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1. Introduction

Stochastic analysis has been an interesting research area in mathematics, fluid mechanics,
geophysics, biology, chemistry, epidemiology, microelectronics, theoretical physics, economics,
and finance. The behavior of dynamical systems in these areas are often dependent on a noise
source and a Gaussian white noise, governed by certain probability laws, so that modeling such
phenomena naturally requires the use of various stochastic differential equations or, in more com-
plicated cases, stochastic integral equations and stochastic integro-differential equations. As in
many cases analytic solutions of stochastic integral and differential equations are not available,
numerical solution becomes a efficient way to challange this problem. Many research papers have
been appeared on the problem of approximate the solution of stochastic integral and differential
equations [1, 2, 3, 4, 7, 5, 6]. Recently, many orthogonal basis functions, such as block pulse
functions, Walsh functions, Fourier series, orthogonal polynomials and wavelets, were used to es-
timate solution of functional equations. As a powerful tool, wavelets have found their way into
many different fields of science and engineering. Wavelets permit the accurate representation of a
variety of functions and operators. Moreover, wavelets establish a connection with fast numerical
algorithms [8, 9]. Legendre wavelets have been widely applied in system analysis, system identifi-
cation, optimal control and numerical solution of integral and differential equations[10, 11, 12, 13].
In this paper, an stochastic operational matrix for Legendre wavelets is derived. Then application
of this stochastic operational matrix in solving stochastic Volterra-Fredholm integral equations is
investigated. Some non-trivial examples are included to demonstrate the efficiency and accuracy
of the proposed method. Also to verify the proposed method, numerical results are compared with
the block pulse functions (BPFs) methed presented in [5]. This paper is organized as follows:
In section 2 some basic definition and preliminaries about stochastic process and Itô integral are
presented. The Legendre wavelets and their properties are introduced in Section 3. In section
4 stochastic operational matrix of the Legendre wavelets is derived. In section 5 application of
this stochastic operational matrix in solving stochastic Voltera-Fredholm integral equations are
described. In section 6 the efficiency of the proposed method is demonstrated by some non-trivial
examples. Finally, a conclusion is given in section 7.

2. Preliminaries

In this section we review some basic definition of the stochastic calculus and the block pulse
functions (BPFs).

2.1. Stochastic calculus
Definition 2.1. (Brownian motion process) A real-valued stochastic process B(t), t ∈ [0,T ] is
called Brownian motion, if it satisfies the following properties
(i) The process has independent increments for 0 ≤ t0 ≤ t1 ≤ ... ≤ tn ≤ T ,
(ii) For all t ≥ 0, B(t + h) − B(t) has Normal distribution with mean 0 and variance h,
(iii) The function t → B(t) is continuous functions of t.

Definition 2.2. Let {Nt}t≥0 be an increasing family of σ-algebras of subsets of Ω. A process
g(t, ω) : [0,∞) × Ω → Rn is called Nt-adapted if for each t ≥ 0 the function ω → g(t, ω) is
Nt-measurable.
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Definition 2.3. LetV = V(S ,T ) be the class of functions f (t, ω) : [0,∞) ×Ω→ ×R such that
(i) The function (t, ω)→ f (t, ω) isB×F -measurable, whereB denotes the Borel algebra on [0,∞)
and F is the σ -algebra on Ω.
(ii) f is adapted to Ft, where Ft is the σ -algebra generated by the random variables B(s), s ≤ t.

(iii)E
(∫ T

S
f 2(t, ω)dt

)
< ∞.

Definition 2.4. (The Itô integral) Let f ∈ V(S ,T ), then the Itô integral of f is defined by∫ T

S
f (t, ω)dB(ω) = lim

n→∞

∫ T

S
φn(t, ω)dB(ω), (lim in L2(P)),

where, φn is a sequence of elementary functions such that

E
(∫ T

s
( f (t, ω) − φn(t, ω))2 dt

)
→ 0, as n→ ∞.

For more details about stochastic calculus and integration please see [2].

2.2. Block pulse functions
BPFs have been studied by many authors and applied for solving different problems. In this

section we recall definition and some properties of the block pulse functions [4, 5, 14].
The m-set of BPFs are defined as

bi(t) =
{

1 (i − 1)h ≤ t < ih
0 otherwise (2.1)

in which t ∈ [0,T ), i = 1, 2, ...,m and h = T
m . The set of BPFs are disjointed with each other in the

interval [0,T ) and

bi(t)b j(t) = δi jbi(t), i, j = 1, 2, ...,m, (2.2)

where δi j is the Kronecker delta. The set of BPFs defined in the interval [0,T ) are orthogonal with
each other, that is ∫ T

0
bi(t)b j(t)dt = hδi j, i, j = 1, 2, ...,m. (2.3)

If m → ∞ the set of BPFs is a complete basis for L2[0,T ), so an arbitrary real bounded function
f (t), which is square integrable in the interval [0,T ), can be expanded into a block pulse series as

f (t) ≃
m∑

i=1

fibi(t), (2.4)

where

fi =
1
h

∫ T

0
bi(t) f (t)dt, i = 1, 2, ...,m. (2.5)



F. Mohammadi/Wavelets and Linear Algebra 3 (2016) 13 - 25 16

Rewritting Eq. (4.3) in the vector form we have

f (t) ≃
m∑

i=1

fibi(t) = FTΦ(t) = ΦT (t)F, (2.6)

in which

Φ(t) = [b1(t), b2(t), ...., bm(t)]T ,

F =
[
f1, f2, ...., fm

]T . (2.7)

Morever, any two dimensional function k(s, t) ∈ L2 ([0,T1] × [0, T2]) can be expanded with respect
to BPFs such as

k(s, t) = ΦT (t)ΠΦ(t), (2.8)

where Φ(t) is the m-dimensional BPFs vectors respectively, and Π is the m × m BPFs coefficient
matrix with (i, j)-th element

Πi j =
1

h1h2

∫ T1

0

∫ T2

0
k(s, t)bi(t)b j(s)dtds, i, j = 1, 2, ...,m, (2.9)

and h1 =
T1
m and h2 =

T2
m . Let Φ(t) be the BPFs vector, then we have

ΦT (t)Φ(t) = 1, (2.10)

and

Φ(t)ΦT (t) =


b1(t) 0 . . . 0

0 b2(t) . . .
...

...
. . .

. . . 0
0 . . . 0 bm(t)


m×m

. (2.11)

For an m-vector F we have

Φ(t)ΦT (t)F = F̃Φ(t), (2.12)

where F̃ = diag(F) is an m × m matrix which its diagonal arrays are elements of vector F. Also, it
is easy to show that for an m × m matrix A

ΦT (t)AΦ(t) = ÂTΦ(t), (2.13)

where Â = (a11, a22, ..., .ann) is an m-vector.
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3. Legendre wavelets

Wavelets constitute a family of functions constructed from dilation and translation of a single
function ψ called the mother wavelet. When the dilation parameter a and the translation parameter
b vary continuously, we have the following family of continuous wavelets

ψa,b(t) = a−
1
2ψ

(
t − b

a

)
, a, b ∈ R, a , 0. (3.1)

The Legendre wavelets are defined on the interval [0, 1) as

ψmn(t) =


√

m + 1
22

k+1
2 pm

(
2k+1t − (2n + 1)

)
n
2k ≤ t < n+1

2k

0 otherwise,
(3.2)

where n = 0, 1, ..., 2k − 1 and m = 0, 1, · · · ,M − 1 is the degree of the Legendre polynomials
for a fixed positive integer M. Here Pm(t) are the well-known Legendre polynomials of degree m
[10, 12]. Any square inegrable function f (x) defined over [0, 1) can be expanded in terms of the
extended Legendre wavelets as

f (x) ≃
∞∑

n=0

∞∑
m=0

cnmψnm(x) = CTΨ(x), (3.3)

where cmn = ( f (t), ψmn(t)) and (., .) denotes the inner product on L2[0, 1]. If the infinite series in
(3.3) is truncated, then it can be written as

f (x) ≃
2k−1∑
n=0

M−1∑
m=0

cmnψmn(x) = CTΨ(x), (3.4)

where C and Ψ(x) are m̂ = 2kM column vectors given by

C =
[
c00, . . . , c0(M−1)|c10, . . . , c1(M−1)|, . . . , |c(2k−1)0, . . . , c(2k−1)(M−1)

]T
, (3.5)

Ψ(x) =
[
ψ00(x), . . . , ψ0(M−1)(x)|ψ10(x), . . . , ψ1(M−1)(x)|, . . . , |ψ(2k−1)0(x), . . . , ψ(2k−1)(M−1)(x)

]T
.

By changing indices in the vectors Ψ(x) and C the series (3.4) can be rewritten as

f (x) ≃
m̂∑

i=1

ciψi(x) = CTΨ(x), (3.6)

where
C = [c1, c2, ..., cm̂] , Ψ(x) =

[
ψ1(x), ψ2(x), ..., ψm̂(x)

]
, (3.7)

and
ci = cnm, ψi(x) = ψnm(x), i = (n − 1)M + m + 1. (3.8)

Similarly, any two dimensional function k(s, t) ∈ L2 ([0, 1] × [0, 1]) can be expanded into Legendre
wavelets basis as

k(s, t) ≈
m̂∑

i=1

m̂∑
j=1

ki jψi(s)ψ j(t) = ΨT (s)KΨ(t), (3.9)

where K = [ki j] and ki j =
(
ψi(s),

(
k(s, t), ψ j(t)

))
.
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3.1. The Legendre wavelets and BPFs
In this section we will derive the relation between the Legendre wavelets and BPFs. It is worth

mention that here we set T = 1 in definition of BPFs.

Theorem 3.1. Let Ψ(t) and Φ(t) be the m̂-dimensional Legendre wavelets and BPFs vector re-
spectively, the vector Ψ(t) can be expanded by BPFs vector Φ(t) as

Ψ(t) ≃ QΦ(t), (3.10)

where Q is an m̂ × m̂ block matrix and

Qi j = ψi

(
2 j − 1

2m̂

)
, i, j = 1, 2, ..., m̂ (3.11)

Proof. Let ϕi(t), i = 1, 2, ..., m̂ be the i-th element of Legendre wavelets vector. Expanding ϕi(t)
into an m̂-term vector of BPFs, we have

ψi(t) ≃
m̂∑

i=1

Qi jb j(t) = QT
i Φ(t), i = 1, 2, ..., m̂, (3.12)

where Qi is the i-th row and Qi j is the (i, j)-th element of matrix Q. By using the orthogonality of
BPFs we have

Qi j =
1
h

∫ 1

0
ψi(t)b j(t)dt =

1
h

∫ j
m̂

j−1
m̂

ψi(t)dt = m̂
∫ j

m̂

j−1
m̂

ψi(t)dt, (3.13)

by using mean value theorem for integrals in the last equation we can write

Qi j = m̂
(

j
m̂
− j − 1

m̂

)
ψi(ηi) = ψi(η j), η j ∈

(
j − 1
m̂

,
j

m̂

)
, (3.14)

now by choosing η j =
2 j−1
2m̂ so we have

Qi j = ψi

(
2 j − 1

2m̂

)
, i, j = 1, 2, ..., m̂. (3.15)

and this prove the desired result.

The following remarks are the straight result of relations (2.12), (2.13) and Theorem 3.1.
Remark 3.2. For an m̂-vector F we have

Ψ(t)ΨT (t)F = F̃Ψ(t), (3.16)

in which F̃ is an m̂ × m̂ matrix as

F̃ = QF̄Q−1, (3.17)

where F̄ = diag
(
QT F

)
.

Remark 3.3. Let A be an arbitrary m̂ × m̂ matrix, then for the Legendre wavelets vector Ψ(t) we
have

ΨT (t)AΨ(t) = ÂTΨ(t), (3.18)

where ÂT = UQ−1 and U = diag(QT AQ) is a m̂-vector.
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3.2. Convergence and error analysis
In this section we investigate the convergence and error analysis of the Legendre wavelets

basis.

Theorem 3.4. Let f (x) be a function defined on [0, 1) with bounded second derivatives, say
| f ′′(x)| ≤ M, and

∑∞
n=0

∑∞
m=0 cmnψmn(x) be its infinite Legendre wavelets expansion, then

|cmn| ≤
√

12M

(2n)
5
2 (2m − 3)2

, (3.19)

this means the Legendre wavelets series converges uniformly to f (x) and

f (x) =
∞∑

n=1

∞∑
m=0

cnmψnm(x), (3.20)

Proof. Please see [15].

Theorem 3.5. Suppose f (x) be a continuous function defined on [0, 1), with second derivatives
f ′′(x) bounded by M, then we have the following accuracy estimation

∥∥∥eM,k(t)
∥∥∥

2
≤

3M2

2

∞∑
n=0

∞∑
m=M

1
n5(2m − 3)4 +

3M2

2

∞∑
n=2k

M−1∑
m=0

1
n5(2m − 3)4


1
2

, (3.21)

where ∥∥∥eM,k(t)
∥∥∥

2
=


∫ 1

0

 f (x) −
2k−1∑
n=0

M−1∑
m=0

cnmψnm(x)


2

dx


1
2

.

Proof. We have:

σ2
M,k =

∫ 1

0

 f (x) −
2k−1∑
n=0

M−1∑
m=0

cnmψnm(x)


2

dx

=

∫ 1

0

 ∞∑
n=0

∞∑
m=0

cnmψnm(x) −
2k−1∑
n=0

M−1∑
m=0

cnmψnm(x)


2

dx

=

∞∑
n=0

∞∑
m=M

c2
nm

∫ 1

0
ψ2

nm(x)dx +
∞∑

n=2k

M−1∑
m=0

c2
nm

∫ 1

0
ψ2

nm(x)dx =
∞∑

n=0

∞∑
m=M

c2
nm +

∞∑
n=2k

M−1∑
m=0

c2
nm,

now by considering Eq. (3.19), the desired result is achieved.
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4. Stochastic operational matrix of Legendre wavelets

In this section we derive an stochastic integration operational matrix for Legendre wavelets. In
this way we first remind some useful results for BPFs[4, 5].

Lemma 4.1. [4] Let Φ(t) be the m̂-dimensional BPFs vector defined in (2.7), then integration of
this vector can be derived as ∫ t

0
Φ(s)ds ≃ PΦ(t), (4.1)

where P is called the operational matrix of integration for BPFs and is given by

P =
h
2



1 2 2 . . . 2
0 1 2 . . . 2

0 0 1
...

...
...

...
...

. . . 2
0 0 0 . . . 1


m̂×m̂

. (4.2)

Lemma 4.2. [4] Let Φ(t) be the m̂-dimensional BPFs vector defined in (2.7), the Itô integral of
this vector can be derived as ∫ t

0
Φ(s)dB(s) ≃ PsΦ(t), (4.3)

where Ps is called the stochastic operational matrix of BPFs and is given by

Ps =



B
(

h
2

)
B (h) B (h) . . . B (h)

0 B
(

3h
2

)
− B (h) B (2h) − B(h) . . . B (2h) − B(h)

0 0 B
(

5h
2

)
− B (2h) . . . B (3h) − B(2h)

...
...

...
. . .

...

0 0 0 . . . B
(

(2m̂−1)h
2

)
− B ((m̂ − 1)h)


m̂×m̂

. (4.4)

Now we are ready to derive a new operational matrix of stochastic integration for the Legendre
wavelets basis. For this end we use BPFs and the matrix Q introduced in (3.10).

Theorem 4.3. Suppose Ψ(t) be the m̂-dimensional Legendre wavelets vector defined in (3.7), the
integral of this vector can be derived as∫ t

0
Ψ(s)ds ≃ QPQ−1Ψ(t) = ΛΨ(t), (4.5)

where Q is introduced in (3.10) and P is the operational matrix of integration for BPFs derived in
(4.2).
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Proof. Let Ψ(t) be the Legendre wavelets vector, by using Theorem 3.1 and Lemma 4.1 we have∫ t

0
Ψ(s)ds ≃

∫ t

0
QΦ(s)ds =Q

∫ t

0
Φ(s)ds = QPΦ(t), (4.6)

now Theorem 3.1 give ∫ t

0
Ψ(s)ds ≃QPΦ(t) = QPQ−1Ψ(t) = ΛΨ(t), (4.7)

and this complete the proof.

Theorem 4.4. Suppose Ψ(t) be the m̂-dimensional Legendre wavelets vector defined in (3.7), the
Itô integral of this vector can be derived as∫ t

0
Ψ(s)dB(s) ≃ QPsQ−1Ψ(t) = ΛsΨ(t), (4.8)

where Λs is called stochastic operational matrix for Legendre wavelets, Q is introduced in (3.10)
and Ps is the stochastic operational matrix of integration for BPFs derived in (4.4).

Proof. Let Ψ(t) be the Legendre wavelets vector, by using Theorem 3.1 and Lemma 4.2 we have∫ t

0
Ψ(s)dB(s) ≃

∫ t

0
QΦ(s)dB(s) =Q

∫ t

0
Φ(s)dB(s) = QPsΦ(t), (4.9)

now Theorem 3.1 result∫ t

0
Ψ(s)dB(s) =QPsΦ(t) = QPsQ−1Ψ(t) = ΛsΨ(t), (4.10)

and this complete the proof.

5. Numerical solution of stochastic Voltera-Fredholm integral equation

In this section, we use the stochastic operational matrix of Legendre wavelets for solving
stochastic Voltera-Fredholm integral equations. In this way, consider the following stochastic
Voltera-Fredholm integral equation

X(t) = f (t) +
∫ β

α

X(s)k1(s, t)ds +
∫ t

0
X(s)k2(s, t)ds +

∫ t

0
X(s)k3(s, t)dB(s), t ∈ [0,T ), (5.1)

where X(t), f (t) and ki(s, t), i = 1, 2, 3 are the stochastic processes defined on the same probability
space (Ω, F, P), and X(t) is unknown. Also B(t) is a Brownian motion process and

∫ t

0
k3(s, t)X(s)dB(s)

are the Itô integral. For sake of simplicity and without loss of generality we set (α, β) = (0, 1).
Now, we approximate X(t), f (t) and ki(s, t), i = 1, 2, 3 in term of m̂-dimensional Legendre wavelets
as follows

f (t) = FTΨ(t) = ΨT (t)F, (5.2)
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X(t) = XTΨ(t) = ΨT (t)X, (5.3)

ki(s, t) = ΨT (s)KiΨ(t) = ΨT (t)KT
i Ψ(s), i = 1, 2, 3, (5.4)

where X and F are Legendre wavelets coefficients vector, and Ki, i = 1, 2, 3 are Legendre wavelets
coefficient matrices defined in Eq. (3.7) and Eq. (3.9). Substituting above approximations in Eq.
(5.1), we have

XTΨ(t) = FTΨ(t) + XT

(∫ 1

0
Ψ(s)ΨT (s)ds

)
K1Ψ(t)

+ ΨT (t)KT
2

(∫ t

0
Ψ(s)ΨT (s)Xds

)
+ ΨT (t)KT

3

(∫ t

0
Ψ(s)ΨT (s)XdB(s)

)
,

using relation
∫ 1

0
Ψ(s)ΨT (s)ds = Im̂×m̂ and Remark 3.2 we get

XTΨ(t) = FTΨ(t) + XT K1Ψ(t) + ΨT (t)KT
2

(∫ t

0
X̃Ψ(s)ds

)
+ ΨT (t)KT

3

(∫ t

0
X̃Ψ(s)dBi(s)

)
,

where X̃ is an m̂ × m̂ matrix. Now applying the operational matrices Λ and Λs for Haar wavelets
derived in Eqs. (4.5) and (4.8) we have

XTΨ(t) = FTΨ(t) + XT K1Ψ(t) + ΨT (t)KT
2 X̃ΛΨ(t) + ΨT (t)KT

3 X̃ΛsΨ(t) (5.5)

by setting Y2 = KT
2 X̃Λ, Y3 = KT

3 X̃Λs and using Remark 3.3 we derive

XTΨ(t) − XT K1Ψ(t) − ŶT
2 Ψ(t) − ŶT

3 Ψ(t) = FTΨ(t), (5.6)

in which Ŷ2 and Ŷ3 are m̂ × m̂ matrix and they are linear function of vector X. Eq. (5.6) is hold for
any t ∈ [0, 1), so we can write

XT − XT K1 − ŶT
2 − ŶT

3 = FT . (5.7)

Since Ŷ2 and Ŷ3 are linear function of X, Eq. (5.7) is a linear system for unknown vector X. Solving
this linear system and determining X, we can approximate solution of stochastic Voltera-Fredholm
integral equation (5.1) by substituting obtained vector X in Eq. (5.3).

6. Numerical examples

Here we demonstrate the efficiency and accuracy of the Legendre wavelets method (LWM) by
some non-trivial examples. All algorithms are performed by Maple 13 with 20 digits precision.

Example 6.1. Consider the following stochastic Volterra-Fredholm integral equation [5]

X(t) = f (t) +
∫ 1

0
cos(s + t)X(s)ds+

∫ t

0
(s + t)X(s)ds +

∫ t

0
e−3(s+t)X(s)dB(s), s, t ∈ [0, 1] ,
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Figure 1: The approximate solution for m̂ = 64.

m̂ = 32 m̂ = 64

t LWM BPFs[5] LWM BPFs[5]

0.2 0.0373360485 0.0566018117 0.0125320418 0.0162899633
0.4 0.1429836416 0.1550820154 0.1140858304 0.1151902625
0.6 0.3412840467 0.3908514112 0.3128060572 0.3840300664
0.8 0.6250649268 0.6338163380 0.5873515014 0.6993271966
1.0 0.9403443751 0.9684881988 0.9055792720 1.0017286969

Table 1: Numerical results for m̂ = 32 and m̂ = 64.

in which

f (t) = t2 + sin(1 + t) − 2 cos(1 + t) − 2 sin(t) − 7t4

12
+

1
40

B(t),

and X(t) is an unknown stochastic process defined on the probability space (Ω,𝟋, P) and B(t) is
a Brownian motion process. The stochastic operational matrix of Legendre wavelets and the pro-
posed method in section 5 are used for solving this stochastic Volterra-Fredholm integral equation.
Fig. 6.1 presents the approximate solution computed by LWM for m̂ = 64. A comparison between
the numerical results given by the LWM and BPFs method [5] are shown in Table 1.

Example 6.2. Consider the following stochastic Volterra-Fredholm integral equation[5]

X(t) = f (t) +
∫ 1

0
(s + t)X(s)ds+

∫ t

0
(s − t)X(s)ds +

1
125

∫ t

0
sin(s + t)X(s)dB(s), s, t ∈ [0, 1] ,

where

f (t) = 2 − cos(1) − (1 + t) sin(1) +
1

250
sin (B(t)) ,
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and X(t) is an unknown stochastic process defined on the probability space (Ω,𝟋, P) and B(t) is
a Brownian motion process. The stochastic operational matrix of Legendre wavelets is employed
for deriving numerical solution of this Volterra-Fredholm integral equation. Fig. 6.1 presents the
approximate solution computed by the LWM for m̂ = 64. A comparison between the numerical
results given by the LWM and BPFs method [5] are shown in Table 2.

Figure 2: The approximate solution for m̂ = 64.

m̂ = 32 m̂ = 64

t LWM BPFs[5] LWM BPFs[5]

0.2 0.8494112576 0.9860154776 0.9024267433 0.9833522815
0.4 0.7565728441 0.9432021950 0.8208246618 0.9157653040
0.6 0.6381295249 0.8554015473 0.7124650476 0.8042753408
0.8 0.4957875008 0.7250865831 0.5758998949 0.6954537702
1.0 0.3406800668 0.5459802735 0.4191384270 0.5713651151

Table 2: Numerical results for m̂ = 32 and m̂ = 64.

7. Conclusion

A computational method based on the Legendre wavelets and their stochastic operational ma-
trix is proposed for solving stochastic Volterra-Fredholm integral equations. Convergence and
error analysis of the Legendre wavelets basis are considerd. Accuracy and efficiency of the pro-
posed method is confirmed by some non-trivial numerical examples. Moreover, the numerical
results of the proposed method is in good agreement with the BPFs method.
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