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Nov. 2017: made a few revisions. Thanks to Ning Shan for catching a typo.

My main reference for these notes was Chapter II of Bass’s book Algebraic
K-Theory (1968); you can find a more detailed exposition there.

1 Motivation

When we’re doing representation theory we want to study the structure of the
category Mod-A for some ring A. So we want to know if and when two different
rings A and B give us the same category. With this in mind, two rings are said
to be Morita equivalent when their module categories are equivalent. In many
cases, we often only care about rings up to Morita equivalence. If this is the
case, then given a ring A, we’d like to find some particularly nice representative
of the Morita equivalence class of A.

2 Morita Equivalence

First some notation: Let R be a ring. Write Mod-R for the catgeory of
right R-modules and R-module homomorphisms. Write mod-R for the (full)
subcategory of finitely generated R-modules. Write Proj-R for the subcategory
of projective modules, and proj-R for the subcategory of finitely generated
projective modules.

Two rings R, S are defined to be Morita equivalent if the categories Mod-R
and Mod-S are equivalent. In fact, any such equivalence will be additive: this
is a general fact about equivalences between abelian categories, since the sum
of two morphisms f, g : X → Y can be recovered as the composition

f + g : X
∆−→ X ⊕X f⊕g−−−→ Y ⊕ Y ∇−→ Y

of f ⊕ g with the diagonal and fold maps. Note that any property defined
categorically will be preserved under equivalence: for example if
F : Mod-R −→Mod-S is an equivalence, then F will take projective modules
to projective modules and hence induce an equivalence Proj-R −→ Proj-S.
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Moreover, an equivalence F as above wil induce an equivalence between
proj-R and proj-S, since the finitely generated projective modules are precisely
those projective modules P for which the functor HomR(P,−) distributes over
direct sums.

Example If R is a division ring, then R is Morita equivalent to all of its
matrix rings Mn(R). We’ll see a proof of a special case of this later on, using
quivers.

Remark One can show that Z(R) ∼= End[Mod-R,Mod-R](id), the endomorphism
ring of the identity functor of Mod-R (sometimes called the centre of Mod-R):
first note that id is just HomA(A,−) where A is regarded as an A−A-bimodule.
So by an appropriate version of the Yoneda lemma (we need to be careful about
A-linearity), we get that End[Mod-R,Mod-R](id) ∼= EndAe(A,A) ∼= Z(A), where
Ae := A⊗ Aop is the enveloping algebra. So if R and S are Morita equivalent,
then Z(R) ∼= Z(S). In particular two commutative rings are Morita equivalent
if and only if they are isomorphic. So Morita equivalence is only interesting for
noncommutative rings!

A generator for a category C is an object G such that for any two parallel
morphisms f, g : X → Y with f 6= g, then there is some morphism h : G → X
such that fh 6= gh. Note that generators are preserved under equivalence. If C
is Mod-R, then a generator for C is the same thing as a module G such that
every R-module is a quotient of a (possibly infinite) direct sum of copies of G.

A progenerator in Mod-R is a finitely generated projective generator.
Progenerators always exist: as an easy example, R is a progenerator for Mod-R.
We care about progenerators because of the following result:

Theorem (Morita). Two rings R and S are Morita equivalent if and only if
there exists a progenerator P of Mod-R such that S ∼= EndR(P ).

Note that we’re consideringR as a rightR-module. In particular, R ∼= EndR(R).

We can easily prove one direction of this theorem now: If R and S are
Morita equivalent, then take an equivalence F : Mod-R −→ Mod-S. Since
R is a progenerator for Mod-R, F (R) is a progenerator for Mod-S. We have
isomorphisms R ∼= EndR(R) ∼= EndS(F (R)).

The converse is harder to prove: we need to consider an equivalent characterisation
of Morita equivalence in terms of tensor products of bimodules.
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3 Bimodules

An R− S bimodule is an abelian group M which is both a left R-module and
a right S-module, such that the actions are compatible: (rm)s = r(ms). If M
is an R− S bimodule and N is an S − T bimodule then it makes sense to form
the tensor product and get an R− T bimodule M ⊗S N .

Theorem.
Two rings R and S are Morita equivalent if and only if there exists an S − R
bimodule P and an R− S bimodule Q such that P ⊗R Q ∼= S and Q⊗S P ∼= R.

Note that these are isomorphisms of S − S bimodules and R − R bimodules
respectively.

Proof. To prove the ‘if’ direction, suppose we have P andQ such that P ⊗R Q ∼= S
and Q⊗S P ∼= R. Then setting F := − ⊗R Q and G := − ⊗S P , we have
GF = (− ⊗R Q) ⊗S P ∼= − ⊗R (Q ⊗S P ) ∼= − ⊗R R ∼= idR and similarly
FG ∼= idS .

To prove the ‘only if’ direction we need a version of the Eilenberg-Watts
Theorem, which tells us that if F : Mod-R ←→Mod-S : G is an equivalence,
then there exists an R−S bimodule Q such that F ∼= −⊗RQ (and furthermore,
Q is a progenerator for Mod-S). So if we have an equivalence as above, applying
Eilenberg-Watts twice we get bimodules P and Q such that F ∼= − ⊗R Q and
G ∼= − ⊗S P . Using idR

∼= GF and idS
∼= FG it’s not hard to check that

P ⊗R Q ∼= S and Q⊗S P ∼= R.

4 Morita’s Theorem

Armed with this new characterisation of Morita equivalence we can prove the
other half of Morita’s Theorem. So suppose we have a progenerator P of Mod-R
with S ∼= EndR(P ). The left action of EndR(P ) on P gives us a left action of
S on P making P into an S −R bimodule.

Set Q := HomR(P,R). Q has a right action by S ∼= EndR(P ) where we
precompose a morphism P → R with an endomorphism of P , and a left action
by R ∼= EndR(R) where we compose with an endomorphism of R. This turns
Q into an R− S bimodule.

If we can prove that P ⊗R Q ∼= EndR(P ) and Q⊗S P ∼= R then we’re done.
Define maps φ : Q⊗S P → R and ψ : P ⊗R Q→ EndR(P ) by φ(f ⊗ p) = f(p)
and ψ(p ⊗ f) = pf . The map φ is onto since P is a generator. The map ψ
is onto since P is a direct summand of Rn and so any endomorphism of P
is a sum of endomorphisms factoring through R. Note that we have identities
ψ(x⊗ f)(y) = xφ(f ⊗ y) and g ◦ ψ(x⊗ f) = φ(g ⊗ x)f , for x, y ∈ P and f, g ∈ Q.

3



We just need to prove that φ and ψ are injective maps. We’ll only show that
ψ is injective since the argument for φ is similar. Since ψ is surjective, first find
an element

∑
i

xi ⊗ fi with ψ(
∑
i

xi ⊗ fi) = 1. Let
∑
i

yi ⊗ gi be any element of

P ⊗R Q. Then:∑
i

yi ⊗ gi
=

∑
i,j

(yi ⊗ gi)ψ(xj ⊗ fj) (multiplying by 1 and using linearity of ψ)

=
∑
i,j

yi ⊗ φ(gi ⊗ xj)fj (using the second identity)

=
∑
i,j

yiφ(gi ⊗ xj)⊗ fj (pulling an element of R through the tensor product)

=
∑
i,j

ψ(yi ⊗ gi)(xj ⊗ fj) (using the first identity)

So if ψ(
∑
i

yi ⊗ gi) = 0 then
∑
i

yi ⊗ gi = 0, and so ψ is injective.

5 Induced equivalences between subcategories

We know that an equivalence F : Mod-R −→ Mod-S induces equivalences
between the subcategories Proj-R and Proj-S, as well as an equivalence between
proj-R and proj-S. What about mod-R and mod-S? It turns out that we
have the following very nice theorem:

Theorem (Morita). Mod-R is equivalent to Mod-S if and only if mod-R is
equivalent to mod-S.

Proof. If F : Mod-R −→Mod-S is an equivalence, then by the Eilenberg-Watts
theorem F ∼= − ⊗R P for some R − S bimodule P that’s a progenerator for
Mod-S. Since P is a finitely generated S−module, F restricts to a functor
mod-R −→mod-S, and furthermore this is an equivalence since the inverse of
F restricts in the same way.

Conversely if mod-R and mod-S are equivalent, then we can run the proof
at the end of Section 2 again to obtain a progenerator P of mod-R such that
S ∼= EndR(P ). But a progenerator for mod-R is a progenerator for Mod-R,
and hence, applying Morita’s Theorem, R and S are Morita equivalent.
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6 Basic algebras

We are interested in finite dimensional algebras over a field. Therefore for any
such algebra A we want to find a ‘nice’ algebra A′ Morita equivalent to A. Then
we can prove results about Mod-A′ and get results about Mod-A. Here we
describe how to build one such A′, the basic algebra of A.

LetA be a finite dimensional algebra over a field. ThenA admits a decomposition

A ∼=
n⊕

i=0

eiA as right A-modules, where the ei are a complete set of primitive

orthogonal idempotents. We call A basic if for every i 6= j, the two A-modules
eiA and ejA are not isomorphic.

In general, A need not be basic (see the example below). But there is an easy
way to construct a basic algebra from A. Suppose we have a decomposition of A
as above. Choose a subset {ea1

, . . . , eam
} of {e1, . . . , en} maximal with respect

to the condition that eai
A � eaj

A whenever i 6= j. In particular every eiA is
isomorphic to some eajA.

Set e := ea1 + · · ·+ eam , and put Ab := eAe. Then Ab is a basic algebra. Up
to isomorphism, Ab will not depend on the choice of {ea1 , . . . , eam}. Call Ab the
basic algebra associated to A. Then A and Ab are Morita equivalent: one
can show that eA is a progenerator for Mod-A, and its endomorphism ring is
precisely Ab.

Example Set A = Mn(k), and let ei be the matrix with a 1 in position (i, i)
and zeroes elsewhere. Then the ei are a complete set of primitive orthogonal
idempotents, and for all i and j, eiA ∼= kn ∼= ejA. So Ab ∼= e1Ae1 is a copy of
k. This provides an alternate proof that Mn(k) is Morita equivalent to k.
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