geometrically π takes S, glues together the left and right edges to
form a cylinder, then glues together the top and bottom of the cylinder to form the torus.
See Figure 12.27.

Although we visualized the proceeding three quotients spaces in R3, the quotient con-
struction, namely π : Q→ Y , is abstract and independent of any pictorial representation.

� One should be careful that if X and Y are topological spaces and f : X → Y is a
continuous surjective map, Y does not necessarily have the quotient topology determined

by f . Indeed, it may not be true that a subset V of Y is open when f−1(V ) is open. However,
this will be true in two important cases.

Definition 12.25. A continuous map f : X → Y is an open map (or simply open) if f(U)
is open in Y whenever U is open in X, and similarly, f : X → Y is a closed map (or simply
closed) if f(F ) is closed in Y whenever F is closed in X.

Then Y has the quotient topology induced by the continuous surjective map f if either
f is open or f is closed. Indeed, if f is open, then assuming that f−1(V ) is open in X, we
have f(f−1(V )) = V open in Y . Now, since f−1(Y − B) = X − f−1(B), for any subset B
of Y , a subset V of Y is open in the quotient topology iff f−1(Y − V ) is closed in X. From
this, we can deduce that if f is a closed map, then V is open in Y iff f−1(V ) is open in X.

Unfortunately, the Hausdorff separation property is not necessarily preserved under quo-
tient. Nevertheless, it is preserved in some special important cases.
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(0, 0) (1, 0)

(1, 1)(0, 1)

(0, y) (1, y)

(x, 0)

(x, 0)

(x, 1)

(0, y)(1, y)

(1, 1)(0, 1)

(0, 0) (1, 0)

(x, 0)(x, 1)

Figure 12.27: Constructing a torus as a quotient of a square.

Proposition 12.31. Let X and Y be topological spaces, let f : X → Y be a continuous sur-
jective map, and assume that X is compact and that Y has the quotient topology determined
by f . Then Y is Hausdorff iff f is a closed map.

Proof. Because X is compact, Proposition 12.22 implies that every closed set F in X is
compact. An application of Proposition 12.24 shows that f(F ) is also compact. Since Y is
Hausdorff, Proposition 12.20 tells us that f(F ) is closed, and we conclude that f is a closed
map.

For the converse we use the fact that in a Hausdorff space E, if A and B are compact
disjoint subsets of E, then there exist two disjoint open sets U and V such that A ⊆ U and
B ⊆ V . See Proposition 12.21.

Since X is Hausdorff, every set {a} consisting of a single element a ∈ X is closed, and
since f is a closed map, {f(a)} is also closed in Y . Since f is surjective, every set {b}
consisting of a single element b ∈ Y is closed. If b1, b2 ∈ Y and b1 6= b2, since {b1} and
{b2} are closed in Y and f is continuous, the sets f−1(b1) and f−1(b2) are closed in X, thus
compact, and by the fact stated above, there exists some disjoint open sets U1 and U2 such
that f−1(b1) ⊆ U1 and f−1(b2) ⊆ U2. Since f is closed, the sets f(X − U1) and f(X − U2)
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are closed, and thus the sets

V1 = Y − f(X − U1)

V2 = Y − f(X − U2)

are open, and it is immediately verified that V1 ∩ V2 = ∅, b1 ∈ V1, and b2 ∈ V2. This proves
that Y is Hausdorff.

Under the hypotheses of Proposition 12.31, it is easy to show that Y is Hausdorff iff the
set

{(x1, x2) ∈ X ×X | f(x1) = f(x2)}

is closed in X ×X.

Another simple criterion uses continuous open maps. The following proposition is proved
in Massey [78] (Appendix A, Proposition 5.3).

Proposition 12.32. Let f : X → Y be a surjective continuous map between topological
spaces. If f is an open map, then Y is Hausdorff iff the set

{(x1, x2) ∈ X ×X | f(x1) = f(x2)}

is closed in X ×X.

Note that the hypothesis of Proposition 12.32 implies that Y has the quotient topology
determined by f .

The following special case of Proposition 12.32 is discussed in Tu [112] (Section 7.5,
Theorem 7.8). Given a topological space X and an equivalence relation R on X, we say
that R is open if the projection map π : X → X/R is an open map, where X/R is equipped
with the quotient topology. Then, if R is an open equivalence relation on X, the topological
space X/R is Hausdorff iff R is closed in X ×X.

The following proposition, also from Tu [112] (Section 7.5, Theorem 7.9), yields a suffi-
cient condition for second-countability.

Proposition 12.33. If X is a topological space and R is an open equivalence relation on X,
then for any basis {Bα} for the topology of X, the family {π(Bα)} is a basis for the topology
of X/R, where π : X → X/R is the projection map. Consequently, if X is second-countable,
then so is X/R.

Examples of quotient spaces, such as the Grassmannian and Stiefel manifolds, are dis-
cussed in Chapter 4, since their definitions require the notion of a group acting on a set.
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12.6 Problems

Problem 12.1. A topological space E is said to be trivial if the only open sets are E and
∅. Construct a nontrivial topological space (E,O) which does not satisfy the Hausdorff
separation axiom.

Problem 12.2. Prove Proposition 12.1.

Problem 12.3. Prove Proposition 12.2.

Problem 12.4. Let Ei = R, with the standard topology induced by |x− y|. Show that the
product topology on Rn is the standard topology induced by the Euclidean norm.

Problem 12.5. Prove Proposition 12.3.

Problem 12.6. Prove Proposition 12.4.

Problem 12.7. Let E = E1 × · · · ×En be the set theoretical product of topological spaces
and let πi : E1×· · ·×En → Ei be the projection function πi(x1, . . . , xn) = xi. Show that the
product topology on E is the smallest topology, (i.e. the topology with the least amount of
open sets), which ensures that each πi is continuous.

Problem 12.8. Prove Propositions 12.5 and 12.6.

Problem 12.9. Prove Propositions 12.8 and 12.9.

Problem 12.10. Prove Proposition 12.11.

Problem 12.11.

(i) Prove Lemmas 12.12 and 12.13.

(ii) Given a topological space (E,O), show that “a and b are connected in E” is an equiv-
alence relation.

(iii) Prove Proposition 12.14.

Problem 12.12. Prove Proposition 12.15.

Problem 12.13. (Advanced) Prove Theorem 12.17.

Problem 12.14. Let {Xi}ni=1 be a family of topological spaces. Show that X1× · · · ×Xn is
connected if and only if each Xi is connected.

Problem 12.15. Prove Proposition 12.19.

Problem 12.16.

(i) Prove Propositions 12.20 and 12.21.
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(ii) Construct a nontrivial Hausdorff space E with a compact subset A ⊂ E which is not
closed.

(iii) Prove Proposition 12.22.

Problem 12.17.

(i) Prove that if E is a normed vector space of finite dimension, then a A subset of E is
compact iff it is closed and bounded.

(ii) (Advanced) Find an infinite dimensional normed vector space E and a subset A ⊆ E,
such that A is closed and bounded, yet not compact.

Problem 12.18. Prove Proposition 12.24.

Problem 12.19. Prove that any finite dimensional normed vector space is second-countable.

Problem 12.20.

(i) Prove Proposition 12.27.

(ii) Prove Proposition 12.27 when E is a metric space.

Problem 12.21.

(i) Prove Proposition 12.28.

(ii) (Advanced) Prove Proposition 12.28 when E is a metric space.

Problem 12.22. Prove the Bolzano-Weierstrass property, namely that an infinite subset of
a compact space has a limit point.

Problem 12.23. Let X be a Hausdorff topological space. Construct an example of a
quotient space X/R which is not Hausdorff.

Problem 12.24. Prove that under the hypotheses of Proposition 12.31, Y is Hausdorff iff
the set

{(x1, x2) ∈ X ×X | f(x1) = f(x2)}
is closed in X ×X.

Problem 12.25. Prove Proposition 12.33.
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Chapter 13

Riemannian Metrics, Riemannian
Manifolds

Fortunately, the rich theory of vector spaces endowed with a Euclidean inner product can,
to a great extent, be lifted to the tangent bundle of a manifold. The idea is to equip the
tangent space TpM at p to the manifold M with an inner product 〈−,−〉p, in such a way
that these inner products vary smoothly as p varies on M . It is then possible to define the
length of a curve segment on a M and to define the distance between two points on M .

In Section 13.1, we define the notion of local (and global) frame. Using frames, we
obtain a criterion for the tangent bundle TM of a smooth manifold M to be trivial (that is,
isomorphic to M × Rn).

Riemannian metrics and Riemannian manifolds are defined in Section 13.2, where several
examples are given. The generalization of the notion of the gradient of a function defined on
a smooth manifold requires a metric. We define the gradient of a function on a Riemannian
manifold. We conclude by defining local isometries, isometries, and the isometry group
Isom(M, g) of a Riemannian manifold (M, g).

13.1 Frames

Definition 13.1. LetM be an n-dimensional smooth manifold. For any open subset U ⊆M ,
an n-tuple of vector fields (X1, . . . , Xn) over U is called a frame over U iff (X1(p), . . . , Xn(p))
is a basis of the tangent space TpM , for every p ∈ U . If U = M , then the Xi are global
sections and (X1, . . . , Xn) is called a frame (of M).

The notion of a frame is due to Élie Cartan who (after Darboux) made extensive use of
them under the name of moving frame (and the moving frame method). Cartan’s terminology
is intuitively clear. As a point p moves in U , the frame (X1(p), . . . , Xn(p)) moves from fibre
to fibre. Physicists refer to a frame as a choice of local gauge.

401
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If dim(M) = n, then for every chart (U,ϕ), since dϕ−1
ϕ(p) : Rn → TpM is a bijection for

every p ∈ U , the n-tuple of vector fields (X1, . . . , Xn), with Xi(p) = dϕ−1
ϕ(p)(ei), is a frame of

TM over U , where (e1, . . . , en) is the canonical basis of Rn. See Figure 13.1.

p

q

r

e

e

1

2

U

φ

φ

φ

φ

φ

-1

-1

-1

-1
(p)

(q)

(r)

Figure 13.1: A frame on S2.

The following proposition tells us when the tangent bundle is trivial (that is, isomorphic
to the product M × Rn).

Proposition 13.1. The tangent bundle TM of a smooth n-dimensional manifold M is trivial
iff it possesses a frame of global sections (vector fields defined on M).

As an illustration of Proposition 13.1 we can prove that the tangent bundle TS1 of the
circle is trivial. Indeed, we can find a section that is everywhere nonzero, i.e. a non-vanishing
vector field, namely

X(cos θ, sin θ) = (− sin θ, cos θ).

The reader should try proving that TS3 is also trivial (use the quaternions).

However, TS2 is nontrivial, although this not so easy to prove. More generally, it can be
shown that TSn is nontrivial for all even n ≥ 2. It can even be shown that S1, S3 and S7

are the only spheres whose tangent bundle is trivial. This is a deep theorem and its proof is
hard.
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Remark: A manifold M such that its tangent bundle TM is trivial is called parallelizable.

We now define Riemannian metrics and Riemannian manifolds.

13.2 Riemannian Metrics

Definition 13.2. Given a smooth n-dimensional manifold M , a Riemannian metric on M
(or TM) is a family (〈−,−〉p)p∈M of inner products on each tangent space TpM , such that
〈−,−〉p depends smoothly on p, which means that for every chart ϕα : Uα → Rn, for every
frame (X1, . . . , Xn) on Uα, the maps

p 7→ 〈Xi(p), Xj(p)〉p, p ∈ Uα, 1 ≤ i, j ≤ n,

are smooth. A smooth manifold M with a Riemannian metric is called a Riemannian
manifold .

If dim(M) = n, then for every chart (U,ϕ), we have the frame (X1, . . . , Xn) over U ,
with Xi(p) = dϕ−1

ϕ(p)(ei), where (e1, . . . , en) is the canonical basis of Rn. Since every vector

field over U is a linear combination
∑n

i=1 fiXi, for some smooth functions fi : U → R, the
condition of Definition 13.2 is equivalent to the fact that the maps

p 7→ 〈dϕ−1
ϕ(p)(ei), dϕ

−1
ϕ(p)(ej)〉p, p ∈ U, 1 ≤ i, j ≤ n,

are smooth. If we let x = ϕ(p), the above condition says that the maps

x 7→ 〈dϕ−1
x (ei), dϕ

−1
x (ej)〉ϕ−1(x) =

〈(
∂

∂xi

)
p

,

(
∂

∂xj

)
p

〉
, x ∈ ϕ(U), 1 ≤ i, j ≤ n,

are smooth.

If M is a Riemannian manifold, the metric on TM is often denoted g = (gp)p∈M . In
a chart, using local coordinates, we often use the notation g =

∑
ij gijdxi ⊗ dxj, or simply

g =
∑

ij gijdxidxj, where

gij(p) =

〈(
∂

∂xi

)
p

,

(
∂

∂xj

)
p

〉
p

.

For every p ∈ U , the matrix (gij(p)) is symmetric, positive definite.

The standard Euclidean metric on Rn, namely

g = dx2
1 + · · ·+ dx2

n,

makes Rn into a Riemannian manifold. Then every submanifold M of Rn inherits a metric
by restricting the Euclidean metric to M .
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For example, the sphere Sn−1 inherits a metric that makes Sn−1 into a Riemannian
manifold. It is instructive to find the local expression of this metric for S2 in spherical
coordinates. We can parametrize the sphere S2 in terms of two angles θ (the colatitude) and
ϕ (the longitude) as follows:

x = sin θ cosϕ

y = sin θ sinϕ

z = cos θ.

See Figure 13.2.

z

x

y

Θ

φ

Figure 13.2: The spherical coordinates of S2.

In order for the above to be a parametrization, we need to restrict its domain to V =
{(θ, ϕ) | 0 < θ < π, 0 < ϕ < 2π}. Then the semicircle from the north pole to the south pole
lying in the xz-plane is omitted from the sphere. In order to cover the whole sphere, we need
another parametrization obained by choosing the axes in a suitable fashion; for example, to
omit the semicircle in the xy-plane from (0, 1, 0) to (0,−1, 0) and with x ≤ 0.

To compute the matrix giving the Riemannian metric in this chart, we need to compute
a basis (u(θ, ϕ), v(θ, ϕ)) of the the tangent plane TpS

2 at p = (sin θ cosϕ, sin θ sinϕ, cos θ).
We can use

u(θ, ϕ) =
∂p

∂θ
= (cos θ cosϕ, cos θ sinϕ,− sin θ)

v(θ, ϕ) =
∂p

∂ϕ
= (− sin θ sinϕ, sin θ cosϕ, 0),

and we find that

〈u(θ, ϕ), u(θ, ϕ)〉 = 1

〈u(θ, ϕ), v(θ, ϕ)〉 = 0

〈v(θ, ϕ), v(θ, ϕ)〉 = sin2 θ,
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so the metric on TpS
2 w.r.t. the basis (u(θ, ϕ), v(θ, ϕ)) is given by the matrix

gp =

(
1 0
0 sin2 θ

)
.

Thus, for any tangent vector

w = au(θ, ϕ) + bv(θ, ϕ), a, b ∈ R,

we have
gp(w,w) = a2 + sin2 θ b2.

A nontrivial example of a Riemannian manifold is the Poincaré upper half-space, namely,
the set H = {(x, y) ∈ R2 | y > 0} equipped with the metric

g =
dx2 + dy2

y2
.

Consider the Lie group SO(n). We know from Section 7.2 that its tangent space at the
identity TISO(n) is the vector space so(n) of n× n skew symmetric matrices, and that the
tangent space TQSO(n) to SO(n) at Q is isomorphic to

Qso(n) = {QB | B ∈ so(n)}.

(It is also isomorphic to so(n)Q = {BQ | B ∈ so(n)}.) If we give so(n) the inner product

〈B1, B2〉 = tr(B>1 B2) = −tr(B1B2),

the inner product on TQSO(n) is given by

〈QB1, QB2〉 = tr((QB1)>QB2) = tr(B>1 Q
>QB2) = tr(B>1 B2).

We will see in Chapter 15 that the length L(γ) of the curve segment γ from I to eB given
by t 7→ etB (with B ∈ so(n)) is given by

L(γ) =

(
tr(−B2)

) 1
2

.

More generally, given any Lie group G, any inner product 〈−,−〉 on its Lie algebra g
induces by left translation an inner product 〈−,−〉g on TgG for every g ∈ G, and this yields
a Riemannian metric on G (which happens to be left-invariant; see Chapter 20).

Going back to the second example of Section 7.5, where we computed the differential dfR
of the function f : SO(3)→ R given by

f(R) = (u>Rv)2, u, v ∈ R3
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we found that
dfR(X) = 2u>Xvu>Rv, X ∈ Rso(3).

Since each tangent space TRSO(3) is a Euclidean space under the inner product defined
above, by duality, there is a unique vector Y ∈ TRSO(3) defining the linear form dfR; that
is,

〈Y,X〉 = dfR(X), for allX ∈ TRSO(3).

By definition, the vector Y is the gradient of f at R, denoted (grad(f))R. The gradient of f
at R is given by

(grad(f))R = u>RvR(R>uv> − vu>R)

since

〈(grad(f))R, X〉 = tr((grad(f))>RX)

= u>Rv tr((R>uv> − vu>R)>R>X)

= u>Rv tr((vu>R−R>uv>)R>X)

= u>Rv(tr(vu>X)− tr(R>uv>R>X)), since RR> = I

= u>Rv(tr(u>Xv)− tr(R>uv>R>X))

= u>Rv(tr(u>Xv)− tr(R>uv>R>RB)), X = RB with B> = −B
= u>Rv(tr(u>Xv)− tr(R>uv>B))

= u>Rv(tr(u>Xv)− tr((R>uv>B)>))

= u>Rv(tr(u>Xv) + tr(Bvu>R))

= u>Rv(tr(u>Xv) + tr(vu>RB))

= u>Rv(tr(u>Xv) + tr(vu>X))

= u>Rv(tr(u>Xv) + tr(u>Xv))

= 2u>Xvu>Rv, since u>Xv ∈ R
= dfR(X).

More generally, the notion of gradient is defined as follows.

Definition 13.3. If (M, 〈−,−〉) is a smooth manifold with a Riemannian metric and if
f : M → R is a smooth function on M , then the unique smooth vector field grad(f) defined
such that

〈(grad(f))p, u〉p = dfp(u), for all p ∈M and all u ∈ TpM
is called the gradient of f .

It is usually complicated to find the gradient of a function.

If (U,ϕ) is a chart of M , with p ∈M , and if((
∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

)
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denotes the basis of TpM induced by ϕ, the local expression of the metric g at p is given by
the n× n matrix (gij)p, with

(gij)p = gp

((
∂

∂xi

)
p

,

(
∂

∂xj

)
p

)
.

The inverse is denoted by (gij)p. We often omit the subscript p and observe that for every
function f ∈ C∞(M),

grad f =
∑
ij

gij
∂f

∂xj

∂

∂xi
.

A way to obtain a metric on a manifold N , is to pull-back the metric g on another
manifold M along a local diffeomorphism ϕ : N →M .

Definition 13.4. Recall that ϕ is a local diffeomorphism iff

dϕp : TpN → Tϕ(p)M

is a bijective linear map for every p ∈ N . Given any metric g on M , if ϕ is a local diffeo-
morphism, we define the pull-back metric ϕ∗g on N induced by g as follows. For all p ∈ N ,
for all u, v ∈ TpN ,

(ϕ∗g)p(u, v) = gϕ(p)(dϕp(u), dϕp(v)).

We need to check that (ϕ∗g)p is an inner product, which is very easy since dϕp is a linear
isomorphism.

The local diffeomorphism ϕ between the two Riemannian manifolds (N,ϕ∗g) and (M, g)
has the special property that it is metric-preserving. Such maps are called local isometries,
as defined below.

Definition 13.5. Given two Riemannian manifolds (M1, g1) and (M2, g2), a local isometry
is a smooth map ϕ : M1 →M2, such that dϕp : TpM1 → Tϕ(p)M2 is an isometry between the
Euclidean spaces (TpM1, (g1)p) and (Tϕ(p)M2, (g2)ϕ(p)), for every p ∈M1; that is,

(g1)p(u, v) = (g2)ϕ(p)(dϕp(u), dϕp(v)),

for all u, v ∈ TpM1, or equivalently, ϕ∗g2 = g1. Moreover, ϕ is an isometry iff it is a local
isometry and a diffeomorphism.

An interesting example of the notion of isometry arises in machine learning, namely with
respect to the multinomial manifold .



408 CHAPTER 13. RIEMANNIAN METRICS, RIEMANNIAN MANIFOLDS

Example 13.1. Let ∆n
+ be the standard open simplex

∆n
+ = {(x1, . . . , xn+1) ∈ Rn+1 | x1 + · · ·+ xn+1 = 1, xi > 0}.

This is an open submanifold of the hyperplane of equation x1 + · · ·+xn+1 = 1, which is itself
a submanifold of Rn+1. The manifold ∆n

+ is diffeomorphic to the positive quadrant of the
unit sphere in Rn+1 given by

Sn+ = {(x1, . . . , xn+1) ∈ Rn+1 | x2
1 + · · ·+ x2

n+1 = 1, xi > 0}.

See Figure 13.3.

∆
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Figure 13.3: The open simplexes ∆1
+ and ∆2

+ along with the diffeomorphic S1
+ and S2

+.

The maps ϕ : Sn+ → ∆n
+ and ψ : ∆n

+ → Sn+ given by

ϕ(x1 . . . , xn+1) = (x2
1, . . . , x

2
n+1)

ψ(x1 . . . , xn+1) = (
√
x1, . . . ,

√
xn+1)

are clearly inverse diffeomorphisms. The map ϕ : Sn+ → ∆n
+ is often called the real moment

map. For any x ∈ Sn+, the tangent space TxS
n
+ is given by

TxS
n
+ = {u ∈ Rn+1 | 〈x, u〉 = 0} = {u ∈ Rn+1 | x1u1 + · · ·+ xn+1un+1 = 0},
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where 〈−,−〉 is the standard Euclidean inner product in Rn+1, and for any x ∈ ∆n
+, the

tangent space Tx∆
n
+ is given by

Tx∆
n
+ = {u ∈ Rn+1 | u1 + · · ·+ un+1 = 0}.

It is easily verified that the derivative dϕx of ϕ at x ∈ Sn+ is given by

dϕx(u1, . . . , un+1) = 2(x1u1, . . . , xn+1un+1).

As a consequence, if we give ∆n
+ the Riemannian metric defined by

〈u, v〉Fx =
1

4

n+1∑
i=1

uivi
xi

, x ∈ ∆n
+,

then we have

〈dϕx(u), dϕx(v)〉Fϕ(x) = 〈2(x1u1, . . . , xn+1un+1), 2(x1v1, . . . , xn+1vn+1)〉F(x21,...,x2n+1)

=
1

4

n+1∑
i=1

2xiui2xivi
x2
i

=
n+1∑
i=1

uivi = 〈u, v〉.

Therefore, ϕ is an isometry between the Riemannian manifold (Sn+, 〈−,−〉) (equipped with
the restriction of the Euclidean metric of Rn+1) to the manifold (∆n

+, 〈−,−〉F ) equipped with
the metric

〈u, v〉Fx =
1

4

n+1∑
i=1

uivi
xi

=
1

4

n+1∑
i=1

xi
ui
xi

vi
xi

=
1

4

n+1∑
i=1

xi
d(log xi)

dxi

d(log xi)

dxi
uivi, x ∈ ∆n

+,

known as the Fisher information metric (actually, one fourth of the Fisher information
metric). The above shows that the Fisher information metric is the pullback of the Euclidean
metric on Sn+ along the inverse ψ of the real moment map ϕ. In machine learning the manifold
(∆n

+, 〈−,−〉F ) is called the multinomial manifold . Unfortunately, it is often denoted by Pn,
which clashes with the standard notation for projective space.

The isometries of a Riemannian manifold (M, g) form a group Isom(M, g), called the
isometry group of (M, g). An important theorem of Myers and Steenrod asserts that the
isometry group Isom(M, g) is a Lie group.

Given a map ϕ : M1 → M2 and a metric g1 on M1, in general, ϕ does not induce any
metric on M2. However, if ϕ has some extra properties, it does induce a metric on M2. This
is the case when M2 arises from M1 as a quotient induced by some group of isometries of
M1. For more on this, see Gallot, Hulin and Lafontaine [49] (Chapter 2, Section 2.A), and
Chapter 22.

Because a manifold is paracompact (see Section 10.1), a Riemannian metric always exists
on M . This is a consequence of the existence of partitions of unity (see Theorem 10.5).
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Theorem 13.2. Every smooth manifold admits a Riemannian metric.

Theorem 13.2 is proved in Gallot, Hulin, Lafontaine [49] (Chapter 2, Theorem 2.2), using
a partition of unity.

Except in special simple cases (vector spaces, the spheres Sd) it is hard to define explicitly
Riemannian metrics on a manifold. However, there are two important classes of manifolds
for which the problem of defining metrics (with some natural properties) basically reduces
to simple linear algebra:

(1) Lie groups.

(2) Reductive homogeneous spaces.

Metrics on Lie groups are investigated in Chapter 20, and metrics on reductive homoge-
neous spaces are investigated in Chapter 22.

13.3 Problems

Problem 13.1. Prove that the tangent bundle TS3 of the sphere S3 ⊆ R4 is a trivial bundle.

Hint . Consider the matrix 
a −b −c −d
b a −d c
c d a −b
d −c b a

 .

Problem 13.2. Let (M1, g1) and (M2, g2) be two Riemannian manifolds. We know that the
product M1×M2 can be made into a manifold (see Example 7.5), and let π1 : M1×M2 →M1

and π2 : M1 × M2 → M2 be the natural projections. Define a Riemannian metric g on
M1 ×M2 called the product metric on M1 ×M2 as follows: for all (p, q) ∈ M1 ×M2 and all
(u, v) ∈ T(p,q)(M1 ×M2), we have

g(p,q)(u, v) = (g1)p(dπ1(u), dπ1(v)) + (g2)q(dπ2(u), dπ2(v)).

Check that g is indeed a Riemannian metric on M1 ×M2.

In the case of the torus T n = S1×· · ·×S1 with the metric on the circle S1 ⊆ R2 induced
by the metric on R2, we say that (T n, g) is a flat torus .

Problem 13.3. Determine the metric on the patch on the sphere S2 that omits the semi-
circle in the xy-plane.

Problem 13.4. Consider the surjective map π : Rn → T n given by

π(x1, . . . , xn) = (eix1 , . . . , eixn),
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viewing S1 as S1 = {eix | 0 ≤ x < 2π} and with T n = S1 × · · · × S1.

(1) Find a Riemannian metric on T n such that π becomes a local isometry, and prove
that with this metric T n is isomorphic to the flat torus of Problem 13.2.

(2) A lattice Γ in Rn is a set of vectors

Γ = {k1u1 + · · ·+ knun | k1, . . . , kn ∈ Z}
where (u1, . . . , un) is a basis of Rn. Since Γ is an abelian subgroup of Rn, the quotient space
(group) Rn/Γ is well defined.

Define the map p : Rn → T n by

p (x1u1 + · · ·+ xnun) = (e2iπx1 , . . . , e2iπxn).

Prove that p is surjective and constant on Γ, so that p induces a continuous bijective map
p̂ : Rn/Γ→ T n. Prove that ĥ is a homeomorphism.

Remark: The space Rn/Γ can be equipped with a metric g1 so that the projection map
π : Rn → Rn/Γ is a Riemannian covering map. Then, we obtain a metric g2 on T n that
makes T n into a flat torus, and p̂ is an isometry between Rn/Γ and a flat torus; see Gallot,
Hulin, Lafontaine [49] (Chapter 2, Example 2.22 ).

(3) Show that the map F : T 2 → R4 given by

F (θ1, θ2) =
1

2
(cos θ1, sin θ1, cos θ2, sin θ2)

is an injective immersion and a local isometry.

Problem 13.5. Consider the polar coordinate system (r, θ) ∈ R+×(−π,+π) on R2−{(x, 0) |
x ≤ 0}, with x = r cos θ and y = r sin θ.

Prove that restriction of the Euclidean metric to R2 − {(x, 0) | x ≤ 0} is given by

g = (dr)2 + r2(dθ)2.

Problem 13.6. Let γ : (a, b)→ R2 be a regular injective smooth curve given parametrically
by

γ(t) = (r(t), z(t)),

where r(t) > 0 and γ′(t) 6= 0 for all t such that a < t < b. By rotating this curve around the
z-axis we get a cylindrical surface S that can be represented parametrically as

(t, θ) 7→ (S(t, θ) = (r(t) cos θ, r(t) sin θ, z(t)).

Show that the metric on S induced by the Euclidean metric on R3 is given by

g =

((
dr

dt

)2

+

(
dz

dt

)2
)

(dt)2 + r2(dθ)2.

Show that if the curve is parametrized by arc length, then

g = (dt)2 + r2(dθ)2.
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Problem 13.7. The hyperbolic space H+
n (1) (see Definition 5.3) is defined in terms of the

Lorentz innner product 〈−,−〉1 on Rn+1, given by

〈(x1, . . . , xn+1), (y1, . . . , yn+1)〉1 = −x1y1 +
n+1∑
i=2

xiyi.

By definition, H+
n (1), written simply Hn, is given by

Hn = {x = (x1, . . . , xn+1) ∈ Rn+1 | 〈x, x〉1 = −1, x1 > 0}.

Given any point p = (x1, . . . , xn+1) ∈ Hn, show that the restriction of 〈−,−〉1 to TpH
n

is positive, definite, which means that it is a metric on TpH
n.

Hint . See Section 16.2.

Problem 13.8. There are other isometric models of Hn that are perhaps intuitively easier
to grasp but for which the metric is more complicated. There is a map PD: Bn → Hn where
Bn = {x ∈ Rn | ‖x‖ < 1} is the open unit ball in Rn, given by

PD(x) =

(
1 + ‖x‖2

1− ‖x‖2 ,
2x

1− ‖x‖2

)
.

(1) Check that 〈PD(x),PD(x)〉1 = −1 and that PD is bijective and an isometry. Prove
that the pull-back metric gPD = PD∗gH on Bn is given by

gPD =
4

(1− ‖x‖2)2
(dx2

1 + · · ·+ dx2
n).

The metric gPD is called the conformal disc metric, and the Riemannian manifold (Bn, gPD)
is called the Poincaré disc model or conformal disc model . The metric gPD is proportional
to the Euclidean metric, and thus angles are preserved under the map PD.

(2) Another model is the Poincaré half-plane model {x ∈ Rn | x1 > 0}, with the metric

gPH =
1

x2
1

(dx2
1 + · · ·+ dx2

n).

Let h be the inversion of Rn with center t = (−1, 0, . . . , 0) given by

h(x) = t+
2(x− t)
‖x− t‖2 .

Prove that h is a diffeomorphism onto the half space {x ∈ Rn | x1 > 0}.
(3) Prove that

h∗gPD = gPH =
1

x2
1

(dx2
1 + · · ·+ dx2

n).

Problem 13.9. Prove Theorem 13.2 using a partition of unity argument.



Chapter 14

Connections on Manifolds

Given a manifold M , in general, for any two points p, q ∈ M , there is no “natural” isomor-
phism between the tangent spaces TpM and TqM . Given a curve c : [0, 1] → M on M , as
c(t) moves on M , how does the tangent space Tc(t)M change as c(t) moves?

If M = Rn, then the spaces Tc(t)Rn are canonically isomorphic to Rn, and any vector
v ∈ Tc(0)Rn ∼= Rn is simply moved along c by parallel transport ; that is, at c(t), the tangent
vector v also belongs to Tc(t)Rn. However, if M is curved, for example a sphere, then it is
not obvious how to “parallel transport” a tangent vector at c(0) along a curve c. A way
to achieve this is to define the notion of parallel vector field along a curve, and this can be
defined in terms of the notion of covariant derivative of a vector field.

In Section 14.1, we define the general notion of a connection on a manifold M as a
function ∇ : X(M)×X(M)→ X(M) defined on vector fields and satisfying some properties
that make it a generalization of the notion of covariant derivative on a surface. We show
that (∇XY )(p) only depends on the value of X at p and on the value of Y in a neighborhood
of p.

In Section 14.2, we show that the notion of covariant derivative is well-defined for vector
fields along a curve. Given a vector field X along a curve γ, this covariant derivative is
denoted by DX/dt. We then define the crucial notion of a vector field parallel along a curve
γ, which means that DX/dt(s) = 0 for all s (in the domain of γ). As a consequence, we can
define the notion of parallel transport of a vector along a curve.

The notion of a connection on a manifold does not assume that the manifold is equipped
with a Riemannian metric. In Section 14.3, we consider connections having additional prop-
erties, such as being compatible with a Riemannian metric or being torsion-free. Then we
have a phenomenon called by some people the “miracle” of Riemannian geometry, namely
that for every Riemannian manifold, there is a unique connection which is torsion-free and
compatible with the metric. Furthermore, this connection is determined by an implicit for-
mula known as the Koszul formula. Such a connection is called the Levi-Civita connection.
We conclude this section with some properties of connections compatible with a metric, in
particular about parallel vectors fields along a curve.

413
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14.1 Connections on Manifolds

Given any two vector fields X and Y defined on some open subset U ⊆ R3, for every p ∈ U ,
the directional derivative DXY (p) of Y with respect to X is defined by

DXY (p) = lim
t→0

Y (p+ tX(p))− Y (p)

t
.

See Figure 14.1.

0

p

X(p)

Y(
p)

-Y
(p

)

-Y
(p

)

-Y
(p

)

Y 
( p

 +
 tX

(p
) )

Y( p
 + tX

(p) )
Y( p + tX(p) )

Y(p + tX(p) ) - Y(p)

Y(p + tX(p) ) - Y(p)

D  Y(p)X

Figure 14.1: The directional derivative of the blue vector field Y (p) in the direction of X.

Observe that the above is the directional derivative of the function p 7→ Y (p) as given in
Definition 11.4, except that the direction vector X(p) varies with p.

If f : U → R is a differentiable function on U , for every p ∈ U , the directional derivative
X[f ](p) (or X(f)(p)) of f with respect to X is defined by

X[f ](p) = lim
t→0

f(p+ tX(p))− f(p)

t
.

Again, this is Definition 11.4, except that the direction vector X(p) varies with p. We know
that X[f ](p) = dfp(X(p)).

It is easily shown that DXY (p) is R-bilinear in X and Y , is C∞(U)-linear in X, and
satisfies the Leibniz derivation rule with respect to Y ; that is:
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Proposition 14.1. If X and Y are vector fields from U to R3 that are differentiable on
some open subset U of R3, then their directional derivatives satisfy the following properties:

DX1+X2Y (p) = DX1Y (p) +DX2Y (p)

DfXY (p) = f(p)DXY (p)

DX(Y1 + Y2)(p) = DXY1(p) +DXY2(p)

DX(fY )(p) = X[f ](p)Y (p) + f(p)DXY (p),

for all X,X1, X2, Y, Y1, Y2 ∈ X(U) and all f ∈ C∞(U).

Proof. By definition we have

DX(Y1 + Y2)(p) = lim
t→0

(Y1 + Y2)(p+ tX(p))− (Y1 + Y2)(p)

t

= lim
t→0

Y1(p+ tX(p))− Y1(p)

t
+ lim

t→0

Y2(p+ tX(p))− Y2(p)

t
= DXY1(p) +DXY2(p).

Since Y : U → R3 is assumed to be differentiable, by Proposition 11.15, we have DXY (p) =
dYp(X(p)), so by linearity of dYp, we have

DX1+X2Y (p) = dYp(X1(p) +X2(p)) = dYp(X1(p)) + dYp(X2(p)) = DX1Y (p) +DX2Y (p).

The definition also implies

DX(fY )(p) = lim
t→0

fY (p+ tX(p))− fY (p)

t

= lim
t→0

f(p+ tX(p))Y (p+ tX(p))− f(p)Y (p)

t

= lim
t→0

f(p+ tX(p))Y (p+ tX(p))− f(p)Y (p+ tX(p))

t

+ lim
t→0

f(p)Y (p+ tX(p))− f(p)Y (p)

t
= X[f ](p)Y (p) + f(p)DXY (p).

It remains to prove DfXY (p) = f(p)DXY (p). If f(p) = 0, this trivially true. So assume
f(p) 6= 0. Then

DfXY (p) = f(p) lim
t→0

Y (p+ tfX(p))− Y (p)

tf(p)
= f(p) lim

t→0

Y (p+ tf(p)X(p))− Y (p)

tf(p)

= f(p) lim
u→0

Y (p+ uX(p))− Y (p)

u
= f(p)DXY (p),

as claimed.
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Now assume that M is a surface in R3. If X and Y are two vector fields defined on some
open subset U ⊆ R3, and if there is some open subset W ⊆ M of the surface M such that
X(p), Y (p) ∈ TpM for all p ∈ W , for every p ∈ W , the directional derivative DXY (p) makes
sense and it has an orthogonal decomposition

DXY (p) = ∇XY (p) + (Dn)XY (p),

where its horizontal (or tangential) component is∇XY (p) ∈ TpM , and its normal component
is (Dn)XY (p). See Figure 14.2.

p

p + tX(p)

X(p)Y(p
)

Y(
p 

+ 
tX

(p
))

Y(p + tX(p)) - Y(p)

DXY(p)
Dn( )

XY(p)

▽XY(p)

Figure 14.2: The orthogonal decomposition of DXY (p) for the peach surface M .

The component ∇XY (p) is the covariant derivative of Y with respect to X ∈ TpM , and
it allows us to define the covariant derivative of a vector field Y ∈ X(U) with respect to
a vector field X ∈ X(M) on M . We easily check that ∇XY satisfies the four equations of
Proposition 14.1.

In particular, Y may be a vector field associated with a curve c : [0, 1] → M . A vector
field along a curve c is a vector field Y such that Y (c(t)) ∈ Tc(t)M , for all t ∈ [0, 1]. We also
write Y (t) for Y (c(t)). Then we say that Y is parallel along c iff ∇c′(t)Y = 0 along c.

The notion of parallel transport on a surface can be defined using parallel vector fields
along curves. Let p, q be any two points on the surface M , and assume there is a curve
c : [0, 1] → M joining p = c(0) to q = c(1). Then using the uniqueness and existence
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theorem for ordinary differential equations, it can be shown that for any initial tangent
vector Y0 ∈ TpM , there is a unique parallel vector field Y along c, with Y (0) = Y0. If we set
Y1 = Y (1), we obtain a linear map Y0 7→ Y1 from TpM to TqM which is also an isometry.

As a summary, given a surface M , if we can define a notion of covariant derivative
∇ : X(M)×X(M)→ X(M) satisfying the properties of Proposition 14.1, then we can define
the notion of parallel vector field along a curve, and the notion of parallel transport, which
yields a natural way of relating two tangent spaces TpM and TqM , using curves joining p
and q.

This can be generalized to manifolds using the notion of connection. We will see that
the notion of connection induces the notion of curvature. Moreover, if M has a Riemannian
metric, we will see that this metric induces a unique connection with two extra properties
(the Levi-Civita connection).

Definition 14.1. Let M be a smooth manifold. A connection on M is a R-bilinear map

∇ : X(M)× X(M)→ X(M),

where we write ∇XY for ∇(X, Y ), such that the following two conditions hold:

∇fXY = f∇XY

∇X(fY ) = X[f ]Y + f∇XY,

for all X, Y ∈ X(M) and all f ∈ C∞(M). The vector field ∇XY is called the covariant
derivative of Y with respect to X.

A connection on M is also known as an affine connection on M . The following proposition
gives the first of two basic property of ∇.

Proposition 14.2. Let M be a smooth manifold and let ∇ be a connection on M . For every
open subset U ⊆ M , for every vector field Y ∈ X(M), if Y ≡ 0 on U , then ∇XY ≡ 0 on U
for all X ∈ X(M).

The property of ∇ stated in Proposition 14.2 is characteristic of a local operator .

Proposition 14.2 is proved in Milnor and Stasheff [85] (Appendix C). Proposition 14.2
implies that a connection ∇ on M restricts to a connection ∇ � U on every open subset
U ⊆M .

The second basic property of ∇ is that (∇XY )(p) only depends on X(p).

Proposition 14.3. For any two vector fields X, Y ∈ X(M), if X(p) = Y (p) for some p ∈M ,
then

(∇XZ)(p) = (∇YZ)(p) for every Z ∈ X(M).
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A proof of Proposition 14.3 is given in O’Neil [91] (Chapter 2, Lemma 3). This proposition
is extremely useful. Although the definition of (∇XY )(p) requires the vector fields X and Y
to be globally defined on M , to compute (∇XY )(p), it is enough to know u = X(p).

Consequently, for any p ∈ M , the covariant derivative (∇uY )(p) is well defined for any
tangent vector u ∈ TpM and any vector field Y defined on some open subset U ⊆ M , with
p ∈ U .

Observe that on U , the n-tuple of vector fields
(

∂
∂x1
, . . . , ∂

∂xn

)
is a local frame.

Definition 14.2. We have

∇ ∂
∂xi

(
∂

∂xj

)
=

n∑
k=1

Γkij
∂

∂xk
,

for some unique smooth functions Γkij defined on U , called the Christoffel symbols .

Definition 14.3. We say that a connection ∇ is flat on U iff

∇X

(
∂

∂xi

)
= 0, for all X ∈ X(U), 1 ≤ i ≤ n.

Proposition 14.4. Every smooth manifold M possesses a connection.

Proof. We can find a family of charts (Uα, ϕα) such that {Uα}α is a locally finite open cover
of M . If (fα) is a partition of unity subordinate to the cover {Uα}α and if ∇α is the flat
connection on Uα, then it is immediately verified that

∇ =
∑
α

fα∇α

is a connection on M .

Remark: A connection on TM can be viewed as a linear map

∇ : X(M) −→ HomC∞(M)(X(M),X(M)),

such that, for any fixed Y ∈ X(M), the map ∇Y : X 7→ ∇XY is C∞(M)-linear, which
implies that ∇Y is a (1, 1) tensor.

As for Riemannian metrics, except in special simple cases (vector spaces, the spheres
Sd) it is hard to define explicitly connections on a manifold. However, there are two impor-
tant classes of manifolds for which the problem of defining connections (with some natural
properties) basically reduces to simple linear algebra:

(1) Lie groups.

(2) Reductive homogeneous spaces.

Connections on Lie groups are investigated in Chapter 20, and connections on reductive
homogeneous spaces are investigated in Chapter 22.



14.2. PARALLEL TRANSPORT 419

14.2 Parallel Transport

The notion of connection yields the notion of parallel transport. First, we need to define the
covariant derivative of a vector field along a curve.

Definition 14.4. Let M be a smooth manifold and let γ : [a, b] → M be a smooth curve
in M . A smooth vector field along the curve γ is a smooth map X : [a, b]→ TM , such that
π(X(t)) = γ(t), for all t ∈ [a, b] (X(t) ∈ Tγ(t)M). See Figure 14.3.

M

Figure 14.3: A smooth vector field along the orange curve γ.

Recall that the curve γ : [a, b]→M is smooth iff γ is the restriction to [a, b] of a smooth
curve on some open interval containing [a, b].

Since a vector X field along a curve γ does not necessarily extend to an open subset of
M (for example, if the image of γ is dense in M ; see Problem 7.11), the covariant derivative
(∇γ′(t0) X)γ(t0) may not be defined , so we need a proposition showing that the covariant
derivative of a vector field along a curve makes sense. Roughly, this is analogous to the
difference between uniform continuity and continuity.

Proposition 14.5. Let M be a smooth manifold, let ∇ be a connection on M and γ : [a, b]→
M be a smooth curve in M . There is a R-linear map D/dt, defined on the vector space of
smooth vector fields X along γ, which satisfies the following conditions.

(1) For any smooth function f : [a, b]→ R,

D(fX)

dt
=
df

dt
X + f

DX

dt
.

(2) If X is induced by a vector field Z ∈ X(M), that is X(t0) = Z(γ(t0)) for all t0 ∈ [a, b],

then
DX

dt
(t0) = (∇γ′(t0) Z)γ(t0).
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Proof. Since γ([a, b]) is compact, it can be covered by a finite number of open subsets Uα,
such that (Uα, ϕα) is a chart. Thus, we may assume that γ : [a, b]→ U for some chart (U,ϕ).
As ϕ ◦ γ : [a, b]→ Rn, we can write

ϕ ◦ γ(t) = (u1(t), . . . , un(t)),

where each ui = pri ◦ ϕ ◦ γ is smooth. By applying the chain rule it is easy to see that

γ′(t0) =
n∑
i=1

dui
dt

(
∂

∂xi

)
γ(t0)

.

If (s1, . . . , sn) is a frame over U , we can write

X(t) =
n∑
i=1

Xi(t)si(γ(t)),

for some smooth functions Xi. For every t ∈ [a, b], each vector field sj over U can be extended
to a vector field on M whose restriction to some open subset containing γ(t) agrees with sj,
so the R-linearity of ∇, along with Conditions (1) and (2), imply that

DX

dt
= ∇γ′(t)X(t) = ∇γ′(t)

n∑
j=1

Xj(t)sj(γ(t)) =
n∑
j=1

∇γ′(t) (Xj(t)sj(γ(t)))

=
n∑
j=1

(
dXj

dt
sj(γ(t)) +Xj(t)∇γ′(t)(sj(γ(t)))

)
.

Since

γ′(t) =
n∑
i=1

dui
dt

(
∂

∂xi

)
γ(t)

,

there exist some smooth functions Γkij (generally different from the Christoffel symbols) so
that

∇γ′(t)(sj(γ(t))) = ∇∑n
i=1

dui
dt

(
∂
∂xi

)
γ(t)

(sj(γ(t)))

= ∇ du1
dt

(
∂
∂x1

)
γ(t)

(sj(γ(t))) + · · ·+∇ dun
dt ( ∂

∂xn
)
γ(t)

(sj(γ(t)))

=
du1

dt
∇( ∂

∂x1

)
γ(t)

(sj(γ(t))) + · · ·+ dun
dt
∇( ∂

∂xn
)
γ(t)

(sj(γ(t)))

=
n∑
i=1

dui
dt
∇ ∂

∂xi

(sj(γ(t)))

=
∑
i,k

dui
dt

Γkijsk(γ(t)).
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It follows that
DX

dt
=

n∑
k=1

(
dXk

dt
+
∑
ij

Γkij
dui
dt

Xj

)
sk(γ(t)).

Conversely, the above expression defines a linear operator D/dt, and it is easy to check
that it satisfies Conditions (1) and (2).

Definition 14.5. The operator D/dt is often called covariant derivative along γ and it is
also denoted by ∇γ′(t) or simply ∇γ′ .

The use of the notation ∇γ′(t) instead of D/dt is quite unfortunate, since D/dt is applied
to a vector field only locally defined along a curve, whereas ∇γ′(t) is applied to a vector field
globally defined on M (or a least, on some open subset of M). This is another of these
notational conventions that we have to live with.

Definition 14.6. Let M be a smooth manifold and let ∇ be a connection on M . For every
curve γ : [a, b]→M in M , a vector field X along γ is parallel (along γ) iff

DX

dt
(s) = 0 for all s ∈ [a, b].

If M was embedded in Rd for some d, then to say that X is parallel along γ would mean
that the directional derivative (Dγ′X)(γ(t)) is normal to Tγ(t)M . See Figure 14.4.

DΥ ‘( X ) (Υ ( t ) )

X

Υ ‘
Υ ( t )

Figure 14.4: The real vector field X is parallel to the curve γ since (Dγ′X)(γ(t)) is perpen-
dicular to the tangent plane Tγ(t)M .

The following proposition can be shown using the existence and uniqueness of solutions
of ODE’s (in our case, linear ODE’s).
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Proposition 14.6. Let M be a smooth manifold and let ∇ be a connection on M . For every
C1 curve γ : [a, b] → M in M , for every t ∈ [a, b] and every v ∈ Tγ(t)M , there is a unique
parallel vector field X along γ such that X(t) = v.

Proof. For the proof of Proposition 14.6, it is sufficient to consider the portions of the curve
γ contained in some chart. In such a chart (U,ϕ), as in the proof of Proposition 14.5, using
a local frame (s1, . . . , sn) over U , we have

DX

dt
=

n∑
k=1

(
dXk

dt
+
∑
ij

Γkij
dui
dt

Xj

)
sk(γ(t)),

with ui = pri ◦ ϕ ◦ γ. Consequently, X is parallel along our portion of γ iff the system of
linear ODE’s in the unknowns Xk,

dXk

dt
+
∑
ij

Γkij
dui
dt

Xj = 0, k = 1, . . . , n,

is satisfied.

Remark: Proposition 14.6 can be extended to piecewise C1 curves.

Definition 14.7. Let M be a smooth manifold and let ∇ be a connection on M . For every
curve γ : [a, b]→ M in M , for every t ∈ [a, b], the parallel transport from γ(a) to γ(t) along
γ is the linear map from Tγ(a)M to Tγ(t)M which associates to any v ∈ Tγ(a)M the vector
Xv(t) ∈ Tγ(t)M , where Xv is the unique parallel vector field along γ with Xv(a) = v. See
Figure 14.5.

The following proposition is an immediate consequence of properties of linear ODE’s.

Proposition 14.7. Let M be a smooth manifold and let ∇ be a connection on M . For every
C1 curve γ : [a, b] → M in M , the parallel transport along γ defines for every t ∈ [a, b] a
linear isomorphism Pγ : Tγ(a)M → Tγ(t)M , between the tangent spaces Tγ(a)M and Tγ(t)M .

In particular, if γ is a closed curve, that is if γ(a) = γ(b) = p, we obtain a linear
isomorphism Pγ of the tangent space TpM , called the holonomy of γ. The holonomy group
of ∇ based at p, denoted Holp(∇), is the subgroup of GL(n,R) (where n is the dimension of
the manifold M) given by

Holp(∇) = {Pγ ∈ GL(n,R) | γ is a closed curve based at p}.

If M is connected, then Holp(∇) depends on the basepoint p ∈M up to conjugation, and
so Holp(∇) and Holq(∇) are isomorphic for all p, q ∈M . In this case, it makes sense to talk
about the holonomy group of ∇. By abuse of language, we call Holp(∇) the holonomy group
of M .
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Figure 14.5: The parallel transport of the red vector field around the spherical triangle ABC.

14.3 Connections Compatible with a Metric;

Levi-Civita Connections

If a Riemannian manifold M has a metric, then it is natural to define when a connection ∇
on M is compatible with the metric.

Given any two vector fields Y, Z ∈ X(M), the smooth function 〈Y, Z〉 is defined by

〈Y, Z〉(p) = 〈Yp, Zp〉p,

for all p ∈M .

Definition 14.8. Given any metric 〈−,−〉 on a smooth manifold M , a connection ∇ on M
is compatible with the metric, for short, a metric connection, iff

X(〈Y, Z〉) = 〈∇XY, Z〉+ 〈Y,∇XZ〉,

for all vector fields, X, Y, Z ∈ X(M).

Proposition 14.8. Let M be a Riemannian manifold with a metric 〈−,−〉. Then M pos-
sesses metric connections.

Proof. For every chart (Uα, ϕα), we use the Gram-Schmidt procedure to obtain an orthonor-
mal frame over Uα and we let ∇α be the flat connection over Uα. By construction, ∇α is
compatible with the metric. We finish the argument by using a partition of unity, leaving
the details to the reader.
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We know from Proposition 14.8 that metric connections on TM exist. However, there
are many metric connections on TM and none of them seems more relevant than the others.

It is remarkable that if we require a certain kind of symmetry on a metric connection,
then it is uniquely determined. Such a connection is known as the Levi-Civita connection.
The Levi-Civita connection can be characterized in several equivalent ways, a rather simple
way involving the notion of torsion of a connection.

There are two error terms associated with a connection. The first one is the curvature

R(X, Y ) = ∇[X,Y ] +∇Y∇X −∇X∇Y .

The second natural error term is the torsion T (X, Y ) of the connection ∇, given by

T (X, Y ) = ∇XY −∇YX − [X, Y ],

which measures the failure of the connection to behave like the Lie bracket.

Proposition 14.9. (Levi-Civita, Version 1) Let M be any Riemannian manifold. There
is a unique, metric, torsion-free connection ∇ on M ; that is, a connection satisfying the
conditions:

X(〈Y, Z〉) = 〈∇XY, Z〉+ 〈Y,∇XZ〉
∇XY −∇YX = [X, Y ],

for all vector fields, X, Y, Z ∈ X(M). This connection is called the Levi-Civita connection
(or canonical connection) on M . Furthermore, this connection is determined by the Koszul
formula

2〈∇XY, Z〉 = X(〈Y, Z〉) + Y (〈X,Z〉)− Z(〈X, Y 〉)
− 〈Y, [X,Z]〉 − 〈X, [Y, Z]〉 − 〈Z, [Y,X]〉.

Proof. First we prove uniqueness. Since our metric is a non-degenerate bilinear form, it
suffices to prove the Koszul formula. As our connection is compatible with the metric, we
have

X(〈Y, Z〉) = 〈∇XY, Z〉+ 〈Y,∇XZ〉
Y (〈X,Z〉) = 〈∇YX,Z〉+ 〈X,∇YZ〉
−Z(〈X, Y 〉) = −〈∇ZX, Y 〉 − 〈X,∇ZY 〉.

Adding up the above equations and using the fact that the torsion is zero gives us

X(〈Y, Z〉) + Y (〈X,Z〉)− Z(〈X, Y 〉)
= 〈Y,∇XZ −∇ZX〉+ 〈X,∇YZ −∇ZY 〉+ 〈Z,∇XY +∇YX〉
= 〈Y,∇XZ −∇ZX〉+ 〈X,∇YZ −∇ZY 〉

+ 〈Z,∇YX −∇XY 〉+ 〈Z,∇XY +∇XY 〉
= 〈Y, [X,Z]〉+ 〈X, [Y, Z]〉+ 〈Z, [Y,X]〉+ 2〈Z,∇XY 〉,
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which yields the Koszul formula.

Next we prove existence. We begin by checking that the right-hand side of the Koszul
formula is C∞(M)-linear in Z, for X and Y fixed. But then, the linear map Z 7→ 〈∇XY, Z〉
induces a one-form and ∇XY is the vector field corresponding to it via the non-degenerate
pairing. It remains to check that ∇ satisfies the properties of a connection, which it a bit
tedious (for example, see Kuhnel [71], Chapter 5, Section D).

In the simple case where M = Rn and the metric is the Euclidean inner product on Rn,
any two smooth vector fields X, Y can be written as

X =
n∑
i=1

fi
∂

∂xi
, Y =

n∑
i=1

gi
∂

∂xi
,

for some smooth functions fi, gi, and they can be viewed as smooth functionsX, Y : Rn → Rn.
Then it is easy to verify that the Levi-Civita connection is given by

(∇XY )(p) = dYp(X(p)), p ∈ Rn,

because the right-hand side satisfies all the conditions of Proposition 14.9, and there is a
unique such connection. Thus, the Levi-Civita connection induced by the Euclidean inner
product on Rn is the flat connection.

Remark: In a chart (U,ϕ), recall that gij = 〈 ∂
∂xi
, ∂
∂xj
〉. If we set

∂kgij =
∂

∂xk
(gij),

then it can be shown that the Christoffel symbols of the Levi-Civita connection are given by

Γkij =
1

2

n∑
l=1

gkl(∂igjl + ∂jgil − ∂lgij),

where (gkl) is the inverse of the matrix (gkl), and the Γkij are defined by

∇ ∂
∂xi

∂

∂xj
=

n∑
k=1

Γkij
∂

∂xk
;

see Definition 14.2. For example, suppose we take the polar coordinate parameterization of
the plane given by

x = r cos θ y = r sin θ,
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with 0 < θ < 2π and r > 0. For any p = (r cos θ, r sin θ), a basis for the tangent plane TpR2

is

∂p

∂r
= (cos θ, sin θ)

∂p

∂θ
= (−r sin θ, r cos θ).

Since

〈∂p
∂r
,
∂p

∂r
〉 = 1

〈∂p
∂r
,
∂p

∂θ
〉 = 0

〈∂p
∂θ
,
∂p

∂θ
〉 = r2,

we discover that

g =

(
1 0
0 r2

)
g−1 =

(
1 0
0 1

r2

)
.

By associating r with 1 and θ with 2, we discover that

Γrθθ = Γ1
22 = −r,

since

Γ1
22 =

1

2

2∑
l=1

g1l(∂2g2l + ∂2g2l − ∂lg22)

=
1

2

[
g11(2∂2g21 − ∂1g22) + g12(2∂2g22 − ∂2g22)

]
= −1

2
g11∂1g22 = −1

2

∂

∂r
g22

= −1

2

∂

∂r
r2 = −r.

Similar calculations show that

Γrrθ = Γ1
12 = Γ1

21 = 0

Γθrθ = Γ2
12 = Γ2

21 =
1

r
Γrrr = Γ1

11 = 0

Γθrr = Γ1
22 = 0

Γθθθ = Γ2
22 = 0.
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Since

∇ ∂
∂xi

(
∂

∂xj

)
=

n∑
k=1

Γkij
∂

∂xk
,

we explicitly calculate the Levi-Civita connection as

∇ ∂
∂r

(
∂

∂r

)
=

2∑
k=1

Γk11

∂

∂xk
= 0

∇ ∂
∂r

(
∂

∂θ

)
=

2∑
k=1

Γk12

∂

∂xk
=

1

r

∂

∂θ

∇ ∂
∂θ

(
∂

∂r

)
=

2∑
k=1

Γk21

∂

∂xk
=

1

r

∂

∂θ

∇ ∂
∂θ

(
∂

∂θ

)
=

2∑
k=1

Γk22

∂

∂xk
= −r ∂

∂r
.

It can be shown that a connection is torsion-free iff

Γkij = Γkji, for all i, j, k.

We conclude this section with various useful facts about torsion-free or metric connec-
tions. First, there is a nice characterization for the Levi-Civita connection induced by a
Riemannian manifold over a submanifold.

Proposition 14.10. Let M be any Riemannian manifold and let N be any submanifold of
M equipped with the induced metric. If ∇M and ∇N are the Levi-Civita connections on M
and N , respectively, induced by the metric on M , then for any two vector field X and Y in
X(M) with X(p), Y (p) ∈ TpN , for all p ∈ N , we have

∇N
XY = (∇M

X Y )‖,

where (∇M
X Y )‖(p) is the orthogonal projection of ∇M

X Y (p) onto TpN , for every p ∈ N .

In particular, if γ is a curve on a surface M ⊆ R3, then a vector field X(t) along γ is
parallel iff X ′(t) is normal to the tangent plane Tγ(t)M . See Figure 14.4.

If ∇ is a metric connection, then we can say more about the parallel transport along a
curve. Recall from Section 14.2, Definition 14.6, that a vector field X along a curve γ is
parallel iff

DX

dt
= 0.

The following proposition will be needed:
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Proposition 14.11. Given any Riemannian manifold M and any metric connection ∇ on
M , for every curve γ : [a, b]→M on M , if X and Y are two vector fields along γ, then

d

dt
〈X(γ(t)), Y (γ(t))〉 =

〈
DX

dt
, Y (γ(t))

〉
+

〈
X(γ(t)),

DY

dt

〉
.

Proof. Since

d

dt
〈X(γ(t)), Y (γ(t))〉 = d〈X, Y 〉γ(t)(γ

′(t)) = γ′(t)〈X, Y 〉γ(t),

it would be tempting to apply directly the equation

Z(〈X, Y 〉) = 〈∇ZX, Y 〉+ 〈X,∇ZY 〉

asserting the compatibility of the connection with the metric, but this is wrong because
the above equation applies to vectors fields X, Y defined on the whole of M (or at least
on some open subset of M), and yet in our situation X and Y are only defined along the
curve γ, and in general, such vector fields cannot be extended to an open subset of M . This
subtle point seems to have been overlooked in several of the classical texts. Note that Milnor
[81] circumvents this difficulty by defining compatibility in a different way (which turns out
to be equivalent to the notion used here). Our way out is to use charts, as in the proof
of Proposition 14.5; this is the proof method used by O’Neill [91] and Gallot, Hulin and
Lafontaine [49] (Chapter 2), although they leave computations to the reader.

We may assume that γ : [a, b]→ U for some chart (U,ϕ). Then, if (s1, . . . , sn) is a frame
above U , we can write

X(γ(t)) =
n∑
i=1

Xi(t)si(γ(t))

Y (γ(t)) =
n∑
k=1

Yk(t)sk(γ(t)),

and as in the proof of Proposition 14.5, we have

DX

dt
=

n∑
j=1

(
dXj

dt
sj(γ(t)) +Xj(t)∇γ′(t)(sj(γ(t)))

)
DY

dt
=

n∑
l=1

(
dYl
dt

sl(γ(t)) + Yl(t)∇γ′(t)(sl(γ(t)))

)
.
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It follows that〈
DX

dt
, Y

〉
+

〈
X,

DY

dt

〉
=

n∑
j,k=1

dXj

dt
Yk(t)〈sj(γ(t)), sk(γ(t))〉

+
n∑

j,k=1

Xj(t)Yk(t)〈∇γ′(t)sj(γ(t)), sk(γ(t))〉

+
n∑

i,l=1

Xi(t)
dYl
dt
〈si(γ(t)), sl(γ(t))〉

+
n∑

i,l=1

Xi(t)Yl(t)〈si(γ(t)),∇γ′(t)sl(γ(t))〉,

so〈
DX

dt
, Y

〉
+

〈
X,

DY

dt

〉
=

n∑
i,k=1

(
dXi

dt
Yk(t) +Xi(t)

dYk
dt

)
〈si(γ(t)), sk(γ(t))〉

+
n∑

i,k=1

Xi(t)Yk(t)
(
〈∇γ′(t)si(γ(t)), sk(γ(t))〉+ 〈si(γ(t)),∇γ′(t)sk(γ(t))〉

)
.

On the other hand, the compatibility of the connection with the metric implies that

〈∇γ′(t)si(γ(t)), sk(γ(t))〉+ 〈si(γ(t)),∇γ′(t)sk(γ(t))〉 = γ′(t)〈si, sk〉γ(t) =
d

dt
〈si(γ(t)), sk(γ(t))〉,

and thus we have〈
DX

dt
, Y

〉
+

〈
X,

DY

dt

〉
=

n∑
i,k=1

(
dXi

dt
Yk(t) +Xi(t)

dYk
dt

)
〈si(γ(t)), sk(γ(t))〉

+
n∑

i,k=1

Xi(t)Yk(t)
d

dt
〈si(γ(t)), sk(γ(t))〉

=
d

dt

(
n∑

i,k=1

Xi(t)Yk(t)〈si(γ(t)), sk(γ(t))〉
)

=
d

dt
〈X(γ(t)), Y (γ(t))〉,

as claimed.

Using Proposition 14.11 we get
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Proposition 14.12. Given any Riemannian manifold M and any metric connection ∇ on
M , for every curve γ : [a, b] → M on M , if X and Y are two vector fields along γ that are
parallel, then

〈X, Y 〉 = C,

for some constant C. In particular, ‖X(t)‖ is constant. Furthermore, the linear isomorphism
Pγ : Tγ(a) → Tγ(b) is an isometry.

Proof. From Proposition 14.11, we have

d

dt
〈X(γ(t)), Y (γ(t))〉 =

〈
DX

dt
, Y (γ(t))

〉
+

〈
X(γ(t)),

DY

dt

〉
.

As X and Y are parallel along γ, we have DX/dt = 0 and DY/dt = 0, so

d

dt
〈X(γ(t)), Y (γ(t))〉 = 0,

which shows that 〈X(γ(t)), Y (γ(t))〉 is constant. Therefore, for all v, w ∈ Tγ(a), if X and Y
are the unique vector fields parallel along γ such that X(γ(a)) = v and Y (γ(a)) = w given
by Proposition 14.6, we have

〈Pγ(v), Pγ(w)〉 = 〈X(γ(b)), Y (γ(b))〉 = 〈X(γ(a)), Y (γ(a))〉 = 〈v, w〉,

which proves that Pγ is an isometry.

In particular, Proposition 14.12 shows that the holonomy group Holp(∇) based at p is a
subgroup of O(n).

14.4 Problems

Problem 14.1. Prove that in a chart (U,ϕ), with ith local coordinate xi = pri ◦ ϕ, for any
two vector fields X and Y , we have

∇XY =
n∑
i=1

(
n∑
j=1

Xj
∂Yi
∂xj

+
n∑

j,k=1

ΓijkXjYk

)
∂

∂xi
,

where the Γijk are the Christofffel symbols of Definition 14.2.

Problem 14.2. Check that the expression ∇ =
∑

α fα∇α constructed in Proposition 14.4
is indeed a connection.

Problem 14.3. Let M be a smooth manifold and let γ : [a, b] → M be a smooth curve in
M . For any chart (U,ϕ), let ui = pri ◦ ϕ ◦ γ. For any vector field X on M , show that

DX

dt
=

n∑
k=1

(
dXk

dt
+
∑
ij

Γkij
dui
dt

Xj

)
∂

∂xk
.
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Problem 14.4. Fill in the details of Proposition 14.8.

Problem 14.5. Check that the vector field ∇XY constructed at the end of the proof of
Proposition 14.9 is indeed a connection.

Problem 14.6. Given a Riemannian manifold (M, g), in a chart (U,ϕ), if we set

∂kgij =
∂

∂xk
(gij),

then show that the Christoffel symbols of the Levi-Civita connection are given by

Γkij =
1

2

n∑
l=1

gkl(∂igjl + ∂jgil − ∂lgij),

where (gkl) is the inverse of the matrix (gkl) representing the metric g in U .

Problem 14.7. In a Riemannian manifold, prove that a connection is torsion-free iff

Γkij = Γkji, for all i, j, k.

Problem 14.8. Prove Proposition 14.10.

Problem 14.9. Give an example of a connection defined on R3 which is compatible with
the Euclidean metric but is not torsion-free.

Hint . Define this connection in terms of the Christoffel symbols.

Problem 14.10. Let M ⊆ R3 be a surface with the Riemannian metric induced from R3.
Let c : (0, 1) → M be a differentiable curve on M and let V be a vector field tangent to M
along c, which can be viewed as a smooth function V : (0, 1)→ R3 with V (t) ∈ Tc(t)M .

(1) Prove that V is parallel iff dV/dt is perpendicular to Tc(t)M ⊆ R3, where dV/dt is
the usual derivative of V : (0, 1)→ R3.

(2) If S2 ⊆ R3 is the unit sphere of R3, show that the velocity field along great circles,
parametrized by arc length, is a parallel field.

Problem 14.11. Let X and Y be differentiable vector fields on a Riemannian manifold
M . For any p ∈ M , let c : I → M be an integral curve through p, so that c(0) = p and
dc/dt = X(c(t)). Prove that the Levi-Civita connection of M is given by

(∇XY )(p) =
d

dt
(P−1

c,0,t(Y (c(t))))

∣∣∣∣
t=0

,

where Pc,0,t : Tc(0) → Tc(t) is the parallel transport along c from 0 to t. This shows that the
Levi-Civita connection can be obtained from the concept of parallelism.

Problem 14.12. Complete the partition of unity argument in the proof of Proposition 14.8.
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Chapter 15

Geodesics on Riemannian Manifolds

If (M, g) is a Riemannian manifold, then the concept of length makes sense for any piecewise
smooth (in fact, C1) curve on M . It is then possible to define the structure of a metric space
on M , where d(p, q) is the greatest lower bound of the length of all curves joining p and
q. Curves on M which locally yield the shortest distance between two points are of great
interest. These curves, called geodesics , play an important role and the goal of this chapter
is to study some of their properties.

In Section 15.1, we define geodesics and prove some of their basic properties, in particular
the fact that they always exist locally. Note that the notion of geodesic only requires a
connection on a manifold, since by definition, a geodesic is a curve γ such that γ′ is parallel
along γ, that is

Dγ′

dt
= ∇γ′γ

′ = 0,

where D
dt

be the covariant derivative along γ, also denoted ∇γ′ (see Proposition 14.5 and
Definition 14.5). Thus, geodesics can be defined in manifolds that are not endowed with a
Riemannian metric. However, most useful properties of geodesics involve metric notions, and
their proofs use the fact that the connection on the manifold is compatible with the metric
and torsion-free. For this reason, we usually assume that we are dealing with Riemannian
manifolds equipped with the Levi-Civita connection.

For every point p ∈ M on a manifold M , using geodesics through p we can define the
exponential map expp, which maps a neighborhood of 0 in the tangent space TpM back into
M . This provides nice parametrizations of the manifold; see Section 15.2. The exponential
map is a very useful technical tool because it establishes a precise link between the lineariza-
tion of a manifold by its tangent spaces and the manifold itself. In particular, manifolds for
which the exponential map is defined for all p ∈M and all v ∈ TpM can be studied in more
depth; see Section 15.3. Such manifolds are called complete. A fundamental theorem about
complete manifolds is the theorem of Hopf and Rinow, which we prove in full.

Geodesics are locally distance minimizing, but in general they fail to be distance mini-
mizing if they extend too far. This phenomenon is captured by the subtle notion of cut locus ,

433



434 CHAPTER 15. GEODESICS ON RIEMANNIAN MANIFOLDS

which we define and study briefly. In Section 15.4, we also discuss briefly various notions of
convexity induced by geodesics.

In Section 15.5, we define the Hessian of a function defined on a Riemannian manifold,
and show how the Hessian can be computed using geodesics.

Geodesics between two points p and q turn out to be critical points of the energy func-
tional on the path space Ω(p, q), the space of all piecewise smooth curves from p to q. This is
an infinite dimensional manifold consisting of functions (curves), so in order to define what
it means for a curve ω in Ω(p, q) to be a critical point of a function F defined on Ω(p, q),
we introduce the notion of variation (of a curve). Then it is possible to obtain a formula

giving the derivative dE(α̃(u))/du |u=0 of the energy function E (with E(ω) =
∫ 1

0
‖ω′(t)‖2 dt)

applied to a variation α̃ of a curve ω (the first variation formula); see Section 15.6. It turns
out that a curve ω is a geodesic iff it is a critical point of the energy function (that is,
dE(α̃(u))/du |u=0= 0 for all variations of ω). This result provides a fruitful link with the
calculus of variations.

Among the many presentations of this subject, in our opinion, Milnor’s account [81] (Part
II, Section 11) is still one of the best, certainly by its clarity and elegance. We acknowledge
that our presentation was heavily inspired by this beautiful work. We also relied heavily on
Gallot, Hulin and Lafontaine [49] (Chapter 2), Do Carmo [39], O’Neill [91], Kuhnel [71], and
class notes by Pierre Pansu
(see http://www.math.u-psud.fr/%7Epansu/web dea/resume dea 04.html in
http://www.math.u-psud.fr̃ pansu/). Another reference that is remarkable by its clarity and
the completeness of its coverage is Postnikov [96].

15.1 Geodesics, Local Existence and Uniqueness

Recall the following definitions regarding curves.

Definition 15.1. Given any smooth manifold M , a smooth parametric curve (for short,
curve) on M is a smooth map γ : I → M , where I is some open interval of R. For a closed
interval [a, b] ⊆ R, a map γ : [a, b] → M is a smooth curve from p = γ(a) to q = γ(b) iff γ
can be extended to a smooth curve γ̃ : (a − ε, b + ε) → M , for some ε > 0. Given any two
points p, q ∈M , a continuous map γ : [a, b]→M is a piecewise smooth curve from p to q iff

(1) There is a sequence a = t0 < t1 < · · · < tk−1 < tk = b of numbers ti ∈ R, so that each
map γi = γ � [ti, ti+1], called a curve segment , is a smooth curve for i = 0, . . . , k − 1.

(2) γ(a) = p and γ(b) = q.

The set of all piecewise smooth curves from p to q is denoted by Ω(M ; p, q), or briefly by
Ω(p, q) (or even by Ω, when p and q are understood).
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The set Ω(M ; p, q) is an important object, sometimes called the path space of M (from p
to q). Unfortunately it is an infinite-dimensional manifold, which makes it hard to investigate
its properties.

Observe that at any junction point γi−1(ti) = γi(ti), there may be a jump in the velocity
vector of γ. We let γ′((ti)+) = γ′i(ti) and γ′((ti)−) = γ′i−1(ti).

Definition 15.2. Let (M, g) be a Riemannian manifold. Given any p ∈ M , for every
v ∈ TpM , the (Riemannian) norm of v, denoted ‖v‖, is defined by

‖v‖ =
√
gp(v, v).

The Riemannian inner product gp(u, v) of two tangent vectors u, v ∈ TpM will also be
denoted by 〈u, v〉p, or simply 〈u, v〉.

Definition 15.3. Let (M, g) be a Riemannian manifold. Given any curve γ ∈ Ω(M ; p, q),
the length L(γ) of γ is defined by

L(γ) =
k−1∑
i=0

∫ ti+1

ti

‖γ′(t)‖ dt =
k−1∑
i=0

∫ ti+1

ti

√
g(γ′(t), γ′(t)) dt.

It is easy to see that L(γ) is unchanged by a monotone reparametrization (that is, a map
h : [a, b]→ [c, d] whose derivative h′ has a constant sign).

Now let M be any smooth manifold equipped with an arbitrary connection ∇. For every
curve γ on M , recall that D

dt
is the associated covariant derivative along γ, also denoted ∇γ′

(see Proposition 14.5 and Definition 14.5).

Definition 15.4. Let M be any smooth manifold equipped with a connection ∇. A curve
γ : I →M (where I ⊆ R is any interval) is a geodesic iff γ′(t) is parallel along γ; that is, iff

Dγ′

dt
= ∇γ′γ

′ = 0.

Observe that the notion of geodesic only requires a connection on a manifold, and that
geodesics can be defined in manifolds that are not endowed with a Riemannian metric.
However, most useful properties of geodesics involve metric notions, and their proofs use
the fact that the connection on the manifold is compatible with the metric and torsion-free.
Therefore, from now on, we assume unless otherwise specified that our Riemannian manifold
(M, g) is equipped with the Levi-Civita connection.

If M was embedded in Rd, a geodesic would be a curve γ such that the acceleration
vector γ′′ = Dγ′

dt
is normal to Tγ(t)M .
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Since our connection is compatible with the metric, by Proposition 14.12 implies that
for a geodesic γ, ‖γ′(t)‖ =

√
g(γ′(t), γ′(t)) is constant, say ‖γ′(t)‖ = c. If we define the

arc-length function s(t) relative to a, where a is any chosen point in I, by

s(t) =

∫ t

a

√
g(γ′(t), γ′(t)) dt = c(t− a), t ∈ I,

we conclude that for a geodesic γ(t), the parameter t is an affine function of the arc-length.
When c = 1, which can be achieved by an affine reparametrization, we say that the geodesic
is normalized .

The geodesics in Rn are the straight lines parametrized by constant velocity. The
geodesics of the 2-sphere are the great circles, parametrized by arc-length. The geodesics of
the Poincaré half-plane are the half-lines x = a and the half-circles centered on the x-axis.
The geodesics of an ellipsoid are quite fascinating. They can be completely characterized,
and they are parametrized by elliptic functions (see Hilbert and Cohn-Vossen [60], Chapter
4, Section and Berger and Gostiaux [15], Section 10.4.9.5).

In a local chart (U,ϕ), since a geodesic is characterized by the fact that its velocity vector
field γ′(t) along γ is parallel, by Proposition 14.6, it is the solution of the following system
of second-order ODE’s in the unknowns uk:

d2uk
dt2

+
∑
ij

Γkij
dui
dt

duj
dt

= 0, k = 1, . . . , n, (∗)

with ui = pri ◦ ϕ ◦ γ (n = dim(M)).

The standard existence and uniqueness results for ODE’s can be used to prove the fol-
lowing proposition (see O’Neill [91], Chapter 3):

Proposition 15.1. Let (M, g) be a Riemannian manifold. For every point p ∈M and every
tangent vector v ∈ TpM , there is some interval (−η, η) and a unique geodesic

γv : (−η, η)→M,

satisfying the conditions
γv(0) = p, γ′v(0) = v.

From a practical point of view, Proposition 15.1 is useless. In general, for an arbitrary
manifold M , it is impossible to solve explicitly the second-order equations (∗); even for
familiar manifolds it is very hard to solve explicitly the second-order equations (∗). Rieman-
nian covering maps and Riemannian submersions are notions that can be used for finding
geodesics; see Chapter 17. In the case of a Lie group with a bi-invariant metric, geodesics
can be described explicitly; see Chapter 20. Geodesics can also be described explicitly for
certain classes of reductive homogeneous manifolds; see Chapter 22.

The following proposition is used to prove that every geodesic is contained in a unique
maximal geodesic (i.e., with largest possible domain). For a proof, see O’Neill [91] ( Chapter
3) or Petersen [93] (Chapter 5, Section 2, Lemma 7).
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Proposition 15.2. For any two geodesics γ1 : I1 → M and γ2 : I2 → M , if γ1(a) = γ2(a)
and γ′1(a) = γ′2(a) for some a ∈ I1 ∩ I2, then γ1 = γ2 on I1 ∩ I2.

Remark: It is easy to check that Propositions 15.1 and 15.2 hold for any smooth manifold
equipped with an arbitrary connection.

Propositions 15.1 and 15.2 imply the following definition:

Definition 15.5. Let M be a smooth manifold equipped with an arbitrary connection. For
every p ∈M and every v ∈ TpM , there is a unique geodesic, denoted γv, such that γ(0) = p,
γ′(0) = v, and the domain of γ is the largest possible, that is, cannot be extended. We call
γv a maximal geodesic (with initial conditions γv(0) = p and γ′v(0) = v).

Observe that the system of differential equations satisfied by geodesics has the following
homogeneity property: If t 7→ γ(t) is a solution of the above system, then for every constant
c, the curve t 7→ γ(ct) is also a solution of the system. We can use this fact together with
standard existence and uniqueness results for ODE’s to prove the proposition below.

Proposition 15.3. Let (M, g) be a Riemannian manifold. For every point p0 ∈ M , there
is an open subset U ⊆ M , with p0 ∈ U , and some ε > 0, so that for every p ∈ U and every
tangent vector v ∈ TpM , with ‖v‖ < ε, there is a unique geodesic

γv : (−2, 2)→M

satisfying the conditions
γv(0) = p, γ′v(0) = v.

Proof. We follow Milnor [81] (Part II, Section 10, Proposition 10.2). By a standard theorem
about the existence and uniqueness of solutions of ODE’s, for every p0 ∈ M , there is some
open subset U of M containing p0, and some numbers ε1 > 0 and ε2 > 0, such that for every
p ∈ M and every v ∈ TpM with ‖v‖ < ε1, there is a unique geodesic γ̃v : (−2ε2, 2ε2) → M
such that γ̃v(0) = p and γ̃′v(0) = v. Let η = 2ε2. For any constant c 6= 0, the curve t 7→ γ̃v(ct)
is a geodesic defined on (−η/c, η/c) (or (η/c,−η/c) if c < 0) such that γ̃′(0) = cv. Thus,

γ̃v(ct) = γ̃cv(t), ct ∈ (−η, η).

Pick ε > 0 so that ε < ε1ε2. Then, if ‖v‖ < ε and |t| < 2, note that

‖v/ε2‖ < ε1 and |ε2t| < 2ε2.

Hence, we can define the geodesic γv by

γv(t) = γ̃v/ε2(ε2t), ‖v‖ < ε, |t| < 2,

and we have γv(0) = p and γ′v(0) = v, which concludes the proof.
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Figure 15.1: The top figure illustrates Proposition 15.1 for the torus M while the bottom
figure illustrates Proposition 15.3.

A major difference between Proposition 15.1 and Proposition 15.3 is that Proposition
15.1 yields for any p ∈ M and any v ∈ TpM a single geodesic γv : (−η, η) → M such that
γv(0) = p and γ′p(0) = v, but Proposition 15.3 yields a family of geodesics γv : (−2, 2)→M
such that γv(0) = p and γ′p(0) = v, with the same domain, for every p in some small enough
open subset U , and for small enough v ∈ TpM . See Figure 15.1.

Remark: Proposition 15.3 holds for a Riemannian manifold equipped with an arbitrary
connection.

15.2 The Exponential Map

The idea behind the exponential map is to parametrize a smooth manifold M locally near
any p ∈ M in terms of a map from the tangent space TpM to the manifold, this map being
defined in terms of geodesics.
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Definition 15.6. Let M be a smooth manifold equipped with some arbitrary connection.
For every p ∈M , let D(p) (or simply, D) be the open subset of TpM given by

D(p) = {v ∈ TpM | γv(1) is defined},
where γv is the unique maximal geodesic with initial conditions γv(0) = p and γ′v(0) = v.
The exponential map is the map expp : D(p)→M given by

expp(v) = γv(1).

It is easy to see thatD(p) is star-shaped (with respect to p), which means that if w ∈ D(p),
then the line segment {tw | 0 ≤ t ≤ 1} is contained in D(p). See Figure 15.2.

p

p

D D(p) (p)

Figure 15.2: The left figure is a star-shaped region in R2 (with respect to p), while the right
figure is a star-shaped region in R3 (with respect to p). Both regions contain line segments
radiating from p.

In view of the fact that if γv : (−η, η) → M is a geodesic through p with initial velocity
v, then for any c 6= 0,

γv(ct) = γcv(t), ct ∈ (−η, η),

we have
expp(tv) = γtv(1) = γv(t), tv ∈ D(p),

so the curve
t 7→ expp(tv), tv ∈ D(p),

is the geodesic γv through p such that γ′v(0) = v. Such geodesics are called radial geodesics .

In a Riemannian manifold with the Levi-Civita connection, the point expp(tv) is obtained
by running along the geodesic γv an arc length equal to t ‖v‖, starting from p. If the tangent
vector tv at p is a flexible wire, the exponential map wraps the wire along the geodesic curve
without stretching its length. See Figure 15.3.

In general, D(p) is a proper subset of TpM . For example, if U is a bounded open subset
of Rn, since we can identify TpU with Rn for all p ∈ U , then D(p) ⊆ U , for all p ∈ U .
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Figure 15.3: The image of v under expp.

Definition 15.7. A smooth manifold M equipped with an arbitrary connection is geodesi-
cally complete iff D(p) = TpM for all p ∈ M ; that is, the exponential expp(v) is defined for
all p ∈M and for all v ∈ TpM .

Equivalently, (M, g) is geodesically complete iff every geodesic can be extended indefi-
nitely.

Geodesically complete Riemannian manifolds (with the Levi-Civita connection) have nice
properties, some of which will be investigated later.

Proposition 15.4. Let M be a Riemannian manifold. For any p ∈ M we have d(expp)0 =
idTpM .

Proof. For every v ∈ D(p), the map t 7→ expp(tv) is the geodesic γv, and

d

dt
(γv(t))|t=0 = v =

d

dt
(expp(tv))|t=0 = d(expp)0(v).

It follows from the inverse function theorem that expp is a diffeomorphism from some
open ball in TpM centered at 0 to M .
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By using the curve t 7→ (t + 1)v passing through v in TpM and with initial velocity
v ∈ Tv(TpM) ≈ TpM , we get

d(expp)v(v) =
d

dt
(γv(t+ 1))|t=0 = γ′v(1).

The following stronger proposition plays a crucial role in the proof of the Hopf-Rinow
Theorem; see Theorem 15.16.

Proposition 15.5. Let (M, g) be a Riemannian manifold. For every point p ∈ M , there is
an open subset W ⊆M , with p ∈ W , and a number ε > 0, so that:

(1) Any two points q1, q2 of W are joined by a unique geodesic of length < ε.

(2) This geodesic depends smoothly upon q1 and q2; that is, if t 7→ expq1(tv) is the geodesic
joining q1 and q2 (0 ≤ t ≤ 1), then v ∈ Tq1M depends smoothly on (q1, q2).

(3) For every q ∈ W , the map expq is a diffeomorphism from the open ball B(0, ε) ⊆ TqM
to its image Uq = expq(B(0, ε)) ⊆M , with W ⊆ Uq and Uq open.

Proof. We follow Milnor [81] (Chapter II, Section 10, Lemma 10.3). Let

U = {(q, v) ∈ TM | q ∈ U, v ∈ TqM, ‖v‖ < ε1},

where the open subset U of M and ε1 are given by Proposition 15.3, for the point p0 = p ∈M .
Then we can define the map Φ: U →M ×M by

Φ(q, v) = (q, expq(v)).

We claim that dΦ(p,0) is invertible, which implies that Φ is a local diffeomorphism near (p, 0).
If we pick a chart (V, ϕ) at p, then we have the chart (V × V, ϕ × ϕ) at (p, p) = Φ(p, 0) in
M ×M , and since

d(expp)0 = id,

it is easy to check that in the basis of TpM × TpM consisting of the pairs((
∂

∂x1

)
p

, 0

)
, . . . ,

((
∂

∂xn

)
p

, 0

)
,

(
0,

(
∂

∂x1

)
p

)
, . . . ,

(
0,

(
∂

∂xn

)
p

)
,

we have

dΦ(p,0)

((
∂

∂xi

)
p

, 0

)
=

((
∂

∂xi

)
p

,

(
∂

∂xi

)
p

)

dΦ(p,0)

(
0,

(
∂

∂xi

)
p

)
=

(
0,

(
∂

∂xi

)
p

)
,
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so the Jacobian matrix of Φ(p,0) is equal to(
I 0
I I

)
.

By the inverse function theorem, there is an open subset U ′ contained in U with (p, 0) ∈ U ′
and an open subsetW ′ of M ×M containing (p, p) such that Φ is a diffeomorphism between
U ′ and W ′. We may assume that there is some open subset U ′ of U containing p and some
ε > 0 such that ε < ε1 and

U ′ = {(q, v) | q ∈ U ′, v ∈ TqM, ‖v‖ < ε} =
⋃
q∈U ′
{q} ×B(0, ε).

Now, if we choose a smaller open subset W containing p such that W ×W ⊆ W ′, because
Φ is a diffeomorphism on U ′, we have

{q} ×W ⊆ Φ({q} ×B(0, ε)),

for all q ∈ W . From the definition of Φ, we have W ⊆ expq(B(0, ε)), and expq is a diffeo-
morphism on B(0, ε) ⊆ TqM , which proves Part (3).

Given any two points q1, q2 ∈ W , since Φ is a diffeomorphism between U ′ and W ′ with
W ×W ⊆ W ′, there is a unique v ∈ Tq1M such that ‖v‖ < ε and Φ(q1, v) = (q1, q2); that is,
expq1(v) = q2, which means that t 7→ expq1(tv) is the unique geodesic from q1 to q2, which
proves (1).

Finally, since (q1, v) = Φ−1(q1, q2) and Φ is a diffeomorphism, Part (2) holds.

Remark: Except for the part of Statement (1) about the length of geodesics having length <
ε, Proposition 15.5 holds for a Riemannian manifold equipped with an arbitrary connection.

Definition 15.8. Let (M, g) be a Riemannian manifold. For any q ∈M , an open neighbor-
hood of q of the form Uq = expq(B(0, ε)) where expq is a diffeomorphism from the open ball
B(0, ε) onto Uq, is called a normal neighborhood .

Remark: The proof of the previous proposition can be sharpened to prove that for any
p ∈ M , there is some β > 0 such that any two points q1, q2 ∈ exp(B(0, β)), there is a
unique geodesic from q1 to q2 that stays within exp(B(0, β)); see Do Carmo [39] (Chapter
3, Proposition 4.2). We say that exp(B(0, β)) is strongly convex . The least upper bound of
these β is called the convexity radius at p.

Definition 15.9. Let (M, g) be a Riemannian manifold. For every point p ∈ M , the
injectivity radius of M at p, denoted i(p), is the least upper bound of the numbers r > 0
such that expp is a diffeomorphism on the open ball B(0, r) ⊆ TpM . The injectivity radius
i(M) of M is the greatest lower bound of the numbers i(p), where p ∈M .
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Definition 15.10. Let (M, g) be a Riemannian manifold. For every p ∈M , we get a chart
(Up, ϕ), where Up = expp(B(0, i(p))) and ϕ = exp−1, called a normal chart . If we pick
any orthonormal basis (e1, . . . , en) of TpM , then the xi’s, with xi = pri ◦ exp−1 and pri the
projection onto Rei, are called normal coordinates at p (here, n = dim(M)).

Normal coordinates are defined up to an isometry of TpM . The following proposition
shows that Riemannian metrics do not admit any local invariants of order one. The proof is
left as an exercise.

Proposition 15.6. Let (M, g) be a Riemannian manifold. For every point p ∈M , in normal
coordinates at p,

g

(
∂

∂xi
,
∂

∂xj

)
p

= δij and Γkij(p) = 0.

The need to consider vector fields along a surface and the partial derivatives of such
vector fields arise in several proofs to be presented shortly.

Definition 15.11. If α : U → M is a parametrized surface, where M is a smooth manifold
and U is some open subset of R2, we say that a vector field V ∈ X(M) is a vector field along
α iff V (x, y) ∈ Tα(x,y)M , for all (x, y) ∈ U .

For any smooth vector field V along α, we also define the covariant derivatives DV/∂x
and DV/∂y as follows. For each fixed y0, if we restrict V to the curve

x 7→ α(x, y0)

we obtain a vector field Vy0 along this curve, and we set

DV

∂x
(x, y0) =

DVy0
dx

.

Then we let y0 vary so that (x, y0) ∈ U , and this yields DV/∂x. We define DV/∂y is a
similar manner, using a fixed x0. The following technical result will be used several times.

Proposition 15.7. For any smooth vector field V along a surface α : U → M , for any
torsion-free connection on M , we have

D

∂y

∂α

∂x
=

D

∂x

∂α

∂y
.

The above equation is checked in a coordinate system. The details of the computation
are given in Do Carmo [39] (Chapter 3, Lemma 3.4).

For the next proposition known as Gauss Lemma, we need to define polar coordinates on
TpM . If n = dim(M), observe that the map (0,∞)× Sn−1 −→ TpM − {0} given by

(r, v) 7→ rv, r > 0, v ∈ Sn−1
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is a diffeomorphism, where Sn−1 is the sphere of radius r = 1 in TpM . Then the map
(0, i(p))× Sn−1 −→ Up − {p} ⊂M given by

(r, v) 7→ expp(rv), 0 < r < i(p), v ∈ Sn−1

is also a diffeomorphism.

Proposition 15.8. (Gauss Lemma) Let (M, g) be a Riemannian manifold. For every point
p ∈M , the images expp(S(0, r)) of the spheres S(0, r) ⊆ TpM centered at 0 by the exponential
map expp are orthogonal to the radial geodesics r 7→ expp(rv) through p for all r < i(p), with
v ∈ Sn−1. This means that for any differentiable curve t 7→ v(t) on the unit sphere Sn−1, the
corresponding curve on M

t 7→ expp(rv(t)) with r fixed,

is orthogonal to the radial geodesic

r 7→ expp(rv(t)) with t fixed (0 < r < i(p)).

See Figure 15.4. Furthermore, in polar coordinates, the pull-back metric exp∗ g induced on
TpM is of the form

exp∗ g = dr2 + gr,

where gr is a metric on the unit sphere Sn−1, with the property that gr/r
2 converges to the

standard metric on Sn−1 (induced by Rn) when r goes to zero (here, n = dim(M)).

Proof sketch. We follow Milnor; see [81], Chapter II, Section 10. Pick any curve t 7→ v(t)
on the unit sphere Sn−1. The first statement can be restated in terms of the parametrized
surface

f(r, t) = expp(rv(t));

we must prove that 〈
∂f

∂r
,
∂f

∂t

〉
= 0,

for all (r, t). However, as we are using the Levi-Civita connection, which is compatible with
the metric, we have

∂

∂r

〈
∂f

∂r
,
∂f

∂t

〉
=

〈
D

∂r

∂f

∂r
,
∂f

∂t

〉
+

〈
∂f

∂r
,
D

∂r

∂f

∂t

〉
. (†)

The first expression on the right-hand side of (†) is zero since the curves

r 7→ f(r, t)

are geodesics. For the second expression, first observe that〈
∂f

∂r
,
D

∂t

∂f

∂r

〉
=

1

2

∂

∂t

〈
∂f

∂r
,
∂f

∂r

〉
= 0,
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Figure 15.4: An illustration of the Gauss lemma for a two-dimensional manifold.

since 1 = ‖v(t)‖ = ‖∂f/∂r‖, since the velocity vector of a geodesic has constant norm (this
fact was noted just after Definition 15.4). Next, note that if we can prove that

D

∂t

∂f

∂r
=
D

∂r

∂f

∂t
,

then

0 =

〈
∂f

∂r
,
D

∂t

∂f

∂r

〉
=

〈
∂f

∂r
,
D

∂r

∂f

∂t

〉
,

so the second expression on the right-hand side of (†) is also zero. Since the Levi-Civita
connection is torsion-free the equation

D

∂t

∂f

∂r
=
D

∂r

∂f

∂t

follows from Proposition 15.7.

Since the right-hand side of (†) is zero,〈
∂f

∂r
,
∂f

∂t

〉
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is independent of r. But, for r = 0, we have

f(0, t) = expp(0) = p,

hence
∂f

∂t
(0, t) = 0

and thus, 〈
∂f

∂r
,
∂f

∂t

〉
= 0

for all r, t, which concludes the proof of the first statement.

The orthogonality of ∂f/∂r and ∂f/∂t implies that the pullback metric exp∗ g induced
on TpM is of the form exp∗ g = dr2 + gr, where gr is a metric on the unit sphere Sn−1.
For the proof that gr/r

2 converges to the standard metric on Sn−1, see Pansu’s class notes,
Chapter 3, Section 3.5.

Observe that the proof of Gauss Lemma (Proposition 15.8) uses the fact that the con-
nection is compatible with the metric and torsion-free.

Remark: If v(t) is a curve on Sn−1 such that v(0) = v and v′(0) = wN (with ‖v‖ < i(p)),
then since f(r, t) = expp(rv(t))

∂f

∂r
(1, 0) = (d expp)v(v),

∂f

∂t
(1, 0) = (d expp)v(wN),

and Gauss lemma can be stated as

〈(d expp)v(v), (d expp)v(wN)〉 = 〈v, wN〉 = 0.

This is how Gauss lemma is stated in Do Carmo [39] (Chapter 3, Lemma 3.5).

Remark: There is also another version of “Gauss lemma” whose proof uses Jacobi fields
(see Gallot, Hulin and Lafontaine [49], Chapter 3, Lemma 3.70).

Proposition 15.9. (Gauss Lemma) Given any point p ∈M , for any vectors u, v ∈ TpM , if
expp v is defined, then

〈d(expp)tv(u), d(expp)tv(v)〉 = 〈u, v〉, 0 ≤ t ≤ 1.

The next three results use the fact that the connection is compatible with the metric and
torsion-free. Consider any piecewise smooth curve

ω : [a, b]→ Up − {p} ⊂M.

We can write each point ω(t) uniquely as

ω(t) = expp(r(t)v(t)),

with 0 < r(t) < i(p), v(t) ∈ TpM and ‖v(t)‖ = 1.
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Proposition 15.10. Let (M, g) be a Riemannian manifold. We have∫ b

a

‖ω′(t)‖ dt ≥ |r(b)− r(a)|,

where equality holds only if the function r is monotone and the function v is constant. Thus,
the shortest path joining two concentric spherical shells expp(S(0, r(a))) and expp(S(0, r(b)))
is a radial geodesic.

Proof. (After Milnor, see [81], Chapter II, Section 10.) Again, let f(r, t) = expp(rv(t)) so
that ω(t) = f(r(t), t). Then,

dω

dt
=
∂f

∂r
r′(t) +

∂f

∂t
.

The proof of the previous proposition showed that the two vectors on the right-hand side
are orthogonal and since ‖∂f/∂r‖ = 1, this gives∥∥∥∥dωdt

∥∥∥∥2

= |r′(t)|2 +

∥∥∥∥∂f∂t
∥∥∥∥2

≥ |r′(t)|2

where equality holds only if ∂f/∂t = 0; hence only if v′(t) = 0. Thus,∫ b

a

∥∥∥∥dωdt
∥∥∥∥ dt ≥ ∫ b

a

|r′(t)|dt ≥ |r(b)− r(a)|

where equality holds only if r(t) is monotone and v(t) is constant.

We now get the following important result from Proposition 15.8 and Proposition 15.10,
namely that geodesics are locally lengthwise minimizing curves.

Theorem 15.11. Let (M, g) be a Riemannian manifold. Let W and ε be as in Proposition
15.5 and let γ : [0, 1]→ M be the geodesic of length < ε joining two points q1, q2 of W . For
any other piecewise smooth path ω joining q1 and q2, we have∫ 1

0

‖γ′(t)‖ dt ≤
∫ 1

0

‖ω′(t)‖ dt,

where equality holds only if the images ω([0, 1]) and γ([0, 1]) coincide. Thus, γ is the shortest
path from q1 to q2.

Proof. (After Milnor, see [81], Chapter II, Section 10.) Consider any piecewise smooth path
ω from q1 = γ(0) to some point

q2 = expq1(rv) ∈ Uq1 ,
where 0 < r < ε and ‖v‖ = 1. Then for any δ with 0 < δ < r, the path ω must contain a
segment joining the spherical shell of radius δ to the spherical shell of radius r, and lying
between these two shells. The length of this segment will be at least r− δ; hence if we let δ
go to zero, the length of ω will be at least r. If ω([0, 1]) 6= γ([0, 1]), we easily obtain a strict
inequality.
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Here is an important consequence of Theorem 15.11.

Corollary 15.12. Let (M, g) be a Riemannian manifold. If ω : [0, b] → M is any curve
parametrized by arc-length and ω has length less than or equal to the length of any other
curve from ω(0) to ω(b), then ω is a geodesic.

Proof. Consider any segment of ω lying within an open set W as above, and having length
< ε. By Theorem 15.11, this segment must be a geodesic. Hence, the entire curve is a
geodesic.

Corollary 15.12 together with the fact that isometries preserve geodesics can be used to
determine the geodesics in various spaces, for example in the Poincaré half-plane.

Definition 15.12. Let (M, g) be a Riemannian manifold. A geodesic γ : [a, b] → M is
minimal iff its length is less than or equal to the length of any other piecewise smooth curve
joining its endpoints.

Theorem 15.11 asserts that any sufficiently small segment of a geodesic is minimal. On
the other hand, a long geodesic may not be minimal. For example, a great circle arc on the
unit sphere is a geodesic. If such an arc has length greater than π, then it is not minimal.
This is illustrated by the magenta equatorial geodesic connecting points a and b of Figure
15.5 (i.). Minimal geodesics are generally not unique. For example, any two antipodal points
on a sphere are joined by an infinite number of minimal geodesics. Figure 15.5 (ii.) illustrates
five geodesics connecting the antipodal points a and b.

(i.)

a
b

a

b

(ii.)

Figure 15.5: Examples of geodesics, i.e. arcs of great circles, on S2.

A broken geodesic is a piecewise smooth curve as in Definition 15.1, where each curve
segment is a geodesic.

Proposition 15.13. A Riemannian manifold (M, g) is connected iff any two points of M
can be joined by a broken geodesic.
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Proof. Assume M is connected, pick any p ∈M , and let Sp ⊆M be the set of all points that
can be connected to p by a broken geodesic. For any q ∈M , choose a normal neighborhood
U of q. If q ∈ Sp, then it is clear that U ⊆ Sp. On the other hand, if q /∈ Sp, then U ⊆M−Sp.
Therefore, Sp 6= ∅ is open and closed, so Sp = M . The converse is obvious.

Remark: Proposition 15.13 holds for a smooth manifold equipped with any connection.

In general, if M is connected, then it is not true that any two points are joined by
a geodesic. However, this will be the case if M is a geodesically complete Riemannian
manifold equipped with the Levi-Civita connection, as we will see in the next section.

Next we will see that a Riemannian metric induces a distance on the manifold whose
induced topology agrees with the original metric.

15.3 Complete Riemannian Manifolds,

the Hopf-Rinow Theorem and the Cut Locus

Every connected Riemannian manifold (M, g) is a metric space in a natural way. Further-
more, M is a complete metric space iff M is geodesically complete. In this section, we
explore briefly some properties of complete Riemannian manifolds equipped with the Levi-
Civita connection.

Proposition 15.14. Let (M, g) be a connected Riemannian manifold. For any two points
p, q ∈M , let d(p, q) be the greatest lower bound of the lengths of all piecewise smooth curves
joining p to q. Then d is a metric on M , and the topology of the metric space (M,d) coincides
with the original topology of M .

A proof of the above proposition can be found in Gallot, Hulin and Lafontaine [49]
(Chapter 2, Proposition 2.91) or O’Neill [91] (Chapter 5, Proposition 18).

The distance d is often called the Riemannian distance on M . For any p ∈ M and any
ε > 0, the metric ball of center p and radius ε is the subset Bε(p) ⊆M given by

Bε(p) = {q ∈M | d(p, q) < ε}.

The next proposition follows easily from Proposition 15.5 (Milnor [81], Section 10, Corol-
lary 10.8).

Proposition 15.15. Let (M, g) be a connected Riemannian manifold. For any compact
subset K ⊆ M , there is a number δ > 0 so that any two points p, q ∈ K with distance
d(p, q) < δ are joined by a unique geodesic of length less than δ. Furthermore, this geodesic
is minimal and depends smoothly on its endpoints.
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Recall from Definition 15.7 that (M, g) is geodesically complete iff the exponential map
v 7→ expp(v) is defined for all p ∈ M and for all v ∈ TpM . We now prove the following
important theorem due to Hopf and Rinow (1931).

Theorem 15.16. (Hopf-Rinow) Let (M, g) be a connected Riemannian manifold. If there
is a point p ∈ M such that expp is defined on the entire tangent space TpM , then any point
q ∈ M can be joined to p by a minimal geodesic. As a consequence, if M is geodesically
complete, then any two points of M can be joined by a minimal geodesic.

Proof. We follow Milnor’s proof in [81], Chapter 10, Theorem 10.9. Pick any two points
p, q ∈ M and let r = d(p, q). By Proposition 15.5, there is some open subset W ⊆ M , with
p ∈ W , and some ε > 0, such that the exponential map is a diffeomorphism between the
open ball B(0, ε) and its image Up = expp(B(0, ε)). For δ < min(ε, r), let S = expp(S(0, δ)),
where S(0, δ) is the sphere of radius δ. By Proposition 15.5, there is a unique geodesic from
p to any point s ∈ S, and since the length of this geodesic is δ, we have d(p, s) = δ for all
s ∈ S. Since S ⊆ Up is compact, there is some point

p0 = expp(δv), with ‖v‖ = 1,

on S for which the distance to q is minimized. We will prove that

expp(rv) = q,

which will imply that the geodesic γ given by γ(t) = expp(tv) is actually a minimal geodesic
from p to q (with t ∈ [0, r]). Here we use the fact that the exponential expp is defined
everywhere on TpM . See Figure 15.6.

The proof amounts to showing that a point which moves along the geodesic γ must get
closer and closer to q. In fact, for each t ∈ [δ, r], we prove

d(γ(t), q) = r − t. (∗t)

We get the proof by setting t = r.

First we prove (∗δ). Every path from p to q must pass through S, because γ([0, r]) is a
connected set which must intersect the boundary S of expp(B(0, δ)). Otherwise, since p is
in the interior of expp(B(0, δ)) and q is in the exterior of expp(B(0, δ)), the subset γ([0, r])
would intersect the interior and the exterior of expp(B(0, δ)), contradicting the fact that
γ([0, r]) is connected. By the choice of p0 as a point on S minimizing the distance from S
to q, we have

r = d(p, q) = min
s∈S
{d(p, s) + d(s, q)} = δ + min

s∈S
{d(s, q)} = δ + d(p0, q).

Therefore, d(p0, q) = r − δ, and since p0 = γ(δ), this proves (∗δ).
Define t0 ∈ [δ, r] by

t0 = sup{t ∈ [δ, r] | d(γ(t), q) = r − t}.
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Figure 15.6: An illustration of the first paragraph in the proof of Theorem 15.16.

As the set {t ∈ [δ, r] | d(γ(t), q) = r − t} is closed because the curve γ and the distance
function d are continuous, it contains its upper bound t0, so the equation (∗t0) also holds.
We claim that if t0 < r, then we obtain a contradiction.

As we did with p, we reapply Proposition 15.5 to find some small δ′ > 0 so that if
S ′ = expγ(t0)(B(0, δ′)), then there is some point p′0 on S ′ with minimum distance from q and
p′0 is joined to γ(t0) by a minimal geodesic. See Figure 15.7.
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Figure 15.7: The construction of p′0 in Theorem 15.16.
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We have

r − t0 = d(γ(t0), q) = min
s∈S′
{d(γ(t0), s) + d(s, q)} = δ′ + min

s∈S′
{d(s, q)} = δ′ + d(p′0, q),

hence

d(p′0, q) = r − t0 − δ′. (†)
We claim that p′0 = γ(t0 + δ′).

By the triangle inequality and using (†) (recall that d(p, q) = r), we have

d(p, p′0) ≥ d(p, q)− d(p′0, q) = t0 + δ′.

But a path of length precisely t0 + δ′ from p to p′0 is obtained by following γ from p to
γ(t0), and then following a minimal geodesic from γ(t0) to p′0. Since this broken geodesic has
minimal length, by Corollary 15.12, it is a genuine (unbroken) geodesic, and so it coincides
with γ. But then, as p′0 = γ(t0 + δ′), equality (†) becomes (∗t0+δ′), namely

d(γ(t0 + δ′), q) = r − (t0 + δ′),

contradicting the maximality of t0. Therefore, we must have t0 = r, and q = expp(rv), as
desired.

Remark: Theorem 15.16 is proved in nearly every book on Riemannian geometry. Among
those, we mention Gallot, Hulin and Lafontaine [49] (Chapter 2, Theorem 2.103), Do Carmo
[39] (Chapter 7, Theorem 2.8), and O’Neill [91] (Chapter 5, Lemma 24). Since the proof
of Theorem 15.16 makes crucial use of Corollary 15.12, which itself relies on the fact that
the connection is symmetric and torsion-free, Theorem 15.16 only holds for the Levi-Civita
connection.

Theorem 15.16 implies the following result (often known as the Hopf-Rinow Theorem).

Theorem 15.17. Let (M, g) be a connected, Riemannian manifold. The following state-
ments are equivalent:

(1) The manifold (M, g) is geodesically complete; that is, for every p ∈ M , every geodesic
through p can be extended to a geodesic defined on all of R.

(2) For every point p ∈M , the map expp is defined on the entire tangent space TpM .

(3) There is a point p ∈M , such that expp is defined on the entire tangent space TpM .

(4) Any closed and bounded subset of the metric space (M,d) is compact.

(5) The metric space (M,d) is complete (that is, every Cauchy sequence converges).
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Proof. Proofs of Theorem 15.17 can be found in Gallot, Hulin and Lafontaine [49] (Chapter
2, Corollary 2.105), Do Carmo [39] (Chapter 7, Theorem 2.8), and O’Neill [91] (Chapter 5,
Theorem 21).

The implications (1) ⇒ (2) and (2) ⇒ (3) are obvious. We prove the implication (3) ⇒
(4) as follows. Let A be a closed and bounded subset of M . Since A is bounded it is
contained in a metric ball B with center p. By Theorem 15.16, (3) implies that there is a
minimal geodesic from p to any point in B, so there is an open ball B(0, r) ⊆ TpM such

that B ⊆ expp(B(0, r)). Since expp is continuous and B(0, r) is compact, expp(B(0, r)) is

compact. Since A is closed and A ⊆ B ⊆ expp(B(0, r)), with expp(B(0, r)) compact, A itself
is compact.

Assume that (4) holds. If (pm) is any Cauchy sequence in M , then it is a bounded
subset, hence contained in a compact ball. Thus the sequence (pm) contains a convergent
subsequence, and since it is a Cauchy sequence, it converges. Therefore the implication
(4)⇒ (5) holds.

Finally, we prove the implication (5) ⇒ (1). Let γ : I → M be a geodesic in M
parametrized by arc length. If we prove that I is open and closed, then I = R and we
are done. The fact that I is open follows from Proposition 15.1. Next let (tn) be a sequence
of elements of I converging to some number t. We would like to prove that t ∈ I. Since

d(γ(ti), γ(tj)) ≤ |ti − tj|,

the sequence (γ(tn)) is a Cauchy sequence, so by (5) it converges to some element q ∈ M .
Let W be the open subset containing q and let ε given by Proposition 15.5, so that any
geodesic starting from any point in W is defined on (−ε, ε). By chosing n large enough so
that |tn − t| < ε/2 and γ(tn) ∈ W , we see that the geodesic γ is defined up to t + ε/2, so
t ∈ I, as desired. Therefore I is closed, and the proof is complete.

In view of Theorem 15.17, a connected Riemannian manifold (M, g) is geodesically com-
plete iff the metric space (M,d) is complete. We will refer simply to M as a complete
Riemannian manifold (it is understood that M is connected). Also, by (4), every compact
Riemannian manifold is complete. If we remove any point p from a Riemannian manifold
M , then M − {p} is not complete, since every geodesic that formerly went through p yields
a geodesic that can’t be extended.

Definition 15.13. Let (M, g) be a complete Riemannian manifold. Given any point p ∈M ,
let Up ⊆ TpM be the subset consisting of all v ∈ TpM such that the geodesic

t 7→ expp(tv)

is a minimal geodesic up to t = 1 + ε, for some ε > 0. The left-over part M − expp(Up) (if
nonempty) is actually equal to expp(∂Up), and it is an important subset of M called the cut
locus of p.
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Remark: It can be shown that the subset Up is open and star-shaped, and it turns out that
expp is a diffeomorphism from Up onto its image expp(Up) in M .

The following proposition is needed to establish properties of the cut locus.

Proposition 15.18. Let (M, g) be a complete Riemannian manifold. For any geodesic
γ : [0, a]→M from p = γ(0) to q = γ(a), the following properties hold:

(i) If there is no geodesic shorter than γ between p and q, then γ is minimal on [0, a].

(ii) If there is another geodesic of the same length as γ between p and q, then γ is no longer
minimal on any larger interval, [0, a+ ε].

(iii) If γ is minimal on any interval I, then γ is also minimal on any subinterval of I.

Proof. Part (iii) is an immediate consequence of the triangle inequality. As M is complete,
by the Hopf-Rinow Theorem, (Theorem 15.16), there is a minimal geodesic from p to q, so γ
must be minimal too. This proves Part (i). For Part (ii), assume that ω is another geodesic
from p to q of the same length as γ and that γ is defined in [0, a+ ε] some some ε > 0. Since
γ and ω are assumed to be distinct curves, the curve ϕ : [0, a+ ε]→M given by

ϕ(t) =

{
ω(t) 0 ≤ t ≤ a

γ(t) a ≤ t ≤ a+ ε

is not smooth at t = a, since otherwise Proposition 15.1 implies that γ and ω would be equal
on their common domain; in particular, Proposition 15.1 implies there is a unique geodesic
through q with initial condition v = γ′(a) = ω′(a). Pick ε′ so that 0 < ε′ < min{ε, a}, and
consider the points q1 = ϕ(a− ε′) and q2 = ϕ(a + ε′). By Hopf-Rinow’s theorem, there is a
minimal geodesic ψ from q1 to q2, and since the portion of ϕ from q1 to q2 is not smooth, the
length of ψ is strictly smaller than the length of the segment of ϕ from q1 to q2. But then,
the curve ϕ̃ obtained by concatenating the segment of ω from p to q1 and ψ from q1 to q2 is
strictly shorter that the curve obtained by concatenating the curve segment ω from p to q
with the curve segment γ from q to q2. See Figure 15.8.

However, the length of the curve segment ω from p to q is equal to length of the curve
segment γ from p to q. This proves that ϕ̃ from p to q2 is strictly shorter than γ from p to
q2, so γ is no longer minimal beyond q.

Again, assume (M, g) is a complete Riemannian manifold and let p ∈ M be any point.
For every v ∈ TpM , let

Iv = {s ∈ R ∪ {∞} | the geodesic t 7→ expp(tv) is minimal on [0, s]}.

It is easy to see that Iv is a closed interval, so Iv = [0, ρ(v)] (with ρ(v) possibly infinite). It
can be shown that if w = λv, then ρ(v) = λρ(w), so we can restrict our attention to unit
vectors v. It can also be shown that the map ρ : Sn−1 → R is continuous, where Sn−1 is
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Figure 15.8: The geodesics ω, γ, ψ, and the path ϕ̃ used in the proof of Proposition 15.18.

the unit sphere of center 0 in TpM , and that ρ(v) is bounded below by a strictly positive
number.

By using ρ(v), we are able to restate Definition 15.13 as follows:

Definition 15.14. Let (M, g) be a complete Riemannian manifold and let p ∈ M be any
point. Define Up by

Up =

{
v ∈ TpM

∣∣∣∣ ρ( v

‖v‖

)
> ‖v‖

}
= {v ∈ TpM | ρ(v) > 1},

and the cut locus of p by

Cut(p) = expp(∂Up) = {expp(ρ(v)v) | v ∈ Sn−1}.

The set Up is open and star-shaped. The boundary ∂Up of Up in TpM is sometimes called

the tangential cut locus of p and is denoted C̃ut(p).

Remark: The cut locus was first introduced for convex surfaces by Poincaré (1905) under
the name ligne de partage. According to Do Carmo [39] (Chapter 13, Section 2), for Rie-
mannian manifolds, the cut locus was introduced by J.H.C. Whitehead (1935). But it was
Klingenberg (1959) who revived the interest in the cut locus and showed its usefuleness.

Proposition 15.19. Let (M, g) be a complete Riemannian manifold. For any point p ∈M ,
the sets expp(Up) and Cut(p) are disjoint and

M = expp(Up) ∪ Cut(p).
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Proof. From the Hopf-Rinow Theorem, (Theorem 15.16), for every q ∈M , there is a minimal
geodesic t 7→ expp(vt) such that expp(v) = q. This shows that ρ(v) ≥ 1, so v ∈ Up and

M = expp(Up) ∪ Cut(p).

It remains to show that this is a disjoint union. Assume q ∈ expp(Up) ∩ Cut(p). Since
q ∈ expp(Up), there is a geodesic γ such that γ(0) = p, γ(a) = q, and γ is minimal on
[0, a + ε], for some ε > 0. On the other hand, as q ∈ Cut(p), there is some geodesic γ̃ with
γ̃(0) = p, γ̃(b) = q, γ̃ minimal on [0, b], but γ̃ not minimal after b. As γ and γ̃ are both
minimal from p to q, they have the same length from p to q. But then, as γ and γ̃ are distinct,
by Proposition 15.18 (ii), the geodesic γ can’t be minimal after q, a contradiction.

We can now restate Definition 15.9 as follows:

Definition 15.15. Let (M, g) be a complete Riemannian manifold and let p ∈ M be any
point. The injectivity radius i(p) of M at p is equal to the distance from p to the cut locus
of p:

i(p) = d(p,Cut(p)) = inf
q∈Cut(p)

d(p, q).

Consequently, the injectivity radius i(M) of M is given by

i(M) = inf
p∈M

d(p,Cut(p)).

If M is compact, it can be shown that i(M) > 0. It can also be shown using Jacobi
fields that expp is a diffeomorphism from Up onto its image expp(Up). Thus, expp(Up) is
diffeomorphic to an open ball in Rn (where n = dim(M)) and the cut locus is closed. Hence,
the manifold M is obtained by gluing together an open n-ball onto the cut locus of a point.
In some sense the topology of M is “contained” in its cut locus.

Given any sphere Sn−1, the cut locus of any point p is its antipodal point {−p}. For more
examples, consult Gallot, Hulin and Lafontaine [49] (Chapter 2, Section 2C7), Do Carmo
[39] (Chapter 13, Section 2) or Berger [14] (Chapter 6). In general, the cut locus is very hard
to compute. In fact, even for an ellipsoid, the determination of the cut locus of an arbitrary
point was a matter of conjecture for a long time. This conjecture was finally settled around
2011.

15.4 Convexity, Convexity Radius

Proposition 15.5 shows that if (M, g) is a Riemannian manifold, then for every point p ∈M ,
there is an open subset W ⊆ M with p ∈ W and a number ε > 0, so that any two points
q1, q2 of W are joined by a unique geodesic of length < ε. However, there is no guarantee
that this unique geodesic between q1 and q2 stays inside W . Intuitively this says that W
may not be convex.
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The notion of convexity can be generalized to Riemannian manifolds, but there are some
subtleties. In this short section we review various definitions of convexity found in the
literature and state one basic result. Following Sakai [100] (Chapter IV, Section 5), we make
the following definition.

Definition 15.16. Let C ⊆M be a nonempty subset of some Riemannian manifold M .

(1) The set C is called strongly convex iff for any two points p, q ∈ C, there exists a unique
minimal geodesic γ from p to q in M and γ is contained in C.

(2) If for every point p ∈ C, there is some ε(p) > 0 so that C ∩Bε(p)(p) is strongly convex,
then we say that C is locally convex (where Bε(p)(p) is the metric ball of center p and
radius ε(p)).

(3) The set C is called totally convex iff for any two points p, q ∈ C, all geodesics from p
to q in M are contained in C.

It is clear that if C is strongly convex or totally convex, then C is locally convex. If M
is complete and any two points are joined by a unique geodesic, then the three conditions of
Definition 15.16 are equivalent.

Definition 15.17. For any p ∈ M , the convexity radius at p, denoted r(p), is the least
upper bound of the numbers r > 0 such that for any metric ball Bε(q), if Bε(q) ⊆ Br(p),
then Bε(q) is strongly convex and every geodesic contained in Br(p) is a minimal geodesic
joining its endpoints. The convexity radius of M , r(M), is the greatest lower bound of the
set {r(p) | p ∈M}.

Note that it is possible that r(M) = 0 if M is not compact.

The following proposition proved in Sakai [100] (Chapter IV, Section 5, Theorem 5.3)
shows that a metric ball with sufficiently small radius is strongly convex.

Proposition 15.20. If M is a Riemannian manifold, then r(p) > 0 for every p ∈ M , and
the map p 7→ r(p) ∈ R+ ∪ {∞} is continuous. Furthermore, if r(p) = ∞ for some p ∈ M ,
then r(q) =∞ for all q ∈M .

That r(p) > 0 is also proved in Do Carmo [39] (Chapter 3, Section 4, Proposition 4.2).
More can be said about the structure of connected locally convex subsets of M ; see Sakai
[100] (Chapter IV, Section 5).

Remark: The following facts are stated in Berger [14] (Chapter 6):

(1) If M is compact, then the convexity radius r(M) is strictly positive.

(2) r(M) ≤ 1
2
i(M), where i(M) is the injectivity radius of M .
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Berger also points out that if M is compact, then the existence of a finite cover by convex
balls can used to triangulate M . This method was proposed by Hermann Karcher (see Berger
[14], Chapter 3, Note 3.4.5.3).

Besides the notion of the gradient of a function, there is also the notion of Hessian. Now
that we have geodesics at our disposal, we also have a method to compute the Hessian, a
task which is generally quite complex.

15.5 Hessian of a Function on a Riemannian Manifold

Given a smooth function f : M → R on a Riemannian manifold M , recall from Definition
13.3 that the gradient grad f of f is the vector field uniquely defined by the condition

〈(grad f)p, u〉p = dfp(u) = u(f), for all u ∈ TpM and all p ∈M .

Definition 15.18. The Hessian Hess(f) (or ∇2(f)) of a function f ∈ C∞(M) is defined by

Hess(f)(X, Y ) = X(Y (f))− (∇XY )(f) = X(df(Y ))− df(∇XY ),

for all vector fields X, Y ∈ X(M).

Since ∇ is torsion-free, we get ∇XY (f) −∇YX(f) = [X, Y ](f) = X(Y (f)) − Y (X(f)),
which in turn implies

Hess(f)(X, Y ) = X(Y (f))− (∇XY )(f) = Y (X(f))− (∇YX)(f) = Hess(f)(Y,X),

which means that the Hessian is symmetric.

Proposition 15.21. The Hessian is given by the equation

Hess(f)(X, Y ) = 〈∇X(grad f), Y 〉, X, Y ∈ X(M).

Proof. We have

X(Y (f)) = X(df(Y ))

= X(〈grad f, Y 〉)
= 〈∇X(grad f), Y 〉+ 〈grad f,∇XY 〉
= 〈∇X(grad f), Y 〉+ (∇XY )(f)

which yields

〈∇X(grad f), Y 〉 = X(Y (f))− (∇XY )(f) = Hess(f)(X, Y ),

as claimed.
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In the simple case where M = Rn and the metric is the usual Euclidean inner product on
Rn, we can easily compute the Hessian of a function f : Rn → R. For any two vector fields

X =
n∑
i=1

xi
∂

∂xi
, Y =

n∑
i=1

yi
∂

∂xi
,

with xi, yi ∈ R, we have ∇XY = dY (X) = 0 (xi, yi are constants and the Levi-Civita con-
nection induced by the Euclidean inner product is the flat connection), so Hess(f)(X, Y ) =
X(Y (f)) and if we write x> = (x1, . . . , xn)> and y> = (y1, . . . , yn)>, it is easy to see that

Hess(f)p(X, Y ) = x>Hp y,

where Hp is the matrix

Hp =

(
∂2f

∂xi∂xj
(p)

)
,

the usual Hessian matrix of the function f at p.

In the general case of a Riemanian manifold (M, 〈−,−〉), given any function f ∈ C∞(M),
for any p ∈M and for any u ∈ TpM , the value of the Hessian Hess(f)p(u, u) can be computed
using geodesics.

Proposition 15.22. For any geodesic γ : [0, ε] → M such that γ(0) = p and γ′(0) = u, we
have

Hess(f)p(u, u) =
d2

dt2
f(γ(t))

∣∣∣∣
t=0

.

Proof. We have

Hess(f)p(u, u) = γ′(γ′(f))− (∇γ′γ
′)(f) = γ′(γ′(f)),

since ∇γ′γ
′ = 0 because γ is a geodesic, and

γ′(γ′(f)) = γ′(df(γ′)) = γ′
(
d

dt
f(γ(t))

∣∣∣∣
t=0

)
=

d2

dt2
f(γ(t))

∣∣∣∣
t=0

.

Therefore, we have

Hess(f)p(u, u) =
d2

dt2
f(γ(t))

∣∣∣∣
t=0

,

as claimed.

Since the Hessian is a symmetric bilinear form, we obtain Hess(f)p(u, v) by polarization;
that is,

Hess(f)p(u, v) =
1

2
(Hess(f)p(u+ v, u+ v)− Hess(f)p(u, u)− Hess(f)p(v, v)).
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Let us find the Hessian of the function f : SO(3)→ R defined in the second example of
Section 7.5, with

f(R) = (u>Rv)2.

We found that
dfR(X) = 2u>Xvu>Rv, X ∈ Rso(3)

and that the gradient is given by

(grad(f))R = u>RvR(R>uv> − vu>R).

To compute the Hessian, we use the curve γ(t) = RetB, where B ∈ so(3). Indeed, it can be
shown (see Section 20.3, Proposition 20.20) that the metric induced by the inner product

〈B1, B2〉 = tr(B>1 B2) = −tr(B1B2)

on so(n) is bi-invariant, and so the curve γ is a geodesic.

First we compute

(f(γ(t)))′(t) = ((u>RetBv)2)′(t)

= 2u>RetBvu>RBetBv,

and then

Hess(f)R(RB,RB) = (f(γ(t)))′′(0)

= (2u>RetBvu>RBetBv)′(0)

= 2u>RBvu>RBv + 2u>Rvu>RBBv

= 2u>RBvu>RBv + 2u>Rvu>RBR>RBv.

By polarization, we obtain

Hess(f)R(X, Y ) = 2u>Xvu>Y v + u>Rvu>XR>Y v + u>Rvu>Y R>Xv,

with X, Y ∈ Rso(3).

15.6 The Calculus of Variations Applied to Geodesics;

The First Variation Formula

In this section, we consider a Riemannian manifold (M, g) equipped with the Levi-Civita
connection. The path space Ω(p, q) was introduced in Definition 15.1. It is an “infinite
dimensional” manifold. By analogy with finite dimensional manifolds, we define a kind of
tangent space to Ω(p, q) at a “point” ω. In this section, it is convenient to assume that paths
in Ω(p, q) are parametrized over the interval [0, 1].
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p

q

M

ω

Figure 15.9: The point ω in Ω(p, q) and its associated tangent vector, the blue vector field.
Each blue vector is contained in a tangent space for ω(t).

Definition 15.19. For every “point” ω ∈ Ω(p, q), we define the “tangent space” TωΩ(p, q)
to Ω(p, q) at ω, as the space of all piecewise smooth vector fields W along ω (see Definition
14.4), for which W (0) = W (1) = 0. See Figure 15.9.

If F : Ω(p, q) → R is a real-valued function on Ω(p, q), it is natural to ask what the
induced “tangent map”

dFω : TωΩ(p, q)→ R,

should mean (here, we are identifying TF (ω)R with R). Observe that Ω(p, q) is not even a
topological space so the answer is far from obvious!

In the case where f : M → R is a function on a manifold, there are various equivalent
ways to define df , one of which involves curves. For every v ∈ TpM , if α : (−ε, ε) → M is a
curve such that α(0) = p and α′(0) = v, then we know that

dfp(v) =
d(f(α(t)))

dt

∣∣∣∣
t=0

.

We may think of α as a small variation of p. Recall that p is a critical point of f iff dfp(v) = 0,
for all v ∈ TpM .

Rather than attempting to define dFω (which requires some conditions on F ), we will
mimic what we did with functions on manifolds and define what is a critical path of a function
F : Ω(p, q)→ R, using the notion of variation. Now geodesics from p to q are special paths
in Ω(p, q), and they turn out to be the critical paths of the energy function

Eb
a(ω) =

∫ b

a

‖ω′(t)‖2
dt,

where ω ∈ Ω(p, q), and 0 ≤ a < b ≤ 1.
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Definition 15.20. Given any path ω ∈ Ω(p, q), a variation of ω (keeping endpoints fixed)
is a function α̃ : (−ε, ε)→ Ω(p, q), for some ε > 0, such that:

(1) α̃(0) = ω

(2) There is a subdivision 0 = t0 < t1 < · · · < tk−1 < tk = 1 of [0, 1] so that the map

α : (−ε, ε)× [0, 1]→M

defined by α(u, t) = α̃(u)(t) is smooth on each strip (−ε, ε)×[ti, ti+1], for i = 0, . . . , k−1.

See Figure 15.10. If U is an open subset of Rn containing the origin and if we replace (−ε, ε)
by U in the above, then α̃ : U → Ω(p, q) is called an n-parameter variation of ω.

The function α is also called a variation of ω. Since each α̃(u) belongs to Ω(p, q), note
that

α(u, 0) = p, α(u, 1) = q, for all u ∈ (−ε, ε).
The function α̃ may be considered as a “smooth path” in Ω(p, q), since for every u ∈ (−ε, ε),
the map α̃(u) is a curve in Ω(p, q) called a curve in the variation (or longitudinal curve of
the variation).

Definition 15.21. Let ω ∈ Ω(p, q), and let α̃ : (−ε, ε) → Ω(p, q) be a variation of ω as
defined in Definition 15.20. The “tangent vector” dα̃

du
(0) ∈ TωΩ(p, q) is defined to be the

vector field W along ω given by

Wt =
∂α

∂u
(u, t)

∣∣∣∣
u=0

.

By definition,
dα̃

du
(0)t = Wt, t ∈ [0, 1].

Clearly, W ∈ TωΩ(p, q). In particular, W (0) = W (1) = 0. The vector field W is also
called the variation vector field associated with the variation α. See Figure 15.10.

Besides the curves in the variation α̃(u) (with u ∈ (−ε, ε)), for every t ∈ [0, 1], we have a
curve αt : (−ε, ε)→M , called a transversal curve of the variation, defined by

αt(u) = α̃(u)(t),

and Wt is equal to the velocity vector α′t(0) at the point ω(t) = αt(0). For ε sufficiently
small, the vector field Wt is an infinitesimal model of the variation α̃.

Proposition 15.23. For any W ∈ TωΩ(p, q), there is a variation α̃ : (−ε, ε)→ Ω(p, q) which
satisfies the conditions

α̃(0) = ω,
dα̃

du
(0) = W.
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p qω α (0)
~

α~

=

(-1)

α~ (-2)

α~ (1)

α~ (2) α t (u)

Figure 15.10: A variation of ω in R2 with transversal curve αt(u). The blue vector field is
the variational vector field Wt.

Sketch of the proof. By the compactness of ω([0, 1]), it is possible to find a δ > 0 so that
expω(t) is defined for all t ∈ [0, 1] and all v ∈ Tω(t)M , with ‖v‖ < δ. Then if

N = max
t∈[0,1]

‖Wt‖ ,

for any ε such that 0 < ε < δ
N

, it can be shown that

α̃(u)(t) = expω(t)(uWt)

works (for details, see Do Carmo [39], Chapter 9, Proposition 2.2).

As we said earlier, given a function F : Ω(p, q) → R, we do not attempt to define the
differential dFω, but instead the notion of critical path.

Definition 15.22. Given a function F : Ω(p, q) → R, we say that a path ω ∈ Ω(p, q) is a
critical path for F iff

dF (α̃(u))

du

∣∣∣∣
u=0

= 0,

for every variation α̃ of ω (which implies that the derivative dF (α̃(u))
du

∣∣∣
u=0

is defined for every

variation α̃ of ω).

For example, if F takes on its minimum on a path ω0 and if the derivatives dF (α̃(u))
du

are
all defined, then ω0 is a critical path of F .

We will apply the above to two functions defined on Ω(p, q).
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(1) The energy function (also called action integral)

Eb
a(ω) =

∫ b

a

‖ω′(t)‖2
dt.

(We write E = E1
0 .)

(2) The arc-length function

Lba(ω) =

∫ b

a

‖ω′(t)‖ dt.

The quantities Eb
a(ω) and Lba(ω) can be compared as follows: if we apply the Cauchy-

Schwarz inequality, (∫ b

a

f(t)g(t)dt

)2

≤
(∫ b

a

f 2(t)dt

)(∫ b

a

g2(t)dt

)
with f(t) ≡ 1 and g(t) = ‖ω′(t)‖, we get

(Lba(ω))2 ≤ (b− a)Eb
a,

where equality holds iff g is constant; that is, iff the parameter t is proportional to arc-length.

Now suppose that there exists a minimal geodesic γ from p to q. Then, using Proposition
15.11 which says that L(γ) ≤ L(ω), we get

E(γ) = L(γ)2 ≤ L(ω)2 ≤ E(ω),

where the equality L(γ)2 = L(ω)2 holds only if ω is also a minimal geodesic, possibly
reparametrized. On the other hand, the equality L(ω)2 = E(ω) can hold only if the param-
eter is proportional to arc-length along ω. This proves that E(γ) < E(ω) unless ω is also a
minimal geodesic. We just proved:

Proposition 15.24. Let (M, g) be a complete Riemannian manifold. For any two points
p, q ∈ M , if d(p, q) = δ, then the energy function E : Ω(p, q) → R takes on its minimum δ2

precisely on the set of minimal geodesics from p to q.

Next we are going to show that the critical paths of the energy function are exactly the
geodesics. For this we need the first variation formula.

Let α̃ : (−ε, ε)→ Ω(p, q) be a variation of ω, and let

Wt =
∂α

∂u
(u, t)

∣∣∣∣
u=0
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be its associated variation vector field. Furthermore, let

Vt =
dω

dt
= ω′(t),

the velocity vector field of ω, and

∆tV = Vt+ − Vt− ,

the discontinuity in the velocity vector at t, which is nonzero only for t = ti, with 0 < ti < 1
(see the definition of γ′((ti)+) and γ′((ti)−) just after Definition 15.1). See Figure 15.11.

p = t0

q = t3

t t
1 2

α

α (-1)~

(1)~

∆
∆ t t

1
2
V

V
ω

Figure 15.11: The point ω in blue with Vt in red, Wt in green, and ∆tV in orange.

Theorem 15.25. (First Variation Formula) For any path ω ∈ Ω(p, q), we have

1

2

dE(α̃(u))

du

∣∣∣∣
u=0

= −
∑
i

〈Wt,∆tV 〉 −
∫ 1

0

〈
Wt,

D

dt
Vt

〉
dt, (†)

where α̃ : (−ε, ε)→ Ω(p, q) is any variation of ω.

Proof. (After Milnor, see [81], Chapter II, Section 12, Theorem 12.2.) By Proposition 14.11,
we have

∂

∂u

〈
∂α

∂t
,
∂α

∂t

〉
= 2

〈
D

∂u

∂α

∂t
,
∂α

∂t

〉
.

Therefore,
dE(α̃(u))

du
=

d

du

∫ 1

0

〈
∂α

∂t
,
∂α

∂t

〉
dt = 2

∫ 1

0

〈
D

∂u

∂α

∂t
,
∂α

∂t

〉
dt.

Now, because we are using the Levi-Civita connection, which is torsion-free, Proposition 15.7
implies that

D

∂t

∂α

∂u
=

D

∂u

∂α

∂t
.

Consequently,
dE(α̃(u))

du
= 2

∫ 1

0

〈
D

∂t

∂α

∂u
,
∂α

∂t

〉
dt.
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We can choose 0 = t0 < t1 < · · · < tk = 1 so that α is smooth on each strip (−ε, ε)× [ti−1, ti].
Then we can “integrate by parts” on [ti−1, ti] as follows. The equation

∂

∂t

〈
∂α

∂u
,
∂α

∂t

〉
=

〈
D

∂t

∂α

∂u
,
∂α

∂t

〉
+

〈
∂α

∂u
,
D

∂t

∂α

∂t

〉
implies that∫ ti

ti−1

〈
D

∂t

∂α

∂u
,
∂α

∂t

〉
dt =

〈
∂α

∂u
,
∂α

∂t

〉∣∣∣∣t=(ti)−

t=(ti−1)+

−
∫ ti

ti−1

〈
∂α

∂u
,
D

∂t

∂α

∂t

〉
dt.

Adding up these formulae for i = 1, . . . k − 1 and using the fact that ∂α
∂u

= 0 for t = 0 and
t = 1, we get

1

2

dE(α̃(u))

du
= −

k−1∑
i=1

〈
∂α

∂u
,∆ti

∂α

∂t

〉
−
∫ 1

0

〈
∂α

∂u
,
D

∂t

∂α

∂t

〉
dt.

Setting u = 0, we obtain the formula

1

2

dE(α̃(u))

du

∣∣∣∣
u=0

= −
∑
i

〈Wt,∆tV 〉 −
∫ 1

0

〈
Wt,

D

dt
Vt

〉
dt,

as claimed.

Remark: The reader will observe that the proof used the fact that the connection is com-
patible with the metric and torsion-free.

Intuitively, the first term on the right-hand side shows that varying the path ω in the
direction of decreasing “kink” tends to decrease E.

The second term shows that varying the curve in the direction of its acceleration vector
D
dt
ω′(t) also tends to reduce E.

A geodesic γ (parametrized over [0, 1]) is smooth on the entire interval [0, 1] and its
acceleration vector D

dt
γ′(t) is identically zero along γ. This gives us half of

Theorem 15.26. Let (M, g) be a Riemanian manifold. For any two points p, q ∈M , a path
ω ∈ Ω(p, q) (parametrized over [0, 1]) is critical for the energy function E iff ω is a geodesic.

Proof. From the first variation formula, it is clear that a geodesic is a critical path of E.

Conversely, assume ω is a critical path of E. By Proposition 15.23, there is a variation
α̃ of ω such that its associated variation vector field is equal to

Wt = f(t)
D

dt
ω′(t),



15.7. PROBLEMS 467

with f(t) smooth and positive except that it vanishes at the ti’s. For this variation, by the
first variation formula (†), we get

1

2

dE(α̃(u))

du

∣∣∣∣
u=0

= −
∫ 1

0

f(t)

〈
D

dt
ω′(t),

D

dt
ω′(t)

〉
dt.

This expression is zero iff
D

dt
ω′(t) = 0 on [0, 1].

Hence, the restriction of ω to each [ti, ti+1] is a geodesic.

It remains to prove that ω is smooth on the entire interval [0, 1]. For this, using Propo-
sition 15.23, pick a variation α̃ such that

Wti = ∆tiV.

Then we have
1

2

dE(α̃(u))

du

∣∣∣∣
u=0

= −
k∑
i=1

〈∆tiV,∆tiV 〉.

If the above expression is zero, then ∆tiV = 0 for i = 1, . . . , k− 1, which means that ω is C1

everywhere on [0, 1]. By the uniqueness theorem for ODE’s, ω must be smooth everywhere
on [0, 1], and thus, it is an unbroken geodesic.

Remark: If ω ∈ Ω(p, q) is parametrized by arc-length, then it is easy to prove that

dL(α̃(u))

du

∣∣∣∣
u=0

=
1

2

dE(α̃(u))

du

∣∣∣∣
u=0

.

As a consequence, a path ω ∈ Ω(p, q) is critical for the arc-length function L iff it can be
reparametrized so that it is a geodesic (see Gallot, Hulin and Lafontaine [49], Chapter 3,
Theorem 3.31).

In order to go deeper into the study of geodesics, we need Jacobi fields and the “second
variation formula,” both involving a curvature term. Therefore, we now proceed with a more
thorough study of curvature on Riemannian manifolds.

15.7 Problems

Problem 15.1. Let X be a surface of revolution defined on the open rectangle (a, b)× (c, d)
such that

x = f(v) cosu,

y = f(v) sinu,

z = g(v).
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(i) show that the Riemannian metric is given by

g11 = f(v)2, g12 = g21 = 0, g22 = f ′(v)2 + g′(v)2.

From now on, assume that f ′(v)2 + g′(v)2 6= 0 and that f(v) 6= 0. Images by X of the
curves u = constant are called meridians , and images of the curves v = constant are called
parallels .

(ii) Show that the Christoffel symbols are given by

Γ1
11 = 0, Γ2

11 = − ff ′

(f ′)2 + (g′)2
, Γ1

12 =
ff ′

f 2
,

Γ2
12 = 0, Γ1

22 = 0, Γ2
22 =

f ′f ′′ + g′g′′

(f ′)2 + (g′)2
.

(iii) Show that the equations of the geodesics are

u′′ +
2ff ′

f 2
u′v′ = 0,

v′′ − ff ′

(f ′)2 + (g′)2
(u′)2 +

f ′f ′′ + g′g′′

(f ′)2 + (g′)2
(v′)2 = 0.

Show that the meridians parametrized by arc length are geodesics. Show that a parallel
is a geodesic iff it is generated by the rotation of a point of the generating curve where the
tangent is parallel to the axis of rotation.

(iv) Show that the first equation of geodesics is equivalent to

f 2u′ = c,

for some constant c. Since the angle θ, 0 ≤ θ ≤ π/2, of a geodesic with a parallel that
intersects it is given by

cos θ =
|Xu · (Xuu

′ +Xvv
′)|

‖Xu‖
= |fu′|,

and since f = r is the radius of the parallel at the intersection, show that

r cos θ = c

for some constant c > 0. The equation r cos θ = c is known as Clairaut’s relation.

Problem 15.2. Consider the Poincaré half plane P = {(x, y) ∈ R2 | y > 0}, with the
Riemannian metric g = (dx2 + dy2)/y2.

(1) Compute the Christoffel symbols and write down the equations of the geodesics.
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(2) Prove that curves (half-lines) given by t 7→ (x0, e
αt) are geodesics.

(3) Prove that the transformations of the form

z 7→ αx+ β

γz + δ
, z = x+ iy, αδ − βγ = 1, α, β, γ, δ ∈ R

are isometries of P .

(4) Prove that the geodesics of P are the half-lines x = α and the half-circles centered
on the x-axis,

Problem 15.3. In the proof of Proposition 15.5, check that the Jacobian matrix of d(p,0)Φ
is equal to (

I I
I 0

)
.

Problem 15.4. Prove Proposition 15.6.

Problem 15.5. Prove the equation

D

∂t

∂f

∂r
=
D

∂r

∂f

∂t

of Proposition 15.7.

Problem 15.6. If v(t) is a curve on Sn−1 such that v(0) = v and v′(0) = wN (with ‖v‖ <
i(p)), then since f(r, t) = expp(rv(t))

∂f

∂r
(1, 0) = (d expp)v(v),

∂f

∂t
(1, 0) = (d expp)v(wN),

and Gauss lemma can be stated as

〈(d expp)v(v), (d expp)v(wN)〉 = 〈v, wN〉 = 0.

Prove that this statement of Gauss lemma is equivalent to the satement given in Proposition
15.8.

Problem 15.7. Prove that the Poincaré half-plane of Problem 15.2 is complete.

Problem 15.8. Let M be a complete Riemannian manifold and let N ⊆ M be a closed
embedded submanifold with the induced Riemannian metric. Prove that N is complete.

Beware that the distance function on N induced by the metric is not in general equal to
the Riemannin distance on M .

Problem 15.9. Let M be a complete Riemannian manifold and let N ⊆ M be a closed
embedded submanifold. For any point p ∈M −N , define the distance from p to N as

d(p,N) = inf{d(p, x) | x ∈ N}.
If q ∈ N is a point such that d(p, q) = d(p,N) and if γ is any minimizing geodesic from p to
q, prove that γ intersects N orthogonally.
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Chapter 16

Curvature in Riemannian Manifolds

Since the notion of curvature can be defined for curves and surfaces, it is natural to wonder
whether it can be generalized to manifolds of dimension n ≥ 3. Such a generalization does
exist and was first proposed by Riemann. However, Riemann’s seminal paper published in
1868 two years after his death only introduced the sectional curvature, and did not contain
any proofs or any general methods for computing the sectional curvature. Fifty years or so
later, the idea emerged that the curvature of a Riemannian manifold M should be viewed as
a measure R(X, Y )Z of the extent to which the operator (X, Y ) 7→ ∇X∇YZ is symmetric,
where ∇ is a connection on M (where X, Y, Z are vector fields, with Z fixed). It turns out
that the operator R(X, Y )Z is C∞(M)-linear in all of its three arguments, so for all p ∈M ,
it defines a trilinear map

Rp : TpM × TpM × TpM −→ TpM.

The curvature operator R is a rather complicated object, so it is natural to seek a simpler
object. Fortunately, there is a simpler object, namely the sectional curvature K(u, v), which
arises from R through the formula

K(u, v) = 〈R(u, v)u, v〉,

for linearly independent unit vectors u, v. When ∇ is the Levi-Civita connection induced
by a Riemannian metric on M , it turns out that the curvature operator R can be recovered
from the sectional curvature. Another important notion of curvature is the Ricci curvature,
Ric(x, y), which arises as the trace of the linear map v 7→ R(x, v)y. The curvature operator
R, sectional curvature, and Ricci curvature are introduced in the first three sections of this
chapter.

In Section 15.6, we discovered that the geodesics are exactly the critical paths of the
energy functional (Theorem 15.26). A deeper understanding is achieved by investigating the
second derivative of the energy functional at a critical path (a geodesic). By analogy with
the Hessian of a real-valued function on Rn, it is possible to define a bilinear functional

Iγ : TγΩ(p, q)× TγΩ(p, q)→ R

471
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when γ is a critical point of the energy function E (that is, γ is a geodesic). This bilin-
ear form is usually called the index form. In order to define the functional Iγ (where γ
is a geodesic), we introduce 2-parameter variations, which generalize the variations given
by Definition 15.20. Then we derive the second variation formula, which gives an expres-
sion for the second derivative ∂2((E ◦ α̃)/∂u1∂u2)(u1, u2) |(0,0), where α̃ is a 2-variation of
a geodesic γ. Remarkably, this expression contains a curvature term R(V,W1)V , where
W1(t) = (∂α/∂u1)(0, 0, t) and V (t) = γ′(t). The second variation formula allows us to show
that the index form I(W1,W2) is well-defined, and symmetric bilinear. When γ is a minimal
geodesic, I is positive semi-definite. For any geodesic γ, we define the index of

I : TγΩ(p, q)× TγΩ(p, q)→ R

as the maximum dimension of a subspace of TγΩ(p, q) on which I is negative definite. Section
16.4 is devoted to the second variation formula and the definition of the index form.

In Section 16.5, we define Jacobi fields and study some of their properties. Given a
geodesic γ ∈ Ω(p, q), a vector field J along γ is a Jacobi field iff it satisfies the Jacobi
differential equation

D2J

dt2
+R(γ′, J)γ′ = 0.

We prove that Jacobi fields are exactly the vector fields that belong to the nullspace of
the index form I. Jacobi fields also turn out to arise from special variations consisting of
geodesics (geodesic variations). We define the notion of conjugate points along a geodesic.
We show that the derivative of the exponential map is expressible in terms of a Jacobi field
and characterize the critical points of the exponential in terms of conjugate points.

Section 16.7 presents some applications of Jacobi fields and the second variation formula
to topology. We prove

(1) Hadamard and Cartan’s theorems about complete manifolds of non-positive sectional
curvature.

(2) Myers’ theorem about complete manifolds of Ricci curvature bounded from below by
a positive number.

We also state the famous Morse index theorem.

In Section 16.8 we revisit the cut locus and prove more properties about it using Jacobi
fields.

16.1 The Curvature Tensor

As we said above, if M is a Riemannian manifold and if ∇ is a connection on M , the Rie-
mannian curvature R(X, Y )Z measures the extent to which the operator (X, Y ) 7→ ∇X∇YZ
is symmetric (for any fixed Z).
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If (M, 〈−,−〉) is a Riemannian manifold of dimension n, and if the connection ∇ on M
is the flat connection, which means that

∇X

(
∂

∂xi

)
= 0, i = 1, . . . , n,

for every chart (U,ϕ) and all X ∈ X(U), since every vector field Y on U can be written
uniquely as

Y =
n∑
i=1

Yi
∂

∂xi

for some smooth functions Yi on U , for every other vector field X on U , because the connec-
tion is flat and by the Leibniz property of connections, we have

∇X

(
Yi

∂

∂xi

)
= X(Yi)

∂

∂xi
+ Yi∇X

(
∂

∂xi

)
= X(Yi)

∂

∂xi
.

Then it is easy to check that the above implies that

∇X∇YZ −∇Y∇XZ = ∇[X,Y ]Z,

for all X, Y, Z ∈ X(M). Consequently, it is natural to define the deviation of a connection
from the flat connection by the quantity

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

for all X, Y, Z ∈ X(M).

Definition 16.1. Let (M, g) be a Riemannian manifold, and let ∇ be any connection on
M . The formula

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ X(M),

defines a function
R : X(M)× X(M)× X(M) −→ X(M)

called the Riemannian curvature of M .

The Riemannian curvature is a special instance of the notion of curvature of a connection
on a vector bundle. This approach is discussed in Morita [87].

The function R is clearly skew-symmetric in X and Y . This function turns out to be
C∞(M)-linear in X, Y, Z.

Proposition 16.1. Let M be a manifold with any connection ∇. The function

R : X(M)× X(M)× X(M) −→ X(M)

given by
R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

is C∞(M)-linear in X, Y, Z, and skew-symmetric in X and Y . As a consequence, for any
p ∈M , (R(X, Y )Z)p depends only on X(p), Y (p), Z(p).
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Proof. Let us check C∞(M)-linearity in Z. Additivity is clear. For any function f ∈ C∞(M),
we have

∇Y∇X(fZ) = ∇Y (X(f)Z + f∇XZ)

= Y (X(f))Z +X(f)∇YZ + Y (f)∇XZ + f∇Y∇XZ.

It follows that

∇X∇Y (fZ)−∇Y∇X(fZ) = X(Y (f))Z + Y (f)∇XZ +X(f)∇YZ + f∇X∇YZ

− Y (X(f))Z −X(f)∇YZ − Y (f)∇XZ − f∇Y∇XZ

= (XY − Y X)(f)Z + f(∇X∇Y −∇Y∇X)Z.

Hence

R(X, Y )(fZ) = ∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ)

= (XY − Y X)(f)Z + f(∇X∇Y −∇Y∇X)Z − [X, Y ](f)Z − f∇[X,Y ]Z

= (XY − Y X − [X, Y ])(f)Z + f(∇X∇Y −∇Y∇X −∇[X,Y ])Z

= fR(X, Y )Z.

Let us now check C∞(M)-linearity in Y . Additivity is clear. For any function f ∈ C∞(M),
recall that

[X, fY ] = X(f)Y + f [X, Y ].

Then

R(X, fY )Z = ∇X∇fYZ −∇fY∇XZ −∇[X,fY ]Z

= ∇X(f∇YZ)− f∇Y∇XZ −X(f)∇YZ − f∇[X,Y ]Z

= X(f)∇YZ + f∇X∇YZ − f∇Y∇XZ −X(f)∇YZ − f∇[X,Y ]Z

= f(∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z)

= fR(X, Y )Z.

Since R is skew-symmetric in X and Y , R is also C∞(M)-linear in X. For any chart (U,ϕ),
we can express the vector fields X, Y, Z uniquely as

X =
n∑
i=1

Xi
∂

∂xi
, Y =

n∑
j=1

Yj
∂

∂xj
, Z =

n∑
k=1

Zk
∂

∂xk
,

for some smooth functions Xi, Yj, Zk ∈ C∞(U), and by C∞(U)-linearity, we have

R(X, Y )Z =
∑
i,j,k

R

(
Xi

∂

∂xi
, Yj

∂

∂xj

)(
Zk

∂

∂xk

)
=
∑
i,j,k

XiYjZkR

(
∂

∂xi
,
∂

∂xj

)(
∂

∂xk

)
.



16.1. THE CURVATURE TENSOR 475

Evaluated at p, we get

(R(X, Y )Z)p =
∑
i,j,k

Xi(p)Yj(p)Zk(q)

(
R

(
∂

∂xi
,
∂

∂xj

)(
∂

∂xk

))
p

,

an expression that depends only on the values of the functions Xi, Yj, Zk at p.

It follows that R defines for every p ∈M a trilinear map

Rp : TpM × TpM × TpM −→ TpM.

(In fact, R defines a (1, 3)-tensor.)

If our manifold is a Riemannian manifold (M, 〈−,−〉) equipped with a connection, ex-
perience shows that it is useful to consider the family of quadrilinear forms (unfortunately!)
also denoted R, given by

Rp(x, y, z, w) = 〈Rp(x, y)z, w〉p,
as well as the expression Rp(x, y, y, x), which, for an orthonormal pair of vectors (x, y), is
known as the sectional curvature Kp(x, y).

This last expression brings up a dilemma regarding the choice for the sign of R. With
our present choice, the sectional curvature Kp(x, y) is given by Kp(x, y) = Rp(x, y, y, x), but
many authors define K as Kp(x, y) = Rp(x, y, x, y). Since R(X, Y ) is skew-symmetric in
X, Y , the latter choice corresponds to using −R(X, Y ) instead of R(X, Y ), that is, to define
R(X, Y )Z by

R(X, Y )Z = ∇[X,Y ]Z +∇Y∇XZ −∇X∇YZ.

As pointed out by Milnor [81] (Chapter II, Section 9), the latter choice for the sign of R has
the advantage that, in coordinates, the quantity 〈R(∂/∂xh, ∂/∂xi)∂/∂xj, ∂/∂xk〉 coincides
with the classical Ricci notation, Rhijk. Gallot, Hulin and Lafontaine [49] (Chapter 3, Section
A.1) give other reasons supporting this choice of sign. Clearly, the choice for the sign of R
is mostly a matter of taste and we apologize to those readers who prefer the first choice but
we will adopt the second choice advocated by Milnor and others (including O’Neill [91] and
Do Carmo [39]), we make the following formal definition.

Definition 16.2. Let (M, 〈−,−〉) be a Riemannian manifold equipped with any connection.
The curvature tensor is the family of trilinear functions Rp : TpM × TpM × TpM → TpM
defined by

Rp(x, y)z = ∇[X,Y ]Z +∇Y∇XZ −∇X∇YZ,

for every p ∈ M and for any vector fields X, Y, Z ∈ X(M) such that x = X(p), y = Y (p),
and z = Z(p). The family of quadrilinear forms associated with R, also denoted R, is given
by

Rp(x, y, z, w) = 〈Rp(x, y)z, w〉p,
for all p ∈M and all x, y, z, w ∈ TpM .
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Following common practice in mathematics, in the interest of keeping notation to a
minimum, we often write R(x, y, z, w) instead of Rp(x, y, z, w). Since x, y, z, w ∈ TpM , this
abuse of notation rarely causes confusion.

Remark: The curvature tensor R is indeed a (1, 3)-tensor, and the associated family of
quadrilinear forms is a (0, 4)-tensor.

Locally in a chart, we write

R

(
∂

∂xh
,
∂

∂xi

)
∂

∂xj
=
∑
l

Rl
jhi

∂

∂xl

and

Rhijk =

〈
R

(
∂

∂xh
,
∂

∂xi

)
∂

∂xj
,
∂

∂xk

〉
=
∑
l

glkR
l
jhi.

The coefficients Rl
jhi can be expressed in terms of the Christoffel symbols Γkij, by a rather

unfriendly formula; see Gallot, Hulin and Lafontaine [49] (Chapter 3, Section 3.A.3) or
O’Neill [91] (Chapter III, Lemma 38). Since we have adopted O’Neill’s conventions for the
order of the subscripts in Rl

jhi, here is the formula from O’Neill:

Rl
jhi = ∂iΓ

l
hj − ∂hΓlij +

∑
m

ΓlimΓmhj −
∑
m

ΓlhmΓmij .

It should be noted that the above formula holds for any connection. However, it may be
practically impossible to compute the Christoffel symbols if this connection is not the Levi-
Civita connection.

For example, in the case of the sphere S2, we parametrize as

x = sin θ cosϕ

y = sin θ sinϕ

z = cos θ,

over the domain to {(θ, ϕ) | 0 < θ < π, 0 < ϕ < 2π}. For the basis (u(θ, ϕ), v(θ, ϕ)) of the
the tangent plane TpS

2 at p = (sin θ cosϕ, sin θ sinϕ, cos θ), where

u(θ, ϕ) =
∂p

∂θ
= (cos θ cosϕ, cos θ sinϕ,− sin θ)

v(θ, ϕ) =
∂p

∂ϕ
= (− sin θ sinϕ, sin θ cosϕ, 0),

we found that the metric on TpS
2 is given by the matrix

gp =

(
1 0
0 sin2 θ

)
;
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see Section 13.2. Note that

g−1
p =

(
1 0
0 1

sin2 θ

)
.

Since the Christoffel symbols of the Levi-Civita connection are given by

Γkij =
1

2

n∑
l=1

gkl(∂igjl + ∂jgil − ∂lgij),

(see Section 14.3), we discover that the only nonzero Christoffel symbols are

Γ2
12 = Γϕθϕ = Γ2

21 = Γϕϕθ =
1

2

2∑
l=1

g2l(∂1g2l + ∂2g1l − ∂lg12)

=
1

2
g22∂1g22 =

1

2

(
1

sin2 θ
· ∂
∂θ

sin2 θ

)
=

cos θ

sin θ
,

Γ1
22 = Γθϕϕ =

1

2

2∑
l=1

g1l(∂2g2l + ∂2g2l − ∂lg22)

= −1

2
∂1g22 = − ∂

∂θ
sin2 θ = − sin θ cos θ,

where we have set θ → 1 and ϕ → 2. The only nonzero Riemann curvature tensor compo-
nents are

R1
212 = Rθ

ϕθϕ = ∂2Γ1
12 − ∂1Γ1

22 +
2∑

m=1

Γ1
2mΓm12 −

2∑
m=1

Γ1
1mΓm22

=
∂

∂θ
(− sin θ cos θ) + Γ1

22Γ2
12 = −(− cos2 θ + sin2 θ) + (− sin θ cos θ) · cos θ

sin θ
= − sin2 θ

R1
221 = Rθ

ϕϕθ = ∂1Γ1
22 − ∂2Γ1

12 +
2∑

m=1

Γ1
1mΓm22 −

2∑
m=1

Γ1
2mΓm12 = −R1

212 = sin2 θ

R2
112 = Rϕ

θθϕ = ∂2Γ2
11 − ∂1Γ2

21 +
2∑

m=1

Γ2
2mΓm11 −

2∑
m=1

Γ2
1mΓm21

= − ∂

∂θ

(
cos θ

sin θ

)
− Γ2

12Γ2
21 = − ∂

∂θ
cot θ − cos2 θ

sin2 θ
=

1− cos2 θ

sin2 θ
= 1

R2
121 = Rϕ

θϕθ = ∂1Γ2
21 − ∂2Γ2

11 +
2∑

m=1

Γ2
1mΓm21 −

2∑
m=1

Γ2
2mΓm11 = −R2

112 = −1,
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while the only nonzero components of the associated quadrilinear form are

R1221 =
2∑
l=1

gl1R
l
212 = g11R

1
212 = − sin2 θ

R2121 =
2∑
l=1

gl1R
l
221 = g11R

1
221 = sin2 θ

R1212 =
2∑
l=1

gl2R
l
112 = g22R

2
112 = sin2 θ

R2112 =
2∑
l=1

gl2R
l
121 = g22R

2
121 = − sin2 θ.

When ∇ is the Levi-Civita connection, there is another way of defining the curvature
tensor which is useful for comparing second covariant derivatives of one-forms.

For any fixed vector field Z, the map Y 7→ ∇YZ from X(M) to X(M) is a C∞(M)-linear
map that we will denote ∇−Z (this is a (1, 1) tensor).

Definition 16.3. The covariant derivative ∇X∇−Z of ∇−Z is defined by

(∇X(∇−Z))(Y ) = ∇X(∇YZ)− (∇∇XY )Z.

Usually, (∇X(∇−Z))(Y ) is denoted by ∇2
X,YZ, and

∇2
X,YZ = ∇X(∇YZ)−∇∇XYZ

is called the second covariant derivative of Z with respect to X and Y .

Then we have

∇2
Y,XZ −∇2

X,YZ = ∇Y (∇XZ)−∇∇YXZ −∇X(∇YZ) +∇∇XYZ
= ∇Y (∇XZ)−∇X(∇YZ) +∇∇XY−∇YXZ
= ∇Y (∇XZ)−∇X(∇YZ) +∇[X,Y ]Z

= R(X, Y )Z,

since ∇XY −∇YX = [X, Y ], as the Levi-Civita connection is torsion-free.

Proposition 16.2. Given a Riemanniain manifold (M, g), if ∇ is the Levi-Civita connection
induced by g, then the curvature tensor is given by

R(X, Y )Z = ∇2
Y,XZ −∇2

X,YZ.

We already know that the curvature tensor has some symmetry properties, for example
R(y, x)z = −R(x, y)z, but when it is induced by the Levi-Civita connection, it has more
remarkable properties stated in the next proposition.
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Proposition 16.3. For a Riemannian manifold (M, 〈−,−〉) equipped with the Levi-Civita
connection, the curvature tensor satisfies the following properties for every p ∈ M and for
all x, y, z, w ∈ TpM :

(1) R(x, y)z = −R(y, x)z

(2) (First Bianchi Identity) R(x, y)z +R(y, z)x+R(z, x)y = 0

(3) R(x, y, z, w) = −R(x, y, w, z)

(4) R(x, y, z, w) = R(z, w, x, y).

Proof. The proof of Proposition 16.3 uses the fact that Rp(x, y)z = R(X, Y )Z, for any vector
fields X, Y, Z such that x = X(p), y = Y (p) and Z = Z(p). In particular, X, Y, Z can be
chosen so that their pairwise Lie brackets are zero (choose a coordinate system and give
X, Y, Z constant components). Part (1) is already known. Part (2) follows from the fact
that the Levi-Civita connection is torsion-free and is equivalent to the Jacobi identity for
Lie brackets. In particular

R(x, y)z +R(y, z)x+R(z, x)y

= ∇[X,Y ]Z +∇Y∇XZ −∇X∇YZ +∇[Y,Z]X +∇Z∇YX −∇Y∇ZX +∇[Z,X]Y

+∇X∇ZY −∇Z∇XY

= ∇[X,Y ]Z +∇Y (∇XZ −∇ZX) +∇X(∇ZY −∇YZ) +∇Z(∇YX −∇XY )

+∇[Y,Z]X +∇[Z,X]Y

= ∇[X,Y ]Z +∇Y [X,Z] +∇X [Z, Y ] +∇Z [Y,X] +∇[Y,Z]X +∇[Z,X]Y

= ∇[X,Y ]Z −∇Z [X, Y ] +∇[Y,Z]X −∇X [Y, Z] +∇[Z,X]Y −∇Y [Z,X]

= [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0, by Proposition 9.4.

Parts (3) and (4) are a little more tricky. Complete proofs can be found in Milnor [81]
(Chapter II, Section 9), O’Neill [91] (Chapter III) and Kuhnel [71] (Chapter 6, Lemma
6.3).

Part (3) of Proposition 16.3 can be interpreted as the fact that for every p ∈ M and all
x, y ∈ TpM , the linear map z 7→ R(x, y)z (from TpM to itself) is skew-symmetric. Indeed,
for all z, w ∈ TpM , we have

〈R(x, y)z, w〉 = R(x, y, z, w) = −R(x, y, w, z) = −〈R(x, y)w, z〉 = −〈z, R(x, y)w〉.

The next proposition will be needed in the proof of the second variation formula. Recall
the notion of a vector field along a surface given in Definition 15.11.

Proposition 16.4. For a Riemannian manifold (M, 〈−,−〉) equipped with the Levi-Civita
connection, for every parametrized surface α : R2 → M , for every vector field V ∈ X(M)
along α, we have

D

∂y

D

∂x
V − D

∂x

D

∂y
V = R

(
∂α

∂x
,
∂α

∂y

)
V.
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Proof Sketch. This is Lemma 9.2 in Milnor [81] (Chapter II, Section 9.) Express both sides
in local coordinates in a chart and make use of the identity

∇ ∂
∂xj

∇ ∂
∂xi

∂

∂xk
−∇ ∂

∂xi

∇ ∂
∂xj

∂

∂xk
= R

(
∂

∂xi
,
∂

∂xj

)
∂

∂xk
,

where this identity used the observation that
[
∂
∂xi
, ∂
∂xj

]
= 0. A more detailed proof is given

in Do Carmo [39] (Chapter 4, Lemma 4.1).

The curvature tensor is a rather complicated object. Thus, it is quite natural to seek
simpler notions of curvature. The sectional curvature is indeed a simpler object, and it turns
out that the curvature tensor can be recovered from it.

16.2 Sectional Curvature

Basically, the sectional curvature is the curvature of two-dimensional sections of our manifold.
Given any two vectors u, v ∈ TpM , recall by Cauchy-Schwarz that

〈u, v〉2p ≤ 〈u, u〉p〈v, v〉p,
with equality iff u and v are linearly dependent. Consequently, if u and v are linearly
independent, we have

〈u, u〉p〈v, v〉p − 〈u, v〉2p 6= 0.

In this case, we claim that the ratio

Kp(u, v) =
Rp(u, v, u, v)

〈u, u〉p〈v, v〉p − 〈u, v〉2p
=

〈Rp(u, v)u, v〉
〈u, u〉p〈v, v〉p − 〈u, v〉2p

is independent of the plane Π spanned by u and v.

If (x, y) is another basis of Π, then

x = au+ bv

y = cu+ dv.

After some basic algebraic manipulations involving the symmetric bilinear form 〈−,−〉, we
get

〈x, x〉p〈y, y〉p − 〈x, y〉2p = (ad− bc)2(〈u, u〉p〈v, v〉p − 〈u, v〉2p).
Similarly, the trilinear nature of Rp, along with Properties (1) and (3) given in Proposition
16.3, imply that

Rp(x, y, x, y) = 〈Rp(x, y)x, y〉p = (ad− bc)2〈Rp(u, v)u, v〉 = (ad− bc)2Rp(u, v, u, v), (∗)
which proves our assertion.

Note that skew-symmetry in w and z in 〈R(x, y)z, w〉 is crucial to obtain the expression
in (∗), and this property requires the connection to be compatible with the metric. Thus
the sectional curvature is not defined for an arbitrary connection.
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Definition 16.4. Let (M, 〈−,−〉) be any Riemannian manifold equipped with the Levi-
Civita connection. For every p ∈ TpM , for every 2-plane Π ⊆ TpM , the sectional curvature
Kp(Π) of Π is given by

Kp(Π) = Kp(x, y) =
Rp(x, y, x, y)

〈x, x〉p〈y, y〉p − 〈x, y〉2p
, (†)

for any basis (x, y) of Π.

As in the case of the curvature tensor, in order to keep notation to a minimum we often
write K(Π) instead of Kp(Π) (or K(x, y)) instead of Kp(x, y)). Since Π ⊆ TpM (x, y ∈ TpM)
for some p ∈M , this rarely causes confusion.

Let us take a moment to compute the sectional curvature of S2. By using the notation
from Section 16.1 we find that

K

(
∂p

∂θ
,
∂p

∂ϕ

)
=

R
(
∂p
∂θ
, ∂p
∂ϕ
, ∂p
∂θ
, ∂p
∂ϕ

)
〈∂p
∂θ
, ∂p
∂θ
〉〈 ∂p
∂ϕ
, ∂p
∂ϕ
〉 − 〈∂p

∂θ
, ∂p
∂ϕ
〉2

=
R
(
∂p
∂θ
, ∂p
∂ϕ
, ∂p
∂θ
, ∂p
∂ϕ

)
sin2 θ

=
R1212

sin2 θ
= 1.

Observe that if (x, y) is an orthonormal basis, then the denominator is equal to 1. The
expression Rp(x, y, x, y) (the numerator of (†)) is often denoted κp(x, y). Remarkably, κp
determines Rp. We denote the function p 7→ κp by κ. We state the following proposition
without proof:

Proposition 16.5. Let (M, 〈−,−〉) be any Riemannian manifold equipped with the Levi-
Civita connection. The function κ determines the curvature tensor R. Thus, the knowledge
of all the sectional curvatures determines the curvature tensor. Moreover, for all p ∈M , for
all x, y, w, z ∈ TpM , we have

6〈R(x, y)z, w〉 = κ(x+ w, y + z)− κ(x, y + z)− κ(w, y + z)

− κ(y + w, x+ z) + κ(y, x+ z) + κ(w, x+ z)

− κ(x+ w, y) + κ(x, y) + κ(w, y)

− κ(x+ w, z) + κ(x, z) + κ(w, z)

+ κ(y + w, x)− κ(y, x)− κ(w, x)

+ κ(y + w, z)− κ(y, z)− κ(w, z).

For a proof of this formidable equation, see Kuhnel [71] (Chapter 6, Theorem 6.5). A
different proof of the above proposition (without an explicit formula) is also given in O’Neill
[91] (Chapter III, Corollary 42).
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Let
R1(x, y)z = 〈x, z〉y − 〈y, z〉x.

Observe that

〈R1(x, y)x, y〉 = 〈〈x, x〉y − 〈x, y〉x, y〉 = 〈x, x〉〈y, y〉 − 〈x, y〉2,
which is the denominator of (†). As a corollary of Proposition 16.5, we get:

Proposition 16.6. Let (M, 〈−,−〉) be any Riemannian manifold equipped with the Levi-
Civita connection. If the sectional curvature K(Π) does not depend on the plane Π but only
on p ∈M , in the sense that K is a scalar function K : M → R, then

R = K(p)R1.

Proof. By hypothesis,

κp(x, y) = K(p)(〈x, x〉p〈y, y〉p − 〈x, y〉2p),
for all x, y. As the right-hand side of the formula in Proposition 16.5 consists of a sum of
terms, we see that the right-hand side is equal to K(p) times a similar sum with κ replaced
by

〈R1(x, y)x, y〉 = 〈x, x〉〈y, y〉 − 〈x, y〉2,
so it is clear that R = K(p)R1.

In particular, in dimension n = 2, the assumption of Proposition 16.6 holds and K is the
well-known Gaussian curvature for surfaces.

Definition 16.5. A Riemannian manifold (M, 〈−,−〉) is said to have constant (resp. neg-
ative, resp. positive) curvature iff its sectional curvature is constant (resp. negative, resp.
positive).

In dimension n ≥ 3, we have the following somewhat surprising theorem due to F. Schur.

Proposition 16.7. (F. Schur, 1886) Let (M, 〈−,−〉) be a connected Riemannian manifold.
If dim(M) ≥ 3 and if the sectional curvature K(Π) does not depend on the plane Π ⊆ TpM
but only on the point p ∈M , then K is constant (i.e., does not depend on p).

The proof, which is quite beautiful, can be found in Kuhnel [71] (Chapter 6, Theorem
6.7).

If we replace the metric g = 〈−,−〉 by the metric g̃ = λ〈−,−〉 where λ > 0 is a constant,
some simple calculations show that the Christoffel symbols and the Levi-Civita connection
are unchanged, as well as the curvature tensor, but the sectional curvature is changed, with

K̃ = λ−1K.

As a consequence, if M is a Riemannian manifold of constant curvature, by rescaling the
metric, we may assume that either K = −1, or K = 0, or K = +1. Here are standard
examples of spaces with constant curvature.
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(1) The sphere Sn ⊆ Rn+1 with the metric induced by Rn+1, where

Sn = {(x1, . . . , xn+1) ∈ Rn+1 | x2
1 + · · ·+ x2

n+1 = 1}.

The sphere Sn has constant sectional curvature K = +1. This can be shown by using
the fact that the stabilizer of the action of SO(n + 1) on Sn is isomorphic to SO(n).
Then it is easy to see that the action of SO(n) on TpS

n is transitive on 2-planes and
from this, it follows that K = 1 (for details, see Gallot, Hulin and Lafontaine [49]
(Chapter 3, Proposition 3.14).

(2) Euclidean space Rn+1 with its natural Euclidean metric. Of course, K = 0.

(3) The hyperbolic space H+
n (1) from Definition 5.3. Recall that this space is defined in

terms of the Lorentz innner product 〈−,−〉1 on Rn+1, given by

〈(x1, . . . , xn+1), (y1, . . . , yn+1)〉1 = −x1y1 +
n+1∑
i=2

xiyi.

By definition, H+
n (1), written simply Hn, is given by

Hn = {x = (x1, . . . , xn+1) ∈ Rn+1 | 〈x, x〉1 = −1, x1 > 0}.

Given any point p = (x1, . . . , xn+1) ∈ Hn, since a tangent vector at p is defined as x′(0)
for any curve x : (−ε, ε)→ Hn with x(0) = p, we note that

d

dt
〈x(t), x(t)〉1 = 2〈x′(t), x(t)〉1 =

d

dt
(−1) = 0,

which by setting t = 0 implies that the set of tangent vectors u ∈ TpHn are given by
the equation

〈p, u〉1 = 0;

that is, TpH
n is orthogonal to p with respect to the Lorentz inner-product. Since

p ∈ Hn, we have 〈p, p〉1 = −1, that is, p is timelike, so by Proposition 5.9, all vectors
in TpH

n are spacelike; that is,

〈u, u〉1 > 0, for all u ∈ TpHn, u 6= 0.

Therefore, the restriction of 〈−,−〉1 to TpH
n is positive, definite, which means that it

is a metric on TpH
n. The space Hn equipped with this metric gH is called hyperbolic

space and it has constant curvature K = −1. This can be shown by using the fact that
the stabilizer of the action of SO0(n, 1) on Hn is isomorphic to SO(n) (see Proposition
5.10). Then it is easy to see that the action of SO(n) on TpH

n is transitive on 2-planes
and from this, it follows that K = −1 (for details, see Gallot, Hulin and Lafontaine
[49] (Chapter 3, Proposition 3.14).



484 CHAPTER 16. CURVATURE IN RIEMANNIAN MANIFOLDS

There are other isometric models of Hn that are perhaps intuitively easier to grasp but
for which the metric is more complicated. For example, there is a map PD: Bn → Hn where
Bn = {x ∈ Rn | ‖x‖ < 1} is the open unit ball in Rn, given by

PD(x) =

(
1 + ‖x‖2

1− ‖x‖2 ,
2x

1− ‖x‖2

)
.

It is easy to check that 〈PD(x),PD(x)〉1 = −1 and that PD is bijective and an isometry.
One also checks that the pull-back metric gPD = PD∗gH on Bn is given by

gPD =
4

(1− ‖x‖2)2
(dx2

1 + · · ·+ dx2
n).

The metric gPD is called the conformal disc metric, and the Riemannian manifold (Bn, gPD)
is called the Poincaré disc model or conformal disc model . See Problem 13.8. The metric
gPD is proportional to the Euclidean metric, and thus angles are preserved under the map
PD. Another model is the Poincaré half-plane model {x ∈ Rn | x1 > 0}, with the metric

gPH =
1

x2
1

(dx2
1 + · · ·+ dx2

n).

We already encountered this space for n = 2.

In general, it is practically impossible to find an explicit formula for the sectional curva-
ture of a Riemannian manifold. The spaces Sn, Rn+1, and Hn are exceptions. Nice formulae
can be given for Lie groups with bi-invariant metrics (see Chapter 20) and for certain kinds
of reductive homogeneous manifolds (see Chapter 22).

The metrics for Sn, Rn+1, and Hn have a nice expression in polar coordinates, but we
prefer to discuss the Ricci curvature next.

16.3 Ricci Curvature

The Ricci tensor is another important notion of curvature. It is mathematically simpler than
the sectional curvature (since it is symmetric), and it plays an important role in the theory
of gravitation as it occurs in the Einstein field equations. The Ricci tensor is an example
of contraction, in this case, the trace of a linear map. Recall that if f : E → E is a linear
map from a finite-dimensional Euclidean vector space to itself, given any orthonormal basis
(e1, . . . , en), we have

tr(f) =
n∑
i=1

〈f(ei), ei〉.

Definition 16.6. Let (M, 〈−,−〉) be a Riemannian manifold (equipped with any connec-
tion). The Ricci curvature Ric of M is the (0, 2)-tensor defined as follows. For every p ∈M ,
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for all x, y ∈ TpM , set Ricp(x, y) to be the trace of the endomorphism v 7→ Rp(x, v)y. With
respect to any orthonormal basis (e1, . . . , en) of TpM , we have

Ricp(x, y) =
n∑
j=1

〈Rp(x, ej)y, ej〉p =
n∑
j=1

Rp(x, ej, y, ej).

The scalar curvature S of M is the trace of the Ricci curvature; that is, for every p ∈M ,

S(p) =
∑
i 6=j

Rp(ei, ej, ei, ej).

When the connection on M is the Levi-civita connection, the sectional curvature makes
sense and then

S(p) =
∑
i 6=j

Rp(ei, ej, ei, ej) =
∑
i 6=j

Kp(ei, ej),

where Kp(ei, ej) denotes the sectional curvature of the plane spanned by ei, ej.

In the interest of keeping notation to a minimum, we often write Ric(x, y) instead of
Ricp(x, y).

In a chart the Ricci curvature is given by

Rij = Ric

(
∂

∂xi
,
∂

∂xj

)
=
∑
m

Rm
ijm,

and the scalar curvature is given by

S(p) =
∑
i,j

gijRij,

where (gij) is the inverse of the Riemann metric matrix (gij). See O’Neill, pp. 87-88 [91].
For S2, the calculations of Section 16.1 imply that

Ric

(
∂p

∂θ
,
∂p

∂ϕ

)
= R12 =

2∑
m=1

Rm
12m = R1

121 +R2
122 = 0

Ric

(
∂p

∂ϕ
,
∂p

∂θ

)
= R21 =

2∑
m=1

Rm
21m = R1

211 +R2
212 = 0

Ric

(
∂p

∂θ
,
∂p

∂θ

)
= R11 =

2∑
m=1

Rm
11m = R1

111 +R1
112 = 1

Ric

(
∂p

∂ϕ
,
∂p

∂ϕ

)
= R22 =

2∑
m=1

Rm
22m = R1

221 +R2
222 = sin2 θ,
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and that

S(p) =
2∑
i=1

2∑
j=1

gijRij = g11R11 + g12R12 + g21R21 + g22R22

= 1 · 1 +
1

sin2 θ
· sin2 θ = 2.

If M is equipped with the Levi-Civita connection, in view of Proposition 16.3 (4), the
Ricci curvature is symmetric. The tensor Ric is a (0, 2)-tensor but it can be interpreted as
a (1, 1)-tensor as follows.

Definition 16.7. Let (M, 〈−,−〉) be a Riemannian manifold (equipped with any connec-
tion). The (1, 1)-tensor Ric#

p is defined to be

〈Ric#
p u, v〉p = Ricp(u, v),

for all u, v ∈ TpM .

Proposition 16.8. Let (M, g) be a Riemannian manifold and let ∇ be any connection on
M . If (e1, . . . , en) is any orthonormal basis of TpM , we have

Ric#
p (u) =

n∑
j=1

Rp(ej, u)ej.

Proof. We have

Ricp(u, v) =
n∑
j=1

Rp(u, ej, v, ej)

=
n∑
j=1

Rp(ej, u, ej, v)

=
n∑
j=1

〈Rp(ej, u)ej, v〉p,

so

Ric#
p (u) =

n∑
j=1

Rp(ej, u)ej,

as claimed.

Then it is easy to see that
S(p) = tr(Ric#

p ).

This is why we said (by abuse of language) that S is the trace of Ric.
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Observe that in dimension n = 2 (with the Levi Civita conection) we get S(p) = 2K(p).
Therefore, in dimension 2, the scalar curvature determines the curvature tensor. In dimension
n = 3, it turns out that the Ricci tensor completely determines the curvature tensor, although
this is not obvious. We will come back to this point later.

If the connection is the Levi-Civita connection, since Ric(x, y) is symmetric, Ric(x, x)
determines Ric(x, y) completely (Use the polarization identity for a symmetric bilinear form,
ϕ:

2ϕ(x, y) = Φ(x+ y)− Φ(x)− Φ(y),

with Φ(x) = ϕ(x, x)). Observe that for any orthonormal frame (e1, . . . , en) of TpM , using
the definition of the sectional curvature K, we have

Ric(e1, e1) =
n∑
i=1

〈R(e1, ei)e1, ei〉 =
n∑
i=2

K(e1, ei).

Thus, Ric(e1, e1) is the sum of the sectional curvatures of any n − 1 orthogonal planes
orthogonal to e1 (a unit vector).

Proposition 16.9. For a Riemannian manifold with constant sectional curvature (with the
Levi-Civita connection), we have

Ric(x, x) = (n− 1)Kg(x, x), S = n(n− 1)K,

where g = 〈−,−〉 is the metric on M .

Proof. Indeed, if K is constant, then we know by Proposition 16.6 that R = KR1, and so

Ric(x, x) = K
n∑
i=1

g(R1(x, ei)x, ei)

= K
n∑
i=1

g(〈x, x〉ei − 〈ei, x〉x, ei)

= K
n∑
i=1

(g(ei, ei)g(x, x)− g(ei, x)2)

= K(ng(x, x)−
n∑
i=1

g(ei, x)2)

= (n− 1)Kg(x, x),

as claimed.

Spaces for which the Ricci tensor is proportional to the metric are called Einstein spaces.
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Definition 16.8. A Riemannian manifold (M, g) is called an Einstein space iff the Ricci
curvature is proportional to the metric g; that is:

Ric(x, y) = λg(x, y),

for some function λ : M → R.

If M is an Einstein space, observe that S = nλ.

Remark: For any Riemanian manifold (M, g), the quantity

G = Ric− S

2
g

is called the Einstein tensor (or Einstein gravitation tensor for space-times spaces). The
Einstein tensor plays an important role in the theory of general relativity. For more on this
topic, see Kuhnel [71] (Chapters 6 and 8) O’Neill [91] (Chapter 12).

16.4 The Second Variation Formula and the

Index Form

As in previous sections, we assume that all our manifolds are Riemannian manifolds equipped
with the Levi-Civita connection. In Section 15.6, we discovered that the geodesics are exactly
the critical paths of the energy functional (Theorem 15.26). For this, we derived the first
variation formula (Theorem 15.25). It is not too surprising that a deeper understanding is
achieved by investigating the second derivative of the energy functional at a critical path
(a geodesic). By analogy with the Hessian of a real-valued function on Rn, it is possible to
define a bilinear functional

Iγ : TγΩ(p, q)× TγΩ(p, q)→ R

when γ is a critical point of the energy function E (that is, γ is a geodesic). This bilinear
form is usually called the index form. Note that Milnor denotes Iγ by E∗∗ and refers to it
as the Hessian of E, but this is a bit confusing since Iγ is only defined for critical points,
whereas the Hessian is defined for all points, critical or not.

Now, if f : M → R is a real-valued function on a finite-dimensional manifold M and if
p is a critical point of f , which means that dfp = 0, it turns out that there is a symmetric
bilinear map If : TpM × TpM → R such that

If (X(p), Y (p)) = Xp(Y f) = Yp(Xf),

for all vector fields X, Y ∈ X(M). To show this, observe that for any two vector field X, Y ,

Xp(Y f)− Yp(Xf) = ([X, Y ])p(f) = dfp([X, Y ]p) = 0,
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since p is a critical point, namely dfp = 0. It follows that the function If : TpM × TpM → R
defined by

If (X(p), Y (p)) = Xp(Y f)

is bilinear and symmetric. Furthermore, If (u, v) can be computed as follows: for any u, v ∈
TpM , for any smooth map α : R2 →M such that

α(0, 0) = p,
∂α

∂x
(0, 0) = u,

∂α

∂y
(0, 0) = v,

we have

If (u, v) =
∂2(f ◦ α)(x, y)

∂x∂y

∣∣∣∣
(0,0)

=
∂

∂x

(
∂

∂y
(f ◦ α)

)
(0,0)

.

The above suggests that in order to define

Iγ : TγΩ(p, q)× TγΩ(p, q)→ R,

that is to define Iγ(W1,W2), where W1,W2 ∈ TγΩ(p, q) are vector fields along γ (with
W1(0) = W2(0) = 0 and W1(1) = W2(1) = 0), we consider 2-parameter variations

α : U × [0, 1]→M,

(see Definition 15.20), where U is an open subset of R2 with (0, 0) ∈ U , such that

α(0, 0, t) = γ(t),
∂α

∂u1

(0, 0, t) = W1(t),
∂α

∂u2

(0, 0, t) = W2(t).

See Figure 16.1.
Then we set

Iγ(W1,W2) =
∂2(E ◦ α̃)(u1, u2)

∂u1∂u2

∣∣∣∣
(0,0)

,

where α̃ ∈ Ω(p, q) is the path given by

α̃(u1, u2)(t) = α(u1, u2, t).

For simplicity of notation, the above derivative if often written as ∂2E
∂u1∂u2

(0, 0).

To prove that Iγ(W1,W2) is actually well-defined, we need the following result.

Theorem 16.10. (Second Variation Formula) Let α : U × [0, 1] → M be a 2-parameter
variation of a geodesic γ ∈ Ω(p, q), with variation vector fields W1,W2 ∈ TγΩ(p, q) given by

W1(t) =
∂α

∂u1

(0, 0, t), W2(t) =
∂α

∂u2

(0, 0, t), α(0, 0, t) = γ(t).
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u 1

u2

U x [0, 1]

α

p

q

Figure 16.1: A 2-parameter variation α. The pink curve with its associated velocity field is
α(0, 0, t) = γ(t). The blue vector field is W1(t) while the green vector field is W2(t).

Then we have the formula

1

2

∂2(E ◦ α̃)(u1, u2)

∂u1∂u2

∣∣∣∣
(0,0)

= −
∑
t

〈
W2(t),∆t

DW1

dt

〉
−
∫ 1

0

〈
W2,

D2W1

dt2
+R(V,W1)V

〉
dt,

where V (t) = γ′(t) is the velocity field,

∆t
DW1

dt
=
DW1

dt
(t+)− DW1

dt
(t−)

is the jump in DW1

dt
at one of its finitely many points of discontinuity in (0, 1), and E is the

energy function on Ω(p, q).

Proof. (After Milnor, see [81], Chapter II, Section 13, Theorem 13.1.) By the last line in the
proof of the first variation formula (Theorem 15.25), we have

1

2

∂E(α̃(u1, u2))

∂u2

= −
∑
i

〈
∂α

∂u2

,∆t
∂α

∂t

〉
−
∫ 1

0

〈
∂α

∂u2

,
D

∂t

∂α

∂t

〉
dt.
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Thus, we get

1

2

∂2(E ◦ α̃)(u1, u2)

∂u1∂u2

= −
∑
i

〈
D

∂u1

∂α

∂u2

,∆t
∂α

∂t

〉
−
∑
i

〈
∂α

∂u2

,
D

∂u1

∆t
∂α

∂t

〉
−
∫ 1

0

〈
D

∂u1

∂α

∂u2

,
D

∂t

∂α

∂t

〉
dt−

∫ 1

0

〈
∂α

∂u2

,
D

∂u1

D

∂t

∂α

∂t

〉
dt.

Let us evaluate this expression for (u1, u2) = (0, 0). Since γ = α̃(0, 0) is an unbroken geodesic,
we have

∆t
∂α

∂t
= 0,

D

∂t

∂α

∂t
= 0,

so that the first and third term are zero. As

D

∂u1

∂α

∂t
=
D

∂t

∂α

∂u1

,

(see the remark just after Proposition 16.4), we can rewrite the second term and we get

1

2

∂2(E ◦ α̃)(u1, u2)

∂u1∂u2

(0, 0) = −
∑
i

〈
W2,∆t

D

∂t
W1

〉
−
∫ 1

0

〈
W2,

D

∂u1

D

∂t
V

〉
dt. (∗)

In order to interchange the operators D
∂u1

and D
∂t

, we need to bring in the curvature tensor.
Indeed, by Proposition 16.4, we have

D

∂u1

D

∂t
V − D

∂t

D

∂u1

V = R

(
∂α

∂t
,
∂α

∂u1

)
V = R(V,W1)V.

Together with the equation

D

∂u1

V =
D

∂u1

∂α

∂t
=
D

∂t

∂α

∂u1

=
D

∂t
W1,

this yields
D

∂u1

D

∂t
V =

D2W1

dt2
+R(V,W1)V.

Substituting this last expression in (∗), we get the second variation formula.

Theorem 16.10 shows that the expression

∂2(E ◦ α̃)(u1, u2)

∂u1∂u2

∣∣∣∣
(0,0)

only depends on the variation fields W1 and W2, and thus Iγ(W1,W2) is actually well-defined.
If no confusion arises, we write I(W1,W2) for Iγ(W1,W2).
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Proposition 16.11. Given any geodesic γ ∈ Ω(p, q), the map I : TγΩ(p, q)×TγΩ(p, q)→ R
defined so that for all W1,W2 ∈ TγΩ(p, q),

I(W1,W2) =
∂2(E ◦ α̃)(u1, u2)

∂u1∂u2

∣∣∣∣
(0,0)

,

only depends on W1 and W2 and is bilinear and symmetric, where α : U × [0, 1]→M is any
2-parameter variation, with

α(0, 0, t) = γ(t),
∂α

∂u1

(0, 0, t) = W1(t),
∂α

∂u2

(0, 0, t) = W2(t).

Proof. We already observed that the second variation formula implies that I(W1,W2) is well
defined. This formula also shows that I is bilinear. As

∂2(E ◦ α̃)(u1, u2)

∂u1∂u2

=
∂2(E ◦ α̃)(u1, u2)

∂u2∂u1

,

I is symmetric (but this is not obvious from the right-hand side of the second variation
formula).

On the diagonal, I(W,W ) can be described in terms of a 1-parameter variation of γ. In
fact,

I(W,W ) =
d2E(α̃)

du2
(0),

where α̃ : (−ε, ε)→ Ω(p, q) denotes any variation of γ with variation vector field dα̃
du

(0) equal
to W . To prove this equation it is only necessary to introduce the 2-parameter variation

β̃(u1, u2) = α̃(u1 + u2),

and to observe that
∂β̃

∂ui
=
dα̃

du
,

∂2(E ◦ β̃)

∂u1∂u2

=
d2(E ◦ α̃)

du2
,

where u = u1 + u2.

As an application of the above remark we have the following result.

Proposition 16.12. If γ ∈ Ω(p, q) is a minimal geodesic, then the bilinear index form I is
positive semi-definite, which means that I(W,W ) ≥ 0 for all W ∈ TγΩ(p, q).

Proof. The inequality
E(α̃(u)) ≥ E(γ) = E(α̃(0))

from Proposition 15.24 implies that

d2E(α̃)

du2
(0) ≥ 0,

which is exactly what needs to be proved.
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16.5 Jacobi Fields and Conjugate Points

Jacobi fields arise naturally when considering the expression involved under the integral sign
in the second variation formula and also when considering the derivative of the exponential.
In this section, all manifolds under consideration are Riemannian manifolds equipped with
the Levi-Civita connection.

Definition 16.9. Let B : E ×E → R be a symmetric bilinear form defined on some vector
space E (possibly infinite dimentional). The nullspace of B is the subset null(B) of E given
by

null(B) = {u ∈ E | B(u, v) = 0, for all v ∈ E}.
The nullity ν of B is the dimension of its nullspace. The bilinear form B is nondegenerate
iff null(B) = (0) iff ν = 0. If U is a subset of E, we say that B is positive definite (resp.
negative definite) on U iff B(u, u) > 0 (resp. B(u, u) < 0) for all u ∈ U , with u 6= 0. The
index of B is the maximum dimension of a subspace of E on which B is negative definite.

We will determine the nullspace of the symmetric bilinear form

I : TγΩ(p, q)× TγΩ(p, q)→ R,

where γ is a geodesic from p to q in some Riemannian manifold M . Now if W is a vector
field in TγΩ(p, q) and if W satisfies the equation

D2W

dt2
+R(V,W )V = 0, (∗)

where V (t) = γ′(t) is the velocity field of the geodesic γ, since W is smooth along γ, (because
γ is a geodesic and consists of a single smooth curve), it is obvious from the second variation
formula that

I(W,W2) = 0, for all W2 ∈ TγΩ(p, q).

Therefore, any vector field W vanishing at 0 and 1 and satisfying equation (∗) belongs to the
nullspace of I. More generally, a vector field (not necessarily vanishing at 0 and 1) satisfying
equation (∗) is called Jacobi field .

Definition 16.10. Given a geodesic γ ∈ Ω(p, q), a vector field J along γ is a Jacobi field iff
it satisfies the Jacobi differential equation

D2J

dt2
+R(γ′, J)γ′ = 0. (J)

Note that Definition 16.10 does not require that J(0) = J(1) = 0. The equation of
Definition 16.10 is a linear second-order differential equation that can be transformed into
a more familiar form by picking some orthonormal parallel vector fields X1, . . . , Xn along
γ. To do this, pick any orthonormal basis (e1, . . . , en) in TpM , with e1 = γ′(0)/ ‖γ′(0)‖,
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and use parallel transport along γ to get X1, . . . , Xn. We can then write J =
∑n

i=1 yiXi,
for some smooth functions yi, and the Jacobi equation becomes the system of second-order
linear ODE’s

d2yi
dt2

+
n∑
j=1

R(γ′, Xj, γ
′, Xi)yj = 0, 1 ≤ i ≤ n. (∗)

As an illustration of how to derive the preceding system of equations, suppose J = y1X1 +
y2X2. Since DXi

dt
= 0 for all i, we find

DJ

dt
=
dy1

dt
X1 + y1

DX1

dt
+
dy2

dt
X2 + y2

DX2

dt
=
dy1

dt
X1 +

dy2

dt
X2,

and hence

D2J

dt2
=
d2y1

dt2
X1 +

dy1

dt

DX1

dt
+
d2y2

dt2
X2 +

dy2

dt

DX2

dt
=
d2y1

dt2
X1 +

d2y2

dt2
X2.

We now compute

R(γ′, J)γ′ = R(γ′, y1X1 + y2X2)γ′ = y1R(γ′, X1)γ′ + y2R(γ′, X2)γ′

= c1X1 + c2X2,

where the ci are smooth functions determined as follows. Since 〈X1, X1〉 = 1 = 〈X2, X2〉 and
〈X1, X2〉 = 0, we find that

c1 = 〈y1R(γ′, X1)γ′ + y2R(γ′, X2)γ′, X1〉 = y1〈R(γ′, X1)γ′, X1〉+ y2〈R(γ′, X2)γ,X1〉
= y1R(γ′, X1, γ

′, X1) + y2R(γ′, X2, γ
′, X1),

and that

c2 = 〈y1R(γ′, X1)γ′ + y2R(γ′, X2)γ′, X2〉 = y1〈R(γ′, X1)γ′, X2〉+ y2〈R(γ′, X2)γ,X2〉
= y1R(γ′, X1, γ

′, X2) + y2R(γ′, X2, γ
′, X2).

These calculations show that the coefficient of X1 is

d2y1

dt2
+ c1 =

d2y1

dt2
+ y1R(γ′, X1, γ

′, X1) + y2R(γ′, X2, γ
′, X1)

=
d2y1

dt2
+

2∑
j=1

R(γ′, Xj, γ
′, X1)yj,

while the coefficient of X2 is

d2y2

dt2
+ c2 =

d2y2

dt2
+ y1R(γ′, X1, γ

′, X2) + y2R(γ′, X2, γ
′, X2)

=
d2y2

dt2
+

2∑
j=1

R(γ′, Xj, γ
′, X2)yj.
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Setting these two coefficients equal to zero gives the systems of equations provided by (∗).
By the existence and uniqueness theorem for ODE’s, for every pair of vectors u, v ∈ TpM ,

there is a unique Jacobi field J so that J(0) = u and DJ
dt

(0) = v. Since TpM has dimension
n, it follows that the dimension of the space of Jacobi fields along γ is 2n.

Proposition 16.13. If J(0) and DJ
dt

(0) are orthogonal to γ′(0), then J(t) is orthogonal to
γ′(t) for all t ∈ [0, 1].

Proof. Recall that by the remark after Proposition 16.3, the linear map z 7→ R(x, y)z is
skew symmetric. As a consequence, it is a standard fact of linear algebra that R(x, y)z is
orthogonal to z; this is because skew-symmetry means that

〈R(x, y)z, z〉 = −〈z,R(x, y)z〉,

which implies that 〈R(x, y)z, z〉 = 0. Since X1 is obtained by parallel transport along
γ starting with X1(0) collinear to γ′(0), the vector X1(t) is collinear to γ′(t), and since
R(γ′, Xj)γ

′ is orthogonal to γ′, we have

R(γ′, Xj, γ
′, X1) = 〈R(γ′, Xj)γ

′, X1〉 = 0.

But then the ODE for J(t) =
∑n

i=1 yi(t)Xi(t) given by (∗) yields

d2y1

dt2
= 0.

Since

J(0) = y1(0)e1 +
n∑
j=2

yi(0)ei = y1(0)
γ′(0)

‖γ′(0)‖ +
n∑
j=2

yi(0)ei,

we find that

0 = 〈J(0), γ′(0)〉 = 〈J(0), ‖γ′(0)‖ e1〉 = ‖γ′(0)‖ y1(0)〈e1, e1〉 = ‖γ′(0)‖ y1(0),

and hence conclude that y1(0) = 0. Since DXi
dt

= 0,

DJ

dt
(0) =

dy1

dt
(0)e1 +

n∑
j=2

dyj
dt

(0)ej =
dy1

dt
(0)

γ′(0)

‖γ′(0)‖ +
n∑
j=2

dyj
dt

(0)ej,

and we again discover that

0 =

〈
DJ

dt
(0), γ′(0)

〉
=

〈
DJ

dt
(0), ‖γ′(0)‖ e1

〉
= ‖γ′(0)‖ dy1(0)

dt
,

and conclude that dy1
dt

(0) = 0. Because y1(0) = 0 and dy1
dt

(0) = 0, the ODE d2y1
dt2

= 0 implies
that y1(t) = 0 for all t ∈ [0, 1]. In other words, J(t) =

∑n
i=2 yi(t)Xi(t), and since X2, . . . , Xn

are perpendicular to X1, (which is collinear to γ′), we conclude that J(t) is indeed orthogonal
to γ′(t) whenever t ∈ [0, 1].
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Proposition 16.14. If J is orthogonal to γ, which means that J(t) is orthogonal to γ′(t)
for all t ∈ [0, 1], then DJ

dt
is also orthogonal to γ.

Proof. Indeed, as γ is a geodesic, Dγ′

dt
= 0 and

0 =
d

dt
〈J, γ′〉 =

〈
DJ

dt
, γ′
〉

+

〈
J,
Dγ′

dt

〉
=

〈
DJ

dt
, γ′
〉
,

as claimed.

In other words, DJ
dt

=
∑n

i=2 ỹiXi, where ỹi = dyi
dt

. In summary, we have shown that the
dimension of the space of Jacobi fields normal to γ is 2n − 2, and each such field is of the
form J =

∑n
i=2 yiXi. These facts prove part of the following proposition.

Proposition 16.15. If γ ∈ Ω(p, q) is a geodesic in a Riemannian manifold of dimension n,
then the following properties hold.

(1) For all u, v ∈ TpM , there is a unique Jacobi fields J so that J(0) = u and DJ
dt

(0) = v.
Consequently, the vector space of Jacobi fields has dimension 2n.

(2) The subspace of Jacobi fields orthogonal to γ has dimension 2n− 2. The vector fields
γ′ and t 7→ tγ′(t) are Jacobi fields that form a basis of the subspace of Jacobi fields
parallel to γ (that is, such that J(t) is collinear with γ′(t), for all t ∈ [0, 1].) See Figure
16.2.

(3) If J is a Jacobi field, then J is orthogonal to γ iff there exist a, b ∈ [0, 1], with a 6= b,
so that J(a) and J(b) are both orthogonal to γ iff there is some a ∈ [0, 1] so that J(a)
and DJ

dt
(a) are both orthogonal to γ.

(4) For any two Jacobi fields X, Y along γ, the expression 〈∇γ′X, Y 〉 − 〈∇γ′Y,X〉 is a
constant, and if X and Y vanish at some point on γ, then 〈∇γ′X, Y 〉− 〈∇γ′Y,X〉 = 0.

Proof. We already proved (1) and part of (2). If J is parallel to γ, then J(t) = f(t)γ′(t)
and R(γ′, J)γ′ = fR(γ′, γ′)γ′ = 0, where the last equality follows from Proposition 16.3 (1).
Since Dγ′

dt
= 0, we find that

DJ

dt
=
df

dt
γ′(t)

D2J

dt2
=
d2f

dt2
γ′(t),

and the Jacobi differential equation of Definition 16.10 implies that

d2f

dt2
= 0.

Therefore,
J(t) = (α + βt)γ′(t).
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M
transparent view of M
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q

γ

γ

enlargement of with framep

q

key X

X
X

1

2

3

J

Figure 16.2: An orthogonal Jacobi field J for a three dimensional manifold M . Note that J
is in the plane spanned by X2 and X3, while X1 is in the direction of the velocity field.

It is easily shown that γ′ and t 7→ tγ′(t) are linearly independent (as vector fields).

To prove (3), using the Jacobi differential equation of Definition 16.10, the fact that
Dγ′

dt
= 0, and the fact that R(x, y)z is orthogonal to z, observe that

d2

dt2
〈J, γ′〉 =

〈
D2J

dt2
, γ′
〉

= −〈R(γ′, J)γ′, γ′〉 = −R(J, γ′, γ′, γ′) = 0.

Therefore,

〈J, γ′〉 = α + βt

and the result follows. For example, if 〈J(a), γ′(a)〉 = 〈J(b), γ′(b)〉 = 0 with a 6= b, then
α + βa = α + βb = 0, which implies α = β = 0. We leave (4) as an exercise.
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Following Milnor, we will show that the Jacobi fields in TγΩ(p, q) are exactly the vector
fields in the nullspace of the index form I. First, we define the important notion of conjugate
points.

Definition 16.11. Let γ ∈ Ω(p, q) be a geodesic. Two distinct parameter values a, b ∈ [0, 1]
with a < b are conjugate along γ iff there is some Jacobi field J , not identically zero, such
that J(a) = J(b) = 0. The dimension k of the space Ja,b consisting of all such Jacobi fields is
called the multiplicity (or order of conjugacy) of a and b as conjugate parameters. We also
say that the points p1 = γ(a) and p2 = γ(b) are conjugate along γ.

Remark: As remarked by Milnor and others, as γ may have self-intersections, the above
definition is ambiguous if we replace a and b by p1 = γ(a) and p2 = γ(b), even though many
authors make this slight abuse. Although it makes sense to say that the points p1 and p2

are conjugate, the space of Jacobi fields vanishing at p1 and p2 is not well defined. Indeed,
if p1 = γ(a) for distinct values of a (or p2 = γ(b) for distinct values of b), then we don’t
know which of the spaces, Ja,b, to pick. We will say that some points p1 and p2 on γ are
conjugate iff there are parameter values, a < b, such that p1 = γ(a), p2 = γ(b), and a and b
are conjugate along γ.

However, for the endpoints p and q of the geodesic segment γ, we may assume that
p = γ(0) and q = γ(1), so that when we say that p and q are conjugate we consider the space
of Jacobi fields vanishing for t = 0 and t = 1. This is the definition adopted Gallot, Hulin
and Lafontaine [49] (Chapter 3, Section 3E).

In view of Proposition 16.15 (3), the Jacobi fields involved in the definition of conjugate
points are orthogonal to γ. The dimension of the space of Jacobi fields such that J(a) = 0
is obviously n, since the only remaining parameter determining J is dJ

dt
(a). Furthermore,

the Jacobi field t 7→ (t− a)γ′(t) vanishes at a but not at b, so the multiplicity of conjugate
parameters (points) is at most n− 1.

For example, if M is a flat manifold, that is if its curvature tensor is identically zero,
then the Jacobi equation becomes

D2J

dt2
= 0.

It follows that J ≡ 0, and thus, there are no conjugate points. More generally, the Jacobi
equation can be solved explicitly for spaces of constant curvature; see Do Carmo [39] (Chapter
5, Example 2.3).

Theorem 16.16. Let γ ∈ Ω(p, q) be a geodesic. A vector field W ∈ TγΩ(p, q) belongs to the
nullspace of the index form I iff W is a Jacobi field. Hence, I is degenerate if p and q are
conjugate. The nullity of I is equal to the multiplicity of p and q.

Proof. (After Milnor [81], Theorem 14.1). We already observed that a Jacobi field vanishing
at 0 and 1 belongs to the nullspace of I.
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Conversely, assume that W1 ∈ TγΩ(p, q) belongs to the nullspace of I. Pick a subdivision
0 = t0 < t1 < · · · < tk = 1 of [0, 1] so that W1 � [ti, ti+1] is smooth for all i = 0, . . . , k−1, and
let f : [0, 1]→ [0, 1] be a smooth function which vanishes for the parameter values t0, . . . , tk
and is strictly positive otherwise. Then if we let

W2(t) = f(t)

(
D2W1

dt2
+R(γ′,W1)γ′

)
t

,

by the second variation formula, we get

0 = −1

2
I(W1,W2) =

∑
0 +

∫ 1

0

f(t)

∥∥∥∥D2W1

dt2
+R(γ′,W1)γ′

∥∥∥∥2

dt.

Consequently, W1 � [ti, ti+1] is a Jacobi field for all i = 0, . . . , k − 1.

Now, let W ′
2 ∈ TγΩ(p, q) be a field such that

W ′
2(ti) = ∆ti

DW1

dt
, i = 1, . . . , k − 1.

We get

0 = −1

2
I(W1,W

′
2) =

k−1∑
i=1

∥∥∥∥∆ti

DW1

dt

∥∥∥∥2

+

∫ 1

0

0 dt.

Hence, DW1

dt
has no jumps. Now, a solution W1 of the Jacobi equation is completely deter-

mined by the vectors W1(ti) and DW1

dt
(ti), so the k Jacobi fields W1 � [ti, ti+1] fit together to

give a Jacobi field W1 which is smooth throughout [0, 1].

Theorem 16.16 implies that the nullity of I is finite, since the vector space of Jacobi fields
vanishing at 0 and 1 has dimension at most n. In fact, we observed that the dimension of
this space is at most n− 1.

Corollary 16.17. The nullity ν of I satisfies 0 ≤ ν ≤ n− 1, where n = dim(M).

As our (connected) Riemannian manifold M is a metric space, (see Proposition 15.14),
the path space Ω(p, q) is also a metric space if we use the metric d∗ given by

d∗(ω1, ω2) = max
t

(d(ω1(t), ω2(t))),

where d is the metric on M induced by the Riemannian metric.

Remark: The topology induced by d∗ turns out to be the compact open topology on Ω(p, q).

Theorem 16.18. Let γ ∈ Ω(p, q) be a geodesic. Then the following properties hold:
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(1) If there are no conjugate points to p along γ, then there is some open subset V of
Ω(p, q), with γ ∈ V, such that

L(ω) ≥ L(γ) and E(ω) ≥ E(γ), for all ω ∈ V ,

with strict inequality when ω([0, 1]) 6= γ([0, 1]). We say that γ is a local minimum.

(2) If there is some t ∈ (0, 1) such that p and γ(t) are conjugate along γ, then there is a
fixed endpoints variation α, such that

L(α̃(u)) < L(γ) and E(α̃(u)) < E(γ), for u small enough.

A proof of Theorem 16.18 can be found in Gallot, Hulin and Lafontaine [49] (Chapter 3,
Theorem 3.73) or in O’Neill [91] (Chapter 10, Theorem 17 and Remark 18).

16.6 Jacobi Fields and Geodesic Variations

Jacobi fields turn out to be induced by certain kinds of variations called geodesic variations .

Definition 16.12. Given a geodesic γ ∈ Ω(p, q), a geodesic variation of γ is a smooth map

α : (−ε, ε)× [0, 1]→M,

such that

(1) α(0, t) = γ(t), for all t ∈ [0, 1].

(2) For every u ∈ (−ε, ε), the curve α̃(u) is a geodesic, where

α̃(u)(t) = α(u, t), t ∈ [0, 1].

Note that the geodesics α̃(u) do not necessarily begin at p and end at q, and so a geodesic
variation is not a “fixed endpoints” variation. See Figure 16.3.

Proposition 16.19. If α : (−ε, ε) × [0, 1] → M is a geodesic variation of γ ∈ Ω(p, q), then
the vector field W (t) = ∂α

∂u
(0, t) is a Jacobi field along γ.

Proof. As α is a geodesic variation, we have

D

dt

∂α

∂t
= 0
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W(t)

α

α
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α

(0,t)

(-1,t)

(2,t)

(1,t)

γ= (t)

Figure 16.3: A geodesic variation for S2 with its associated Jacobi field W (t).

identically. Hence, using Proposition 16.4, we have

0 =
D

∂u

D

∂t

∂α

∂t

=
D

∂t

D

∂u

∂α

∂t
+R

(
∂α

∂t
,
∂α

∂u

)
∂α

∂t

=
D2

∂t2
∂α

∂u
+R

(
∂α

∂t
,
∂α

∂u

)
∂α

∂t
,

where we used the equation
D

∂t

∂α

∂u
=

D

∂u

∂α

∂t

proved in Proposition 15.7.

For example, on the sphere Sn, for any two antipodal points p and q, rotating the sphere
keeping p and q fixed, the variation field along a geodesic γ through p and q (a great circle)
is a Jacobi field vanishing at p and q. Rotating in n−1 different directions one obtains n−1
linearly independent Jacobi fields and thus, p and q are conjugate along γ with multiplicity
n− 1.

Interestingly, the converse of Proposition 16.19 holds.

Proposition 16.20. For every Jacobi field W (t) along a geodesic γ ∈ Ω(p, q), there is some
geodesic variation α : (−ε, ε)× [0, 1]→ M of γ such that W (t) = ∂α

∂u
(0, t). Furthermore, for

every point γ(a), there is an open subset U containing γ(a) such that the Jacobi fields along
a geodesic segment in U are uniquely determined by their values at the endpoints (in U) of
the geodesic.
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Proof. (After Milnor, see [81], Chapter III, Lemma 14.4.) We begin by proving the second
assertion. By Proposition 15.5 (1), there is an open subset U with γ(0) ∈ U , so that any
two points of U are joined by a unique minimal geodesic which depends differentially on the
endpoints. Suppose that γ(t) ∈ U for t ∈ [0, δ]. We will construct a Jacobi field W along
γ � [0, δ] with arbitrarily prescribed values u at t = 0 and v at t = δ. Choose some curve
c0 : (−ε, ε)→ U so that c0(0) = γ(0) and c′0(0) = u, and some curve cδ : (−ε, ε)→ U so that
cδ(0) = γ(δ) and c′δ(0) = v. Now define the map

α : (−ε, ε)× [0, δ]→M

by letting α̃(s) : [0, δ] → M be the unique minimal geodesic from c0(s) to cδ(s). It is easily
checked that α is a geodesic variation of γ � [0, δ] and that

J(t) =
∂α

∂u
(0, t)

is a Jacobi field such that J(0) = u and J(δ) = v. See Figure 16.4.

c
0

u
c
δ

δ
v

γ

γ

γ
(t)

(0)

(  )

U

Figure 16.4: The local geodesic variation α with its Jacobi field such that J(0) = u and
J(δ) = v.

We claim that every Jacobi field along γ � [0, δ] can be obtained uniquely in this way.
If Jδ denotes the vector space of all Jacobi fields along γ � [0, δ], the map J 7→ (J(0), J(δ))
defines a linear map

` : Jδ → Tγ(0)M × Tγ(δ)M.

The above argument shows that ` is onto. However, both vector spaces have the same
dimension 2n, so ` is an isomorphism. Therefore, every Jacobi field in Jδ is determined by
its values at γ(0) and γ(δ), which is the content of the second assertion.

Now the above argument can be repeated for every point γ(a) on γ, so we get an open
cover {(la, ra)} of [0, 1], such that every Jacobi field along γ � [la, ra] is uniquely determined
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by its endpoints. By compactness of [0, 1], the above cover possesses some finite subcover,
and we get a geodesic variation α defined on the entire interval [0, 1] whose variation field is
equal to the original Jacobi field, W .

Remark: The proof of Proposition 16.20 also shows that there is some open interval (−δ, δ)
such that if t ∈ (−δ, δ), then γ(t) is not conjugate to γ(0) along γ. In fact, the Morse index
theorem implies that for any geodesic segment, γ : [0, 1] → M , there are only finitely many
points which are conjugate to γ(0) along γ (see Milnor [81], Part III, Corollary 15.2).

Using Proposition 16.20 it is easy to characterize conjugate points in terms of geodesic
variations; see O’Neill [91] (Chapter 10, Proposition 10).

Proposition 16.21. If γ ∈ Ω(p, q) is a geodesic, then q is conjugate to p iff there is a geodesic
variation α of γ such that every geodesic α̃(u) starts from p, the Jacobi field J(t) = ∂α

∂u
(0, t)

does not vanish identically, and J(1) = 0.

Jacobi fields, as characterized by Proposition 16.19, can be used to compute the sectional
curvature of the sphere Sn and the sectional curvature of hyperbolic space Hn = H+

n (1), both
equipped with their respective canonical metrics. This requires knowing the geodesics in Sn

and Hn. This is done in Section 22.7 for the sphere. The hyperbolic space Hn = H+
n (1) is

shown to be a symmetric space in Section 22.9, and it would be easy to derive its geodesics
by analogy with what we did for the sphere. For the sake of brevity, we will assume without
proof that we know these geodesics. The reader may consult Gallot, Hulin and Lafontaine
[49] or O’Neill [91] for details.

First we consider the sphere Sn. For any p ∈ Sn, the geodesic from p with initial velocity
a unit vector v is

γ(t) = (cos t)p+ (sin t)v.

Pick some unit vector u ∈ TpM orthogonal to v. The variation

α(s, t) = (cos t)p+ (sin t)((cos s)v + (sin s)u)

is a geodesic variation. We obtain the Jacobi vector field

Y (t) =
∂α

∂s
(0, t) = (sin t)u.

Since Y satisfies the Jacobi differential equation, we have

Y ′′ +R(γ′, Y )γ′ = 0.

But, as Y (t) = (sin t)u, we have
Y + Y ′′ = 0,

so
R(γ′, Y )γ′ = Y,
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which yields

1 = 〈u, u〉 = 〈R(γ′, u)γ′, u〉 = R(γ′, u, γ′, u)

since 〈Y, Y 〉 = (sin t)2 and R(γ′, Y, γ′, Y ) = (sin t)2R(γ′, u, γ′, u). Since γ′(0) = v, it follows
that R(v, u, v, u) = 1, which means that the sectional curvature of Sn is constant and equal
to 1.

Let us now consider the hyperbolic space Hn. This time the geodesic from p with initial
velocity a unit vector v is

γ(t) = (cosh t)p+ (sinh t)v.

Pick some unit vector u ∈ TpM orthogonal to v. The variation

α(s, t) = (cosh t)p+ (sinh t)((cosh s)v + (sinh s)u)

is a geodesic variation and we obtain the Jacobi vector field

Y (t) =
∂α

∂s
(0, t) = (sinh t)u.

This time,

Y ′′ − Y = 0,

so the Jacobi equation becomes

R(γ′, Y )γ′ = −Y.
It follows that

−1 = −〈u, u〉 = 〈R(γ′, u)γ′, u〉 = R(γ′, u, γ′, u)

and since γ′(0) = v, we get R(v, u, v, u) = −1, which means that the sectional curvature of
Hn is constant and equal to −1.

Using the covering map of RPn by Sn, it can be shown that RPn with the canonical
metric also has constant sectional curvature equal to +1; see Gallot, Hulin and Lafontaine
[49] (Chapter III, section 3.49).

We end this section by exploiting Proposition 16.19 as means to develop intimate con-
nections between Jacobi fields and the differential of the exponential map, and between
conjugate points and critical points of the exponential map.

Recall that if f : M → N is a smooth map between manifolds, a point p ∈M is a critical
point of f iff the tangent map at p

dfp : TpM → Tf(p)N

is not surjective. If M and N have the same dimension, which will be the case for the rest
of this section, dfp is not surjective iff it is not injective, so p is a critical point of f iff there
is some nonzero vector u ∈ TpM such that dfp(u) = 0.
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If expp : TpM → M is the exponential map, for any v ∈ TpM where expp(v) is defined,
we have the derivative of expp at v:

(d expp)v : Tv(TpM)→ TpM.

Since TpM is a finite-dimensional vector space, Tv(TpM) is isomorphic to TpM , so we identify
Tv(TpM) with TpM .

Jacobi fields can be used to compute the derivative of the exponential.

Proposition 16.22. Given any point p ∈ M , for any vectors u, v ∈ TpM , if expp v is
defined, then

J(t) = (d expp)tv(tu), 0 ≤ t ≤ 1,

is the unique Jacobi field such that J(0) = 0 and DJ
dt

(0) = u.

Proof. We follow the proof in Gallot, Hulin and Lafontaine [49] (Chapter 3, Corollary 3.46).
Another proof can be found in Do Carmo [39] (Chapter 5, Proposition 2.7). Let γ be the
geodesic given by γ(t) = expp(tv). In TpM equipped with the inner product gp, the Jacobi
field X along the geodesic t 7→ tv such that X(0) = 0 and (DX/dt)(0) = u is just X(t) = tu.
This Jacobi field is generated by the variation H(s, t) = t(v + su) since ∂H

∂s
H(0, t) = tu; see

Proposition 16.19. Because all the curves in this variation are radial geodesics, the variation
α(s, t) = exppH(s, t) of γ (in M) is also a geodesic variation, and by Proposition 16.19, the

vector field J(t) = ∂α
∂s

(0, t) is a Jacobi vector field. See Figure 16.5.
By the chain rule we have J(t) = (d expp)tv(tu), and since J(0) = 0 and (DJ/dt)(0) = u,

we conclude that

J(t) = (d expp)tv(tu)

is the unique Jacobi field such that J(0) = 0 and (DJ/dt)(0) = u.

Remark: If u, v ∈ TpM are orthogonal unit vectors, then R(u, v, u, v) = K(u, v), the sec-
tional curvature of the plane spanned by u and v in TpM , and for t small enough, we have

‖J(t)‖ = t− 1

6
K(u, v)t3 + o(t3).

(Here, o(t3) stands for an expression of the form t4R(t), such that limt7→0R(t) = 0.) Intu-
itively, this formula tells us how fast the geodesics that start from p and are tangent to the
plane spanned by u and v spread apart. Locally, for K(u, v) > 0 the radial geodesics spread
apart less than the rays in TpM , and for K(u, v) < 0 they spread apart more than the rays
in TpM . For more details, see Do Carmo [39] (Chapter 5, Proposition 2.7, Corollary 2.10
and the remark that follows.).

Jacobi fields can also be used to obtain a Taylor expansion for the matrix coefficients gij
representing the metric g in a normal coordinate system near a point p ∈M .
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Figure 16.5: The radial geodesic variation and its image under expp. Note that J(t) is the
dark pink vector field.

Proposition 16.23. With respect to a normal coordinate system x = (x1, . . . , xn) around a
point p ∈M , the matrix coefficients gij representing the metric g near 0 are given by

gij(x1, . . . , xn) = δij +
1

3

∑
k,l

Rikjl(p)xkxl + o(‖x‖3).

A proof of Proposition 16.23 can be found in Sakai [100] (Chapter II, Section 3, Proposi-
tion 3.1). The above formula shows that the deviation of the Riemannian metric on M near
p from the canonical Euclidean metric is measured by the curvature coefficients Rikjl.

For any x 6= 0, write x = tu with u = x/ ‖x‖ and t = ‖x‖, where x = (x1, . . . , xn) are
local coordinates at p. Proposition 16.23 can used used to give an expression for det(gij(tu))
in terms of the Ricci curvature Ricp(u, u).

Proposition 16.24. With respect to a normal coordinate system (x1, . . . , xn) = tu with
‖u‖ = 1 around a point p ∈M , we have

det(gij(tu)) = 1− 1

3
Ricp(u, u) t2 + o(t3).



16.6. JACOBI FIELDS AND GEODESIC VARIATIONS 507

A proof of Proposition 16.24 can be found in Sakai [100] (Chapter II, Section 3, Lemma
3.5). The above formula shows that the Ricci curvature at p in the direction u is a measure of
the deviation of the determinant det(gij(tu)) to be equal to 1 (as in the case of the canonical
Euclidean metric).

We now establish a relationship between conjugate points and critical points of the ex-
ponential map. These are points where the exponential is no longer a diffeomorphism.

Proposition 16.25. Let γ ∈ Ω(p, q) be a geodesic. The point r = γ(t), with t ∈ (0, 1], is
conjugate to p along γ iff v = tγ′(0) is a critical point of expp. Furthermore, the multiplicity
of p and r as conjugate points is equal to the dimension of the kernel of (d expp)v.

Proof. We follow the proof in Do Carmo [39] (Chapter 5, Proposition 3.5). Other proofs
can be found in O’Neill [91] (Chapter 10, Proposition 10), or Milnor [81] (Part III, Theorem
18.1). The point r = γ(t) is conjugate to p along γ if there is a non-zero Jacobi field J along
γ such that J(0) = 0 and J(t) = 0. Let v = γ′(0) and w = (DJ/dt)(0). From Proposition
16.22, we have

J(t) = (d expp)tv(tw), 0 ≤ t ≤ 1.

Observe that J is non-zero iff (DJ/dt)(0) = w 6= 0. Therefore, r = γ(t) is conjugate to p
along γ iff

0 = J(t) = (d expp)tv

(
t
DJ

dt
(0)

)
,

DJ

dt
(0) 6= 0;

that is, iff tv is a criticall point of expp.

The multiplicity of p and r as conjugate points is equal to the number of linearly inde-
pendent Jacobi fields J1, . . . , Jk such that Ji(0) = Ji(t) = 0 for i = 1, . . . , k.

We claim that J1, . . . , Jk are linearly independent iff (DJ1/dt)(0), . . . , (DJk/dt)(0) are
linearly independent in TpM .

Proof of claim. If (DJ1/dt)(0), . . . , (DJk/dt)(0) are linearly independent, then J1, . . . , Jk
must be linearly independent since otherwise we would have

λ1J1 + · · ·+ λkJk = 0

with some λi 6= 0, and by taking the derivative we would obtain a nontrivial dependency
among (DJ1/dt)(0), . . . , (DJk/dt)(0). Conversely, if J1, . . . , Jk are linearly independent, then
if we could express some (DJi/dt)(0) as

DJi
dt

(0) =
∑
h6=i

λh
DJh
dt

(0)

with some λh 6= 0, then the Jacobi field

J(t) =
∑
h6=i

λhJh(t)

is such that J(0) = 0 and (DJ/dt)(0) = (DJi/dt)(0), so by uniqueness J = Ji, and Ji is a
nontrivial combination of the other Jh, a contradiction.
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Since

Ji(t) = (d expp)tv

(
t
DJi
dt

(0)

)
,

we have Ji(t) = 0 iff (DJi/dt)(0) ∈ Ker (d expp)tv, so the multiplicity of p and r is equal to
the dimension of Ker (d expp)tv.

16.7 Topology and Curvature

As before, all our manifolds are Riemannian manifolds equipped with the Levi-Civita con-
nection. Jacobi fields and conjugate points are basic tools that can be used to prove many
global results of Riemannian geometry. The flavor of these results is that certain constraints
on curvature (sectional, Ricci, scalar) have a significant impact on the topology. One may
want consider the effect of non-positive curvature, constant curvature, curvature bounded
from below by a positive constant, etc. This is a vast subject and we highly recommend
Berger’s Panorama of Riemannian Geometry [14] for a masterly survey. We will content
ourselves with three results:

(1) Hadamard and Cartan’s theorem about complete manifolds of non-positive sectional
curvature.

(2) Myers’ theorem about complete manifolds of Ricci curvature bounded from below by
a positive number.

(3) The Morse index theorem.

First, on the way to Hadamard and Cartan, we begin with a proposition.

Proposition 16.26. Let M be a Riemannian manifold such that 〈R(u, v)u, v〉 ≤ 0 for all
u, v ∈ TpM and all p ∈ M , which is equivalent to saying that M has non-positive sectional
curvature K ≤ 0. For every geodesic γ ∈ Ω(p, q), there are no conjugate points to p along γ.
Consequently, the exponential map expp : TpM →M is a local diffeomorphism for all p ∈M .

Proof. Let J be a Jacobi field along γ. Then,

D2J

dt2
+R(γ′, J)γ′ = 0,

so that by the definition of the sectional curvature,〈
D2J

dt2
, J

〉
= −〈R(γ′, J)γ′, J) = −R(γ′, J, γ′, J) ≥ 0.

It follows that
d

dt

〈
DJ

dt
, J

〉
=

〈
D2J

dt2
, J

〉
+

∥∥∥∥DJdt
∥∥∥∥2

≥ 0.
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Thus, the function t 7→
〈
DJ
dt
, J
〉

is monotonic increasing, and strictly so if DJ
dt
6= 0. If J

vanishes at both 0 and t, for any given t ∈ (0, 1], then so does
〈
DJ
dt
, J
〉
, and hence

〈
DJ
dt
, J
〉

must vanish throughout the interval [0, t]. This implies

J(0) =
DJ

dt
(0) = 0,

so that J is identically zero. Therefore, t is not conjugate to 0 along γ. By Proposition 16.25,
d expp is nonsingular for all p ∈M , which implies that expp is a local diffeomorphism.

Theorem 16.27. (Hadamard–Cartan) Let M be a complete Riemannian manifold. If M
has non-positive sectional curvature K ≤ 0, then the following hold:

(1) For every p ∈ M , the map expp : TpM → M is a Riemannian covering, i.e. expp is a
smooth covering and a local isometry.

(2) If M is simply connected, then M is diffeomorphic to Rn, where n = dim(M); more
precisely, expp : TpM → M is a diffeomorphism for all p ∈ M . Furthermore, any two
points on M are joined by a unique minimal geodesic.

Proof. We follow the proof in Sakai [100] (Chapter V, Theorem 4.1).

(1) By Proposition 16.26, the exponential map expp : TpM →M is a local diffeomorphism
for all p ∈ M . Let g̃ be the pullback metric g̃ = (expp)

∗g on TpM (where g denotes the
metric on M). We claim that (TpM, g̃) is complete.

This is because, for every nonzero u ∈ TpM , the line t 7→ tu is mapped to the geodesic
t 7→ expp(tu) in M , which is defined for all t ∈ R since M is complete, and thus this line is a
geodesic in (TpM, g̃). Since this holds for all u ∈ TpM , (TpM, g̃) is geodesically complete at
0, so by Hopf-Rinow, (Theorem 15.17), it is complete. But now, by Definition of the pullback
metric (see Definition 13.4), expp : TpM → M is a local isometry, and by Proposition 17.7,
it is a Riemannian covering map.

(2) If M is simply connected, then by Proposition 10.17, the covering map expp : TpM →
M is a diffeomorphism (TpM is connected). Therefore, expp : TpM →M is a diffeomorphism
for all p ∈M .

Other proofs of Theorem 16.27 can be found in Do Carmo [39] (Chapter 7, Theorem 3.1),
Gallot, Hulin and Lafontaine [49] (Chapter 3, Theorem 3.87), Kobayashi and Nomizu [69]
(Chapter VIII, Theorem 8.1) and Milnor [81] (Part III, Theorem 19.2).

Remark: A version of Theorem 16.27 was first proved by Hadamard and then extended by
Cartan.

Theorem 16.27 was generalized by Kobayashi, see Kobayashi and Nomizu [69] (Chapter
VIII, Remark 2 after Corollary 8.2). Also, it is shown in Milnor [81] that if M is complete,
assuming non-positive sectional curvature, then all homotopy groups πi(M) vanish for i > 1,
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and that π1(M) has no element of finite order except the identity. Finally, non-positive
sectional curvature implies that the exponential map does not decrease distance (Kobayashi
and Nomizu [69], Chapter VIII, Section 8, Lemma 3).

We now turn to manifolds with strictly positive curvature bounded away from zero and to
Myers’ theorem. The first version of such a theorem was first proved by Bonnet for surfaces
with positive sectional curvature bounded away from zero. It was then generalized by Myers
in 1941. For these reasons, this theorem is sometimes called the Bonnet-Myers’ theorem.
The proof of Myers theorem involves a beautiful “trick.”

Given any metric space X, recall that the diameter of X is defined by

diam(X) = sup{d(p, q) | p, q ∈ X}.

The diameter of X may be infinite.

Theorem 16.28. (Myers) Let M be a complete Riemannian manifold of dimension n and
assume that

Ric(u, u) ≥ (n− 1)/r2, for all unit vectors, u ∈ TpM , and for all p ∈M,

with r > 0. Then,

(1) The diameter of M is bounded by πr and M is compact.

(2) The fundamental group of M is finite.

Proof. (1) Pick any two points p, q ∈ M and let d(p, q) = L. As M is complete, by Hopf-
Rinow theorem, (Theorem 15.16), there is a minimal geodesic γ joining p and q, and by
Proposition 16.12, the bilinear index form I associated with γ is positive semi-definite,
which means that I(W,W ) ≥ 0 for all vector fields W ∈ TγΩ(p, q). Pick an orthonormal
basis (e1, . . . , en) of TpM , with e1 = γ′(0)/L. Using parallel transport, we get a field of
orthonormal frames (X1, . . . , Xn) along γ, with X1(t) = γ′(t)/L. Now comes Myers’ beautiful
trick. Define new vector fields Yi along γ, by

Wi(t) = sin(πt)Xi(t), 2 ≤ i ≤ n.

We have

γ′(t) = LX1 and
DXi

dt
= 0.

Furthermore, observe that

DWi

dt
= π cos(πt)Xi,

D2Wi

dt2
= −π2 sin(πt)Xi.
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Then by the second variation formula,

1

2
I(Wi,Wi) = −

∫ 1

0

〈
Wi,

D2Wi

dt2
+R(γ′,Wi)γ

′
〉
dt

= −
∫ 1

0

〈
sin(πt)Xi,−π2 sin(πt)Xi +R(LX1, sin(πt)Xi)LX1

〉
dt

= −
∫ 1

0

〈
sin(πt)Xi,−π2 sin(πt)Xi + L2 sin(πt)R(X1, Xi)X1

〉
dt

=

∫ 1

0

(sin(πt))2(π2 − L2 〈R(X1, Xi)X1, Xi〉)dt,

for i = 2, . . . , n. Adding up these equations and using the fact that

Ric(X1(t), X1(t)) =
n∑
i=2

〈R(X1(t), Xi(t))X1(t), Xi(t)〉,

we get

1

2

n∑
i=2

I(Wi,Wi) =

∫ 1

0

(sin(πt))2[(n− 1)π2 − L2 Ric(X1(t), X1(t))]dt.

Now by hypothesis,

Ric(X1(t), X1(t)) ≥ (n− 1)/r2,

so

0 ≤ 1

2

n∑
i=2

I(Wi,Wi) ≤
∫ 1

0

(sin(πt))2

[
(n− 1)π2 − (n− 1)

L2

r2

]
dt,

which implies L2

r2
≤ π2, that is

d(p, q) = L ≤ πr.

As the above holds for every pair of points p, q ∈M , we conclude that

diam(M) ≤ πr.

Since closed and bounded subsets in a complete manifold are compact, M itself must be
compact.

(2) Since the universal covering space M̃ of M has the pullback of the metric on M , this

metric satisfies the same assumption on its Ricci curvature as that of M . Therefore, M̃ is
also compact, which implies that the fundamental group π1(M) is finite (see the discussion
at the end of Section 10.2).

Remarks:
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(1) The condition on the Ricci curvature cannot be weakened to Ric(u, u) > 0 for all unit
vectors. Indeed, the paraboloid of revolution z = x2 + y2 satisfies the above condition,
yet it is not compact.

(2) Theorem 16.28 also holds under the stronger condition that the sectional curvature
K(u, v) satisfies

K(u, v) ≥ (n− 1)/r2,

for all orthonormal vectors, u, v. In this form, it is due to Bonnet (for surfaces).

It would be a pity not to include in this section a beautiful theorem due to Morse. This
theorem has to do with the index of I : TγΩ(p, q)×TγΩ(p, q)→ R, which is defined as follows.

Definition 16.13. For any geodesic γ ∈ Ω(p, q), we define the index λ of

I : TγΩ(p, q)× TγΩ(p, q)→ R

as the maximum dimension of a subspace of TγΩ(p, q) on which I is negative definite.

Proposition 16.12 says that the index of I is zero for a minimal geodesic γ. It turns out
that the index of I is finite for any geodesic γ.

Theorem 16.29. (Morse Index Theorem) Given a geodesic γ ∈ Ω(p, q), the index λ of the
index form I : TγΩ(p, q)×TγΩ(p, q)→ R is equal to the number of points γ(t), with 0 ≤ t ≤ 1,
such that γ(t) is conjugate to p = γ(0) along γ, each such conjugate point counted with its
multiplicity. The index λ is always finite.

As a corollary of Theorem 16.29, we see that there are only finitely many points which
are conjugate to p = γ(0) along γ.

A proof of Theorem 16.29 can be found in Milnor [81] (Part III, Section 15) and also in
Do Carmo [39] (Chapter 11) or Kobayashi and Nomizu [69] (Chapter VIII, Section 6).

A key ingredient of the proof is that the vector space TγΩ(p, q) can be split into a direct
sum of subspaces mutually orthogonal with respect to I, on one of which (denoted T ′) I
is positive definite. Furthermore, the subspace orthogonal to T ′ is finite-dimensional. This
space is obtained as follows. Since for every point γ(t) on γ, there is some open subset Ut
containing γ(t) such that any two points in Ut are joined by a unique minimal geodesic, by
compactness of [0, 1], there is a subdivision 0 = t0 < t1 < · · · < tk = 1 of [0, 1] so that
γ � [ti, ti+1] lies within an open set where it is a minimal geodesic.

Let TγΩ(t0, . . . , tk) ⊆ TγΩ(p, q) be the vector space consisting of all vector fields W along
γ such that

(1) W � [ti, ti+1] is a Jacobi field along γ � [ti, ti+1], for i = 0, . . . , k − 1.

(2) W (0) = W (1) = 0.
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The space TγΩ(t0, . . . , tk) ⊆ TγΩ(p, q) is a finite-dimensional vector space consisting of
broken Jacobi fields. Let T ′ ⊆ TγΩ(p, q) be the vector space consisting of all vector fields
W ∈ TγΩ(p, q) for which

W (ti) = 0, 0 ≤ i ≤ k.

It is not hard to prove that

TγΩ(p, q) = TγΩ(t0, . . . , tk)⊕ T ′,

that TγΩ(t0, . . . , tk) and T ′ are orthogonal w.r.t I, and that I � T ′ is positive definite. The
reason why I(W,W ) ≥ 0 for W ∈ T ′ is that each segment γ � [ti, ti+1] is a minimal geodesic,
which has smaller energy than any other path between its endpoints.

As a consequence, the index (or nullity) of I is equal to the index (or nullity) of I
restricted to the finite dimensional vector space TγΩ(t0, . . . , tk). This shows that the index
is always finite.

In the next section we will use conjugate points to give a more precise characterization
of the cut locus.

16.8 Cut Locus and Injectivity Radius:

Some Properties

As usual, all our manifolds are Riemannian manifolds equipped with the Levi-Civita connec-
tion. We begin by reviewing the definition of the cut locus provided by Definition 15.14 from
a slightly different point of view. Let M be a complete Riemannian manifold of dimension
n. There is a bundle UM , called the unit tangent bundle, such that the fibre at any p ∈M
is the unit sphere Sn−1 ⊆ TpM (check the details). As usual, we let π : UM → M denote
the projection map which sends every point in the fibre over p to p.

Definition 16.14. The function ρ : UM → R is defined so that for all p ∈ M , for all
v ∈ Sn−1 ⊆ TpM ,

ρ(v) = sup
t∈R∪{∞}

d(p, expp(tv)) = t

= sup{t ∈ R ∪ {∞} | the geodesic t 7→ expp(tv) is minimal on [0, t]}.

The number ρ(v) is called the cut value of v.

It can be shown that ρ is continuous; see Klingenberg [67] (Chapter 2, Lemma 2.1.5).

Definition 16.15. For every p ∈M , we let

C̃ut(p) = {ρ(v)v ∈ TpM | v ∈ UM ∩ TpM, ρ(v) is finite}



514 CHAPTER 16. CURVATURE IN RIEMANNIAN MANIFOLDS

be the tangential cut locus of p, and

Cut(p) = expp(C̃ut(p))

be the cut locus of p. The point expp(ρ(v)v) in M is called the cut point of the geodesic
t 7→ expp(vt), and so the cut locus of p is the set of cut points of all the geodesics emanating
from p.

Also recall from Definition 15.14 that

Up = {v ∈ TpM | ρ(v) > 1},

and that Up is open and star-shaped. It follows from the definitions that

C̃ut(p) = ∂Up.

We also have the following property.

Theorem 16.30. If M is a complete Riemannian manifold, then for every p ∈ M , the
exponential map expp is a diffeomorphism between Up and its image expp(Up) = M −Cut(p)
in M .

Proof. The fact that expp is injective on Up was shown in Proposition 15.19. Now for any
v ∈ U , as t 7→ expp(tv) is a minimal geodesic for t ∈ [0, 1], by Theorem 16.18 (2), the
point expp v is not conjugate to p, so d(expp)v is bijective, which implies that expp is a local
diffeomorphism. As expp is also injective, it is a diffeomorphism.

Theorem 16.30 implies that the cut locus is closed.

Remark: In fact, M−Cut(p) can be retracted homeomorphically onto a ball around p, and
Cut(p) is a deformation retract of M − {p}.

The following proposition gives a rather nice characterization of the cut locus in terms
of minimizing geodesics and conjugate points.

Proposition 16.31. Let M be a complete Riemannian manifold. For every pair of points
p, q ∈ M , the point q belongs to the cut locus of p iff one of the two (not mutually exclusive
from each other) properties hold:

(a) There exist two distinct minimizing geodesics from p to q.

(b) There is a minimizing geodesic γ from p to q, and q is the first conjugate point to p
along γ.
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A proof of Proposition 16.31 can be found in Do Carmo [39] (Chapter 13, Proposition
2.2) Kobayashi and Nomizu [69] (Chapter VIII, Theorem 7.1) or Klingenberg [67] (Chapter
2, Lemma 2.1.11).

Observe that Proposition 16.31 implies the following symmetry property of the cut locus:
q ∈ Cut(p) iff p ∈ Cut(q); see Do Carmo [39] (Chapter 13, Corollary 2.8). Furthermore, if
M is compact, we have

p =
⋂

q∈Cut(p)

Cut(q);

see Klingenberg [67] (Chapter 2, Lemma 2.1.11).

Recall from Definition 15.15 the definition of the injectivity radius,

i(M) = inf
p∈M

d(p,Cut(p)).

Proposition 16.31 admits the following sharpening.

Proposition 16.32. Let M be a complete Riemannian manifold. For all p, q ∈M , if
q ∈ Cut(p), then

(a) If among the minimizing geodesics from p to q, there is one, say γ, such that q is not
conjugate to p along γ, then there is another minimizing geodesic ω 6= γ from p to q.

(b) Suppose q ∈ Cut(p) realizes the distance from p to Cut(p) (i.e. d(p, q) = d(p,Cut(p))).
If there are no minimal geodesics from p to q such that q is conjugate to p along this
geodesic, then there are exactly two minimizing geodesics γ1 and γ2 from p to q, with
γ′2(1) = −γ′1(1). Moreover, if d(p, q) = i(M) (the injectivity radius), then γ1 and γ2

together form a closed geodesic.

Except for the last statement, Proposition 16.32 is proved in Do Carmo [39] (Chapter 13,
Proposition 2.12). The last statement is from Klingenberg [67] (Chapter 2, Lemma 2.1.11).

We conclude this section by stating a classical theorem of Klingenberg about the injec-
tivity radius of a manifold of bounded positive sectional curvature.

Theorem 16.33. (Klingenberg) Let M be a complete Riemannian manifold and assume that
there are some positive constants Kmin, Kmax, such that the sectional curvature of K satisfies

0 < Kmin ≤ K ≤ Kmax.

Then, M is compact, and either

(a) i(M) ≥ π/
√
Kmax, or

(b) There is a closed geodesic γ of minimal length among all closed geodesics in M and
such that

i(M) =
1

2
L(γ).

The proof of Theorem 16.33 is quite hard. A proof using Rauch’s comparison theorem
can be found in Do Carmo [39] (Chapter 13, Proposition 2.13).
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16.9 Problems

Problem 16.1. Let M be a Riemannian manifold with the flat connection ∇. Prove that

∇X∇YZ −∇Y∇XZ = ∇[X,Y ]Z,

for all X, Y, Z ∈ X(M).

Problem 16.2. Let M be a Riemannian manifold equipped an arbitrary connection. In a
chart, show that

Rl
jhi = ∂iΓ

l
hj − ∂hΓlij +

∑
m

ΓlimΓmhj −
∑
m

ΓlhmΓmij .

Hint . See Gallot, Hulin and Lafontaine [49] (Chapter 3, Section 3.A.3) or O’Neill [91] (Chap-
ter III, Lemma 38).

Problem 16.3. Prove Properties (3) and (4) of Proposition 16.3.
Hint . See Milnor [81] (Chapter II, Section 9), O’Neill [91] (Chapter III) or Kuhnel [71]
(Chapter 6, Lemma 6.3).

Problem 16.4. Verify Equation (∗) of Section 16.2.

Problem 16.5. Prove Proposition 16.5.
Hint . See Kuhnel [71] (Chapter 6, Theorem 6.5).

Problem 16.6. Prove Proposition 16.4; that is, for a Riemannian manifold (M, 〈−,−〉)
equipped with the Levi-Civita connection, for every parametrized surface α : R2 → M , for
every vector field V ∈ X(M) along α, we have

D

∂y

D

∂x
V − D

∂x

D

∂y
V = R

(
∂α

∂x
,
∂α

∂y

)
V.

Hint . See Do Carmo [39], Chapter 4, Lemma 4.1.

Problem 16.7. Let M be a Riemannian manifold equipped with an arbitrary connection.
In a chart, show that the Ricci curvature is given by

Rij = Ric

(
∂

∂xi
,
∂

∂xj

)
=
∑
m

Rm
ijm,

and that the sectional curvature is given by

S(p) =
∑
i,j

gijRij.

Hint . See O’Neill, pp. 87-88 [91].

Problem 16.8. Prove Property (4) of Proposition 16.15.
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Problem 16.9. Let M be a Riemannian manifold with the following property: for any two
points p, q ∈ M , the parallel transport from p to q des not depend on the curve that joins
p and q. Prove that the curvature of M is identically zero; that is, R(X, Y )Z = 0 for all
X, Y, Z ∈ X(M).

Problem 16.10. Let M be a Riemannian manifold of constant sectional curvature K, let
γ : [0, `] → M be a geodesic on M parametrized by arc length, and let J be a Jacobi field
along γ normal to γ′.

(1) Prove (using Proposition 16.6) that

R(γ′, J)γ′ = KJ.

Deduce from this that the Jacobi equation can be written as

D2J

dt2
+KJ = 0.

(2) If w(t) is a parallel vector field along γ with 〈γ′(t), w(t)〉 = 0 and ‖w(t)‖ = 1, prove
that

J(t) =


sin(t
√
K)√

K
w(t) if K > 0

tw(t) if K = 0
sinh(t

√
−K)√

−K w(t) if K < 0

is a solution of the Jacobi equation with initial condition J(0) = 0 and J ′(0) = w(0).

Problem 16.11. Given a Riemannian manifold M , for any point p ∈ M , the conjugate
locus of P , denoted C(p), is the set of all (first) conjugate points to p. Prove that if M has
non-positive curvature, then C(p) is empty for every p ∈M .

Hint . Assume the existence of a non-trivial Jacobi field J along the geodesic γ : [0, a]→M
with γ(0) = p, J(0) = J(a) = 0. Use the Jacobi equation to show that

d

dt

〈
DJ

dt
, J

〉
≥ 0,

and then that
d

dt

〈
DJ

dt
, J

〉
≡ 0.

Compute
d

dt
〈J, J〉

to conclude that ‖J‖2 = constant = 0, a contradiction.
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Problem 16.12. Let M be a Riemannian manifold with constant sectional curvature b < 0.
Let γ : [0, `] → M be a geodesic parametrized by arc length, and let v ∈ Tγ(`)M such that
〈v, γ′(`)〉 = 0 and ‖v‖ = 1. Show that the Jacobi field J along γ determined by J(0) = 0,
J(`) = v is given by

J(t) =
sinh(t

√
−b)

sinh(`
√
−b)

w(t),

where w(t) is the parallel transport along γ of the vector

w(0) =
u0

‖u0‖
, u0 = (d expp)

−1
`γ′(0)(v).

Here, u0 is considered as a vector in Tγ(0)M by the identification Tγ(0)M ∼= T`γ′(0)(Tγ(0)M).

Hint . Use Problem 16.3 and Proposition 16.22.

Problem 16.13. Let M be a Riemannian manifold. For any p ∈ M and any v ∈ TpM ,
let γ : [0, a] → M be a geodesic with γ(0) = p and γ′(0) = v. For any w ∈ Tv(TpM) with
‖w‖ = 1 let J be a Jacobi field along γ given by

J(t) = (d expp)tv(tw), 0 ≤ t ≤ a.

(1) Prove that
∇γ′(R(γ′, J)γ′)(0) = R(γ′, J ′)γ′(0).

(2) Prove that the Taylor expansion of ‖J(t)‖2 about t = 0 is given by

‖J(t)‖2 = t2 − 1

3
〈R(v, w)v, w〉t4 + o(t4).

Conclude that if γ is parametrized by arc length, then

‖J(t)‖2 = t2 − 1

3
K(v, w)t4 + o(t4).

Problem 16.14. Let f : M1 → M2 be a surjective local diffeomorphism of a manifold M1

onto a Riemannian manifold M2. Give M1 a metric such that f becomes a local isometry.
Give an example where M2 is complete but M1 is not complete.

Problem 16.15. A Riemannian manifoldM is said to be homogenous if given any two points
p, q ∈ M there is an isometry of M which maps p to q. Prove that if M is homogeneous,
then it is complete.

Problem 16.16. Let N1 and N2 be two closed disjoint submanifolds of a compact Rie-
mannian manifold. Prove that the distance between N1 and N2 is assumed by a geodesic γ
perpendicular to both N1 and N2.



Chapter 17

Isometries, Local Isometries,
Riemannian Coverings and
Submersions, Killing Vector Fields

The goal of this chapter is to understand the behavior of isometries and local isometries, in
particular their action on geodesics. In Section 17.1 we show that isometries preserve the
Levi-Civita connection. Local isometries preserve all concepts that are local in nature, such
as geodesics, the exponential map, sectional, Ricci, and scalar curvature. In Section 17.2
we define Riemannian covering maps. These are smooth covering maps π : M → N that
are also local isometries. There is a nice correspondence between the geodesics in M and
the geodesics in N . We prove that if M is complete, N is connected, and π : M → N is a
local isometry, then π is a Riemannian covering. In Section 17.3 we introduce Riemannian
submersions. Given a submersion π : M → B between two Riemannian manifolds (M, g) and
(B, h), for every b ∈ B in the image of π, the fibre π−1(b) is a Riemannian submanifold of M ,
and for every p ∈ π−1(b), the tangent space TpM to M at p splits into the two components

TpM = Ker dπp ⊕ (Ker dπp)
⊥,

where Vp = Ker dπp is the vertical subspace of TpM and Hp = (Ker dπp)
⊥ (the orthogonal

complement of Vp with respect to the metric gp on TpM) is the horizontal subspace of TpM .
If the map dπp is an isometry between the horizontal subspace Hp of TpM and Tπ(p)B for
every p, then π is a Riemannian submersion. In this case most of the differential geometry
of B can be studied by “lifting” from B to M , and then projecting down to B again. In
Section 17.4 we define Killing vector fields. A Killing vector field X satisfies the condition

X(〈Y, Z〉) = 〈[X, Y ], Z〉+ 〈Y, [X,Z]〉,

for all Y, Z ∈ X(M). A vector field X is a Killing vector field iff the diffeomorphisms Φt

induced by the flow Φ of X are isometries (on their domain). Killing vector fields play an
important role in the study of reductive homogeneous spaces; see Section 22.4.

519
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17.1 Isometries and Local Isometries

Recall that a local isometry between two Riemannian manifolds M and N (necessarily of
the same dimension) is a smooth map ϕ : M → N so that

〈(dϕ)p(u), (dϕp)(v)〉ϕ(p) = 〈u, v〉p,

for all p ∈ M and all u, v ∈ TpM . See Definition 13.5. An isometry is a local isometry and
a diffeomorphism.

By the inverse function theorem, if ϕ : M → N is a local isometry, then for every p ∈M ,
there is some open subset U ⊆ M with p ∈ U so that ϕ � U is an isometry between U and
ϕ(U).

Also recall by Definition 9.6 that if ϕ : M → N is a diffeomorphism, then for any vector
field X on M , the vector field ϕ∗X on N (called the push-forward of X) is given by

(ϕ∗X)q = dϕϕ−1(q)X(ϕ−1(q)), for all q ∈ N,

or equivalently, by
(ϕ∗X)ϕ(p) = dϕpX(p), for all p ∈M.

Proposition 17.1. For any smooth function h : N → R, for any q ∈ N , we have

(ϕ∗X)(h)q = X(h ◦ ϕ)ϕ−1(q),

or equivalently
(ϕ∗X)(h)ϕ(p) = X(h ◦ ϕ)p. (∗)

See Figure 17.1.

Proof. We have

(ϕ∗X)(h)q = dhq((ϕ∗X)(q))

= dhq(dϕϕ−1(q)X(ϕ−1(q)))

= d(h ◦ ϕ)ϕ−1(q)X(ϕ−1(q))

= X(h ◦ ϕ)ϕ−1(q),

as claimed.

It is natural to expect that isometries preserve all “natural” Riemannian concepts and
this is indeed the case. We begin with the Levi-Civita connection.

Proposition 17.2. If ϕ : M → N is an isometry, then

ϕ∗(∇XY ) = ∇ϕ∗X(ϕ∗Y ), for all X, Y ∈ X(M),

where ∇XY is the Levi-Civita connection induced by the metric on M and similarly on N .



17.1. ISOMETRIES AND LOCAL ISOMETRIES 521

h(q)

M

N

h

φ

φ*

φ

Xq

X

q

-1
(q)

R

Figure 17.1: The push-forward of vector field X.

Proof. Let X, Y, Z ∈ X(M). A proof can be found in O’Neill [91] (Chapter 3, Proposition
59), but we find it instructive to give a proof using the Koszul formula (Proposition 14.9),

2〈∇XY, Z〉 = X(〈Y, Z〉) + Y (〈X,Z〉)− Z(〈X, Y 〉)
− 〈Y, [X,Z]〉 − 〈X, [Y, Z]〉 − 〈Z, [Y,X]〉.

We have

(ϕ∗(∇XY ))ϕ(p) = dϕp(∇XY )p,

and as ϕ is an isometry,

〈dϕp(∇XY )p, dϕpZp〉ϕ(p) = 〈(∇XY )p, Zp〉p, (∗∗)

so Koszul yields

2〈ϕ∗(∇XY ), ϕ∗Z〉ϕ(p) = 2〈dϕp(∇XY )p, dϕpZp〉ϕ(p) = 2〈(∇XY )p, Zp〉p
= X(〈Y, Z〉p) + Y (〈X,Z〉p)− Z(〈X, Y 〉p)
− 〈Y, [X,Z]〉p − 〈X, [Y, Z]〉p − 〈Z, [Y,X]〉p.

Next we need to compute

〈∇ϕ∗X(ϕ∗Y ), ϕ∗Z〉ϕ(p).
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When we plug ϕ∗X, ϕ∗Y and ϕ∗Z into the Koszul formula, as ϕ is an isometry, for the
fourth term on the right-hand side we get

〈ϕ∗Y, [ϕ∗X,ϕ∗Z]〉ϕ(p) = 〈dϕpYp, [dϕpXp, dϕpZp]〉ϕ(p)

= 〈dϕpYp, dϕp[Xp, Zp]〉ϕ(p), by Proposition 9.6

= 〈Yp, [Xp, Zp]〉p, by (∗∗)

and similarly for the fifth and sixth term on the right-hand side. For the first term on the
right-hand side, we get

(ϕ∗X)(〈ϕ∗Y, ϕ∗Z〉)ϕ(p) = (ϕ∗X)(〈dϕpYp, dϕpZp〉)ϕ(p)

= (ϕ∗X)(〈Yp, Zp〉ϕ−1(ϕ(p)))ϕ(p), by (∗∗)
= (ϕ∗X)(〈Y, Z〉 ◦ ϕ−1)ϕ(p)

= X(〈Y, Z〉 ◦ ϕ−1 ◦ ϕ)p, by (∗)
= X(〈Y, Z〉)p,

and similarly for the second and third term. Consequently, we get

2〈∇ϕ∗X(ϕ∗Y ), ϕ∗Z〉ϕ(p) = X(〈Y, Z〉p) + Y (〈X,Z〉p)− Z(〈X, Y 〉p)
− 〈Y, [X,Z]〉p − 〈X, [Y, Z]〉p − 〈Z, [Y,X]〉p.

By comparing right-hand sides, we get

2〈ϕ∗(∇XY ), ϕ∗Z〉ϕ(p) = 2〈∇ϕ∗X(ϕ∗Y ), ϕ∗Z〉ϕ(p)

for all X, Y, Z, and as ϕ is a diffeomorphism, this implies

ϕ∗(∇XY ) = ∇ϕ∗X(ϕ∗Y ),

as claimed.

As a corollary of Proposition 17.2, the curvature induced by the connection is preserved;
that is

ϕ∗R(X, Y )Z = R(ϕ∗X,ϕ∗Y )ϕ∗Z,

as well as the parallel transport, the covariant derivative of a vector field along a curve, the
exponential map, sectional curvature, Ricci curvature and geodesics.

Actually, all concepts that are local in nature are preserved by local isometries! So,
except for the Levi-Civita connection and the Riemann tensor on vector fields, all the above
concepts are preserved under local isometries. For the record we state:

Proposition 17.3. If ϕ : M → N is a local isometry between two Riemannian manifolds
equipped with the Levi-Civita connection, then the following concepts are preserved:
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(1) The covariant derivative of vector fields along a curve γ; that is

dϕγ(t)
DX

dt
=
Dϕ∗X

dt
,

for any vector field X along γ, with (ϕ∗X)(t) = dϕγ(t)X(t), for all t.

(2) Parallel translation along a curve. If Pγ denotes parallel transport along the curve γ
(in M) and if Pϕ◦γ denotes parallel transport along the curve ϕ ◦ γ (in N), then

dϕγ(1) ◦ Pγ = Pϕ◦γ ◦ dϕγ(0).

(3) Geodesics. If γ is a geodesic in M , then ϕ ◦ γ is a geodesic in N . Thus, if γv is the
unique geodesic with γ(0) = p and γ′v(0) = v, then

ϕ ◦ γv = γdϕpv,

wherever both sides are defined. Note that the domain of γdϕpv may be strictly larger
than the domain of γv. For example, consider the inclusion of an open disc into R2.

(4) Exponential maps. We have

ϕ ◦ expp = expϕ(p) ◦dϕp,
wherever both sides are defined. See Figure 17.2.

(5) Riemannian curvature tensor. We have

dϕpR(x, y)z = R(dϕpx, dϕpy)dϕpz, for all x, y, z ∈ TpM.

(6) Sectional, Ricci, and Scalar curvature. We have

K(dϕpx, dϕpy) = K(x, y)p,

for all linearly independent vectors x, y ∈ TpM ;

Ric(dϕpx, dϕpy) = Ric(x, y)p

for all x, y ∈ TpM ;
SM = SN ◦ ϕ.

where SM is the scalar curvature on M and SN is the scalar curvature on N .

A useful property of local isometries is stated below. For a proof, see O’Neill [91] (Chapter
3, Proposition 62):

Proposition 17.4. Let ϕ, ψ : M → N be two local isometries. If M is connected and if
ϕ(p) = ψ(p) and dϕp = dψp for some p ∈M , then ϕ = ψ.

The idea is to prove that
{p ∈M | dϕp = dψp}

is both open and closed, and for this, to use the preservation of the exponential under local
diffeomorphisms.
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p

0

M

TpM
expp

φ

φ

φ

φ

N

(p)

0

T (p) N
expφ (p)

d p

Figure 17.2: An illustration of ϕ ◦ expp = expϕ(p) ◦dϕp. The composition of the black maps
agrees with the composition of the red maps.

17.2 Riemannian Covering Maps

The notion of covering map discussed in Section 10.2 (see Definition 10.6) can be extended
to Riemannian manifolds.

Definition 17.1. If M and N are two Riemannian manifold, then a map π : M → N is a
Riemannian covering iff the following conditions hold:

(1) The map π is a smooth covering map.

(2) The map π is a local isometry.

Recall from Section 10.2 that a covering map is a local diffeomorphism. A way to obtain
a metric on a manifold M is to pull-back the metric g on a manifold N along a local
diffeomorphism ϕ : M → N (see Section 13.2). If ϕ is a covering map, then it becomes a
Riemannian covering map.

Proposition 17.5. Let π : M → N be a smooth covering map. For any Riemannian metric
g on N , there is a unique metric π∗g on M , so that π is a Riemannian covering.
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Proof. We define the pull-back metric π∗g on M induced by g as follows. For all p ∈M , for
all u, v ∈ TpM ,

(π∗g)p(u, v) = gπ(p)(dπp(u), dπp(v)).

We need to check that (π∗g)p is an inner product, which is very easy since dπp is a linear iso-
morphism. Our map π between the two Riemannian manifolds (M,π∗g) and (N, g) becomes
a local isometry. Every metric on M making π a local isometry has to satisfy the equation
defining π∗g, so this metric is unique.

In general, if π : M → N is a smooth covering map, a metric on M does not induce
a metric on N such that π is a Riemannian covering. However, if N is obtained from M
as a quotient by some suitable group action (by a group G) on M , then the projection
π : M →M/G is a Riemannian covering.

In the rest of this section we assume that our Riemannian manifolds are equipped with
the Levi-Civita connection. Because a Riemannian covering map is a local isometry, we have
the following useful result proved in Gallot, Hulin, Lafontaine [49] (Chapter 2, Proposition
2.81).

Proposition 17.6. Let π : M → N be a Riemannian covering. Then the geodesics of (N, h)
are the projections of the geodesics of (M, g) (curves of the form π ◦ γ, where γ is a geodesic
in M), and the geodesics of (M, g) are the liftings of the geodesics of (N, h) (curves γ in M
such that π ◦ γ is a geodesic of (N, h)).

As a corollary of Proposition 17.5 and Theorem 10.14, every connected Riemannian
manifold M has a simply connected covering map π : M̃ → M , where π is a Riemannian
covering. Furthermore, if π : M → N is a Riemannian covering and ϕ : P → N is a local
isometry, it is easy to see that its lift ϕ̃ : P → M is also a local isometry. See Proposition
10.13. In particular, the deck-transformations of a Riemannian covering are isometries.

In general a local isometry is not a Riemannian covering. However, this is the case when
the source space is complete.

Proposition 17.7. Let π : M → N be a local isometry with N connected. If M is a complete
manifold, then π is a Riemannian covering map.

Proof. We follow the proof in Sakai [100] (Chapter III, Theorem 5.4). Because π is a local
isometry, Proposition 17.6 implies that geodesics in M can be projected onto geodesics in N
and that geodesics in N can be lifted back to M . The proof makes heavy use of these facts.

First we prove that N is complete. Pick any p ∈ M and let q = π(p). For any geodesic
γv of N with initial point q ∈ N and initial direction the unit vector v ∈ TqN , consider the
geodesic γ̃u of M with initial point p, and with u = dπ−1

q (v) ∈ TpM . As π is a local isometry,
it preserves geodesics, so

γv = π ◦ γ̃u,
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Figure 17.3: An illustration for the completeness of N and that π � Br(pi) : Br(pi) −→ Br(q)
is a diffeomorphism.

and since γ̃u is defined on R because M is complete, so is γv. As expq is defined on the whole
of TqN , by Hopf-Rinow, (Theorem 15.17), N is complete. See Figure 17.3.

Next we prove that π is surjective. As N is complete, for any q1 ∈ N , Theorem 15.16
implies there is a minimal geodesic γ : [0, b] → N joining q to q1 and for the geodesic γ̃ in
M emanating from p and with initial direction dπ−1

q (γ′(0)), we have π(γ̃(b)) = γ(b) = q1,
establishing surjectivity.

For any q ∈ N , pick r > 0 with r < i(q), where i(q) denotes the injectivity radius of N
at q as defined in Definition 15.9, and consider the open metric ball Br(q) = expq(B(0q, r))
(where B(0q, r) is the open ball of radius r in TqN). Let

π−1(q) = {pi}i∈I ⊆M.

We claim that the following properties hold.

(1) If we write Br(pi) = exppi(B(0pi , r)), then each map π � Br(pi) : Br(pi) −→ Br(q) is a
diffeomorphism, in fact an isometry.

(2) π−1(Br(q)) =
⋃
i∈I Br(pi).

(3) Br(pi) ∩Br(pj) = ∅ whenever i 6= j.

It follows from (1), (2) and (3) that Br(q) is evenly covered by the family of open sets
{Br(pi)}i∈I , so π is a covering map.
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(1) Since π is a local isometry, Proposition 17.3 (3) and (4) implies π maps geodesics
emanating from pi to geodesics emanating from q, so the following diagram commutes:

B(0pi , r)

exppi
��

dπpi // B(0q, r)

expq
��

Br(pi) π
// Br(q).

See Figure 17.3. Since expq ◦dπpi is a diffeomorphism, π � Br(pi) must be injective, and
since exppi is surjective, so is π � Br(pi). Then, π � Br(pi) is a bijection, and as π is a local
diffeomorphism, π � Br(pi) is a diffeomorphism.

(2) Obviously,
⋃
i∈I Br(pi) ⊆ π−1(Br(q)), by (1). Conversely, pick p1 ∈ π−1(Br(q)). For

q1 = π(p1), we can write q1 = expq v, for some v ∈ B(0q, r), and the map γ(t) = expq(1− t)v,
for t ∈ [0, 1], is a geodesic in N joining q1 to q. Then, we have the geodesic γ̃ emanating
from p1 with initial direction dπ−1

q1
(γ′(0)), and as π ◦ γ̃(1) = γ(1) = q, we have γ̃(1) = pi for

some α. Since γ has length less than r, we get p1 ∈ Br(pi).

(3) Suppose p1 ∈ Br(pi) ∩ Br(pj). We can pick a minimal geodesic γ̃, in Br(pi) (resp ω̃
in Br(pj)) joining pi to p1 (resp. joining pj to p1). Then the geodesics π ◦ γ̃ and π ◦ ω̃ are
geodesics in Br(q) from q to π(p1), and their length is less than r. Since r < i(q), these
geodesics are minimal so they must coincide. Therefore, γ = ω, which implies i = j.

17.3 Riemannian Submersions

Let π : M → B be a submersion between two Riemannian manifolds (M, g) and (B, h). For
every b ∈ B in the image of π, the fibre π−1(b) is a Riemannian submanifold of M , and for
every p ∈ π−1(b), the tangent space Tpπ

−1(b) to π−1(b) at p is Ker dπp.

Definition 17.2. The tangent space TpM to M at p splits into the two components

TpM = Ker dπp ⊕ (Ker dπp)
⊥,

where Vp = Ker dπp is the vertical subspace of TpM and Hp = (Ker dπp)
⊥ (the orthogonal

complement of Vp with respect to the metric gp on TpM) is the horizontal subspace of TpM .
Any tangent vector u ∈ TpM can be written uniquely as

u = uH + uV ,

with uH ∈ Hp, called the horizontal component of u, and uV ∈ Vp, called the vertical
component of u; see Figure 17.4.

A tangent vector u ∈ TpM is said to be horizontal iff u ∈ Hp (equivalently iff uV = 0).

Because π is a submersion, dπp gives a linear isomorphism between Hp and Tπ(p)B. If
dπp is an isometry, then most of the differential geometry of B can be studied by “lifting”
from B to M .
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Figure 17.4: An illustration of a Riemannian submersion. Note Hp is isomorphic to TbB.

Definition 17.3. A map π : M → B between two Riemannian manifolds (M, g) and (B, h)
is a Riemannian submersion if the following properties hold.

(1) The map π is a smooth submersion.

(2) For every p ∈ M , the map dπp is an isometry between the horizontal subspace Hp of
TpM and Tπ(p)B.

We will see later that Riemannian submersions arise when B is a reductive homogeneous
space, or when B is obtained from a free and proper action of a Lie group acting by isometries
on B.

Definition 17.4. Let π : M → B is a Riemannian submersion which is surjective onto B.
Let X be a vector field on B. The unique horizontal lift X onto M , is defined such that for
every b ∈ B and every p ∈ π−1(b),

X(p) = (dπp)
−1X(b).

Since dπp is an isomorphism between Hp and TbB, the above condition can be written

dπ ◦X = X ◦ π,

which means that X and X are π-related (see Definition 9.7).
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The following proposition is proved in O’Neill [91] (Chapter 7, Lemma 45) and Gallot,
Hulin, Lafontaine [49] (Chapter 2, Proposition 2.109).

Proposition 17.8. Let π : M → B be a Riemannian submersion between two Riemannian
manifolds (M, g) and (B, h) equipped with the Levi-Civita connection.

(1) If γ is a geodesic in M such that γ′(0) is a horizontal vector, then γ is horizontal
geodesic in M (which means that γ′(t) is a horizontal vector for all t), and c = π ◦ γ
is a geodesic in B of the same length than γ. See Figure 17.5.

(2) For every p ∈ M , if c is a geodesic in B such that c(0) = π(p), then for some ε small
enough, there is a unique horizontal lift γ of the restriction of c to [−ε, ε], and γ is a
geodesic of M .

Furthermore, if π : M → B is surjective, then

(3) For any two vector fields X, Y ∈ X(B), we have

(a) 〈X,Y 〉 = 〈X, Y 〉 ◦ π.

(b) [X,Y ]H = [X, Y ].

(c) (∇XY )H = ∇XY , where ∇ is the Levi–Civita connection on M .

(4) If M is complete, then B is also complete.

Proof. We prove (1) and (2), following Gallot, Hulin, Lafontaine [49] (Proposition 2.109). We
begin with (2). We claim that a Riemannian submersion shortens distance. More precisely,
given any two points p1, p2 ∈M ,

dB(π(p1), π(p2)) ≤ dM(p1, p2),

where dM is the Riemannian distance on M and dB is the Riemannian distance on B. It
suffices to prove that if γ is a curve of M , then L(γ) ≥ L(π ◦ γ). For any p ∈ M , every
tangent vector u ∈ TpM can be written uniquely as an orthogonal sum u = uH + uV , and
since dπp is an isometry between Hp and Tπ(p)B, we have

‖u‖2 = ‖uH‖2 + ‖uV‖2 ≥ ‖uH‖2 = ‖dπp(uH)‖2 = ‖dπp(u)‖2 .

This implies that

L(γ) =

∫ 1

0

‖γ′(t)‖ dt ≥
∫ 1

0

‖(π ◦ γ)′(t)‖ dt = L(π ◦ γ),

as claimed.

For any p ∈ M , let c be a geodesic through b = π(p) for t = 0. For ε small enough,
the exponential map expb is a diffeomorphism, so W = c((−ε, ε)) is a one-dimensional
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Figure 17.5: An illustration of Part (1), Proposition 17.8. Both γ and c are equal length
geodesics in M and B respectively. All the tangent vectors to γ lie in horizontal subspaces.

submanifold of B. Since π is a submersion, V = π−1(W ) is a submanifold of M . Define a
horizontal vector field X on V by

X(q) = (dπq)
−1(c′(π(q))), q ∈ V,

where dπq is the isomorphism between Hq and Tπ(q)B. For any q ∈ V , there is a unique
integral curve γq through q. In particular, p ∈ V , so the curve γp is defined near 0. We claim
that it is a geodesic. This is because, first

∥∥γ′p(t)∥∥ = ‖c′(t)‖ is a constant, and second, for s
small enough, the curve γp is locally minimal, that is

L(γp) |[t,t+s]= L(c) |[t,t+s]= d(c(t), c(t+ s)) ≤ d(γp(t), γp(t+ s)).

See Figure 17.6.
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Figure 17.6: A local lift of a geodesic in B to the integral curve γp.

We can now prove (1). Let γ be a geodesic through p = γ(0) such that γ′(0) is a horizontal
vector, and write b = π(p) and u = dπp(γ

′(0)). Let c be the unique geodesic of B such that
c(0) = b and c′(0) = u. By (2) we have a horizontal lift γ̃ of c starting at p, and we know
it is a geodesic. By construction, γ̃′(0) = γ′(0), so by uniqueness γ and γ̃ coincide on their
common domain of definition. It follows that the set of parameters where the geodesic γ is
horizontal, and where it is a lift of c is an open subset containing 0. These two conditions
being also closed, they must be satisfied on the maximal interval of definition of γ. It is now
obvious that c = π ◦ γ, a geodesic in B of the same length as γ.

In (2), we can’t expect in general that the whole geodesic c in B can be lifted to M .
This is because the manifold (B, h) may be compete but (M, g) may not be. For example,
consider the inclusion map π : (R2 − {0})→ R2, with the canonical Euclidean metrics.

An example of a Riemannian submersion is π : S2n+1 → CPn, where S2n+1 has the
canonical metric and CPn has the Fubini–Study metric.

Remark: It shown in Petersen [93] (Chapter 3, Section 5), that the connection ∇XY on M
is given by

∇XY = ∇XY +
1

2
[X,Y ]V .



532 CHAPTER 17. ISOMETRIES, SUBMERSIONS, KILLING VECTOR FIELDS

17.4 Isometries and Killing Vector Fields

If X is a vector field on a manifold M , then we saw that we can define the notion of Lie
derivative for vector fields (LXY = [X, Y ]) and for functions (LXf = X(f)). It is possible
to generalize the notion of Lie derivative to an arbitrary tensor field S; see Gallot, Hullin,
Lafontaine [49] (Section 1.F.4). In this section, we only need the following definition.

Definition 17.5. If S = g (the metric tensor), then the Lie derivative LXg is defined by

LXg(Y, Z) = X(〈Y, Z〉)− 〈[X, Y ], Z〉 − 〈Y, [X,Z]〉,

with X, Y, Z ∈ X(M), and where we write 〈X, Y 〉 and g(X, Y ) interchangeably.

If Φt is an isometry (on its domain), where Φ is the global flow associated with the vector
field X, then Φ∗t (g) = g, and it can be shown that this implies that LXg = 0. In fact, we
have the following result proved in O’Neill [91] (Chapter 9, Proposition 23).

Proposition 17.9. For any vector field X on a Riemannian manifold (M, g), the diffeo-
morphisms Φt induced by the flow Φ of X are isometries (on their domain) iff LXg = 0.

Informally, Proposition 17.9 says that LXg measures how much the vector field X changes
the metric g.

Definition 17.6. Given a Riemannian manifold (M, g), a vector field X is a Killing vector
field iff the Lie derivative of the metric vanishes; that is, LXg = 0.

Killing vector fields play an important role in the study of reductive homogeneous spaces;
see Section 22.4. They also interact with the Ricci curvature and play a crucial role in the
Bochner technique; see Petersen [93] (Chapter 7).

As the notion of Lie derivative, the notion of covariant derivative ∇XY of a vector field
Y in the direction X can be generalized to tensor fields; see Gallot, Hullin, Lafontaine [49]
(Section 2.B.3). In this section, we only need the following definition.

Definition 17.7. The covariant derivative ∇Xg of the Riemannian metric g on a manifold
M is given by

∇X(g)(Y, Z) = X(〈Y, Z〉)− 〈∇XY, Z〉 − 〈Y,∇XZ〉,
for all X, Y, Z ∈ X(M).

Then observe that the connection ∇ on M is compatible with g iff ∇X(g) = 0 for all X.

Definition 17.8. We define the covariant derivative ∇X of a vector field X as the (1, 1)-
tensor defined so that

(∇X)(Y ) = ∇YX

for all X, Y ∈ X(M). For every p ∈ M , (∇X)p is defined so that (∇X)p(u) = ∇uX for all
u ∈ TpM .
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The above facts imply the following proposition.

Proposition 17.10. Let (M, g) be a Riemannian manifold and let ∇ be the Levi–Civita
connection on M induced by g. For every vector field X on M , the following conditions are
equivalent.

(1) X is a Killing vector field; that is, LXg = 0.

(2) X(〈Y, Z〉) = 〈[X, Y ], Z〉+ 〈Y, [X,Z]〉 for all Y, Z ∈ X(M).

(3) 〈∇YX,Z〉 + 〈∇ZX, Y 〉 = 0 for all Y, Z ∈ X(M); that is, ∇X is skew-adjoint relative
to g.

Proof. Since

LXg(Y, Z) = X(〈Y, Z〉)− 〈[X, Y ], Z〉 − 〈Y, [X,Z]〉,
the equivalence of (1) and (2) is clear.

Since ∇ is the Levi–Civita connection, we have ∇Xg = 0, so

X(〈Y, Z〉)− 〈∇XY, Z〉 − 〈Y,∇XZ〉 = 0,

which yields

〈[X, Y ], Z〉+ 〈Y, [X,Z]〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉.
Since ∇ is also torsion-free we have

∇XY −∇YX = [X, Y ]

∇XZ −∇ZX = [X,Z],

so we get

〈[X, Y ], Z〉+ 〈Y, [X,Z]〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉
= 〈∇YX,Z〉+ 〈Y,∇ZX〉+ 〈[X, Y ], Z〉+ 〈Y, [X,Z]〉,

that is,

〈∇YX,Z〉+ 〈∇ZX, Y 〉 = 0.

This proves that (2) and (3) are equivalent.

Condition (3) shows that any parallel vector field is a Killing vector field.

Remark: It can be shown that if γ is any geodesic in M , then the restriction Xγ of any
Killing vector field X to γ is a Jacobi field (see Section 16.5), and that 〈X, γ′〉 is constant
along γ (see O’Neill [91], Chapter 9, Lemma 26).
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17.5 Problems

Problem 17.1. Complete the proof of Proposition 17.4.
Hint . See O’Neill [91] (Chapter 3, Proposition 62).

Problem 17.2. Consider the covering map p : Sn → RPn where RPn is viewed as the
quotient of Sn by the antipodal map. Using Theorem 22.14, it can be shown that there is
a Riemannian metric g on RPn such that p is a Riemannian submersion (where Sn has the
canonical metric induced by Rn+1).

(1) Prove that the geodesics of RPn are the projections of the geodesics of the sphere Sn.
Show that for a geodesic γ on RPn we have γ(t+ π) = γ(t) for all t.

(2) Prove that RPn has constant sectional curvature equal to 1 (use Jacobi fields).

Problem 17.3. Prove Parts (3) and (4) of Proposition 17.8.

Problem 17.4. Let π : M → B be a Riemannian submersion between two Riemannian man-
ifolds (M, g) and (B, h) equipped with the Levi-Civita connection. Show that the connection
∇XY on M is given by

∇XY = ∇XY +
1

2
[X,Y ]V .

Hint . See Petersen [93] (Chapter 3, Section 5).

Problem 17.5. Let p : (M̃, g̃)→ (M, g) be a Riemannian submersion. For any orthonormal

vector fields X and Y on M with horizontal lifts X̃ and Ỹ , prove O’Neill’s formula:

K(X, Y ) = K(X̃, Ỹ ) +
3

4

∥∥∥[X̃, Ỹ ]V
∥∥∥2

.

Hint . See Petersen [93], Chapter 3, Section 5.

Problem 17.6. Consider the covering map p : S2n+1 → CPn, viewing CPn as the quotient
S2n+1/S1. Using Theorem 22.14, it can be shown that there is a Riemannian metric g on
CPn such that p is a Riemannian submersion (where S2n+1 has the canonical metric induced
by R2n+2).

Prove that CPn has positive sectional curvature.

Remark: The sectional curvature of CPn varies between 1 and 4. See Gallot, Hullin, La-
fontaine [49], Chapter III, Section D.

Problem 17.7. Prove Proposition 17.9; that is, for any vector field X on a Riemannian
manifold (M, g), the diffeomorphisms Φt induced by the flow Φ of X are isometries (on their
domain) iff LXg = 0.

Problem 17.8. Prove that if γ is any geodesic in a Riemannian manifold M , then the
restriction Xγ of any Killing vector field X to γ is a Jacobi field (see Section 16.5), and
〈X, γ′〉 is constant along γ.
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Problem 17.9. Let X be a Killing vector field on a connected Riemannian manifold M .
Recall that (∇X)p is defined so that (∇X)p(u) = ∇uX for all u ∈ TpM . Prove that if
Xp = 0 and (∇X)p = 0 for some point p ∈M , then X = 0.
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Chapter 18

Lie Groups, Lie Algebras, and the
Exponential Map

In Chapter 3 we defined the notion of a Lie group as a certain type of manifold embedded
in RN , for some N ≥ 1. Now that we have the general concept of a manifold, we can define
Lie groups in more generality. If every Lie group was a linear group (a group of matrices),
then there would be no need for a more general definition. However, there are Lie groups
that are not matrix groups, although it is not a trivial task to exhibit such groups and to
prove that they are not matrix groups.

An example of a Lie group which is not a matrix group described in Hall [56] is G =
R× R× S1, with the multiplication given by

(x1, y1, u1) · (x2, y2, u2) = (x1 + x2, y1 + y2, e
ix1y2u1u2).

If we define the group H (the Heisenberg group) as the group of 3 × 3 upper triangular
matrices given by

H =


1 a b

0 1 c
0 0 1

 | a, b, c ∈ R

 ,

then it easy to show that the map ϕ : H → G given by

ϕ

1 a b
0 1 c
0 0 1

 = (a, c, eib)

is a surjective group homomorphism. It is easy to check that the kernel of ϕ is the discrete
group

N =


1 0 k2π

0 1 0
0 0 1

 | k ∈ Z

 .

537
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Both groups H and N are matrix groups, yet G = H/N is a Lie group and it can be shown
using some representation theory that G is not a matrix group (see Hall [56], Appendix C.3).

Another example of a Lie group that is not a matrix group is obtained by considering

the universal cover ˜SL(n,R) of SL(n,R) for n ≥ 2. The group SL(n,R) is a matrix group

which is not simply connected for n ≥ 2, and its universal cover ˜SL(n,R) is a Lie group
which is not a matrix group; see Hall [56] (Appendix C.3) or Ziller [119] (Example 2.22).

Given a Lie group G (not necessarily a matrix group) we begin by defining the Lie bracket
on the tangent space g = T1G at the identity in terms of the adjoint representation of G

Ad: G→ GL(g),

and its derivative at 1, the adjoint representation of g,

ad : g→ gl(g);

namely, [u, v] = ad(u)(v).

In Section 18.2, we define left and right invariant vector fields on a Lie group. The
map X 7→ X(1) establishes an isomorphism between the space of left-invariant (resp. right-
invariant) vector fields on G and g. Then by considering integral curves of left-invariant
vector fields, we define the generalization of the exponential map exp: g → G to arbitrary
Lie groups that are not necessarily matrix groups. We prove some fundamental properties
of the exponential map.

In Section 18.3, we revisit homomorphisms of Lie groups and Lie algebras and generalize
certain results shown for matrix groups to arbitrary Lie groups. We also define immersed
Lie subgroups and (closed) Lie subgroups.

In Section 18.4, we explore the correspondence between Lie groups and Lie algebras and
state some of the Lie theorems.

Section 18.5 is devoted to semidirect products of Lie algebras and Lie groups. These are
constructions that generalize the notion of direct sum (for Lie algebra) and direct products
(for Lie groups). For example, the Lie algebra se(n) is the semidirect product of Rn and
so(n), and the Lie group SE(n) is the semidirect product of Rn and SO(n).

The notion of universal covering group of a Lie group is described in Section 18.6.

In Section 18.7, we show that the Killing vector fields on a Riemannian manifold M form
a Lie algebra. We also describe the relationship between the Lie algebra of complete Killing
vector fields and the Lie algebra of the isometry group Isom(M) of the manifold M .

Besides classic references on Lie groups and Lie algebras, such as Chevalley [31], Knapp
[68], Warner [114], Duistermaat and Kolk [43], Bröcker and tom Dieck [24], Sagle and Walde
[99], Helgason [58], Serre [106, 105], Kirillov [66], Fulton and Harris [46], and Bourbaki [19],
one should be aware of more introductory sources and surveys such as Tapp [111], Kosmann
[70], Hall [56], Sattinger and Weaver [102], Carter, Segal and Macdonald [29], Curtis [34],
Baker [12], Rossmann [98], Bryant [25], Mneimné and Testard [86] and Arvanitoyeorgos [11].
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18.1 Lie Groups and Lie Algebras

We begin our study of Lie groups by generalizing Definition 3.5.

Definition 18.1. A Lie group is a nonempty subset G satisfying the following conditions:

(a) G is a group (with identity element denoted e or 1).

(b) G is a smooth manifold.

(c) G is a topological group. In particular, the group operation · : G × G → G and the
inverse map −1 : G→ G are smooth.

Remark: The smoothness of inversion follows automatically from the smoothness of multi-
plication. This can be shown by applying the inverse function theorem to the map (g, h) 7→
(g, gh), from G×G to G×G.

We have already met a number of Lie groups: GL(n,R), GL(n,C), SL(n,R), SL(n,C),
O(n), SO(n), U(n), SU(n), E(n,R), SO(n, 1). Also, every linear Lie group of GL(n,R)
(see Definition 3.6) is a Lie group.

We saw in the case of linear Lie groups that the tangent space to G at the identity
g = T1G plays a very important role. In particular, this vector space is equipped with a
(non-associative) multiplication operation, the Lie bracket, that makes g into a Lie algebra.
This is again true in this more general setting.

Recall that Lie algebras are defined as follows:

Definition 18.2. A (real) Lie algebra A is a real vector space together with a bilinear map
[·, ·] : A × A → A, called the Lie bracket on A, such that the following two identities hold
for all a, b, c ∈ A:

[a, a] = 0,

and the so-called Jacobi identity :

[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0.

It is immediately verified that [b, a] = −[a, b].

For every a ∈ A, it is customary to define the linear map ad(a) : A → A by

ad(a)(b) = [a, b], b ∈ A.

The map ad(a) is also denoted ada or ad a.

Let us also recall the definition of homomorphisms of Lie groups and Lie algebras.
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Definition 18.3. Given two Lie groups G1 and G2, a homomorphism (or map) of Lie groups
is a function f : G1 → G2 which is a homomorphism of groups, and a smooth map (between
the manifolds G1 and G2). Given two Lie algebras A1 and A2, a homomorphism (or map)
of Lie algebras is a function f : A1 → A2 which is a linear map between the vector spaces
A1 and A2, and preserves Lie brackets; that is,

f([A,B]) = [f(A), f(B)]

for all A,B ∈ A1.

An isomorphism of Lie groups is a bijective function f such that both f and f−1 are
maps of Lie groups, and an isomorphism of Lie algebras is a bijective function f such that
both f and f−1 are maps of Lie algebras.

The Lie bracket operation on g can be defined in terms of the so-called adjoint representa-
tion. Given a Lie group G, for every a ∈ G we define left translation as the map La : G→ G
such that La(b) = ab for all b ∈ G, and right translation as the map Ra : G → G such that
Ra(b) = ba for all b ∈ G. Because multiplication and the inverse maps are smooth, the maps
La and Ra are diffeomorphisms, and their derivatives play an important role. We also have
the inner automorphisms Ra−1 ◦ La = La ◦ Ra−1 , denoted Ada. Note that Ada : G → G is
defined as

Ada(b) = Ra−1La(b) = aba−1.

The derivative
d(Ada)1 : T1G→ T1G

of Ada : G → G at 1 is an isomorphism of Lie algebras, and since T1G = g, we get a map
denoted

Ada : g→ g,

where d(Ada)1 = Ada.

Since
Adab(c) = abc(ab)−1 = abcb−1a−1 = Ada(bcb

−1) = Ada(Adb(c)),

we have Adab = Ada ◦Adb, and by taking the derivative at 1, we obtain

Adab = d(Adab)1 = d(Ada)Adb(1) ◦ d(Adb)1 = d(Ada)1 ◦ d(Adb)1 = Ada ◦ Adb.

It follows that the map Ad: G→ GL(g) given by a 7→ Ada is a group homomorphism from
G to GL(g). Furthermore, this map is smooth.

Proposition 18.1. The map Ad: G → GL(g) is smooth. Thus it is a Lie algebra homo-
morphism.

Proof. This fact is shown in Knapp [68] (Chapter 1, Section 10), Warner [114] (Chapter
3, Theorem 3.45), and Lee [76] (Chapter 9, Example 9.3). Knapp’s proof use Proposition
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18.10(2), which involves the exponential, but fortunately the proof does not depend on the
fact that Ad is smooth.

Lee’s proof is the most direct. It relies on the fact that the map C : G × G → G given
by C(a, b) = aba−1 is smooth, and induces a smooth map dC : T (G×G)→ T (G). For any
a ∈ G and any u ∈ g, we can compute Ada(u) using any curve γ : (−ε, ε) → G such that
γ(0) = 1 and γ′(0) = u, as

Ada(u) =
d

dt
C(a, γ(t))

∣∣∣∣
t=0

= dC(a,1)(0a, u).

Here we used the isomorphism T(a,1)(G×G) ∼= TaG⊕ g. Since dC is smooth, the expression
dC(a,1)(0a, u) is smooth in a. If we pick a basis (e1, . . . , en) for g, and if (e∗1, . . . , e

∗
n) is its

canonical dual basis, then setting u = ei, the matrix representing Ada has entries e∗j(Ada(ei)),
which are smooth functions.

Definition 18.4. The map a 7→ Ada is a map of Lie groups

Ad: G→ GL(g),

called the adjoint representation of G (where GL(g) denotes the Lie group of all bijective
linear maps on g).

In the case of a Lie linear group, we have verified in Section 3.3 that

Ad(a)(X) = Ada(X) = aXa−1

for all a ∈ G and all X ∈ g.

Since Ad: G→ GL(g) is smooth, its derivative dAd1 : g→ gl(g) exists.

Definition 18.5. The derivative

dAd1 : g→ gl(g)

of Ad: G→ GL(g) at 1 is map of Lie algebras, denoted by

ad: g→ gl(g),

called the adjoint representation of g.

Recall that Theorem 3.8 immediately implies that the Lie algebra gl(g) of GL(g) is the
vector space End(g, g) of all endomorphisms of g; that is, the vector space of all linear maps
on g.

In the case of a linear Lie group, we verified in Section 3.3 that

ad(A)(B) = [A, B] = AB −BA,
for all A,B ∈ g.

In the case of an abstract Lie group G, since ad is defined, we would like to define the
Lie bracket of g in terms of ad. This is the key to the definition of the Lie bracket in the
case of a general Lie group (not just a linear Lie group).
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Definition 18.6. Given a Lie group G, the tangent space g = T1G at the identity with the
Lie bracket defined by

[u, v] = ad(u)(v), for all u, v ∈ g

is the Lie algebra of the Lie group G. The Lie algebra g of a Lie group G is also denoted by
L(G) (for instance, when the notation g is already used for something else).

Actually, we have to justify why g really is a Lie algebra. For this we have

Proposition 18.2. Given a Lie group G, the Lie bracket [u, v] = ad(u)(v) of Definition
18.6 satisfies the axioms of a Lie algebra (given in Definition 18.2). Therefore, g with this
bracket is a Lie algebra.

Proof. The proof requires Proposition 18.14, but we prefer to defer the proof of this propo-
sition until Section 18.3. Since

Ad: G→ GL(g)

is a Lie group homomorphism, by Proposition 18.14, the map ad = dAd1 is a homomorphism
of Lie algebras, ad: g→ gl(g), which means that

ad([u, v]) = [ad(u), ad(v)] = ad(u) ◦ ad(v)− ad(v) ◦ ad(u), for all u, v ∈ g,

since the bracket in gl(g) = End(g, g) is just the commutator. Applying the above to z ∈ g
gives

ad([u, v])(z) = [[u, v], z]

= ad(u) ◦ ad(v)(z)− ad(v) ◦ ad(u)(z)

= ad(u)[v, z]− ad(v)[u, z] = [u, [v, z]]− [v, [u, z]],

which is equivalent to the Jacobi identity. We still have to prove that [u, u] = 0, or equiv-
alently, that [v, u] = −[u, v]. For this, following Duistermaat and Kolk [43] (Chapter 1,
Section 1), consider the map

F : G×G −→ G : (a, b) 7→ aba−1b−1.

We claim that the derivative of F at (1, 1) is the zero map. This follows using the product
rule and chain rule from two facts.

1. The derivative of multiplication in a Lie group µ : G×G→ G is given by

dµa,b(u, v) = (dRb)a(u) + (dLa)b(v),

for all u ∈ TaG and all v ∈ TbG. At (1, 1), the above yields

dµ1,1(u, v) = u+ v.
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2. The derivative of the inverse map ι : G→ G is given by

dιa(u) = −(dRa−1)1 ◦ (dLa−1)a(u) = −(dLa−1)1 ◦ (dRa−1)a(u)

for all u ∈ TaG. At 1, we get
dι1(u) = −u.

In particular write F = F1F2, where F1 : G × G → G is F1(a, b) = ab and F2 : G × G → G
is F2(a, b) = a−1b−1 = (ba)−1. If we let H : G×G→ G×G be the map given by H(a, b) =
(F1(a, b), F2(a, b)), then F = µ ◦ H. The chain rule implies that for all u, v ∈ g × g, since
H(1, 1) = (F1(1, 1), F2(1, 1)) = (1, 1),

dF1,1(u, v) = (dµH(1,1) ◦ dH(1,1))(u, v)

= dµ(1,1)(d(F1)(1,1)(u, v), d(F2)(1,1)(u, v))

= dµ(1,1)(u+ v,−(u+ v))

= u+ v + (−u− v) = 0.

Since dF1,1 = 0, then (1, 1) is a critical point of F , and we can adapt the standard reasoning
provided at the beginning of Section 16.4 (also see Milnor [81], pages 4-5), to prove that the
Hessian Hess(F ) of F is well-defined at (1, 1), and is a symmetric bilinear map

Hess(F )(1,1) : (g× g)× (g× g) −→ g.

Furthermore, for any (X1, Y1) and (X2, Y2) ∈ g× g, the value Hess(F )(1,1)((X1, Y1), (X2, Y2))
of the Hessian can be computed by two successive derivatives, either as

(X̃1, Ỹ1)((X̃2, Ỹ2)F )(1,1),

or as
(X̃2, Ỹ2)((X̃1, Ỹ1)F )(1,1),

where X̃i and Ỹi are smooth vector fields with value Xi and Yj at 1, which exist by Proposi-
tion 10.2. Because of the symmetry property, the above derivatives are independent of the
extensions X̃i and Ỹi.

The value of the Hessian can also be computed using parametrized surfaces. Indeed, for
any smooth surface (α, β) : (−ε, ε)× (−ε, ε)→ G×G, such that α(0, 0) = β(0, 0) = 1, and(

∂α

∂x
(0, 0),

∂α

∂y
(0, 0)

)
= (X1, Y1),

(
∂β

∂x
(0, 0),

∂β

∂y
(0, 0)

)
= (X2, Y2),

we have

Hess(F )(1,1)((X1, Y1), (X2, Y2)) =
∂

∂x

(
∂

∂y
(F ◦ (α, β))

)
(0,0)

=
∂

∂y

(
∂

∂x
(F ◦ (α, β))

)
(0,0)

.
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We apply the above to the function F given by F (a, b) = aba−1b−1, and to the tangent
vectors (u, 0) and (0, v). Consider a parametrized surface (α, β) where α(x, y) is independent
of y, β(x, y) is independent of x, α(0, 0) = β(0, 0) = 1,(

∂α

∂x
(0, 0),

∂α

∂y
(0, 0)

)
= (u, 0),

(
∂β

∂x
(0, 0),

∂β

∂y
(0, 0)

)
= (0, v).

First we compute

∂

∂x

(
∂

∂y
(F ◦ (α, β))

)
(0,0)

=
∂

∂x

(
∂

∂y
αβα−1β−1

)
(0,0)

=
∂

∂x

(
∂

∂y
µ(Adα(β), ι(β))

)
(0,0)

.

Using the chain rule, we get(
∂

∂y
µ(Adα(x)(β(y)), ι(β(y)))

)
(0,0)

= dµ(1,1)(d(Adα(x))1(v), dι1(v))

= Adα(x)(v)− v.
Then we obtain

∂

∂x

(
∂

∂y
µ(Adα(β), ι(β))

)
(0,0)

=
∂

∂x

(
Adα(x)(v)− v

)
(0,0)

= adu(v)

= [u, v].

Next we compute

∂

∂y

(
∂

∂x
(F ◦ (α, β))

)
(0,0)

=
∂

∂y

(
∂

∂x
αβα−1β−1

)
(0,0)

=
∂

∂y

(
∂

∂x
µ(α,Adβ(ι(α)))

)
(0,0)

.

Using the chain rule, we get(
∂

∂x
µ(α(x),Adβ(y)(ι(α(x))))

)
(0,0)

= dµ(1,1)(u, d(Adβ(y))1(dι1(u)))

= u+ Adβ(y)(−u)

= u− Adβ(y)(u).

Finally we compute

∂

∂y

(
∂

∂x
µ(α,Adβ(ι(α)))

)
(0,0)

=
∂

∂y

(
u− Adβ(y)(u)

)
(0,0)

= −adv(u)

= −[u, v].

Since the Hessian is bilinear symmetric, we get [u, v] = −[v, u], as claimed.

Remark: After proving that g is isomorphic to the vector space of left-invariant vector fields
on G, we get another proof of Proposition 18.2.
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18.2 Left and Right Invariant Vector Fields, the Ex-

ponential Map

The purpose of this section is to define the exponential map for an arbitrary Lie group in a
way that is consistent with our previous definition of the exponential defined for a linear Lie
group, namely

eX = In +
∑
p≥1

Xp

p!
=
∑
p≥0

Xp

p!
,

where X ∈ Mn(R) or X ∈ Mn(C). We obtain the desired generalization by recalling Propo-
sition 11.25 which states that for a linear Lie group, the maximal integral curve through
initial point p ∈ G with initial velocity X is given by γp(t) = etXp; see Sections 11.3 and 9.3.
Thus the exponential may be defined in terms of maximal integral curves. Since the notion
of maximal integral curve relies on vector fields, we begin our construction of the exponential
map for an abstract Lie group G by defining left and right invariant vector fields.

Definition 18.7. If G is a Lie group, a vector field X on G is left-invariant (resp. right-
invariant) iff

d(La)b(X(b)) = X(La(b)) = X(ab), for all a, b ∈ G.
(resp.

d(Ra)b(X(b)) = X(Ra(b)) = X(ba), for all a, b ∈ G.)

Equivalently, a vector field X is left-invariant iff the following diagram commutes (and
similarly for a right-invariant vector field):

TG
d(La) // TG

G
La

//

X

OO

G

X

OO

If X is a left-invariant vector field, setting b = 1, we see that

d(La)1(X(1)) = X(La(1)) = X(a),

which shows that X is determined by its value X(1) ∈ g at the identity (and similarly for
right-invariant vector fields).

Conversely, given any v ∈ g, since d(La)1 : g → TaG is a linear isomorphism between g
and TaG for every a ∈ G, we can define the vector field vL by

vL(a) = d(La)1(v), for all a ∈ G.
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We claim that vL is left-invariant. This follows by an easy application of the chain rule:

vL(ab) = d(Lab)1(v)

= d(La ◦ Lb)1(v)

= d(La)b(d(Lb)1(v))

= d(La)b(v
L(b)).

Furthermore, vL(1) = v.

In summary, we proved the following result.

Proposition 18.3. Given a Lie group G, the map X 7→ X(1) establishes an isomorphism
between the space of left-invariant vector fields on G and g. In fact, the map G× g −→ TG
given by (a, v) 7→ vL(a) is an isomorphism between G× g and the tangent bundle TG.

Definition 18.8. The vector space of left-invariant vector fields on a Lie group G is denoted
by gL.

Because Proposition 18.14 implies that the derivative of any Lie group homomorphism
is a Lie algebra homomorphism, (dLa)b is a Lie algebra homomorphism, so if X and Y are
left-invariant vector fields, then the vector field [X, Y ] is also left-invariant. In particular

(dLa)b[X(b), Y (b)] = [(dLa)bX(b), (dLa)bY (b)], (dLa)b is a Lie algebra homomorphism

= [X(La(b)), Y (La(b))], X and Y are left-invariant vector fields

= [X(ab), Y (ab)].

It follows that gL is a Lie algebra.

Given any v ∈ g, since (dRa)1 : g→ TaG is a linear isomorphism between g and TaG for
every a ∈ G, we can also define the vector field vR by

vR(a) = d(Ra)1(v), for all a ∈ G.

It is easily shown that vR is right-invariant and we also have an isomorphism G× g −→ TG
given by (a, v) 7→ vR(a).

Definition 18.9. The vector space of right-invariant vector fields on a Lie groupG is denoted
by gR.

Since (dRa)b is a Lie algebra homomorphism, if X and Y are right-invariant vector fields,
then the vector field [X, Y ] is also right-invariant. It follows that gR is a Lie algebra.

We will see later in this section that the Lie algebras g and gL are isomorphic, and the
Lie algebras g and gR are anti-isomorphic.

Another reason why left-invariant (resp. right-invariant) vector fields on a Lie group are
important is that they are complete; that is, they define a flow whose domain is R×G. To
prove this we begin with the following easy proposition.
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Proposition 18.4. Given a Lie group G, if X is a left-invariant (resp. right-invariant)
vector field and Φ is its flow and γg is the associated maximal integral curve with initial
condition g ∈ G, then

γg(t) = ΦX
t (g) = Φ(t, g) = gΦ(t, 1) = gΦX

t (1) = gγ1(t)

(resp. Φ(t, g) = Φ(t, 1)g), for all (t, g) ∈ D(X).

Proof. Write
γ(t) = gγ1(t) = gΦ(t, 1) = Lg(Φ(t, 1)).

Then γ(0) = g, and by the chain rule,

γ̇(t) = d(Lg)Φ(t,1)(Φ̇(t, 1)) = d(Lg)Φ(t,1)(X(Φ(t, 1))) = X(Lg(Φ(t, 1))) = X(γ(t)),

where the third equality made use of the fact that X is a left-invariant vector field. By the
uniqueness of maximal integral curves, γ(t) = Φ(t, g) for all t, and so

Φ(t, g) = gΦ(t, 1).

A similar argument applies to right-invariant vector fields.

Proposition 18.5. Given a Lie group G, for every v ∈ g, there is a unique smooth homo-
morphism hv : (R,+) → G such that ḣv(0) = (dhv/ds)(0) = v. Furthermore, hv(t) = γ1(t)
is the maximal integral curve of both vL and vR with initial condition 1, and the flows of vL

and vR are defined for all t ∈ R.

Proof. Let Φv
t (g) = γg(t) denote the flow of vL. As far as defined, we know that

Φv
s+t(1) = Φv(s+ t, 1) = Φv

s(Φ
v
t (1)), by Proposition 9.10

= Φv(s,Φv
t (1)) = Φv(s,Φv(t, 1))

= Φv
t (1)Φv

s(1). by Proposition 18.4

Now, if Φv
t (1) = γ1(t) is defined on (−ε, ε), setting s = t, we see that Φv

t (1) is actually defined
on (−2ε, 2ε). By induction we see that Φv

t (1) is defined on (−2nε, 2nε), for all n ≥ 0, and so
Φv
t (1) is defined on R, and the map t 7→ Φv

t (1) is a homomorphism hv : (R,+) → G, with
ḣv(0) = v. Since Φv

t (g) = gΦv
t (1), the flow Φv

t (g) is defined for all (t, g) ∈ R×G. A similar
proof applies to vR. To show that hv is smooth, consider the map

R×G× g −→ G× g, where (t, g, v) 7→ (gΦv
t (1), v).

It can be shown that the above is the flow of the vector field

(g, v) 7→ (vL(g), 0),

and thus it is smooth. Consequently, the restriction of this smooth map to R × {1} × {v},
which is just t 7→ Φv

t (1) = hv(t), is also smooth.
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Assume h : (R,+)→ G is a smooth homomorphism with ḣ(0) = v. From

h(t+ s) = h(t)h(s) = h(s)h(t) = h(s+ t),

we have
h(t+ s) = Lh(t)h(s), h(t+ s) = Rh(t)h(s).

If we differentiate these equations with respect to s at s = 0, we get via the chain rule

dh

ds
(t) = d(Lh(t))1(v) = vL(h(t))

and
dh

ds
(t) = d(Rh(t))1(v) = vR(h(t)).

Therefore, h(t) is an integral curve for vL and vR with initial condition h(0) = 1, and
h(t) = Φv

t (1) = γ1(t).

Since hv : (R,+)→ G is a homomorphism, the following terminology is often used.

Definition 18.10. The integral curve hv : (R,+)→ G of Proposition 18.5 is often referred
to as a one-parameter group.

Proposition 18.5 yields the definition of the exponential map in terms of maximal integral
curves.

Definition 18.11. Given a Lie group G, the exponential map exp: g→ G is given by

exp(v) = hv(1) = Φv
1(1) = γ1(1), for all v ∈ g.

We can see that exp is smooth as follows. As in the proof of Proposition 18.5, we have
the smooth map

R×G× g −→ G× g, where (t, g, v) 7→ (gΦv
t (1), v),

which is the flow of the vector field

(g, v) 7→ (vL(g), 0).

Consequently, the restriction of this smooth map to {1} × {1} × g, which is just
v 7→ Φv

1(1) = exp(v), is also smooth.

Observe that for any fixed t ∈ R, the map

s 7→ hv(st) = γ1(st)

is a smooth homomorphism h such that ḣ(0) = tv. By uniqueness of the maximal integral
curves, we have

Φv
st(1) = hv(st) = htv(s) = Φtv

s (1).
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Setting s = 1, we find that

γ1(t) = hv(t) = exp(tv), for all v ∈ g and all t ∈ R.

If G is a linear Lie group, the preceding equation is equivalent to Proposition 11.25.

Differentiating this equation with respect to t at t = 0, we get

v = d exp0(v),

i.e., d exp0 = idg. By the inverse function theorem, exp is a local diffeomorphism at 0. This
means that there is some open subset U ⊆ g containing 0, such that the restriction of exp
to U is a diffeomorphism onto exp(U) ⊆ G, with 1 ∈ exp(U). This argument is very similar
to the argument used in proving Proposition 15.4.

In fact, by left-translation, the map v 7→ g exp(v) is a local diffeomorphism between some
open subset U ⊆ g containing 0 and the open subset exp(U) containing g. The above facts
are recorded in the following proposition.

Proposition 18.6. Given a Lie group G, the exponential map exp: g → G is smooth and
is a local diffeomorphism at 0.

Remark: Given any Lie group G, we have a notion of exponential map exp: g → G given
by the maximal integral curves of left-invariant vector fields on G (see Proposition 18.5 and
Definition 18.11). This exponential does not require any connection or any metric in order
to be defined; let us call it the group exponential . If G is endowed with a connection or a
Riemannian metric (the Levi-Civita connection if G has a Riemannnian metric), then we
also have the notion of exponential induced by geodesics (see Definition 15.6); let us call this
exponential the geodesic exponential . To avoid ambiguities when both kinds of exponentials
arise, we propose to denote the group exponential by expgr and the geodesic exponential by
exp, as before. Even if the geodesic exponential is defined on the whole of g (which may not
be the case), these two notions of exponential differ in general.

The group exponential map is natural in the following sense.

Proposition 18.7. Given any two Lie groups G and H, for every Lie group homomorphism
f : G→ H, the following diagram commutes.

G
f // H

g
df1
//

exp

OO

h.

exp

OO

Proof. Observe that for every v ∈ g, the map h : t 7→ f(exp(tv)) is a homomorphism from
(R,+) to G such that ḣ(0) = df1(v). On the other hand, Proposition 18.5 shows that the
map t 7→ exp(tdf1(v)) is the unique maximal integral curve whose tangent at 0 is df1(v), so
f(exp(v)) = exp(df1(v)).



550 CHAPTER 18. LIE GROUPS, LIE ALGEBRA, EXPONENTIAL MAP

Proposition 18.7 is the generalization of Proposition 3.13.

A useful corollary of Proposition 18.7 is

Proposition 18.8. Let G be a connected Lie group and H be any Lie group. For any two
homomorphisms φ1 : G→ H and φ2 : G→ H, if d(φ1)1 = d(φ2)1, then φ1 = φ2.

Proof. We know that the exponential map is a diffeomorphism on some small open subset
U containing 0. By Proposition 18.7, for all a ∈ expG(U), we have

φi(a) = expH(d(φi)1(exp−1
G (a))), i = 1, 2,

as illustrated in the following diagram:

G
φi //

exp−1
G
��

H

U ⊆ g
d(φi)1

// h.

expH

OO

Since d(φ1)1 = d(φ2)1, we conclude that φ1 = φ2 on expG(U). However, as G is connected,
Proposition 4.9 implies that G is generated by expG(U) (we can easily find a symmetric
neighborhood of 1 in expG(U)). Therefore, φ1 = φ2 on G.

Corollary 18.9. If G is a connected Lie group, then a Lie group homomorphism φ : G→ H
is uniquely determined by the Lie algebra homomorphism dφ1 : g→ h.

We obtain another useful corollary of Proposition 18.7 when we apply it to the adjoint
representation of G

Ad: G→ GL(g),

and to the conjugation map

Ada : G→ G,

where Ada(b) = aba−1. In the first case, dAd1 = ad, with ad: g→ gl(g), and in the second
case, d(Ada)1 = Ada.

Proposition 18.10. Given any Lie group G, the following properties hold.

(1)

Ad(exp(u)) = ead(u), for all u ∈ g,

where exp: g→ G is the exponential of the Lie group G, and f 7→ ef is the exponential
map given by

ef =
∞∑
k=0

fk

k!
,
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for any linear map (matrix) f ∈ gl(g). Equivalently, the following diagram commutes.

G Ad // GL(g)

g
ad
//

exp

OO

gl(g).

f 7→ef
OO

(2)

exp(tAdg(u)) = g exp(tu)g−1,

for all u ∈ g, all g ∈ G and all t ∈ R. Equivalently, the following diagram commutes.

G
Adg // G

g
Adg
//

exp

OO

g.

exp

OO

Since the Lie algebra g = T1G, as a vector space, is isomorphic to the vector space
of left-invariant vector fields on G and since the Lie bracket of vector fields makes sense
(see Definition 9.5), it is natural to ask if there is any relationship between [u, v], where
[u, v] = ad(u)(v), and the Lie bracket [uL, vL] of the left-invariant vector fields associated
with u, v ∈ g. The answer is: Yes, they coincide (via the correspondence u 7→ uL). This fact
is recorded in the proposition below whose proof involves some rather acrobatic uses of the
chain rule found in Warner [114] (Chapter 3, Proposition 3.47), Bröcker and tom Dieck [24]
(Chapter 1, Section 2, formula 2.11), or Marsden and Ratiu [77] (Chapter 9, Proposition
9.1.5).

Proposition 18.11. Given a Lie group G, we have

[uL, vL](1) = ad(u)(v), for all u, v ∈ g,

where [uL, vL](1) is the element of the vector field [uL, vL] at the identity.

Proposition 18.11 shows that the Lie algebras g and gL are isomorphic (where gL is the
Lie algebra of left-invariant vector fields on G). In view of this isomorphism, we make the
following definition.

Definition 18.12. Let X and Y be any two left-invariant vector fields on G. We define
ad(X)(Y ) by

ad(X)(Y ) = [X, Y ],

where the Lie bracket on the right-hand side is the Lie bracket on vector fields.
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It is shown in Marsden and Ratiu [77] (Chapter 9, just after Definition 9.1.2) that if
ι : G → G is the inversion map ι(g) = g−1, then for any u ∈ g, the vector fields uL and uR

are related by the equation
ι∗(u

L) = −uR,
where ι∗(uL) is the push-forward of uL (that is,

ι∗(u
L) = dιg−1(uL(g−1))

for all g ∈ G.) This implies that

[uL, vL] = −[uR, vR],

and so
[uR, vR](1) = −ad(u)(v), for all u, v ∈ g.

It follows that the Lie algebras g and gR are anti-isomorphic (where gR is the Lie algebra of
right-invariant vector fields on G). In summary we have the following result.

Proposition 18.12. Given a Lie group G, the Lie algebra g and gL are isomorphic, and
the Lie algebra g and gR are anti-isomorphic.

We can apply Proposition 4.10 and use the exponential map to prove a useful result
about Lie groups. If G is a Lie group, let G0 be the connected component of the identity.
We know G0 is a topological normal subgroup of G and it is a submanifold in an obvious
way, so it is a Lie group.

Proposition 18.13. If G is a Lie group and G0 is the connected component of 1, then G0

is generated by exp(g). Moreover, G0 is countable at infinity.

Proof. We can find a symmetric open U in g in containing 0, on which exp is a diffeomor-
phism. Then apply Proposition 4.10 to V = exp(U). That G0 is countable at infinity follows
from Proposition 4.11.

18.3 Homomorphisms of Lie Groups and Lie Algebras,

Lie Subgroups

If G and H are two Lie groups and φ : G → H is a homomorphism of Lie groups, then
dφ1 : g → h is a linear map between the Lie algebras g and h of G and H. In fact, it is
a Lie algebra homomorphism, as shown below. This proposition is the generalization of
Proposition 3.14.

Proposition 18.14. If G and H are two Lie groups and φ : G→ H is a homomorphism of
Lie groups, then

dφ1 ◦ Adg = Adφ(g) ◦ dφ1, for all g ∈ G;
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that is, the following diagram commutes

g
dφ1 //

Adg

��

h

Adφ(g)
��

g
dφ1
// h

and dφ1 : g→ h is a Lie algebra homomorphism.

Proof. Recall that

Ada(b) = Ra−1La(b) = aba−1, for all a, b ∈ G

and that the derivative
d(Ada)1 : g→ g

of Ada at 1 is an isomorphism of Lie algebras, denoted by Ada : g→ g. The map a 7→ Ada
is a map of Lie groups

Ad: G→ GL(g),

(where GL(g) denotes the Lie group of all bijective linear maps on g) and the derivative

dAd1 : g→ gl(g)

of Ad at 1 is map of Lie algebras, denoted by

ad: g→ gl(g),

called the adjoint representation of g (where gl(g) denotes the Lie algebra of all linear maps
on g). Then the Lie bracket is defined by

[u, v] = ad(u)(v), for all u, v ∈ g.

Now as φ is a homomorphism, we have φ(1) = 1, and we have

φ(Ada(b)) = φ(aba−1) = φ(a)φ(b)φ(a)−1 = Rφ(a)−1Lφ(a)(φ(b)) = Adφ(a)(φ(b)).

By differentiating w.r.t. b at b = 1 in the direction, v ∈ g, we get

dφ1(Ada(v)) = Adφ(a)(dφ1(v)),

proving the first part of the proposition. Differentiating again with respect to a at a = 1 in
the direction, u ∈ g, (and using the chain rule, along with the fact that dφ1), we get

dφ1(ad(u)(v)) = ad(dφ1(u))(dφ1(v)),

i.e.,
dφ1[u, v] = [dφ1(u), dφ1(v)],

which proves that dφ1 is indeed a Lie algebra homomorphism.
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Remark: If we identify the Lie algebra g of G with the space gL of left-invariant vector
fields on G, then the map dφ1 : g→ h is viewed as the map such that, for every left-invariant
vector field X on G, the vector field dφ1(X) is the unique left-invariant vector field on H
such that

dφ1(X)(1) = dφ1(X(1)),

i.e., dφ1(X) = dφ1(X(1))L. Then we can give another proof of the fact that dφ1 is a Lie
algebra homomorphism using the notion of φ-related vector fields.

Proposition 18.15. If G and H are two Lie groups and if φ : G→ H is a homomorphism
of Lie groups, if we identify g (resp. h) with the space of left-invariant vector fields on G
(resp. left-invariant vector fields on H), then

(a) X and dφ1(X) are φ-related for every left-invariant vector field X on G;

(b) dφ1 : g→ h is a Lie algebra homomorphism.

Proof. The proof uses Proposition 9.6. For details see Warner [114] (Chapter 3).

We now consider Lie subgroups. The following proposition shows that an injective Lie
group homomorphism is an immersion.

Proposition 18.16. If φ : G → H is an injective Lie group homomorphism, then the map
dφg : TgG→ Tφ(g)H is injective for all g ∈ G.

Proof. As g = T1G and TgG are isomorphic for all g ∈ G (and similarly for h = T1H and
ThH for all h ∈ H), it is sufficient to check that dφ1 : g → h is injective. However, by
Proposition 18.7, the diagram

G
φ // H

g
dφ1

//

exp

OO

h

exp

OO

commutes, and since the exponential map is a local diffeomorphism at 0, as φ is injective,
then dφ1 is injective, too.

Therefore, if φ : G→ H is injective, it is automatically an immersion.

Definition 18.13. Let G be a Lie group. A set H is an immersed (Lie) subgroup of G iff

(a) H is a Lie group;

(b) There is an injective Lie group homomorphism φ : H → G (and thus, φ is an immersion,
as noted above).

We say that H is a Lie subgroup (or closed Lie subgroup) of G iff H is a Lie group which is
a subgroup of G, and also a submanifold of G.
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Observe that an immersed Lie subgroup H is an immersed submanifold, since φ is an in-
jective immersion (see Definition 7.27.) However, φ(H) may not have the subspace topology
inherited from G and φ(H) may not be closed, so H is not necessarily a submanifold.

An example of this situation is provided by the 2-torus T 2 ∼= SO(2)× SO(2), which can
be identified with the group of 2× 2 complex diagonal matrices of the form(

eiθ1 0
0 eiθ2

)
where θ1, θ2 ∈ R. For any c ∈ R, let Sc be the subgroup of T 2 consisting of all matrices of
the form (

eit 0
0 eict

)
, t ∈ R.

It is easily checked that Sc is an immersed Lie subgroup of T 2 iff c is irrational. However,
when c is irrational, one can show that Sc is dense in T 2 but not closed.

As we will see below, a Lie subgroup is always closed . We borrowed the terminology
“immersed subgroup” from Fulton and Harris [46] (Chapter 7), but we warn the reader that
most books call such subgroups “Lie subgroups” and refer to the second kind of subgroups
(that are submanifolds) as “closed subgroups.”

Theorem 18.17. Let G be a Lie group and let (H,φ) be an immersed Lie subgroup of G.
Then φ is an embedding iff φ(H) is closed in G. As as consequence, any Lie subgroup of G
is closed.

Proof. The proof can be found in Warner [114] (Chapter 1, Theorem 3.21) and Lee [76]
(Chapter 20, Theorem 20.10), and uses a little more machinery than we have introduced.
However, we prove that a Lie subgroup H of G is closed. The key to the argument is this.
Since H is a submanifold of G, there is chart (U,ϕ) of G, with 1 ∈ U , Definition 7.26 implies
that

ϕ(U ∩H) = ϕ(U) ∩ (Rm × {0n−m}).
By Proposition 4.4, we can find some open subset V ⊆ U with 1 ∈ V , so that V = V −1 and
V ⊆ U . Observe that

ϕ(V ∩H) = ϕ(V ) ∩ (Rm × {0n−m})
and since V is closed and ϕ is a homeomorphism, it follows that V ∩ H is closed. Thus,

V ∩H = V ∩H (as V ∩H = V ∩H). Now pick any y ∈ H. As 1 ∈ V −1, the open set yV −1

contains y and since y ∈ H, we must have yV −1 ∩H 6= ∅. Let x ∈ yV −1 ∩H, then x ∈ H
and y ∈ xV . Then, y ∈ xV ∩H, which implies x−1y ∈ V ∩H ⊆ V ∩H = V ∩H. Therefore,
x−1y ∈ H and since x ∈ H, we get y ∈ H and H is closed.

We also have the following important and useful theorem: If G is a Lie group, say that
a subset H ⊆ G is an abstract subgroup iff it is just a subgroup of the underlying group of
G (i.e., we forget the topology and the manifold structure).
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Theorem 18.18. Let G be a Lie group. An abstract subgroup H of G is a submanifold (i.e.,
a Lie subgroup) of G iff H is closed (i.e, H with the induced topology is closed in G).

Proof. We proved the easy direction of this theorem above. Conversely, we need to prove
that if the subgroup H with the induced topology is closed in G, then it is a manifold.
This can be done using the exponential map, but it is harder. For details, see Bröcker and
tom Dieck [24] (Chapter 1, Section 3, Theorem 3.11) or Warner [114], (Chapter 3, Theorem
3.42).

18.4 The Correspondence Lie Groups–Lie Algebras

Historically, Lie was the first to understand that a lot of the structure of a Lie group is
captured by its Lie algebra, a simpler object (since it is a vector space). In this short
section, we state without proof some of the “Lie theorems,” although not in their original
form.

Definition 18.14. If g is a Lie algebra, a subalgebra h of g is a (linear) subspace of g such
that [u, v] ∈ h, for all u, v ∈ h. If h is a (linear) subspace of g such that [u, v] ∈ h for all
u ∈ h and all v ∈ g, we say that h is an ideal in g.

For a proof of the theorem below see Warner [114] (Chapter 3, Theorem 3.19), Duis-
termaat and Kolk [43] (Chapter 1, Section 10, Theorem 1.10.3), and Lee [76] (Chapter 20,
Theorem 20.13).

Theorem 18.19. Let G be a Lie group with Lie algebra g, and let (H,φ) be an immersed
Lie subgroup of G with Lie algebra h; then dφ1h is a Lie subalgebra of g. Conversely, for
each subalgebra h̃ of g, there is a unique connected immersed subgroup (H,φ) of G so that

dφ1h = h̃. In fact, as a group, φ(H) is the subgroup of G generated by exp(h̃). Furthermore,
if G is connected, connected normal subgroups correspond to ideals.

Theorem 18.19 shows that there is a one-to-one correspondence between connected im-
mersed subgroups of a Lie group and subalgebras of its Lie algebra.

Theorem 18.20. Let G and H be Lie groups with G connected and simply connected and
let g and h be their Lie algebras. For every homomorphism ψ : g→ h, there is a unique Lie
group homomorphism φ : G→ H so that dφ1 = ψ.

Again a proof of the theorem above is given in Warner [114] (Chapter 3, Theorem 3.27)
and in Lee [76] (Chapter 20, Theorem 20.15).

Corollary 18.21. If G and H are connected and simply connected Lie groups, then G and
H are isomorphic iff g and h are isomorphic.
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It can also be shown that for every finite-dimensional Lie algebra g, there is a connected
and simply connected Lie group G such that g is the Lie algebra of G. This result is known
as Lie’s third theorem.

Lie’s third theorem was first prove by Élie Cartan; see Serre [105]. It is also a consequence
of deep theorem known as Ado’s theorem. Ado’s theorem states that every finite-dimensional
Lie algebra has a faithful representation in gl(n,R) = Mn(R) for some n. The proof is quite
involved; see Knapp [68] (Appendix C) Fulton and Harris [46] (Appendix E), or Bourbaki
[19] (Chapter 1, Section §7).

As a corollary of Lie’s third theorem, there is a one-to-one correspondence between
isomorphism classes of finite-dimensional Lie algebras and isomorphism classes of simply-
connected Lie groups, given by associating each simply connnected Lie group with its Lie
algebra.; see Lee [76] (Theorem 20.20) and Warner [114] (Theorem 3.28).

In summary, following Fulton and Harris, we have the following two principles of the Lie
group/Lie algebra correspondence:

First Principle: (restatement of Proposition 18.8:) If G and H are Lie groups, with G
connected, then a homomorphism of Lie groups φ : G → H is uniquely determined by the
Lie algebra homomorphism dφ1 : g→ h.

Second Principle: (restatement of Theorem 18.20:) Let G and H be Lie groups with G
connected and simply connected and let g and h be their Lie algebras. A linear map ψ : g→ h
is a Lie algebra map iff there is a unique Lie group homomorphism φ : G → H so that
dφ1 = ψ.

18.5 Semidirect Products of Lie Algebras and

Lie Groups

The purpose of this section is to construct an entire class of Lie algebras and Lie groups
by combining two “smaller” pieces in a manner which preserves the algebraic structure. We
begin with two Lie algebras and form a new vector space via the direct sum. If a and b are
two Lie algebras, recall that the direct sum a⊕ b of a and b is a× b with the product vector
space structure where

(a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)

for all a1, a2 ∈ a and all b1, b2 ∈ b, and

λ(a, b) = (λa, λb)

for all λ ∈ R, all a ∈ a, and all b ∈ b. The map a 7→ (a, 0) is an isomorphism of a with
the subspace {(a, 0) | a ∈ a} of a ⊕ b and the map b 7→ (0, b) is an isomorphism of b with
the subspace {(0, b) | b ∈ b} of a ⊕ b. These isomorphisms allow us to identify a with the
subspace {(a, 0) | a ∈ a} and b with the subspace {(0, b) | b ∈ b}.
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The simplest way to make the direct sum a⊕ b into a Lie algebra is by defining the Lie
bracket [−,−] such that [a1, a2] agrees with the Lie bracket on a for all a1, a2,∈ a, [b1, b2]
agrees with the Lie bracket on b for all b1, b2,∈ b, and [a, b] = [b, a] = 0 for all a ∈ a and all
b ∈ b. In particular, if [−,−]a and [−,−]b denote the Lie bracket on a and b respectively,
the preceding sentence says

[(a1, 0), (a2, 0)] = [a1, a2]a

[(0, b1), (0, b2)] = [b1, b2]b

[(a1, 0), (0, b1)] = 0 = [(0, b1), (a1, 0)].

Hence

[(a1, b1), (a2, b2)] = [(a1, 0), (a2, 0)] + [(0, b1), (0, b2)] = ([a1, a2]a, [b1, b2]b).

Definition 18.15. If a and b are two Lie algebras, the direct sum a ⊕ b with the bracket
defined by

[(a1, b1), (a2, b2)] = ([a1, a2]a, [b1, b2]b)

for all a1, a2,∈ a and all b1, b2,∈ b is a Lie algebra is called the Lie algebra direct sum of a
and b.

Observe that with this Lie algebra structure, a and b are ideals.

For example, let a = Rn with the zero bracket, and let b = so(n) be the Lie algebra of
n × n skew symmetric matrices with the commutator bracket. Then g = Rn ⊕ so(n) is a
Lie algebra with [−,−] defined as [u, v] = 0 for all u, v ∈ Rn, [A,B] = AB − BA for all
A,B ∈ so(n), and [u,A] = 0 for all u ∈ Rn, A ∈ so(n).

The above construction is sometimes called an “external direct sum” because it does not
assume that the constituent Lie algebras a and b are subalgebras of some given Lie algebra
g.

Definition 18.16. If a and b are subalgebras of a given Lie algebra g such that g = a ⊕ b
is a direct sum as a vector space and if both a and b are ideals, then for all a ∈ a and all
b ∈ b, we have [a, b] ∈ a ∩ b = (0), so a ⊕ b is the Lie algebra direct sum of a and b. This
Lie algeba is called an internal direct sum.

We now would like to generalize this construction to the situation where the Lie bracket
[a, b] of some a ∈ a and some b ∈ b is given in terms of a map from b to Hom(a, a). For this
to work, we need to consider derivations.

Definition 18.17. Given a Lie algebra g, a derivation is a linear map D : g→ g satisfying
the following condition:

D([X, Y ]) = [D(X), Y ] + [X,D(Y )], for all X, Y ∈ g.

The vector space of all derivations on g is denoted by Der(g).
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Given a Lie algebra with [−,−], we may use this bracket structure to define ad: g→ gl(g)
as ad(u)(v) = [u, v]. Then the Jacobi identity can be expressed as

[Z, [X, Y ]] = [[Z,X], Y ] + [X, [Z, Y ]],

which holds iff
(adZ)[X, Y ] = [(adZ)X, Y ] + [X, (adZ)Y ],

and the above equation means that ad(Z) is a derivation. In fact, it is easy to check that
the Jacobi identity holds iff adZ is a derivation for every Z ∈ g. It tuns out that the vector
space of derivations Der(g) is a Lie algebra under the commutator bracket.

Proposition 18.22. For any Lie algebra g, the vector space Der(g) is a Lie algebra under the
commutator bracket. Furthermore, the map ad: g→ Der(g) is a Lie algebra homomorphism.

Proof. For any D,E ∈ Der(g) and any X, Y ∈ g, we have

[D,E][X, Y ] = (DE − ED)[X, Y ] = DE[X, Y ]− ED[X, Y ]

= D[EX, Y ] +D[X,EY ]− E[DX, Y ]− E[X,DY ]

= [DEX, Y ] + [EX,DY ] + [DX,EY ] + [X,DEY ]

− [EDX, Y ]− [DX,EY ]− [EX,DY ]− [X,EDY ]

= [DEX, Y ]− [EDX, Y ] + [X,DEY ]− [X,EDY ]

= [[D,E]X, Y ] + [X, [D,E]Y ],

which proves that [D,E] is a derivation. Thus, Der(g) is a Lie algebra. We already know
that adX is a derivation for all X ∈ g, so ad g ⊆ Der(g). For all X, Y ∈ g, we need to show
that

ad [X, Y ] = (adX) ◦ (adY )− (adY ) ◦ (adX).

If we apply both sides to any Z ∈ g, we get

(ad [X, Y ])(Z) = (adX)((adY )(Z))− (adY )((adX)(Z)),

that is,
[[X, Y ], Z] = [X, [Y, Z]]− [Y, [X,Z]],

which is equivalent to

[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0,

which is the Jacobi identity. Therefore, ad is a Lie algebra homomorphism.

Proposition 18.23. For any Lie algebra g If D ∈ Der(g) and X ∈ g, then

[D, adX] = ad (DX).
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Proof. For all Z ∈ g, D ∈ Der(g), and X ∈ g, we have

[D, adX]Z = D(adX(Z))− adX(D(Z))

= D[X,Z]− [X,DZ]

= [DX,Z] + [X,DZ]− [X,DZ]

= [DX,Z] = ad (DX)(Z).

We would like to describe another way of defining a bracket structure on a ⊕ b using
Der(a). To best understand this construction, let us go back to our previous example where
a = Rn with [−,−]a = 0, and b = so(n) with [A,B]b = AB − BA for all A,B ∈ so(n). The
underlying vector space is g = a⊕ b = Rn ⊕ so(n), but this time the bracket on g is defined
as

[(u,A), (v,B)] = (Av −Bu, [A,B]b), u, v ∈ Rn, A,B ∈ so(n).

By using the isomorphism between a and {(a, 0) | a ∈ a} and the isomorphism between b
and {(0, b) | b ∈ b}, we have

[u, v]a = [(u, 0), (v, 0)] = (0, 0),

and

[A,B]b = [(0, A), (0, B)] = (0, [A,B]b).

Furthermore

[(u, 0), (0, B)] = (−Bu, [0, B]b) = (−Bu, 0) ∈ a.

Hence, a is an ideal in g. With this bracket structure, we have g = se(n), the Lie algebra of
SE(n) (see Section 1.6).

How does this bracket structure on g = se(n) relate to Der(a)? Since a = Rn is an
abelian Lie algebra, Der(a) = gl(n,R). Define τ : b → gl(n,R) to be the inclusion map, i.e.
τ(B) = B for B ∈ so(n). Then

[(u,A), (v,B)] = ([u, v]a + τ(A)v − τ(B)v, [A,B]b) = (Av −Bu, [A,B]b).

In other words

[(0, A), (v, 0)] = (τ(A)v, 0),

and [a, b] for a ∈ a = Rn and b ∈ b = so(n) is determined by the map τ .

The construction illustrated by this example is summarized in the following proposition.



18.5. SEMIDIRECT PRODUCTS OF LIE ALGEBRAS AND LIE GROUPS 561

Proposition 18.24. Let a and b be two Lie algebras, and suppose τ is a Lie algebra homo-
morphism τ : b → Der(a). Then there is a unique Lie algebra structure on the vector space
g = a⊕ b whose Lie bracket agrees with the Lie bracket on a and the Lie bracket on b, and
such that

[(0, B), (A, 0)]g = τ(B)(A) for all A ∈ a and all B ∈ b. (∗)
The Lie bracket on g = a⊕ b is given by

[(A,B), (A′, B′)]g = ([A,A′]a + τ(B)(A′)− τ(B′)(A), [B,B′]b),

for all A,A′ ∈ a and all B,B′ ∈ b. In particular,

[(0, B), (A′, 0)]g = τ(B)(A′) ∈ a.

With this Lie algebra structure, a is an ideal and b is a subalgebra.

Proof. Uniqueness of the Lie algebra structure is forced by the fact that the Lie bracket is
bilinear and skew symmetric. The problem is to check the Jacobi identity. Pick X, Y, Z ∈ g.
If all three are in a or in b, we are done. By skew symmetry, we are reduced to two cases:

1. X is in a and Y, Z are in b, to simplify notation, write X for (X, 0) and Y, Z for (0, Y )
and (0, Z). Since τ is a Lie algebra homomorphism,

τ([Y, Z]) = τ(Y )τ(Z)− τ(Z)τ(Y ).

If we apply both sides to X, we get

τ([Y, Z])(X) = (τ(Y )τ(Z))(X)− (τ(Z)τ(Y ))(X),

that is, by (∗),
[[Y, Z], X] = [Y, [Z,X]]− [Z, [Y,X]],

or equivalently
[[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0,

which is the Jacobi identity.

2. X, Y are in a and Z is in b, again to simplify notation, write X, Y for (X, 0) and (Y, 0)
and Z for (0, Z) Since τ(Z) is a derivation, we have

τ(Z)([X, Y ]) = [τ(Z)(X), Y ] + [X, τ(Z)(Y )],

which, by (∗), is equivalent to

[Z, [X, Y ]] = [[Z,X], Y ] + [X, [Z, Y ]],

a version of the Jacobi identity.
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Since both a and b bracket into a, we conclude that a is an ideal.

Definition 18.18. The Lie algebra obtained in Proposition 18.24 is denoted by

a⊕τ b or aoτ b

and is called the semidirect product of b by a with respect to τ : b→ Der(a).

When τ is the zero map, we get back the Lie algebra direct sum.

Remark: A sequence of Lie algebra maps

a
ϕ // g

ψ // b

with ϕ injective, ψ surjective, and with Imϕ = Kerψ = n, is called an extension of b by a
with kernel n. If there is a subalgebra p of g such that g is a direct sum g = n⊕ p, then we
say that this extension is inessential . Given a semidirect product g = a oτ b of b by a, if
ϕ : a → g is the map given ϕ(a) = (a, 0) and ψ is the map ψ : g → b given by ψ(a, b) = b,
then g is an inessential extension of b by a. Conversely, it is easy to see that every inessential
extension of b by a is a semidirect product of b by a.

Proposition 18.24 is an external construction. The notion of semidirect product has a
corresponding internal construction. If g is a Lie algebra and if a and b are subspaces of g
such that

g = a⊕ b,

a is an ideal in g and b is a subalgebra of g, then for every B ∈ b, because a is an ideal, the
restriction of adB to a leaves a invariant, so by Proposition 18.22, the map B 7→ adB � a is
a Lie algebra homomorphism τ : b→ Der(a). Observe that [B,A] = τ(B)(A), for all A ∈ a
and all B ∈ b, so the Lie bracket on g is completely determined by the Lie brackets on a
and b and the homomorphism τ . We say that g is the semidirect product of b and a and we
write

g = a⊕τ b.

Semidirect products of Lie algebras are discussed in Varadarajan [113] (Section 3.14),
Bourbaki [19], (Chapter 1, Section 8), and Knapp [68] (Chapter 1, Section 4). However,
beware that Knapp switches the roles of a and b, and τ is a Lie algebra map τ : a→ Der(b).

Before turning our attention to semidirect products of Lie groups, let us consider the
group Aut(g) of Lie algebra isomorphisms of a Lie algebra g.

Definition 18.19. Given a Lie algebra g, the group of Lie algebra automorphisms of g is
denoted by Aut(g).

The group Aut(g) is a subgroup of the group GL(g) of linear automorphisms ϕ of g, and
since the condition

ϕ([u, v]) = [ϕ(u), ϕ(v)]

passes to the limit, it is easy to see that it is closed, so it is a Lie group. It turns out that
its Lie algebra is Der(g).



18.5. SEMIDIRECT PRODUCTS OF LIE ALGEBRAS AND LIE GROUPS 563

Proposition 18.25. For any (real) Lie algebra g, the Lie algebra L(Aut(g)) of the group
Aut(g) is Der(g), the Lie algebra of derivations of g.

Proof. For any f ∈ L(Aut(g)), let γ(t) be a smooth curve in Aut(g) such that γ(0) = I and
γ′(0) = f . Since γ(t) is a Lie algebra automorphism

γ(t)([X, Y ]) = [γ(t)(X), γ(t)(Y )]

for all X, Y ∈ g, and using the product rule and taking the derivative for t = 0, we get

γ′(0)([X, Y ]) = f([X, Y ]) = [γ′(0)(X), γ(0)(Y )] + [γ(0)(X), γ′(0)(Y )]

= [f(X), Y ] + [Y, f(X)],

which shows that f is a derivation.

Conversely, pick any f ∈ Der(g). We prove that etf ∈ Aut(g) for all t ∈ R, which shows
that Der(g) ⊆ L(Aut(g)). For any X, Y ∈ g, consider the two curves in g given by

γ1(t) = etf [X, Y ] and γ2(t) = [etfX, etfY ].

For t = 0, we have γ1(0) = γ2(0) = [X, Y ]. We find that

γ′1(t) = fetf [X, Y ] = fγ1(t),

and since f is a derivation

γ′2(t) = [fetfX, etfY ] + [etf , fetfY ]

= f [etfX, etfY ]

= fγ2(t).

Since γ1 and γ2 are maximal integral curves for the linear vector field defined by f , and with
the same initial condition, by uniqueness, we have

etf [X, Y ] = [etfX, etfY ] for all t ∈ R,

which shows that etf is a Lie algebra automorphism. Therefore, f ∈ L(Aut(g)).

Since (dAda)1 = Ada is a Lie algebra isomorphism of g, Proposition 18.1 implies that
Ad is a Lie group homomorphism

Ad: G→ Aut(g),

and Propositions 18.14 and 18.25 imply that ad is a Lie algebra homomorphism

ad: g→ Der(g).

Remark: It can be shown that if g is semisimple (see Section 20.5 for the definition of a
semisimple Lie algebra), then ad(g) = Der(g).

We now define semidirect products of Lie groups and show how their algebras are semidi-
rect products of Lie algebras. We begin with the definition of the semidirect product of two
groups.
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Proposition 18.26. Let H and K be two groups and let τ : K → Aut(H) be a homomor-
phism of K into the automorphism group of H, i.e. the set of isomorphisms of H with the
group structure given by composition. Let G = H×K with multiplication defined as follows:

(h1, k1)(h2, k2) = (h1τ(k1)(h2), k1k2),

for all h1, h2 ∈ H and all k1, k2 ∈ K. Then the following properties hold:

(1) This multiplication makes G into a group with identity (1, 1) and with inverse given by

(h, k)−1 = (τ(k−1)(h−1), k−1).

(2) The maps h 7→ (h, 1) for h ∈ H and k 7→ (1, k) for k ∈ K are isomorphisms from H
to the subgroup {(h, 1) | h ∈ H} of G and from K to the subgroup {(1, k) | k ∈ K} of
G.

(3) Using the isomorphisms from (2), the group H is a normal subgroup of G.

(4) Using the isomorphisms from (2), H ∩K = (1).

(5) For all h ∈ H an all k ∈ K, we have

(1, k)(h, 1)(1, k)−1 = (τ(k)(h), 1).

Proof. We leave the proof of these properties as an exercise, except for (5). Checking asso-
ciativity takes a little bit of work.

Using the definition of multiplication, since τ(k1) is an automorphism of H for all k1 ∈ K,
we have τ(k1)(1) = 1, which means that

(1, k)−1 = (1, k−1),

so we have

(1, k)(h, 1)(1, k)−1 = ((1, k)(h, 1))(1, k−1)

= (τ(k)(h), k)(1, k−1)

= (τ(k)(h)τ(k)(1), kk−1)

= (τ(k)(h), 1),

as claimed.

In view of Proposition 18.26, we make the following definition.

Definition 18.20. Let H and K be two groups and let τ : K → Aut(H) be a homomorphism
of K into the automorphism group of H. The group defined in Proposition 18.26 is called the
semidirect product of K by H with respect to τ , and it is denoted H oτ K (or even H oK).
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Note that τ : K → Aut(H) can be viewed as a left action · : K × H → H of K on H
“acting by automorphisms,” which means that for every k ∈ K, the map h 7→ τ(k, h) is an
automorphism of H.

Note that when τ is the trivial homomorphism (that is, τ(k) = id for all k ∈ K), the
semidirect product is just the direct product H ×K of the groups H and K, and K is also
a normal subgroup of G.

Semidirect products are used to construct affine groups. For example, let H = Rn under
addition, let K = SO(n), and let τ be the inclusion map of SO(n) into Aut(Rn). In other
words, τ is the action of SO(n) on Rn given by R · u = Ru. Then the semidirect product
RnoSO(n) is isomorphic to the group SE(n) of direct affine rigid motions of Rn (translations
and rotations), since the multiplication is given by

(u,R)(v, S) = (Rv + u,RS), u, v ∈ R2, R, S ∈ SO(n).

We obtain other affine groups by letting K be SL(n), GL(n), etc.

Semidirect products of groups are discussed in Varadarajan [113] (Section 3.15), Bourbaki
[19], (Chapter 3, Section 1.4), and Knapp [68] (Chapter 1, Section 15). Note that some
authors (such as Knapp) define the semidirect product of two groups H and K by letting H
act on K. In this case, in order to work, the multiplication must be defined as

(h1, k1)(h2, k2) = (h1h2, τ(h−1
2 )(k1)k2),

which involves the inverse h−1
2 of h2. This is because h2 acts on the element k1 on its left ,

which makes it a right action. To work properly, we must use h−1
2 . In fact, τ : K ×H → K

is a right action of H on K, and in this case, the map from H to Aut(K) should send h to
the map k 7→ τ(h−1, k), in order to be a homomorphism.

On the other hand, the way we have defined multiplication as

(h1, k1)(h2, k2) = (h1τ(k1)(h2), k1k2),

the element k1 acts on the element h2 on its right , which makes it a left action and works
fine with no inversion needed. The left action seems simpler.

Definition 18.21. A sequence of groups homomorphisms

H
ϕ // G

ψ // K

with ϕ injective, ψ surjective, and with Imϕ = Kerψ = N , is called an extension of K by
H with kernel N .

IfHoτK is a semidirect product, we have the homomorphisms ϕ : H → G and ψ : G→ K
given by

ϕ(h) = (h, 1), ψ(h, k) = k,
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and it is clear that we have an extension of K by H with kernel N = {(h, 1) | h ∈ H}. Note
that we have a homomorphism γ : K → G (a section of ψ) given by

γ(k) = (1, k),

and that

ψ ◦ γ = id.

Conversely, it can be shown that if an extension of K by H has a section γ : K → G, then G
is isomorphic to a semidirect product of K by H with respect to a certain homomorphism
τ ; find it!

Proposition 18.27. If H and K are two Lie groups and if the map from H×K to H given
by (h, k) 7→ τ(k)(h) is smooth, then the semidirect product H oτ K is a Lie group.

Proof. (See Varadarajan [113] (Section 3.15), or Bourbaki [19], (Chapter 3, Section 1.4)).
This is because

(h1, k1)(h2, k2)−1 = (h1, k1)(τ(k−1
2 )(h−1

2 ), k−1
2 )

= (h1τ(k1)(τ(k−1
2 )(h−1

2 )), k1k
−1
2 )

= (h1τ(k1k
−1
2 )(h−1

2 ), k1k
−1
2 ),

which shows that multiplication and inversion in H oτ K are smooth.

It it not very surprising that the Lie algebra of H oτ K is a semidirect product of the
Lie algebras h of H and k of K.

For every k ∈ K, the derivative of d(τ(k))1 of τ(k) at 1 is a Lie algebra isomorphism of
h, and just like Ad, it can be shown that the map τ̃ : K → Aut(h) given by

τ̃(k) = d(τ(k))1 k ∈ K

is a smooth homomorphism from K into Aut(h). It follows by Proposition 18.25 that its
derivative dτ̃1 : k→ Der(h) at 1 is a homomorphism of k into Der(h).

Proposition 18.28. Using the notations just introduced, the Lie algebra of the semidirect
product H oτ K of K by H with respect to τ is the semidirect product hodτ̃1 k of k by h with
respect to dτ̃1.

Proof. We follow Varadarajan [113] (Section 3.15), and provide a few more details. The
tangent space at the identity of H oτ K is h⊕ k as a vector space. The bracket structure on
h × {0} is inherited by the bracket on h, and similarly the bracket structure on {0} × k is
inherited by the bracket on k. We need to figure out the bracket between elements of {0}× k
and elements of h × {0}. For any X ∈ h and any Y ∈ k, for all t, s ∈ R, using Proposition
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18.10(2), Property (5) of Proposition 18.26, and the fact that exp(X, Y ) = (exp(X), exp(Y )),
we have

exp(Ad(exp(t(0,Y))(s(X, 0))) = (exp(t(0,Y)))(exp(s(X, 0)))(exp(t(0,Y)))−1

= (1, exp(tY ))(exp(sX), 1)(1, exp(tY ))−1

= (1, exp(tY ))(exp(sX), 1)(1, exp(tY )−1)

= (1, exp(tY ))(exp(sX), 1)(1, exp(−tY ))

= (τ(exp(tY ))(exp(sX)), 1).

For fixed t, taking the derivative with respect to s at s = 0, and using the chain rule, we
deduce that

Ad(exp(t(0, Y )))(X, 0) = (τ̃(exp(tY ))(X), 0).

Taking the derivative with respect to t at t = 0, and using the chain rule, we get

[(0, Y ), (X, 0)] = (ad (0, Y ))(X, 0) = (dτ̃1(Y )(X), 0),

which shows that the Lie bracket between elements of {0} × k and elements of h × {0} is
given by dτ̃1. The reader should fill in the details of the above computations.

Proposition 18.28 applied to the semidirect product Rn oτ SO(n) ∼= SE(n) where τ is
the inclusion map of SO(n) into Aut(Rn) confirms that Rn odτ̃1 so(n) is the Lie algebra of
SE(n), where dτ̃1 is inclusion map of so(n) into gl(n,R) (and τ̃ is the inclusion of SO(n)
into Aut(Rn)).

As a special case of Proposition 18.28, when our semidirect product is just a direct
product H × K (τ is the trivial homomorphism mapping every k ∈ K to id), we see that
the Lie algebra of H × K is the Lie algebra direct sum h ⊕ k (where the bracket between
elements of h and elements of k is 0).

18.6 Universal Covering Groups ~

Every connected Lie group G is a manifold, and as such, from results in Section 10.2, it has
a universal cover π : G̃ → G, where G̃ is simply connected. It is possible to make G̃ into a
group so that G̃ is a Lie group and π is a Lie group homomorphism. We content ourselves
with a sketch of the construction whose details can be found in Warner [114], Chapter 3.

Consider the map α : G̃× G̃→ G, given by

α(ã, b̃) = π(ã)π(̃b)−1,

for all ã, b̃ ∈ G̃, and pick some ẽ ∈ π−1(1). Since G̃ × G̃ is simply connected, it follows by

Proposition 10.13 that there is a unique map α̃ : G̃× G̃→ G̃ such that

α = π ◦ α̃ and ẽ = α̃(ẽ, ẽ),
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as illustrated below:

G̃ 3 ẽ
π

��
G̃× G̃

α̃
::

α
// G 3 1.

For all ã, b̃ ∈ G̃, define
b̃−1 = α̃(ẽ, b̃), ãb̃ = α̃(ã, b̃−1). (∗)

Using Proposition 10.13, it can be shown that the above operations make G̃ into a group,
and as α̃ is smooth, into a Lie group. Moreover, π becomes a Lie group homomorphism. We
summarize these facts as

Theorem 18.29. Every connected Lie group has a simply connected covering map π : G̃→
G, where G̃ is a Lie group and π is a Lie group homomorphism.

The group G̃ is called the universal covering group of G. Consider D = ker π. Since the
fibres of π are countable, the group D is a countable closed normal subgroup of G̃; that is,
a discrete normal subgroup of G̃. It follows that G ∼= G̃/D, where G̃ is a simply connected

Lie group and D is a discrete normal subgroup of G̃.

We conclude this section by stating the following useful proposition whose proof can be
found in Warner [114] (Chapter 3, Proposition 3.26).

Proposition 18.30. Let φ : G → H be a homomorphism of connected Lie groups. Then φ
is a covering map iff dφ1 : g→ h is an isomorphism of Lie algebras.

For example, we know that su(2) = so(3), so the homomorphism from SU(2) to SO(3)
provided by the representation of 3D rotations by the quaternions is a covering map.

18.7 The Lie Algebra of Killing Fields ~

In Section 17.4 we defined Killing vector fields. Recall that a Killing vector field X on a
manifold M satisfies the condition

LXg(Y, Z) = X(〈Y, Z〉)− 〈[X, Y ], Z〉 − 〈Y, [X,Z]〉 = 0,

for all X, Y, Z ∈ X(M). By Proposition 17.9, X is a Killing vector field iff the diffeomor-
phisms Φt induced by the flow Φ of X are isometries (on their domain).

The isometries of a Riemannian manifold (M, g) form a group Isom(M, g), called the
isometry group of (M, g). An important theorem of Myers and Steenrod asserts that the
isometry group Isom(M, g) is a Lie group. It turns out that the Lie algebra i(M) of the
group Isom(M, g) is closely related to a certain Lie subalgebra of the Lie algebra of Killing
fields. In this section we briefly explore this relationship.

We begin by observing that the Killing fields form a Lie algebra.
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Proposition 18.31. The Killing fields on a smooth manifold M form a Lie subalgebra
Ki(M) of the Lie algebra X(M) of vector fields on M .

Proof. The Lie derivative LX is R-linear in X, and since

LX ◦ LY − LY ◦ LX = [LX , LY ] = L[X,Y ],

if X and Y are Killing fields, then LXg = LY g = 0, and we get

L[X,Y ]g = (LX ◦ LY − LY ◦ LX)g = (LX ◦ LY )g − (LY ◦ LX)g = 0,

proving that [X, Y ] is a Killing vector field.

However, unlike X(M), the Lie algebra Ki(M) is finite-dimensional. In fact, the Lie
subalgebra cKi(M) of complete Killing vector fields is anti-isomorphic to the Lie algebra
i(M) of the Lie group Isom(M) of isometries of M (complete vector fields are defined in
Definition 9.12). The following result is proved in O’Neill [91] (Chapter 9, Lemma 28) and
Sakai [100] (Chapter III, Lemma 6.4 and Proposition 6.5).

Proposition 18.32. Let (M, g) be a connected Riemannian manifold of dimension n (equip-
ped with the Levi–Civita connection on M induced by g). The Lie algebra Ki(M) of Killing
vector fields on M has dimension at most n(n+ 1)/2.

We also have the following result proved in O’Neill [91] (Chapter 9, Proposition 30) and
Sakai [100] (Chapter III, Corollary 6.3).

Proposition 18.33. Let (M, g) be a Riemannian manifold of dimension n (equipped with
the Levi–Civita connection on M induced by g). If M is complete, then every Killing vector
field on M is complete.

The relationship between the Lie algebra i(M) and Killing vector fields is obtained as
follows. For every element X in the Lie algebra i(M) of Isom(M) (viewed as a left-invariant
vector field), define the vector field X+ on M by

X+(p) =
d

dt
(ϕt(p))

∣∣∣∣
t=0

, p ∈M,

where t 7→ ϕt = exp(tX) is the one-parameter group associated with X. Because ϕt is an
isometry of M , the vector field X+ is a Killing vector field, and it is also easy to show that
(ϕt) is the one-parameter group of X+. Since ϕt is defined for all t, the vector field X+ is
complete. The following result is shown in O’Neill [91] (Chapter 9, Proposition 33).

Theorem 18.34. Let (M, g) be a Riemannian manifold (equipped with the Levi–Civita con-
nection on M induced by g). The following properties hold:
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(1) The set cKi(M) of complete Killing vector fields on M is a Lie subalgebra of the Lie
algebra Ki(M) of Killing vector fields.

(2) The map X 7→ X+ is a Lie anti-isomorphism between i(M) and cKi(M), which means
that

[X+, Y +] = −[X, Y ]+, X, Y ∈ i(M).

For more on Killing vector fields, see Sakai [100] (Chapter III, Section 6). In particular,
complete Riemannian manifolds for which i(M) has the maximum dimension n(n+ 1)/2 are
characterized.

18.8 Problems

Problem 18.1. Prove that in a Lie group, the smoothness of inversion follows from the
smoothness of multiplication.

Hint . Apply the inverse function theorem to the map (g, h) 7→ (g, gh), from G×G to G×G.

Problem 18.2. Prove the following two facts:

1. The derivative of multiplication in a Lie group µ : G×G→ G is given by

dµa,b(u, v) = (dRb)a(u) + (dLa)b(v),

for all u ∈ TaG and all v ∈ TbG. At (1, 1), the above yields

dµ1,1(u, v) = u+ v.

2. The derivative of the inverse map ι : G→ G is given by

dιa(u) = −(dRa−1)1 ◦ (dLa−1)a(u) = −(dLa−1)1 ◦ (dRa−1)a(u)

for all u ∈ TaG. At 1, we get
dι1(u) = −u.

Problem 18.3. Prove Proposition 18.11.

Hint . See Warner [114] (Chapter 3, Proposition 3.47), Bröcker and tom Dieck [24] (Chapter
1, Section 2, formula 2.11), or Marsden and Ratiu [77] (Chapter 9, Proposition 9.1.5).

Problem 18.4. Prove Proposition 18.15.

Hint . See Warner [114] (Chapter 3).

Problem 18.5. Prove Statements (1) through (4) of Proposition 18.26.
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Problem 18.6. All Lie algebras in this problem are finite-dimensional. Let g be a Lie
algebra (over R or C). Given two subsets a and b of g, we let [a, b] be the subspace of g
consisting of all linear combinations of elements of the form [a, b] with a ∈ a and b ∈ b.

(1) Check that if a and b are ideals, then [a, b] is an ideal.

(2) The lower central series (Ckg) of g is defined as follows:

C0g = g

Ck+1g = [g, Ckg], k ≥ 0.

We have a decreasing sequence

g = C0g ⊇ C1g ⊇ C2g ⊇ · · · .

We say that g is nilpotent iff Ckg = (0) for some k ≥ 1.

Prove that the following statements are equivalent:

1. The algebra g is nilpotent.

2. There is some n ≥ 1 such that

[x1, [x2, [x3, · · · , [xn, xn+1] · · · ]]] = 0

for all x1, . . . , xn+1 ∈ g.

3. There is a chain of ideals

g = a0 ⊇ a1 ⊇ · · · ⊇ an = (0)

such that [g, ai] ⊆ ai+1 for i = 0, . . . , n− 1 (n ≥ 1).

(3) Given a vector space E of dimension n, a flag in E is a sequence F = (Vi) of subspaces
of E such that

(0) = V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vn = E,

such that dim(Vi) = i. Define n(F ) by

n(F ) = {f ∈ End(E) | f(Vi) ⊆ Vi−1, i = 1, . . . , n}.

If we pick a basis (e1, . . . , en) of E such that ei ∈ Vi, then check that every f ∈ n(F ) is
represented by a strictly upper triangular matrix (the diagonal entries are 0).

Prove that n(F ) is a Lie subalgebra of End(E) and that it is nilpotent.

If g is a nilpotent Lie algebra, then prove that adx is nilpotent for every x ∈ g.
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(4) The derived series (or commutator series) (Dkg) of g is defined as follows:

D0g = g

Dk+1g = [Dkg, Dkg], k ≥ 0.

We have a decreasing sequence

g = D0g ⊇ D1g ⊇ D2g ⊇ · · · .

We say that g is solvable iff Dkg = (0) for some k ≥ 1.

Recall that a Lie algebra g is abelian if [X, Y ] = 0 for all X, Y ∈ g. Check that If g is
abelian, then g is solvable.

Prove that a nonzero solvable Lie algebra has a nonzero abelian ideal.

Prove that the following statements are equivalent:

1. The algebra g is solvable.

2. There is a chain of ideals

g = a0 ⊇ a1 ⊇ · · · ⊇ an = (0)

such that [ai, ai] ⊆ ai+1 for i = 0, . . . , n− 1 (n ≥ 1).

Given any flag F = (Vi) in E (where E is a vector space of dimension n), define b(F ) by

b(F ) = {f ∈ End(E) | f(Vi) ⊆ Vi, i = 0, . . . , n}.

If we pick a basis (e1, . . . , en) of E such that ei ∈ Vi, then check that every f ∈ b(F ) is
represented by an upper triangular matrix.

Prove that b(F ) is a Lie subalgebra of End(E) and that it is solvable (observe that
D1(b(F )) ⊆ n(F )).

(5) Prove that
Dkg ⊆ Ckg k ≥ 0.

Deduce that every nilpotent Lie algebra is solvable.

(6) If g is a solvable Lie algebra, then prove that every Lie subalgebra of g is solvable,
and for every ideal a of g, the quotient Lie algebra g/a is solvable.

Given a Lie algebra g, if a is a solvable ideal and if g/a is also solvable, then g is solvable.

Given any two ideals a and b of a Lie algebra g, prove that (a + b)/a and b/(a ∩ b) are
isomorphic Lie algebras.

Given any two solvable ideals a and b of a Lie algebra g, prove that a + b is solvable.
Conclude from this that there is a largest solvable ideal r in g (called the radical of g).
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Problem 18.7. Refer to the notion of an extension

a
ϕ // g

ψ // b

with ϕ injective, ψ surjective, and with Imϕ = Kerψ = n, given just after Definition 18.18.
Prove that every inessential extension of b by a is a semidirect product of b by a.

Problem 18.8. Prove that if an extension of K by H has a section γ : K → G, then G is
isomorphic to a semidirect product of K by H with respect to a certain homomorphism τ
that you need to find.

Problem 18.9. Fill in the details of the computations in the proof of Proposition 18.28.

Problem 18.10. We know that the Lie algebra se(3) of SE(3) consists of all 4× 4 matrices
of the form (

B u
0 0

)
,

where B ∈ so(3) is a skew symmetric matrix and u ∈ R3. The following 6 matrices form a
basis of se(3):

X1 =

(
E1 0
0 0

)
, X2 =

(
E2 0
0 0

)
, X3 =

(
E3 0
0 0

)
,

X4 =

(
0 e3

1

0 0

)
, X5 =

(
0 e3

2

0 0

)
, X6 =

(
0 e3

3

0 0

)
,

with

E1 =

0 0 0
0 0 −1
0 1 0

 , E2 =

 0 0 1
0 0 0
−1 0 0

 , E3 =

0 −1 0
1 0 0
0 0 0

 ,

e3
1 =

1
0
0

 , e3
2 =

0
1
0

 , e3
3 =

0
0
1

 .

Also recall the isomorphism between (R3,×) and so(3) given by

u =

ab
c

 7→ u× =

 0 −c b
c 0 −a
−b a 0

 .

We define the bijection ψ : R6 → se(3) by

ψ(e6
i ) = Xi, i = 1, . . . , 6,
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where (e6
1, . . . , e

6
6) is the canonical basis of R6. If we split a vector in R6 as two vectors

ω, u ∈ R3 and write (
ω
u

)
for such a vector in R6, then ψ is given by

ψ

(
ω
u

)
=

(
ω× u
0 0

)
.

We define a bracket structure on R6 by[(
ω
u

)
,

(
θ
v

)]
=

(
ω × θ

u× θ + ω × v

)
.

(1) Check that ψ : (R6, [−,−])→ se(3) is a Lie algebra isomorphism.

Hint . Prove that

[ω×, θ×] = ω×θ× − θ×ω× = (ω × θ)×.

(2) For any

X =

(
B u
0 0

)
∈ se(3)

and any (
θ
v

)
∈ R6,

prove that

ψ−1 ◦ ad(X) ◦ ψ
(
θ
v

)
=

(
B 0
u× B

)(
θ
v

)
.

(3) For any

g =

(
R t
0 1

)
∈ SE(3),

where R ∈ SO(3) and t ∈ R3 and for any(
θ
v

)
∈ R6,

prove that

ψ−1Ad(g) ◦ ψ
(
θ
v

)
=

(
R 0
t×R R

)(
θ
v

)
.
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Problem 18.11. We can let the group SO(3) act on itself by conjugation, so that

R · S = RSR−1 = RSR>.

The orbits of this action are the conjugacy classes of SO(3).

(1) Prove that the conjugacy classes of SO(3) are in bijection with the following sets:

1. C0 = {(0, 0, 0)}, the sphere of radius 0.

2. Cθ, with 0 < θ < π and
Cθ = {u ∈ R3 | ‖u‖ = θ},

the sphere of radius θ.

3. Cπ = RP2, viewed as the quotient of the sphere of radius π by the equivalence relation
of being antipodal.

(2) Give M3(R) the Euclidean structure where

〈A,B〉 =
1

2
tr(A>B).

Consider the following three curves in SO(3):

c(t) =

cos t − sin t 0
sin t cos t 0

0 0 1

 ,

for 0 ≤ t ≤ 2π,

α(θ) =

− cos 2θ 0 sin 2θ
0 −1 0

sin 2θ 0 cos 2θ

 ,

for −π/2 ≤ θ ≤ π/2, and

β(θ) =

−1 0 0
0 − cos 2θ sin 2θ
0 sin 2θ cos 2θ

 ,

for −π/2 ≤ θ ≤ π/2.

Check that c(t) is a rotation of angle t and axis (0, 0, 1), that α(θ) is a rotation of angle
π whose axis is in the (x, z)-plane, and that β(θ) is a rotation of angle π whose axis is in the
(y, z)-plane. Show that a log of α(θ) is

Bα = π

 0 − cos θ 0
cos θ 0 − sin θ

0 sin θ 0

 ,
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and that a log of β(θ) is

Bβ = π

 0 − cos θ sin θ
cos θ 0 0
− sin θ 0 0

 .

(3) The curve c(t) is a closed curve starting and ending at I that intersects Cπ for t = π,
and α, β are contained in Cπ and coincide with c(π) for θ = 0. Compute the derivative
c′(π) of c(t) at t = π, and the derivatives α′(0) and β′(0), and prove that they are pairwise
orthogonal (under the inner product 〈−,−〉).

Conclude that c(t) intersects Cπ transversally in SO(3), which means that

Tc(π) c+ Tc(π) Cπ = Tc(π) SO(3).

This fact can be used to prove that all closed curves smoothly homotopic to c(t) must
intersect Cπ transversally, and consequently c(t) is not (smoothly) homotopic to a point.
This implies that SO(3) is not simply connected,

Problem 18.12. Let G be a Lie group with Lie algebra g. Prove that if [X, Y ] = 0, then
exp(X) exp(Y ) = exp(Y ) exp(X). If G is connected, prove that [X, Y ] = 0 for all X, Y ∈ g
iff G is abelian.

Hint . For help, see Duistermaat and Kolk [43] (Chapter 1, Section 1.9).

Problem 18.13. Let G be a connected Lie group with Lie algebra g, and assume that G is
abelian.

(1) Prove that the exponential map exp: g→ G is surjective.

(2) If Γ = Ker exp, then show that Γ is a discrete closed subgroup of g, and that exp
induces an Lie group isomorphism between g/Γ and G.

Hint . For help, see Duistermaat and Kolk [43] (Chapter 1, Section 1.12).

Problem 18.14. It is a standard result of algebra that every nontrivial discrete subgroup
Γ of a finite-dimensional vector space V of dimension n is of the form

Γ = {n1e1 + · · ·+ nkek | ni ∈ Z, 1 ≤ i ≤ k},

where e1, . . . , ek ∈ V are linearly independent vectors. See Duistermaat and Kolk [43]
(Chapter 1, Theorem 1.12.3). Such a group is called an integral lattice.

Use the above result to prove that every connected abelian Lie group G is isomorphic (as
a Lie group) to the additive group

(R/Z)k × Rn−k,

where n = dim(g). Deduce that every compact connected abelian Lie group G is isomorphic
to the torus (R/Z)n, and that G is isomorphic to Rn iff Ker exp = (0).
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Problem 18.15. (1) Check that the set of Killing vector field on a Riemannian manifold
M is a Lie algebra denoted Ki(M).

(2) Prove that if M is and connected and has dimension n, then Ki(M) has dimension
at most n(n+ 1)/2.

Problem 18.16. The “right way” (meaning convenient and rigorous) to define the unit
quaternions is to define them as the elements of the unitary group SU(2), namely the group
of 2× 2 complex matrices of the form(

α β

−β α

)
α, β ∈ C, αα + ββ = 1.

Then, the quaternions are the elements of the real vector space H = RSU(2). Let 1, i, j,k
be the matrices

1 =

(
1 0
0 1

)
, i =

(
i 0
0 −i

)
, j =

(
0 1
−1 0

)
, k =

(
0 i
i 0

)
,

then H is the set of all matrices of the form

X = a1 + bi + cj + dk, a, b, c, d ∈ R.

Indeed, every matrix in H is of the form

X =

(
a+ ib c+ id
−(c− id) a− ib

)
, a, b, c, d ∈ R.

(1) Prove that the quaternions 1, i, j,k satisfy the famous identities discovered by Hamil-
ton:

i2 = j2 = k2 = ijk = −1,

ij = −ji = k,

jk = −kj = i,

ki = −ik = j.

Prove that H is a skew field (a noncommutative field) called the quaternions , and a real
vector space of dimension 4 with basis (1, i, j,k); thus as a vector space, H is isomorphic to
R4.

A concise notation for the quaternion X defined by α = a+ ib and β = c+ id is

X = [a, (b, c, d)].

We call a the scalar part of X and (b, c, d) the vector part of X. With this notation,
X∗ = [a,−(b, c, d)], which is often denoted by X. The quaternion X is called the conjugate
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of q. If q is a unit quaternion, then q is the multiplicative inverse of q. A pure quaternion is
a quaternion whose scalar part is equal to zero.

(2) Given a unit quaternion

q =

(
α β

−β α

)
∈ SU(2),

the usual way to define the rotation ρq (of R3) induced by q is to embed R3 into H as the
pure quaternions, by

ψ(x, y, z) =

(
ix y + iz

−y + iz −ix

)
, (x, y, z) ∈ R3.

Observe that the above matrix is skew-Hermitian (ψ(x, y, z)∗ = −ψ(x, y, z)). But, the space
of skew-Hermitian matrices is the Lie algebra su(2) of SU(2), so ψ(x, y, z) ∈ su(2). Then, q
defines the map ρq (on R3) given by

ρq(x, y, z) = ψ−1(qψ(x, y, z)q∗),

where q∗ is the inverse of q (since SU(2) is a unitary group) and is given by

q∗ =

(
α −β
β α

)
.

Actually, the adjoint representation of the group SU(2) is the group homomorphism
Ad: SU(2)→ GL(su(2)) defined such that for every q ∈ SU(2),

Adq(A) = qAq∗, A ∈ su(2).

Therefore, modulo the isomorphism ψ, the linear map ρq is the linear isomorphism Adq. In
fact, ρq is a rotation (and so is Adq), which you will prove shortly.

Since the matrix ψ(x, y, z) is skew-Hermitian, the matrix −iψ(x, y, z) is Hermitian, and
we have

−iψ(x, y, z) =

(
x z − iy

z + iy −x

)
= xσ3 + yσ2 + zσ1,

where σ1, σ2, σ3 are the Pauli spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Check that i = iσ3, j = iσ2, k = iσ1. Prove that matrices of the form xσ3 + yσ2 + zσ1

(with x, y, x ∈ R) are exactly the 2× 2 Hermitian matrix with zero trace.

(3) Prove that for every q ∈ SU(2), if A is any 2 × 2 Hermitian matrix with zero trace
as above, then qAq∗ is also a Hermitian matrix with zero trace.
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Prove that
det(xσ3 + yσ2 + zσ1) = det(qAq∗) = −(x2 + y2 + z2).

We can embed R3 into the space of Hermitian matrices with zero trace by

ϕ(x, y, z) = xσ3 + yσ2 + zσ1.

Check that
ϕ = −iψ

and
ϕ−1 = iψ−1.

Prove that every quaternion q induces a map rq on R3 by

rq(x, y, z) = ϕ−1(qϕ(x, y, z)q∗) = ϕ−1(q(xσ3 + yσ2 + zσ1)q∗)

which is clearly linear, and an isometry. Thus, rq ∈ O(3).

(4) Find the fixed points of rq, where q = (a, (b, c, d)). If (b, c, d) 6= (0, 0, 0), then show
that the fixed points (x, y, z) of rq are solutions of the equations

−dy + cz = 0

cx− by = 0

dx− bz = 0.

This linear system has the nontrivial solution (b, c, d) and the matrix of this system is0 −d c
c −b 0
d 0 −b

 .

Prove that the above matrix has rank 2, so the fixed points of rq form the one-dimensional
space spanned by (b, c, d). Deduce from this that rq must be a rotation.

Prove that r : SU(2)→ SO(3) given by r(q) = rq is a group homomorphism whose kernel
is {I,−I}.

(5) Find the matrix Rq representing rq explicitly by computing

q(xσ3 + yσ2 + zσ1)q∗ =

(
α β

−β α

)(
x z − iy

z + iy −x

)(
α −β
β α

)
.

You should find

Rq =

a2 + b2 − c2 − d2 2bc− 2ad 2ac+ 2bd
2bc+ 2ad a2 − b2 + c2 − d2 −2ab+ 2cd
−2ac+ 2bd 2ab+ 2cd a2 − b2 − c2 + d2

 .
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Since a2 + b2 + c2 + d2 = 1, this matrix can also be written as

Rq =

2a2 + 2b2 − 1 2bc− 2ad 2ac+ 2bd
2bc+ 2ad 2a2 + 2c2 − 1 −2ab+ 2cd
−2ac+ 2bd 2ab+ 2cd 2a2 + 2d2 − 1

 .

Prove that rq = ρq.

(6) To prove the surjectivity of r algorithmically, proceed as follows.

First, prove that tr(Rq) = 4a2 − 1, so

a2 =
tr(Rq) + 1

4
.

If R ∈ SO(3) is any rotation matrix and if we write

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33,


we are looking for a unit quaternion q ∈ SU(2) such that rq = R. Therefore, we must have

a2 =
tr(R) + 1

4
.

We also know that
tr(R) = 1 + 2 cos θ,

where θ ∈ [0, π] is the angle of the rotation R. Deduce that

|a| = cos

(
θ

2

)
(0 ≤ θ ≤ π).

There are two cases.

Case 1 . tr(R) 6= −1, or equivalently θ 6= π. In this case a 6= 0. Pick

a =

√
tr(R) + 1

2
.

Then, show that

b =
r32 − r23

4a
, c =

r13 − r31

4a
, d =

r21 − r12

4a
.

Case 2 . tr(R) = −1, or equivalently θ = π. In this case a = 0. Prove that

4bc = r21 + r12

4bd = r13 + r31

4cd = r32 + r23



18.8. PROBLEMS 581

and

b2 =
1 + r11

2

c2 =
1 + r22

2

d2 =
1 + r33

2
.

Since q 6= 0 and a = 0, at least one of b, c, d is nonzero.

If b 6= 0, let

b =

√
1 + r11√

2
,

and determine c, d using

4bc = r21 + r12

4bd = r13 + r31.

If c 6= 0, let

c =

√
1 + r22√

2
,

and determine b, d using

4bc = r21 + r12

4cd = r32 + r23.

If d 6= 0, let

d =

√
1 + r33√

2
,

and determine b, c using

4bd = r13 + r31

4cd = r32 + r23.

(7) Given any matrix A ∈ su(2), with

A =

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
,

write θ =
√
u2

1 + u2
2 + u2

3 and prove that

eA = cos θI +
sin θ

θ
A, θ 6= 0,
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with e0 = I. Therefore, eA is a unit quaternion representing the rotation of angle 2θ and
axis (u1, u2, u3) (or I when θ = kπ, k ∈ Z). The above formula shows that we may assume
that 0 ≤ θ ≤ π.

An equivalent but often more convenient formula is obtained by assuming that u =
(u1, u2, u3) is a unit vector, equivalently det(A) = −1, in which case A2 = −I, so we have

eθA = cos θI + sin θA.

Using the quaternion notation, this read as

eθA = [cos θ, sin θ u].

Prove that the logarithm A ∈ su(2) of a unit quaternion

q =

(
α β

−β α

)
with α = a+ bi and β = c+ id can be determined as follows:

If q = I (i.e. a = 1) then A = 0. If q = −I (i.e. a = −1), then

A = ±π
(
i 0
0 −i

)
.

Otherwise, a 6= ±1 and (b, c, d) 6= (0, 0, 0), and we are seeking some A = θB ∈ su(2) with
det(B) = 1 and 0 < θ < π, such that

q = eθB = cos θI + sin θB.

Then,

cos θ = a (0 < θ < π)

(u1, u2, u3) =
1

sin θ
(b, c, d).

Since a2+b2+c2+d2 = 1 and a = cos θ, the vector (b, c, d)/ sin θ is a unit vector. Furthermore
if the quaternion q is of the form q = [cos θ, sin θu] where u = (u1, u2, u3) is a unit vector
(with 0 < θ < π), then

A = θ

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
is a logarithm of q.

Show that the exponential map exp: su(2) → SU(2) is surjective, and injective on the
open ball

{θB ∈ su(2) | det(B) = 1, 0 ≤ θ < π}.
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(8) You are now going to derive a formula for interpolating between two quaternions.
This formula is due to Ken Shoemake, once a Penn student and my TA! Since rotations in
SO(3) can be defined by quaternions, this has applications to computer graphics, robotics,
and computer vision.

First, we observe that multiplication of quaternions can be expressed in terms of the
inner product and the cross-product in R3. Indeed, if q1 = [a, u1] and q2 = [a2, u2], then
check that

q1q2 = [a1, u1][a2, u2] = [a1a2 − u1 · u2, a1u2 + a2u1 + u1 × u2].

We will also need the identity

u× (u× v) = (u · v)u− (u · u)v.

Given a quaternion q expressed as q = [cos θ, sin θ u], where u is a unit vector, we can
interpolate between I and q by finding the logs of I and q, interpolating in su(2), and then
exponentiating. We have

A = log(I) =

(
0 0
0 0

)
, B = log(q) = θ

(
iu1 u2 + iu3

−u2 + iu3 −iu1

)
.

Since SU(2) is a compact Lie group and since the inner product on su(2) given by

〈X, Y 〉 = tr(X>Y )

is Ad(SU(2))-invariant, it induces a biinvariant Riemannian metric on SU(2), and the curve

λ 7→ eλB, λ ∈ [0, 1]

is a geodesic from I to q in SU(2). We write qλ = eλB. Given two quaternions q1 and q2,
because the metric is left invariant, the curve

λ 7→ Z(λ) = q1(q−1
1 q2)λ, λ ∈ [0, 1]

is a geodesic from q1 to q2. Remarkably, there is a closed-form formula for the interpolant
Z(λ). Say q1 = [cos θ, sin θ u] and q2 = [cosϕ, sinϕv], and assume that q1 6= q2 and q1 6= −q2.

Define Ω by
cos Ω = cos θ cosϕ+ sin θ sinϕ(u · v).

Since q1 6= q2 and q1 6= −q2, we have 0 < Ω < π. Prove that

Z(λ) = q1(q−1
1 q2)λ =

sin(1− λ)Ω

sin Ω
q1 +

sinλΩ

sin Ω
q2.

(9) We conclude by discussing the problem of a consistent choice of sign for the quaternion
q representing a rotation R = ρq ∈ SO(3). We are looking for a “nice” section s : SO(3)→
SU(2), that is, a function s satisfying the condition

ρ ◦ s = id,
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where ρ is the surjective homomorphism ρ : SU(2)→ SO(3).

I claim that any section s : SO(3)→ SU(2) of ρ is neither a homomorphism nor contin-
uous. Intuitively, this means that there is no “nice and simple ” way to pick the sign of the
quaternion representing a rotation.

To prove the above claims, let Γ be the subgroup of SU(2) consisting of all quaternions of
the form q = [a, (b, 0, 0)]. Then, using the formula for the rotation matrix Rq corresponding
to q (and the fact that a2 + b2 = 1), show that

Rq =

1 0 0
0 2a2 − 1 −2ab
0 2ab 2a2 − 1

 .

Since a2 + b2 = 1, we may write a = cos θ, b = sin θ, and we see that

Rq =

1 0 0
0 cos 2θ − sin 2θ
0 sin 2θ cos 2θ

 ,

a rotation of angle 2θ around the x-axis. Thus, both Γ and its image are isomorphic to
SO(2), which is also isomorphic to U(1) = {w ∈ C | |w| = 1}. By identifying i and i
and identifying Γ and its image to U(1), if we write w = cos θ + i sin θ ∈ Γ, show that the
restriction of the map ρ to Γ is given by ρ(w) = w2.

Prove that any section s of ρ is not a homomorphism. (Consider the restriction of s to
the image ρ(Γ)).

Prove that any section s of ρ is not continuous.



Chapter 19

The Derivative of exp and Dynkin’s
Formula ~

19.1 The Derivative of the Exponential Map

By Proposition 1.5, we know that if [X, Y ] = 0, then exp(X+Y ) = exp(X) exp(Y ), whenever
X, Y ∈ g, but this generally false if X and Y do not commute. For X and Y in a small enough
open subset U ⊆ g containing 0, we know by Proposition 18.6 that exp is a diffeomorphism
from U to its image, so the function µ : U × U → U given by

µ(X, Y ) = log(exp(X) exp(Y ))

is well-defined and it turns out that for U small enough, it is analytic. Thus, it is natural to
seek a formula for the Taylor expansion of µ near the origin.

This problem was investigated by Campbell (1897/98), Baker (1905) and in a more
rigorous fashion by Hausdorff (1906). These authors gave recursive identities expressing the
Taylor expansion of µ at the origin and the corresponding result is often referred to as the
Campbell-Baker-Hausdorff formula. F. Schur (1891) and Poincaré (1899) also investigated
the exponential map, in particular formulae for its derivative and the problem of expressing
the function µ. However, it was Dynkin who finally gave an explicit formula (see Section
19.3) in 1947.

The proof that µ is analytic in a suitable domain can be proved using a formula for the
derivative of the exponential map, a formula that was obtained by F. Schur and Poincaré.
Thus, we begin by presenting such a formula.

First we introduce a convenient notation. If A is any real (or complex) n×n matrix, the
following formula is clear: ∫ 1

0

etAdt =
∞∑
k=0

Ak

(k + 1)!
.

585
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If A is invertible, then the right-hand side can be written explicitly as

∞∑
k=0

Ak

(k + 1)!
= A−1(eA − I),

and we also write the latter as

eA − I
A

=
∞∑
k=0

Ak

(k + 1)!
. (∗)

Even if A is not invertible, we use (∗) as the definition of eA−I
A

.

We can use the following trick to figure out what (d expX)(Y ) is:

(d expX)(Y ) =
d

dε

∣∣∣∣
ε=0

exp(X + εY ) =
d

dε

∣∣∣∣
ε=0

d(Rexp(X+εY ))1,

since by Proposition 18.4, the map s 7→ Rexp s(X+εY ) is the flow of the left-invariant vector
field (X + εY )L on G. Now, (X + εY )L is an ε-dependent vector field which depends on ε in
a C1 fashion. From the theory of ODE’s, if p 7→ vε(p) is a smooth vector field depending in
a C1 fashion on a real parameter ε and if Φvε

t denotes its flow (after time t), then we have
the variational formula

∂Φvε
t

∂ε
(x) =

∫ t

0

d(Φvε
t−s)Φvεt (x)

∂vε
∂ε

(Φvε
s (x))ds.

See Duistermaat and Kolk [43], Appendix B, Formula (B.10). Using this, the following is
proved in Duistermaat and Kolk [43] (Chapter 1, Section 1.5):

Proposition 19.1. Given any Lie group G, for any X ∈ g, the linear map
d expX : g→ Texp(X)G is given by

d expX = d(Rexp(X))1 ◦
∫ 1

0

es adXds = d(Rexp(X))1 ◦
eadX − I

adX

= d(Lexp(X))1 ◦
∫ 1

0

e−s adXds = d(Lexp(X))1 ◦
I − e−adX

adX
.

Remark: If G is a matrix group of n× n matrices, we see immediately that the derivative
of left multiplication (X 7→ LAX = AX) is given by

d(LA)XY = AY,

for all n× n matrices X, Y . Consequently, for a matrix group, we get

d expX = eX
(
I − e−adX

adX

)
.
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An alternative proof sketch of this fact is provided in Section 2.1.

Now, if A is an n×n matrix, the argument provided at the end of Section 2.1 is applicable,
and hence it is clear that the (complex) eigenvalues of

∫ 1

0
esAds are of the form

eλ − 1

λ
(= 1 if λ = 0),

where λ ranges over the (complex) eigenvalues of A. Consequently, we get

Proposition 19.2. The singular points of the exponential map exp: g→ G, that is, the set
of X ∈ g such that d expX is singular (not invertible), are the X ∈ g such that the linear
map adX : g→ g has an eigenvalue of the form k2πi, with k ∈ Z and k 6= 0.

Another way to describe the singular locus Σ of the exponential map is to say that it is
the disjoint union

Σ =
⋃

k∈Z−{0}
kΣ1,

where Σ1 is the algebraic variety in g given by

Σ1 = {X ∈ g | det(adX − 2πi I) = 0}.

For example, for SL(2,R),

Σ1 =

{(
a b
c −a

)
∈ sl(2) | a2 + bc = −π2

}
,

a two-sheeted hyperboloid mapped to −I by exp.

Definition 19.1. Let ge = g− Σ be the set of X ∈ g such that eadX−I
adX

is invertible.

The set ge is an open subset of g containing 0.

19.2 The Product in Logarithmic Coordinates

Since the map

X 7→ eadX − I
adX

is invertible for all X ∈ ge = g− Σ, in view of the chain rule, the reciprocal (multiplicative
inverse) of the above map

X 7→ adX

eadX − I ,

is an analytic function from ge to gl(g, g).
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Definition 19.2. Let g2
e be the subset of g×ge consisting of all (X, Y ) such that the solution

t 7→ Z(t) of the differential equation

dZ(t)

dt
=

adZ(t)

eadZ(t) − I (X)

with initial condition Z(0) = Y (∈ ge) is defined for all t ∈ [0, 1].

Set
µ(X, Y ) = Z(1), (X, Y ) ∈ g2

e.

The following theorem is proved in Duistermaat and Kolk [43] (Chapter 1, Section 1.6,
Theorem 1.6.1):

Theorem 19.3. Given any Lie group G with Lie algebra g, the set g2
e is an open subset of

g× g containing (0, 0), and the map µ : g2
e → g is real-analytic. Furthermore, we have

exp(X) exp(Y ) = exp(µ(X, Y )), (X, Y ) ∈ g2
e,

where exp: g→ G. If g is a complex Lie algebra, then µ is complex-analytic.

We may think of µ as the product in logarithmic coordinates. It is explained in Duister-
maat and Kolk [43] (Chapter 1, Section 1.6) how Theorem 19.3 implies that a Lie group can
be provided with the structure of a real-analytic Lie group. Rather than going into this, we
will state a remarkable formula due to Dynkin expressing the Taylor expansion of µ at the
origin.

19.3 Dynkin’s Formula

As we said in Section 19.1, the problem of finding the Taylor expansion of µ near the origin
was investigated by Campbell (1897/98), Baker (1905) and Hausdorff (1906). However, it
was Dynkin who finally gave an explicit formula in 1947. There are actually slightly different
versions of Dynkin’s formula. One version is given (and proved convergent) in Duistermaat
and Kolk [43] (Chapter 1, Section 1.7). Another slightly more explicit version (because it
gives a formula for the homogeneous components of µ(X, Y )) is given (and proved convergent)
in Bourbaki [19] (Chapter II, §6, Section 4) and Serre [105] (Part I, Chapter IV, Section 8).
We present the version in Bourbaki and Serre without proof. The proof uses formal power
series and free Lie algebras.

Given X, Y ∈ g2
e, we can write

µ(X, Y ) =
∞∑
n=1

zn(X, Y ),

where zn(X, Y ) is a homogeneous polynomial of degree n in the non-commuting variables
X, Y .
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Theorem 19.4. (Dynkin’s Formula) If we write µ(X, Y ) =
∑∞

n=1 zn(X, Y ), then we have

zn(X, Y ) =
1

n

∑
p+q=n

(z′p,q(X, Y ) + z′′p,q(X, Y )),

with

z′p,q(X, Y ) =
∑

p1+···+pm=p
q1+···+qm−1=q−1
pi+qi≥1, pm≥1, m≥1

(−1)m+1

m

((
m−1∏
i=1

(adX)pi

pi!

(adY )qi

qi!

)
(adX)pm

pm!

)
(Y )

and

z′′p,q(X, Y ) =
∑

p1+···+pm−1=p−1
q1+···+qm−1=q
pi+qi≥1, m≥1

(−1)m+1

m

(
m−1∏
i=1

(adX)pi

pi!

(adY )qi

qi!

)
(X).

As a concrete illustration of Dynkin’s formula, after some labor, the following Taylor
expansion up to order 4 is obtained:

µ(X, Y ) = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]] +

1

12
[Y, [Y,X]]− 1

24
[X, [Y, [X, Y ]]]

+ higher order terms.

Observe that due to the lack of associativity of the Lie bracket quite different looking
expressions can be obtained using the Jacobi identity. For example,

−[X, [Y, [X, Y ]]] = [Y, [X, [Y,X]]].

There is also an integral version of the Campbell-Baker-Hausdorff formula; see Hall [56]
(Chapter 3).

19.4 Problems

Problem 19.1. Let X and Y be two n × n matrices with complex entries. Prove that if
[X, [X, Y ]] = [Y, [X, Y ]] = 0, then

eXeY = eX+Y+ 1
2

[X,Y ].

Hint . For help, see Hall [56], Chapter 3.

Problem 19.2. The (complex) function g given by

g(z) =
z log z

z − 1
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has a series expansion that converges for |z − 1| < 1.

(1) Prove that

g(z) = 1 +
∞∑
k=1

(−1)k+1

k(k + 1)
(z − 1)k.

(2) It can be shown that if X and Y are two n× n matrices with complex entries and if
‖X‖ and ‖Y ‖ are small enough, then

log(eXeY ) = X +

∫ 1

0

g(eadX etadY )(Y )dt.

The above formula is the integral form of the Campbell-Baker-Hausdorff formula; see Hall
[56] (Chapter 3, Theorem 3.3).

Use the above fornula to prove that

log(eXeY ) = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]] +

1

12
[Y, [Y,X]]

+ higher order terms.



Chapter 20

Metrics, Connections, and Curvature
on Lie Groups

Since a Lie group G is a smooth manifold, we can endow G with a Riemannian metric.
Among all the Riemannian metrics on a Lie groups, those for which the left translations (or
the right translations) are isometries are of particular interest because they take the group
structure of G into account. As a consequence, it is possible to find explicit formulae for the
Levi-Civita connection and the various curvatures, especially in the case of metrics which
are both left and right-invariant.

In Section 20.1 we define left-invariant and right-invariant metrics on a Lie group. We
show that left-invariant metrics are obtained by picking some inner product on g and moving
it around the group to the other tangent spaces TgG using the maps (dLg−1)g (with g ∈ G).
Right-invariant metrics are obtained by using the maps (dRg−1)g.

In Section 20.2 we give four characterizations of bi-invariant metrics. The first one refines
the criterion of the existence of a left-invariant metric and states that every bi-invariant
metric on a Lie group G arises from some Ad-invariant inner product on the Lie algebra g.

In Section 20.3 we show that if G is a Lie group equipped with a left-invariant metric,
then it is possible to express the Levi-Civita connection and the sectional curvature in terms
of quantities defined over the Lie algebra of G, at least for left-invariant vector fields. When
the metric is bi-invariant, much nicer formulae are be obtained. In particular the geodesics
coincide with the one-parameter groups induced by left-invariant vector fields.

Section 20.5 introduces simple and semisimple Lie algebras. They play a major role in
the structure theory of Lie groups

Section 20.6 is devoted to the Killing form. It is an important concept, and we establish
some of its main properties. Remarkably, the Killing form yields a simple criterion due
to Élie Cartan for testing whether a Lie algebra is semisimple. Indeed, a Lie algebra g is
semisimple iff its Killing form B is non-degenerate. We also show that a connected Lie group
is compact and semisimple iff its Killing form is negative definite.

591
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We conclude this chapter with a section on Cartan connections (Section 20.7). Un-
fortunately, if a Lie group G does not admit a bi-invariant metric, under the Levi-Civita
connection, geodesics are generally not given by the exponential map exp: g → G. If we
are willing to consider connections not induced by a metric, then it turns out that there
is a fairly natural connection for which the geodesics coincide with integral curves of left-
invariant vector fields. We are led to consider left-invariant connections. It turns out that
there is a one-to-one correspondence between left-invariant connections and bilinear maps
α : g × g → g. Connections for which the geodesics are given by the exponential map are
those for which α is skew-symmetric. These connections are called Cartan connections.

This chapter makes extensive use of results from a beautiful paper of Milnor [84].

20.1 Left (resp. Right) Invariant Metrics

In a Lie group G, since the operations dLa and dRa are diffeomorphisms for all a ∈ G, it is
natural to consider the metrics for which these maps are isometries.

Definition 20.1. A metric 〈−,−〉 on a Lie group G is called left-invariant (resp. right-
invariant) iff

〈u, v〉b = 〈(dLa)bu, (dLa)bv〉ab (resp. 〈u, v〉b = 〈(dRa)bu, (dRa)bv〉ba),

for all a, b ∈ G and all u, v ∈ TbG. A Riemannian metric that is both left and right-invariant
is called a bi-invariant metric.

As shown in the next proposition, left-invariant (resp. right-invariant) metrics on G are
induced by inner products on the Lie algebra g of G. In what follows the identity element
of the Lie group G will be denoted by e or 1.

Proposition 20.1. There is a bijective correspondence between left-invariant (resp. right
invariant) metrics on a Lie group G, and inner products on the Lie algebra g of G.

Proof. If the metric on G is left-invariant, then for all a ∈ G and all u, v ∈ TaG, we have

〈u, v〉a = 〈(dLa−1)au, (dLa−1)av〉e,

which shows that our metric is completely determined by its restriction to g = TeG. Con-
versely, let 〈−,−〉 be an inner product on g and set

〈u, v〉g = 〈(dLg−1)gu, (dLg−1)gv〉,

for all u, v ∈ TgG and all g ∈ G. Obviously, the family of inner products, 〈−,−〉g, yields a
Riemannian metric on G. To prove that it is left-invariant, we use the chain rule and the
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fact that left translations are group isomorphisms. For all a, b ∈ G and all u, v ∈ TbG, we
have

〈(dLa)bu, (dLa)bv〉ab = 〈(dL(ab)−1)ab((dLa)bu)), (dL(ab)−1)ab((dLa)bv)〉
= 〈d(L(ab)−1 ◦ La)bu, d(L(ab)−1 ◦ La)bv〉
= 〈d(Lb−1a−1 ◦ La)bu, d(Lb−1a−1 ◦ La)bv〉
= 〈(dLb−1)bu, (dLb−1)bv〉
= 〈u, v〉b,

as desired.

To get a right-invariant metric on G, set

〈u, v〉g = 〈(dRg−1)gu, (dRg−1)gv〉,

for all u, v ∈ TgG and all g ∈ G. The verification that this metric is right-invariant is
analogous.

If G has dimension n, then since inner products on g are in one-to-one correspondence
with n×n positive definite matrices, we see that G possesses a family of left-invariant metrics
of dimension 1

2
n(n+ 1).

If G has a left-invariant (resp. right-invariant) metric, since left-invariant (resp. right-
invariant) translations are isometries and act transitively on G, the space G is called a
homogeneous Riemannian manifold .

Proposition 20.2. Every Lie group G equipped with a left-invariant (resp. right-invariant)
metric is complete.

Proof. As G is locally compact, we can pick some ε > 0 small enough so that the closed
ε-ball about the identity is compact. By translation, every ε-ball is compact, hence every
Cauchy sequence eventually lies within a compact set, and thus, converges.

We now give four characterizations of bi-invariant metrics.

20.2 Bi-Invariant Metrics

Recall that the adjoint representation Ad: G→ GL(g) of the Lie group G is the map defined
such that Ada : g→ g is the linear isomorphism given by

Ada = d(Ada)e = d(Ra−1 ◦ La)e, for every a ∈ G.

Clearly,
Ada = (dRa−1)a ◦ (dLa)e.

Here is the first of four criteria for the existence of a bi-invariant metric on a Lie group.
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Definition 20.2. Given a Lie group G with Lie algebra g, we say that an inner product
〈−,−〉 on g is Ad-invariant if

〈Adau,Adav〉 = 〈u, v〉,
for all a ∈ G and all u, v ∈ g.

Proposition 20.3. There is a bijective correspondence between bi-invariant metrics on a Lie
group G and Ad-invariant inner products on the Lie algebra g of G, namely inner products
〈−,−〉 on g such that Ada is an isometry of g for all a ∈ G.

Proof. If 〈−,−〉 is a bi-invariant metric on G, as

Ada = (dRa−1)a ◦ (dLa)e,

we claim that
〈Adau,Adav〉 = 〈u, v〉,

which means that Ada is an isometry on g. To prove this claim, first observe that the
left-invariance of the metric gives

〈(dLa)eu, (dLa)ev〉a = 〈u, v〉.

Define U = (dLa)eu ∈ TaG and V = (dLa)ev ∈ TaG. This time, the right-invariance of the
metric implies

〈(dRa−1)aU, (dRa−1)aV 〉 = 〈U, V 〉a = 〈(dLa)eu, (dLa)ev〉a.

Since 〈(dRa−1)aU, (dRa−1)aV 〉 = 〈Adau,Adav〉, the previous equation verifies the claim.

Conversely, if 〈−,−〉 is any inner product on g such that Ada is an isometry of g for all
b ∈ G, we need to prove that the metric on G given by

〈u, v〉b = 〈(dLb−1)bu, (dLb−1)bv〉, (†1)

where u, v ∈ TbG, is also right-invariant. We have

〈(dRa)bu, (dRa)bv〉ba = 〈(dL(ba)−1)ba((dRa)bu), (dL(ba)−1)ba((dRa)bv)〉
= 〈d(La−1 ◦ Lb−1 ◦Ra)bu, d(La−1 ◦ Lb−1 ◦Ra)bv〉
= 〈d(Ra ◦ La−1 ◦ Lb−1)bu, d(Ra ◦ La−1 ◦ Lb−1)bv〉
= 〈d(Ra ◦ La−1)e ◦ d(Lb−1)bu, d(Ra ◦ La−1)e ◦ d(Lb−1)bv〉
= 〈Ada−1 ◦ d(Lb−1)bu,Ada−1 ◦ d(Lb−1)bv〉
= 〈d(Lb−1)bu, d(Lb−1)bv〉
= 〈u, v〉b,

as 〈−,−〉 is left-invariant, (as defined at (†1)), and Adg-invariant for all g ∈ G.
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Proposition 20.3 shows that if a Lie group G possesses a bi-invariant metric, then every
linear map Ada is an orthogonal transformation of g. It follows that Ad(G) is a subgroup
of the orthogonal group of g, and so its closure Ad(G) is compact. It turns out that this
condition is also sufficient!

To prove the above fact, we make use of an “averaging trick” used in representation
theory. But first we need the following definition.

Definition 20.3. A representation of a Lie group G is a (smooth) homomorphism
ρ : G → GL(V ), where V is some finite-dimensional vector space. For any g ∈ G and
any u ∈ V , we often write g · u for ρ(g)(u). We say that an inner-product 〈−,−〉 on V is
G-invariant iff

〈g · u, g · v〉 = 〈u, v〉, for all g ∈ G and all u, v ∈ V .

If G is compact, then the “averaging trick,” also called “Weyl’s unitarian trick,” yields
the following important result.

Theorem 20.4. If G is a compact Lie group, then for every representation ρ : G→ GL(V ),
there is a G-invariant inner product on V .

Proof. This proof uses the fact that a notion of integral invariant with respect to left and
right multiplication can be defined on any compact Lie group.

In Section 4.11 of Warner [114], it is shown that a Lie group is orientable, has a left-
invariant volume form ω, and for every continuous function f with compact support, we can
define the integral

∫
G
f =

∫
G
fω. Furthermore, when G is compact, we may assume that our

integral is normalized so that
∫
G
ω = 1 and in this case, our integral is both left and right

invariant. Given any inner product 〈−,−〉 on V , set

〈〈u, v〉〉 =

∫
G

〈g · u, g · v〉, for all u, v ∈ V ,

where 〈g · u, g · v〉 denotes the function g 7→ 〈g · u, g · v〉. It is easily checked that 〈〈−,−〉〉
is an inner product on V . Furthermore, using the right-invariance of our integral (that is,∫
G
f =

∫
G

(f ◦Rh), for all h ∈ G), we have

〈〈h · u, h · v〉〉 =

∫
G

〈g · (h · u), g · (h · v)〉, definition of 〈〈−,−〉〉

=

∫
G

〈(gh) · u, (gh) · v〉, definition of representation

=

∫
G

〈g · u, g · v〉, right invariance of integral

= 〈〈u, v〉〉,

which shows that 〈〈−,−〉〉 is G-invariant.
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Using Theorem 20.4, we can prove the following result giving a criterion for the existence
of a G-invariant inner product for any representation of a Lie group G (see Sternberg [110],
Chapter 5, Theorem 5.2).

Theorem 20.5. Let ρ : G→ GL(V ) be a (finite-dimensional) representation of a Lie group
G. There is a G-invariant inner product on V iff ρ(G) is compact. In particular, if G is
compact, then there is a G-invariant inner product on V .

Proof. If V has a G-invariant inner product on V , then each linear map, ρ(g), is an isometry,
so ρ(G) is a subgroup of the orthogonal group O(V ) of V . As O(V ) is compact, ρ(G) is also
compact.

Conversely, assume that ρ(G) is compact. In this case, H = ρ(G) is a closed subgroup of
the Lie group GL(V ), so by Theorem 18.18, H is a compact Lie subgroup of GL(V ). The
inclusion homomorphism H ↪→ GL(V ) is a representation of H (f · u = f(u), for all f ∈ H
and all u ∈ V ), so by Theorem 20.4, there is an inner product on V which is H-invariant.
However, for any g ∈ G, if we write f = ρ(g) ∈ H, then we have

〈g · u, g · v〉 = 〈f(u), f(v)〉 = 〈u, v〉,

proving that 〈−,−〉 is G-invariant as well.

Applying Theorem 20.5 to the adjoint representation Ad: G→ GL(g), we get our second
criterion for the existence of a bi-invariant metric on a Lie group.

Proposition 20.6. Given any Lie group G, an inner product 〈−,−〉 on g induces a bi-
invariant metric on G iff Ad(G) is compact. In particular, every compact Lie group has a
bi-invariant metric.

Proof. Proposition 20.3 is equivalent to the fact that G possesses a bi-invariant metric iff
there is some Ad-invariant inner product on g. By Theorem 20.5, there is some Ad-invariant
inner product on g iff Ad(G) is compact, which is the statement of our theorem.

Proposition 20.6 can be used to prove that certain Lie groups do not have a bi-invariant
metric. For example, Arsigny, Pennec and Ayache use Proposition 20.6 to give a short and
elegant proof of the fact that SE(n) does not have any bi-invariant metric for all n ≥ 2. As
noted by these authors, other proofs found in the literature are a lot more complicated and
only cover the case n = 3.

Recall the adjoint representation of the Lie algebra g,

ad : g→ gl(g),

given by ad = dAd1. Here is our third criterion for the existence of a bi-invariant metric on
a connected Lie group.
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Proposition 20.7. If G is a connected Lie group, an inner product 〈−,−〉 on g induces a
bi-invariant metric on G iff the linear map ad(u) : g→ g is skew-adjoint for all u ∈ g, which
means that

〈ad(u)(v), w〉 = −〈v, ad(u)(w)〉, for all u, v, w ∈ g,

or equivalently that
〈[v, u], w〉 = 〈v, [u,w]〉, for all u, v, w ∈ g.

Proof. We follow Milnor [84], Lemma 7.2. By Proposition 20.3 an inner product on g induces
a bi-invariant metric on G iff Adg is an isometry for all g ∈ G. Recall the notion of adjoint
of a linear map. Given a linear map f : V → V on a vector space V equipped with an inner
product 〈−,−〉, we define f ∗ : V → V to be the unique linear map such that

〈f(u), v〉 = 〈u, f ∗(v)〉, for all u, v ∈ V ,

and call f ∗ the adjoint of f . It is a standard fact of linear algebra that f is an isometry iff
f−1 = f ∗. Thus Ad(g) is an isometry iff Ad(g)−1 = Ad(g)∗. By definition, a linear map f is
skew-adjoint iff

〈f(u), v〉 = −〈u, f(v)〉, for all u, v ∈ V ,

and it is immediately verified that this is equivalent to f ∗ = −f .

First assume that ad(u) is skew-adjoint for all u ∈ g. Proposition 18.6 shows that
we can choose a small enough open subset U of g containing 0 so that exp: g → G is a
diffeomorphism from U to exp(U). For any g ∈ exp(U), there is a unique u ∈ g so that
g = exp(u). By Proposition 18.10,

Ad(g) = Ad(exp(u)) = ead(u).

Since Ad(g)−1 = Ad(g)∗, the preceding equation implies that

Ad(g)−1 = e−ad(u) and Ad(g)∗ = ead(u)∗ .

But since ad(u) is skew-adjoint, we have

ad(u)∗ = −ad(u),

which implies that Ad(g)−1 = Ad(g)∗, namely, Ad(g) is an isometry. Since a connected Lie
group is generated by any open subset containing the identity, every g ∈ G can be written as
g = g1 · · · gm with g1, . . . , gm ∈ exp(U). Since Adg = Adg1···gm = Adg1 ◦ · · · ◦Adgm , and since
by the previous reasoning each Ad(gi) is an isometry, we deduce that Ad(g) is an isometry.

Conversely, we prove that if every Ad(g) is an isometry, then ad(u) is skew-adjoint for all
u ∈ g. It is enough to prove that for any basis (u1, . . . , un) of g, that ad(ui) is skew-adjoint.
By the remark before Proposition 3.10, the matrix exponential is also a diffeomorphism on
an open subset V containing 0 ∈ End(g). We can pick the basis (u1, . . . , un) in such a way
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that ad(ui) ∈ V and ad(ui)
∗ ∈ V for i = 1, . . . , n, and we let gi = exp(ui). Then as in the

previous part

Ad(gi)
−1 = e−ad(ui) and Ad(gi)

∗ = ead(ui)
∗
.

Since each Ad(gi) is an isometry, we have Ad(gi)
−1 = Ad(gi)

∗, which implies that

e−ad(ui) = ead(ui)
∗
.

Since ad(ui) ∈ V and ad(ui)
∗ ∈ V , and since the matrix exponential is bijective in V , we

conclude that

ad(ui)
∗ = −ad(ui),

which means that ad(ui) is skew-adjoint.

The skew-adjointness of ad(u) means that

〈ad(u)(v), w〉 = −〈v, ad(u)(w)〉 for all u, v, w ∈ g,

and since ad(u)(v) = [u, v] and [u, v] = −[v, u], we get

〈[v, u], w〉 = 〈v, [u,w]〉

which is the last claim of the proposition.

Remark: It will be convenient to say that an inner product on g is bi-invariant iff every
ad(u) is skew-adjoint.

The following variant of Proposition 20.7 will also be needed. This is a special case of
Lemma 3 in O’Neill [91] (Chapter 11).

Proposition 20.8. If G is Lie group equipped with an inner product 〈−,−〉 on g that induces
a bi-invariant metric on G, then ad(X) : gL → gL is skew-adjoint for all left-invariant vector
fields X ∈ gL, which means that

〈ad(X)(Y ), Z〉 = −〈Y, ad(X)(Z)〉, for all X, Y, Z ∈ gL,

or equivalently that

〈[Y,X], Z〉 = 〈Y, [X,Z]〉, for all X, Y, Z ∈ gL.

Proof. By the bi-invariance of the metric, Proposition 20.3 implies that the inner product
〈−,−〉 on g is Ad-invariant. For any two left-invariant vector fields X, Y ∈ gL, we have

〈AdaX,AdaY 〉e := 〈AdaX(e),AdaY (e)〉
= 〈X(e), Y (e)〉,
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which shows that the function a 7→ 〈AdaX,AdaY 〉e is constant. For any left-invariant vector
field Z, by taking the derivative of this function with a = exp(tZ(e)) at t = 0, we get

〈[Z(e), X(e)], Y (e)〉+ 〈X(e), [Z(e), Y (e)]〉 = 0.

Since dLg is a diffeomorphism for every g ∈ G, the metric on G is assumed to be bi-invariant,
and X(g) = (dLg)e(X(e)) for any left-invariant vector field X, we have

〈[Z(g), X(g)], Y (g)〉g + 〈X(g), [Z(g), Y (g)]〉g =

〈[(dLg)e(Z(e)), (dLg)e(X(e))], (dLg)e(Y (e))〉g
+ 〈(dLg)e(X(e)), [(dLg)e(Z(e)), (dLg)e(Y (e))]〉g

= 〈[Z(e), X(e)], Y (e)〉+ 〈X(e), [Z(e), Y (e)]〉 = 0.

Therefore,

〈[Z,X], Y 〉+ 〈X, [Z, Y ]〉 = 0,

which is equivalent to

〈[X,Z], Y 〉 = 〈X, [Z, Y ]〉,
and to

〈ad(Z)(X), Y 〉 = −〈X, ad(Z)(Y )〉.
If we apply the permutation (X, Y, Z) 7→ Y, Z,X, we obtain our proposition.

We now turn to our fourth criterion. If G is a connected Lie group, then the existence
of a bi-invariant metric on G places a heavy restriction on its group structure, as shown by
the following result from Milnor’s paper [84] (Lemma 7.5).

Theorem 20.9. A connected Lie group G admits a bi-invariant metric iff it is isomorphic
to the Cartesian product of a compact Lie group and a vector space (Rm, for some m ≥ 0).

A proof of Theorem 20.9 can be found in Milnor [84] (Lemma 7.4 and Lemma 7.5). The
proof uses the universal covering group and it is a bit involved. Because it is really quite
beautiful,we will outline the structure of the proof.

First, recall from Definition 18.14 that a subset h of a Lie algebra g is a Lie subalgebra iff
it is a subspace of g (as a vector space) and if it is closed under the bracket operation on g.
A subalgebra h of g is abelian iff [x, y] = 0 for all x, y ∈ h. An ideal in g is a Lie subalgebra
h such that

[h, g] ∈ h, for all h ∈ h and all g ∈ g.

Definition 20.4. A Lie algebra g is simple iff it is non-abelian and if it has no ideal other
than (0) and g. A Lie group is simple iff its Lie algebra is simple.
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In a first step for the proof of Theorem 20.9, it is shown that if G has a bi-invariant
metric, then its Lie algebra g can be written as an orthogonal direct sum

g = g1 ⊕ · · · ⊕ gk,

where each gi is either a simple ideal or a one-dimensional abelian ideal; that is, gi ∼= R.

The next step is to lift the ideals gi to simply connected normal subgroups Gi of the
universal covering group G̃ of G. For every simple ideal gi in the decomposition, it is proved
that there is some constant ci > 0, so that all Ricci curvatures are strictly positive and
bounded from below by ci. Therefore, by Myers’ theorem (Theorem 16.28), Gi is compact.

It follows that G̃ is isomorphic to a product of compact simple Lie groups and some vector
space Rm. Finally, we know that G is isomorphic to the quotient of G̃ by a discrete normal
subgroup of G̃, which yields our theorem.

Because it is a fun proof, we prove the statement about the structure of a Lie algebra for
which each ad(u) is skew-adjoint.

Proposition 20.10. Let g be a Lie algebra with an inner product such that the linear map
ad(u) is skew-adjoint for every u ∈ g. Then the orthogonal complement a⊥ of any ideal a is
itself an ideal. Consequently, g can be expressed as an orthogonal direct sum

g = g1 ⊕ · · · ⊕ gk,

where each gi is either a simple ideal or a one-dimensional abelian ideal (gi ∼= R).

Proof. Assume u ∈ g is orthogonal to a, i.e. u ∈ a⊥ . We need to prove that [u, v] = −[v, u]
is orthogonal to a for all v ∈ g. But, as ad(v) is skew-adjoint, ad(v)(u) = [v, u], and a is an
ideal with [v, a] ∈ a for all v ∈ g and a ∈ a, we have

〈[u, v], a〉 = −〈[v, u], a〉 = 〈u, [v, a]〉 = 0, for all a ∈ a,

which shows that a⊥ is an ideal.

For the second statement we use induction on the dimension of g, but for this proof, we
redefine a simple Lie algebra to be an algebra with no nontrivial proper ideals . The case
where dim g = 1 is clear.

For the induction step, if g is simple, we are done. Else, g has some nontrivial proper
ideal h, and if we pick h of minimal dimension p, with 1 ≤ p < n = dim g, then h is simple.
Now, h⊥ is also an ideal and dim h⊥ < n, so the induction hypothesis applies. Therefore, we
have an orthogonal direct sum

g = g1 ⊕ · · · ⊕ gk,

where each gi is simple in our relaxed sense. However, if gi is not abelian, then it is simple
in the usual sense, and if gi is abelian, having no proper nontrivial ideal, it must be one-
dimensional and we get our decomposition.

We now investigate connections and curvature on Lie groups with a left-invariant metric.
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20.3 Connections and Curvature of Left-Invariant

Metrics on Lie Groups

If G is a Lie group equipped with a left-invariant metric, then it is possible to express the
Levi-Civita connection and the sectional curvature in terms of quantities defined over the
Lie algebra of G, at least for left-invariant vector fields. When the metric is bi-invariant,
much nicer formulae are be obtained. In this section we always assume that our Lie groups
are equipped with the Levi-Civita connection.

If 〈−,−〉 is a left-invariant metric on G, then for any two left-invariant vector fields X, Y ,
we have

〈X, Y 〉g = 〈X(g), Y (g)〉g = 〈(dLg)eX(e), (dLg)eY (e)〉g = 〈Xe, Ye〉e = 〈X, Y 〉e,

which shows that the function g 7→ 〈X, Y 〉g is constant. Therefore, for any vector field Z,

Z(〈X, Y 〉) = 0.

If we go back to the Koszul formula (Proposition 14.9)

2〈∇XY, Z〉 = X(〈Y, Z〉) + Y (〈X,Z〉)− Z(〈X, Y 〉)
− 〈Y, [X,Z]〉 − 〈X, [Y, Z]〉 − 〈Z, [Y,X]〉,

we deduce that for all left-invariant vector fields X, Y, Z ∈ gL, we have

2〈∇XY, Z〉 = −〈Y, [X,Z]〉 − 〈X, [Y, Z]〉 − 〈Z, [Y,X]〉,

which can be rewritten as

2〈∇XY, Z〉 = 〈[X, Y ], Z〉 − 〈[Y, Z], X〉+ 〈[Z,X], Y 〉. (†)

Note that (†) is equivalent to

2〈∇XY, Z〉 = 〈[X, Y ], Z〉 − 〈[Y, Z], X〉 − 〈[X,Z], Y 〉
= 〈[X, Y ], Z〉 − 〈ad(Y )(Z), X〉 − 〈ad(X)(Z), Y 〉
= 〈[X, Y ], Z〉 − 〈Z, ad(Y )∗(X)〉 − 〈Z, ad(X)∗(Y )〉.

The above yields the formula

∇XY =
1

2
([X, Y ]− ad(X)∗Y − ad(Y )∗X) , X, Y ∈ gL,

where ad(X)∗ denotes the adjoint of ad(X) as defined in Definition 18.12.

Remark: Given any two vector u, v ∈ g, it is common practice (even though this is quite
confusing) to denote by ∇uv the result of evaluating the vector field ∇uLv

L at e (so, ∇uv =
(∇uLv

L)(e)).
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Following Milnor, if we pick an orthonormal basis (e1, . . . , en) w.r.t. our inner product
on g, and if we define the structure constants αijk by

αijk = 〈[ei, ej], ek〉,

we see by (†) that

∇eiej =
1

2

∑
k

(αijk − αjki + αkij)ek. (∗)

For example, let G = SO(3), the group of 3 × 3 rotation matrices. Then g = so(3) is the
vector space of skew symmetric 3× 3 matrices with orthonormal basis

e1 =
1√
2

0 0 0
0 0 −1
0 1 0

 e2 =
1√
2

 0 0 1
0 0 0
−1 0 0

 e3 =
1√
2

0 −1 0
1 0 0
0 0 0


since the left invariant, indeed bi-invariant, metric on g is

〈B1, B2〉 = tr(B>1 B2) = −tr(B1B2).

Matrix multiplication shows that

[e1, e2] = e1e2 − e2e1 =
1√
2
e3

[e2, e3] = e2e3 − e3e2 =
1√
2
e1

[e3, e1] = e3e1 − e1e3 =
1√
2
e2

[e1, e1] = [e2, e2] = [e3, e3] = 0.

Hence,

−α213 = α123 = 〈[e1, e2], e3〉 =
1√
2
〈e3, e3〉 =

1√
2

−α211 = α121 = 〈[e1, e2], e1〉 =
1√
2
〈e3, e1〉 = 0

−α212 = α122 = 〈[e1, e2], e2〉 =
1√
2
〈e3, e2〉 = 0

α112 = 〈[e1, e1], e2〉 = 0, α221 = 〈[e2, e2], e1〉 = 0

−α321 = α231 = 〈[e2, e3], e1〉 =
1√
2
〈e1, e1〉 =

1√
2

−α131 = α311 = 〈[e3, e1], e1〉 =
1√
2
〈e2, e1〉 = 0
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−α133 = α313 = 〈[e3, e1], e3〉 =
1√
2
〈e2, e3〉 = 0

α113 = 〈[e1, e1], e3〉 = 0, α331 = 〈[e3, e3], e1〉 = 0

−α132 = α312 = 〈[e3, e1], e2〉 =
1√
2
〈e2, e2〉 =

1√
2

−α322 = α232 = 〈[e2, e3], e2〉 =
1√
2
〈e1, e2〉 = 0

−α323 = α233 = 〈[e2, e3], e3〉 =
1√
2
〈e1, e3〉 = 0

α223 = 〈[e2, e2], e3〉 = 0, α332 = 〈[e3, e3], e2〉 = 0,

and

∇e1e2 = −∇e2e1 =
1

2

3∑
k=1

(α12k − α2k1 + αk12)ek

=
1

2
(α123 − α231 + α312)e3 =

1

2
√

2
e3 =

1

2
[e1, e2]

∇e1e3 = −∇e3e1 =
1

2

3∑
k=1

(α13k − α3k1 + αk13)ek

=
1

2
(α132 − α321 + α213)e2 = − 1

2
√

2
e2 =

1

2
[e1, e3]

∇e2e3 = −∇e3e2 =
1

2

3∑
k=1

(α23k − α3k2 + αk23)ek

=
1

2
(α213 − α312 + α123)e1 = − 1

2
√

2
e1 =

1

2
[e2, e3]

∇e1e1 =
1

2

3∑
k=1

(α11k − α1k1 + αk11)ek = 0

∇e2e2 =
1

2

3∑
k=1

(α22k − α2k2 + αk22)ek = 0

∇e3e3 =
1

2

3∑
k=1

(α33k − α3k3 + αk33)ek = 0.

Now for orthonormal vectors u, v, the sectional curvature is given by

K(u, v) = 〈R(u, v)u, v〉,

with
R(u, v) = ∇[u,v] −∇u∇v +∇v∇u.
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If we plug the expressions from Equation (∗) into the definitions, we obtain the following
proposition from Milnor [84] (Lemma 1.1).

Proposition 20.11. Given a Lie group G equipped with a left-invariant metric, for any
orthonormal basis (e1, . . . , en) of g, and with the structure constants αijk = 〈[ei, ej], ek〉, the
sectional curvature K(e1, e2) is given by

K(ei, ej) =
∑
k

(
1

2
αijk(−αijk + αjki + αkij)

− 1

4
(αijk − αjki + αkij)(αijk + αjki − αkij)− αkiiαkjj

)
.

For SO(3), the formula of Proposition 20.11, when evaluated with the previously com-
puted structure constants, gives

K(e1, e2) =
1

8
=

1

8
〈e3, e3〉 =

1

4
〈[e1, e2], [e1, e2]〉

K(e1, e3) =
1

8
=

1

8
〈e2, e2〉 =

1

4
〈[e1, e3], [e1, e3]〉

K(e2, e3) =
1

8
=

1

8
〈e1, e1〉 =

1

4
〈[e2, e3], [e3, e3]〉

K(e1, e1) = K(e2, e2) = K(e3, e3) = 0.

Although the above formula is not too useful in general, in some cases of interest, a great
deal of cancellation takes place so that a more useful formula can be obtained. An example
of this situation is provided by the next proposition (Milnor [84], Lemma 1.2).

Proposition 20.12. Given a Lie group G equipped with a left-invariant metric, for any
u ∈ g, if the linear map ad(u) is skew-adjoint, then

K(u, v) ≥ 0 for all v ∈ g,

where equality holds iff u is orthogonal to [v, g] = {[v, x] | x ∈ g}.

Proof. We may assume that u and v are orthonormal. If we pick an orthonormal basis such
that e1 = u and e2 = v, the fact that ad(e1) is skew-adjoint means that the array (α1jk) is
skew-symmetric (in the indices j and k). It follows that the formula of Proposition 20.11
reduces to

K(e1, e2) =
1

4

∑
k

α2
2k1,

so K(e1, e2) ≥ 0, as claimed. Furthermore, K(e1, e2) = 0 iff α2k1 = 0 for k = 1, . . . , n; that
is, 〈[e2, ek], e1〉 = 0 for k = 1, . . . , n, which means that e1 is orthogonal to [e2, g].

For the next proposition we need the following definition.
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Definition 20.5. The center Z(g) of a Lie algebra g is the set of all elements u ∈ g such
that [u, v] = 0 for all v ∈ g, or equivalently, such that ad(u) = 0.

Proposition 20.13. Given a Lie group G equipped with a left-invariant metric, for any u
in the center Z(g) of g,

K(u, v) ≥ 0 for all v ∈ g.

Proof. For any element u in the center of g, we have ad(u) = 0, and the zero map is obviously
skew-adjoint.

Recall that the Ricci curvature Ric(u, v) is the trace of the linear map y 7→ R(u, y)v.
With respect to any orthonormal basis (e1, . . . , en) of g, we have

Ric(u, v) =
n∑
j=1

〈R(u, ej)v, ej〉 =
n∑
j=1

R(u, ej, v, ej).

The Ricci curvature is a symmetric form, so it is completely determined by the quadratic
form

r(u) = Ric(u, u) =
n∑
j=1

R(u, ej, u, ej).

Definition 20.6. If u is a unit vector, r(u) = Ric(u, u) is called the Ricci curvature in the
direction u. If we pick an orthonormal basis such that e1 = u, then

r(e1) =
n∑
i=2

K(e1, ei).

For computational purposes it may be more convenient to introduce the Ricci transfor-
mation Ric#, defined by

Ric#(x) =
n∑
i=1

R(ei, x)ei.

Observe that

〈Ric#(x), y〉 = 〈
n∑
i=1

R(ei, x)ei, y〉 =
n∑
i=1

〈R(ei, x)ei, y〉 =
n∑
i=1

R(ei, x, ei, y)

=
n∑
i=1

R(ei, y, ei, x), by Proposition16.3 (4)

=
n∑
i=1

〈R(ei, y)ei, x〉 = 〈
n∑
i=1

R(ei, y)ei, x〉 = 〈x,Ric#(y)〉.

Hence, we showed the following proposition.
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Proposition 20.14. The Ricci transformation defined by

Ric#(x) =
n∑
i=1

R(ei, x)ei

is self-adjoint, and it is also the unique map so that

r(x) = Ric(x, x) = 〈Ric#(x), x〉, for all x ∈ g.

Definition 20.7. The eigenvalues of Ric# are called the principal Ricci curvatures .

Proposition 20.15. Given a Lie group G equipped with a left-invariant metric, if the linear
map ad(u) is skew-adjoint, then r(u) ≥ 0, where equality holds iff u is orthogonal to the
commutator ideal [g, g].

Proof. This follows from Proposition 20.12 since

r(u) = Ric(u, u) =
n∑
j=1

R(u, ej, u, ej) =
n∑
j=1

〈R(u, ej)u, ej〉 =
n∑
j=1

K(u, ej).

In particular, if u is in the center of g, then r(u) ≥ 0.

As a corollary of Proposition 20.15, we have the following result which is used in the
proof of Theorem 20.9.

Proposition 20.16. If G is a connected Lie group equipped with a bi-invariant metric and
if the Lie algebra of G is simple, then there is a constant c > 0 so that r(u) ≥ c for all unit
vector u ∈ TgG and for all g ∈ G.

Proof. First of all, by Proposition 20.7, the linear maps ad(u) are skew-adjoint for all u ∈ g,
which implies that r(u) ≥ 0. As g is simple, the commutator ideal [g, g] is either (0) or g.
But, if [g, g] = (0), then then g is abelian, which is impossible since g is simple. Therefore
[g, g] = g, which implies r(u) > 0 for all u 6= 0 (otherwise, u would be orthogonal to
[g, g] = g, which is impossible). As the set of unit vectors in g is compact, the function
u 7→ r(u) achieves it minimum c, and c > 0 as r(u) > 0 for all u 6= 0. But, dLg : g→ TgG is
an isometry for all g ∈ G, so r(u) ≥ c for all unit vectors u ∈ TgG, and for all g ∈ G.

By Myers’ theorem (Theorem 16.28), if the Lie group G satisfies the conditions of Propo-
sition 20.16, it is compact and has a finite fundamental group.

The following interesting theorem is proved in Milnor (Milnor [84], Theorem 2.2).

Theorem 20.17. A connected Lie group G admits a left-invariant metric with r(u) > 0 for
all unit vectors u ∈ g (all Ricci curvatures are strictly positive) iff G is compact and has a
finite fundamental group.
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The following criterion for obtaining a direction of negative curvature is also proved in
Milnor (Milnor [84], Lemma 2.3).

Proposition 20.18. Given a Lie group G equipped with a left-invariant metric, if u is
orthogonal to the commutator ideal [g, g], then r(u) ≤ 0, where equality holds iff ad(u) is
self-adjoint.

20.4 Connections and Curvature of Bi-Invariant

Metrics on Lie Groups

When G possesses a bi-invariant metric and G is equipped with the Levi-Civita connection,
the group exponential coincides with the exponential defined in terms of geodesics. Much
nicer formulae are also obtained for the Levi-Civita connection and the curvatures.

First of all, since by Proposition 20.8,

〈[Y, Z], X〉 = 〈Y, [Z,X]〉,

the last two terms in equation (†), namely

2〈∇XY, Z〉 = 〈[X, Y ], Z〉 − 〈[Y, Z], X〉+ 〈[Z,X], Y 〉,

cancel out, and we get

∇XY =
1

2
[X, Y ], for all X, Y ∈ gL.

This is equivalent to

∇X =
1

2
ad(X), for all X ∈ gL.

Then since

R(u, v) = ∇[u,v] −∇u∇v +∇v∇u,

we get

R(u, v) =
1

2
ad([u, v])− 1

4
ad(u)ad(v) +

1

4
ad(v)ad(u).

Using the Jacobi identity,

ad([u, v]) = ad(u)ad(v)− ad(v)ad(u),

we get

R(u, v) =
1

4
ad[u, v],

so

R(u, v)w =
1

4
[[u, v], w].
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Hence, for unit orthogonal vectors u, v, the sectional curvature K(u, v) = 〈R(u, v)u, v〉 is
given by

K(u, v) =
1

4
〈[[u, v], u], v〉,

which (by the Proposition 20.7 equality 〈[x, y], z〉 = 〈x, [y, z]〉) is rewritten as

K(u, v) =
1

4
〈[u, v], [u, v]〉.

To compute the Ricci curvature Ric(u, v), we observe that Ric(u, v) is the trace of the linear
map

y 7→ R(u, y)v =
1

4
[[u, y], v] = −1

4
[v, [u, y]] = −1

4
ad(v) ◦ ad(u)(y).

However, the bilinear form B on g given by

B(u, v) = tr(ad(u) ◦ ad(v))

is a famous object known as the Killing form of the Lie algebra g. We will take a closer
look at the Killing form shortly. For the time being, we observe that as tr(ad(u) ◦ ad(v)) =
tr(ad(v) ◦ ad(u)), we get

Ric(u, v) = −1

4
B(u, v), for all u, v ∈ g.

We summarize all this in

Proposition 20.19. For any Lie group G equipped with a bi-invariant metric, the following
properties hold:

(a) The Levi-Civita connection ∇XY is given by

∇XY =
1

2
[X, Y ], for all X, Y ∈ gL.

(b) The curvature tensor R(u, v) is given by

R(u, v) =
1

4
ad[u, v], for all u, v ∈ g,

or equivalently,

R(u, v)w =
1

4
[[u, v], w], for all u, v, w ∈ g.

(c) The sectional curvature K(u, v) is given by

K(u, v) =
1

4
〈[u, v], [u, v]〉,

for all pairs of orthonormal vectors u, v ∈ g.
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(d) The Ricci curvature Ric(u, v) is given by

Ric(u, v) = −1

4
B(u, v), for all u, v ∈ g,

where B is the Killing form, with

B(u, v) = tr(ad(u) ◦ ad(v)), for all u, v ∈ g.

Consequently, K(u, v) ≥ 0, with equality iff [u, v] = 0 and r(u) = Ric(u, u) ≥ 0, with equality
iff u belongs to the center of g.

Remark: Proposition 20.19 shows that if a Lie group admits a bi-invariant metric, then its
Killing form is negative semi-definite.

What are the geodesics in a Lie group equipped with a bi-invariant metric and the Levi-
Civita connection? The answer is simple: they are the integral curves of left-invariant vector
fields .

Proposition 20.20. For any Lie group G equipped with a bi-invariant metric, we have:

(1) The inversion map ι : g 7→ g−1 is an isometry.

(2) For every a ∈ G, if Ia denotes the map given by

Ia(b) = ab−1a, for all a, b ∈ G,

then Ia is an isometry fixing a which reverses geodesics; that is, for every geodesic γ
through a, we have

Ia(γ)(t) = γ(−t).

(3) The geodesics through e are the integral curves t 7→ expgr(tu), where u ∈ g; that is,
the one-parameter groups. Consequently, the Lie group exponential map expgr : g→ G
coincides with the Riemannian exponential map (at e) from TeG to G, where G is
viewed as a Riemannian manifold.

Proof. (1) Since

ι(g) = g−1 = g−1h−1h = (hg)−1h = (Rh ◦ ι ◦ Lh)(g),

we have
ι = Rh ◦ ι ◦ Lh, for all h ∈ G.

In particular, for h = g−1, we get

dιg = (dRg−1)e ◦ dιe ◦ (dLg−1)g.
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As (dRg−1)e and d(Lg−1)g are isometries (since G has a bi-invariant metric), dιg is an isometry
iff dιe is. Thus, it remains to show that dιe is an isometry. However, if we can prove that
dιe = −id, then dιg will be an isometry for all g ∈ G.

It remains to prove that dιe = −id. This can be done in several ways. If we denote the
multiplication of the group by µ : G×G→ G, then Te(G×G) = TeG⊕ TeG = g⊕ g, and it
is easy to see that

dµ(e,e)(u, v) = u+ v, for all u, v ∈ g.

See the proof of Proposition 18.2. This is because dµ(e,e) is a homomorphism, and because
g 7→ µ(e, g) and g 7→ µ(g, e) are the identity maps. As the map g 7→ µ(g, ι(g)) is the constant
map with value e, by differentiating and using the chain rule, we get

dιe(u) = −u,

as desired. (Another proof makes use of the fact that for every u ∈ g, the integral curve γ
through e with γ′(0) = u is a group homomorphism. Therefore,

ι(γ(t)) = γ(t)−1 = γ(−t),

and by differentiating, we get dιe(u) = −u.)

(2) We follow Milnor [81] (Lemma 21.1). From (1), the map ι is an isometry, so by
Proposition 17.3 (3), it preserves geodesics through e. Since dιe reverses TeG = g, it reverses
geodesics through e. Observe that

Ia = Ra ◦ ι ◦Ra−1 ,

so by (1), Ia is an isometry, and obviously Ia(a) = a. Again, by Proposition 17.3 (3), the
isometry Ia preserve geodesics, and since Ra and Ra−1 translate geodesics but ι reverses
geodesics, it follows that Ia reverses geodesics.

(3) We follow Milnor [81] (Lemma 21.2). Assume γ is the unique geodesic through e such
that γ′(0) = u, and let X = uL be the left invariant vector field such that X(e) = u. The
first step is to prove that γ has domain R and that it is a group homomorphism; that is,

γ(s+ t) = γ(s)γ(t).

Details of this argument are given in Milnor [81] (Lemma 20.1 and Lemma 21.2) and in
Gallot, Hulin and Lafontaine [49] (Appendix B, Solution of Exercise 2.90). We present
Milnor’s proof.

Claim. The isometries Ia have the following property: For every geodesic ω through
p = ω(0), if we let q = ω(r), then

Iq ◦ Ip(ω(t)) = ω(t+ 2r),

whenever ω(t) and ω(t+ 2r) are defined.



20.4. CONNECTIONS AND CURVATURE OF BI-INVARIANT METRICS 611

Let α(t) = ω(t+r). Then α is a geodesic with α(0) = q. As Ip reverses geodesics through
p (and similarly for Iq), we get

Iq ◦ Ip(ω(t)) = Iq(ω(−t))
= Iq(α(−t− r))
= α(t+ r) = ω(t+ 2r).

It follows from the claim that ω can be indefinitely extended; that is, the domain of ω is R.

Next we prove that γ is a homomorphism. By the claim, Iγ(t)◦Ie takes γ(u) into γ(u+2t).
Now by definition of Ia and Ie,

Iγ(t) ◦ Ie(a) = γ(t)aγ(t),

so, with a = γ(u), we get
γ(t)γ(u)γ(t) = γ(u+ 2t).

By induction, it follows that

γ(nt) = γ(t)n, for all n ∈ Z.

We now use the (usual) trick of approximating every real by a rational number. For all
r, s ∈ R with s 6= 0, if r/s is rational, say r/s = m/n where m,n are integers, then r = mt
and s = nt with t = r/m = s/n and we get

γ(r + s) = γ(t)m+n = γ(t)mγ(t)n = γ(r)γ(s).

Given any t1, t2 ∈ R with t2 6= 0, since t1 and t2 can be approximated by rationals r and s,
as r/s is rational, γ(r + s) = γ(r)γ(s), and by continuity, we get

γ(t1 + t2) = γ(t1)γ(t2),

as desired (the case t2 = 0 is trivial as γ(0) = e).

As γ is a homomorphism, by differentiating the equation γ(s+ t) = γ(s)γ(t) = Lγ(s)γ(t),
we get

d

dt
(γ(s+ t))|t=0 = (dLγ(s))e

(
d

dt
(γ(t))|t=0

)
,

that is
γ′(s) = (dLγ(s))e(γ

′(0)) = X(γ(s)),

which means that γ is the integral curve of the left-invariant vector field X, a one-parameter
group.

Conversely, let c be the one-parameter group determined by a left-invariant vector field
X = uL, with X(e) = u and let γ be the unique geodesic through e such that γ′(0) = u.
Since we have just shown that γ is a homomorphism with γ′(0) = u, by uniqueness of
one-parameter groups, c = γ; that is, c is a geodesic.
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Remarks:

(1) As Rg = ι ◦ Lg−1 ◦ ι, we deduce that if G has a left-invariant metric, then this metric
is also right-invariant iff ι is an isometry.

(2) Property (2) of Proposition 20.20 says that a Lie group with a bi-invariant metric
is a symmetric space, an important class of Riemannian spaces invented and studied
extensively by Élie Cartan. Symmetric spaces are briefly discussed in Section 22.8.

(3) The proof of 20.20 (3) given in O’Neill [91] (Chapter 11, equivalence of (5) and (6) in
Proposition 9) appears to be missing the “hard direction,” namely, that a geodesic is
a one-parameter group. Also, since left and right translations are isometries and since
isometries map geodesics to geodesics, the geodesics through any point a ∈ G are the
left (or right) translates of the geodesics through e, and thus are expressed in terms of
the group exponential. Therefore, the geodesics through a ∈ G are of the form

γ(t) = La(expgr(tu)),

where u ∈ g. Observe that γ′(0) = (dLa)e(u).

(4) Some of the other facts stated in Proposition 20.19 and Proposition 20.20 are equivalent
to the fact that a left-invariant metric is also bi-invariant; see O’Neill [91] (Chapter 11,
Proposition 9).

Many more interesting results about left-invariant metrics on Lie groups can be found in
Milnor’s paper [84]. For example, flat left-invariant metrics on Lie a group are characterized
(Theorem 1.5). We conclude this section by stating the following proposition (Milnor [84],
Lemma 7.6).

Proposition 20.21. If G is any compact, simple, Lie group, then the bi-invariant metric is
unique up to a constant. Such a metric necessarily has constant Ricci curvature.

20.5 Simple and Semisimple Lie Algebras and

Lie Groups

In this section we introduce semisimple Lie algebras. They play a major role in the structure
theory of Lie groups, but we only scratch the surface.

Definition 20.8. A Lie algebra g is simple iff it is non-abelian and if it has no ideal other
than (0) and g. A Lie algebra g is semisimple iff it has no abelian ideal other than (0).
A Lie group is simple (resp. semisimple) iff its Lie algebra is simple (resp. semisimple).

Clearly, the trivial subalgebras (0) and g itself are ideals, and the center of a Lie algebra
is an abelian ideal. It follows that the center Z(g) of a semisimple Lie algebra must be the
trivial ideal (0).
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Definition 20.9. Given two subsets a and b of a Lie algebra g, we let [a, b] be the subspace
of g consisting of all linear combinations [a, b], with a ∈ a and b ∈ b.

If a and b are ideals in g, then a + b, a ∩ b, and [a, b], are also ideals (for [a, b], use the
Jacobi identity). The last fact allows us to make the following definition.

Definition 20.10. Let g be a Lie algebra. The ideal [g, g] is called the commutator ideal of
g. The commutator ideal [g, g] is also denoted by D1g (or Dg).

If g is a simple Lie agebra, then [g, g] = g (because [g, g] is an ideal, so the simplicity of
g implies that either [g, g] = (0) or [g, g] = g. However, if [g, g] = (0), then g is abelian, a
contradiction).

Definition 20.11. The derived series (or commutator series) (Dkg) of a Lie algebra (or
ideal) g is defined as follows:

D0g = g

Dk+1g = [Dkg, Dkg], k ≥ 0.

The first three Dkg are

D0g = g

D1g = [g, g]

D2g = [D1g, D1g].

We have a decreasing sequence

g = D0g ⊇ D1g ⊇ D2g ⊇ · · · .

If g is an ideal, by induction we see that each Dkg is an ideal.

Definition 20.12. We say that a Lie algebra g is solvable iff Dkg = (0) for some k ≥ 0.

If g is abelian, then [g, g] = 0, so g is solvable. Observe that a nonzero solvable Lie
algebra has a nonzero abelian ideal, namely, the last nonzero Djg. As a consequence, a Lie
algebra is semisimple iff it has no nonzero solvable ideal.

It can be shown that every Lie algebra g has a largest solvable ideal r, called the radical
of g (see Knapp [68], Chapter I, Proposition 1.12).

Definition 20.13. The radical of a Lie algebra g is its largest solvable ideal, and it is denoted
rad g.

Then a Lie algebra is semisimple iff rad g = (0).

It can also be shown that for every (finite-dimensional) Lie algebra g, there is some
semisimple Lie algebra s such that g is a semidirect product

g = rad g⊕τ s.
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The above is called a Levi decomposition; see Knapp [68] (Appendix B), Serre [105] (Chapter
VI, Theorem 4.1 and Corollary 1), and Fulton and Harris [46] (Appendix E). The Levi
decomposition shows the importance of semisimple and solvable Lie algebras: the structure
of these algebras determines the structure of arbitrary Lie algebras.

Definition 20.14. The lower central series (Ckg) of a Lie algebra (or ideal) g is defined as
follows:

C0g = g

Ck+1g = [g, Ckg], k ≥ 0.

We have a decreasing sequence

g = C0g ⊇ C1g ⊇ C2g ⊇ · · · .

Since g is an ideal, by induction, each Ckg is an ideal.

Definition 20.15. We say that an ideal g is nilpotent iff Ckg = (0) for some k ≥ 0.

Proposition 20.22. Every nilpotent Lie algebra is solvable.

Proof. By induction, it is easy to show that

Dkg ⊆ Ckg k ≥ 0,

which immediately implies the proposition.

Note that, by definition, simple and semisimple Lie algebras are non-abelian, and a simple
algebra is a semisimple algebra. It turns out that a Lie algebra g is semisimple iff it can be
expressed as a direct sum of ideals gi, with each gi a simple algebra (see Knapp [68], Chapter
I, Theorem 1.54).

As a consequence we have the following result.

Proposition 20.23. If g is a semisimple Lie algebra, then [g, g] = g.

Proof. If

g =
m⊕
i=1

gi

where each gi is a simple ideal, then

[g, g] =

[
m⊕
i=1

gi,
m⊕
j=1

gj

]
=

m⊕
i,j=1

[gi, gj] =
m⊕
i=1

[gi, gi] =
m⊕
i=1

gi = g,

since the gi being simple and forming a direct sum, [gi, gj] = (0) whenever i 6= j and
[gi, gi] = gi.
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If we drop the requirement that a simple Lie algebra be non-abelian, thereby allowing
one dimensional Lie algebras to be simple, we run into the trouble that a simple Lie algebra
is no longer semisimple, and the above theorem fails for this stupid reason. Thus, it seems
technically advantageous to require that simple Lie algebras be non-abelian.

Nevertheless, in certain situations, it is desirable to drop the requirement that a simple Lie
algebra be non-abelian and this is what Milnor does in his paper because it is more convenient
for one of his proofs. This is a minor point but it could be confusing for uninitiated readers.

20.6 The Killing Form

The Killing form showed the tip of its nose in Proposition 20.19. It is an important concept,
and in this section we establish some of its main properties. First we recall its definition.

Definition 20.16. For any Lie algebra g over the field K (where K = R or K = C), the
Killing form B of g is the symmetric K-bilinear form B : g× g→ C given by

B(u, v) = tr(ad(u) ◦ ad(v)), for all u, v ∈ g.

If g is the Lie algebra of a Lie group G, we also refer to B as the Killing form of G.

Remark: The Killing form as defined above is not due to Killing, and is closer to a variant
due to Élie Cartan, as explained in Knapp [68] (page 754) and Armand Borel [17] (Chapter
1, §2), who claims to be responsible for this misnomer. On the other hand, the notion of
“Cartan matrix” is due to Wilhelm Killing!

Example 20.1. For example, consider the group SU(2). Its Lie algebra su(2) is the three-
dimensional Lie algebra consisting of all skew-Hermitian 2× 2 matrices with zero trace; that
is, matrices of the form

X =

(
ai b+ ic

−b+ ic −ai

)
, a, b, c ∈ R.

Let

Y =

(
di e+ if

−e+ if −di

)
, d, e, f ∈ R.

By picking a suitable basis of su(2), namely

e1 =

(
0 1
−1 0

)
e2 =

(
0 i
i 0

)
e3 =

(
i 0
0 −i

)
,
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it can be shown that

adX(e1) = LX(e1)−RX(e1)

=

(
ai b+ ic

−b+ ic −ai

)(
0 1
−1 0

)
−
(

0 1
−1 0

)(
ai b+ ic

−b+ ic −ai

)
=

(
−2ic 2ia
2ia 2ic

)
= −2ce3 + 2ae2

adX(e2) = LX(e2)−RX(e2) =

(
2ib −2a
2a −2ib

)
= −2ae1 + 2be3

adX(e3) = LX(e3)−RX(e3) =

(
0 2c− 2ib

−2c− 2ib 0

)
= 2ce1 − 2be2,

which in turn implies that

adX =

 0 −2a 2c
2a 0 −2b
−2c 2b 0

 .

Similarly

adY =

 0 −2d 2f
2d 0 −2e
−2f 2e 0

 .

Thus

B(X, Y ) = tr(adX ◦ adY ) = tr

−4ad− 4cf 4ce 4ae
4bf −4ad− 4be 4af
4bd 4cd −4be− 4cf


= −8ad− 8be− 8cf.

However

tr(XY ) = tr

(
−ad− cf − be+ i(bf − ce) −af + cd+ i(ae− bd)

af − cd+ i(ae− bd) −ad− cf − be+ i(−bf + ce)

)
= −2ad− 2be− 2cf.

Hence
B(X, Y ) = 4tr(XY ).

Example 20.2. Now if we consider the group U(2), its Lie algebra u(2) is the four-
dimensional Lie algebra consisting of all skew-Hermitian 2× 2 matrices; that is, matrices of
the form (

ai b+ ic
−b+ ic id

)
, a, b, c, d ∈ R,
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By using the basis

e1 =

(
0 1
−1 0

)
e2 =

(
0 i
i 0

)
e3 =

(
i 0
0 0

)
e4 =

(
0 0
0 i

)
,

it can be shown that
B(X, Y ) = 4tr(XY )− 2tr(X)tr(Y ).

Example 20.3. For SO(3), we know that so(3) ∼= su(2), and we get

B(X, Y ) = tr(XY ).

Actually, the following proposition can be shown.

Proposition 20.24. The following identities hold:

GL(n,R),U(n) : B(X, Y ) = 2ntr(XY )− 2tr(X)tr(Y )

SL(n,R),SU(n) : B(X, Y ) = 2ntr(XY )

SO(n) : B(X, Y ) = (n− 2)tr(XY ).

To prove Proposition 20.24, it suffices to compute the quadratic form B(X,X), because
B(X, Y ) is symmetric bilinear so it can be recovered using the polarization identity

B(X, Y ) =
1

2
(B(X + Y,X + Y )−B(X,X)−B(Y, Y )).

Furthermore, if g is the Lie algebra of a matrix group, since adX = LX − RX and LX and
RX commute, for all X,Z ∈ g, we have

(adX ◦ adX)(Z) = (L2
X − 2LX ◦RX +R2

X)(Z) = X2Z − 2XZX + ZX2.

Therefore, to compute B(X,X) = tr(adX ◦ adX), we can pick a convenient basis of g and
compute the diagonal entries of the matrix representing the linear map

Z 7→ X2Z − 2XZX + ZX2.

Unfortunately, this is usually quite laborious. Some of the computations can be found in
Jost [64] (Chapter 5, Section 5.5) and in Helgason [58] (Chapter III, §8).

Recall that a homomorphism of Lie algebras ϕ : g → h is a linear map that preserves
brackets; that is,

ϕ([u, v]) = [ϕ(u), ϕ(v)].

Proposition 20.25. The Killing form B of a Lie algebra g has the following properties.

(1) It is a symmetric bilinear form invariant under all automorphisms of g. In particular,
if g is the Lie algebra of a Lie group G, then B is Adg-invariant, for all g ∈ G; that is

B(Adg(u),Adg(v)) = B(u, v), for all u, v ∈ g and all g ∈ G.
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(2) The linear map ad(u) is skew-adjoint w.r.t B for all u ∈ g; that is,

B(ad(u)(v), w) = −B(v, ad(u)(w)), for all u, v, w ∈ g,

or equivalently,

B([u, v], w) = B(u, [v, w]), for all u, v, w ∈ g.

Proof. (1) The form B is clearly bilinear, and as tr(AB) = tr(BA), it is symmetric. If ϕ is
an automorphism of g, the preservation of the bracket implies that

ad(ϕ(u)) ◦ ϕ = ϕ ◦ ad(u),

so
ad(ϕ(u)) = ϕ ◦ ad(u) ◦ ϕ−1.

From tr(XY ) = tr(Y X), we get tr(A) = tr(BAB−1), so we get

B(ϕ(u), ϕ(v)) = tr(ad(ϕ(u)) ◦ ad(ϕ(v))

= tr(ϕ ◦ ad(u) ◦ ϕ−1 ◦ ϕ ◦ ad(v) ◦ ϕ−1)

= tr(ad(u) ◦ ad(v)) = B(u, v).

Since Adg is an automorphism of g for all g ∈ G, B is Adg-invariant.

(2) We have

B(ad(u)(v), w) = B([u, v], w) = tr(ad([u, v]) ◦ ad(w))

and
B(v, ad(u)(w)) = B(v, [u,w]) = tr(ad(v) ◦ ad([u,w])).

However, the Jacobi identity is equivalent to

ad([u, v]) = ad(u) ◦ ad(v)− ad(v) ◦ ad(u).

Consequently,

tr(ad([u, v]) ◦ ad(w)) = tr((ad(u) ◦ ad(v)− ad(v) ◦ ad(u)) ◦ ad(w))

= tr(ad(u) ◦ ad(v) ◦ ad(w))− tr(ad(v) ◦ ad(u) ◦ ad(w))

and

tr(ad(v) ◦ ad([u,w])) = tr(ad(v) ◦ (ad(u) ◦ ad(w)− ad(w) ◦ ad(u)))

= tr(ad(v) ◦ ad(u) ◦ ad(w))− tr(ad(v) ◦ ad(w) ◦ ad(u)).

As
tr(ad(u) ◦ ad(v) ◦ ad(w)) = tr(ad(v) ◦ ad(w) ◦ ad(u)),

we deduce that

B(ad(u)(v), w) = tr(ad([u, v]) ◦ ad(w)) = −tr(ad(v) ◦ ad([u,w])) = −B(v, ad(u)(w)),

as claimed.
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Remarkably, the Killing form yields a simple criterion due to Élie Cartan for testing
whether a Lie algebra is semisimple. Recall that a symmetric bilinear form ϕ : g× g→ C is
nondegenerate if and only if for every u ∈ g, if ϕ(u, v) = 0 for all v ∈ g, then u = 0.

Theorem 20.26. (Cartan’s Criterion for Semisimplicity) A Lie algebra g is semisimple iff
its Killing form B is non-degenerate.

As far as we know, all the known proofs of Cartan’s criterion are quite involved. A fairly
easy going proof can be found in Knapp [68] (Chapter 1, Theorem 1.45). A more concise
proof is given in Serre [105] (Chapter VI, Theorem 2.1).

Since a Lie group with trivial Lie algebra is discrete, this implies that the center of a
simple Lie group is discrete (because the Lie algebra of the center of a Lie group is the center
of its Lie algebra. Prove it!).

We can also characterize which Lie groups have a Killing form which is negative definite.

Theorem 20.27. A connected Lie group is compact and semisimple iff its Killing form is
negative definite.

Proof. First, assume that G is compact and semisimple. Then by Proposition 20.6, there is
an inner product on g inducing a bi-invariant metric on G, and by Proposition 20.7, every
linear map ad(u) is skew-adjoint. Therefore, if we pick an orthonormal basis of g, the matrix
X representing ad(u) is skew-symmetric, and

B(u, u) = tr(ad(u) ◦ ad(u)) = tr(XX) =
n∑

i,j=1

aijaji = −
n∑

i,j=1

a2
ij ≤ 0.

SinceG is semisimple, Cartan’s criterion implies thatB is nondegenerate, and so it is negative
definite.

Now assume that B is negative definite. If so, −B is an inner product on g, and by
Proposition 20.25, it is Ad-invariant. By Proposition 20.3, the inner product −B induces a
bi-invariant metric on G, and by Proposition 20.19 (d), the Ricci curvature is given by

Ric(u, v) = −1

4
B(u, v),

which shows that r(u) > 0 for all units vectors u ∈ g. As in the proof of Proposition
20.16, there is some constant c > 0, which is a lower bound on all Ricci curvatures r(u),
and by Myers’ theorem (Theorem 16.28), G is compact (with finite fundamental group). By
Cartan’s criterion, as B is non-degenerate, G is also semisimple.

Remark: A compact semisimple Lie group equipped with −B as a metric is an Einstein
manifold, since Ric is proportional to the metric (see Definition 16.8).
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By using Theorems 20.26 and 20.27, since the Killing forms for U(n), SU(n) and SO(n)
are given by

GL(n,R),U(n) : B(X, Y ) = 2ntr(XY )− 2tr(X)tr(Y )

SL(n,R),SU(n) : B(X, Y ) = 2ntr(XY )

SO(n) : B(X, Y ) = (n− 2)tr(XY ),

we obtain the following result:

Proposition 20.28. The Lie group SU(n) is compact and semisimple for n ≥ 2, SO(n) is
compact and semisimple for n ≥ 3, and SL(n,R) is noncompact and semisimple for n ≥ 2.
However, U(n), even though it is compact, is not semisimple.

Another way to determine whether a Lie algebra is semisimple is to consider reductive
Lie algebras. We give a quick exposition without proofs. Details can be found in Knapp [68]
(Chapter I, Sections, 7, 8).

Definition 20.17. A Lie algebra g is reductive iff for every ideal a in g, there is some ideal
b in g such that g is the direct sum

g = a⊕ b.

If g is semisimple, we can pick b = a⊥, the orthogonal complement of a with respect to
the Killing form of g. Therefore, every semisimple Lie algebra is reductive. More generally,
if g is the direct sum of a semisimple Lie algebra and an abelian Lie algebra, then g is
reductive. In fact, there are no other reductive Lie algebra. The following result is proved
in Knapp [68] (Chapter I, Corollary 1.56).

Proposition 20.29. If g is a reductive Lie algebra, then

g = [g, g]⊕ Z(g),

with [g, g] semisimple and Z(g) abelian.

Consequently, if g is reductive, then it is semisimple iff its center Z(g) is trivial. For Lie
algebras of matrices, a simple condition implies that a Lie algera is reductive. The following
result is proved in Knapp [68] (Chapter I, Proposition 1.59).

Proposition 20.30. If g is a real Lie algebra of matrices over R or C, and if g is closed
under conjugate transpose (that is, if A ∈ g, then A∗ ∈ g), then g is reductive.

The familiar Lie algebras gl(n,R), sl(n,R), gl(n,C), sl(n,C), so(n), so(n,C), u(n), su(n),
so(p, q), u(p, q), su(p, q) are all closed under conjugate transpose. Among those, by comput-
ing their center, we obtain the following result:



20.7. LEFT-INVARIANT CONNECTIONS AND CARTAN CONNECTIONS 621

Proposition 20.31. The Lie algebra sl(n,R) and sl(n,C) are semisimple for n ≥ 2, so(n),
so(n,C) is semisimple for n ≥ 3, su(n) is semisimple for n ≥ 2, so(p, q) is semisimple for
p+ q ≥ 3, and su(p, q) is semisimple for p+ q ≥ 2.

Semisimple Lie algebras and semisimple Lie groups have been investigated extensively,
starting with the complete classification of the complex semisimple Lie algebras by Killing
(1888) and corrected by Élie Cartan in his thesis (1894). One should read the Notes, espe-
cially on Chapter II, at the end of Knapp’s book [68] for a fascinating account of the history
of the theory of semisimple Lie algebras.

The theories and the body of results that emerged from these classification investigations
play a very important role, not only in mathematics, but also in physics, and constitute one
of the most beautiful chapters of mathematics. A quick introduction to these theories can be
found in Arvanitoyeorgos [11] and in Carter, Segal, Macdonald [29]. A more comprehensive
but yet still introductory presentation is given in Hall [56]. The most comprehensive treat-
ment and yet accessible is probably Knapp [68]. The most encyclopedic but very abstract
treatment is given in Bourbaki’s nine volumes [19, 22, 23]. An older is classic is Helgason
[58], which also discusses differential geometric aspects of Lie groups. Other “advanced” pre-
sentations can be found in Adams [3], Bröcker and tom Dieck [24], Serre [106, 105], Samelson
[101], Humphreys [63], Fulton and Harris [46], and Kirillov [66]. A fascinating account of
the history of Lie groups and Lie algebras is found in Armand Borel [17].

20.7 Left-Invariant Connections and Cartan

Connections

Unfortunately, if a Lie group G does not admit a bi-invariant metric, under the Levi-Civita
connection, geodesics are generally not given by the Lie group exponential map expgr : g→ G.
If we are willing to consider connections not induced by a metric, then it turns out that there
is a fairly natural connection for which the geodesics coincide with integral curves of left-
invariant vector fields. These connections are called Cartan connections. Such connections
are torsion-free (symmetric), but the price that we pay is that in general they are not com-
patible with the chosen metric. As a consequence, even though geodesics exist for all
t ∈ R, Hopf–Rinow’s theorem fails; worse, it is generally false that any two points can be
connected by a geodesic. This has to do with the failure of the exponential to be surjec-
tive. This section is heavily inspired by Postnikov [96] (Chapter 6, Sections 3–6); see also
Kobayashi and Nomizu [69] (Chapter X, Section 2).

Recall that a vector field X on a Lie group G is left-invariant if the following diagram
commutes for all a ∈ G:

TG
d(La) // TG

G
La

//

X

OO

G

X

OO
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In this section we use freely the fact that there is an isomorphism between the Lie algebra
g and the Lie algebra gL of left-invariant vector fields on G. For every X ∈ g, we denote by
XL ∈ gL the unique left-invariant vector field such that XL

1 = X.

Definition 20.18. A connection ∇ on a Lie group G is left-invariant if for any two left-
invariant vector fields XL, Y L with X, Y ∈ g, the vector field ∇XLY L is also left-invariant.

By analogy with left-invariant metrics, there is a version of Proposition 20.1 stating that
there is a one-to-one correspondence between left-invariant connections and bilinear maps
α : g× g→ g. This is shown as follows.

Given a left-invariant connection ∇ on G, we get the map α : g× g→ g given by

α(X, Y ) = (∇XLY L)1, X, Y ∈ g.

To define a map in the opposite direction, pick any basis X1, . . . , Xn of g. Then every vector
field X on G can be written as

X = f1X
L
1 + · · ·+ fnX

L
n ,

for some smooth functions f1, . . . , fn on G. If ∇ is a left-invariant connection on G, for any
left-invariant vector fields X =

∑n
i=1 fiX

L
i and Y =

∑n
j=1 gjX

L
j , we have

∇XY = ∇∑n
i=1 fiX

L
i
Y =

n∑
i=1

fi∇XL
i
Y

=
n∑
i=1

fi∇XL
i

n∑
i=1

gjX
L
j

=
n∑

i,j=1

fi
(
(XL

i gj)X
L
j + gj∇XL

i
XL
j

)
.

This shows that ∇ is completely determined by the matrix with entries

αij = α(Xi, Xj) = (∇XL
i
XL
j )1.

Conversely, any bilinear map α on g is determined by the matrix (αij) with αij =
α(Xi, Xj) ∈ g, and it is immediately checked that Formula (†) shown below

∇XY =
n∑

i,j=1

fi
(
(XL

i gj)X
L
j + gjαij

)
, (†)

defines a left-invariant connection such that (∇XL
i
XL
j )1 = αij for i, j = 1, . . . , n. In summary,

we proved the following result.
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Proposition 20.32. There is a one-to-one correspondence between left-invariant connec-
tions on G and bilinear maps α : g× g→ g.

Let us now investigate the conditions under which the geodesic curves coincide with the
integral curves of left-invariant vector fields. Let XL be any left-invariant vector field, and
let γ be the integral curve such that γ(0) = 1 and γ′(0) = X (in other words, γ(t) =
expgr(tX) = etX). Since the vector field t 7→ γ′(t) along γ is the restriction of the vector
field XL, we have

D

dt
(γ′(t)) = (∇XLXL)γ(t) = α(X,X)Lγ(t), for all t ∈ R.

Since a left-invariant vector field is determined by its value at 1, and γ is a geodesic iff
Dγ′

dt
= 0, we have (∇XLXL)γ(t) = 0 for all t ∈ R iff

α(X,X) = 0.

Every bilinear map α can be written as the sum of a symmetric bilinear map

αH(X, Y ) =
α(X, Y ) + α(Y,X)

2

and a skew-symmetric bilinear map

αS(X, Y ) =
α(X, Y )− α(Y,X)

2
,

Clearly αS(X,X) = 0. Thus α(X,X) = 0 implies that αH(X,X) = 0. Hence we conclude
that for every X ∈ g, the curve t 7→ etX is a geodesic iff α is skew-symmetric.

Proposition 20.33. The left-invariant connection ∇ induced by a bilinear map α on g has
the property that, for every X ∈ g, the curve t 7→ expgr(tX) = etX is a geodesic iff α is
skew-symmetric.

Definition 20.19. A left-invariant connection satisfying the property that for every X ∈ g,
the curve t 7→ etX is a geodesic, is called a Cartan connection.

It is easy to find out when the Cartan connection ∇ associated with a bilinear map α on
g is torsion-free (symmetric).

Proposition 20.34. The Cartan connection ∇ associated with a bilinear map α on g is
torsion-free (symmetric) iff

αS(X, Y ) =
1

2
[X, Y ], for all X, Y ∈ g,
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Proof. In order for the connection ∇ to be torsion-free we must have

∇XLY L −∇Y LX
L = [X, Y ]L, for all X, Y ∈ g.

that is,
α(X, Y )− α(Y,X) = [X, Y ], for all X, Y ∈ g.

so we deduce that the Cartan connection induced by α is torsion-free iff

αS(X, Y ) =
1

2
[X, Y ], for all X, Y ∈ g.

In view of Proposition 20.34, we have the following fact.

Proposition 20.35. Given any Lie group G, there is a unique torsion-free (symmetric)
Cartan connection ∇ given by

∇XLY L =
1

2
[X, Y ]L, for all X, Y ∈ g.

Then the same calculation that we used in the case of a bi-invariant metric on a Lie
group shows that the curvature tensor is given by

R(X, Y )Z =
1

4
[[X, Y ], Z], for all X, Y, Z ∈ g.

The following fact is easy to check.

Proposition 20.36. For any X ∈ g and any point a ∈ G, the unique geodesic γa,X such
that γa,X(0) = a and γ′a,X(0) = X, is given by

γa,X(t) = etd(Ra−1 )aXa;

that is,
γa,X = Ra ◦ γd(Ra−1 )aX ,

where γd(Ra−1 )aX(t) = etd(Ra−1 )aX .

Remark: Observe that the bilinear maps given by

α(X, Y ) = λ[X, Y ] for some λ ∈ R

are skew-symmetric, and thus induce Cartan connections. Let us show that the torsion is
given by

T (X, Y ) = (2λ− 1)[X, Y ],

and the curvature by
R(X, Y )Z = λ(1− λ)[[X, Y ], Z].
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For the torsion, we have

T (X, Y ) = ∇XY −∇YX − [X, Y ]

= α(X, Y )− α(Y,X)− [X, Y ]

= λ[X, Y ]− λ[Y,X]− [X, Y ]

= (2λ− 1)[X, Y ].

For the curvature, we get

R(X, Y )Z = ∇[X,Y ]Z +∇Y∇XZ −∇X∇YZ

= α([X, Y ], Z) +∇Y α(X,Z)−∇Xα(Y, Z)

= λ[[X, Y ], Z] + λ∇Y [X,Z]− λ∇X [Y, Z]

= λ[[X, Y ], Z] + λα(Y, [X,Z])− λα(X, [Y, Z])

= λ[[X, Y ], Z] + λ2([Y, [X,Z]]− [X, [Y, Z]]).

The Jacobi identity
[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0

yields
[X, [Y, Z]]− [Y, [X,Z]] = −[Z, [X, Y ]] = [[X, Y ], Z],

so we get
[Y, [X,Z]]− [X, [Y, Z]] = −[[X, Y ], Z],

and thus

R(X, Y )Z = λ[[X, Y ], Z] + λ2([Y, [X,Z]]− [X, [Y, Z]]) = λ(1− λ)[[X, Y ], Z].

It follows that for λ = 0 and λ = 1, we get connections where the curvature vanishes.
However, these connections have torsion. Again, we see that λ = 1/2 is the only value for
which the Cartan connection is symmetric.

In the case of a bi-invariant metric, the Levi-Civita connection coincides with the Cartan
connection.

20.8 Problems

Problem 20.1. Prove Proposition 20.11.
Hint . See Milnor [84] (Lemma 1.1).

Problem 20.2. Consider the Lie group SO(n) with the bi-invariant metric induced by the
inner product on so(n) given by

〈B1, B2〉 =
1

2
tr(B>1 B2).
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For any two matrices B1, B2 ∈ so(n), let γ be the curve given by

γ(t) = e(1−t)B1+tB2 , 0 ≤ t ≤ 1.

This is a curve “interpolating” between the two rotations R1 = eB1 and R2 = eB2 .

(1) Prove that the length L(γ) of the curve γ is given by

L(γ) =

(
−1

2
tr((B2 −B1)2)

) 1
2

.

(2) We know that the geodesic from R1 to R2 is given by

γg(t) = R1e
tB, 0 ≤ t ≤ 1,

where B ∈ so(n) is the principal log of R>1 R2 (if we assume that R>1 R2 is not a rotation by
π, i.e, does not admit −1 as an eigenvalue).

Conduct numerical experiments to verify that in general, γ(1/2) 6= γg(1/2).

Problem 20.3. Consider the set of affine maps ρ of R3 defined such that

ρ(X) = αRX +W,

where R is a rotation matrix (an orthogonal matrix of determinant +1), W is some vector
in R3, and α ∈ R with α > 0. Every such a map can be represented by the 4× 4 matrix(

αR W
0 1

)
in the sense that (

ρ(X)
1

)
=

(
αR W
0 1

)(
X
1

)
iff

ρ(X) = αRX +W.

(a) Prove that these maps form a group, denoted by SIM(3) (the direct affine similitudes
of R3).

(b) Let us now consider the set of 4× 4 real matrices of the form

B =

(
Γ W
0 0

)
,

where Γ is a matrix of the form
Γ = λI3 + Ω,
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with

Ω =

 0 −c b
c 0 −a
−b a 0

 ,

so that

Γ =

 λ −c b
c λ −a
−b a λ

 ,

and W is a vector in R3.

Verify that this set of matrices is a vector space isomorphic to (R7,+). This vector space
is denoted by sim(3).

(c) Given a matrix

B =

(
Γ W
0 0

)
as in (b), prove that

Bn =

(
Γn Γn−1W
0 0

)
where Γ0 = I3. Prove that

eB =

(
eΓ VW
0 1

)
,

where

V = I3 +
∑
k≥1

Γk

(k + 1)!
.

(d) Prove that if Γ = λI3 + Ω as in (b), then

V = I3 +
∑
k≥1

Γk

(k + 1)!
=

∫ 1

0

eΓtdt.

(e) For any matrix Γ = λI3 + Ω, with

Ω =

 0 −c b
c 0 −a
−b a 0

 ,

if we let θ =
√
a2 + b2 + c2, then prove that

eΓ = eλeΩ = eλ
(
I3 +

sin θ

θ
Ω +

(1− cos θ)

θ2
Ω2

)
, if θ 6= 0,

and eΓ = eλI3 if θ = 0.

Hint . You may use the fact that if AB = BA, then eA+B = eAeB. In general, eA+B 6= eAeB!

(f) Prove that
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1. If θ = 0 and λ = 0, then
V = I3.

2. If θ = 0 and λ 6= 0, then

V =
(eλ − 1)

λ
I3;

3. If θ 6= 0 and λ = 0, then

V = I3 +
(1− cos θ)

θ2
Ω +

(θ − sin θ)

θ3
Ω2.

4. If θ 6= 0 and λ 6= 0, then

V =
(eλ − 1)

λ
I3 +

(θ(1− eλ cos θ) + eλλ sin θ)

θ(λ2 + θ2)
Ω

+

(
(eλ − 1)

λθ2
− eλ sin θ

θ(λ2 + θ2)
− λ(eλ cos θ − 1)

θ2(λ2 + θ2)

)
Ω2.

Hint . You will need to compute
∫ 1

0
eλt sin θt dt and

∫ 1

0
eλt cos θt dt.

(g) Prove that V is invertible iff λ 6= 0 or θ 6= k2π, with k ∈ Z− {0}.
Hint . Express the eigenvalues of V in terms of the eigenvalues of Γ.

In the special case where λ = 0, show that

V −1 = I − 1

2
Ω +

1

θ2

(
1− θ sin θ

2(1− cos θ)

)
Ω2, if θ 6= 0.

Hint . Assume that the inverse of V is of the form

Z = I3 + aΩ + bΩ2,

and show that a, b, are given by a system of linear equations that always has a unique
solution.

(h) Prove that the exponential map exp: sim(3) → SIM(3), given by exp(B) = eB, is
surjective. You may use the fact that exp: so(3) → SO(3) is surjective, proved in Problem
1.4.

Problem 20.4. Refer to Problem 20.3. Similitudes can be used to describe certain defor-
mations (or flows) of a deformable body Bt in 3D. Given some initial shape B in R3 (for
example, a sphere, a cube, etc.), a deformation of B is given by a piecewise differentiable
curve

D : [0, T ]→ SIM(3),
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where each D(t) is a similitude (for some T > 0). The deformed body Bt at time t is given
by

Bt = D(t)(B),

where D(t) ∈ SIM(3) is a similitude.

The surjectivity of the exponential map exp: sim(3) → SIM(3) implies that there is a
map log : SIM(3) → sim(3), although it is multivalued. The exponential map and the log
“function” allows us to work in the simpler (noncurved) Euclidean space sim(3) (which has
dimension 7).

For instance, given two similitudes A1, A2 ∈ SIM(3) specifying the shape of B at two
different times, we can compute log(A1) and log(A2), which are just elements of the Euclidean
space sim(3), form the linear interpolant (1 − t) log(A1) + t log(A2), and then apply the
exponential map to get an interpolating deformation

t 7→ e(1−t) log(A1)+t log(A2), t ∈ [0, 1].

Also, given a sequence of “snapshots” of the deformable body B, say A0, A1, . . . , Am,
where each is Ai is a similitude, we can try to find an interpolating deformation (a curve
in SIM(3)) by finding a simpler curve t 7→ C(t) in sim(3) (say, a B-spline) interpolat-
ing logA1, logA1, . . . , logAm. Then, the curve t 7→ eC(t) yields a deformation in SIM(3)
interpolating A0, A1, . . . , Am.

(1) Write a program interpolating between two deformations, using the formulae found
in Problem 20.3. (not the built-in Matlab functions!).

(2) Write a program using cubic spline interpolation program to interpolate a sequence
of deformations given by similitudes A0, A1, . . . , Am in SIM(3). Use the formulae found in
Problem 20.3 (not the built-in Matlab functions!).

Problem 20.5. Prove that if g is an ideal, then each Dkg is an ideal.

Problem 20.6. Given a finite dimensional Lie algebra g (as a vector space over R), we
define the function B : g× g→ C (Killing form) by

B(X, Y ) = tr(ad(X) ◦ ad(Y )), X, Y ∈ g.

(1) Check that B is R-bilinear and symmetric.

(2) Let g = gl(2,R) = M2(R). Given any matrix A ∈ M2(R) with

A =

(
a b
c d

)
,

show that in the basis (E12, E11, E22, E21), the matrix of ad(A) is given by
a− d −b b 0
−c 0 0 b
c 0 0 −b
0 c −c d− a

 .
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Show that
det(xI − ad(A)) = x2(x2 − ((a− d)2 + 4bc)).

(3) Given A,A′ ∈ M2(R) with

A =

(
a b
c d

)
, A′ =

(
a′ b′

c′ d′

)
,

prove that

B(A,A′) = 2(d− a)(d′ − a′) + 4bc′ + 4cb′ = 4tr(AA′)− 2tr(A)tr(A′).

(4) Next, let g = sl(2,R). Check that the following three matrices form a basis of sl(2,R):

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

Prove that in the basis (H,X, Y ), for any

A =

(
a b
c −a

)
∈ sl(2,R),

the matrix of ad(A) is  0 −c b
−2b 2a 0
2c 0 −2a

 .

Prove that
det(xI − ad(A)) = x(x2 − 4(a2 + bc)).

(5) Given A,A′ ∈ sl(2,R) with

A =

(
a b
c −a

)
, A′ =

(
a′ b′

c′ −a′′
)
,

prove that
B(A,A′) = 8aa′ + 4bc′ + 4cb′ = 4tr(AA′).

(6) Let g = so(3). For any A ∈ so(3), with

A =

 0 −c b
c 0 −a
−b a 0

 ,

we know from Proposition 2.39 that in the basis (E1, E2, E3), the matrix of ad(A) is A itself.
Prove that

B(A,A′) = −2(aa′ + bb′ + cc′) = tr(AA′).
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(7) Recall that a symmetric bilinear form B is nondegenerate if for every X, if B(X, Y ) =
0 for all Y , then X = 0.

Prove that B on gl(2,R) = M2(R) is degenerate; B on sl(2,R) is nondegenerate but
neither positive definite nor negative definite; B on so(3) is nondegenerate negative definite.

(8) Recall that a subspace h of a Lie algebra g is a subalgebra of g if [x, y] ∈ h for all
x, y ∈ h, and an ideal if [h, x] ∈ h for all h ∈ h and all x ∈ g. Check that sl(n,R) is an ideal
in gl(n,R), and that so(n) is a subalgebra of sl(n,R), but not an ideal. Prove that if h is an
ideal in g, then the bilinear form B on h is equal to the restriction of the bilinear form B on
g to h.

Prove the following facts: for all n ≥ 2:

gl(n,R) : B(X, Y ) = 2ntr(XY )− 2tr(X)tr(Y )

sl(n,R) : B(X, Y ) = 2ntr(XY )

so(n) : B(X, Y ) = (n− 2)tr(XY ).

Problem 20.7. Given a group G, recall that its center is the subset

Z(G) = {a ∈ G, ag = ga for all g ∈ G}.

(1) Check that Z(G) is a commutative normal subgroup of G.

(2) Prove that a matrix A ∈ Mn(R) commutes with all matrices B ∈ GL(n,R) iff A = λI
for some λ ∈ R.

Hint . Remember the elementary matrices.

Prove that
Z(GL(n,R)) = {λI | λ ∈ R, λ 6= 0}.

(3) Prove that for any m ≥ 1,

Z(SO(2(m+ 1))) = {I,−I}
Z(SO(2m− 1)) = {I}
Z(SL(m,R)) = {λI | λ ∈ R, λm = 1}.

(4) Prove that a matrix A ∈ Mn(C) commutes with all matrices B ∈ GL(n,C) iff A = λI
for some λ ∈ C.

(5) Prove that for any n ≥ 1,

Z(GL(n,C)) = {λI | λ ∈ C, λ 6= 0}
Z(SL(n,C)) = {e k2πn iI | k = 0, 1, . . . , n− 1}

Z(U(n)) = {eiθI | 0 ≤ θ < 2π}
Z(SU(n)) = {e k2πn iI | k = 0, 1, . . . , n− 1}.
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(6) Prove that the groups SO(3) and SU(2) are not isomorphic (although their Lie
algebras are isomorphic).

Problem 20.8. Consider a finite dimensional Lie algebra g, but this time a vector space
over C, and define the function B : g× g→ C by

B(x, y) = tr(ad(x) ◦ ad(y)), x, y ∈ g.

The bilinear form B is called the Killing form of g. Recall that a homomorphism ϕ : g→ g
is a linear map such that ϕ([x, y]) = [ϕ(x), ϕ(y)] for all x, y ∈ g, or equivalently such that

ϕ ◦ ad(x) = ad(ϕ(x)) ◦ ϕ, for all x ∈ g,

and that an automorphism of g is a homomorphism of g that has an inverse which is also a
homomorphism of g.

(1) Prove that for every automorphism ϕ : g→ g, we have

B(ϕ(x), ϕ(y)) = B(x, y), for all x, y ∈ g.

Prove that for all x, y, z ∈ g, we have

B(ad(x)(y), z) = −B(y, ad(x)(z)),

or equivalently
B([y, x], z) = B(y, [x, z]).

(2) Review the primary decomposition theorem. For any x ∈ g, we can apply the primary
decomposition theorem to the linear map ad(x). Write

m(X) = (X − λ1)r1 · · · (X − λk)rk

for the minimal polynomial of ad(x), where λ1, . . . , λk are the distinct eigenvalues of ad(x),
and let

gλix = Ker (λiI − ad(x))ri , i = 1, . . . , k.

We know that 0 is an eigenvalue of ad(x), and we agree that λ0 = 0. Then, we have a direct
sum

g =
⊕
λi

gλix .

It is convenient to define gλx when λ is not an eigenvalue of ad(x) as

gλx = (0).

Prove that
[gλx, g

µ
x] ⊆ gλ+µ

x , for all λ, µ ∈ C.
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Hint . First, show that

((λ+ µ)I − ad(x))[y, z] = [(λI − ad(x))(y), z] + [y, (µI − ad(x))(z)],

for all x, y, z ∈ g, and then that

((λ+ µ)I − ad(x))n[y, z] =
n∑
p=0

(
n

p

)
[(λI − ad(x))p(y), (µI − ad(x))n−p(z)],

by induction on n.

Prove that g0
x is a Lie subalgebra of g.

(3) Prove that if λ + µ 6= 0, then gλx and gµx are orthogonal with respect to B (which
means that B(X, Y ) = 0 for all X ∈ gλx and all Y ∈ gµx).

Hint . For any X ∈ gλx and any Y ∈ gµx, prove that ad(X) ◦ ad(Y ) is nilpotent. Note that for
any ν and any Z ∈ gνx,

(ad(X) ◦ ad(Y ))(Z) = [X, [Y, Z]],

so by (2),
[gλx, [g

µ
x, g

ν
x]] ⊆ gλ+µ+ν

x .

Conclude that we have an orthogonal direct sum decomposition

g = g0
x ⊕

⊕
λ 6=0

(gλx ⊕ g−λx ).

Prove that if B is nondegenerate, then B is nondegenerate on each of the summands.
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Chapter 21

The Log-Euclidean Framework
Applied to SPD Matrices

21.1 Introduction

In this chapter we present an application of Lie groups and Riemannian geometry. We
describe an approach due to Arsigny, Fillard, Pennec and Ayache, to define a Lie group
structure and a class of metrics on symmetric, positive-definite matrices (SPD matrices)
which yield a new notion of mean on SPD matrices generalizing the standard notion of
geometric mean.

SPD matrices are used in diffusion tensor magnetic resonance imaging (for short, DTI),
and they are also a basic tool in numerical analysis, for example, in the generation of meshes
to solve partial differential equations more efficiently.

As a consequence, there is a growing need to interpolate or to perform statistics on SPD
matrices, such as computing the mean of a finite number of SPD matrices.

Recall that the set of n×n SPD matrices is not a vector space (because if A ∈ SPD(n),
then λA 6∈ SPD(n) if λ < 0), but it is a convex cone. Thus, the arithmetic mean of n SPD
matrices S1, . . . , Sn can be defined as (S1 + · · · + Sn)/n, which is SPD. However, there are
many situations, especially in DTI, where this mean is not adequate. There are essentially
two problems.

(1) The arithmetic mean is not invariant under inversion, which means that if
S = (S1 + · · ·+ Sn)/n, then in general S−1 6= (S−1

1 + · · ·+ S−1
n )/n.

(2) The swelling effect: the determinant det(S) of the mean S may be strictly larger than
the original determinants det(Si). This effect is undesirable in DTI because it amounts
to introducing more diffusion, which is physically unacceptable.

To circumvent these difficulties, various metrics on SPD matrices have been proposed.
One class of metrics is the affine-invariant metrics (see Arsigny, Pennec and Ayache [9]).

635
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The swelling effect disappears and the new mean is invariant under inversion, but computing
this new mean has a high computational cost, and in general, there is no closed-form formula
for this new kind of mean.

Arsigny, Fillard, Pennec and Ayache [8] have defined a new family of metrics on SPD(n)
named Log-Euclidean metrics , and have also defined a novel structure of Lie group on
SPD(n) which yields a notion of mean that has the same advantages as the affine mean
but is a lot cheaper to compute. Furthermore, this new mean, called Log-Euclidean mean, is
given by a simple closed-form formula. We will refer to this approach as the Log-Euclidean
framework .

The key point behind the Log-Euclidean framework is the fact that the exponential map
exp: S(n)→ SPD(n) is a bijection, where S(n) is the space of n×n symmetric matrices; see
Proposition 1.8. Consequently, the exponential map has a well-defined inverse, the logarithm
log : SPD(n)→ S(n).

But more is true. It turns out that exp: S(n) → SPD(n) is a diffeomorphism, a fact
stated as Theorem 2.8 in Arsigny, Fillard, Pennec and Ayache [8].

Since exp is a bijection, the above result follows from the fact that exp is a local diffeomor-
phism on S(n), because d expS is non-singular for all S ∈ S(n). In Arsigny, Fillard, Pennec
and Ayache [8], it is proved that the non-singularity of d expI near 0, which is well-known,
“propagates” to the whole of S(n).

Actually, the non-singularity of d exp on S(n) is a consequence of a more general result
stated in Theorem 2.2.

With this preparation, we are ready to present the natural Lie group structure on SPD(n)
introduced by Arsigny, Fillard, Pennec and Ayache [8] (see also Arsigny’s thesis [6]).

21.2 A Lie Group Structure on SPD(n)

Using the diffeomorphism exp: S(n) → SPD(n) and its inverse log : SPD(n) → S(n), an
abelian group structure can be defined on SPD(n) as follows.

Definition 21.1. For any two matrices S1, S2 ∈ SPD(n), define the logarithmic product
S1 � S2 by

S1 � S2 = exp(log(S1) + log(S2)).

Obviously, the multiplication operation � is commutative. The following proposition is
shown in Arsigny, Fillard, Pennec and Ayache [8] (Proposition 3.2).

Proposition 21.1. The set SPD(n) with the binary operation � is an abelian group with
identity I, and with inverse operation the usual inverse of matrices. Whenever S1 and S2

commute, then S1 � S2 = S1S2 (the usual multiplication of matrices).
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For the last statement, we need to show that if S1, S2 ∈ SPD(n) commute, then S1S2 is
also in SPD(n), and that log(S1) and log(S2) commute, which follows from the fact that if
two diagonalizable matrices commute, then they can be diagonalized over the same basis of
eigenvectors.

Actually, (SPD(n),�, I) is an abelian Lie group isomorphic to the vector space (also an
abelian Lie group!) S(n), as shown in Arsigny, Fillard, Pennec and Ayache [8] (Theorem 3.3
and Proposition 3.4).

Theorem 21.2. The abelian group (SPD(n),�, I) is a Lie group isomorphic to its abelian
Lie algebra spd(n) = S(n). In particular, the Lie group exponential in SPD(n) is identical
to the usual (matrix) exponential on S(n).

We now investigate bi-invariant metrics on the Lie group, SPD(n).

21.3 Log-Euclidean Metrics on SPD(n)

In general a Lie group does not admit a bi-invariant metric, but an abelian Lie group always
does because Adg = id ∈ GL(g) for all g ∈ G, and so the adjoint representation Ad: G →
GL(g) is trivial (that is, Ad(G) = {id}), and then the existence of bi-invariant metrics is a
consequence of Proposition 20.3.

Then given any inner product 〈−,−〉 on g, the induced bi-invariant metric on G is given
by

〈u, v〉g = 〈(dLg−1)gu, (dLg−1)gv〉,
where u, v ∈ TgG.

The geodesics on a Lie group equipped with a bi-invariant metric are the left (or right)
translates of the geodesics through e, and the geodesics through e are given by the group
exponential, as stated in Proposition 20.20 (3).

Let us apply Proposition 20.20 to the abelian Lie group SPD(n) and its Lie algebra
spd(n) = S(n). Let 〈−,−〉 be any inner product on S(n) and let 〈−,−〉S be the induced
bi-invariant metric on SPD(n). We find that the geodesics through S ∈ SPD(n) are of the
form

γ(t) = S � etV ,
where V ∈ S(n). But S = elogS, so

S � etV = elogS � etV = elogS+tV ,

so every geodesic through S is of the form

γ(t) = elogS+tV = expgr(logS + tV ). (∗)
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Remark: To avoid confusion between the exponential and the logarithm as Lie group maps
and as Riemannian manifold maps, we will denote the former by exp (instead of expgr and
log (instead of loggr), and their Riemannian counterparts by Exp and Log.

We are going to show that Exp, Log, the bi-invariant metric on SPD(n), and the distance
d(S, T ) between two matrices S, T ∈ SPD(n) can be expressed in terms of exp and log.

We begin with Exp. Note by an application of the chain rule to (∗), we obtain

γ′(0) = d explogS(V ),

and since the exponential map of SPD(n), as a Riemannian manifold, is given by

ExpS(Û) = γÛ(1), Û ∈ TSSPD(n),

where γÛ is the unique geodesic such that γÛ(0) = S and γ′
Û

(0) = Û .

Remark: Since SPD(n) is an abelian Lie group, ad = 0 and Proposition 19.1 implies that
TSSPD(n) = d(LS)I(S(n)), so TSSPD(n) is isomorphic to S(n). To compute d(LS)I , it
suffices to take a curve through I with tangent vector U ∈ S(n), namely c(t) = etU , and
calculate

(LS ◦ c)′(0) = (S � etU)′(0) =
d

dt

(
elogS+tU

)
|t=0

=
∞∑
n=0

d

dt

(
(logS + tU)k

k!

)
|t=0

.

The answer is given by the formula for d explogS(U) for the derivative of the matrix expo-
nential; see Section 2.1 just after Proposition 2.1. This calculation yields some complicated
linear matrix expression for U unless S and U commute, in which case we get

(LS ◦ c)′(0) =
d

dt

(
elogS+tU

)
|t=0

=
d

dt

(
SetU

)
|t=0

= SU.

Since Remark (3) of Proposition 20.20 implies that γ(t) = γÛ(t), we must have

d explogS(V ) = Û , so V = (d explogS)−1(Û) and

ExpS(Û) = elogS+V = elogS+(d explog S)−1(Û).

However, exp ◦ log = id, so by differentiation, we get

(d explogS)−1(Û) = d logS(Û),

which yields

ExpS(Û) = elogS+d logS(Û), Û ∈ TSSPD(n).

To get a formula for LogS T = Û with T ∈ SPD(n) and Û ∈ TSSPD(n), we solve the

equation T = ExpS(Û) with respect to Û , that is

elogS+(d explog S)−1(Û) = T,
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which yields

logS + (d explogS)−1(Û) = log T,

so Û = d explogS(log T − logS). Therefore,

LogS T = d explogS(log T − logS).

Finally, we can find an explicit formula for the Riemannian metric. Let Û , V̂ ∈ TSSPD(n).
Then

〈Û , V̂ 〉S = 〈d(LS−1)S(Û), d(LS−1)S(V̂ )〉,
We claim that d(LS−1)S = d logS, which can be shown as follows. Observe that

(log ◦LS−1)(T ) = log(S−1 � T ) = log(exp(log(S−1) + log(T )) = logS−1 + log T,

so d(log ◦LS−1)T = d logT (because S is held fixed), that is

d logS−1�T ◦d(LS−1)T = d logT ,

which, for T = S, yields (dLS−1)S = d logS since d logI = I. Therefore,

〈Û , V̂ 〉S = 〈d logS(Û), d logS(V̂ )〉.

Now the proof of Part (3) in Proposition 20.20 shows that a Lie group with a bi-
invariant metric is complete; so given any two matrices S, T ∈ SPD(n), their distance
is the length of the geodesic segment γV̂ such that γV̂ (0) = S and γV̂ (1) = T , namely∥∥∥V̂ ∥∥∥

S
=

√
〈V̂ , V̂ 〉S, where V̂ ∈ TSSPD(n) and the norm is given by the Riemannian metric.

But since ExpS(V̂ ) = γV̂ (1) = T , we observe that V̂ = LogST . Hence

d(S, T ) = ‖LogST‖S .

Using the equation

LogS T = d explogS(log T − logS)

and the fact that d(log ◦ exp)logS = d logS ◦d explogS = id, we deduce that d explogS =

(d logS)−1. But since d(LS−1)S = d logS, we may rewrite the previous equality as

d explogS = (d logS)−1 = (d(LS−1)S)−1 .

To simplify (d(LS−1)S)−1, we apply the chain rule to the identity LS−1 ◦ LS = LI = id and
deduce that (d(LS−1)S)−1 = d(LS)I . Hence we find that

d explogS = d(LS)I ,
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which in turn implies that

〈LogS T,LogS T 〉S = 〈d explogS(log T − logS), d explogS(log T − logS)〉S
= 〈d(LS)I(log T − logS), 〈d(LS)I(log T − logS)〉
= 〈log T − logS, log T − logS〉,

where the last equality used the bi-invariance of the metric on S(n). Thus we get

d(S, T ) = ‖log T − logS‖ ,

where ‖ ‖ is the norm corresponding to the inner product on spd(n) = S(n). Since 〈−,−〉 is
a bi-invariant metric on SPD(n), and since

〈Û , V̂ 〉S = 〈d logS(Û), d logS(V̂ )〉,

we see that the map exp: S(n)→ SPD(n) is an isometry (since d exp ◦d log = id).

In summary, we have proved Corollary 3.9 of Arsigny, Fillard, Pennec and Ayache [8].

Theorem 21.3. For any inner product 〈−,−〉 on S(n), if we give the Lie group SPD(n)
the bi-invariant metric induced by 〈−,−〉, then the following properties hold:

(1) For any S ∈ SPD(n), the geodesics through S are of the form

γ(t) = elogS+tV , V ∈ S(n).

(2) The exponential and logarithm associated with the bi-invariant metric on SPD(n) are
given by

ExpS(Û) = elogS+d logS(Û)

LogS(T ) = d explogS(log T − logS),

for all S, T ∈ SPD(n) and all Û ∈ TSSPD(n).

(3) The bi-invariant metric on SPD(n) is given by

〈Û , V̂ 〉S = 〈d logS(Û), d logS(V̂ )〉,

for all Û , V̂ ∈ TSSPD(n) and all S ∈ SPD(n), and the distance d(S, T ) between any
two matrices S, T ∈ SPD(n) is given by

d(S, T ) = ‖log T − logS‖ ,

where ‖ ‖ is the norm corresponding to the inner product on spd(n) = S(n).

(4) The map exp: S(n)→ SPD(n) is an isometry.
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In view of Theorem 21.3 Part (3), bi-invariant metrics on the Lie group SPD(n) are
called Log-Euclidean metrics . Since exp: S(n) → SPD(n) is an isometry and S(n) is a
vector space, the Riemannian Lie group SPD(n) is a complete, simply-connected, and flat
manifold (the sectional curvature is zero at every point); that is, a flat Hadamard manifold
(see Sakai [100], Chapter V, Section 4).

Although, in general, Log-Euclidean metrics are not invariant under the action of arbi-
trary invertible matrices, they are invariant under similarity transformations (an isometry
composed with a scaling). Recall that GL(n) acts on SPD(n) via

A · S = ASA>,

for all A ∈ GL(n) and all S ∈ SPD(n). We say that a Log-Euclidean metric is invariant
under A ∈ GL(n) iff

d(A · S,A · T ) = d(S, T ),

for all S, T ∈ SPD(n). The following result is proved in Arsigny, Fillard, Pennec and Ayache
[8] (Proposition 3.11).

Proposition 21.4. There exist metrics on S(n) that are invariant under all similarity trans-
formations, for example the metric 〈S, T 〉 = tr(ST ).

21.4 A Vector Space Structure on SPD(n)

The vector space structure on S(n) can also be transferred onto SPD(n).

Definition 21.2. For any matrix S ∈ SPD(n), for any scalar λ ∈ R, define the scalar
multiplication λ~ S by

λ~ S = exp(λ log(S)).

It is easy to check that (SPD(n),�,~) is a vector space with addition � and scalar
multiplication ~. By construction, the map exp: S(n) → SPD(n) is a linear isomorphism.
What happens is that the vector space structure on S(n) is transfered onto SPD(n) via the
log and exp maps.

21.5 Log-Euclidean Means

One of the major advantages of Log-Euclidean metrics is that they yield a computationally
inexpensive notion of mean with many desirable properties. If (x1, . . . , xn) is a list of n data
points in Rm, then it is a simple exercise to see that the mean x = (x1 + · · · + xn)/n is the
unique minimum of the map

x 7→
n∑
i=1

d2(x, xi)
2,



642 CHAPTER 21. THE LOG-EUCLIDEAN FRAMEWORK

where d2 is the Euclidean distance on Rm. We can think of the quantity

n∑
i=1

d2(x, xi)
2

as the dispersion of the data.

More generally, if (X, d) is a metric space, for any α > 0 and any positive weights
w1, . . . , wn, with

∑n
i=1wi = 1, we can consider the problem of minimizing the function

x 7→
n∑
i=1

wid(x, xi)
α.

The case α = 2 corresponds to a generalization of the notion of mean in a vector space and
was investigated by Fréchet. In this case, any minimizer of the above function is known as a
Fréchet mean. Fréchet means are not unique, but if X is a complete Riemannian manifold,
certain sufficient conditions on the dispersion of the data are known that ensure the existence
and uniqueness of the Fréchet mean (see Pennec [92]). The case α = 1 corresponds to a
generalization of the notion of median. When the weights are all equal, the points that
minimize the map

x 7→
n∑
i=1

d(x, xi)

are called Steiner points . On a Hadamard manifold, Steiner points can be characterized (see
Sakai [100], Chapter V, Section 4, Proposition 4.9).

In the case where X = SPD(n) and d is a Log-Euclidean metric, it turns out that the
Fréchet mean is unique and is given by a simple closed-form formula. We have the following
theorem from Arsigny, Fillard, Pennec and Ayache [8] (Theorem 3.13), in the case where
wi = 1/N for i = 1, . . . , N :

Theorem 21.5. Given N matrices S1, . . . , SN ∈ SPD(n), their Log-Euclidean Fréchet mean
exists and is uniquely determined by the formula

ELE(S1, . . . , SN) = exp

(
1

N

N∑
i=1

log(Si)

)
.

Furthermore, the Log-Euclidean mean is similarity-invariant, invariant by group multiplica-
tion, inversion, and exponential-invariant.

Similarity-invariance means that for any similarity A,

ELE(AS1A
>, . . . , ASNA

>) = AELE(S1, . . . , SN)A>,

and similarly for the other types of invariance.
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Observe that the Log-Euclidean mean is a generalization of the notion of geometric mean.
Indeed, if x1, . . . , xn are n positive numbers, then their geometric mean is given by

Egeom(x1, . . . , xn) = (x1 · · ·xn)
1
n = exp

(
1

n

n∑
i=1

log(xi)

)
.

The Log-Euclidean mean also has a good behavior with respect to determinants. The
following theorem is proved in Arsigny, Fillard, Pennec and Ayache [8] (Theorem 4.2):

Theorem 21.6. Given N matrices S1, . . . , SN ∈ SPD(n), we have

det(ELE(S1, . . . , SN)) = Egeom(det(S1), . . . , det(SN)).

Remark: The last line of the proof in Arsigny, Fillard, Pennec and Ayache [8] seems incor-
rect.

Arsigny, Fillard, Pennec and Ayache [8] also compare the Log-Euclidean mean with the
affine mean. We highly recommend the above paper as well as Arsigny’s thesis [6] for further
details.

21.6 Problems

Problem 21.1. Read Arsigny, Fillard, Pennec and Ayache [8], especially Section 4.6, and
implement linear interpolation of two SPD matrices.
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Chapter 22

Manifolds Arising from Group
Actions

This chapter provides the culmination of the theory presented in the previous nineteen
chapters, the concept of a homogeneous naturally reductive space.

We saw in Chapter 4 that many topological spaces arise from a group action. The scenario
is that we have a smooth action ϕ : G×M →M of a Lie group G acting on a manifold M .
If G acts transitively on M , then for any point x ∈M , if Gx is the stabilizer of x, Theorem
4.14 ensures that M is homeomorphic to G/Gx. For simplicity of notation, write H = Gx.
What we would really like is that G/H actually be a manifold. This is indeed the case,
because the transitive action of G on G/H is equivalent to a right action of H on G which
is no longer transitive, but which has some special properties (to be proper and free).

We are thus led to considering left (and right) actions ϕ : G ×M → M of a Lie group
G on a manifold M that are not necessarily transitive. If the action is not transitive, then
we consider the orbit space M/G of orbits G · x (x ∈ M). However, in general, M/G is not
even Hausdorff. It is thus desirable to look for sufficient conditions that ensure that M/G
is Hausdorff. A sufficient condition can be given using the notion of a proper map. If our
action is also free, then the orbit space M/G is indeed a smooth manifold. These results are
presented in Sections 22.1 and 22.2; see Theorem 22.11 and its corollary Theorem 22.12.

Sharper results hold if we consider Riemannian manifolds. Given a Riemannian man-
ifold N and a Lie group G acting on N , Theorem 22.14 gives us a method for obtaining
a Riemannian manifold N/G such that π : N → N/G is a Riemannian submersion (when
· : G ×N → N is a free and proper action and G acts by isometries). Theorem 22.18 gives
us a method for obtaining a Riemannian manifold N/G such that π : N → N/G is a Rie-
mannian covering (when · : G × N → N is a free and proper action of a discrete group G
acting by isometries).

In the rest of this chapter, we consider the situation where our Lie group G acts tran-
sitively on a manifold M . In this case, we know that M is diffeomorphic to G/H, where
H is the stabilizer of any given point in M . Our goal is to endow G/H with Riemannian

645
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metrics that arise from inner products on the Lie algebra g, in a way that is reminiscent of
the way in which left-invariant metrics on a Lie group are in one-to-one correspondence with
inner products on g (see Proposition 20.1). Our goal is realized by the class of reductive
homogeneous spaces, which is the object of much of the following sections.

The first step is to consider G-invariant metrics on G/H. For any g ∈ G, let τg : G/H →
G/H be the diffeomorphism given by

τg(g2H) = gg2H.

The τg are left-multiplications on cosets. A metric on G/H is said to be G-invariant iff the τg
are isometries of G/H. The existence of G-invariant metrics on G/H depends on properties
of a certain representation of H called the isotropy representation (see Proposition 22.21).
We will also need to express the derivative dπ1 : g → To(G/H) of the natural projection
π : G → G/H (where o is the point of G/H corresponding to the coset H). This can be
done in terms of the Lie group exponential expgr : g → G (see Definition 18.11). Then it
turns out that Ker (dπ1) = h, the Lie algebra of h, and dπ1 factors through g/h and yields
an isomorphism between g/h and To(G/H).

In general, it is difficult to deal with the quotient g/h, and this suggests considering the
situation where g splits as a direct sum

g = h⊕m.

In this case, g/h is isomorphic to m, and dπ1 restricts to an isomorphism between m and
To(G/H). This isomorphism can be used to transport an inner product on m to an in-
ner product on To(G/H). It is remarkable that a simple condition on m, namely Ad(H)
invariance, yields a one-to-one correspondence between G-invariant metrics on G/H and
Ad(H)-invariant inner products on m (see Proposition 22.22). This is a generalization of
the situation of Proposition 20.3 characterizing the existence of bi-invariant metrics on Lie
groups. All this is built into the definition of a reductive homogeneous space given by Defi-
nition 22.8.

It is possible to express the Levi-Civita connection on a reductive homogeneous space in
terms of the Lie bracket on g, but in general this formula is not very useful. A simplification
of this formula is obtained if a certain condition holds. The corresponding spaces are said
to be naturally reductive; see Definition 22.9. A naturally reductive space has the “nice”
property that its geodesics at o are given by applying the coset exponential map to m;
see Proposition 22.27. As we will see from the explicit examples provided in Section 22.7,
naturally reductive spaces “behave” just as nicely as their Lie group counterpart G, and the
coset exponential of m will provide all the necessary geometric information.

A large supply of naturally reductive homogeneous spaces are the symmetric spaces . Such
spaces arise from a Lie group G equipped with an involutive automorphism σ : G→ G (with
σ 6= id and σ2 = id). Let Gσ be the set of fixed points of σ, the subgroup of G given by

Gσ = {g ∈ G | σ(g) = g},
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and let Gσ
0 be the identity component of Gσ (the connected component of Gσ containing 1).

Consider the +1 and −1 eigenspaces of the derivative dσ1 : g→ g of σ, given by

k = {X ∈ g | dσ1(X) = X}
m = {X ∈ g | dσ1(X) = −X}.

Pick a closed subgroup K of G such that Gσ
0 ⊆ K ⊆ Gσ. Then it can be shown that G/K is

a reductive homogenous space and that g factors as a direct sum k⊕m, which makes G/K
a reductive space. Furthermore, if G is connected and if both Gσ

0 and K are compact, then
G/K is naturally reductive.

There is an extensive theory of symmetric spaces and our goal is simply to show that
the additional structure afforded by an involutive automorphism of G yields spaces that are
naturally reductive. The theory of symmetric spaces was entirely created by one person,
Élie Cartan, who accomplished the tour de force of giving a complete classification of these
spaces using the classification of semisimple Lie algebras that he had obtained earlier. In
Sections 22.8, 22.9, and 22.10, we provide an introduction to symmetric spaces.

22.1 Proper Maps

We saw in Chapter 4 that many manifolds arise from a group action. The scenario is that
we have a smooth action ϕ : G×M → M of a Lie group G acting on a manifold M (recall
that an action ϕ is smooth if it is a smooth map). If G acts transitively on M , then for
any point x ∈M , if Gx is the stabilizer of x, then Proposition 22.13 will show that G/Gx is
diffeomorphic to M and that the projection π : G→ G/Gx is a submersion.

If the action is not transitive, then we consider the orbit space M/G of orbits G · x.
However, in general, M/G is not even Hausdorff. It is thus desirable to look for sufficient
conditions that ensure that M/G is Hausdorff. A sufficient condition can be given using the
notion of a proper map.

Before we go any further, let us observe that the case where our action is transitive is
subsumed by the more general situation of an orbit space. Indeed, if our action · : G×M →
M is transitive, for any x ∈ M , we know that M is homeomorphic to G/H, where H = Gx

is the stabilizer of x. Furthermore, for any continuous action (not necessarily transitive), the
subgroup H is a closed subgroup of G. Then we can consider the right action G×H → G
of H on G given by

g · h = gh, g ∈ G, h ∈ H.
The orbits of this (right) action are precisely the left cosets gH of H. Therefore, the set of
left cosets G/H (the homogeneous space induced by the action · : G ×M → M) is the set
of orbits of the right action G×H → G.

Observe that we have a transitive left action of G on the space G/H of left cosets, given
by

g1 · g2H = g1g2H.
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The stabilizer of 1H is obviously H itself. Thus we recover the original transitive left action
of G on M = G/H.

Now it turns out that a right action of the form G×H → G, where H is a closed subgroup
of a Lie group G, is a special case of a free and proper right action M × G → M , in which
case the orbit space M/G is a manifold, and the projection π : G→M/G is a submersion.

Let us now define proper maps.

Definition 22.1. If X and Y are two Hausdorff topological spaces,1 a function a ϕ : X → Y
is proper iff it is continuous and for every topological space Z, the map ϕ×id : X×Z → Y ×Z
is a closed map (recall that f is a closed map iff the image of any closed set by f is a closed
set).

If we let Z be a one-point space, we see that a proper map is closed .

At first glance, it is not obvious how to check that a map is proper just from Definition
22.1. Proposition 22.2 gives a more palatable criterion.

The following proposition is easy to prove (see Bourbaki, General Topology [20], Chapter
1, Section 10).

Proposition 22.1. If ϕ : X → Y is any proper map, then for any closed subset F of X, the
restriction of ϕ to F is proper.

The following result providing a “good” criterion for checking that a map is proper can
be shown (see Bourbaki, General Topology [20], Chapter 1, Section 10).

Proposition 22.2. A continuous map ϕ : X → Y is proper iff ϕ is closed and if ϕ−1(y) is
compact for every y ∈ Y .

Proposition 22.2 shows that a homeomorphism (or a diffeomorphism) is proper.

If ϕ is proper, it is easy to show that ϕ−1(K) is compact in X whenever K is compact in
Y . Moreover, if Y is also locally compact, then we have the following result (see Bourbaki,
General Topology [20], Chapter 1, Section 10).

Proposition 22.3. If Y is locally compact, a continuous map ϕ : X → Y is a proper map
iff ϕ−1(K) is compact in X whenever K is compact in Y

In particular, this is true if Y is a manifold since manifolds are locally compact. This
explains why Lee [76] (Chapter 9) takes the property stated in Proposition 22.3 as the
definition of a proper map (because he only deals with manifolds).2

1It is not necessary to assume that X and Y are Hausdorff but, if X and/or Y are not Hausdorff, we
have to replace “compact” by “quasi-compact.” We have no need for this extra generality.

2However, Duistermaat and Kolk [43] seem to have overlooked the fact that a condition on Y (such as
local compactness) is needed in their remark on lines 5-6, page 53, just before Lemma 1.11.3.
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Finally we can define proper actions.

Remark: It is remarkable that a great deal of material discussed in this chapter, especially
in Sections 22.4–22.9, can be found in Volume IV of Dieudonné’s classical treatise on Analysis
[36]. However, it is spread over 400 pages, which does not make it easy to read.

22.2 Proper and Free Actions

Definition 22.2. Given a Hausdorff topological group G and a topological space M , a left
action · : G×M →M is proper if it is continuous and if the map

θ : G×M −→M ×M, (g, x) 7→ (g · x, x)

is proper.

The right actions associated with the transitive actions presented in Section 4.2 are
examples of proper actions.

Proposition 22.4. The action · : H × G → G of a closed subgroup H of a group G on G
(given by (h, g) 7→ hg) is proper. The same is true for the right action of H on G.

Proof. If H is a closed subgroup of G and if · : G × M → M is a proper action, then
the restriction of this action to H is also proper (by Proposition 22.1, because H ×M is
closed in G ×M). If we let M = G, then G acts on itself by left translation, and the map
θ : G×G→ G×G given by θ(g, x) = (gx, x) is a homeomorphism, so it is proper.

As desired, proper actions yield Hausdorff orbit spaces.

Proposition 22.5. If the action · : G×M →M is proper (where G is Hausdorff), then the
orbit space M/G is Hausdorff. Furthermore, M is also Hausdorff.

Proof. If the action is proper, then the map θ : G ×M → M ×M as defined in Definition
22.2 is closed. Hence the orbit equivalence relation is closed since it is the image of G×M
in M ×M . Furthermore, π : M →M/G is an open map and so by the paragraph following
Proposition 12.32, M/G is Hausdorff. The second part is left as an exercise.

We also have the following properties (see Bourbaki, General Topology [20], Chapter 3,
Section 4).

Proposition 22.6. Let · : G × M → M be a proper action, with G Hausdorff. For any
x ∈M , let G · x be the orbit of x and let Gx be the stabilizer of x. Then

(a) The map g 7→ g · x is a proper map from G to M .

(b) Gx is compact.
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(c) The canonical map from G/Gx to G · x is a homeomorphism.

(d) The orbit G · x is closed in M .

If G is locally compact, then we have the following necessary and sufficient conditions
for an action · : G×M →M to be proper (see Bourbaki, General Topology [20], Chapter 3,
Section 4).

Proposition 22.7. If G and M are Hausdorff and if G is locally compact, then the action
· : G ×M → M is proper iff for all x, y ∈ M , there exist some open sets, Vx and Vy in M ,
with x ∈ Vx and y ∈ Vy, so that the closure K of the set K = {g ∈ G | (g · Vx) ∩ Vy 6= ∅}, is
compact in G.

In particular, if G has the discrete topology, the above condition holds iff the sets
{g ∈ G | (g ·Vx)∩Vy 6= ∅} are finite. Also, if G is compact, then K is automatically compact,
so every compact group acts properly.

Corollary 22.8. If G and M are Hausdorff and if G is compact, then the action · : G×M →
M is proper.

If M is locally compact, we have the following characterization of being proper (see
Bourbaki, General Topology [20], Chapter 3, Section 4).

Proposition 22.9. Let · : G ×M → M be a continuous action, with G and M Hausdorff.
For any compact subset K of M we have

(a) The set GK = {g ∈ G | (g ·K) ∩K 6= ∅} is closed.

(b) If M is locally compact, then the action is proper iff GK is compact for every compact
subset K of M .

In the special case where G is discrete (and M is locally compact), Condition (b) says
that the action is proper iff GK is finite. We use this criterion to show that the action
· : Z × R → R given by n · x = 2nx is not proper. Note that R is locally compact. Take
K = {0, 1}, a set which is clearly compact in R. Then n ·K = {0, 2n} and {0} ⊆ (n ·K)∩K
Thus, by definition, GK = Z, which is not compact or finite in R. Intuitively, proper
actions on manifolds involve translations, rotations, and constrained expansions. The action
n · x = 2nx provides too much dilation on R to be a proper action.

Remark: If G is a Hausdorff topological group and if H is a subgroup of G, then it can be
shown that the action of G on G/H ((g1, g2H) 7→ g1g2H) is proper iff H is compact in G.

Definition 22.3. An action · : G×M → M is free if for all g ∈ G and all x ∈ M , if g 6= 1
then g · x 6= x.
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An equivalent way to state that an action · : G×M →M is free is as follows. For every
g ∈ G, let τg : M →M be the diffeomorphism of M given by

τg(x) = g · x, x ∈M.

Then the action · : G×M →M is free iff for all g ∈ G, if g 6= 1 then τg has no fixed point.

Consequently, an action · : G ×M → M is free iff for every x ∈ M , the stabilizer Gx of
x is reduced to the trivial group {1}.

For example, the action of SO(3) on S2 given by Example 4.2 of Section 4.2 is not free
since any rotation of S2 fixes the two points of the rotation axis.

If H is a subgroup of G, obviously H acts freely on G (by multiplication on the left or
on the right). This fact together with Proposition 22.4 yields the following corollary which
provides a large supply of free and proper actions.

Corollary 22.10. The action · : H × G → G of a closed subgroup H of a group G on G
(given by (h, g) 7→ hg) is free and proper. The same is true for the right action of H on G.

There is a stronger version of the results that we are going to state next that involves the
notion of principal bundle. Since this notion is not discussed in this book, we state weaker
versions not dealing with principal bundles. The weaker version that does not mention
principal bundles is usually stated for left actions; for instance, in Lee [76] (Chapter 9,
Theorem 9.16). We formulate both a left and a right version.

Theorem 22.11. Let M be a smooth manifold, G be a Lie group, and let · : G ×M → M
be a left smooth action (resp. right smooth action · : M × G → M) which is proper and
free. Then the canonical projection π : G → M/G is a submersion (which means that dπg
is surjective for all g ∈ G), and there is a unique manifold structure on M/G with this
property.

Theorem 22.11 has some interesting corollaries. Because a closed subgroup H of a Lie
group G is a Lie group, and because the action of a closed subgroup is free and proper, if
we apply Theorem 22.11 to the right action · : G ×H → G (here M = G and G = H), we
get the following result (proofs can also be found in Bröcker and tom Dieck [24] (Chapter I,
Section 4) and in Duistermaat and Kolk [43] (Chapter 1, Section 11)). This is the result we
use to verify reductive homogeneous spaces are indeed manifolds.

Theorem 22.12. If G is a Lie group and H is a closed subgroup of G, then the canonical
projection π : G→ G/H is a submersion (which means that dπg is surjective for all g ∈ G),
and there is a unique manifold structure on G/H with this property.

In the special case where G acts transitively on M , for any x ∈M , if Gx is the stabilizer
of x, then with H = Gx, Theorem 22.12 shows that there is a manifold structure on G/H
such π : G→ G/H is a submersion.

Actually, G/H is diffeomorphic to M , as shown by the following theorem whose proof
can be found in Lee [76] (Chapter 9, Theorem 9.24).
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Theorem 22.13. Let · : G ×M → M be a smooth transitive action of a Lie group G on
a smooth manifold M (so that M is a homogeneous space). For any x ∈ M , if Gx is the
stabilizer of x and if we write H = Gx, then the map πx : G/H →M given by

πx(gH) = g · x

is a diffeomorphism and an equivariant map (with respect to the action of G on G/H and
the action of G on M).

The proof of Theorem 22.13 is not particularly difficult. It relies on technical properties
of equivariant maps that we have not discussed. We refer the reader to the excellent account
in Lee [76] (Chapter 9).

By Theorem 22.12 and Theorem 22.13, every homogeneous space M (with a smooth
G-action) is equivalent to a manifold G/H as above. This is an important and very useful
result that reduces the study of homogeneous spaces to the study of coset manifolds of the
form G/H where G is a Lie group and H is a closed subgroup of G.

Here is a simple example of Theorem 22.12. Let G = SO(3) and

H =

{
M ∈ SO(3) |M =

(
1 0
0 S

)
, S ∈ SO(2)

}
.

The right action · : SO(3)×H → SO(3) given by the matrix multiplication

g · h = gh, g ∈ SO(3), h ∈ H,

yields the left cosets gH, and the orbit space SO(3)/SO(2), which by Theorem 22.12 and
Theorem 22.13 is diffeomorphic to S2.

22.3 Riemannian Submersions and Coverings Induced

by Group Actions ~

The purpose of this section is to equip the orbit space M/G of Theorem 22.11 with the inner
product structure of a Riemannian manifold. Because we provide a different proof for the
reason why reductive homogeneous manifolds are Riemannian manifolds, namely Proposition
22.23, this section is not necessary for understanding the material in Section 22.4 and may
be skipped on the first reading.

Definition 22.4. Given a Riemannian manifold (N, h), we say that a Lie group G acts by
isometries on N if for every g ∈ G, the diffeomorphism τg : N → N given by

τg(p) = g · p, p ∈ N,

is an isometry ((dτg)p : TpN → Tτg(p)N is an isometry for all p ∈ N).
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If (N, h) is a Riemannian manifold and if G is a Lie group, then π : N → N/G can be
made into a Riemannian submersion.

Theorem 22.14. Let (N, h) be a Riemannian manifold and let · : G×N → N be a smooth,
free and proper action, with G a Lie group acting by isometries of N . Then there is a unique
Riemannian metric g on M = N/G such that π : N →M is a Riemannian submersion.

Sketch of proof. We follow Gallot, Hulin, Lafontaine [49] (Chapter 2, Proposition 2.28). Pick
any x ∈ M = N/G, and any u, v ∈ TxM . For any p ∈ π−1(x), there exist unique lifts
u, v ∈ Hp such that

dπp(u) = u and dπp(v) = v.

See Definitions 17.2 and 17.4. Set

gx(u, v) = hp(u, v),

which makes (TxM, gx) isometric to (Hp, hp). See Figure 22.1. We need to check that gx
does not depend on the choice of p in the fibre π−1(x), and that (gx) is a smooth family.
We check the first property (for the second property, see Gallot, Hulin, Lafontaine [49]). If
π(q) = π(p), then there is some g ∈ G such that τg(p) = q, and (dτg)p induces an isometry
between Hp and Hq which commutes with π. Therefore, gx does not depend on the choice
of p ∈ π−1(x).

p u
_v

_

x
u

v
M = N/GT Mx

N

π

π (p)-1

Hp

Figure 22.1: A schematic illustration of the metric on N inducing the metric on M = N/G
via a lift to horizontal tangent vectors.
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As an example, take N = S2n+1, where N is isomorphic to the subspace of Cn+1 given
by

Σn =

{
(z1, z2, · · · , zn+1) ∈ Cn+1 |

n+1∑
i=1

zizi = 1

}
.

The group G = S1 = SU(1) acts by isometries on S2n+1 by complex multiplication. In other
words, given p ∈ Σn and eiθ ∈ SU(1),

eiθ · p = (eiθz1, e
iθz2, · · · , eiθzn+1) ∈ Σn.

Since the action of G on N is free and proper, Theorem 22.14 and Example 4.8 imply that
we obtain the Riemann submersion π : S2n+1 → CPn. If we pick the canonical metric on
S2n+1, by Theorem 22.14, we obtain a Riemannian metric on CPn known as the Fubini–Study
metric. Using Proposition 17.8, it is possible to describe the geodesics of CPn; see Gallot,
Hulin, Lafontaine [49] (Chapter 2).

Another situation where a group action yields a Riemannian submersion is the case where
a transitive action is reductive, considered in the next section.

We now consider the case of a smooth action · : G × M → M , where G is a discrete
group (and M is a manifold). In this case, we will see that π : M → M/G is a Riemannian
covering map.

Assume G is a discrete group. By Proposition 22.7, the action · : G×M →M is proper
iff for all x, y ∈ M , there exist some open sets, Vx and Vy in M , with x ∈ Vx and y ∈ Vy,
so that the set K = {g ∈ G | (g · Vx) ∩ Vy 6= ∅} is finite. By Proposition 22.9, the action
· : G×M →M is proper iff GK = {g ∈ G | g ·K ∩K 6= ∅} is finite for every compact subset
K of M .

It is shown in Lee [76] (Chapter 9) that the above conditions are equivalent to the
conditions below.

Proposition 22.15. If · : G × M → M is a smooth action of a discrete group G on a
manifold M , then this action is proper iff

(i) For every x ∈ M , there is some open subset V with x ∈ V such that gV ∩ V 6= ∅ for
only finitely many g ∈ G.

(ii) For all x, y ∈ M , if y /∈ G · x (y is not in the orbit of x), then there exist some open
sets V,W with x ∈ V and y ∈ W such that gV ∩W = ∅ for all g ∈ G.

The following proposition gives necessary and sufficient conditions for a discrete group
to act freely and properly often found in the literature (for instance, O’Neill [91], Berger and
Gostiaux [15], and do Carmo [39], but beware that in this last reference Hausdorff separation
is not required!).
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Proposition 22.16. If X is a locally compact space and G is a discrete group, then a smooth
action of G on X is free and proper iff the following conditions hold.

(i) For every x ∈ X, there is some open subset V with x ∈ V such that gV ∩ V = ∅ for
all g ∈ G such that g 6= 1.

(ii) For all x, y ∈ X, if y /∈ G · x (y is not in the orbit of x), then there exist some open
sets V,W with x ∈ V and y ∈ W such that gV ∩W = ∅ for all g ∈ G.

Proof. Condition (i) of Proposition 22.16 implies Condition (i) of Proposition 22.15, and
Condition (ii) is the same in Proposition 22.16 and Proposition 22.15. If Condition (i) holds,
then the action must be free since if g · x = x, then gV ∩ V 6= ∅, which implies that g = 1.

Conversely, we just have to prove that the conditions of Proposition 22.15 imply Condition
(i) of Proposition 22.16. By Condition (i) of Proposition 22.15, there is some open subset
W containing x and a finite number of elements of G, say g1, . . . , gm, with gi 6= 1, such that

giW ∩W 6= ∅, i = 1, . . . ,m.

Since our action is free and gi 6= 1, we have gi ·x 6= x, so by Hausdorff separation, there exist
some open subsets Wi,W

′
i , with x ∈ Wi and gi ·x ∈ W ′

i , such that Wi∩W ′
i = ∅, i = 1, . . . ,m.

Then if we let

V = W ∩
( m⋂
i=1

(Wi ∩ g−1
i W ′

i )

)
,

we see that V ∩ giV = ∅, and since V ⊆ W , we also have V ∩ gV = ∅ for all other g ∈ G.

Remark: The action of a discrete group satisfying the properties of Proposition 22.16 is
often called “properly discontinuous.” However, as pointed out by Lee ([76], just before
Proposition 9.18), this term is self-contradictory since such actions are smooth, and thus
continuous!

Then we have the following useful result.

Theorem 22.17. Let N be a smooth manifold and let G be discrete group acting smoothly,
freely and properly on N . Then there is a unique structure of smooth manifold on N/G such
that the projection map π : N → N/G is a covering map.

For a proof, see Gallot, Hulin, Lafontaine [49] (Theorem 1.88) or Lee [76] (Theorem 9.19).

Real projective spaces are illustrations of Theorem 22.17. Indeed, if N is the unit n-
sphere Sn ⊆ Rn+1 and G = {I,−I}, where −I is the antipodal map, then the conditions of
Proposition 22.16 are easily checked (since Sn is compact), and consequently the quotient

RPn = Sn/G

is a smooth manifold and the projection map π : Sn → RPn is a covering map. The fiber
π−1([x]) of every point [x] ∈ RPn consists of two antipodal points: x,−x ∈ Sn.
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The next step is to see how a Riemannian metric on N induces a Riemannian metric on
the quotient manifold N/G. The following theorem is the Riemannian version of Theorem
22.17.

Theorem 22.18. Let (N, h) be a Riemannian manifold and let G be discrete group acting
smoothly, freely and properly on N , and such that the map x 7→ σ · x is an isometry for all
σ ∈ G. Then there is a unique structure of Riemannian manifold on M = N/G such that
the projection map π : N →M is a Riemannian covering map.

Proof sketch. For a complete proof see Gallot, Hulin, Lafontaine [49] (Proposition 2.20). To
define a Riemannian metric g on M = N/G we need to define an inner product gp on the
tangent space TpM for every p ∈ M . Pick any q1 ∈ π−1(p) in the fibre of p. Because π is a
covering map, it is a local diffeomorphism, and thus dπq1 : Tq1N → TpM can be made into
an isometry as follows. Given any two tangent vectors u, v ∈ TpM , we define their inner
product gp(u, v) by

gp(u, v) = hq1(dπ
−1
q1

(u), dπ−1
q1

(v)).

See Figure 22.2. We need to show that gp does not depend on the choice of q1 ∈ π−1(p).
Let q2 ∈ π−1(p) be any other point in the fibre of p. By definition of M = N/G, we have
q2 = g · q1 for some g ∈ G, and we know that the map f : q 7→ g · q is an isometry of N . Since
π = π ◦ f , we have

dπq1 = dπq2 ◦ dfq1 ,
and since dπq1 : Tq1N → TpM and dπq2 : Tq2N → TpM are isometries, we get

dπ−1
q2

= dfq1 ◦ dπ−1
q1
.

But dfq1 : Tq1N → Tq2N is also an isometry, so

hq2(dπ
−1
q2

(u), dπ−1
q2

(v)) = hq2(dfq1(dπ
−1
q1

(u)), dfq1(dπ
−1
q2

(v))) = hq1(dπ
−1
q1

(u), dπ−1
q1

(v)).

Therefore, the inner product gp is well defined on TpM . It remains to prove that (gp) is a
smooth family; see Gallot, Hulin, Lafontaine [49] (Proposition 2.20).

Theorem 22.18 implies that every Riemannian metric g on the sphere Sn induces a
Riemannian metric ĝ on the projective space RPn, in such a way that the projection π : Sn →
RPn is a Riemannian covering. In particular, if U is an open hemisphere obtained by
removing its boundary Sn−1 from a closed hemisphere, then π is an isometry between U
and its image RPn − π(Sn−1) ∼= RPn − RPn−1.

We also observe that for any two points p = [x] and q = [y] in RPn, where x, y ∈ Sn, if
x · y = cos θ, with 0 ≤ θ ≤ π, then there are two possibilities:

1. x · y ≥ 0, which means that 0 ≤ θ ≤ π/2, or

2. x · y < 0, which means that π/2 < θ ≤ π.
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Figure 22.2: A schematic illustration of the metric on the covering space N inducing the
metric on M = N/G.

In the second case, since [−y] = [y] and x · (−y) = −x ·y, we can replace the representative y
of q by −y, and we have x · (−y) = cos(π− θ), with 0 ≤ π− θ < π/2. Therefore, in all cases,
for any two points p, q ∈ RPn, we can find an open hemisphere U such that p = [x], q = [y],
x, y ∈ U , and x · y ≥ 0; that is, the angle θ ≥ 0 between x and y is at most π/2.

Applying Theorem 22.18 to RPn and the canonical Euclidean metric induced by Rn+1,
since geodesics of Sn are great circles (see Section 22.7), by the discussion above, for any
two points p = [x] and q = [y] in RPn, with x, y ∈ Sn, the distance between them is given by

d(p, q) = d([x], [y]) =

{
cos−1(x · y) if x · y ≥ 0

cos−1(−x · y) if x · y < 0.

Here cos−1(z) = arccos(z) is the unique angle θ ∈ [0, π] such that cos(θ) = z. Equivalently,

d([x], [y]) = cos−1(|x · y|).

If the representatives x, y ∈ Rn+1 of p = [x] and q = [q] are not unit vectors, then

d([x], [y]) = cos−1

( |x · y|
‖x‖ ‖y‖

)
.

Note that 0 ≤ d(p, q) ≤ π/2.
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In summary, given a Riemannian manifold N and a group G acting on N , Theorem
22.14 gives us a method for obtaining a Riemannian manifold N/G such that π : N → N/G
is a Riemannian submersion (· : G × N → N is a free and proper action and G acts by
isometries). Theorem 22.18 gives us a method for obtaining a Riemannian manifold N/G
such that π : N → N/G is a Riemannian covering (· : G×N → N is a free and proper action
of a discrete group G acting by isometries).

In the next section we show that Riemannian submersions arise from a reductive homo-
geneous space.

22.4 Reductive Homogeneous Spaces

If · : G ×M → M is a smooth action of a Lie group G on a manifold M , then a certain
class of Riemannian metrics on M is particularly interesting. Recall that for every g ∈ G,
τg : M →M is the diffeomorphism of M given by

τg(p) = g · p, for all p ∈M.

If M = G and G acts on itself (on the left) by left multiplication, then τg = Lg for all
g ∈ G, as defined earlier in Section 18.1. Thus the left multiplications τg generalize left
multiplications in a group.

Definition 22.5. Given a smooth action · : G × M → M , a metric 〈−,−〉 on M is G-
invariant if τg is an isometry for all g ∈ G; that is, for all p ∈M , we have

〈d(τg)p(u), d(τg)p(v)〉τg(p) = 〈u, v〉p for all u, v ∈ TpM.

If the action is transitive, then for any fixed p0 ∈M and for every p ∈M , there is some
g ∈ G such that p = g · p0, so it is sufficient to require that d(τg)p0 be an isometry for every
g ∈ G.

From now on we are dealing with a smooth transitive action · : G×M →M , and for any
given p0 ∈M , if H = Gp0 is the stabilizer of p0, then by Theorem 22.13, M is diffeomorphic
to G/H.

Recall the notion of representation given in Definition 20.3. The existence of G-invariant
metrics on G/H depends on properties of a certain representation of H called the isotropy
representation (see Proposition 22.21). The isotropy representation is equivalent to another
representation AdG/H : H → GL(g/h) of H involving the quotient algebra g/h.

This representation is too complicated to deal with, so we consider the more tractable
situation where the Lie algebra g of G factors as a direct sum

g = h⊕m,
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for some subspace m of g such that Adh(m) ⊆ m for all h ∈ H, where h is the Lie algebra
of H. Then g/h is isomorphic to m, and the representation AdG/H : H → GL(g/h) becomes
the representation Ad: H → GL(m), where Adh is the restriction of Adh to m for every
h ∈ H. In this situation there is an isomorphism between Tp0M

∼= To(G/H) and m (where
o denotes the point in G/H corresponding to the coset H). It is also the case that if H
is “nice” (for example, compact), then M = G/H will carry G-invariant metrics, and that
under such metrics, the projection π : G→ G/H is a Riemannian submersion.

In order to proceed it is necessary to express the derivative dπ1 : g → To(G/H) of the
projection map π : G → G/H in terms of certain vector fields. This is a special case of a
process in which an action · : G×M →M associates a vector field X∗ on M to every vector
X ∈ g in the Lie algebra of G.

Definition 22.6. Given a smooth action ϕ : G ×M → M of a Lie group on a manifold
M , for every X ∈ g, we define the vector field X∗ (or XM) on M called an action field or
infinitesimal generator of the action corresponding to X, by

X∗(p) =
d

dt
(exp(tX) · p)

∣∣∣∣
t=0

, p ∈M.

For a fixed X ∈ g, the map t 7→ exp(tX) is a curve through 1 in G, so the map
t 7→ exp(tX) · p is a curve through p in M , and X∗(p) is the tangent vector to this curve at
p.

For example, in the case of the adjoint action Ad: G×g→ g, for every X ∈ g, Proposition
18.10 implies that

X∗(Y ) =
d

dt
(Ad(exp(tX))Y )

∣∣∣∣
t=0

=
d

dt
(ead(tX)Y )

∣∣∣∣
t=0

= ad(X)(Y ) = [X, Y ],

so X∗ = ad(X).

For any p0 ∈ M , there is a diffeomorphism G/Gp0 → G · p0 onto the orbit G · p0 of
p0 viewed as a manifold, and it is not hard to show that for any p ∈ G · p0, we have an
isomorphism

Tp(G · p0) = {X∗(p) | X ∈ g};
see Marsden and Ratiu [77] (Chapter 9, Section 9.3). It can also be shown that the Lie
algebra gp of the stabilizer Gp of p is given by

gp = {X ∈ g | X∗(p) = 0}.

The following technical proposition will be needed. It is shown in Marsden and Ratiu
[77] (Chapter 9, Proposition 9.3.6 and Lemma 9.3.7).

Proposition 22.19. Given a smooth action ϕ : G×M →M of a Lie group on a manifold
M , the following properties hold.
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(1) For every X ∈ g, we have

(AdgX)∗ = τ ∗g−1X∗ = (τg)∗X
∗, for every g ∈ G,

where τ ∗g−1 is the pullback associated with τg−1, and (τg)∗ is the push-forward associated
with τg. This is equivalent to

(AdgX)∗(p) = (dτg)g−1·pX
∗(g−1 · p), p ∈M.

(2) The map X 7→ X∗ from g to X(M) is a Lie algebra anti-homomorphism, which means
that

[X∗, Y ∗] = −[X, Y ]∗ for all X, Y ∈ g.

Remark: If the metric on M is G-invariant (that is, every τg is an isometry of M), then
the vector field X∗ is a Killing vector field on M for every X ∈ g.

Given a pair (G,H), where G is a Lie group and H is a closed subgroup of G, it turns
out that there is a criterion for the existence of some G-invariant metric on the homogeneous
space G/H in terms of a certain representation of H called the isotropy representation. Let
us explain what this representation is.

Recall that G acts on the left on G/H via

g1 · (g2H) = g1g2H, g1, g2 ∈ G.

For any g1 ∈ G, the diffeomorphism τg1 : G/H → G/H is left coset multiplication, given by

τg1(g2H) = g1 · (g2H) = g1g2H.

In this situation, Part (1) of Proposition 22.19 is easily proved as follows.

Proposition 22.20. For any X ∈ g and any g ∈ G, we have

(τg)∗X
∗ = (Adg(X))∗.

Proof. By definition, for any p = bH, we have τg(bH) = gbH, and

((τg)∗X
∗)τg(p) = (dτg)p(X

∗(p))

=
d

dt
(g exp(tX)bH)

∣∣∣∣
t=0

=
d

dt
(g exp(tX)g−1gbH)

∣∣∣∣
t=0

=
d

dt
(exp(tAdg(X))gbH)

∣∣∣∣
t=0

= (Adg(X))∗τg(p),

which shows that (τg)∗X∗ = (Adg(X))∗.
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Denote the point in G/H corresponding to the coset 1H = H by o. Then we have the
map

χG/H : H → GL(To(G/H)),

given by
χG/H(h) = (dτh)o, for all h ∈ H.

Using the same kind of technique that we used in proving that Ad: G→ GL(g) is a homo-
morphism (just before Proposition 18.1), we can prove that χG/H : H → GL(To(G/H)) is a
homomorphism.

Definition 22.7. The homomorphism χG/H is called the isotropy representation of the
homogeneous space G/H.

The homomorphism χG/H is a representation of the group H, and since we can view H
as the isotropy group (the stabilizer) of the element o ∈ G/H corresponding to the coset H,
it makes sense to call it the isotropy representation. It is not easy to deal with the isotropy
representation directly. Fortunately, the isotropy representation is equivalent to another
representation AdG/H : H → GL(g/h) obtained from the representation Ad: G → GL(g)
by a quotient process that we now describe.

Recall that Adg1(g2) = g1g2g
−1
1 for all g1, g2 ∈ G, and that the canonical projection

π : G → G/H is given by π(g) = gH. Then following O’Neill [91] (see Proposition 22,
Chapter 11), observe that

τh ◦ π = π ◦Adh for all h ∈ H,
since h ∈ H implies that h−1H = H, so for all g ∈ G,

(τh ◦ π)(g) = hgH = hgh−1H = (π ◦Adh)(g).

By taking derivatives at 1, we get

(dτh)o ◦ dπ1 = dπ1 ◦ Adh,

which is equivalent to the commutativity of the diagram

g
Adh //

dπ1

��

g

dπ1

��
To(G/H)

(dτh)o

// To(G/H).

For any X ∈ g, we can express dπ1(X) in terms of the vector field X∗ introduced in Definition
22.6. Indeed, to compute dπ1(X), we can use the curve t 7→ exp(tX), and we have

dπ1(X) =
d

dt
(π(exp(tX)))

∣∣∣∣
t=0

=
d

dt
(exp(tX)H)

∣∣∣∣
t=0

= X∗o .
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For every X ∈ h, since the curve t 7→ exp(tX)H in G/H has the constant value o, we see
that

Ker dπ1 = h,

and thus, dπ1 factors through g/h as dπ1 = ϕ ◦ πg/h, where πg/h : g → g/h is the quotient
map and ϕ : g/h → To(G/H) is the isomorphism given by the First Isomorphism theorem.
Explicitly, the map ϕ is given by ϕ(X + h) = dπ1(X), for all X ∈ g. Since Adh is an
isomorphism, the kernel of the map πg/h ◦ Adh is h, and by the First Isomophism theorem

there is a unique map Ad
G/H
h : g/h→ g/h such that

πg/h ◦ Adh = Ad
G/H
h ◦ πg/h

making the following diagram commute:

g
Adh //

πg/h
��

g

πg/h
��

g/h
Ad

G/H
h

// g/h.

Explicitly, the map Ad
G/H
h is given by Ad

G/H
h (X + h) = (πg/h ◦Adh)(X) for all X ∈ g. Then

we have the following diagram in which the outermost rectangle commutes and the upper
rectangle commutes:

g
Adh //

πg/h
��

g

πg/h
��

g/h
Ad

G/H
h //

ϕ

��

g/h

ϕ

��
To(G/H)

(dτh)o

// To(G/H).

Since πg/h is surjective, it follows that the lower rectangle commutes; that is

g/h
Ad

G/H
h //

ϕ

��

g/h

ϕ

��
To(G/H)

(dτh)o
// To(G/H)

commutes. Observe that Ad
G/H
h is a linear isomorphism of g/h for every h ∈ H, so that

the map AdG/H : H → GL(g/h) is a representation of H. This proves the first part of the
following proposition.
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Proposition 22.21. Let (G,H) be a pair where G is a Lie group and H is a closed subgroup
of G. The following properties hold:

(1) The representations χG/H : H → GL(To(G/H)) and AdG/H : H → GL(g/h) are equiv-
alent; this means that for every h ∈ H, we have the commutative diagram

g/h
Ad

G/H
h //

ϕ

��

g/h

ϕ

��
To(G/H)

(dτh)o

// To(G/H),

where the isomorphism ϕ : g/h → To(G/H) and the quotient map Ad
G/H
h : g/h → g/h

are defined as above.

(2) The homogeneous space G/H has some G-invariant metric iff the closure of AdG/H(H)
is compact in GL(g/h). Furthermore, this metric is unique up to a scalar if the isotropy
representation is irreducible.

We just proved the first part, which is Proposition 2.40 of Gallot, Hulin, Lafontaine [49]
(Chapter 2, Section A). The proof of the second part is very similar to the proof of Theorem
20.5; see Gallot, Hulin, Lafontaine [49] (Chapter 2, Theorem 2.42).

The representation AdG/H : H → GL(g/h) which involves the quotient algebra g/h is
hard to deal with. To make things more tractable, it is natural to assume that g splits as a
direct sum g = h⊕m for some well-behaved subspace m of g, so that g/h is isomorphic to m.

Definition 22.8. Let (G,H) be a pair where G is a Lie group and H is a closed subgroup
of G. We say that the homogeneous space G/H is reductive if there is some subspace m of
g such that

g = h⊕m,

and
Adh(m) ⊆ m for all h ∈ H.

See Figure 22.3.

Observe that unlike h, which is a Lie subalgebra of g, the subspace m is not necessarily
closed under the Lie bracket, so in general it is not a Lie algebra. Also, since m is finite-
dimensional and since Adh is an isomorphism, we actually have Adh(m) = m.

Definition 22.8 allows us to deal with g/h in a tractable manner, but does not provide
any means of defining a metric on G/H. We would like to define G-invariant metrics on
G/H and a key property of a reductive spaces is that there is a criterion for the existence of
G-invariant metrics on G/H in terms of Ad(H)-invariant inner products on m.
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e

o
To (M)

M G/H=~

G

H

π

h

m

Figure 22.3: A schematic illustration of a reductive homogeneous manifold. Note that
g = h⊕m and that To(M) ∼= m via dπ1.

Since g/h is isomorphic to m, by the reasoning just before Proposition 22.21, the map
dπ1 : g → To(G/H) restricts to an isomorphism between m and To(G/H) (where o denotes
the point in G/H corresponding to the coset H). The representation AdG/H : H → GL(g/h)
becomes the representation Ad: H → GL(m), where Adh is the restriction of Adh to m for
every h ∈ H.

We also know that for any X ∈ g, we can express dπ1(X) in terms of the vector field X∗

introduced in Definition 22.6 by
dπ1(X) = X∗o ,

and that
Ker dπ1 = h.

Thus, the restriction of dπ1 to m is an isomorphism onto To(G/H), given by X 7→ X∗o . Also,
for every X ∈ g, since g = h⊕m, we can write X = Xh + Xm, for some unique Xh ∈ h and
some unique Xm ∈ m, and

dπ1(X) = dπ1(Xm) = X∗o .
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We use the isomorphism dπ1 to transfer any inner product 〈−,−〉m on m to an inner product
〈−,−〉 on To(G/H), and vice-versa, by stating that

〈X, Y 〉m = 〈X∗o , Y ∗o 〉, for all X, Y ∈ m;

that is, by declaring dπ1 to be an isometry between m and To(G/H). See Figure 22.3.

If the metric on G/H is G-invariant, then the map p 7→ exp(tX) · p = exp(tX)aH (with
p = aH ∈ G/H, a ∈ G) is an isometry of G/H for every t ∈ R, so by Proposition 17.9, X∗

is a Killing vector field. This fact is needed in Section 22.6.

Proposition 22.22. Let (G,H) be a pair of Lie groups defining a reductive homogeneous
space M = G/H, with reductive decomposition g = h⊕m. The following properties hold:

(1) The isotropy representation χG/H : H → GL(To(G/H)) is equivalent to the represen-
tation Ad: H → GL(m) (where Adh is restricted to m for every h ∈ H); this means
that for every h ∈ H, we have the commutative diagram

m
Adh //

dπ1

��

m

dπ1

��
To(G/H)

(dτh)o
// To(G/H),

where dπ1 : m → To(G/H) is the isomorphism induced by the canonical projection
π : G→ G/H.

(2) By making dπ1 an isometry between m and To(G/H) (as explained above), there is a
one-to-one correspondence between G-invariant metrics on G/H and Ad(H)-invariant
inner products on m (inner products 〈−,−〉m such that

〈u, v〉m = 〈Adh(u),Adh(v)〉m, for all h ∈ H and all u, v ∈ m).

(3) The homogeneous space G/H has some G-invariant metric iff the closure of Ad(H) is
compact in GL(m). In particular, if H is compact, then a G-invariant metric on G/H
always exists. Furthermore, if the representation Ad: H → GL(m) is irreducible, then
such a metric is unique up to a scalar.

Proof. Part (1) follows immediately from the fact that Adh(m) ⊆ m for all h ∈ H and from
the identity

(dτh)o ◦ dπ1 = dπ1 ◦ Adh,

which was proved just before Proposition 22.21. Part (2) is proved in O’Neill [91] (Chapter 11,
Proposition 22), Arvanitoyeorgos [11] (Chapter 5, Proposition 5.1), and Ziller [119] (Chapter



666 CHAPTER 22. MANIFOLDS ARISING FROM GROUP ACTIONS

6, Lemma 6.22). Since the proof is quite informative, we provide it. First assume that the
metric on G/H is G-invariant. By restricting this G-invariant metric to the tangent space
at o, we will show the existence of a metric on m obeys the property of Ad(H) invariance.
For every h ∈ H, the map τh is an isometry of G/H, so in particular we have

〈(dτh)o(X∗o ), (dτh)o(Y
∗
o )〉 = 〈X∗o , Y ∗o 〉, for all X, Y ∈ m.

However, the commutativity of the diagram in (1) can be expressed as

(dτh)o(X
∗
o ) = (Adh(X))∗o,

so we get
〈(Adh(X))∗o, (Adh(Y ))∗o〉 = 〈X∗o , Y ∗o 〉,

which is equivalent to

〈Adh(X),Adh(Y )〉m = 〈X, Y 〉m, for all X, Y ∈ m.

Conversely, assume we have an inner product 〈−,−〉m on m which is Ad(H)-invariant.
The proof strategy is as follows: place the metric on To(G/H) and then use the maps
τg : G/H → G/H to transfer this metric around G/H in a fashion that is consistent with
the notion of G-invariance. The condition of Ad(H)-invariance ensures that this construction
of the metric on G/H is well defined.

First we transfer this metric on To(G/H) using the isomorphism dπ1 between m and
To(G/H). Since (dτa)o : To(G/H)→ Tp(G/H) is a linear isomorphism with inverse (dτa−1)p,
for any p = aH, we define a metric on G/H as follows: for every p ∈ G/H, for any coset
representative aH of p, set

〈u, v〉p = 〈(dτa−1)p(u), (dτa−1)p(v)〉o, for all u, v ∈ Tp(G/H).

We need to show that the above does not depend on the representative aH chosen for p. This
is where we make use of the Ad(H)-invariant condition. By reversing the computation that
we just made, each map (dτh)o is an isometry of To(G/H). If bH is another representative
for p, so that aH = bH, then b−1a = h for some h ∈ H, so b−1 = ha−1, and we have

〈(dτb−1)p(u), (dτb−1)p(v)〉o = 〈(dτh)o((dτa−1)p(u)), (dτh)o((dτa−1)p(v))〉o
= 〈(dτa−1)p(u), (dτa−1)p(v)〉o,

since (dτh)o is an isometry.

To prove that the metric that we defined is smooth, we use a result that will be proved
later, so this part of the proof can be skipped during a first reading. Since G is a principal
H-bundle over G/H (see Theorem 22.12), for every p ∈ G/H, there is a local trivialization
ϕα : π−1(Uα) → Uα × H, where Uα is some open subset in G/H containing p, so smooth
local sections over Uα exist (for example, pick some h ∈ H and define s : Uα → π−1(Uα) by
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s(q) = ϕ−1
α (q, h), for all q ∈ Uα). Given any smooth local section s over Uα (as s(q) ∈ G and

q = π(s(q)) = s(q)H), we have

〈u, v〉q = 〈(dτs(q)−1)q(u), dτs(q)−1)q(u)〉o, for all q ∈ Uα and all u, v ∈ Tq(G/H),

which shows that the resulting metric on G/H is smooth. By definition, the metric that we
just defined is G-invariant.

Part (3) is shown in Gallot, Hulin, Lafontaine [49] (Chapter 2, Theorem 2.42).

At this stage we have a mechanism to equip G/H with a Riemannian metric from an inner
product m which has the special property of being Ad(H)-invariant, but this mechanism does
not provide a Riemannian metric on G. The construction of a Riemannian metric on G can
be done by extending the Ad(H)-invariant metric on m to all of g, and using the bijective
correspondence between left-invariant metrics on a Lie group G, and inner products on its
Lie algebra g given by Proposition 20.1.

Proposition 22.23. Let (G,H) be a pair of Lie groups defining a reductive homogeneous
space M = G/H, with reductive decomposition g = h⊕ m. If m has some Ad(H)-invariant
inner product 〈−,−〉m, for any inner product 〈−,−〉g on g extending 〈−,−〉m such that h
and m are orthogonal, if we give G the left-invariant metric induced by 〈−,−〉g, then the
map π : G→ G/H is a Riemannian submersion.

Proof. (After O’Neill [91] (Chapter 11, Lemma 24). The map π : G → G/H is clearly a
smooth submersion. For Condition (2) of Definition 17.3, for all a, b ∈ G, since

τa(π(b)) = τa(bH) = abH = La(b)H = π(La(b)),

we have

τa ◦ π = π ◦ La,
and by taking derivatives at 1, we get

d(τa)o ◦ dπ1 = dπa ◦ (dLa)1.

The horizontal subspace at a ∈ G is Ha = (dLa)1(m), and since the metric on G is left-
invariant, (dLa)1 is an isometry; the map d(τa)o is an isometry because the metric on G/H
is G-invariant, and dπ1 is an isometry between m and To(G/H) by construction, so

dπa = (dτa)o ◦ dπ1 ◦ (dL−1
a )1

is an isometry between Ha and Tp(G/H), where p = aH.

By Proposition 17.8, a Riemannian submersion carries horizontal geodesics to geodesics.
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22.5 Examples of Reductive Homogeneous Spaces

We now apply the theory of Propositions 22.22 and 22.23 to construct a family of reductive
homogeneous spaces, the Stiefel manifolds S(k, n). We first encountered the Stiefel manifolds
in Section 4.4. For any n ≥ 1 and any k with 1 ≤ k ≤ n, let S(k, n) be the set of all
orthonormal k-frames, where an orthonormal k-frame is a k-tuples of orthonormal vectors
(u1, . . . , uk) with ui ∈ Rn. Recall that SO(n) acts transitively on S(k, n) via the action
· : SO(n)× S(k, n)→ S(k, n)

R · (u1, . . . , uk) = (Ru1, . . . , Ruk).

and that the stabilizer of this action is

H =

{(
I 0
0 R

) ∣∣∣∣ R ∈ SO(n− k)

}
.

Theorem 22.13 implies that S(k, n) ∼= G/H, with G = SO(n) and H ∼= SO(n − k). Ob-
serve that the points of G/H ∼= S(k, n) are the cosets QH, with Q ∈ SO(n); that is, the
equivalence classes [Q], with the equivalence relation on SO(n) given by

Q1 ≡ Q2 iff Q2 = Q1R̃, for some R̃ ∈ H.

If we write Q = [Y Y⊥], where Y consists of the first k columns of Q and Y⊥ consists of the
last n − k columns of Q, it is clear that [Q] is uniquely determined by Y . In fact, if Pn,k
denotes the projection matrix consisting of the first k columns of the identity matrix In,

Pn,k =

(
Ik

0n−k,k

)
,

for any Q = [Y Y⊥], the unique representative Y of the equivalence class [Q] is given by

Y = QPn,k.

Furthermore Y⊥ is characterized by the fact that Q = [Y Y⊥] is orthogonal, namely, Y Y > +
Y⊥Y >⊥ = I.

Define

h =

{(
0 0
0 S

) ∣∣∣∣ S ∈ so(n− k)

}
, m =

{(
T −A>
A 0

) ∣∣∣∣ T ∈ so(k), A ∈ Mn−k,k(R)

}
.

Clearly g = so(n) = h⊕m. For h ∈ H with h =

(
I 0
0 R

)
, note that h−1 =

(
I 0
0 R>

)
. Given

any X ∈ m with X =

(
T −A>
A 0

)
, we see that

hXh−1 =

(
I 0
0 R

)(
T −A>
A 0

)(
I 0
0 R>

)
=

(
T −A>R>
RA 0

)
∈ m,
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which implies that Adh(m) ⊆ m. Therefore Definition 22.8 shows that S(k, n) ∼= G/H is a
reductive homogeneous manifold with g/h ∼= m.

Since H ∼= SO(n − k) is compact, Proposition 22.22 guarantees the existence of a G-
invariant metric on G/H, which in turn ensures the existence of an Ad(H)-invariant metric
on m. Theorem 20.27 implies that we may construct such a metric by using the Killing form
on so(n). We know that the Killing form on so(n) is given by B(X, Y ) = (n − 2)tr(XY ).

Now observe that if take

(
0 0
0 S

)
∈ h and

(
T −A>
A 0

)
∈ m, then

tr

((
0 0
0 S

)(
T −A>
A 0

))
= tr

(
0 0
SA 0

)
= 0.

Furthermore, it is clear that dim(m) = dim(g)− dim(h), so m is the orthogonal complement
of h with respect to the Killing form. If X, Y ∈ m, with

X =

(
S −A>
A 0

)
, Y =

(
T −B>
B 0

)
,

observe that

tr

((
S −A>
A 0

)(
T −B>
B 0

))
= tr

(
ST − A>B −SB>

AT −AB>
)

= tr(ST )− 2tr(A>B),

and since S> = −S, we have

tr(ST )− 2tr(A>B)) = −tr(S>T )− 2tr(A>B),

so we define an inner product on m by

〈X, Y 〉 = −1

2
tr(XY ) =

1

2
tr(X>Y ) =

1

2
tr(S>T ) + tr(A>B).

We give h the same inner product. For X, Y ∈ m as defined above, and h =

(
I 0
0 R

)
∈ H,

we have

Adh(X) = hXh−1 =

(
S −A>R>
RA 0

)
Adh(Y ) = hY h−1 =

(
T −B>R>
RB 0

)
.

Thus

tr(Adh(X)Adh(Y )) = tr

(
ST − A>B −SB>R>
RAT −RAB>R>

)
= tr(ST )− tr(A>B)− tr(RAB>R>)

= tr(ST )− tr(A>B)− tr(AB>R>R)

= tr(ST )− tr(A>B)− tr(AB>)

= tr(ST )− 2tr(A>B) = tr(XY ),
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and this shows that the inner product defined on m is Ad(H)-invariant.

We summarize all this in the following proposition.

Proposition 22.24. If X, Y ∈ m, with

X =

(
S −A>
A 0

)
, Y =

(
T −B>
B 0

)
,

then the fomula

〈X, Y 〉 = −1

2
tr(XY ) =

1

2
tr(S>T ) + tr(A>B)

defines an Ad(H)-invariant inner product on m. If we give h the same inner product so that
g also has the inner product 〈X, Y 〉 = −1

2
tr(XY ), then m and h are orthogonal.

Observe that there is a bijection between the space m of n× n matrices of the form

X =

(
S −A>
A 0

)
and the set of n× k matrices of the form

∆1 =

(
S
A

)
,

but the inner product given by

〈∆1,∆2〉 = tr(∆>1 ∆2),

where

∆2 =

(
T
B

)
,

yields
〈∆1,∆2〉 = tr(S>T ) + tr(A>B),

without the factor 1/2 in front of S>T . These metrics are different.

The vector space m is the tangent space ToS(k, n) to S(k, n) at o = [H], the coset of
the point corresponding to H. For any other point [Q] ∈ G/H ∼= S(k, n), the tangent space
T[Q]S(k, n) is given by

T[Q]S(k, n) =

{
Q

(
S −A>
A 0

) ∣∣∣∣ S ∈ so(k), A ∈ Mn−k,k(R)

}
.

Using the decomposition Q = [Y Y⊥], where Y consists of the first k columns of Q and
Y⊥ consists of the last n− k columns of Q, we have

[Y Y⊥]

(
S −A>
A 0

)
= [Y S + Y⊥A − Y A>].
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If we write X̃ = Y S + Y⊥A, since Y and Y⊥ are parts of an orthogonal matrix, we have
Y >⊥ Y = 0n−k,k, Y >Y = Ik, and Y >⊥ Y⊥ = In−k, so we can recover A from X̃ and Y⊥ and S

from X̃ and Y , by

Y >⊥ X̃ = Y >⊥ (Y S + Y⊥A) = A,

and

Y >X̃ = Y >(Y S + Y⊥A) = S.

Since A = Y >⊥ X̃, we also have A>A = X̃>Y⊥Y >⊥ X̃ = X̃>(I − Y Y >)X̃.

Therefore, given Q = [Y Y⊥], the n× n matrices

X̂ = [Y Y⊥]

(
S −A>
A 0

)
(∗)

are in one-to-one correspondence with the n× k matrices of the form X̃ = Y S + Y⊥A.

Since Y describes an element of S(k, n), we can say that the tangent vectors to S(k, n)
at Y are of the form

X̃ = Y S + Y⊥A, S ∈ so(k), A ∈ Mn−k,k(R).

Since [Y Y⊥] is an orthogonal matrix, we get Y >X̃ = S, which shows that Y >X̃ is skew-
symmetric. Conversely, since the columns of [Y Y⊥] form an orthonormal basis of Rn, every

n× k matrix X̃ can be written as

X̃ =
(
Y Y⊥

)(S
A

)
= Y S + Y⊥A,

where S ∈ Mk,k(R) and A ∈ Mn−k,k(R), and if Y >X̃ is skew-symmetric, then S = Y >X̃
is also skew-symmetric. Therefore, the tangent vectors to S(k, n) at Y are the vectors

X̃ ∈ Mn,k(R) such that Y >X̃ is skew-symmetric. This is the description given in Edelman,
Arias and Smith [44].

Another useful observation is that if X̃ = Y S + Y⊥A is a tangent vector to S(k, n) at Y ,

then the square norm 〈X̂, X̂〉 (in the canonical metric) is given by

〈X̂, X̂〉 = tr
(
X̃>
(
I − 1

2
Y Y >

)
X̃
)
,
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where X̂ is the matrix defined in (∗). Indeed, we have

X̃>
(
I − 1

2
Y Y >

)
X̃ = (S>Y > + A>Y >⊥ )

(
I − 1

2
Y Y >

)
(Y S + Y⊥A)

=
(
S>Y > + A>Y >⊥ −

1

2
S>Y >Y Y > − 1

2
A>Y >⊥ Y Y

>)(Y S + Y⊥A)

=
(1

2
S>Y > + A>Y >⊥

)
(Y S + Y⊥A)

=
1

2
S>Y >Y S + A>Y >⊥ Y⊥A+

1

2
S>Y >Y⊥A+ A>Y >⊥ Y S

=
1

2
S>S + A>A.

But then

tr
(
X̃>
(
I − 1

2
Y Y >

)
X̃
)

=
1

2
tr(S>S) + tr(A>A) = 〈X̂, X̂〉,

because

X̂ = [Y Y⊥]

(
S −A>
A 0

)
and the matrix [Y Y⊥] is orthogonal, as claimed. By polarization we find that the canonical
metric is given by

〈X1, X2〉 = tr
(
X>1

(
I − 1

2
Y Y >

)
X2

)
.

In that paper it is also observed that because Y⊥ has rank n − k (since Y >⊥ Y⊥ = I),
for every (n − k) × k matrix A, there is some n × k matrix C such that A = Y >⊥ C (every
column of A must be a linear combination of the n − k columns of Y⊥, which are linearly
independent). Thus, we have

Y S + Y⊥A = Y S + Y⊥Y
>
⊥ C = Y S + (I − Y Y >)C.

In order to describe the geodesics of S(k, n) ∼= G/H, we will need the additional require-
ment of naturally reductiveness which is defined in the next section.

22.6 Naturally Reductive Homogeneous Spaces

When M = G/H is a reductive homogeneous space that has a G-invariant metric, it is possi-
ble to give an expression for (∇X∗Y

∗)o (where X∗ and Y ∗ are the vector fields corresponding
to X, Y ∈ m, and ∇X∗Y

∗ is the Levi-Civita connection).

IfX∗, Y ∗, Z∗ are the Killing vector fields associated withX, Y, Z ∈ m, then by Proposition
17.10 we have

X∗〈Y ∗, Z∗〉 = 〈[X∗, Y ∗], Z∗〉+ 〈Y ∗, [X∗, Z∗]〉
Y ∗〈X∗, Z∗〉 = 〈[Y ∗, X∗], Z∗〉+ 〈X∗, [Y ∗, Z∗]〉
Z∗〈X∗, Y ∗〉 = 〈[Z∗, X∗], Y ∗〉+ 〈X∗, [Z∗, Y ∗]〉.
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Using the Koszul formula (see Proposition 14.9),

2〈∇X∗Y
∗, Z∗〉 = X∗(〈Y ∗, Z∗〉) + Y ∗(〈X∗, Z∗〉)− Z∗(〈X∗, Y ∗〉)

− 〈Y ∗, [X∗, Z∗]〉 − 〈X∗, [Y ∗, Z∗]〉 − 〈Z∗, [Y ∗, X∗]〉,

we obtain

2〈∇X∗Y
∗, Z∗〉 = 〈[X∗, Y ∗], Z∗〉+ 〈[X∗, Z∗], Y ∗〉+ 〈[Y ∗, Z∗], X∗〉.

Since [X∗, Y ∗] = −[X, Y ]∗ (see Proposition 22.19), we obtain

2〈∇X∗Y
∗, Z∗〉 = −〈[X, Y ]∗, Z∗〉 − 〈[X,Z]∗, Y ∗〉 − 〈[Y, Z]∗, X∗〉.

The problem is that the vector field ∇X∗Y
∗ is not necessarily of the form W ∗ for some

W ∈ g. However, we can find its value at o. By evaluating at o and using the fact that
X∗o = (X∗m)o for any X ∈ g, we obtain

2〈(∇X∗Y
∗)o, Z

∗
o 〉 = −〈([X, Y ]∗m)o, Z

∗
o 〉 − 〈([X,Z]∗m)o, Y

∗
o 〉 − 〈([Y, Z]∗m)o, X

∗
o 〉.

Hence

2〈(∇X∗Y
∗)o, Z

∗
o 〉+ 〈([X, Y ]∗m)o, Z

∗
o 〉 = 〈([Z,X]∗m)o, Y

∗
o 〉+ 〈([Z, Y ]∗m)o, X

∗
o 〉,

and consequently,

(∇X∗Y
∗)o = −1

2
([X, Y ]∗m)o + U(X, Y )∗o,

where [X, Y ]m is the component of [X, Y ] on m and U(X, Y ) is determined by

2〈U(X, Y ), Z〉 = 〈[Z,X]m, Y 〉+ 〈X, [Z, Y ]m〉,

for all Z ∈ m. Here we are using the isomorphism X 7→ X∗o between m and To(G/H) and
the fact that the inner product on m is chosen so that m and To(G/H) are isometric.

Since the term U(X, Y )∗o clearly complicates matters, it is natural to make the following
definition, which is equivalent to requiring that U(X, Y ) = 0 for all X, Y ∈ m.

Definition 22.9. A homogeneous space G/H is naturally reductive if it is reductive with
some reductive decomposition g = h⊕m, if it has a G-invariant metric, and if

〈[X,Z]m, Y 〉 = 〈X, [Z, Y ]m〉, for all X, Y, Z ∈ m.

Note that one of the requirements of Definition 22.9 is that G/H must have a G-invariant
metric.

The above computation yield the following result.
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Proposition 22.25. If G/H is naturally reductive, then the Levi-Civita connection associ-
ated with the G-invariant metric on G/H is given by

(∇X∗Y
∗)o = −1

2
([X, Y ]∗m)o = −1

2
[X, Y ]m,

for all X, Y ∈ m.

We can now find the geodesics on a naturally reductive homogeneous space. Indeed, if
M = (G,H) is a reductive homogeneous space and if M has a G-invariant metric, then there
is an Ad(H)-invariant inner product 〈−,−〉m on m. Pick any inner product 〈−,−〉h on h, and
define an inner product on g = h⊕m by setting h and m to be orthogonal. Then Proposition
22.23 provides a left-invariant metric on G for which the elements of h are vertical vectors
and the elements of m are horizontal vectors.

Observe that in this situation, the condition for being naturally reductive extends to
left-invariant vector fields on G induced by vectors in m. Since (dLg)1 : g→ TgG is a linear
isomorphism for all g ∈ G, the direct sum decomposition g = h ⊕ m yields a direct sum
decomposition TgG = (dLg)1(h)⊕ (dLg)1(m). Given a left-invariant vector field XL induced
by a vector X ∈ g, if X = Xh + Xm is the decomposition of X onto h ⊕ m, we obtain a
decomposition

XL = XL
h +XL

m ,

into a left-invariant vector field XL
h ∈ hL and a left-invariant vector field XL

m ∈ mL, with

XL
h (g) = (dLg)1(Xh), XL

m = (dLg)1(Xm).

Since the (dLg)1 are isometries, if h and m are orthogonal, so are (dLg)1(h) and (dLg)1(m),
and so XL

h and XL
m are orthogonal vector fields.

Since [XL, Y L] = [X, Y ]L (see the calculation made just after Definition 18.8), we have
[XL, Y L]m(g) = [X, Y ]Lm(g) = (dLg)1([X, Y ]m), so if XL, Y L, ZL are the left-invariant vector
fields induced by X, Y, Z ∈ m, since the metric on G is left-invariant, for any g ∈ G, we have

〈[XL, ZL]m(g), Y L(g)〉 = 〈(dLg)1([X,Z]m), (dLg)1(Y )〉
= 〈[X,Z]m, Y 〉.

Similarly, we have
〈XL(g), [ZL, Y L]m(g)〉 = 〈X, [Z, Y ]m〉.

In summary, we showed the following result.

Proposition 22.26. If the condition for being naturally reductive holds, namely

〈[X,Z]m, Y 〉 = 〈X, [Z, Y ]m〉, for all X, Y, Z ∈ m,

then a similar condition holds for left-invariant vector fields:

〈[XL, ZL]m, Y
L〉 = 〈XL, [ZL, Y L]m〉, for all XL, Y L, ZL ∈ mL.
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Recall that the left action of G on G/H is given by g1 · g2H = g1g2H, and that o denotes
the coset 1H.

Proposition 22.27. If M = G/H is a naturally reductive homogeneous space, for every
X ∈ m, the geodesic γdπ1(X) through o is given by

γdπ1(X)(t) = π ◦ exp(tX) = exp(tX) · o, for all t ∈ R.

Proof. As explained earlier, since there is a G-invariant metric on G/H, we can construct a
left-invariant metric 〈−,−〉 on G such that its restriction to m is Ad(H)-invariant, and such
that h and m are orthogonal. The curve α(t) = exp(tX) is horizontal in G, since it is an
integral curve of the horizontal vector field XL ∈ mL. By Proposition 17.8, the Riemannian
submersion π carries horizontal geodesics in G to geodesics in G/H. Thus it suffices to show
that α is a geodesic in G. Following O’Neill (O’Neill [91], Chapter 11, Proposition 25), we
prove that

∇XLY L =
1

2
[XL, Y L], X, Y ∈ m.

As noted in Section 20.3, since the metric on G is left-invariant, the Koszul formula reduces
to

2〈∇XLY L, ZL〉 = 〈[XL, Y L], ZL〉 − 〈[Y L, ZL], XL〉+ 〈[ZL, XL], Y L〉;
that is

2〈∇XLY L, ZL〉 = 〈[XL, Y L], ZL〉+ 〈[ZL, Y L], XL〉 − 〈[XL, ZL], Y L〉, for all X, Y, Z ∈ g.

Since 〈−,−〉 and m are Ad(H)-invariant, as in the proof of Proposition 20.8, for all a ∈ H,

〈Ada(X),Ada(Y )〉 = 〈X, Y 〉, for all X, Y ∈ m,

so the function a 7→ 〈Ada(X),Ada(Y )〉 is constant, and by taking the derivative with
a = exp(tZ) at t = 0, we get

〈[X,Z], Y 〉 = 〈X, [Z, Y ]〉, X, Y ∈ m, Z ∈ h.

Since the metric on G is left-invariant, as in the proof of Proposition 20.8, by applying (dLg)e
to X, Y, Z, we obtain

〈[XL, ZL], Y L〉 = 〈XL, [ZL, Y L]〉, X, Y ∈ m, Z ∈ h. (h)

The natural reductivity condition is

〈[XL, ZL]m, Y
L〉 = 〈XL, [ZL, Y L]m〉 for all X, Y, Z ∈ m. (m)

Also recall that h and m are orthogonal. Let us now consider the Koszul formula for X, Y ∈ m
and Z ∈ g. If Z ∈ m, then by (m), the last two terms cancel out. Similarly, if Z ∈ h, then
by (h), the last two terms cancel out. Therefore,

2〈∇XLY L, ZL〉 = 〈[XL, Y L], ZL〉 for all X ∈ g,
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which shows that

∇XLY L =
1

2
[XL, Y L], X, Y ∈ g.

To finish the proof, the above formula implies that

∇XLXL = 0,

but since α is a one-parameter group, α′ = XL, which shows that α is indeed a geodesic.

If γ is any geodesic through o with initial condition X∗o = dπ1(X) (X ∈ m), then the
curve t 7→ exp(tX) · o is also a geodesic through o with the same initial condition, so γ must
coincide with this curve.

Proposition 22.27 shows that the geodesics in G/H are given by the orbits of the one-
parameter groups (t 7→ exp tX) generated by the members of m.

We can also obtain a formula for the geodesic through every point p = gH ∈ G/H.
Recall from Definition 22.6 that the vector field X∗ associated with a vector X ∈ m is given
by

X∗(p) =
d

dt
(exp(tX) · p)

∣∣∣∣
t=0

, p ∈ G/H.

We have an isomorphism between m and To(G/H) given by X 7→ X∗o . Furthermore, (τg)∗
induces an isomorphism between To(G/H) and Tp(G/H). By Proposition 22.19 (1), we have

(AdgX)∗ = (τg)∗X
∗,

so the isomorphism from m to Tp(G/H) is given by

X 7→ (AdgX)∗p.

It follows that the geodesic through p with initial velocity (AdgX)∗p is given by

t 7→ exp(tAdgX) · p.

Since Proposition 18.10 implies that exp(tAdgX) = g exp(tX)g−1 and g−1·p = o, the geodesic
through p = gH with initial velocity (AdgX)∗p = (τg)∗X∗p is given by

t 7→ g exp(tX) · o.

We record this fact as the following proposition.

Proposition 22.28. If M = G/H is a naturally reductive homogeneous space, for every
X ∈ m, the geodesic through p = gH with initial velocity (AdgX)∗p = (τg)∗X∗p is given

t 7→ g exp(tX) · o.
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An important corollary of Proposition 22.27 is that naturally reductive homogeneous
spaces are complete. Indeed, the one-parameter group t 7→ exp(tX) is defined for all t ∈ R.

One can also figure out a formula for the sectional curvature (see (O’Neill [91], Chapter
11, Proposition 26). Under the identification of m and To(G/H) given by the restriction of
dπ1 to m, we have

〈R(X, Y )X, Y 〉 =
1

4
〈[X, Y ]m, [X, Y ]m〉+ 〈[[X, Y ]h, X]m, Y 〉, for all X, Y ∈ m.

Conditions on a homogeneous space that ensure that such a space is naturally reductive
are obviously of interest. Here is such a condition.

Proposition 22.29. Let M = G/H be a homogeneous space with G a connected Lie group,
assume that g admits an Ad(G)-invariant inner product 〈−,−〉, and let m = h⊥ be the
orthogonal complement of h with respect to 〈−,−〉. Then the following properties hold.

(1) The space G/H is reductive with respect to the decomposition g = h⊕m.

(2) Under the G-invariant metric induced by 〈−,−〉, the homogeneous space G/H is nat-
urally reductive.

(3) The sectional curvature is determined by

〈R(X, Y )X, Y 〉 =
1

4
〈[X, Y ]m, [X, Y ]m〉+ 〈[X, Y ]h, [X, Y ]h〉.

Sketch of proof. Since H is closed under Adh for every h ∈ H, by taking the derivative at
1 we see that h is closed under Adh for all h ∈ H. In fact, since Adh is an isomorphism,
we have Adh(h) = h. Since m = h⊥, we can show that m is also closed under Adh. If
u ∈ m = h⊥, then

〈u, v〉 = 0 for all v ∈ h.

Since the inner product 〈−,−〉 is Ad(G)-invariant, for any h ∈ H we get

〈Adh(u),Adh(v)〉 = 0 for all v ∈ h.

Since Adh(h) = h, the above means that

〈Adh(u), w〉 = 0 for all w ∈ h,

proving that Adh(u) ∈ h⊥ = m. Therefore Adh(m) ⊆ m for all a ∈ H.

To prove (2), since 〈−,−〉 is Ad(G)-invariant, for all a ∈ G, we have

〈Ada(X),Ada(Y )〉 = 〈X, Y 〉, for all X, Y ∈ m,
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so for a = exp(tZ) with Z ∈ m, by taking derivatives at t = 0, we get

〈[X,Z], Y 〉 = 〈X, [Z, Y ]〉, X, Y, Z ∈ m.

However, since m and h are orthogonal, the above implies that

〈[X,Z]m, Y 〉 = 〈X, [Z, Y ]m〉, X, Y, Z ∈ m,

which is the natural reductivity condition.

Part (3) is proved in Kobayashi and Nomizu [69] (Chapter X, Theorem 3.5).

By Proposition 20.3, the condition that g admits a Ad(G)-invariant inner product is
equivalent to the fact that G has a bi-invariant metric. By Proposition 20.6, this is equivalent
to requiring Ad(G) to be compact. In practice, this means that G is compact.

Recall a Lie group G is said to be semisimple if its Lie algebra g is semisimple. From
Theorem 20.26, a Lie algebra g is semisimple iff its Killing form B is nondegenerate, and
from Theorem 20.27, a connected Lie group G is compact and semisimple iff its Killing form
B is negative definite. By Proposition 20.25, the Killing form is Ad(G)-invariant. Thus, for
any connected compact semisimple Lie group G, for any constant c > 0, the bilinear form
−cB is an Ad(G)-invariant inner product on g. Then as a corollary of Proposition 22.29, we
obtain the following result, which is that we use in practice.

Proposition 22.30. Let M = G/H be a homogeneous space such that G is a connected
compact semisimple group. Then under any inner product 〈−,−〉 on g given by −cB, where
B is the Killing form of g and c > 0 is any positive real number, the space G/H is naturally
reductive with respect to the decomposition g = h ⊕ m, where m = h⊥ be the orthogonal
complement of h with respect to 〈−,−〉. The sectional curvature is non-negative.

A homogeneous space as in Proposition 22.30 is called a normal homogeneous space.

22.7 Examples of Naturally Reductive Homogeneous

Spaces

Since SO(n) is connected, semisimple, and compact for n ≥ 3, the Stiefel manifolds S(k, n) ∼=
SO(n)/SO(n− k) described in Section 22.5 are reductive spaces which satisfy the assump-
tions of Proposition 22.30 (with an inner product induced by a scalar factor of −1/2 of
the Killing form on SO(n)). Therefore, Stiefel manifolds S(k, n) are naturally reductive
homogeneous spaces for n ≥ 3 (under the reduction g = h⊕m induced by the Killing form).

Another class of naturally reductive homogeneous spaces is the Grassmannian manifolds
G(k, n) which may obtained via a refinement of the Stiefel manifold S(k, n). Given any n ≥ 1,
for any k, with 0 ≤ k ≤ n, let G(k, n) be the set of all linear k-dimensional subspaces of
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Rn, where the k-dimensional subspace U of R is spanned by k linearly independent vectors
u1, . . . , uk in Rn; write U = span(u1, . . . , uk). In Section 4.4 we showed that the action
· : SO(n)×G(k, n)→ G(k, n)

R · U = span(Ru1, . . . , Ruk).

is well-defined, transitive, and has the property that stabilizer of U is the set of matrices in
SO(n) with the form

R =

(
S 0
0 T

)
,

where S ∈ O(k), T ∈ O(n− k) and det(S) det(T ) = 1. We denote this group by
S(O(k)×O(n− k)). Since SO(n) is a connected, compact semisimple Lie group whenever
n ≥ 3, Proposition 22.30 implies that

G(k, n) ∼= SO(n)/S(O(k)×O(n− k))

is a naturally reductive homogeneous manifold whenever n ≥ 3.

If n = 2, then SO(2) is an abelian group, and thus not semisimple. However, in this
case, G(1, 2) = RP(1) ∼= SO(2)/S(O(1) × O(1)) ∼= SO(2)/O(1), and S(1, 2) = S1 ∼=
SO(2)/SO(1) ∼= SO(2). These are special cases of symmetric spaces discussed in Section
22.9. In the first case, H = S(O(1) ×O(1)), and in the second case, H = SO(1). In both
cases,

h = (0),

and we can pick

m = so(2),

which is trivially Ad(H)-invariant. In Section 22.9 we show that the inner product on so(2)
given by

〈X, Y 〉 = tr(X>Y )

is Ad(H)-invariant, and with the induced metric, RP(1) and S1 ∼= SO(2) are are examples
of naturally reductive homogeneous spaces which are also symmetric spaces.

For n ≥ 3, we have S(1, n) = Sn−1 and S(n−1, n) = SO(n), which are symmetric spaces.
On the other hand, S(k, n) it is not a symmetric space if 2 ≤ k ≤ n − 2. A justification is
given in Section 22.10.

To construct yet another class of naturally reductive homogeneous spaces known as the
oriented Grassmannian G0(k, n), we consider the set of k-dimensional oriented subspaces
of Rn. An oriented k-subspace is a k-dimensional subspace W together with the choice of
a basis (u1, . . . , uk) determining the orientation of W . Another basis (v1, . . . , vk) of W is
positively oriented if det(f) > 0, where f is the unique linear map f such that f(ui) = vi,
i = 1, . . . , k.
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Definition 22.10. The set of k-dimensional oriented subspaces of Rn is called the oriented
Grassmannian, and it is denoted by G0(k, n).

The action of SO(n) on G(k, n) is readily adjusted to become a transitive action G0(k, n).
By a reasoning similar to the one used in the case where SO(n) acts on G(k, n), we find
that the stabilizer of the oriented subspace (e1, . . . , ek) is the set of orthogonal matrices of
the form (

Q 0
0 R

)
,

where Q ∈ SO(k) and R ∈ SO(n− k), because this time, Q has to preserve the orientation
of the subspace spanned by (e1, . . . , ek). Thus the isotropy group is isomorphic to

SO(k)× SO(n− k).

It follows from Proposition 22.30 that

G0(k, n) ∼= SO(n)/SO(k)× SO(n− k)

is a naturally reductive homogeneous space whenever n ≥ 3. Furthermore, since G0(1, 2) ∼=
SO(2)/SO(1) × SO(1) ∼= SO(2)/SO(1) ∼= S(1, 2), the same reasoning that shows why
S(1, 2) is a symmetric space explains why G0(1, 2) ∼= S1 is also a symmetric space

Since the Grassmann manifolds G(k, n) and the oriented Grassmann manifolds G0(k, n)
have more structure (they are symmetric spaces), in this section we restrict our attention
to the Stiefel manifolds S(k, n). The Grassmannian manifolds G(k, n) and G0(k, n) are
discussed in Section 22.9.

Stiefel manifolds have been presented as reductive homogeneous spaces in Section 22.5,
but since they are also naturally reductive, we can describe their geodesics.

By Proposition 22.27, the geodesic through o with initial velocity

X =

(
S −A>
A 0

)
∈ m

is given by

γ(t) = exp

(
t

(
S −A>
A 0

))
Pn,k.

Recall that S ∈ so(k) and A ∈ Mn−k,k(R). This is not a very explicit formula. It is possible
to do better, see later in this section for details.

Let us consider the case where k = n− 1, which is simpler.

If k = n − 1, then n − k = 1, so S(n − 1, n) = SO(n), H ∼= SO(1) = {1}, h = (0) and
m = so(n). The inner product on so(n) is given by

〈X, Y 〉 = −1

2
tr(XY ) =

1

2
tr(X>Y ), X, Y ∈ so(n).
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Every matrix X ∈ so(n) is a skew-symmetric matrix, and we know that every such matrix
can be written as X = P>DP , where P is orthogonal and where D is a block diagonal
matrix whose blocks are either a 1-dimensional block consisting of a zero, of a 2× 2 matrix
of the form

Dj =

(
0 −θj
θj 0

)
,

with θj > 0. Then, eX = P>eDP = P>ΣP , where Σ is a block diagonal matrix whose blocks
are either a 1-dimensional block consisting of a 1, of a 2× 2 matrix of the form

Dj =

(
cos θj − sin θj
sin θj cos θj

)
.

We also know that every matrix R ∈ SO(n) can be written as

R = eX ,

for some matrix X ∈ so(n) as above, with 0 < θj ≤ π. Then we can give a formula for the
distance d(I,Q) between the identity matrix and any matrix Q ∈ SO(n). Since the geodesics
from I through Q are of the form

γ(t) = etX with eX = Q,

and since the length L(γ) of the geodesic from I to eX is

L(γ) =

∫ 1

0

〈γ′(t), γ′(t)〉 12dt,

we have

d(I,Q) = min
X|eX=Q

∫ 1

0

〈(etX)′, (etX)′〉 12dt

= min
X|eX=Q

∫ 1

0

〈XetX , XetX〉 12dt

= min
X|eX=Q

∫ 1

0

(
1

2
tr((etX)>X>XetX)

) 1
2

dt

= min
X|eX=Q

∫ 1

0

(
1

2
tr(X>XetXetX

>
)

) 1
2

dt

= min
X|eX=Q

∫ 1

0

(
1

2
tr(X>XetXe−tX)

) 1
2

dt

= min
X|eX=Q

(
1

2
tr(X>X)

) 1
2

= (θ2
1 + · · ·+ θ2

m)
1
2 ,
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where θ1, . . . , θm are the angles associated with the eigenvalues e±iθ1 , . . . , e±iθm of Q distinct
from 1, and with 0 < θj ≤ π. Therefore,

d(I,Q) = (θ2
1 + · · ·+ θ2

m)
1
2 ,

and if Q,R ∈ SO(n), then

d(Q,R) = (θ2
1 + · · ·+ θ2

m)
1
2 ,

where θ1, . . . , θm are the angles associated with the eigenvalues e±iθ1 , . . . , e±iθm of Q−1R =
Q>R distinct from 1, and with 0 < θj ≤ π.

Remark: Since X> = −X, the square distance d(I,Q)2 can also be expressed as

d(I,Q)2 = −1

2
min

X|eX=Q
tr(X2),

or even (with some abuse of notation, since log is multi-valued) as

d(I,Q)2 = −1

2
min tr((logQ)2).

In the other special case where k = 1, we have S(1, n) = Sn−1, H ∼= SO(n− 1),

h =

{(
0 0
0 S

) ∣∣∣∣ S ∈ so(n− 1)

}
,

and

m =

{(
0 −u>
u 0

) ∣∣∣∣ u ∈ Rn−1

}
.

Therefore, there is a one-to-one correspondence between m and Rn−1. Given any Q ∈ SO(n),
the equivalence class [Q] of Q is uniquely determined by the first column of Q, and we view
it as a point on Sn−1.

If we let ‖u‖ =
√
u>u, we leave it as an exercise to prove that for any

X =

(
0 −u>
u 0

)
,

we have

etX =

 cos(‖u‖ t) − sin(‖u‖ t) u>‖u‖
sin(‖u‖ t) u

‖u‖ I + (cos(‖u‖ t)− 1) uu
>

‖u‖2

 .

Consequently (under the identification of Sn−1 with the first column of matrices Q ∈ SO(n)),
the geodesic γ through e1 (the column vector corresponding to the point o ∈ Sn−1) with initial
tangent vector u is given by

γ(t) =

(
cos(‖u‖ t)

sin(‖u‖ t) u
‖u‖

)
= cos(‖u‖ t)e1 + sin(‖u‖ t) u

‖u‖ ,
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where u ∈ Rn−1 is viewed as the vector in Rn whose first component is 0. Then we have

γ′(t) = ‖u‖
(
− sin(‖u‖ t)e1 + cos(‖u‖ t) u

‖u‖

)
,

and we find the that the length L(γ)(θ) of the geodesic from e1 to the point

p(θ) = γ(θ) = cos(‖u‖ θ)e1 + sin(‖u‖ θ) u

‖u‖
is given by

L(γ)(θ) =

∫ θ

0

〈γ′(t), γ′(t)〉 12 dt = θ ‖u‖ .

Since
〈e1, p(θ)〉 = cos(θ ‖u‖),

we see that for a unit vector u and for any angle θ such that 0 ≤ θ ≤ π, the length of the
geodesic from e1 to p(θ) can be expressed as

L(γ)(θ) = θ = arccos(〈e1, p〉);

that is, the angle between the unit vectors e1 and p. This is a generalization of the distance
between two points on a circle.

Geodesics can also be determined in the general case where 2 ≤ k ≤ n − 2; we follow
Edelman, Arias and Smith [44], with one change because some point in that paper requires
some justification which is not provided.

Given a point Q = [Y Y⊥] ∈ S(k, n), and given and any tangent vector X̃ = Y S + Y⊥A,
Proposition 22.28 implies that we need to compute

γ(t) = [Y Y⊥] exp

(
t

(
S −A>
A 0

))
Pn,k.

We can compute this exponential if we replace the matrix by a more “regular matrix,” and
for this, we use a QR-decomposition of A. Let

A = U

(
R
0

)
be a QR-decomposition of A, with U an orthogonal (n−k)× (n−k) matrix and R an upper
triangular k × k matrix. We can write U = [U1 U2], where U1 consists of the first k columns
on U and U2 of the last n− 2k columns of U (if 2k ≤ n). We have

A = U1R,

and we can write (
S −A>
A 0

)
=

(
I 0
0 U1

)(
S −R>
R 0

)(
I 0
0 U>1

)
.
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Then we have

γ(t) = [Y Y⊥]

(
I 0
0 U1

)
exp

(
t

(
S −R>
R 0

))(
I 0
0 U>1

)
Pn,k

= [Y Y⊥U1] exp

(
t

(
S −R>
R 0

))(
I 0
0 U>

)
Pn,k

= [Y Y⊥U1] exp

(
t

(
S −R>
R 0

))(
Ik
0

)
.

This is essentially the formula given by Corollary 2.2, Section 2.4.2 of Edelman, Arias and
Smith [44], except for the term Y⊥U1. To explain the difference, observe that Edelman, Arias

and Smith [44] derived their formula by taking a QR decomposition of (I − Y Y >)X̃ and

implicitly assume that a QR decomposition of (I−Y Y >)X̃ yields a QR decomposition of A.
But unfortunately, this assumption does not appear to be true. What is true is that a QR
decomposition of A yields a QR decomposition of (I − Y Y >)X̃. To justify this statement,

observe that since A = U1R, we have Y⊥A = Y⊥U1R, but A = Y >⊥ X̃ so Y⊥A = (I−Y Y >)X̃,
and thus

(I − Y Y >)X̃ = Y⊥U1R.

If we write Q = Y⊥U1, then we have

Q>Q = U>1 Y
>
⊥ Y⊥U1 = I,

since Y >⊥ Y⊥ = I and U>1 U1 = I. Therefore,

(I − Y Y >)X̃ = QR

is a compact QR-decomposition of (I − Y Y >)X̃.

Furthermore, given a QR-decomposition of (I − Y Y >)X̃,

(I − Y Y >)X̃ = QR,

since (I − Y Y >)X̃ = Y⊥A, we get
A = Y >⊥ QR.

But,
(Y >⊥ Q)>Y >⊥ Q = Q>Y⊥Y

>
⊥ Q,

and there is no reason why this term should be equal to I.

Thus, it seems to us that one has to use a QR-decomposition of A. In any case, there
are efficient algorithms to compute the exponential of the 2k × 2k matrix

t

(
S −R>
R 0

)
.
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Since by Proposition 17.8(1), the length of the geodesic γ from o to p = esX · o is the
same as the the length of the geodesic γ in G from 1 to esX , for any X ∈ m, we can easily
compute the length L(γ)(s) of the geodesic γ from o to p = esX · o.

Indeed, for any

X =

(
S −A>
A 0

)
∈ m,

we know that the geodesic (in G) from 1 with initial velocity X is γ(t) = etX , so we have

L(γ)(s) = L(γ)(s) =

∫ s

0

〈(etX)′, (etX)′〉 12dt,

but we already did this computation and found that

(L(γ)(s))2 = s2

(
1

2
tr(X>X)

)
= s2

(
1

2
tr(S>S) + tr(A>A)

)
.

We can compute these traces using the eigenvalues of S and the singular values of A. If
±iθ1, . . . ,±iθm are the nonzero eigenvalues of S and σ1, . . . , σk are the singular values of A,
then

L(γ)(s) = s(θ2
1 + · · ·+ θ2

m + σ2
1 + · · ·+ σ2

k)
1
2 .

We conclude this section with a proposition that shows that under certain conditions, G
is determined by m and H. A point p ∈ M = G/H is called a pole if the exponential map
at p is a diffeomorphism. The following proposition is proved in O’Neill [91] (Chapter 11,
Lemma 27).

Proposition 22.31. If M = G/H is a naturally reductive homogeneous space, then for any
pole o ∈M , there is a diffeomorphism m×H ∼= G given by the map (X, h) 7→ (exp(X))h.

Next we will see that there exists a large supply of naturally reductive homogeneous
spaces: symmetric spaces.

22.8 A Glimpse at Symmetric Spaces

There is an extensive theory of symmetric spaces and our goal is simply to show that the
additional structure afforded by an involutive automorphism of G yields spaces that are
naturally reductive. The theory of symmetric spaces was entirely created by one person,
Élie Cartan, who accomplished the tour de force of giving a complete classification of these
spaces using the classification of semisimple Lie algebras that he had obtained earlier. One
of the most complete exposition is given in Helgason [58]. O’Neill [91], Petersen [93], Sakai
[100] and Jost [64] have nice and more concise presentations. Ziller [119] is also an excellent
introduction, and Borel [17] contains a fascinating historical account.
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Until now, we have denoted a homogeneous space by G/H, but when dealing with sym-
metric spaces, it is customary to denote the closed subgroup of G by K rather than H.

Given a homogeneous space G/K, the new ingredient is that we have an involutive
automorphism σ of G.

Definition 22.11. Given a Lie group G, an automorphism σ of G such that σ 6= id and
σ2 = id called an involutive automorphism of G. Let Gσ be the set of fixed points of σ, the
subgroup of G given by

Gσ = {g ∈ G | σ(g) = g},
and let Gσ

0 be the identity component of Gσ (the connected component of Gσ containing 1).

If we have an involutive automorphism σ : G→ G, then we can consider the +1 and −1
eigenspaces of dσ1 : g→ g, given by

k = {X ∈ g | dσ1(X) = X}
m = {X ∈ g | dσ1(X) = −X}.

Definition 22.12. An involutive automorphism of G satisfying Gσ
0 ⊆ K ⊆ Gσ is called a

Cartan involution. The map dσ1 is often denoted by θ.

The following proposition will be needed later.

Proposition 22.32. Let σ be an involutive automorphism of G and let k and m be the +1
and −1 eigenspaces of dσ1 : g→ g. Then for all X ∈ m and all Y ∈ k, we have

B(X, Y ) = 0,

where B is the Killing form of g.

Proof. By Proposition 20.25, B is invariant under automorphisms of g. Since θ = dσ1 : g→ g
is an automorphism and since m and k are eigenspaces of θ for the eigenvalues −1 and +1
respectively, we have

B(X, Y ) = B(θ(X), θ(Y )) = B(−X, Y ) = −B(X, Y ),

so B(X, Y ) = 0.

As before, K can be viewed as the stabilizer of the left action of G on G/K, but remark-
ably, the fact that k and m are the eigenspaces of dσ1 implies that they yield a reductive
decomposition of G/K.

Proposition 22.33. Given a homogeneous space G/K with a Cartan involution σ (Gσ
0 ⊆

K ⊆ Gσ), if k and m are defined as above, then

(1) k is indeed the Lie algebra of K.
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(2) We have a direct sum

g = k⊕m.

(3) Ad(K)(m) ⊆ m; in particular, [k,m] ⊆ m.

(4) We have

[k, k] ⊆ k and [m,m] ⊆ k.

In particular, the pair (G,K) is a reductive homogeneous space (as in Definition 22.8), with
reductive decomposition g = k⊕m.

Proof. We follow the proof given in O’Neill [91] (Chapter 11, Lemma 30). Another proof is
given in Ziller [119] (Chapter 6).

(1) Let us rename {X ∈ g | dσ1(X) = X} as K, and let us denote the Lie algebra of K
as k. Since K ⊆ Gσ, the restriction of the map σ to K is the identity, so if X ∈ k, then
dσ1(X) = X. This shows that k ⊆ K. Conversely, assume that X ∈ K, that is, dσ1(X) = X.
If hX(t) = exp(tX) is the one-parameter subgroup of X, then hX and σ ◦ hX have the same
initial velocity since (σ ◦hX)′(0) = dσ1(h′X(0)) = dσ1(X) = X. But σ ◦hX is also an integral
curve through 1, so by uniqueness of integral curves, σ◦hX = hX . Therefore hX lies in Gσ, in
fact in Gσ

0 (as the image of the connected set R under a continuous map), and since Gσ
0 ⊆ K,

we deduce that X ∈ k. This proves that K ⊆ k, and thus k = K = {X ∈ g | dσ1(X) = X}.
(2) This is purely a matter of linear algebra. Since σ2 = id, by taking the derivative at

1 we get dσ2
1 = id. Let E be any vector space and let f : E → E be a linear map such that

f 2 = id. Let E1 and E−1 be the eigenspaces of E associated with +1 and −1,

E1 = {u ∈ E | f(u) = u}
E−1 = {u ∈ E | f(u) = −u}.

Then we have a direct sum

E = E1 ⊕ E−1.

Pick any u ∈ E and write u = u1 + u−1, with

u1 =
u+ f(u)

2
, u−1 =

u− f(u)

2
.

Since f 2 = id, we have

f(u1) = f

(
u+ f(u)

2

)
=
f(u) + f 2(u)

2
=
f(u) + u

2
= u1,

and

f(u−1) = f

(
u− f(u)

2

)
=
f(u)− f 2(u)

2
=
f(u)− u

2
= −u−1.
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Therefore, u1 ∈ E1 and u−1 ∈ E−1, and since u = u1 + u−1, we have

E = E1 + E−1.

If u ∈ E1 ∩ E−1, then f(u) = u and f(u) = −u, so u = −u, which means that u = 0.
Therefore, E1 ∩ E−1 = (0) and we have the direct sum

E = E1 ⊕ E−1.

Applying the above to f = dσ1, we get

g = k⊕m.

(3) If X ∈ m = {X ∈ g | dσ1(X) = −X} we must show that dσ1(Adk(X)) = −Adk(X)
for all k ∈ K. As usual, let Adk(g) = kgk−1. Since σ is the identity on K, observe that σ
and Adk commute, since

σ(Adk(g)) = σ(kgk−1) = σ(k)σ(g)σ(k−1) = kσ(g)k−1 = Adk(σ(g)).

By taking derivatives, for any X ∈ m and any k ∈ K, we get

dσ1(Adk(X)) = d(σ ◦Adk)1(X)

= d(Adk ◦ σ)1(X)

= Adk(dσ1(X))

= Adk(−X) since X ∈ m

= −Adk(X).

The AdK-invariance of m implies that [k,m] ⊆ m. This is also shown directly using the fact
k is the +1 eigenspace and m is the −1-eigenspace of dσ1. For all X ∈ k and all Y ∈ m, we
have

dσ1([X, Y ]) = [dσ1(X), dσ1(Y )]

= [X,−Y ] since X ∈ k and Y ∈ m

= −[X, Y ],

which means that [X, Y ] ∈ m.

(4) Since k is the Lie algebra of the Lie group of K, we have [k, k] ⊆ k. Since k is the +1
eigenspace and m is the −1-eigenspace of dσ1, if X, Y ∈ m, we have

dσ1([X, Y ]) = [dσ1(X), dσ1(Y )]

= [−X,−Y ] since X, Y ∈ m

= [X, Y ],
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which means that [X, Y ] ∈ k. We also obtain a direct proof of the inclusion [k, k] ⊆ k. For
all X, Y ∈ k, we have

dσ1([X, Y ]) = [dσ1(X), dσ1(Y )]

= [X, Y ] since X, Y ∈ k

which means that [X, Y ] ∈ k.

Observe that since σ is a Cartan involution, by Proposition 22.33, we have

[m,m] ⊆ k,

so [X,Z], [Z, Y ] ∈ k for all X, Y, Z ∈ m, and since k∩m = (0), we have [X,Z]m = [Z, Y ]m = 0,
which implies the natural reductivity condition

〈[X,Z]m, Y 〉 = 〈X, [Z, Y ]m〉, for all X, Y, Z ∈ m.

Note that Proposition 22.33 holds without any assumption on K besides the fact that it
is a closed subgroup of G. If we also assume that G is connected and that Gσ

0 is compact,
we then obtain the following remarkable result.

Theorem 22.34. Let G be a connected Lie group and let σ : G → G be an automorphism
such that σ2 = id, σ 6= id (an involutive automorphism), and Gσ

0 is compact. For every
compact subgroup K of G, if Gσ

0 ⊆ K ⊆ Gσ, then G/K has G-invariant metrics, and for
every such metric G/K is a naturally reductive space with reductive decomposition g = k⊕m
given by the +1 and −1 eigenspaces of dσ1. For every p ∈ G/K, there is an isometry
sp : G/K → G/K such that sp(p) = p, d(sp)p = −id, and

sp ◦ π = π ◦ σ,
as illustrated in the diagram below:

G σ //

π

��

G

π

��
G/K sp

// G/K.

Proof. Since K is assumed to be compact, and since by Proposition 22.33, we know that G
is a reductive homogeneous space, by Proposition 22.22 (3), there is a G-invariant metric on
G/K. We observed just before stating the theorem that the natural reductivity condition
holds. Therefore, under any G-invariant metric, G/K is indeed a naturally reductive space
with reductive decomposition g = k⊕m as described in terms of the eigenspaces of dσ1. The
existence of the isometry sp : G/K → G/K is proved in O’Neill [91] (Chapter 11) and Ziller
[119] (Chapter 6).

Definition 22.13. A triple (G,K, σ) satisfying the assumptions of Theorem 22.34 is called
a symmetric pair .3

3Once again we fall victims of tradition. A symmetric pair is actually a triple!
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A triple (G,K, σ) as above defines a special kind of naturally homogeneous space G/K
known as a symmetric space.

Definition 22.14. If M is a connected Riemannian manifold, for any p ∈ M , an isometry
sp such that sp(p) = p and d(sp)p = −id is a called a global symmetry at p. A connected
Riemannian manifold M for which there is a global symmetry for every point of M is called
a symmetric space.

Theorem 22.34 implies that the naturally reductive homogeneous space G/K defined by
a symmetric pair (G,K, σ) is a symmetric space.

It can be shown that a global symmetry sp reverses geodesics at p and that s2
p = id, so

sp is an involution. It should be noted that although sp ∈ Isom(M), the isometry sp does
not necessarily lie in Isom(M)0. (For the definition of Isom(M), see the beginning of Section
18.7.)

The following facts are proved in O’Neill [91] (Chapters 9 and 11), Ziller [119] (Chapter
6), and Sakai [100] (Chapter IV).

1. Every symmetric space M is complete, and Isom(M) acts transitively on M . In fact
the identity component Isom(M)0 acts transitively on M .

2. Thus, every symmetric space M is a homogeneous space of the form Isom(M)0/K,
where K is the isotropy group of any chosen point p ∈ M (it turns out that K is
compact).

3. The symmetry sp gives rise to a Cartan involution σ of G = Isom(M)0 defined so that

σ(g) = sp ◦ g ◦ sp g ∈ G.
Then we have

Gσ
0 ⊆ K ⊆ Gσ.

4. Thus, every symmetric space M is presented by a symmetric pair (Isom(M)0, K, σ).

However, beware that in the presentation of the symmetric space M = G/K given by a
symmetric pair (G,K, σ), the group G is not necessarily equal to Isom(M)0. Thus, we do
not have a one-to-one correspondence between symmetric spaces and symmetric pairs; there
are more presentations of symmetric pairs than symmetric spaces. From our point of view,
this does not matter since we are more interested in getting symmetric spaces from the data
(G,K, σ). By abuse of terminology (and notation), we refer to the homogeneous space G/K
defined by a symmetric pair (G,K, σ) as the symmetric space (G,K, σ).

Since the homogeneous space G/K defined by a symmetric pair (G,K, σ) is naturally
reductive and has a G-invariant metric, by Proposition 22.27, its geodesics coincide with the
one-parameter groups (they are given by the Lie group exponential).

The Levi-Civita connection on a symmetric space depends only on the Lie bracket on g.
Indeed, we have the following formula proved in Ziller [119] (Chapter 6).
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Proposition 22.35. Given any symmetric space M defined by the triple (G,K, σ), for any
X ∈ m and and vector field Y on M ∼= G/K, we have

(∇X∗Y )o = [X∗, Y ]o.

Proof. If X∗, Z∗ are the Killing vector fields induced by any X,Z ∈ m, by the Koszul formula,

2〈∇X∗Y, Z
∗〉 = X∗(〈Y, Z∗〉) + Y (〈X∗, Z∗〉)− Z∗(〈X∗, Y 〉)

− 〈Y, [X∗, Z∗]〉 − 〈X∗, [Y, Z∗]〉 − 〈Z∗, [Y,X∗]〉.

Since X∗ and Z∗ are Killing vector fields, by Proposition 17.10 we have

X∗〈Y, Z∗〉 = 〈[X∗, Y ], Z∗〉+ 〈Y, [X∗, Z∗]〉
Z∗〈X∗, Y 〉 = 〈[Z∗, X∗], Y 〉+ 〈X∗, [Z∗, Y ]〉,

and because the Levi-Civita connection is symmetric and torsion-free,

Y 〈X∗, Z∗〉 = 〈∇YX
∗, Z∗〉+ 〈X∗,∇YZ

∗〉
〈Z∗,∇YX

∗〉 = 〈Z∗,∇X∗Y 〉 − 〈Z∗, [X∗, Y ]〉,

so we get
Y 〈X∗, Z∗〉 = 〈∇YZ

∗, X∗〉+ 〈∇X∗Y, Z
∗〉 − 〈[X∗, Y ], Z∗〉.

Plugging these expressions in the Koszul formula, we get

2〈∇X∗Y, Z
∗〉 = 〈[X∗, Y ], Z∗〉+ 〈Y, [X∗, Z∗]〉+ 〈∇YZ

∗, X∗〉
+ 〈∇X∗Y, Z

∗〉 − 〈[X∗, Y ], Z∗〉 − 〈[Z∗, X∗], Y 〉 − 〈X∗, [Z∗, Y ]〉
− 〈Y, [X∗, Z∗]〉 − 〈X∗, [Y, Z∗]〉 − 〈Z∗, [Y,X∗]〉

= 〈[X∗, Y ], Z∗〉+ 〈Y, [X∗, Z∗]〉+ 〈∇X∗Y, Z
∗〉+ 〈∇YZ

∗, X∗〉,

and thus,

〈∇X∗Y, Z
∗〉 = 〈[X∗, Y ], Z∗〉+ 〈Y, [X∗, Z∗]〉+ 〈∇YZ

∗, X∗〉
= 〈[X∗, Y ], Z∗〉 − 〈Y, [X,Z]∗〉+ 〈∇YZ

∗, X∗〉,

where the second equality follows from Proposition 22.19 (2). Therefore, evaluating at o and
using the fact that [X,Z]∗o = ([X,Z]∗m)o, we have

〈(∇X∗Y )o, Z
∗
o 〉 = 〈[X∗, Y ]o, Z

∗
o 〉 − 〈Yo, ([X,Z]∗m)o〉+ 〈(∇YZ

∗)o, X
∗
o 〉.

Since [m,m] ⊆ k and m ∩ k = (0), we have [X,Z]m = 0, so 〈Yo, ([X,Z]∗m)o〉 = 0.

Since Yo ∈ To(G/H), there is some W ∈ m such that Yo = W ∗
o , so

(∇YZ
∗)o = (∇YoZ

∗)o = (∇W ∗oZ
∗)o = (∇W ∗Z

∗)o.
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Furthermore, since a symmetric space is naturally reductive, we showed in Proposition 22.25
that

(∇W ∗Z
∗)o = −1

2
([W,Z]∗m)o,

and since [m,m] ⊆ k, and m ∩ k = (0), we have [W,Z]m = 0, which implies that

(∇W ∗Z
∗)o = 0.

Therefore, (∇YZ
∗)o = 0, so 〈(∇X∗Y )o, Z

∗
o 〉 = 〈[X∗, Y ]o, Z

∗
o 〉 for all Z ∈ m, and we conclude

that

(∇X∗Y )o = [X∗, Y ]o,

as claimed.

Another nice property of symmetric space is that the curvature formulae are quite simple.
If we use the isomorphism between m and To(G/K) induced by the restriction of dπ1 to m,
then for all X, Y, Z ∈ m we have

1. The curvature at o is given by

R(X, Y )Z = [[X, Y ], Z],

or more precisely by

R(dπ1(X), dπ1(Y ))dπ1(Z) = dπ1([[X, Y ], Z]).

In terms of the vector fields X∗, Y ∗, Z∗, we have

R(X∗, Y ∗)Z∗ = [[X, Y ], Z]∗ = [[X∗, Y ∗], Z∗].

2. The sectional curvature K(X∗, Y ∗) at o is determined by

〈R(X∗, Y ∗)X∗, Y ∗〉 = 〈[[X, Y ], X], Y 〉.

3. The Ricci curvature at o is given by

Ric(X∗, X∗) = −1

2
B(X,X),

where B is the Killing form associated with g.

Proof of the above formulae can be found in O’Neill [91] (Chapter 11), Ziller [119] (Chap-
ter 6), Sakai [100] (Chapter IV) and Helgason [58] (Chapter IV, Section 4). However, beware
that Ziller, Sakai and Helgason use the opposite of the sign convention that we are using for



22.9. EXAMPLES OF SYMMETRIC SPACES 693

the curvature tensor (which is the convention used by O’Neill [91], Gallot, Hulin, Lafontaine
[49], Milnor [81], and Arvanitoyeorgos [11]). Recall that we define the Riemann tensor by

R(X, Y ) = ∇[X,Y ] +∇Y ◦ ∇X −∇X ◦ ∇Y ,

whereas Ziller, Sakai and Helgason use

R(X, Y ) = −∇[X,Y ] −∇Y ◦ ∇X +∇X ◦ ∇Y .

With our convention, the sectional curvature K(x, y) is determined by 〈R(x, y)x, y〉, and
the Ricci curvature Ric(x, y) as the trace of the map v 7→ R(x, v)y. With the opposite sign
convention, the sectional curvature K(x, y) is determined by 〈R(x, y)y, x〉, and the Ricci
curvature Ric(x, y) as the trace of the map v 7→ R(v, x)y. Therefore, the sectional curvature
and the Ricci curvature are identical under both conventions (as they should!). In Ziller,
Sakai and Helgason, the curvature formula is

R(X∗, Y ∗)Z∗ = −[[X, Y ], Z]∗.

We are now going to see that basically all of the familiar spaces are symmetric spaces.

22.9 Examples of Symmetric Spaces

We now apply Theorem 22.34 and construct five families of symmetric spaces. In the first four
cases, the Cartan involution is either a conjugation, or the map σ(A) = (A>)−1. We begin
by explaining why the Grassmannian manifolds G(k, n) ∼= SO(n)/S(O(k)×O(n− k)) and
the oriented Grassmannian manifolds G0(k, n) ∼= SO(n)/SO(k)×SO(n− k) are symmetric
spaces. Readers may find material from Absil, Mahony and Sepulchre [2], especially Chapters
1 and 2, a good complement to our presentation.

1. Grassmannians as Symmetric Spaces

Let G = SO(n) (with n ≥ 2), let

Ik,n−k =

(
Ik 0
0 −In−k

)
,

where Ik is the k × k-identity matrix, and let σ be given by

σ(P ) = Ik,n−kPIk,n−k, P ∈ SO(n).

It is clear that σ is an involutive automorphism of G. Let us find the set F = Gσ of fixed
points of σ. If we write

P =

(
Q U
V R

)
, Q ∈Mk,k(R), U ∈Mk,n−k(R), V ∈Mn−k,k(R), R ∈Mn−k,n−k(R),
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then P = Ik,n−kPIk,n−k iff(
Q U
V R

)
=

(
Ik 0
0 −In−k

)(
Q U
V R

)(
Ik 0
0 −In−k

)
iff (

Q U
V R

)
=

(
Q −U
−V R

)
,

so U = 0, V = 0, Q ∈ O(k) and R ∈ O(n − k). Since P ∈ SO(n), we conclude that
det(Q) det(R) = 1, so

Gσ =

{(
Q 0
0 R

) ∣∣∣∣ Q ∈ O(k), R ∈ O(n− k), det(R) det(S) = 1

}
;

that is,

F = Gσ = S(O(k)×O(n− k)),

and

Gσ
0 = SO(k)× SO(n− k).

Therefore, there are two choices for K.

1. K = SO(k)× SO(n− k), in which case we get the Grassmannian G0(k, n) of oriented
k-subspaces.

2. K = S(O(k)×O(n−k)), in which case we get the GrassmannianG(k, n) of k-subspaces.

As in the case of Stiefel manifolds, given any Q ∈ SO(n), the first k columns Y of Q
constitute a representative of the equivalence class [Q], but these representatives are not
unique; there is a further equivalence relation given by

Y1 ≡ Y2 iff Y2 = Y1R for some R ∈ O(k).

Nevertheless, it is useful to consider the first k columns ofQ, given byQPn,k, as representative
of [Q] ∈ G(k, n).

Because σ is a linear map, its derivative dσ is equal to σ, and since so(n) consists of all
skew-symmetric n× n matrices, the +1-eigenspace is given by

k =

{(
S 0
0 T

) ∣∣∣∣ S ∈ so(k), T ∈ so(n− k)

}
,

and the −1-eigenspace by

m =

{(
0 −A>
A 0

) ∣∣∣∣ A ∈ Mn−k,k(R)

}
.
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Thus, m is isomorphic to Mn−k,k(R) ∼= R(n−k)k. By using the equivalence provided by
Proposition 22.22 (1), we can show that the isotropy representation is given by

Ad((Q,R))A =

(
Q 0
0 R

)(
0 −A>
A 0

)(
Q> 0
0 R>

)
=

(
0 −QA>R>

RAQ> 0

)
= RAQ>,

where (Q,R) represents an element of S(O(k)×O(n− k)), and A represents an element of
m.

It can be shown that this representation is irreducible iff (k, n) 6= (2, 4). It can also be
shown that if n ≥ 3, then G0(k, n) is simply connected, π1(G(k, n)) = Z2, and G0(k, n) is a
double cover of G(k, n).

An Ad(K)-invariant inner product on m is given by〈(
0 −A>
A 0

)
,

(
0 −B>
B 0

)〉
= −1

2
tr

((
0 −A>
A 0

)(
0 −B>
B 0

))
= tr(AB>) = tr(A>B).

We also give g the same inner product. Then we immediately check that k and m are
orthogonal.

In the special case where k = 1, we have G0(1, n) = Sn−1 and G(1, n) = RPn−1, and then
the SO(n)-invariant metric on Sn−1 (resp. RPn−1) is the canonical one.

For any point [Q] ∈ G(k, n) with Q ∈ SO(n), if we write Q = [Y Y⊥], where Y denotes
the first k columns of Q and Y⊥ denotes the last n − k columns of Q, the tangent vectors
X ∈ T[Q]G(k, n) are of the form

X = [Y Y⊥]

(
0 −A>
A 0

)
= [Y⊥A − Y A>], A ∈Mn−k,k(R).

Consequently, there is a one-to-one correspondence between matrices X as above and n× k
matrices of the form X ′ = Y⊥A, for any matrix A ∈Mn−k,k(R). As noted in Edelman, Arias
and Smith [44], because the spaces spanned by Y and Y⊥ form an orthogonal direct sum in
Rn, there is a one-to-one correspondence between n × k matrices of the form Y⊥A for any
matrix A ∈Mn−k,k(R), and matrices X ′ ∈Mn,k(R) such that

Y >X ′ = 0.

This second description of tangent vectors to G(k, n) at [Y ] is sometimes more convenient.
The tangent vectors X ′ ∈ Mn,k(R) to the Stiefel manifold S(k, n) at Y satisfy the weaker
condition that Y >X ′ is skew-symmetric.

Indeed, the tangent vectors at Y to the Stiefel manifold S(k, n) are of the form

Y S + Y⊥A,

with S skew-symmetric, and since the Grassmanian G(k, n) is obtained from the Stiefel
manifold S(k, n) by forming the quotient under the equivalence Y1 ≡ Y2 iff Y2 = Y1R, for
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some R ∈ O(k), the contribution Y S is a vertical tangent vector at Y in S(k, n), and thus
the horizontal tangent vector is Y⊥A; these vectors can be viewed as tangent vectors at [Y ]
to G(k, n).

Given any X ∈ m of the form

X =

(
0 −A>
A 0

)
,

the geodesic starting at o is given by

γ(t) = exp(tX) · o.

Thus we need to compute

exp(tX) = exp

(
0 −tA>
tA 0

)
.

This can be done using SVD.

Since G(k, n) and G(n − k, n) are isomorphic, without loss of generality, assume that
2k ≤ n. Then let

A = U

(
Σ

0n−2k,k

)
V >

be an SVD for A, with U a (n− k)× (n− k) orthogonal matrix, Σ a diagonal k× k matrix,
and V a k × k orthogonal matrix. Since we assumed that k ≤ n− k, we can write

U = [U1 U2],

with U1 is a (n− k)× k matrix and U2 an (n− k)× (n− 2k) matrix. Then from

A = [U1 U2]

(
Σ

0n−2k,k

)
V > = U1ΣV >,

we get (
0 −A>
A 0

)
=

(
V 0 0
0 U1 U2

)0 −Σ 0
Σ 0 0
0 0 0

V > 0
0 U>1
0 U>2

 .

(where the middle matrix is n× n). Since(
V > 0
0 U>

)(
V 0
0 U

)
=

(
V >V 0

0 U>U

)
= In,

the n× n matrix

R =

(
V 0
0 U

)
=

(
V 0 0
0 U1 U2

)
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is orthogonal, so we have

exp(tX) = exp

(
t

(
0 −A>
A 0

))
= R exp

 0 −tΣ 0
tΣ 0 0
0 0 0

R>.

Then the computation of the middle exponential proceeds just as in the case where Σ is a
scalar, so we get

exp

 0 −tΣ 0
tΣ 0 0
0 0 0

 =

cos tΣ − sin tΣ 0
sin tΣ cos tΣ 0

0 0 I

 ,

so

exp(tX) = exp

(
t

(
0 −A>
A 0

))
=

(
V 0
0 U

)cos tΣ − sin tΣ 0
sin tΣ cos tΣ 0

0 0 I

(V > 0
0 U>

)
.

Now, exp(tX)Pn,k is certainly a representative of the equivalence class of [exp(tX)], so as a
n× k matrix, the geodesic through o with initial velocity

X =

(
0 −A>
A 0

)
(with A any (n− k)× k matrix with n− k ≥ k) is given by

γ(t) =

(
V 0
0 U1

)(
cos tΣ
sin tΣ

)
V >,

where A = U1ΣV >, a compact SVD of A.

Remark: Because symmetric spaces are geodesically complete, we get an interesting corol-
lary. Indeed, every equivalence class [Q] ∈ G(k, n) possesses some representative of the form
eX for some X ∈ m, so we conclude that for every orthogonal matrix Q ∈ SO(n), there exist

some orthogonal matrices V, Ṽ ∈ O(k) and U, Ũ ∈ O(n − k), and some diagonal matrix Σ
with nonnegatives entries, so that

Q =

(
V 0
0 U

)cos Σ − sin Σ 0
sin Σ cos Σ 0

0 0 I

((Ṽ )> 0

0 (Ũ)>

)
,

because a matrix in the coset of Q is obtained by multiplying on the right by a matrix in
the stabilizer, and these matrices are of the form(

Q1 0
0 Q2

)
with Q1 ∈ O(k) and Q2 ∈ O(n− k).
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The above is an instance of the CS-decomposition; see Golub and Van Loan [51]. The
matrices cos Σ and sin Σ are actually diagonal matrices of the form

cos Σ = diag(cos θ1, . . . , cos θk) and sin Σ = diag(sin θ1, . . . , sin θk),

so we may assume that 0 ≤ θi ≤ π/2, because if cos θi or sin θi is negative, we can change
the sign of the ith row of V (resp. the sign of the i-th row of U) and still obtain orthogonal
matrices U ′ and V ′ that do the job. One should also observe that the first k columns of Q
are

Y =

(
V 0
0 U

)cos Σ
sin Σ

0

 (Ṽ )>,

and that the matrix
V (cos Σ)(Ṽ )>

is an SVD for the matrix P>n,kY , which consists of the first k rows of Y . Now it is known
that (θ1, . . . , θk) are the principal angles (or Jordan angles) between the subspaces spanned
the first k columns of In and the subspace spanned by the columns of Y (see Golub and van
Loan [51]).

Recall that given two k-dimensional subspaces U and V determined by two n×k matrices
Y1 and Y2 of rank k, the principal angles θ1, . . . , θk between U and V are defined recursively
as follows. Let U1 = U , V1 = V , let

cos θ1 = max
u∈U ,v∈V

‖u‖2=1,‖v‖2=1

〈u, v〉,

let u1 ∈ U and v1 ∈ V be any two unit vectors such that cos θ1 = 〈u1, v1〉, and for i = 2, . . . , k,
if Ui = Ui−1 ∩ {ui−1}⊥ and Vi = Vi−1 ∩ {vi−1}⊥, let

cos θi = max
u∈Ui,v∈Vi

‖u‖2=1,‖v‖2=1

〈u, v〉,

and let ui ∈ Ui and vi ∈ Vi be any two unit vectors such that cos θi = 〈ui, vi〉.
The vectors ui and vi are not unique, but it is shown in Golub and van Loan [51] that

(cos θ1, . . . , cos θk) are the singular values of Y >1 Y2 (with 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θk ≤ π/2).

We can also determine the length L(γ)(s) of the geodesic γ(t) from o to p = esX · o, for
any X ∈ m, with

X =

(
0 −A>
A 0

)
.

Since by Proposition 17.8(1), the length of the geodesic γ from o to p = esX · o is the same
as the the length of the geodesic γ in G from 1 to esX , for any X ∈ m, the computation from
Section 22.7 remains valid, and we obtain

(L(γ)(s))2 = (L(γ)(s))2 = s2

(
1

2
tr(X>X)

)
= s2tr(A>A).
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Then if θ1, . . . , θk are the singular values of A, we get

L(γ)(s) = s(θ2
1 + · · ·+ θ2

k)
1
2 .

In view of the above discussion regarding principal angles, we conclude that if Y1 consists
of the first k columns of an orthogonal matrix Q1 and if Y2 consists of the first k columns of
an orthogonal matrix Q2 then the distance between the subspaces [Q1] and [Q2] is given by

d([Q1], [Q2]) = (θ2
1 + · · ·+ θ2

k)
1
2 ,

where (cos θ1, . . . , cos θk) are the singular values of Y >1 Y2 (with 0 ≤ θi ≤ π/2); the angles
(θ1, . . . , θk) are the principal angles between the spaces [Q1] and [Q2].

In Golub and van Loan, a different distance between subspaces is defined, namely

dp2([Q1], [Q2]) =
∥∥Y1Y

>
1 − Y2Y

>
2

∥∥
2
.

If we write Θ = diag(θ1 . . . , θk), then it is shown that

dp2([Q1], [Q2]) = ‖sin Θ‖∞ = max
1≤i≤k

sin θi.

This metric is derived by embedding the Grassmannian in the set of n×n projection matrices
of rank k, and then using the 2-norm. Other metrics are proposed in Edelman, Arias and
Smith [44].

We leave it to the brave readers to compute 〈[[X, Y ], X], Y 〉, where

X =

(
0 −A>
A 0

)
, Y =

(
0 −B>
B 0

)
,

and check that

〈[[X, Y ], X], Y 〉 = 〈BA> − AB>, BA> − AB>〉+ 〈A>B −B>A,A>B −B>A〉,

which shows that the sectional curvature is nonnegative. When k = 1 (or k = n− 1), which
corresponds to RPn−1 (or Sn−1), we get a metric of constant positive curvature.

2. Symmetric Positive Definite Matrices

Recall from Example 4.7 that the space SPD(n) of symmetric positive definite matri-
ces (n ≥ 2) appears as the homogeneous space GL+(n,R)/SO(n), under the action of
GL+(n,R) on SPD(n) given by

A · S = ASA>, A ∈ GL+(n,R), S ∈ SPD(n).

Write G = GL+(n,R), K = SO(n), and choose the Cartan involution σ given by

σ(S) = (S>)−1, S ∈ GL+(n,R).
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It is immediately verified that
Gσ = SO(n),

and that the derivative θ = dσ1 of σ is given by

θ(S) = (σ(etS))′(0) = (e−tS
>

)′(0) = −S>, S ∈ Mn(R),

since gl+(n) = gl(n) = Mn(R). It follows that k = so(n), and m = S(n), the vector space of
symmetric matrices. We define an Ad(SO(n))-invariant inner product on gl+(n) by

〈X, Y 〉 = tr(X>Y ).

If X ∈ m and Y ∈ k = so(n), then

〈X, Y 〉 = tr(X>Y ) = tr((X>Y )>) = tr(Y >X) = −tr(Y X>) = −tr(X>Y ) = −〈X, Y 〉,
so 〈X, Y 〉 = 0. Thus we have

〈X, Y 〉 =


−tr(XY ) if X, Y ∈ k

tr(XY ) if X, Y ∈ m

0 if X ∈ m, Y ∈ k.

We leave it as an exercise (see Petersen [93], Chapter 8, Section 2.5) to show that

〈[[X, Y ], X], Y 〉 = −tr([X, Y ]>[X, Y ]), for all X, Y ∈ m.

This shows that the sectional curvature is nonpositive. It can also be shown that the isotropy
representation is given by

χA(X) = AXA−1 = AXA>,

for all A ∈ SO(n) and all X ∈ m.

Recall that the exponential exp: S(n) → SPD(n) is a bijection. Then given any S ∈
SPD(n), there is a unique X ∈ m such that S = eX , and the unique geodesic from I to S
is given by

γ(t) = etX .

Let us try to find the length L(γ) = d(I, S) of this geodesic. As in Section 22.7, we have

L(γ) =

∫ 1

0

〈γ′(t), γ′(t)〉 12dt,

but this time, X ∈ m is symmetric and the geodesic is unique, so we have

L(γ) =

∫ 1

0

〈(etX)′, (etX)′〉 12dt

=

∫ 1

0

〈XetX , XetX〉 12dt

=

∫ 1

0

(tr((etX)>X>XetX))
1
2dt

=

∫ 1

0

(tr(X2e2tX))
1
2dt.
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Since X is a symmetric matrix, we can write

X = P>ΛP,

with P orthogonal and Λ = diag(λ1, . . . , λn), a real diagonal matrix, and we have

tr(X2e2tX) = tr(P>Λ2PP>e2tΛP )

= tr(Λ2e2tΛ)

= λ2
1e

2tλ1 + · · ·+ λ2
ne

2tλn .

Therefore,

d(I, S) = L(γ) =

∫ 1

0

(λ2
1e

2λ1t + · · ·+ λ2
ne

2λnt)
1
2dt.

Actually, since S = eX and S is SPD, λ1, . . . , λn are the logarithms of the eigenvalues
σ1, . . . , σn of X, so we have

d(I, S) = L(γ) =

∫ 1

0

((log σ1)2e2 log σ1t + · · ·+ (log σn)2e2 log σnt)
1
2dt.

Unfortunately, there doesn’t appear to be a closed form formula for this integral.

The symmetric space SPD(n) contains an interesting submanifold, namely the space of
matrices S in SPD(n) such that det(S) = 1. This the symmetric space SL(n,R)/SO(n),
which we suggest denoting by SSPD(n). For this space, g = sl(n), and the reductive
decomposition is given by

k = so(n), m = S(n) ∩ sl(n).

Recall that the Killing form on gl(n) is given by

B(X, Y ) = 2ntr(XY )− 2tr(X)tr(Y ).

On sl(n), the Killing form is B(X, Y ) = 2ntr(XY ), and restricted to S(n) it is proportional
to the inner product

〈X, Y 〉 = tr(XY ).

Therefore, we see that the restriction of the Killing form of sl(n) to m = S(n) ∩ sl(n)
is positive definite, whereas it is negative definite on k = so(n). The symmetric space
SSPD(n) ∼= SL(n,R)/SO(n) is an example of a symmetric space of noncompact type. On
the other hand, the Grassmannians are examples of symmetric spaces of compact type (for
n ≥ 3). In the next section, we take a quick look at these special types of symmetric spaces.

3. The Hyperbolic Space H+
n (1) ~

In Section 5.1 we defined the Lorentz group SO0(n, 1) as follows: if

J =

(
In 0
0 −1

)
,
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then a matrix A ∈ Mn+1(R) belongs to SO0(n, 1) iff

A>JA = J, det(A) = +1, an+1n+1 > 0.

In that same section we also defined the hyperbolic space H+
n (1) as the sheet of Hn(1) which

contains (0, . . . , 0, 1) where

Hn(1) = {u = (u, t) ∈ Rn+1 | ‖u‖2 − t2 = −1}.

We also showed that the action · : SO0(n, 1)×H+
n (1) −→ H+

n (1) with

A · u = Au

is a transitive with stabilizer SO(n) (see Proposition 5.10). Thus, H+
n (1) arises as the

homogeneous space SO0(n, 1)/SO(n).

Since the inverse of A ∈ SO0(n, 1) is JA>J , the map σ : SO0(n, 1)→ SO0(n, 1) given by

σ(A) = JAJ = (A>)−1

is an involutive automorphism of SO0(n, 1). Write G = SO0(n, 1), K = SO(n). It is
immediately verified that

Gσ =

{(
Q 0
0 1

)
| Q ∈ SO(n)

}
,

so Gσ ∼= SO(n). We have

so(n, 1) =

{(
B u
u> 0

)
| B ∈ so(n), u ∈ Rn

}
,

and the derivative θ : so(n, 1)→ so(n, 1) of σ at I is given by

θ(X) = JXJ = −X>.

From this we deduce that the +1-eigenspace is given by

k =

{(
B 0
0 0

)
| B ∈ so(n)

}
,

and the −1-eigenspace is given by

m =

{(
0 u
u> 0

)
| u ∈ Rn

}
,

with
so(n, 1) = k⊕m,
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a reductive decomposition. We define an Ad(K)-invariant inner product on so(n, 1) by

〈X, Y 〉 =
1

2
tr(X>Y ).

In fact, on m ∼= Rn, we have〈(
0 u
u> 0

)
,

(
0 v
v> 0

)〉
=

1

2
tr

((
0 u
u> 0

)(
0 v
v> 0

))
=

1

2
tr(uv> + u>v) = u>v,

the Euclidean product of u and v.

As an exercise, the reader should compute 〈[[X, Y ], X], Y 〉, where

X =

(
0 u
u> 0

)
, Y =

(
0 v
v> 0

)
,

and check that
〈[[X, Y ], X], Y 〉 = −〈uv> − vu>, uv> − vu>〉,

which shows that the sectional curvature is nonpositive. In fact, H+
n (1) has constant negative

sectional curvature.

We leave it as an exercise to prove that for n ≥ 2, the Killing form B on so(n, 1) is given
by

B(X, Y ) = (n− 1)tr(XY ),

for all X, Y ∈ so(n, 1). If we write

X =

(
B1 u
u> 0

)
, Y =

(
B2 v
v> 0

)
,

then
B(X, Y ) = (n− 1)tr(B1B2) + 2(n− 1)u>v.

This shows that B is negative definite on k and positive definite on m. This means that the
space H+

n (1) is a symmetric space of noncompact type.

The symmetric space H+
n (1) = SO0(n, 1)/SO(n) turns out to be dual, as a symmetric

space, to Sn = SO(n+ 1)/SO(n). For the precise notion of duality in symmetric spaces, we
refer the reader to O’Neill [91].

4. The Hyperbolic Grassmannian G∗(q, p+ q)~

This is the generalization of the hyperbolic space H+
n (1) in Example (3). Recall from

Section 5.1 that we define Ip,q, for p, q ≥ 1, by

Ip,q =

(
Ip 0
0 −Iq

)
.
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If n = p+ q, the matrix Ip,q is associated with the nondegenerate symmetric bilinear form

ϕp,q((x1, . . . , xn), (y1, . . . , yn)) =

p∑
i=1

xiyi −
n∑

j=p+1

xjyj

with associated quadratic form

Φp,q((x1, . . . , xn)) =

p∑
i=1

x2
i −

n∑
j=p+1

x2
j .

The group SO(p, q) is the set of all n× n-matrices (with n = p+ q)

SO(p, q) = {A ∈ GL(n,R) | A>Ip,qA = Ip,q, det(A) = 1}.

If we write

A =

(
P Q
R S

)
, P ∈Mp(R), Q ∈Mq(R)

then it is shown in O’Neill [91] (Chapter 9, Lemma 6) that the connected component
SO0(p, q) of SO(p, q) containing I is given by

SO0(p, q) = {A ∈ GL(n,R) | A>Ip,qA = Ip,q, det(P ) > 0, det(S) > 0}.

For both SO(p, q) and SO0(p, q), the inverse is given by

A−1 = Ip,qA
>Ip,q.

This implies that the map σ : SO0(p, q)→ SO0(p, q) given by

σ(A) = Ip,qAIp,q = (A>)−1

is an involution, and its fixed subgroup Gσ is given by

Gσ =

{(
Q 0
0 R

)
| Q ∈ SO(p), R ∈ SO(q)

}
.

Thus Gσ is isomorphic to SO(p)× SO(q).

For p, q ≥ 1, the Lie algebra so(p, q) of SO0(p, q) (and SO(p, q) as well) is given by

so(p, q) =

{(
B A
A> C

)
| B ∈ so(p), C ∈ so(q), A ∈ Mp,q(R)

}
.

Since θ = dσI is also given by θ(X) = Ip,qXIp,q = −X>, we find that the +1-eigenspace k of
θ is given by

k =

{(
B 0
0 C

)
| B ∈ so(p), C ∈ so(q)

}
,
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and the −1-eigenspace m of θ is is given by

m =

{(
0 A
A> 0

)
| A ∈ Mp,q(R)

}
.

Note that k is a subalgebra of so(p, q) and so(p, q) = k⊕m.

Write G = SOo(p, q) and K = SO(p) × SO(q). We define an Ad(K)-invariant inner
product on so(p, q) by

〈X, Y 〉 =
1

2
tr(X>Y ).

Therefore, for p, q ≥ 1, the coset space SO0(p, q)/(SO(p) × SO(q)) is a symmetric space.
Observe that on m, the above inner product is given by

〈X, Y 〉 =
1

2
tr(XY ).

On the other hand, in the case of SO(p + q)/(SO(p) × SO(q)), on m, the inner product is
given by

〈X, Y 〉 = −1

2
tr(XY ).

This space can be described explicitly. Indeed, let G∗(q, p+q) be the set of q-dimensional
subspaces W of Rn = Rp+q such that Φp,q is negative definite on W . Then we have an obvious
matrix multiplication action of SO0(p, q) on G∗(q, p + q), and it is easy to check that this
action is transitive. It is not hard to show that the stabilizer of the subspace spanned by
the last q columns of the (p + q) × (p + q) identity matrix is SO(p) × SO(q), so the space
G∗(q, p+q) is isomorphic to the homogeneous (symmetric) space SO0(p, q)/(SO(p)×SO(q)).

Definition 22.15. The symmetric space G∗(q, p+q) ∼= SO0(p, q)/(SO(p)×SO(q)) is called
the hyperbolic Grassmannian.

Assume that p+ q ≥ 3, p, q ≥ 1. Then it can be shown that the Killing form on so(p, q)
is given by

B(X, Y ) = (p+ q − 2)tr(XY ),

so so(p, q) is semisimple. If we write

X =

(
B1 A1

A>1 C1

)
, Y =

(
B2 A2

A>2 C2

)
,

then
B(X, Y ) = (p+ q − 2)(tr(B1B2) + tr(C1C2)) + 2(p+ q − 2)A>1 A2.

Consequently, B is negative definite on k and positive definite on m, so G∗(q, p + q) =
SO0(p, q)/(SO(p)× SO(q)) is another example of a symmetric space of noncompact type.
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We leave it to the reader to compute 〈[[X, Y ], X], Y 〉, where

X =

(
0 A
A> 0

)
, Y =

(
0 B
B> 0

)
,

and check that

〈[[X, Y ], X], Y 〉 = −〈BA> − AB>, BA> − AB>〉 − 〈A>B −B>A,A>B −B>A〉,

which shows that the sectional curvature is nonpositive. In fact, the above expression is the
negative of the expression that we found for the sectional curvature of G0(p, p + q). When
p = 1 or q = 1, we get a space of constant negative curvature.

The above property is one of the consequences of the fact that the space G∗(q, p + q) =
SO0(p, q)/(SO(p)× SO(q)) is the symmetric space dual to
G0(p, p + q) = SO(p + q)/(SO(p) × SO(q)), the Grassmannian of oriented p-planes; see
O’Neill [91] (Chapter 11, Definition 37) or Helgason [58] (Chapter V, Section 2).

5. Compact Lie Groups

If H be a compact Lie group, then G = H ×H is the group with multiplication given by
(h1, h2) · (h′1, h′2) = (h1h

′
1, h2h

′
2). The group G = H ×H acts on H via

(h1, h2) · h = h1hh
−1
2 .

The stabilizer of 1 is clearly K = ∆H = {(h, h) | h ∈ H}. It is easy to see that the map

(h1, h2)K 7→ h1h
−1
2

is a diffeomorphism between the coset space G/K and H (see Helgason [58], Chapter IV,
Section 6). A Cartan involution σ on G is given by

σ(h1, h2) = (h2, h1),

and obviously Gσ = K = ∆H. Therefore, H appears as the symmetric space G/K, with
G = H ×H, K = ∆H, and

k = {(X,X) | X ∈ h}, m = {(X,−X) | X ∈ h}.

For every (h1, h2) ∈ g, we have

(h1, h2) =

(
h1 + h2

2
,
h1 + h2

2

)
+

(
h1 − h2

2
,−h1 − h2

2

)
which gives the direct sum decomposition

g = k⊕m.
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The natural projection π : H ×H → H is given by

π(h1, h2) = h1h
−1
2 ,

which yields dπ(1,1)(X, Y ) = X − Y (see Helgason [58], Chapter IV, Section 6). It follows
that the natural isomorphism m→ h is given by

(X,−X) 7→ 2X.

Given any bi-invariant metric 〈−,−〉 on H, define a metric on m by

〈(X,−X), (Y,−Y )〉 = 4〈X, Y 〉.

The reader should check that the resulting symmetric space is isometric to H (see Sakai
[100], Chapter IV, Exercise 4).

More examples of symmetric spaces are presented in Ziller [119] and Helgason [58]. For
example, the complex Grassmannian

SU(n)/S(U(k)×U(n− k)) ∼= GC(k, n)

is a symmetric space. The Cartan involution is also given by σ(U) = Ik,n−kUIk,n−k, with
U ∈ SU(n).

To close our brief tour of symmetric spaces, we conclude with a short discussion about
the type of symmetric spaces.

22.10 Types of Symmetric Spaces

Suppose (G,K, σ) (G connected and K compact) presents a symmetric space with Cartan
involution σ, and with

g = k⊕m,

where k (the Lie algebra of K) is the eigenspace of dσ1 associated with the eigenvalue +1
and m is is the eigenspace associated with the eigenvalue −1. If B is the Killing form of g, it
turns out that the restriction of B to k is always negative semidefinite. This will be shown
as the first part of the proof of Proposition 22.37. However, to guarantee that B is negative
definite (that is, B(Z,Z) = 0 implies that Z = 0) some additional condition is needed.

This condition has to do with the subgroup N of G defined by

N = {g ∈ G | τg = id} = {g ∈ G | gaK = aK for all a ∈ G}.

By setting a = e, we see that N ⊆ K. Furthermore, since n ∈ N implies na−1bK = a−1bK
for all a, b ∈ G, we can readily show that N is a normal subgroup of both K and G. It is
not hard to show that N is the largest normal subgroup that K and G have in common (see
Ziller [119] (Chapter 6, Section 6.2).
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We can also describe the subgroup N in a more explicit fashion. We have

N = {g ∈ G | gaK = aK for all a ∈ G}
= {g ∈ G | a−1gaK = K for all a ∈ G}
= {g ∈ G | a−1ga ∈ K for all a ∈ G}.

Definition 22.16. For any Lie group G and any closed subgroup K of G, the subgroup N
of G given by

N = {g ∈ G | a−1ga ∈ K for all a ∈ G}
is called the ineffective kernel of the left action of G on G/K. The left action of G on G/K
is said to be effective (or faithful) if N = {1}, almost effective if N is a discrete subgroup.

If K is compact, which will be assumed from now on, since a discrete subgroup of a
compact group is finite, the action of G on G/K is almost effective if N is finite.

For example, the action · : SU(n + 1) × CPn → CPn of SU(n + 1) on the (complex)
projective space CPn discussed in Example (e) of Section 4.3 is almost effective but not
effective. It presents CPn as the homogeneous manifold

SU(n+ 1)/S(U(1)×U(n)) ∼= CPn.

We leave it as an exercise to the reader to prove that the ineffective kernel of the above
action is the finite group

N = {λIn+1 | λn+1 = 1, λ ∈ C}.

It turns out that the additional requirement needed for the Killing form to be negative
definite is that the action of G on G/K is almost effective.

The following technical proposition gives a criterion for the left action of G on G/K to
be almost effective in terms of the Lie algebras g and k. This is Proposition 6.27 from Ziller
[119].

Proposition 22.36. The left action of G on G/K (with K compact) is almost effective iff
g and k have no nontrivial ideal in common.

Proof. By a previous remark, the effective kernel N of the left action of G on G/K is
the largest normal subgroup that K and G have in common. To say that N is finite is
equivalent to saying that N is discrete (since K is compact), which is equivalent to the fact
that its Lie algebra n = (0). Since by Theorem 18.19 normal subgroups correspond to ideals,
the condition that the largest normal subgroup that K and G have in common is finite is
equivalent to the condition that g and k have no nontrivial ideal in common.

Proposition 22.37. Let (G,K, σ) be a symmetric space (K compact) with Cartan involution
σ, and assume that the left action of G on G/K is almost effective. If B is the Killing form
of g and k 6= (0), then the restriction of B to k is negative definite.
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Proof. (After Ziller [119], Proposition 6.38). The restriction of the Ad-representation of G
to K yields a representation Ad: K → GL(g). Since K is compact, by Theorem 20.4 there
is an Ad(K)-invariant inner product on g. Then for k ∈ K, we have

〈Adk(X),Adk(Y )〉 = 〈X, Y 〉, for all X, Y ∈ g,

so for k = exp(tZ) with Z ∈ k, by taking derivatives at t = 0, we get

〈[X,Z], Y 〉 = 〈X, [Z, Y ]〉, X, Y ∈ g, Z ∈ k,

which can be written as

−〈[Z,X], Y 〉 = 〈[Z, Y ], X〉, X, Y,∈ g, Z ∈ k.

Consequently ad(Z) is a skew-symmetric linear map on g for all Z ∈ k. But then, ad(Z) is
represented by a skew symmetric matrix (aij) in any orthonormal basis of g, and so

B(Z,Z) = tr(ad(Z) ◦ ad(Z)) = −
n∑

i,j=1

a2
ij ≤ 0.

Next, we need to prove that if B(Z,Z) = 0, then Z = 0. This is equivalent to proving that
if ad(Z) = 0 then Z = 0. However, ad(Z) = 0 means that [Z,X] = 0 for all X ∈ g, so Z
belongs to the center of g,

z(g) = {Z ∈ g | [Z,X] = 0 for all X ∈ g}.

It is immediately verified that z(g) is an ideal of g. But now, Z ∈ z(g) ∩ k, which is an
ideal of both g and k by definition of z(g), and since the left action of G on G/K is almost
effective, by Proposition 22.36, the Lie algebras g and k have no nontrivial ideal in common,
so z(g) ∩ k = (0), and Z = 0.

In view of Proposition 22.37, it is natural to classify symmetric spaces depending on the
behavior of B on m.

Definition 22.17. Let M = (G,K, σ) be a symmetric space (K compact) with Cartan
involution σ and Killing form B, and assume that the left action of G on G/K is almost
effective. The space M is said to be of

(1) Euclidean type if B = 0 on m.

(2) Compact type if B is negative definite on m.

(3) Noncompact type if B is positive definite on m.
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Proposition 22.38. Let M = (G,K, σ) be a symmetric space (K compact) with Cartan
involution σ and Killing form B on g, and assume that the left action of G on G/K is
almost effective. The following properties hold.

(1) M is of Euclidean type iff [m,m] = (0). In this case, M has zero sectional curvature.

(2) If M is of compact type, then g is semisimple and both G and M are compact.

(3) If M is of noncompact type, then g is semisimple and both G and M are noncompact.

Proof. (1) If B is zero on m, since B(m, k) = 0 by Proposition 22.32, we conclude that
rad(B) = m (recall that rad(B) = {X ∈ g | B(X, Y ) = 0 for all Y ∈ g}). However, rad(B)
is an ideal in g, so [m,m] ⊆ m, and since [m,m] ⊆ k, we deduce that

[m,m] ⊆ m ∩ k = (0).

Conversely, assume that [m,m] = (0). Since B is determined by the quadratic form Z 7→
B(Z,Z), it suffices to prove that B(Z,Z) = 0 for all Z ∈ m. Recall that

B(Z,Z) = tr(ad(Z) ◦ ad(Z)).

We have
(ad(Z) ◦ ad(Z))(X) = [Z, [Z,X]]

for all X ∈ g. If X ∈ m, then [Z,X] = 0 since Z,X ∈ m and [m,m] = (0), and if X ∈ k,
then [Z,X] ∈ [m, k] ⊆ m, so [Z, [Z,X]] = 0, since [Z, [Z,X]] ∈ [m,m] = (0). Since g = m⊕ k,
we proved that

(ad(Z) ◦ ad(Z))(X) = 0 for all X ∈ g,

and thus B(Z,Z) = 0 on m, as claimed.

For (2) and (3), we use the fact that B is negative definite on k, by Proposition 22.37.

(2) Since B is negative definite on m, it is negative definite on g, and then by Theorem
20.27 we know that G is semisimple and compact. As K is also compact, M is compact.

(3) Since B is positive definite on m, it is nondegenerate on g, and then by Theorem
20.26, G is semisimple. In this case, G is not compact since by Theorem 20.27, G is compact
iff B is negative definite. As G is noncompact and K is compact, M is noncompact.

Symmetric spaces of Euclidean type are not that interesting, since they have zero sec-
tional curvature. The Grassmannians G(k, n) and G0(k, n) are symmetric spaces of compact
type, and SL(n,R)/SO(n), H+

n (1) = SO0(n, 1)/SO(n), and the hyperbolic Grassmannian
G∗(q, p+ q) = SO0(p, q)/(SO(p)× SO(q)) are of noncompact type.

Since GL+(n,R) is not semisimple, SPD(n) ∼= GL+(n,R)/SO(n) is not a symmetric
space of noncompact type, but it has many similar properties. For example, it has nonpos-
itive sectional curvature and because it is diffeomorphic to S(n) ∼= Rn(n−1)/2, it is simply
connected.
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Here is a quick summary of the main properties of symmetric spaces of compact and
noncompact types. Proofs can be found in O’Neill [91] (Chapter 11) and Ziller [119] (Chapter
6).

Proposition 22.39. Let M = (G,K, σ) be a symmetric space (K compact) with Cartan
involution σ and Killing form B on g, and assume that the left action of G on G/K is
almost effective. The following properties hold.

(1) If M is of compact type, then M has nonnegative sectional curvature and positive Ricci
curvature. The fundamental group π1(M) of M is a finite abelian group.

(2) If M is of noncompact type, then M is simply connected, and M has nonpositive
sectional curvature and negative Ricci curvature. Furthermore, M is diffeomorphic to
Rn (with n = dim(M)) and G is diffeomorphic to K × Rn.

There is also an interesting duality between symmetric spaces of compact type and non-
compact type, but we will not discuss it here. We refer the reader to O’Neill [91] (Chapter
11), Ziller [119] (Chapter 6), and Helgason [58] (Chapter V, Section 2).

We conclude this section by explaining why the Stiefel manifolds S(k, n) are not sym-
metric spaces for 2 ≤ k ≤ n− 2. This has to do with the nature of the involutions of so(n).
Recall that the matrices Ip,q and Jn are defined by

Ip,q =

(
Ip 0
0 −Iq

)
, Jn =

(
0 In
−In 0

)
,

with 2 ≤ p + q and n ≥ 1. Observe that I2
p,q = Ip+q and J2

n = −I2n. It is shown in Helga-
son [58] (Chapter X, Section 2 and Section 5) that, up to conjugation, the only involutive
automorphisms of so(n) are given by

1. θ(X) = Ip,qXIp,q, in which case the eigenspace k of θ associated with the eigenvalue
+1 is

k1 =

{(
S 0
0 T

) ∣∣∣∣ S ∈ so(k), T ∈ so(n− k)

}
.

2. θ(X) = −JnXJn, in which case the eigenspace k of θ associated with the eigenvalue
+1 is

k2 =

{(
S −T
T S

) ∣∣∣∣ S ∈ so(n), T ∈ S(n)

}
.

However, in the case of the Stiefel manifold S(k, n), the Lie subalgebra k of so(n) asso-
ciated with SO(n− k) is

k =

{(
0 0
0 S

) ∣∣∣∣ S ∈ so(n− k)

}
,

and if 2 ≤ k ≤ n− 2, then k 6= k1 and k 6= k2. Therefore, the Stiefel manifold S(k, n) is not
a symmetric space if 2 ≤ k ≤ n − 2. This also has to do with the fact that in this case,
SO(n− k) is not a maximal subgroup of SO(n).
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22.11 Problems

Problem 22.1. Assume is G a topological group and M is a topological space. Prove the
following claim. If the action · : G ×M → M is proper (where G is Hausdorff), then M is
Hausdorff.

Remark: This is the second of clause of Proposition 22.5.

Problem 22.2. In the proof of Theorem 22.14, we claim that (gx) is a smooth family of
inner products on M . Prove this fact.

Hint . See Gallot, Hulin, Lafontaine [49] (Chapter 2, Proposition 2.28).

Problem 22.3. Prove that for any matrix

X =

(
0 −u>
u 0

)
,

where u ∈ Rn (a column vector), we have

etX =

 cos(‖u‖ t) − sin(‖u‖ t) u>‖u‖
sin(‖u‖ t) u

‖u‖ I + (cos(‖u‖ t)− 1) uu
>

‖u‖2

 .

Problem 22.4. Let E be a real vector space of dimension n ≥ 1, and let 〈−,−〉1 and 〈−,−〉2
be two inner products on E. Let ϕk : E → E∗ be the linear map given by

ϕk(u)(v) = 〈u, v〉k, u, v ∈ E, k = 1, 2.

(1) Prove that if (u1, . . . , un) is an orthonormal basis for (E, 〈−,−〉1), then

ϕ1(ui) = u∗i , i = 1, . . . , n,

where (u∗1, . . . , u
∗
n) is the dual basis in E∗ of (u1, . . . , un) (recall that u∗i (uj) = δij).

Prove that for any basis (u1, . . . , un) in E and its dual basis (u∗1, . . . , u
∗
n) in E∗, the matrix

Ak representing ϕk (k = 1, 2) is given by

(Ak)ij = ϕk(uj)(ui) = 〈uj, ui〉k, 1 ≤ i, j,≤ n

Conclude that Ak is symmetric positive definite (k = 1, 2).

(2) Consider the linear map f : E → E defined by

f = ϕ−1
1 ◦ ϕ2.

Check that
〈u, v〉2 = 〈f(u), v〉1, for all u, v ∈ E,
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and deduce from the above that f is self-adjoint with respect to 〈−,−〉1.

(3) Prove that there is some orthonormal basis (u1, . . . , un) for (E, 〈−,−〉1) which is also
an orthogonal basis for (E, 〈−,−〉2). Prove that this result still holds if 〈−,−〉1 is an inner
product and 〈−,−〉2 is any symmetric bilinear form. We say that 〈−,−〉2 is diagonalized by
〈−,−〉1.

Hint . Use the spectral theorem for symmetric matrices.

Assume that 〈−,−〉1 is a symmetric, nondegenerate, bilinear form and that 〈−,−〉2 is
any symmetric bilinear form. Prove that for any basis (e1, . . . , en) of E, if (e1, . . . , en) is
orthogonal for 〈−,−〉1 implies that it is also orthogonal for 〈−,−〉2, which means that

if 〈ej, ej〉1 = 0 then 〈ej, ej〉2 = 0, for all i 6= j,

then f = ϕ−1
1 ◦ ϕ2 has (e1, . . . , en) as a basis of eigenvectors.

Find an example of two symmetric, nondegenerate bilinear forms that do not admit a
common orthogonal basis.

(4) Given a group G and a real finite dimensional vector space E, a representation of G
is any homomorphism ρ : G→ GL(E). A subspace U ⊆ E is invariant under ρ if for every
g ∈ G, we have ρ(g)(u) ∈ U for all u ∈ U . A representation is said to be irreducible if its
only invariant subspaces are (0) and E.

For any two inner products 〈−,−〉1 and 〈−,−〉2 on E, if ρ(g) is an isometry for both
〈−,−〉1 and 〈−,−〉2 for all g ∈ G (which means that 〈ρ(g)(u), ρ(g)(v)〉k = 〈u, v〉k for all
u, v ∈ E, k = 1, 2) and if ρ is irreducible, then prove that 〈−,−〉2 = λ〈−,−〉1, for some
nonzero λ ∈ R.

Hint . Compare ρ(g) ◦ f and f ◦ ρ(g) and show that the eigenspaces of f (as defined in (2))
are invariant under each ρ(g).

In the situation of Proposition 22.21 where we have a homogeneous reductive space G/H
with reductive decomposition g = h⊕m, prove that if the representation AdG : H → GL(m)
is irreducible (where Adh is restricted to m for all h ∈ H), then any two Ad(H)-invariant
inner products on m are proportional to each other.

Problem 22.5. Consider the grassmannian G(k, n) viewed as a symmetric space as in
Section 22.9 (1).

(1) For any X and Y in m given by

X =

(
0 −A>
A 0

)
, Y =

(
0 −B>
B 0

)
,

prove that

〈[[X, Y ], X], Y 〉 = 〈BA> − AB>, BA> − AB>〉+ 〈A>B −B>A,A>B −B>A〉,
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Show that the isotropy representation is given by

Ad((Q,R))A =

(
Q 0
0 R

)(
0 −A>
A 0

)(
Q> 0
0 R>

)
=

(
0 −QA>R>

RAQ> 0

)
= RAQ>,

where (Q,R) represents an element of S(O(k)×O(n− k)), and A represents an element of
m.

Problem 22.6. Consider the space SPD(n) viewed as a symmetric space as in Section 22.9
(2).

(1) Prove that for all X, Y ∈ m = S(n) we have

〈[[X, Y ], X], Y 〉 = −tr([X, Y ]>[X, Y ]), for all X, Y ∈ m.

(2) Prove that the isotropy representation is given by

χA(X) = AXA−1 = AXA>,

for all A ∈ SO(n) and all X ∈ m.

Problem 22.7. Consider the hyperbolic space H+
n (1) viewed as a symmetric space as in

Section 22.9 (3).

(1) Given

X =

(
0 u
u> 0

)
, Y =

(
0 v
v> 0

)
,

prove that

〈[[X, Y ], X], Y 〉 = −〈uv> − vu>, uv> − vu>〉,

(2) Prove that for n ≥ 2, the Killing form B on so(n, 1) is given by

B(X, Y ) = (n− 1)tr(XY ),

for all X, Y ∈ so(n, 1).

Problem 22.8. Let G∗(q, p+q) be the set of q-dimensional subspaces W of Rn = Rp+q such
that Φp,q is negative definite on W . Then we have an obvious matrix multiplication action
of SO0(p, q) on G∗(q, p+ q). Check that this action is transitive.

Show that the stabilizer of the subspace spanned by the last q columns of the (p + q)×
(p+q) identity matrix is SO(p)×SO(q), and deduce that the space G∗(q, p+q) is isomorphic
to the homogeneous (symmetric) space SO0(p, q)/(SO(p)× SO(q)).
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Problem 22.9. Consider the hyperbolic Grassmannian G∗(q, p+ q) viewed as a symmetric
space as in Section 22.9 (4).

For X, Y ∈ m given by

X =

(
0 A
A> 0

)
, Y =

(
0 B
B> 0

)
,

prove that

〈[[X, Y ], X], Y 〉 = −〈BA> − AB>, BA> − AB>〉 − 〈A>B −B>A,A>B −B>A〉.

Problem 22.10. If G = H ×H and K = {(h, h) | h ∈ H} ⊆ G, prove that the map

(h1, h2)K 7→ h1h
−1
2

is a diffeomorphism between the coset space G/K and H.

Problem 22.11. Let (G,K, σ) (G connected and K compact) present a symmetric space.
Prove that the ineffective kernel N is the largest normal subgroup of both K and G.

Problem 22.12. Consider the action · : SU(n + 1) × CPn → CPn of SU(n + 1) on the
(complex) projective space CPn discussed in Example (e) of Section 4.3. Prove that the
ineffective kernel of the above action is the finite group

N = {λIn+1 | λn+1 = 1, λ ∈ C}.



716 CHAPTER 22. MANIFOLDS ARISING FROM GROUP ACTIONS



Bibliography

[1] Ralph Abraham and Jerrold E. Marsden. Foundations of Mechanics. Addison Wesley,
second edition, 1978.

[2] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Mani-
folds. Princeton University Press, first edition, 2008.

[3] J. Frank Adams. Lectures on Lie Groups. The University of Chicago Press, first
edition, 1969.

[4] Tom Apostol. Analysis. Addison Wesley, second edition, 1974.

[5] M. A. Armstrong. Basic Topology. Undergraduate Texts in Mathematics. Springer-
Verlag, first edition, 1983.

[6] Vincent Arsigny. Processing Data in Lie Groups: An Algebraic Approach. Application
to Non-Linear Registration and Diffusion Tensor MRI. PhD thesis, École Polytech-
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tion Enseignement des Sciences. Hermann, 1992.

[105] Jean-Pierre Serre. Lie Algebras and Lie Groups. Lecture Notes in Mathematics, No.
1500. Springer, second edition, 1992.

[106] Jean-Pierre Serre. Complex Semisimple Lie Algebras. Springer Monographs in Math-
ematics. Springer, first edition, 2000.

[107] Richard W. Sharpe. Differential Geometry. Cartan’s Generalization of Klein’s Erlan-
gen Program. GTM No. 166. Springer Verlag, first edition, 1997.

[108] Marcelo Siqueira, Dianna Xu, and Jean Gallier. Parametric pseudo-manifolds. Differ-
ential Geometry and its Applications, 30:702–736, 2012.

[109] Norman Steenrod. The Topology of Fibre Bundles. Princeton Math. Series, No. 1.
Princeton University Press, 1956.

[110] S. Sternberg. Lectures On Differential Geometry. AMS Chelsea, second edition, 1983.



724 BIBLIOGRAPHY

[111] Kristopher Tapp. Matrix Groups for Undergraduates, volume 29 of Student Mathemat-
ical Library. AMS, first edition, 2005.

[112] Loring W. Tu. An Introduction to Manifolds. Universitext. Springer Verlag, first
edition, 2008.

[113] V.S. Varadarajan. Lie Groups, Lie Algebras, and Their Representations. GTM No.
102. Springer Verlag, first edition, 1984.

[114] Frank Warner. Foundations of Differentiable Manifolds and Lie Groups. GTM No. 94.
Springer Verlag, first edition, 1983.
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L(G), 542
Ric(x, y), 485
Ricp(x, y), 485
StabG(x), 139
ad, 63
ad(X), 64
ad a, 539
adX , 63
ada, 539
diam(X), 510
grad(f), 406
grad f , 458
null(B), 493
rad g, 613
supp, 314
tr(f), 484
H(2), 191
Lor(1, 3), 172
O(p, q), 164, 197
PSL(2,C), 131
PSL(2,R), 131
SL(2,C)0, 144
SO(p, q), 164
SU(1, 1), 146
SU(p, q), 204
U(p, q), 204
GL(n,C), 43, 122
GL(n,R), 35, 122
GL(g), 541
HPD(n), 46
HP(n), 46
H(n), 46
SL(n,C), 43, 122
SL(n,R), 36, 122
SPD(n), 41
SP(n), 41
S(n), 41
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Ja,b, 498
SX , 128
X(M), 288
X(k)(M), 288
a⊕τ b, 562
aoτ b, 562
a, 182
a⊥, 600
gl(n,C), 44
gl(n,R), 36
g, 91, 539
gL, 546
gR, 546
ge, 587
g2
e, 588

i(M), 568
k, 179
mM,p, 247
m2
M,p, 247

m
(k)
M,p, 247

n, 182
o(n), 36
o(p, q), 201, 206
p, 179
r, 613
se(n), 48
sl(n,C), 44
sl(n,R), 36
so(n), 36
so(n, 1), 178
spd(n) = S(n), 637
su(n), 44

s
(k)
M,p, 247
u(n), 44
z(g), 709
µ(X, Y ), 585
∇X, 532
∇f(a), 353
∇(X, Y ), 417
∇ : X(M) −→ HomC∞(M)(X(M),X(M)), 418
∇2(f), 458
∇2
X,YZ, 478

∇M , 427
∇XY , 417
∇XY (p), 416
∇X∇−Z, 478
∇Xg, 532
∇−Z, 478
∇ ∂

∂xi

, 418

∇γ′(t), 421
∇γ′ , 421
∇c′(t)Y , 416

‖A‖F =
√

tr(A>A), 347
‖v‖, 435
ν, 499
B0(a, ρ), 367
⊕, 94, 557
B(r), 313
A, 214
g, 127
∂A, 368
π∗g, 525
π1(X), 326
π1(X, p), 326
πS, 223
ψS, 222
Q∗, 122
R[X], 122
R∗, 122
Rn, 122
ρ(v), 454, 513
RPn, 135
σN , 131
σ−1
N , 131
‖u‖, 366
‖x− y‖2, 366∑∞

k=0 ak, 333
A, 214, 218
B, 371
C((a, b)), 123
Ck(U), 228
D, 439
D(X), 301
D(p), 439



SYMBOL INDEX 731

D(k)
p (M), 238
Dt(X), 301
E(n), 67, 308
G = ((Ωi)∈I , (Ωij)(i,j)∈I×I , (ϕji)(i,j)∈K), 265
H, 173
Ha = (dLa)1, 667
H+
n (r), 174
H−n (r), 174
Hp, 527
Hn(0), 173
Hn(r), 173
I, 219
K, 687
Ki(M), 569
L(E/H), 243
L2(E2;F ), 358
M = (G, (θi)i∈I), 279
O, 365
O(k)
M , 236

O(k)
M (U), 236

O(k)
M,p, 236
S, 371
Sym2(E2;F ) , 358
Symm(Em;F ), 358

S(k)
M,p, 237
U , 369
Up, 453, 455, 514
Vp, 527
τi = p ◦ ini : Ωi →MG, 269
θ = dσ1, 686
θ∗U,ϕ,p, 286
R>, 122
ϕ(t, p), 359
ϕ∗g, 407
ϕ−1(p) = (z1, . . . , zm), 72
ϕp,q((x1, . . . , xn), (y1, . . . , yn)), 163
D1f(a) = f ′(a), 345
Duf(a), 344

G̃, 568
M̃ , 327
Γ̃, 330
C̃ut(p), 455, 514

{fi}i∈I , 317
cKi(M), 569
d(p, q), 449
d∗, 499
df(a), 345
dfa, 345
dfp, 246
e, 539
eA, 27
fX, 289
f ∼F g, 325
f ∼F g rel A, 325
g = (gp)p∈M , 403
g =

∑
ij gijdxidxj, 403

g =
∑

ij gijdxi ⊗ dxj, 403
gH, 125
g · u, 595
gH , 483
gPD, 484
gPH, 484
gij(p), 403
h∗Y , 293
h∗, 287
h∗X, 293
hv(t), 547
i(M), 442, 456
i(p), 442, 456
o, 505, 659
r(M), 457
r(p), 457
r(u), 605
s(t), 436
u = [γ], 231
u× v, 100
uH, 527
uV , 527
v[f ], 247
vL, 545
vR, 546

vi : f 7→
(

∂
∂xi

)
p
f , 236

x ∼R y, 391
xi = pri ◦ ϕ, 212
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SO0(p, q), 165
f , 235



Index

1-parameter group, 303, 548
Lie group, 105
linear Lie group, 105
vector field induced by matrix, 362

C0-function, see continuous function
C1-function, see derivative of linear map
Ck-curve, 229, 251

equivalence of C1 curve, 230
piecewise, 252

Ck-function, 228, 250
Ck-manifold of dimension n

definition, 214
embedded submanifold, 256
on a set, 218
smooth manifold, 214
submanifold, 254
topological manifold, 214

Ck-map between manifolds, 226
Ck-curve, 229
Ck-diffeomorphism, 229
Ck-function, 228

Cm-function, see higher order derivative
G-invariant metric, 595, 658
G-map, see equivariant function
lim supn7→∞ rn, 336
Ad: GL(n,R)→ GL(gl(n,R)), 62
ad: gl(n,R)→ Hom(gl(n,R), gl(n,R)), 64
ad: g→ gl(g), 108
f(x) approaching b as x approaches a, 378
k-plane, 147
n-atlas of class Ck, 214

compatible atlas, 214
compatible chart, 214

(closed) Lie subgroup, 554

accumulation point, 390
action field, 659
adjoint representation

of g, 108, 541
of G, 106, 541

Ado’s theorem, 557
affine connection, see connection on manifold
affine map, 306, 348

associated linear map, 348
affine similitudes, 626
algebraic subgroup of GL(n,R), 206
arc, see path

composition, 383
arc-length, 436
arc-lengtha function

path space Ω(p, q), 464
arcwise connected, 383

Baire space, 156
meager subset, 157
rare subset, 157

Banach space, 335
basis for topology, 371

subbasis, 371
bi-invariant metric, 592

Ad-invariant inner product, 594
compactness of Ad(G), 596
curvature tensor, 608
Levi-Civita connecton, 608
Ricci curvature, 609
sectional curvature, 608
skew-adjoint criteria for ad(u), 597

733
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bilinear form
index, 493
negative definite, 493
nondegenerate, 493
positive definite, 493

Bolzano-Weierstrass property, 391
boundary or frontier, 368
bounded subset, 387
Brouwer, 215
bump function, 313
bundle

vector bundle, 287

Campbell-Baker-Hausdorff formula, 585, 590
Cartan connection on Lie group, 621, 623

torsion-free criterion, 624
Cartan involution, see involutive automorphism
Cartan’s Criterion for Semisimiplicity, 619
Cartan’s moving frame method, 401
chain rule, 349

inverse of derivative, 349
manifolds, 250

chart, 72, 212
n-atlas of class Ck, 214
transition maps, 212

chart at p, 212
Chevalley, 27, 42
Christoffel symbols, 418, 468
Clairaut’s relation, 468
classical groups, see linear Lie group
closed map, 393
closed subgroup of GL(n,R), 90
closure, 380
closure or adherence, 368
cocycle condition

fibre bundle, 274
gluing data, 266

commutator ideal D1g, 613
derived series, 613

commutator series of g, see derived series
compact, 316, 386

accumulation points, 390

countable at infinity, 156
locally, 156, 389
neighborhood, 388
relatively, 386
subspace, 386

complete normed vector space, see Banach
space

complete Riemannian manifold, see geodesi-
cally complete

complex Lie group, 44
complex projective space CPn, 135
complex unit sphere, 129
conjugate locus, 517
conjugation AdA : Mn(R)→ Mn(R), 62
conjugation Ada : G→ G, 106
connected, 379

arcwise, 383
component, 381
locally, 382
locally arcwise, 384
set, 385
subset, 379, 380
subspace, 379

connection on manifold
Cartan connection, 621
Christoffel symbols, 418
compatible with metric, 423
curvature, 424
definition, 417
existence, 418
flat, 418, 473
Levi-Civita, 424
torsion, 424

continuity at point, 372
continuous bilinear map, 348
continuous function, 372

restricted to subspace, 374
continuous linear map, 345
convexity radius r(M), 457
convexity radius r(p), 457
cotangent bundle

definition, 285
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natural projection, 285
cotangent space, 243
cotangent space T ∗p (M) at p, 246, 247
countable at infinity, 156, 319
covariant derivative∇XY , see also directional

derivative
covariant derivative ∇XY , 416, 417

via local frame, 418
covariant derivative along curve

definition, 421
existence, 419

covariant derivative of metric, 532
cover

map, 322
cover of topological space, 315

open cover, 315
refinement, 315
subcover, 315

covering map, 322
base space, 323
covering manifold, 322
deck-transformation, 330

deck-transformation group, 330
equivalent, 323
evenly covered, 322
fibre, 323

multiplicity, 324
homomorphism, 322
induced by group action, 655
lift of map, 324
Riemannian, 524
simply connected, 327
universal cover, 327

covering of topological space, see cover
critical

point, 86, 461, 488
value, 86

critical point, 504
cross-product, 100
curvature tensor, 424, 475

bi-invariant metric, 608
First Bianchi Identity, 479

in a chart, 476
properties, 479
relationship to second covariant deriva-

tive, 478
Ricci curvature, 485
sectional curvature, 481

curve, 76
Ck, 229
equivalent, 230
piecewise smooth, 434

path space Ω(p, q), 434
smooth, 434

length, 435
curvilinear coordinate systems, 75
cut locus of p, 453, 455, 514

cut point, 514
cut value ρ(v), 513
relationship to injectivity radius i(p), 456
tangential cut locus, 455, 514

dense, 368
derivation at p, see point-derivation
derivation of Lie algebra, 558

Der(g), 558
construction of direct sum, 561
relationship to ad, 559

derivative of linear map
Jacobian matrix, 351

derivative of f at p, 103
derivative of linear map, 345, 348

derivative of inversion, 350
diffeomorphism

global, 356
local, 356, 407

differentiable structure of class Ck, see Ck-
manifold of dimension n

differential, see derivative of linear map
differential of f at p, see tangent map of f at

p, see tangent map of f at p
direct sum

Lie algebra, 557, 558
directional derivative, 344
directional derivative DXY (p), 414
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horizontal/tangential component∇XY (p),
416

normal component, 416
directional derivative v(f), 247, 414
discrete subgroup, 90, 91
discrete topology, 367
dual of vector space, 243
Dynkin’s Formula, 589

Einstein (gravitation) tensor, 488
Einstein manifold, 619
Einstein space, 488
embedded submanifold, 71, 256
embedding, 256

relationship to submanifold, 257
energy function

path space Ω(p, q), 461, 464
equivalent

metrics, 370
norms, 370

Euclidean norm
see Euclidean metric, 366

exponential map, 26
exp: sl(2,C)→ SL(2,C), 186
exp: sl(2,R)→ SL(2,R), 188
exp: g→ G, 99
bijectiion exp: S(n)→ SPD(n) , 43
bijectivity exp: H(n)→ HPD(n), 47
derivative, 65, 587

invertiblity, 67
extension to symmetric matrices, 41
linear Lie group

determinant, 34
eigenvalues, 31
eigenvectors, 33
global flow, 360
inverse, 34
matrix series, 27
naturality, 105

scaling and squaring method, 309
surjectivity exp: so(1, 2)→ SO0(1, 2), 195
surjectivity exp: so(1, 3)→ SO0(1, 3), 185,

194

surjectivity exp: so(n, 1)→ SO0(n, 1), 185
surjectivity exp: gl(n,C) → GL(n,C),

44
surjectivity exp: se(n)→ SE(n), 49
surjectivity exp: so(n)→ SO(n), 37
surjectivity exp: su(n)→ SU(n), 45
surjectivity exp: u(n)→ U(n), 45

exponential map expp
critical point, 507
derivative as Jacobi field, 505
geodesic definition, 439
geodesically complete, 440
injectivity radius i(p), 442
injectivity radius of manifold, 442
local diffeomorphism criteria, 508
normal chart, 443
normal coordinates, 443
normal neighborhood, 442
pole, 685
radial geodesic, 439

exponential map exp: g→ G, 548
derivative, 586
logarithmic coordinates, 588

fibre bundle
cocycle condition, 274
covering space, 323
local trivialization map, 273
transition maps, 273

finite intersection property, 387
First Bianchi Identity, 479
first variation formula, see path space
Fisher information metric, 409
flag, 571
Fréchet derivative, see derivative of linear map
Fréchet mean, 642
frame

global, 401
local, 401

defined via chart, 402
of vector fields, 401

Frobenius norm, 347
Fubini–Study metric, 654
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fundamental group, 326
simply connected, 326

Gâteaux derivative, see directional derivative
Gauss Lemma for expp, 444, 446
Gaussian curvature, see sectional curvature
general linear group GL(gl(n,R)), 61
general linear group GL(E), 61
geodesic

broken, 448
definition, 435
existence, 436
exponential map, 439
Lie group with bi-invariant metric, 609
maximal, 437
minimal, 448
radial, 439

geodesic exponential, see exponential map expp
geodesically complete, 440, 450
geometric mean, 643
germ of function, 235

commutative ring O(k)
M,p, 236

ring of Ck-stationary germs O(k)
M,p, 237

stationary germ, 237
global flow

on manifold ΦX , 301
complete, 303

vector field induced by matrix, 362
gluing data, 265

cocyle condition, 266
constructing manifold, 268
equivalent, 277
gluing domain, 265
gluing function, see transition function
image of pseudo-manifold, 280
induce manifold

isomorphic, 276
induced manifold, 275
parametrization domain, 265
pseudo-manifold, 279

image, 280
parametrization, 279

transition function, 265
gradient, 353, 406, 458

f ∈ C∞(M)
chart representation, 407

Grassmannian
complex

as homogeneous space, 149
as Stiefel orbifold, 151

group action of O(n), 147
group action of SO(n), 148
real, 147, 221

as homogeneous space, 148
as Stiefel orbifold, 151, 225
naturally reductive homogeneous space,

678
Plücker equations, 149
relationship to projective space, 149
symmetric space, 694

real oriented, 679
naturally reductive homogeneous space,

680
symmetric space, 694

group
abelian, 121
commutative, see abelian
definition, 121
First Isomorphism theorem, 127
general linear group, 122
left coset, 125
normal subgroup, 126
of permutations, 122
orthogonal group, 122
quotient group, 127

canonical projection, 127
right coset, 125
special linear group, 122
subgroup, 124

group acting on a set, see group action
group action

SL(2,C) on Riemann sphere, 132, 144
SL(2,R) on upper half plane, 130, 144
SO(n) on Sn−1, 129, 143
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SO(n+ 1) on RPn, 135, 145
SO0(n, 1) on H+

n (1), 176
SU(2) on S2, 133
SU(2) on Riemann sphere, 132
SU(n+ 1) on CPn, 135, 145
O(n) on real Grassmannian, 147
SO(n) on real Grassmannian, 148
SO(n) on real Stiefel manifold, 149
(left) G-set, 127
affine space, 138
continuous, 156
diffeomorphism τg : M →M , 651, 658
equivariant function, 128
faithful or effective, 127
free, 650
ineffective kernel, 708

almost effective, 708
effective, 708

left action, 127
Lie group acting by isometries, 652
on symmetric, positive, definite matrices,

134, 144
orbit, 142
projection of G onto X, 140

fibre, 140
proper, 649

criterion for manifold, 650
quotient group

homeomorphism, 157
right action, 128
simply transitive, 138
stabilizer, 139
transitive, 127

group automorphism, 126
group exponential expgr, see exp: g→ G
group homomorphism, 125

image, 125
kernel, 126

group isomorphism, 126
group of rigid motions SE(n), 47

Hadamard manifold, 641
Hadamard-Cartan Theorem, 509

Hausdorff, 386
separation axiom, 388

Heine-Borel-Lebesque property, 386
Hessian, 458

computed via geodesic, 459
Hessian matrix, 87, 358, 459
higher order derivative, 358
Hilbert space, 356
holonomy of closed curve, 422

holonomy group, 422
homeomorphism

between topological spaces, 377
global, 356
local, 356

homogeneous space
H+
n (1), 177

complex Grassmanian GC(k, n), 149
complex Stiefel manifold SC(k, n), 150
definition, 141
isotropy representation, 661
manifold structure, 652
real Grassmanian G(k, n), 148
real Stiefel manifold S(k, n), 150

homomorphism of Lie algebras, 104, 540
homomorphism of Lie groups, 104, 540
homotopic maps

definition, 325
homotopic class of loops, 325
relative to A, 325

homotopy, 325
Hopf fibration, see complex projective space
Hopf-Rinow Theorem, 450, 452
hyperbolic Grassmannian G∗(q, p+ q), 705
hyperbolic space, 483
hyperbolic spaceH+

n (1), see homogenous space,
see homogenous space

Poincaré (conformal) disc model, 412, 484
Poincaré half-plane model, 412, 484

hyperboloid of two sheets Hn(r), 173
H+
n (r), 174
H−n (r), 174

identification topology, see quotient topology
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immersed Lie subgroup, 554
correspondence with Lie subalgebras, 556

immersed submanifold, 256, 555
immersion, 356

between manifolds, 255
index form of Ω(p, q), 488, 489

index, 512
Jacobi field, 493
Second Variation Formula, 490

index of f at p, 87
ineffective kernel of G on G/K, 708

almost effective, 708
effective, 708

infinitesimal generator, see action field
infinitesimal transformations, 26
injectivity radius, see expp

relationship to cut locus, 456, 515
inner automorphism Ada, 540
integral curve

in Rn, 359
maximal γp, 298

domain I(p), 298
on manifold, 296

integral lattice, 576
interior, 368
Intermediate Value Theorem, 380
Invariance of Domain Theorem, 215
Inverse Function Theorem, 357
isolated point, 90, 374
isometry

definition, 407, 520
group, 409, 568
local, 407, 520

preservation of Riemannian properties,
522

isomorphism ψ : (R3,×)→ so(3), 100
isomorphism ϕ : (R3,×)→ su(2), 101
isomorphism of Lie algebras, 104, 540
isomorphism of Lie groups, 104, 540
isotropy group, see stabilizer
isotropy representation, 661

adjoint representation AdG/H , 661, 663,

665

Jacobi field, 493
as geodesic variation, 500, 501
conjugate along γ, 498

multiplicity, 498
conjugate point of γ

critical point expp, 507
conjugate points of γ, 498

geodesic variation, 503
derivative of expp v, 505
Jacobi differential equation, 493

via local frame, 494
nullspace of index form, 493, 498

Jacobi identity, 64, 99, 109, 539
Jacobian, see derivative of linear map
Jordan arc, 383
Jordan curve, 383

kernel of group homomorphism, 126
Killing form of g, 608, 615

properties, 617
Killing form of Lie group G, 615

G = GL(n,R), 617
G = SO0(n, 1), 703
G = SO0(p, q), 705
G = SU(n), 617
G = U(n), 617
G = SL(n,R), 617
G = SO(n), 617
negative definite characterization, 619

Killing vector field, 532, 568
Lie algebra Ki(M), 569

Klingenberg Theorem, 515
Knapp, 111

left coset
definition, 125

left multiplication LA : Mn(R)→ Mn(R), 61
left translation La, 106, 540
left-invariant connection, 622

bilinear maps on g, 623
geodesic constraint, 623
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left-invariant metric, 592
inner products on g, 592
Levi-Civita connecton, 601

structure constants, 602
sectional curvature, 604

left-invariant vector fields, 109, 545
isomorphism with g, 546

Leibniz property, see point-derivation
Levi decomposition, 614
Levi-Civita connection, 424

bi-invariant metric, 608
Christoffel symbols, 425
Koszul formula, 424
left-invariant metric, 601

Lie algebra, 26, 36, 44
Ck-vector fields Γ(k)(U, T (M)), 292
Der(g), 562
abelian, 599
center, 605
commutator ideal D1g, 613
definition, 99, 539
derivation, 558
direct sum, 557, 558

external, 558
internal, 558

extension, 562
inessential, 562

ideal, 556, 599
isomorphism Ada, 540
nilpotent, 614
of Lie group, 542
radical, 613
reductive, 620
semidirect product, 562
semisimple, 612

relationship to radical, 613
relationship to reductive, 620
relationship to solvable, 613

simple, 599, 612
solvable, 613
subalgebra, 556, 599

Lie algebra g of the Lie group G, 91

Lie bracket, 36, 44, 91, 99, 539
[A, B] = ad(A)(B), 109
[u, v] = ad(u)(v), 542
vector fields, 291

Jacobi identity, 292
via left-invariant vector fields, 551

Lie derivative
Ck-function f , 289
derivation, 290
metric, 532
vector field, 305

Lie bracket, 305
Lie group, 26, 36, 44

Aut(g), 562
Isom(M, g), 568
acting by isometries, 652
bi-invariant metric

geodesic, 609
definition, 91, 539
group exponential, 549
homogeneous Riemannian manifold, 593
immersed subgroup, 554
inner automorphism Ada, 540
involutive automorphism, 686
left-invariant connection, 622
left-invariant vector field, 545
metric
G-invariant, 595
bi-invariant, 592
left-invariant, 592
right-invariant, 592

representation, 595
right-invariant vector field, 545
semisimple, 612
simple, 599, 612
subgroup, 554
universal covering group, 568

Lie group/Lie algebra correspondence, 557
limit of sequence, 377
linear Lie algebra

gl(n,C), 44
gl(n,R), 36, 98
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o(n), 36
sl(n,C), 44
sl(n,R), 36, 98
so(n, 1), 178

Cartan decomposition, 179
Cartan involution, 179
Iwasawa decomposition, 183

su(n), 44
u(n), 44
sl(n,R), 100
so(n), 36, 100
se(n), 48

linear Lie group, 35, 71
SE(n), 98
GL(n,C)

psuedo-algebraic, 204
GL(n,R)

algebraic, 206
o(p, q), 206
SE(n), 48
definition, 90, 91
general linear group GL(n,C), 43
general linear group GL(n,R), 35
Lorentz group O(p, q), 164
Lorentz group SO(p, q), 164
Lorentz group SO0(p, q), 165
orthogonal group O(n), 36
relationship to linear Lie algebra, 36
special linear group SL(n,C), 43
special linear group SL(n,R), 36
special unitary group SU(n), 44
unitary group U(n), 43

linear Lie groups
special orthogonal group SO(n), 36

linear map
adjoint, 597

local chart, 72
local coordinate map, see chart
local coordinates, 212
local coordinates of p, 72
local flow

flow line, 362

in Rn, 359
on manifold, 296

local gauge, see moving frame
local operator, 417
local parametrication, 212
locally compact, 156, 316, 389
locally connected, 382
locally constant function, 381
locally defined function at p

definition, 235
equivalence, 235
point-derivation, 237
stationary at p, 237

locally finite family, 316
Log-Euclidean framework, 636

Lie group SPD(n), 637
vector space structure, 641

Log-Euclidean Fréchet mean, 642
Log-Euclidean metric, 641

invariance, 641
Log-Euclidean polyaffine transformation, 307

fast polyaffine transform, 309
logarithm for SPD(n), 636
logarithmic product on SPD(n), 636
loop

definition, 325
homotopic class

fundamental group, 326
homotopy class, 325

Lorentz group
O+(n, 1), 175
SO0(n, 1), 175
so(n, 1), 178
action on H+

n (1), 176
Iwasawa decomposition, 183
polar decomposition, 184
polar form, 169

O(n, 1)
Lorentz boost, 167, 180
polar form, 165
SVD, 170

SO(n, 1)
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polar form, 169
SVD, 170

SU(p, q), 204
U(p, q), 204
O(p, q), 164, 197

O(p)×O(q)× Rpq, 207
O(p)×O(q)× Rpq, 203
o(p, q), 206
polar form, 198, 201, 208, 209

SO(p, q), 164
S(O(p)×O(q))× Rpq, 207

SO0(p, q), 165
Lorentz metric, 163, 173

Minkowski space, 164
Lorentz inner product, 173, 412, 483

isotropic vector, 173
light cone Hn(0), 173

lightlike vector, see isotropic
spacelike vector, 173

negative, 173
positive, 173

timelike vector, 173
lower central series of g, 614

Möbius transformation
Möbius group, 131

Möbius transformation, 131
manifold, 26

smooth, 214
topological, 214

matrix
adjoint, 204
symmetric positive definite, 41
symmetric positive semidefinite, 41
upper triangular, 31

Schur decomposition, 31
matrix group, see linear Lie group
mean value theorem, 355
metric connection, 423

as covariant derivative, 532
existence, 423
Levi-Civita, 424

metric space, 366
closed ball, 367
diameter, 510
Euclidean metric, 366
metric, 366
open ball, 367

Milnor, 71
monoid, 121
Morse function, 87
Morse Index Theorem, 503, 512
Morse Index theorem, see index form
Morse lemma, 87
motion

interpolation, 40
moving frame, see frame
multinomial manifold, 407, 409
Myers Theorem, 510

naturally reductive homogeneous space
definition, 673
geodesic, 675, 676
normal, 678
real Grassmannian, 678
real oriented Grassmannian, 680
real Stiefel manifold, 678
symmetric space, 689

neighborhood, 372
compact, 388

nilpotent, 571
Lie algebra, 614

nondegenerate, 87
critical point, 87

norm of vector space, 366
normal chart, see expp
normal coordinates, see expp
normal homogeneous space, 678
normal neighborhood, see expp
normal space, 388
normal subgroup, 126
nullspace

nullity, 493
symmetric bilinear form, 493
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open cover, 315, 386
refinement, 315

open map, 393
open subcover, 386
orbifold, 142

manifold structure, 651
Riemannian manifold structure, 653

orbit of group action, 142
orbit formula, 142

orbit space, see orbifold
oriented k-subspace, 679

positively oriented, 679
orthogonal group, 36
orthonormal k-frame, 149
orthonormal k-frames, 85

paracompact, 316
parallel transport, 416, 422
parallel vector field, 416, 421

existence, 422
parametric Ck pseudo-manifold of dimension

n in Rd, 279
image, 280
parametrization, 279

parametrization of M at p
centered at p, 72
definition, 72

partial derivative, see directional derivative
partition, 391
partition of unity, 317

existence for manifold, 320
subordinate to cover, 317

same index set, 317
path, 383

closed curve, 383
initial point, 383
terminal point, 383
trace, 383

path space Ω(p, q), 435, 460
2-parameter variation, 489
n-parameter variation, 462
arc-length function, 464
critical path of F , 463

energy function, 461, 464
first variation formula, 465
index form, 488, 489
metric, 499
Second Variation Formula, 490
tangent space TωΩ(p, q), 461
variation, 462

longitudinal curve, 462
tangent vector, 462
transversal curve, 462

variation vector field, 462
existence, 462

Pauli spin matrices, 101
Plücker equations, see Grassmannian
Poincaré upper half-space, 405
point-derivation, 230, 237

on O(k)
M,p, 238

polar coordinates, 444
positive

Hermitian matrix, 46
positive definite

Hermitian matrix, 46
power series, 337

coefficients in Banach space, 340
radius of convergence, 340

composition, 342
differentiation, 339
integration, 339
matrix as indeterminate, 339

radius of convergence, 339
radius of convergence, 337

principal (Jordan) angles, 698
product rule, 350
product topology, 370
projection function pri : Rn → R, 212
proper map

criteria, 648
for manifolds, 648

definition, 648
pseudo-algebraic subgroup of GL(n,C), 204
pull-back metric, 407, 525

quasi-compact, 386, 388
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quaternion, 102
algebra H, 192
pure, 192
unit, 102, 192

quaternions, 577
quotient space, 391
quotient topology, 391

Hausdorff criteria, 394, 395
quotient vector space, 243

radical, 572, 613
of Lie algebra, 613

real moment map, 408
real projective space RPn, 135, 220

k-plane, 149
homogeneous coordinates, 220

reductive homogeneous space
definition, 663
isotropy representation, 665
manifold structure, 651
naturally reductive, 673
real Stiefel manifold, 669
Riemannian manifold structure, 665
Riemannian submersion, 667

reductive Lie algebra, 620
region, 379

closed, 379
regular

point, 86
value, 86

representation of Lie group, 595
Ricci curvature, 485

associated (1, 1)-tensor Ric#
p , 486

bi-invariant metric, 609
Einstein space, 488
in a chart, 485
in direction u, 605
relationship to sectional curvature, 487
scalar curvature, 485

Ricci transformation, 605, see also Ric#
p

principal Ricci curvatures, 606
Riemann sphere, 131

Riemannian covering, 524
existence, 524
geodesics, 525
induced by group action, 656

Riemannian curvature, 473
Riemannian distance, 449
Riemannian manifold, 403

Einstein space, 488
geodesic exponential, 549
locally convex, 457
strongly convex, 457
totally convex, 457

Riemannian metric, 403
G-invariant, 658
defined via chart, 403

local coordinates, 403
existence, 409
gradient, 406
Lie group, 592
pull-back, 407

Riemannian norm, 435
Riemannian submersion

definition, 528
fibre, 527
horizontal geodesic, 529
horizontal lift of vector field, 528
horizontal subspace, 527
horizontal tangent vector, 527
properties, 529
tangent vector

horizontal component, 527
vertical component, 527

vertical subspace, 527
right coset

definition, 125
right multiplication RA : Mn(R) → Mn(R),

61
right translation Ra, 106, 540
right-invariant metric, 592
right-invariant vector fields, 545
rigid motion, 47, 306
Rodrigues
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formula, 39, 101
rotation

matrix, 29, 36

Sard’s theorem, 87
scalar curvature, see also Ricci curvature

in a chart, 485
relationship to Ric#

p , 486
scaling and squaring method

exponential map, 309
Log-Euclidean polyaffine transformation,

309
Schur’s lemma, 32
Schur’s Theorem, see sectional curvature
second covariant derivative ∇2

X,YZ, 478
Second Variation Formula, see path space
Second Variation Forumula, see also index

form
second-countable, 316, 389
sectional curvature, 481

bi-invariant metric, 608
constant, 482

examples, 482
Schur’s Theorem, 482

determining curvature tensor, 481
Gaussian curvature, 482
left-invariant metric, 604
negative, 482
positive, 482

semidirect product, 98
semidirect product of groups, 564

extension, 566
semidirect product of Lie algebra, 562
semidirect product of Lie groups, 566
semisimple Lie algebra, 612

direct sum decomposition, 614
semisimple Lie group, 612
sequence, 377

Cauchy sequence, 335
series

absolutely convergent, 333
ratio test, 336
root test, 337

Cauchy product, 341
convergent, 333
normed vector space, 333
unconditionally convergent, 336

Serre’s nondegenerate pairing, 244
ω : Tp(M)× (O(k)

M,p/S
(k)
M,p)→ R, 244

set of measure zero, 87
sheaf of function

stalk
local ring, 236

sheaf of functions O(k)
M , 236

stalk, see germ of function
simple Lie algebra, 599, 612
simple Lie group, 599, 612
simply connected, 326
skew symmetric matrices, 36
smooth curve, 76
smooth curve on a manifold, 88, 434

arc-length, 436
length, 435

smooth diffeomorphism, 103, 358
smooth function, see higher order derivative
smooth manifold, 71

C∞-manifold of dimension n, 214
equivalent characterizations, 82
in RN , definition, 72

smooth map between manifolds, 102
smooth surface, 76
solvable, 572

Lie algebra, 613
special linear group, 36
special orthogonal group, 36
stabilizer of group action, 139
Steiner points, 642
stereographic projection, 73, 219
stereopgraphic projection, 131
Stiefel manifold, 85

complex
as homogeneous space, 150

real, 149, 225
as homogeneous space, 150, 668
as reductive homogeneous space, 669
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group action of SO(n), 149
naturally reductive homogeneous space,

678
submanifold, 254

embedded submanifold, 256
relationship to embedding, 257
slice, 254

submersion, 356
between manifolds, 256

Riemannian, 527
subspace topology, 90, 369

subspace metric, 369
support of function, 314
surface, 76
surface of revolution, 467
symmetric positive definite matrix, 41

arithmetic mean, 635
Lie group structure, 637

symmetric positive semidefinite matrix, 41
symmetric space

SPD(n) ∼= GL+(n,R)/SO(n), 700
SSPD(n) ∼= SL(n,R)/SO(n), 701
Cartan involution, 686
compact Lie group, 706
compact type, 709
defined via symmetric pair, 690
Euclidean type, 709
global symmetry at p, 690
hyperbolic Grassmannian, 705
hyperbolic space H+

n (1), 703
involutive automorphism, 686
noncompact type, 709
real Grassmannian, 694
real oriented Grassmannian, 694
symmetric pair, 689, 690

tangent bundle
definition, 285
fibre, 286

transition map, 286
natural projection, 284
section, 288
transition map, 285

trivial, 402
parallelizable, 403

trivializing map, 286
unit, 513

tangent map of f at p, 103, 250, 252
tangent space, 26
tangent space Tp(M) at p, 246, 247
tangent space TpM at p

definition, 88
tangent vector to M at p, 88, 231, 232, 239(

∂
∂xi

)
p
, 235

tangent vector to a curve, 88, 251
topological group, 36, 44, 91

definition, 151
discrete subgroup, 152
left translation La, 152
quotient

Hausdorff, 153
right translation Ra, 152
symmetric subset of 1, 152, 155, 156

topological manifold
C0-manifold of dimension n, 214

topological space, see topology
topology

closed set, 366
open set, 365

topology or topological structure, 366
torsion, 424
total derivative, see derivative of linear map
total differential, see derivative of linear map
trace, 34
transition maps, 77, 212

universal cover, 327
using curves to determine a Lie algebra, 99

variation
geodesic, 500
in path space, 462
of a point, 461

vector derivative, 352
vector field
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1-parameter group {ΦX
t }t∈R, 303

Ck-vector field on M , 288
Ck-vector fields Γ(k)(U, T (M)), 288

Lie algebra, 292
h-related, 294
action field, 659
along curve, 288, 416, 419

parallel, 416, 421
along parametrized surface, 443
complete, 303
critical point, 305
frame, 401
global flow, 301
gradient, 406
in Rn, 359

gradient vector field, 359
induced by matrix, 360

Jacobi identity, 292
left-invariant, 545
Lie bracket, 291
local flow, 296
Log-Euclidean polyaffine transformation,

307
on manifold M , 288
pull back, 293
push forward, 293, 520
right-invariant, 545

velocity vector, see vector derivative
Von Neumann and Cartan, 90

theorem, 91

Warner, 111
Weyl’s unitarian (averaging) trick, 595
Whitney embedding theorem, 322


