
Under consideration for publication in Knowledge and Information
Systems

Graphlet Decomposition: Framework,

Algorithms, and Applications

Nesreen K. Ahmed

1
, Jennifer Neville

2
, Ryan A. Rossi

3
,

Nick G. Du�eld

4
, and Theodore L. Willke

1

1Parallel Computing Lab, Intel Labs
2Department of Computer Science, Purdue University
3Palo Alto Research Center
4Department of Electrical and Computer Engineering, Texas A&M University

Abstract. From social science to biology, numerous applications often rely on graphlets
for intuitive and meaningful characterization of networks. While graphlets have wit-
nessed a tremendous success and impact in a variety of domains, there has yet to be a
fast and e�cient framework for computing the frequencies of these subgraph patterns.
However, existing methods are not scalable to large networks with billions of nodes and
edges. In this paper, we propose a fast, e�cient, and parallel framework as well as a
family of algorithms for counting k-node graphlets. The proposed framework leverages
a number of theoretical combinatorial arguments that allow us to obtain significant
improvement on the scalability of graphlet counting. For each edge, we count a few
graphlets and obtain the exact counts of others in constant time using the combinato-
rial arguments. On a large collection of 300+ networks from a variety of domains, our
graphlet counting strategies are on average 460x faster than existing methods. This
brings new opportunities to investigate the use of graphlets on much larger networks
and newer applications as we show in the experiments. To the best of our knowledge,
this paper provides the largest graphlet computations to date.

Keywords: Graphlet; Motif; Graph Mining; Graph Kernel; Classification; Graph Fea-
tures; Higher-order Graph Statistics; Biological Networks; Visual Graph Analytics

1. Introduction

Recursive decomposition of networks is a widely used approach in network analy-
sis to factorize the complex structure of real-world networks into small subgraph

Received 11/14/2015
Revised 03/06/2016
Accepted 04/24/2016

2 N.K. Ahmed et al

patterns of size k nodes. These patterns are called graphlets (Pržulj et al., 2004).
Graphlets (also known as motifs (Milo et al., 2002)) are defined as subgraph pat-
terns recurring in real-world networks at frequencies that are statistically signifi-
cant from those in random networks. Given a network, we can count the number
of embedding of each graphlet in the network, creating a profile of su�cient
statistics that characterizes the network structure (Shervashidze et al., 2009).
While knowing the graphlet frequencies does not uniquely define the network
structure, it has been shown that graphlet frequencies often carry significant
information about the local network structure in a variety of domains (Holland
and Leinhardt, 1976; Faust, 2010; Frank, 1988). This is in contrast to global
topological properties (e.g., diameter, degree distribution), where networks with
similar/exact global topological properties can exhibit significantly di↵erent local
structures.

1.1. Graphlets, Scalability, & Applications

From social science to biology, graphlets have found numerous applications and
were used as the building blocks of network analysis (Milo et al., 2002). In so-
cial science, graphlet analysis (typically known as k-subgraph census) is widely
adopted in sociometric studies (Holland and Leinhardt, 1976; Frank, 1988). Much
of the work in this vein focused on analyzing triadic tendencies as important
structural features of social networks (e.g., transitivity or triadic closure) as well
as analyzing triadic configurations as the basis for various social network theories
(e.g., social balance, strength of weak ties, stability of ties, or trust (Granovetter,
1983)). In biology (Pržulj et al., 2004; Milenkoviæ and Pržulj, 2008), graphlets
were widely used for protein function prediction (Shervashidze et al., 2009), net-
work alignment (Milenković et al., 2010), and phylogeny (Kuchaiev et al., 2010)
to name a few. More recently, there has been an increased interest in explor-
ing the role of graphlet analysis in computer networking (Feldman and Shavitt,
2008; Hales and Arteconi, 2008; Becchetti et al., 2008) (e.g., for web spam detec-
tion, analysis of peer-to-peer protocols and Internet AS graphs), chemoinformat-
ics (Ralaivola et al., 2005; Kashima et al., 2010), image segmentation (Zhang,
Song, Liu, Liu, Bu and Chen, 2013), among others (Zhang, Han, Yang, Song,
Yan and Tian, 2013).

While graphlet counting and discovery have witnessed a tremendous suc-
cess and impact in a variety of domains from social science to biology, there
has yet to be a fast and e�cient approach for computing the frequencies of
these patterns. For instance, Shervashidze et al. (Shervashidze et al., 2009) takes
hours to count graphlets on relatively small biological networks (i.e., few hun-
dreds/thousands of nodes/edges) and uses such counts as features for graph
classification (Vishwanathan et al., 2010). Previous work showed that graphlet
counting is computationally intensive since the number of possible k-subgraphs
in a graph G increases exponentially with k in O(|V |k) and can be computed in
O(|V |.�k�1) for any bounded degree graph, where � is the maximum degree of
the graph (Shervashidze et al., 2009).

To address these problems, we propose a fast, e�cient, and parallel framework
and a family of algorithms for counting graphlets of size k = {3, 4}-nodes that
take only a fraction of the time to compute when compared with the current
methods used. The proposed graphlet counting algorithm leverages a number
of theoretical combinatorial arguments for di↵erent graphlets. For each edge,

Graphlet Decomposition: Framework, Algorithms, and Applications 3

we count a few graphlets, and with these counts along with the combinatorial
arguments, we obtain the exact counts of others in constant time. On a large
collection of 300+ networks from a variety of domains, our graphlet counting
strategies are on average 460x faster than current methods. This brings new
opportunities to investigate the use of graphlets on much larger networks and
newer applications as we show in our experiments. To the best of our knowledge,
this paper provides the largest graphlet computations to date as well as the
largest systematic investigation on over 300+ networks.

Furthermore, a number of important machine learning tasks are likely to
benefit from such an approach, including graph anomaly detection (Noble and
Cook, 2003; Rossi et al., 2013), as well as using graphlets as features for improving
community detection (Schae↵er, 2007), role discovery (Rossi and Ahmed, 2015b),
graph classification (Vishwanathan et al., 2010), and relational learning (Getoor
and Taskar, 2007; Rossi et al., 2012).

We test the scalability of our proposed approach experimentally on 300+
networks from a variety of domains, such as biological, social, and technological
domains. We compare our approach to the state-of-the-art exact counting meth-
ods such as RAGE (Marcus and Shavitt, 2012), FANMOD (Wernicke and Rasche,
2006), and Orca (Hočevar and Demšar, 2014). We found that RAGE (Marcus and
Shavitt, 2012) took 2400 seconds to count graphlets on a small 26k node graph,
whereas our proposed method is 460x faster on average, taking only 0.01 sec-
onds. We also note that FANMOD (Wernicke and Rasche, 2006), another recent
approach, takes 172800 seconds, and Orca (Hočevar and Demšar, 2014) takes
2.5 seconds for the same small graph. Our exact graphlet analysis is well-suited
for shared-memory multi-core architectures,distributed architectures (MPI), and
hybrid implementations that leverage the advantages of both.

1.2. Contributions

• Algorithms & Theoretical Analysis. A fast, e�cient, and parallel graphlet
counting framework and a family of algorithms for graphlet counting. In addi-
tion, we provide a theoretical analysis of a number of combinatorial arguments
that enable our proposed framework to obtain significant improvement on the
scalability of graphlet counting.

• Scalability. The proposed graphlet counting algorithm achieves on average
460x faster than the state-of-the-art methods. In addition, we analyze graphlet
counts on graphs of sizes that are beyond the scope of the state-of-the-art (e.g.,
on graphs with billions of nodes and edges).

• E↵ectiveness. Largest graphlet computations to date and largest systematic
evaluation on over 300+ large-scale networks from a variety of domains.

• Applications. Systematic investigation across a variety of existing and new
applications for graphlet counting, such as finding unique patterns in graphs,
graph similarity, and graph classification.

2. Background

Graphlets are subgraph patterns recurring in real-world networks at frequencies
that are significantly higher than those in random networks (Milo et al., 2002;

4 N.K. Ahmed et al

Table 1. Summary of graphlet notation

Summary of the notation and properties for the graphlets of size k = {2, 3, 4}. Note that ⇢ denotes

density, � and

¯

d denote the max and mean degree, whereas assortativity is denoted by r. Also, |T |
denotes the total number of triangles, K is the max k-core number, � denotes the Chromatic number,

whereas D denotes the diameter, B denotes the max betweenness, and |C| denotes the number of

components. Note that if |C| > 1, then r, D, and B are from the largest component.

Graphlet

Description Complement ⇢ �

¯

d

r |T | K � D B |C|

(k = 4)�Graphlets

C
o
n
n
e
c
t
e
d

g

4

1

4-clique 1.00 3 3.0 1.00 4 3 4 1 0 1

g

4

2

4-chordalcycle 0.83 3 2.5 -0.66 2 2 3 2 1 1

g

4

3

4-tailedtriangle 0.67 3 2.0 -0.71 1 2 3 2 2 1

g

4

4

4-cycle 0.67 2 2.0 1.00 0 2 2 2 1 1

g

4

5

3-star 0.50 3 1.5 -1.00 0 1 2 2 3 1

g

4

6

4-path 0.50 2 1.5 -0.50 0 1 2 3 2 1

D
i
s
c
o
n
n
e
c
t
e
d

g

4

7

4-node-1-

triangle

0.50 2 1.5 1.00 1 2 3 1 0 2

g

4

8

4-node-2-star 0.33 2 1.0 -1.00 0 1 2 2 1 2

g

4

9

4-node-2-edge 0.33 1 1.0 1.00 0 1 2 1 0 2

g

4

10

4-node-1-edge 0.17 1 0.5 1.00 0 1 2 1 0 3

g

4

11

4-node-

independent

0.00 0 0.0 0.00 0 0 1 1 0 4

(k = 3)�Graphlets

g

3

1

triangle 1.00 2 2.0 1.00 1 2 3 1 0 1

g

3

2

2-star 0.67 2 1.33 -1.00 0 1 2 2 1 1

g

3

3

3-node-1-edge 0.33 1 0.67 1.00 0 1 2 1 0 2

g

3

4

3-node-

independent

0.00 0 0.00 0.00 0 0 1 1 0 3

(k = 2)�Graphlets

g

2

1

edge 1.00 1 1.0 1.00 0 1 2 1 0 1

g

2

2

2-node-

independent

0.00 0 0.0 0.00 0 0 1 1 0 2

Pržulj et al., 2004). Previous work showed that graphlets can be used to define
universal classes of networks (Milo et al., 2002). Moreover, graphlets are at the
heart and foundation of many network analysis tasks (e.g., network classification,
network alignment, etc.) (Pržulj et al., 2004; Milenkoviæ and Pržulj, 2008; Hayes
et al., 2013). In this paper, we introduce an e�cient algorithm to compute the
number of embedding of each graphlet of size k = {2, 3, 4} nodes in the network
(see Table 1 for notation).

2.1. Notation and Definitions

Given an undirected simple input graph G = (V,E), a graphlet of size k nodes
is defined as any subgraph G

k

⇢ G which consists of a subset of k nodes of
the graph G. In this paper, we mainly focus on computing the frequencies of

Graphlet Decomposition: Framework, Algorithms, and Applications 5

induced graphlets. An induced graphlet is an induced subgraph that consists of
all edges between its nodes that are present in the input graph (as described
in Definition 1). In addition, we distinguish between connected and disconnected

graphlets (see Table 1). A graphlet is connected if there is a path from any
node to any other node in the graphlet (see Definition 2). Table 1 provides a
summary of the notation and properties of all possible induced graphlets of size
k = {2, 3, 4}.
Definition 1. Induced Graphlet: an induced graphlet G

k

= (V
k

, E
k

) is a sub-
graph that consists of a subset of k vertices of the graph G = (V,E) (i.e.,
V
k

⇢ V) together with all the edges whose endpoints are both in this subset
(i.e., E

k

= {8e 2 E | e = (u, v) ^ u, v 2 V
k

}).
Definition 2. Connected Graphlet: a graphlet G

k

= (V
k

, E
k

) is connected
when there is a path from any node to any other node in the graphlet (i.e.,
8u, v 2 V

k

, 9P
u�v

: u, ..., w, ..., v, such that d(u, v) � 0 ^ d(u, v) 6= 1, where
d(u, v) is the distance between u and v). Assume |C| denote the number of con-
nected components in a graphlet G

k

. By definition, there exist one and only
one connected component in a graphlet G

k

(i.e., |C| = 1) if and only if G
k

is
connected.

Problem Definition. Given a family of graphlets of size k nodes G
k

=
{g

k

1

, g
k

2

, ..., g
km}, our goal is to count the number of embeddings (appear-

ances) of each graphlet g
ki 2 G

k

in the input graph G. In other words, we
need to count the number of induced graphlets G

k

in G that are isomorphic
to each graphlet g

ki 2 G
k

in the family, such a number is denoted by
�

G

gki

�

(Gross et al., 2013).

A graphlet g
ki 2 G

k

is embedded in the graph G, if and only if there is
an injective mapping � : V

gki
! V , with e = (u, v) 2 E

gki
if and only if

e0 = (�(u),�(v)) 2 E. Table 1 shows that |G
k

| = {2, 4, 11} when k = {2, 3, 4}
respectively. Further, given a family G

k

= {g
k

1

, g
k

2

, ..., g
km} of graphlets of size

k nodes, we define f(g
ki , G) as the frequency of any graphlet g

ki 2 G
k

in the
input graph G.

2.2. Relationship to Graph Complement

The complement of a graph G, denoted by Ḡ, is the graph defined on the same
vertices as G such that two vertices are connected in Ḡ if and only if they are not
connected in G. Therefore, the graph sum G + Ḡ gives the complete graph on
the set of vertices of G. There are direct relationships between the frequencies
of graphlets and the frequencies of their complement. For each graphlet g

ki ,
there exists a non-isomorphic complementary graphlet pattern ḡ

ki , such that two
vertices are connected in ḡ

ki if and only if they are not connected in g
ki (Gross

et al., 2013). For example, cliques and independent sets of size k nodes are
pairs of complementary graphlets. Similarly, chordal cycles of size 4 nodes are
complementary to the 4-node-1edge graphlet (see Table 1). It is also worth noting
that the 4-path graphlet is a self-complementary pattern, which means the 4-
path is isomorphic to itself. From this discussion, it is clear that the number

6 N.K. Ahmed et al

of embeddings of each graphlet g
ki 2 G

k

in the input graph G is equivalent to
the number of embeddings of its complementary graphlet ḡ

ki in the complement
graph Ḡ. In other words, f(g

ki , G) = f(ḡ
ki , Ḡ) (Gross et al., 2013).

2.3. Relationship to Graph/Matrix Reconstruction Theorems

The graph reconstruction conjecture (Gross et al., 2013), states that an undi-
rected graph G can be uniquely determined up to an isomorphism, from the
set of all possible vertex-deleted subgraphs of G (i.e., {G

v

}
v2V

) (McKay, 1997).
Verification of this conjecture for all possible graphs up to 6 vertices was car-
ried by Kelly (Kelly, 1957), and later was extended to up to 11 vertices by
McKay (McKay, 1997). Clearly, if two graphs are isomorphic (i.e., G ⇠= G0), then
their graphlet frequencies would be the same (i.e., f

k

(G) = f
k

(G0)), but the
reverse remains a converse for the general case of graphs. In contrast, the ma-
trix reconstruction theorem has been resolved (Manvel and Stockmeyer, 1971),
which states that any N ⇥ N matrix can be reconstructed from its list of all
possible principal minors obtained by the deletion of the k-th row and the k-th
column (Manvel and Stockmeyer, 1971), which is the foundation of a class of
graph kernels called the graphlet kernel (Shervashidze et al., 2009).

2.4. Related Work

In this section, we briefly discuss some of the related work, highlighting various
graph mining and machine learning tasks that would benefit from our approach.
Much of the previous work focused on counting certain types of graphlets (e.g.,
only connected graphlets such as cliques and cycles) (Kloks et al., 2000; Wernicke
and Rasche, 2006; Hočevar and Demšar, 2014). However, a number of graph
mining and machine learning tasks rely on counting all graphlets of a certain
size.

For example, some previous work used the full spectrum of graphlet fre-
quencies to define a domain-independent coordinate system in which collec-
tions of graphs can be compactly represented and analyzed within a common
space (Ugander et al., 2013). Moreover, a variety of graph kernels have been
proposed in machine learning (e.g., graphlet, subtree, and random walk ker-
nels) (Vishwanathan et al., 2010; Costa and De Grave, 2010; Shervashidze et al.,
2009) to bridge the gap between graph learning and kernel methods. And some
types of the graph kernels, in particular the graphlet kernel, rely on counting
all graphlets. However, a general limitation of most graph kernels (including
the graphlet kernel) is that they scale poorly to graphs with more than few hun-
dreds/thousands of nodes (Vishwanathan et al., 2010). Thus, our fast algorithms
would speedup the computations of these methods and their related applications
in graph modeling, similarity, and comparisons.

Recently, there is an increased interest in sampling and other heuristic ap-
proaches for obtaining approximate counts of various graphlets (Ahmed, Neville
and Kompella, 2014; Bhuiyan et al., 2012; Gonen and Shavitt, 2009; Ahmed
et al., 2012; Ahmed et al., 2010). However, our approach focuses on exact graphlet
counting and thus sampling methods are outside the scope of this paper. Nev-
ertheless, the analysis and combinatorial arguments we show in this paper can

Graphlet Decomposition: Framework, Algorithms, and Applications 7

Algorithm 1 Our exact triad census algorithm for counting all 3-node graphlets. The
algorithm takes an undirected graph as input and returns the frequencies of all 3-node graphlets
f(G3, G).

1: procedure TriadCensus(G = (V,E))

2: Initialize all variables

3: parallel for e = (u, v) 2 E do

4: Staru = ;, Starv = ;,Trie = ;
5: for w 2 N (u) do

6: if w = v then continue

7: Add w to Staru and set X(w) = 1

8: for w 2 N (v) do

9: if w = u then continue

10: if X(w) = 1 then . found triangle

11: Add w to Trie
12: Remove w from Staru
13: elseAdd w to Starv

14: f(g3
1

, G) += |Trie|
15: f(g3

2

, G) += |Staru|+ |Starv |
16: f(g3

3

, G) += |V |� |N (u) [N (v)|
17: for w 2 N (u) do X(w) = 0

18: end parallel

19: Aggregate counts from all workers

20: f(g3
1

, G) = 1/3.f(g3
1

, G)

21: f(g3
2

, G) = 1/2.f(g3
2

, G)

22: f(g3
4

, G) =
�|V |

3

�
� f(g3

1

, G)� f(g3
2

, G)� f(g3
3

, G)

23: return f(G3, G)

be used along with e�cient sampling methods to provide more accurate and
e�cient approximations (Ahmed, Du�eld, Neville and Kompella, 2014).

In addition, the aim and scope of this paper is di↵erent from the aforemen-
tioned problem of graph reconstruction. While graph reconstruction tries to test
for the notion of isomorphism and structure equivalence between graphs, our
goal is to relax the notion of equivalence to some form of structural similarity

between graphs, such that the graph similarity is measured using the feature
representation of graphlets.

3. Framework

In this section, we describe our approach for graphlet counting that takes only a
fraction of the time to compute when compared with the current methods used.
We introduce a number of combinatorial arguments that we show for di↵erent
graphlets. The proposed graphlet counting algorithm leverages these combinato-
rial arguments to obtain significant improvement on the scalability of graphlet
counting. For each edge, we count only a few graphlets, and with these counts
along with the combinatorial arguments, we derive the exact counts of the others
in constant time.

8 N.K. Ahmed et al

3.1. Searching Edge Neighborhoods

Our proposed algorithm iterates over all the edges of the input graph G = (V,E).
For each edge e = (u, v) 2 E, we define the neighborhood of an edge e, denoted
by N (e), as the set of all nodes that are connected to the endpoints of e —
i.e., N (e) = {N (u) \ {v}} [{N (v) \ {u}}, where N (u) and N (v) are the set of
neighbors of u and v respectively. Given a single edge e = (u, v) 2 E, we explore
the subgraph surrounding this edge — i.e., the subgraph induced by both its
endpoints and the nodes in its neighborhood. We call this subgraph the egonet

of the edge e, where e is the center (ego) of the subgraph.
We search for possible graphlet patterns of size k = {3, 4} in the egonets of

all edges in the graph. By searching egonets of edges, we first map the problem to
the local (lower-dimensional) space induced by the neighborhood of each edge,
and then merge the search results for all edges. Searching over a local low-
dimensional space of edge neighborhoods is clearly more e�cient than searching
over the global high-dimensional space of the whole graph. Moreover, searching
over a local low-dimensional space of edge neighborhoods is amenable to parallel
implementation, which o↵ers additional speedup over iterative methods. Note
that exhaustive search of the egonet of any edge e 2 E yields at least O(�k�1)
asymptotically, where � is the maximum degree in G. Clearly, exhaustive search
is computationally intensive for large graphs, and our approach is more e�cient
as we will show next.

3.2. Counting Graphlets of Size (k = 3) Nodes

Algorithm 1 (TriadCensus) shows how to count graphlets of size k = 3 for
each edge. There are four possible graphlets of size k = 3 nodes, where only
g
3

1

(i.e., triangle patterns) and g
3

2

(i.e., 2-star patterns) are connected graphlets
(see Table 1).

Connected graphlets of size k = 3.

Lines 5—13 of Algorithm 1 show how to find and count triangles incident to
an edge. For any edge e = (u, v), a triangle (u, v, w) exists, if and only if w is
connected to both u and v. Let Tri

e

be the set of all nodes that form a triangle
with e = (u, v), and |Tri

e

| be the number of such triangles. Then, Tri
e

is the set
of overlapping nodes in the neighborhoods of u and v — Tri

e

= N (u) \ N (v).
Note that Algorithm 1 counts each triangle three times (one time for each edge
in the triangle), and therefore we divide the total count by 3 as in Equation (1),

f(g
3

1

, G) =
1

3
.

X

e=(u,v)2E

|Tri
e

| (1)

Now we need to count 2-star patterns (i.e., g
3

2

). For any edge e = (u, v),
let Star

e

be the set of all nodes that form a 2-star with e, and |Star
e

| be the
number of such star patterns. A 2-star pattern (u, v, w) exists, if and only if w is
connected to either u or v but not both. Accordingly, Star

e

= Star
u

[Star
v

, where
Star

u

and Star
v

are the set of nodes that form a 2-star with e centered at u and v
respectively. More formally, Star

u

can be defined as Star
u

= {w 2 N (u)\{v}|w /2
N (v)}, and Star

v

can be defined as Star
v

= {w 2 N (v) \ {u}|w /2 N (u)}.

Graphlet Decomposition: Framework, Algorithms, and Applications 9

Similar to counting triangles, Algorithm 1 counts each 2-star pattern two
times (one time for each edge in the 2-star). Thus, we divide the sum for all
edges by 2 as follows,

f(g
3

2

, G) =
1

2
.

X

e=(u,v)2E

|Star
u

|+ |Star
v

| (2)

Disconnected graphlets of size k = 3.

There are two disconnected graphlets of size k = 3 nodes, g
3

3

(i.e., the 3-node-1-
edge pattern) and g

3

4

(i.e., the independent set defined on 3 nodes) (see Table 1).
Lines 16 and 22 show how to count these patterns.

Equation (3) shows that the number of 3-node-1-edge graphlets per edge e is
equivalent to the number of all nodes that are not in the neighborhood subgraph
(egonet) of edge e (i.e., V \ {N (u) [N (v)}),
f(g

3

3

, G) =
X

e=(u,v)2E

|V |� |N (u) [N (v)| (3)

where |N (u) [N (v)| = |Tri
e

| + |Star
e

| + |{u, v}|. Note that the number of 3-
node-1-edge graphlets can be computed in o(1) for each edge.

Given that the total number of graphlets of size 3 nodes is
�
N

3

�
, Equation (4)

shows how to compute the frequency of g
3

4

, which clearly can be done in o(1),

f(g
3

4

, G) =

✓|V |
3

◆
� �

f(g
3

1

, G) + f(g
3

2

, G) + f(g
3

3

, G)
�

(4)

The complexity of counting all graphlets of size k = 3 is O(|E|.�) asymptot-
ically as we show next in Lemma 1.

Lemma 1. Algorithm 1 counts all graphlets of size k = 3–nodes in O(|E|.�).

Proof. For each edge e = (u, v) such that e 2 E, the runtime complexity of count-
ing all triangle and 2-star patterns incident to e (i.e., Tri

e

, Star
e

respectively) is
O(|N (u)|+ |N (v)|), and is asymptotically O(�) where � is the maximum degree
in the graph. Further, the runtime complexity of counting all 3-node-1-edge pat-
terns of size k = 3 incident to e can be counted in constant time o(1). Therefore,
the total runtime complexity for counting all graphlets of size k = 3 in the graph

is O
⇣ P

e2E

(�+ o(1))
⌘
= O(|E|.�). ⌅

Parallelization.

Our own implementation of Algorithm 1 uses shared memory, however, we de-
scribe the parallelization at a high-level such that it could be used with dis-
tributed memory architectures as well. In fact in these cases the algorithm itself
remains the same. We particularly focus our discussion on the general scheme
and not on the specific details. We parallelized the main parallel-for loop in the
algorithm (Line 3), although other parts could be parallelized as well.

The algorithm starts by initializing all variables to zero (e.g., X, f(., G), etc).
We view the main parallel-for loop as a task generator and farm the current edge
(the next job) out to a worker to count the graphlets incident to this edge. One of

10 N.K. Ahmed et al

the key features of our algorithm is that it is lock-free, unlike previous methods,
this is due to our theoretical analysis that we use to minimize the graphlet
counting computations.

The lock-free nature of our algorithm allows us to minimize the communi-
cation cost between workers. Each worker maintains local variables and total
counts of each graphlet pattern processed. Upon completion of the parallel-for
loop, we use a reduction step to aggregate the counts from all workers. Since
there is a very minimal sharing of memory across workers, we can exploit mem-
ory locality and avoid cache ping-pong. Note that unlike previous methods, our
algorithm achieves near linear scaling for the multi-core setting (see Section 5.2).

Moreover, our algorithm is also memory-e�cient compared to previous meth-
ods, since there is no need to store extra information per vertex/edge, as we
aggregate the counts for each worker, then after the main parallel-for loop, we
aggregate the counts from all workers. Our algorithm also uses dynamic schedul-

ing to dynamically assign jobs to each worker when more work is requested (i.e.,
batch size b). This scheme allows us to dynamically load the balance among the
workers (see Section 5.2 for the e↵ect of the batch size). Finally, another key
feature of our algorithm is that it accepts di↵erent node/edge ordering (such as
degree, k-core, etc) in order to improve memory locality and caching.

4. Counting Graphlets of Size (k = 4) Nodes

An exhaustive search of the egonet of any edge to count all 4-node graphlets
independently yields O(�3) asymptotically, where � is the maximum degree in
G. Clearly, exhaustive search is computationally intensive for large graphs. On
the other hand, our approach is hierarchical and more e�cient as we show next.

For each edge e = (u, v), we start by finding triangles and 2-star patterns.
Our central principle is that any 4-node graphlet g

4i can be decomposed into
four 3-node graphlets (Gross et al., 2013), obtained by deleting one node from
g
4i each time. Thus, we jointly count all possible 4-node graphlets by leveraging
the knowledge obtained from finding 3-node graphlets and some combinatorial
arguments that describe the relationships between pairs of graphlets. We sum-
marize this procedure in the following steps:

• Step 1: For each edge e, find all neighborhood nodes forming triangle and
2-star patterns with e.

• Step 2: For each edge e, use the knowledge from step 1 to count only 4-cliques
and 4-cycles.

• Step 3: For each edge e, use the knowledge from step 1 and some combinatorial
arguments to compute unrestricted counts for all 4-node graphlets in constant
time.

• Step 4: Merge the counts from all edges in the graph, and use combinato-
rial arguments involving unrestricted counts to obtain the counts of all other
graphlets.

Note that we refer to the unrestricted counts as the counts that can be com-
puted in constant time and using only the knowledge obtained from step 1.
Next, we discuss the details of our approach. We start by discussing the graphlet
transition diagram to show the pairwise relationships between di↵erent 4-node
graphlets. Then, we discuss a general principle for counting 4-node graphlets,

Graphlet Decomposition: Framework, Algorithms, and Applications 11

Fig. 1. (4–node) graphlet transition diagram: Figure shows all possible ±1 edge transi-
tions between the set of all 4-node graphlets. Dashed right arrows denote the deletion of one
edge to transition from one graphlet to another. Solid left arrows denote the addition of one
edge to transition from one graphlet to another. Edges are colored by their feature-based roles,
where the set of feature are defined by the number of triangles and 2-stars incident to an edge
(see Table in the top-right corner). We define six di↵erent classes of edge roles colored from
black to orange (see Table in the top-right corner). Dashed/solid arrows are colored similar to
the edge roles to denote which edge would be deleted/added to transition from one graphlet
to another. The table in the top-left corner shows the number of edge roles per each graphlet.

which leverages the graphlet transition diagram and some combinatorial argu-
ments to improve the performance of graphlet counting.

4.1. Graphlet Transition Diagram

Assume that each graphlet is a state, Fig. 1 shows all possible ±1 edge transitions
between the states of all 4-node graphlets. We can transition from one graphlet
to another by the deletion (denoted by dashed right arrows) or addition (denoted
by solid left arrows) of a single edge. We define six di↵erent classes of possible
edge roles denoted by the colors from black to orange (see Table in the top-right
corner in Fig. 1). An edge role is an edge-level connectivity pattern (e.g., a chord
edge), where two edges belong to the same role (i.e., class) if they are similar in
their topological features.

For each edge, we define a topological feature vector that consists of the num-
ber of triangles and 2-stars incident to this edge. Then, we classify edges to one of
the six roles based on their feature vectors. Thus, all edges that appear in 4-node
graphlets are colored by their roles. In addition, the transition arrows are colored
similar to the edge roles to denote which edge type should be deleted/added to
transition from one graphlet to another. Note that a single edge deletion/addition
changes the role (class) of other edges in the graphlet. The table in the top-left
corner of Fig. 1 shows the number of edge roles per each graphlet. For example,
consider the 4-clique graphlet (g

4

1

), where each edge participates exactly in two

12 N.K. Ahmed et al

Fig. 2. Let T denotes the nodes forming triangles with edge (u, v) (i.e., V2, V3), whereas Su

and Sv denote the nodes forming 2-stars centered at u and v respectively (i.e., V1, V4), and
let I denote the nodes that are not connected to edge e (i.e., V5, V6). Further, the dotted lines
represent edges incident to these nodes.

triangles. Therefore, all the edges in a 4-clique graphlet (g
4

1

) belong to the first
role (denoted by the black color). Similarly, consider the 4-chordalcycle (g

4

2

),
where each edge (except the chord edge) participates exactly in one triangle and
one 2-star. Therefore, all edges in a 4-chordalcycle ”g

4

2

” belong to the second
role (denoted by the blue color) except for the chord edge which belongs to the
first role (denoted by the black color). Fig. 1 shows how to transition from the
4-clique to the 4-chordalcycle ”g

4

2

” by deleting one (any) edge from the 4-clique.

4.2. General Principle for Counting Graphlets of size k = 4

Generally speaking, suppose we haveN (e) distinct 4-node subgraphs that contain
an edge e = (u, v),

N (e) =
���{u, v, w, r} | w, r 2 V \ {u, v} ^ w 6= r

 �� (5)

Each subgraph {u, v, w, r} in this collection may satisfy one or two properties
a
i

, a
j

2 A = {T, S
u

, S
v

, I}. As we show by example in Fig. 2, let T denote the
nodes forming triangles with edge (u, v) (i.e., V

2

, V
3

), whereas S
u

and S
v

denote
the nodes forming 2-stars centered at u and v respectively (i.e., V

1

, V
4

), and
let I denote the nodes that are not connected to edge e (i.e., V

5

, V
6

). These
properties describe the topological properties of nodes w and r with respect to
edge e, such that A

w

= a
i

if {u, v, w} forms subgraph pattern a
i

, and A
r

= a
j

if
{u, v, r} forms subgraph pattern a

j

. For example, A
w

= T if w forms a triangle
with e, and A

w

= S
u

or S
v

if w forms a 2-star with e centered around u or v
respectively. Also, A

w

= I if w is independent (disconnected) from e. We clarify
these properties by example in Fig. 2.

Graphlet Decomposition: Framework, Algorithms, and Applications 13

Let N (e)

ai,aj denote the number of distinct 4-node graphlets that contain edge
e = (u, v) and have properties a

i

, a
j

2 A,

N (e)

ai,aj
=

�����

(
{u, v, w, r}

���
w,r2V \{u,v}
^w 6=r

^Aw=ai,Ar=aj

)����� (6)

Now that we defined the topological properties of nodes w and r relative
to edge e, we need to define whether nodes w and r are connected themselves.
Let e0

wr

represent whether w and r are connected or not, such that e0
wr

= 1

if (w, r) 2 E and e0
wr

= 0 otherwise. Accordingly, let N
(e)

ai,aj ,e
0
wr

denotes the

number of 4-node graphlets {u, v, w, r}, where w, r satisfy property a
i

, a
j

2 A
and e0

wr

2 {0, 1},

N
(e)

ai,aj ,e
0
wr

=

�����

(
{u, v, w, r}

�����

w,r2V \{u,v}
^w 6=r

^Aw=ai,Ar=aj

^e

0
wr2{0,1}

)����� (7)

For example, N
(e)

T,T,1

is the number of all graphlets {u, v, w, r} containing
edge e, where both w and r are forming triangles with e and there exist an edge
between w and r. Using Equations (6) and (7), we provide a general principle
for graphlet counting in the following theorem.

Theorem 1. General Principle for Graphlet Counting: Given a graph G, for

any edge e = (u, v) in G, and for any properties a
i

, a
j

2 A, the number of 4-node
graphlets {u, v, w, r} satisfies the following rule,

N
(e)

ai,aj ,0
= N (e)

ai,aj
�N

(e)

ai,aj ,1
(8)

Proof. Suppose there is a subgraph {u, v, w, r} containing edge e, where nodes w
and r satisfy a

i

, a
j

properties respectively, and (w, r) 2 E. Then the expression

on the right side counts this subgraph once in the N
(e)

ai,aj term, and once in

the N
(e)

ai,aj ,1
. By the principle of inclusion-exclusion (Stanley, 1986), the total

contribution of the subgraph {u, v, w, r} in N
(e)

ai,aj ,0
is zero. Thus, N (e)

ai,aj ,0
is the

number of graphlets having properties a
i

, a
j

, but (w, r) /2 E. ⌅

Clearly, it is su�cient to compute N (e)

ai,aj and N
(e)

ai,aj ,1
only, and use Theorem 1

to compute N
(e)

ai,aj ,0
in constant time. Note that N (e)

ai,aj is an unrestricted count
and can be computed in constant time using the knowledge we have from finding
3-node graphlets.

To simplify the discussion in the following sections, we precisely show how to

compute N (e)

ai,aj , the number of 4-node graphlets {u, v, w, r} such that w, r satisfy
property a

i

, a
j

2 A respectively. LetW
ai be the set of nodes with property a

i

2 A
(i.e., W

ai = {w 2 V \ {u, v} | A
w

= a
i

, 8a
i

2 A}), and similarly R
aj be the set

of nodes with property a
j

2 A (i.e., R
aj = {r 2 V \ {u, v} | A

r

= a
j

, 8a
j

2 A}).
If a

i

= a
j

, then W
ai = R

aj . Thus,

N (e)

ai,ai
=

✓|W
ai |
2

◆
=

1

2
.(|W

ai |� 1).|W
ai | (9)

14 N.K. Ahmed et al

However, if a
i

6= a
j

, then W
ai and R

aj are mutually exclusive (i.e., W
ai \

R
aj = ;).

Thus, we get the following,

N (e)

ai,aj
= |W

ai |.|Raj | (10)

4.3. Analysis & Combinatorial Arguments

In this section, we discuss combinatorial arguments involving unrestricted counts
that can be computed computed directly from our knowledge of 3-node graphlets.
These combinatorial arguments capture the relationships between the counts of
pairs of 4-node graphlets. The proofs of these relationships are based on Theo-
rem 1 and the transition diagram in Fig. 1. For each pair of graphlets g

4i and
g
4j , we show the relationship for each edge in the graph (in Corollary 1–14), then
we show a generalization for the whole graph (in Lemma 2–8).

4.3.1. Relationship between 4-Cliques & 4-ChordalCycles

Corollary 1. For any edge e = (u, v) in the graph, the number of 4-cliques

containing e is N
(e)

T,T,1

.

Corollary 2. For any edge e = (u, v) in the graph, the number of 4-chordalcycles,
where e is the chord edge of the cycle (denoted by the black color in Fig. 1), is

N
(e)

T,T,0

.

Lemma 2. For any graph G, the relationship between the counts of 4-cliques
(i.e., f(g

4

1

, G)) and 4-chordalcycles (i.e., f(g
4

2

, G)) is,

f(g
4

2

, G) =
X

e2E

✓|Tri
e

|
2

◆
� 6.f(g

4

1

, G)

Proof. From Theorem 1 and the addition principle (Stanley, 1986), the total
count for all edges in G is,
X

e2E

N
(e)

T,T,0

=
X

e2E

N
(e)

T,T

�
X

e2E

N
(e)

T,T,1

(11)

Given that N (e)

T,T

is the number of 4-node subgraphs {u, v, w, r} containing e,

such that A
w

= T,A
r

= T . Thus, from Eq. (9),N (e)

T,T

=
�|Trie|

2

�
. From Corollary 1,

each 4-clique will be counted 6 times (once for each edge in the clique). Thus,

the total count of 4-cliques in G is f(g
4

1

, G) = 1

6

.
P
e2E

N
(e)

T,T,1

. Similarly, from

Corollary 2, each 4-chordalcycle is counted only once for each chord edge. Thus,

the total count of 4-chordalcycles in G is f(g
4

2

, G) =
P
e2E

N
(e)

T,T,0

. By direct

substitution in Eq. (11), this lemma is true. ⌅

Graphlet Decomposition: Framework, Algorithms, and Applications 15

4.3.2. Relationship between 4-Cycles & 4-Paths

Corollary 3. For any edge e = (u, v) in the graph, the number of 4-cycles

containing e is N
(e)

Su,Sv,1
.

Corollary 4. For any edge e = (u, v) in the graph, the number of 4-paths con-

taining e, where e is the middle edge in the path (denoted by the green color in

Fig. 1), is N
(e)

Su,Sv,0
.

Lemma 3. For any graph G, the relationship between the counts of 4-cycles
(i.e., f(g

4

4

, G)) and 4-paths (i.e., f(g
4

6

, G)) is,

f(g
4

6

, G) =
X

e2E

|Star
u

|.|Star
v

|� 4.f(g
4

4

, G)

Proof. From Theorem 1 and the addition principle (Stanley, 1986), the total
count for all edges in G is,
X

e2E

N
(e)

Su,Sv,0
=
X

e2E

N
(e)

Su,Sv
�
X

e2E

N
(e)

Su,Sv,1
(12)

Given thatN (e)

Su,Sv
is the number of 4-node subgraphs {u, v, w, r} containing e,

such that w, r A
w

= S
u

, A
r

= S
v

. Thus, from Eq. (10), N (e)

Su,Sv
= |Star

u

|.|Star
v

|.
From Corollary 3, each 4-cycle will be counted 4 times (once for each edge in

the cycle). Thus, the total count of 4-cycles in G is f(g
4

4

, G) = 1

4

.
P
e2E

N
(e)

Su,Sv,1
.

Similarly, from Corollary 4, each 4-path is counted only once for each middle edge

in the path. Thus, the total count of 4-paths in G is f(g
4

6

, G) =
P
e2E

N
(e)

Su,Sv,0
.

By direct substitution in Eq. (12), this lemma is true. ⌅

4.3.3. Relationship between 4-TailedTriangles & 4-ChordalCycles

Corollary 5. For any edge e = (u, v) in the graph, the number of 4-tailedtriangles
where e is part of both the triangle and 2-star patterns (denoted by the blue color

in Fig. 1), is N
(e)

T,Su_Sv,0
.

Corollary 6. For any edge e = (u, v) in the graph, the number of 4-chordalcycles

where e is a cycle edge (denoted by the blue color in Fig. 1), is N
(e)

T,Su_Sv,1
.

Lemma 4. For any graph G, the relationship between the counts of 4-chordalcycles
(i.e., f(g

4

2

, G)) and 4-tailedtriangles (i.e., f(g
4

3

, G)) is,

2.f(g
4

3

, G) =
X

e2E

|Tri
e

|.(|Star
u

|+ |Star
v

|)� 4.f(g
4

2

, G)

Proof. From Theorem 1 and the addition principle (Stanley, 1986), the total
count for all edges in G is,
X

e2E

N
(e)

T,Su_Sv,0
=
X

e2E

N
(e)

T,Su_Sv
�
X

e2E

N
(e)

T,Su_Sv,1
(13)

Given that N
(e)

T,Su_Sv
= N

(e)

T,Su
+ N

(e)

T,Sv
is the number of 4-node subgraphs

16 N.K. Ahmed et al

{u, v, w, r} containing e, such that A
w

= T,A
r

= S
u

_ S
v

. Thus, from Eq. (10),

N
(e)

T,Su_Sv
= |Tri

e

|.(|Star
u

|+ |Star
v

|). Now, from Corollary 6, each 4-chordalcycle
is counted 4 times (once for each edge in the cycle). Thus, the total count of

4-chordalcycle in G is f(g
4

2

, G) = 1

4

.
P
e2E

N
(e)

T,Su_Sv,1
. Similarly, from Corollary 5,

each 4-tailedtriangle will be counted 2 times (once for each blue edge as in Fig. 1).

Thus, the total count of 4-tailedtriangle in G is f(g
4

3

, G) = 1

2

.
P
e2E

N
(e)

T,Su_Sv,0
.

By direct substitution in Eq. (13), this lemma is true. ⌅

4.3.4. Relationship between 4-TailedTriangles & 3-Stars

Corollary 7. For any edge e = (u, v) in the graph, the number of 4-tailedtriangles
with e as the tail edge (denoted by the green color in Fig. 1) and with u is part

of the triangle, is N
(e)

Su,Su,1
.

In a similar fashion, the number of 4-tailedtriangles with e as the tail edge and

v is part of the triangle is N
(e)

Sv,Sv,1
. Thus, the total number of 4-tailedtriangles

with e as the tail edge and u _ v is part of the triangle is N (e)

S.,S.,1
= N

(e)

Su,Su,1
+

N
(e)

Sv,Sv,1
.

Corollary 8. For any edge e = (u, v) in the graph, the number of 3-star centered

around u is N
(e)

Su,Su,0
.

Again, the number of 3-stars centered around v is N
(e)

Sv,Sv,0
. Thus, the total

number of 3-stars centered around u or v is N (e)

S.,S.,0
= N

(e)

Su,Su,0
+N

(e)

Sv,Sv,0
.

Lemma 5. For any graph G, the relationship between the counts of 3-stars (i.e.,
f(g

4

5

, G)) and 4-tailedtriangles (i.e., f(g
4

3

, G)) is,

3.f(g
4

5

, G) =
X

e2E

✓|Star
u

|
2

◆
+

✓|Star
v

|
2

◆
� f(g

4

3

, G)

Proof. From Theorem 1 and the addition principle (Stanley, 1986), the total
count for all edges in G is,
X

e2E

N
(e)

S.,S.,0
=
X

e2E

N
(e)

S.,S.
�
X

e2E

N
(e)

S.,S.,1
(14)

Given that N
(e)

S.,S.
= N

(e)

Su,Su
+ N

(e)

Sv,Sv
is the number of 4-node subgraphs

{u, v, w, r} containing e, such that A
w

= S
u

^ A
r

= S
u

or A
w

= S
v

^ A
r

= S
v

.

Thus, from Eq. (9), N (e)

S.,S.
=

�|Staru|
2

�
+
�|Starv|

2

�
. Now, from Corollary 8, each

3-star is counted 3 times (once for each edge in the star). Thus, the total count

of 3-stars in G is f(g
4

5

, G) = 1

3

.
P
e2E

N
(e)

S.,S.,0
. Similarly, from Corollary 7, each

4-tailedtriangle will be counted once for each tail edge (denoted by the green
color in Fig. 1). Thus, the total count of 4-tailedtriangle in G is f(g

4

3

, G) =P
e2E

N
(e)

S.,S.,1
. This holds whether the patterns are centered around u or v. By

direct substitution in Eq. (14), this lemma is true. ⌅

Graphlet Decomposition: Framework, Algorithms, and Applications 17

4.3.5. Relationship between 4-TailedTriangles & 4-Node-1-Triangles

Corollary 9. For any edge e = (u, v) in the graph, the number of 4-node-1-

triangle is N
(e)

T,I,0

.

Corollary 10. For any edge e = (u, v) in the graph, the number of 4-tailedtriangles
with e participating in the triangle but not connected to the tail edge (denoted by

the red color in Fig. 1), is N
(e)

T,I,1

.

Proof. Suppose there is a subgraph {u, v, w, r} containing e. {u, v, w, r} is a 4-
tailedtriangle with e participating in the triangle but not connected to the tail
edge, if and only if there are some nodes w, r such that w 2 Tri

e

, r 6 N (e),
and (w, r) 2 E. This means r is independent of e, and w forms a triangle with
e. As such, A

w

= T and A
r

= I and e0
wr

= 1. More generally, any subgraph

{u, v, w, r} containing e contributes once in the count N (e)

T,I,1

if and only if it is
a 4-tailedtriangle with e participating in the triangle but not connected to the

tail edge. In Theorem 1, we showed that N (e)

T,I,1

 N
(e)

T,I

. ⌅
Lemma 6. For any graph G, the relationship between the counts of 4-tailedtriangles
(i.e., f(g

4

3

, G)) and 4-node-1-triangles (i.e., f(g
4

7

, G)) is,

3.f(g
4

7

, G) =
X

e2E

⇣
Tri

e

. (|V |� |N (u) [N (v)|)
⌘
� f(g

4

3

, G)

Proof. From Theorem 1 and the addition principle (Stanley, 1986), the total
count for all edges in G is,
X

e2E

N
(e)

T,I,0

=
X

e2E

N
(e)

T,I

�
X

e2E

N
(e)

T,I,1

(15)

Given that N
(e)

T,I

is the number of 4-node subgraphs {u, v, w, r} containing
e, such that A

w

= T,A
r

= I. And, the number of nodes independent of e is

|V | � |N (u) [N (v)|. Thus, from Eq. (10), N (e)

T,I

= Tri
e

.
⇣
|V | � |N (u) [N (v)|

⌘
.

Now, from Corollary 10, each 4-tailedtriangle is counted one time (once for the
red edge as in Fig. 1). Thus, the total count of 4-tailedtriangles inG is f(g

4

3

, G) =P
e2E

N
(e)

T,I,1

. Similarly, from Corollary 9, each 4-node-1-triangle will be counted 3

times (once for each edge in the triangle). Thus, the total count of 4-node-1-

triangles in G is f(g
4

7

, G) = 1

3

.
P
e2E

N
(e)

T,I,0

. By direct substitution in Eq. (15),

this lemma is true. ⌅

4.3.6. Relationship between 4-Paths & 4-node-2-Stars

Corollary 11. For any edge e = (u, v) in the graph, the number of 4-paths
where e is the start or end of the path (denoted by the purple color in Fig. 1), is

N
(e)

Su_Sv,I,1
.

Corollary 12. For any edge e = (u, v) in the graph, the number of 4-node-2-
stars where e is one of the star edges (denoted by the purple color in Fig. 1), is

N
(e)

Su_Sv,I,0
.

18 N.K. Ahmed et al

Lemma 7. For any graph G, the relationship between the counts of 4-paths (i.e.,
f(g

4

6

, G)) and 4-node-2-stars (i.e., f(g
4

8

, G)) is,

2.f(g
4

8

, G) =
X

e2E

|Star
e

|.(|V |� |N (u) [N (v)|)� 2.f(g
4

6

, G)

Proof. From Theorem 1 and the addition principle (Stanley, 1986), the total
count for all edges in G is,
X

e2E

N
(e)

Su_Sv,I,0
=
X

e2E

N
(e)

Su_Sv,I
�
X

e2E

N
(e)

Su_Sv,I,1
(16)

Given that N
(e)

Su_Sv,I
= N

(e)

Su,I
+ N

(e)

Sv,I
is the number of 4-node subgraphs

{u, v, w, r} containing e, such that A
w

= S
u

_ S
v

, A
r

= I. And, the number of

nodes independent of e is |V |� |N (u)[N (v)|. Thus, from Eq. (10), N (e)

Su_Sv,I
=

|Star
e

|. (|V |� |N (u) [N (v)|), such that |Star
e

| = |Star
u

| + |Star
v

|. Now, from
Corollary 11, each 4-path is counted 2 times (for both the start and end edges
in the path, denoted by the purple in Fig. 1). Thus, the total count of 4-paths

in G is f(g
4

6

, G) = 1

2

.
P
e2E

N
(e)

Su_Sv,I,1
. Similarly, from Corollary 12, each 4-node-

2-star will be counted 2 times (once for each edge in the star, denoted by the
purple in Fig. 1). Thus, the total count of 4-node-2-star in G is f(g

4

8

, G) =
1

2

.
P
e2E

N
(e)

Su_Sv,I,0
. By direct substitution in Eq. (16), this lemma is true. ⌅

4.3.7. Relationship between 4-node-2-edges & 4-node-1-edge

Corollary 13. For any edge e = (u, v) in the graph, the number of 4-node-2-
edges where e is any of the two independent edges in the graphlet (denoted by the

orange color in Fig. 1), is N
(e)

I,I,1

.

Corollary 14. For any edge e = (u, v) in the graph, the number of 4-node-1-edge
where e is an isolated/single edge in the graphlet (denoted by the orange color in

Fig. 1), is N
(e)

I,I,0

.

Lemma 8. For any graph G, the relationship between the counts of 4-node-2-
edge graphlets (i.e., f(g

4

9

, G)) and 4-node-1-edge graphlets (i.e., f(g
4

10

, G)) is,

f(g
4

10

, G) =
X

e2E

✓|V |� |N (u) [N (v)|
2

◆
� 2.f(g

4

9

, G)

Proof. From Theorem 1 and the addition principle (Stanley, 1986), the total
count for all edges in G is,
X

e2E

N
(e)

I,I,0

=
X

e2E

N
(e)

I,I

�
X

e2E

N
(e)

I,I,1

(17)

Given that N
(e)

I,I

is the number of 4-node subgraphs {u, v, w, r} containing
e, such that A

w

= I, A
r

= I. And, the number of nodes independent of e is

|V | � |N (u) [N (v)|. Thus, from Eq. (9), N (e)

I,I

=
�|V |�|N (u)[N (v)|

2

�
. Now, from

Corollary 13, each 4-node-2-edge is counted 2 times (for the two edges in the

Graphlet Decomposition: Framework, Algorithms, and Applications 19

graphlet, denoted by the orange in Fig. 1). Thus, the total count of 4-node-

2-edges in G is f(g
4

9

, G) = 1

2

.
P
e2E

N
(e)

I,I,1

. Similarly, from Corollary 14, each

4-node-1-edge will be counted once (for the isolated/single edge in the graphlet,
denoted by the orange in Fig. 1). Thus, the total count of 4-node-1-edge in

G is f(g
4

10

, G) =
P
e2E

N
(e)

I,I,0

. By direct substitution in Eq. (17), this lemma is

true. ⌅
While it is straightforward to computeN (e)

I,I

for each edge e, this is not the case

forN (e)

I,I,1

orN (e)

I,I,0

, as they require searching outside the local edge neighborhood.

However, since N
(e)

I,I,1

is the number of edges outside the egonet of e, it can be
computed as,

N
(e)

I,I,1

= |E|� |N (u) \ {v}|� |N (v) \ {u}|� |{e}|
� [N (e)

T,T,1

+N
(e)

T,Su_Sv,1
+N

(e)

T,I,1

]

� [N (e)

S.,S.,1
+N

(e)

Su,Sv,1
+N

(e)

S.,I,1
]

Thus, the total number of 4-node-2-edges is,

2.f(g
4

9

, G) =
X

e2E

N
(e)

I,I,1

(18)

=
X

e2E

|E|� |N (u) \ {v}|� |N (v) \ {u}|� |{e}|

� [6.f(g
4

1

, G) + 4.f(g
4

2

, G) + 2.f(g
4

3

, G)]

� [4.f(g
4

4

, G) + 2.f(g
4

6

, G)]

Finally, the number of 4-node-independent graphlets (g
4

11

) is,

f(g
4

11

, G) =

✓|V |
4

◆
�

10X

i=1

f(g
4i , G) (19)

4.4. Algorithm

Algorithm 2 (GraphletCounting) shows how to count all graphlets of size
k = {3, 4} nodes e�ciently (using Lemma 2— 8). We use similar implementation
and parallelization approach as in Algorithm 1. As discussed previously, we start
by finding all triangle and 2-star patterns in Lines 5–13 (i.e., Step 1). Then, in
Lines 16—17 we only count 4-cliques and 4-cycles (i.e., Step 2). Then, Lines 19—
30 compute unrestricted counts for all 4-node graphlets in constant time (using
knowledge from Step 1 and 2, i.e., Step 3), and finally Lines 34—36 compute
the final counts (using the lemma proved in Section 4.3) (i.e., Step 4). Our
approach counts all 4-cliques and 4-cycles in O(m.�.T

max

) and O(m.�.S
max

)
respectively, where T

max

is the maximum number of triangles incident to an edge
and T

max

⌧ � for sparse graphs, and S
max

is the maximum number of stars
incident to an edge and S

max

 �, as we show in Lemma 9 and 10. This is more
e�cient than O(|V |.�3) given by (Shervashidze et al., 2009), and O(�.|E|+|E|2)
given by (Marcus and Shavitt, 2012).

20 N.K. Ahmed et al

Algorithm 2 Our exact graphlet census algorithm for counting all 3, 4-node graphlets.
The algorithm takes an undirected graph as input and returns the frequencies of all 3, 4-node
graphlets

1: procedure GraphletCounting(G = (V,E))

2: Initialize all variables

3: parallel for e = (u, v) 2 E do

4: Staru = ;, Starv = ;,Trie = ;
5: for w 2 N (u) do

6: if w = v then continue

7: Add w to Staru and set X(w) = 1

8: for w 2 N (v) do

9: if w = u then continue

10: if X(w) = 1 then . found triangle

11: Add w to Trie and set X(w) = 2

12: Remove w from Staru
13: elseAdd w to Starv and set X(w) = 3

14: Compute f(G3, G) as in Lines 14—16 of Alg. 1

15: //Get Counts of 4-Cliques & 4-Cycles

16: f(g4
1

, G) += CliqueCount(X,Trie)

17: f(g4
4

, G) += CycleCount(X, Staru)

18: //Get Unrestricted Counts for 4-Node Connected Graphlets

19: NT,T +=
�|Trie|

2

�

20: NSu,Sv += |Staru|.|Starv |
21: NT,Su_Sv += |Trie|.(|Staru|+ |Starv |)
22: NSu,Su =

�|Staru|
2

�
and NSv,Sv =

�|Starv|
2

�

23: NS.,S. += NSu,Su +NSv,Sv

24: //Get Unrestricted Counts for 4-Node Disconnected Graphlets

25: NT,I += Trie.(|V |� |N (u) [N (v)|)
26: NSu,I = |Staru|.(|V |� |N (u) [N (v)|)
27: NSv,I = |Starv |.(|V |� |N (u) [N (v)|)
28: NSu_Sv,I += NSu,I +NSv,I

29: NI,I +=
�|V |�|N (u)[N (v)|

2

�

30: NI,I,1 += |E|� |N (u) \ {v}|� |N (v) \ {u}|� 1

31: for w 2 N (v) do X(w) = 0

32: end parallel

33: Aggregate counts from all workers

34: Use Lemma 2—6 to compute f(g4i , G) for i = 1 : 8

35: Use Eq. (18) to compute f(g4
9

, G) and Lemma 8 for f(g4
10

, G)

36: Use Eq. (19) to compute f(g4
11

, G)

37: return f(G3, G), f(G4, G)

38: procedure CliqueCount(X,Trie)

39: cliqe = 0

40: for each node w 2 Trie do

41: for r 2 N (w) do

42: if X(r) = 2 then cliqe += 1 . found 4-Clique

43: X(w) = 0

44: return cliqe

45: procedure CycleCount(X, Staru)

46: cyce = 0

47: for each node w 2 Staru do

48: for r 2 N (w) do

49: if X(r) = 3 then cyce += 1 . found 4-Cycle

50: X(w) = 0

51: return cyce

Graphlet Decomposition: Framework, Algorithms, and Applications 21

Lemma 9. Alg. 2 counts all 4-cliques in O(|E|.�.T
max

), where T
max

is the

maximum number of triangles incident to an edge.

Proof. For each edge e = (u, v) 2 E, the runtime complexity of counting all 4-
cliques incident to e is equivalent to finding the set of all edges e0 = (w,w0) such
that {e0 = (w,w0) 2 E|w,w0 2 Tri

e

^ w 6= w0}, where Tri
e

is the set of triangles
incident to e. First, we show in Lem. 1 that the runtime complexity of finding
all triangles incident to e is O(�). Second, as described in Alg. 2 the runtime
complexity of checking whether any two distinct nodes w,w0 2 Tri

e

are connected
by an edge e0 = (w,w0) is O(

P
w2Trie

�) = O(|Tri
e

|.�), and can be computed

asymptotically O(T
max

.�), where T
max

is the maximum triangle degree (i.e., the
maximum number of triangles incident to an edge and T

max

⌧ �). Therefore,

the total runtime complexity is O
⇣ P

e2E

(�+ T
max

.�)
⌘
= O(|E|.�.T

max

). ⌅

Lemma 10. Alg. 2 counts all 4-cycles of size k = 4 in O(|E|.�.S
max

), where
S
max

is the maximum number of 2-stars incident to an edge (proof is similar to

Lem. 9).

Proof. For each edge e = (u, v) 2 E, the runtime complexity of counting all
4-cycles incident to e is equivalent to finding the set of all edges e0 = (w,w0)
such that {e0 = (w,w0) 2 E|w 2 Star

u

^ w0 2 Star
v

, w 6= w0}. First, we show in
Lem. 1 that the runtime complexity of finding all 2-star patterns incident to e is
O(�). Second, Alg. 2 shows the runtime complexity of checking whether any two
distinct nodes w 2 Star

u

, and w0 2 Star
v

are connected by an edge e0 = (w,w0) is
O(

P
w2Staru

�) = O(|Star
u

|.�), and is asymptotically O(S
max

.�) (where S
max

is

the maximum number of 2-stars incident to an edge, and S
max

 �). Therefore,

the total runtime complexity is O
⇣ P

e2E

(�+ S
max

.�)
⌘
= O(|E|.�.S

max

). ⌅

5. Experiments

We proceed by first demonstrating how fast our algorithm (Algorithm 2) counts
all graphlets of size k = {3, 4} (both connected and disconnected graphlets) on
various networks. We make our parallel implementation available online 1.

In this paper, we show detailed results for 60 networks categorized in 8 broad
classes from social, Facebook (Traud et al., 2012), biological, web, technological,
co-authorship, infrastructure, among other domains (Rossi and Ahmed, 2015a)
(see the links2 for data download). And, in the online appendix, we present a
more extensive collection of 300+ networks, including both large sparse networks
as well as dense networks from the DIMACs challenge3. Note that for all of the
networks, we discard edge weights, self-loops, and edge direction.

To the best of our knowledge, this is the largest study for graphlet counting,
and these are the largest graphlet computations published to date. Our own

1
http://nesreenahmed.com/graphlets/

2
http://networkrepository.com/

3
http://dimacs.rutgers.edu/Challenges/

22 N.K. Ahmed et al

4 5 6 7 8 9

−3

−2

−1

0

1

2

3

4

5

log (|V| + |E|)

lo
g
 s

e
c

4 5 6 7 8 9

−3

−2

−1

0

1

2

3

4

5

log (|V| + |E|)

lo
g
 s

e
c

Fig. 3. The empirical runtime of our exact graphlet counting (Alg.2) in social and information
networks scales almost linearly with the network dimension.

implementation of Algorithm. 2 is using shared memory, but the algorithm is
well-suited for other architectures.

5.1. E�ciency & Runtime

Table 2 describes the properties of the 60 networks considered here. It also shows
the counts of graphlets of size k = {3, 4} and states the time (seconds) taken to
count all graphlets. We only show counts of connected graphlets due to space
limitations, however all counts are available in the online appendix. Notably,
Algorithm 2 takes only few seconds to count all graphlets for large social, web,
and technological graphs (among others). For example, for a large road network
(i.e., inf-road-usa) with 24M nodes and 29M edges, Algorithm 2 takes only 4
seconds to count all graphlets. Also as shown in Table 2, for large Facebook
networks with nearly 2M edges, Algorithm 2 takes only 15 seconds, and for large
web graphs with nearly 8M edges, Algorithm 2 takes only 25 seconds.

We compare the empirical runtime of Algorithm 2 to the state-of-the-art
baseline method RAGE (Marcus and Shavitt, 2012). For social and Facebook
networks, we observed that Algorithm 2 is on average 460x faster than RAGE.
For all other networks, we observed that Algorithm 2 is on average 600x faster
than RAGE. Notably, Algorithm 2 takes only 7 seconds to count graphlets of
Facebook networks with 1.3M edges, while RAGE takes almost an hour for
the same networks. For larger networks with millions of nodes/edges, RAGE
was timed out (as it did not finish within 30 hours of runtime). Moreover, for
dense graphs from the DIMACS challenge, RAGE takes almost 17 minutes, while
Algorithm 2 takes less than a second. We also compared to the baseline method
FANMOD (Wernicke and Rasche, 2006) and Orca (Hočevar and Demšar, 2014),
we found that for a Facebook network with 250k edges, FANMOD takes roughly
2.5 hours for counting all graphlets, RAGE takes almost 7 minutes for the same
network, and Orca takes almost 10 seconds, while Algorithm 2 takes less than a

Graphlet Decomposition: Framework, Algorithms, and Applications 23

Table 2. Runtime & Statistics for a Subset of 60 Networks. The numbers are appended by K
for thousands, M for millions, B for billions, T for trillions, and P for quadrillions.

Seconds

graph |V | |E| |g
3

1

| |g
3

2

| |g
4

1

| |g
4

2

| |g
4

4

| |g
4

6

| |g
4

5

| |g
4

3

| Alg.2 RAGE

soc-brightkite 57k 213k 494k 12M 2.9M 12M 2.7M 533M 1.3B 114M 0.2 273.03

socfb-Berkeley13 23k 852k 5.4M 125M 27M 153M 87M 17B 25B 2.7B 4.94 2514.59

socfb-Wisconsin87 24k 836k 4.9M 107M 23M 121M 59M 12B 21B 1.9B 3.93 1450.31

socfb-FSU53 28k 1.0M 7.9M 130M 63M 242M 95M 16B 10B 2.9B 5.55 2192.94

socfb-MSU24 32k 1.1M 6.5M 139M 33M 183M 106M 16B 32B 2.6B 5.67 1904.09

socfb-Texas80 32k 1.2M 9.6M 160M 68M 316M 122M 21B 11B 3.9B 7.53 2967.01

socfb-Michigan23 30k 1.2M 8.3M 162M 49M 277M 146M 23B 13B 3.5B 7.57 2995.83

socfb-Indiana69 30k 1.3M 9.4M 181M 60M 269M 141M 25B 13B 3.8B 8.44 3212.10

socfb-UIllinois20 31k 1.3M 9.4M 172M 64M 273M 130M 23B 27B 3.8B 7.88 3088.77

socfb-UF21 35k 1.5M 12M 266M 98M 433M 186M 40B 150B 7.2B 14.49 N/A

soc-flickr 514k 3.2M 59M 963M 1.7B 14B 6.7B 244B 326B 90B 182.57 N/A

soc-orkut 3.1M 117M 628M 44B 3.2B 48B 70B 19T 98T 1.5T 2694.55 N/A

soc-sinaweibo 58M 261M 212M 804B 662M 27B 259B 157T 8.48P 3.80T 33359.7 N/A

soc-friendster 65.6M 1.8B 4.17B 708.1B 8.96B 131.4B 307.5B 364.7T 247.3T 5.79T N/A N/A

bio-celegans 453 2.0k 3.3k 69k 3.0k 37k 4.5k 495k 2.9M 363k <0.001 1.7

bio-diseasome 516 1.2k 1.4k 5.4k 1.4k 923 42 18k 27k 19k <0.001 0.44

bio-dmela 7.4k 26k 2.9k 572k 393 13k 107k 11M 9.2M 312k 0.01 2.47

bio-yeast-protein-inter 1.8k 2.2k 222 11k 41 198 140 31k 72k 2.6k <0.001 0.53

bio-yeast 1.5k 1.9k 206 11k 39 195 139 31k 72k 2.5k <0.001 0.43

bio-human-gene2 14k 9.0M 4.9B 10B 2.3T 3.7T 90B 4.4T 5.3T 8.4T 8023.84 N/A

bio-mouse-gene 43k 14M 3.6B 15B 670B 2.1T 223B 9.0T 6.7T 7.7T 5515.6 N/A

ca-CSphd 1.9k 1.7k 8 6.6k 0 5 8 9.4k 32k 93 <0.001 1.25

ca-GrQc 4.2k 13k 48k 85k 329k 66k 1.1k 553k 406k 628k <0.001 5.99

ca-dblp-2012 317k 1.0M 2.2M 15M 17M 4.8M 203k 252M 259M 97M 0.48 227.79

ca-cit-HepTh 23k 2.4M 191M 1.6B 13B 47B 7.3B 538B 976B 385B 132.66 N/A

ca-cit-HepPh 28k 3.1M 196M 1.5B 9.8B 34B 6.1B 536B 479B 276B 125.49 N/A

ca-coauthors-dblp 540k 15M 444M 698M 15B 3.4B 31M 42B 27B 67B 40.26 N/A

ca-hollywood-2009 1.1M 56M 4.9B 33B 1.4T 635B 168B 21T 17T 8.9T 13799.6 N/A

tech-as-caida2007 26k 53k 36k 15M 54k 1.7M 407k 285M 7.8B 47M 0.19 36.83

tech-p2p-gnutella 63k 148k 2.0k 1.6M 16 826 42k 15M 8.1M 71k 0.02 7.44

tech-RL-caida 191k 608k 455k 21M 423k 7.4M 40M 583M 1.7B 77M 0.39 71.74

tech-WHOIS 7.5k 57k 782k 5.3M 12M 31M 2.9M 229M 566M 194M 0.14 44.52

tech-as-skitter 1.7M 11M 29M 16B 149M 20B 43B 819B 96T 162B 476.06 N/A

web-BerkStan-dir 685k 6.6M 65M 28B 1.1B 99B 25B 49B 382T 476B 149.17 N/A

web-edu 3.0k 6.5k 10k 81k 40k 4.6k 18 435k 1.3M 186k <0.001 0.52

web-google-dir 876k 4.3M 13M 687M 40M 382M 38M 4.1B 650B 6.7B 4.45 N/A

web-indochina-2004 11k 48k 210k 481k 1.2M 88k 9.2k 5.5M 12M 4.9M 0.01 24.36

web-it-2004 509k 7.2M 339M 56M 29B 815M 175M 1.1B 1.4B 527M 25.26 N/A

web-baidu-baike 2.1M 17M 25M 31B 28M 4.5B 9.2B 3.3T 571T 327B 3975.81 N/A

web-wikipedia-growth 1.9M 37M 127M 123B 288M 38B 68B 29T 3.1P 3.2T 22389.2 N/A

web-ClueWeb09-50m 148M 447M 1.2B 494B 5.6B 243B 774B 34T 24P 3.4T 15665.9 N/A

inf-italy-osm 6.7M 7.0M 7.4k 8.2M 0 244 47k 9.9M 992k 27k 0.85 N/A

inf-openflights 2.9k 16k 73k 639k 286k 1.5M 319k 17M 17M 9.0M 0.01 2.46

inf-power 4.9k 6.6k 651 17k 90 385 324 38k 20k 5.1k <0.001 0.58

inf-roadNet-CA 2.0M 2.8M 120k 5.6M 40 13k 249k 11M 2.4M 521k 0.35 N/A

inf-roadNet-PA 1.1M 1.5M 67k 3.2M 16 5.7k 152k 6.2M 1.4M 295k 0.19 N/A

inf-road-usa 24M 29M 439k 50M 90 21k 1.6M 81M 18M 1.5M 4.05 N/A

ia-email-EU-dir 265k 364k 267k 194M 581k 10M 6.7M 4.4B 221B 341M 1.52 887.18

ia-enron-only 143 623 889 4.8k 779 2.7k 648 29k 17k 14k <0.001 0.12

ia-reality 6.8k 7.7k 400 497k 63 1.7k 2.8k 1.6M 26M 93k <0.001 1.39

ia-wiki-Talk-dir 2.4M 4.7M 9.2M 13B 65M 1.0B 924M 1.2T 192T 64B 281.33 N/A

ia-wikiquote-user-edits 93k 238k 279k 636M 411k 70M 44M 8.9B 2.4T 2.5B 2.41 691.28

ia-wiki-user-edits-page 2.1M 5.6M 6.7M 550B 10M 70B 44B 4.8T 88P 2.0T 5691.92 N/A

brock200-3 200 12k 291k 570k 3.2M 12M 4.1M 11M 3.5M 16M 0.02 22.96

brock200-4 200 13k 373k 584k 5.2M 16M 4.3M 8.9M 3.0M 17M 0.02 21.85

brock400-3 400 60k 4.4M 4.5M 184M 372M 63M 84M 28M 251M 0.4 997.15

brock400-4 400 60k 4.4M 4.5M 185M 373M 63M 84M 28M 250M 0.4 1010.26

brock800-1 800 208k 23M 38M 1.3B 4.1B 1.1B 2.4B 801M 4.4B 4.11 N/A

brock800-2 800 208k 23M 38M 1.3B 4.2B 1.1B 2.4B 794M 4.4B 4.15 N/A

brock800-3 800 207k 23M 38M 1.3B 4.1B 1.1B 2.4B 802M 4.4B 4.1 N/A

N/A: timed out after 30 hours of runtime

24 N.K. Ahmed et al

second. Note that both RAGE and Orca count only connected graphlets, while
our algorithm and FANMOD count both connected and disconnected graphlets.

In Figure 3, we plot the runtime of Algorithm 2 for a representative subset
of 150 social and information networks. The figure shows that our algorithm
exhibits nearly linear-time scaling over networks ranging from 1K to 100M nodes.

5.2. Scaling

We used a dual-processor Intel Xeon 3.10 Ghz E5-2687W server, each processor
has 8 cores, and each core can run two threads. The two processors share 20MB
of L3 cache and 256GB of memory. We evaluate the speedup of our parallel
algorithm (i.e., how much faster our proposed algorithm is when we increase the
number of cores), and we used the OpenMP library for multi-core parallelization.
In the following plots, we show the speedups versus the number of processing
units (cores). All speedups are computed relative to the runtime of Algorithm 2
with one processor. To reduce the possible variance, all experiments are repeated
5 times and averaged. Figures 4–5 show the speedup plots for a variety of graphs.
We discuss a few observations from the plots presented here.

The first and most important observation that we make is that we obtain sig-
nificant speedups from the parallel implementation of Algorithm 2. Figures 4–5
show strong scaling results for a variety of graphs from social, web, and techno-
logical domains. Algorithm 2 scales to 16 cores and yields a speedup of 10–15
folds. For example, as shown in Figure 4, we achieve almost linear scaling for the
socfb-Penn94 graph (15-fold speedup for 16 cores).

The second observation links the performance of Algorithm 2 to the charac-
teristics of the graphs. We observe that we obtain the most significant speedups
for social and Facebook networks (see Figure 4). We obtain near linear speedup
as we increase the number of cores. Social networks are computationally inten-
sive relative to the other graphs. This is due to their clustering characteristics
and the existence of a large number of small communities (i.e., triangles, cliques,
and cycles) in social networks.

Finally, we study the optimal number of problems to dynamically assign to
each processing unit when more work is requested (i.e., batch size b). That is the
optimal performance that would be achieved when b jobs are assigned in batch.
Overall, we observed small performance fluctuations and found the optimal value
of b when we changed between 1 and 256 edges respectively. Interestingly, this ob-
servation is largely true only for sparse graphs, whereas graphs that are relatively
dense (e.g., DIMACs graphs) work better when b is small (e.g., even as small as
b = 1). This is likely due to the properties of these graphs and the auto-optimizer
that we built into the library which automatically adapts the implementation of
the algorithms to use additional data structures and achieve better performance
for those relatively dense graphs at the cost of using additional space. Thus, our
auto-optimizer appropriately balances the time and space trade-o↵s.

Note that the results for the job size experiments use node degree for ordering
the neighbors of each node in the succinct graph representation as well as for
ordering the edge jobs to solve. In both cases, the ordering is from largest to
smallest.

Graphlet Decomposition: Framework, Algorithms, and Applications 25

0 1 2 4 8 16
0

5

10

15

Number of Processing Units

S
p
e
e
d
u
p

socfb−Texas
socfb−OR
socfb−UCLA
socfb−Berkeley13
socfb−MIT
socfb−Penn94

0 1 2 4 8 16
0

5

10

15

Number of Processing Units

S
p
e
e
d
u
p

0 1 2 4 8 16
0

2

4

6

8

10

12

Number of Processing Units
S

p
e
e
d
u
p

soc−twitter−fol
soc−youtube
soc−slashdot
soc−gowalla
soc−flickr

0 1 2 4 8 16
0

2

4

6

8

10

12

Number of Processing Units
S

p
e
e
d
u
p

Fig. 4. Strong scaling results for Facebook and social networks.

0 1 2 4 8 16
0

2

4

6

8

10

12

14

Number of Processing Units

S
p
e
e
d
u
p

ia−wiki−Talk
ia−email−enron−lg
ca−HepPh
ca−AstroPh

0 1 2 4 8 16
0

2

4

6

8

10

12

14

Number of Processing Units

S
p
e
e
d
u
p

0 1 2 4 8 16
0

2

4

6

8

10

12

14

Number of Processing Units

S
p
e
e
d
u
p

tech−internet−as
tech−WHOIS
web−it−2004
web−spam

0 1 2 4 8 16
0

2

4

6

8

10

12

14

Number of Processing Units

S
p
e
e
d
u
p

Fig. 5. Strong scaling results for interaction, collaboration, technological, and web networks.

6. Applications

We also show some applications that could benefit from our fast graphlet count-
ing algorithm (Algorithm 2), which facilitates exploring and understanding net-
works and their structure. Graphlets provide an intuitive and meaningful charac-
terization of a network at the global macro-level as well as the local micro-level,
thus, they are useful for numerous applications. At the macro-level, graphlets are
useful for finding similar networks (graph similarity queries), or finding networks
that disagree most with that set (graph anomalies), or exploring a time-series
of networks, among numerous other possibilities. Alternatively, graphlets are
also extremely useful for characterizing networks and their behavior at the local
node/edge-level as known as the micro-level. For instance, given an edge (u, v) 2
E, find the top-k most similar edges (with applications in security, role discovery,
entity-resolution, link prediction, and other related matching/similarity applica-
tions). Also, graphlets could be used for ranking nodes/edges to find unique
patterns and anomalies such as large stars, cliques, etc.

26 N.K. Ahmed et al

0 1 2 3 4 5 6 7 8 9 10 11

−8

−7

−6

−5

−4

−3

−2

−1

0

Graphlets

G
F

D
 S

co
re

Berkeley13
Cal65
Caltech36
Stanford3
UC33
UC61
UC64
UCLA26
UCSB37
UCSC68
UCSD34
USC35

0 1 2 3 4 5 6 7 8 9 10 11

−8

−7

−6

−5

−4

−3

−2

−1

0

Graphlets

G
F

D
 S

co
re

Fig. 6. Facebook social networks of California Universities. Using the space of graphlets of
size k = 4, Caltech is noticeably di↵erent than others, which is consistent with the findings
in (Traud et al., 2012).

6.1. Large-Scale Graph Comparison & Classification

Graphlets are also useful for large-scale comparison and classification of graphs.
In this case, we relax the notion of equivalence and isomorphism to some form of
structural similarity between graphs, such that the graph similarity is measured
using feature-based graphlet counts. In this section, we show how graphlets could
be useful for network analysis, anomaly detection, and graph classification.

First, we study the full data set of Facebook100, which contains 100 Face-
book networks that represent a variety of US schools (Traud et al., 2012). We
plot the GFD (i.e., graphlet frequency distribution) score pictorially in Figure 6
for all California schools. The GFD score is simply the normalized frequencies
of graphlets of size k (Pržulj et al., 2004). In our case, we use k = 4. The fig-
ure shows Caltech noticeably di↵erent than others, consistent with the results
in (Traud et al., 2012) which shows how Caltech is well-known to be organized
almost exclusively according to its undergraduate ”Housing” residence system,
in contrast to other schools that follow the predominant ”dormitory” residence
system. The residence system seems to impact the organization of the social
community structures at Caltech.

Second, we use counts of graphlets of size k = {2, 3, 4}-nodes as features to
represent each graph in a large collection of graphs. Using the graphlet fea-
ture representation, we learn a model to predict the unknown label of each
unlabeled graph (e.g., the label could be the function of protein graphs). We
test our approach on protein graphs (D&D collection of 1178 protein graphs)
and chemical compound graphs (MUTAG collection of 188 chemical compound
graphs) (Vishwanathan et al., 2010). We extract the graphlet features using Al-
gorithm 2. Then, we learn a model using SVM (RBF kernel), and we use 10-fold
validation for evaluation. Table 3 shows the accuracy of this approach is 76%
for protein function prediction, and 86% for mutagenic e↵ect prediction. Note
that by using all graphlet-based features up to size 4 nodes, we were able to
obtain better accuracy than previous work (which achieved maximum 75% and

Graphlet Decomposition: Framework, Algorithms, and Applications 27

Table 3. Accuracy & Standard Error for Classification of Large Collection of Biological &
Chemical Graphs. We used counts of all graphlets of size k = {2, 3, 4} as features.

graph Type No. Graphs Accuracy(%) Total Time(sec) Avg Time per G (sec)

D&D Protein 1178 76.13 ± 0.03 1.05 8.95x10�4

MUTAG Chemicals 188 86.4 ± 0.21 0.14 7.47x10�4

83% accuracy for D&D and MUTAG respectively (Shervashidze et al., 2009)).
Moreover, Algorithm 2 extracts all the features (graphlet counts) in nearly one
second. This yields a significant improvement over the graphlet feature extrac-
tion approach that was proposed in (Shervashidze et al., 2009), which takes 2.45
hours to extract graphlet features from the D&D collection.

Third, we compute graphlet counts on a 2 billion edge social network called
Friendster. Friendster is an on-line gaming network. Before re-launching as a
game website in 2011, Friendster was an online social network where users can
form friendship links with each others. This data is provided by The Web Archive
Project before the death of the social network. In these experiments, we use the
induced subgraph of the nodes that either belong to at least one community
or are connected to other nodes that belong to at least one community. Table 2
shows a significantly large number of 4-path (chains of 4 connected nodes) and 3-
stars compared to the number of 4-cliques and triangles. Although the induced
subgraph that we used from Friendster is clearly biased toward communities,
the patterns that represent communities, such as cliques and triangles, are less
likely in the induced graph. For example, the frequency of 4-path patterns is
0.58, while the frequency of 4-cliques is 0.000014. These results indicate that
something wrong happened to the social network. Previous work on the autopsy
of Friendster showed that there was a collapse in the community structure of
Friendster, a cascade in user departure due to bad decisions in the design and
interface changes. In a similar fashion, the low frequency of community-related
graphlets (e.g., cliques) in Friendster also indicates the collapse of the social
network.

6.2. Finding Large Stars, Cliques, and other Patterns Fast

How can we quickly and e�ciently find large cliques, stars, and other unique
patterns? Further, how can we identify the top-k largest cliques, stars, etc? Note
that many of these problems are NP-hard, e.g., finding the clique of maximum
size is a well-known NP-hard problem (Gross et al., 2013). To answer these and
other related queries, we leverage the proposed parallel graphlet counting method
in Algorithm 2.

Figure 7 provides a visualization of the human diseasome network (Goh et al.,
2007), where we used Alg. 2 to rank (weight) all the edges in the network by the
number of star patterns of size 4 nodes. The intuition behind the method is that
if an edge (or node) has a (relatively) large number of stars of 4 nodes (cliques,
or another graphlet of interest), then it is also likely to be part of a star of a
large size. Recall that removing a node from a k-star or k-clique forms a star or
clique of size k�1 (Gross et al., 2013). Accordingly, edges with large weights are
likely to be members of large stars. Thus, as shown in Figure 7, a visualization
based on our fast graphlet counting method can help to quickly highlight such
large stars by using the counts (of stars of size 4 nodes) as edge weights or colors.

28 N.K. Ahmed et al

Fig. 7. Visualization of the human diseasome network: A network of disorders
and disease genes linked by known disorder-gene associations (Goh et al., 2007). Edges
are weighted/colored by their number of incident star graphlets of size 4 nodes, nodes are
weighted/colored by their triangle counts. The large star on the right denoted by light blue
color corresponds to colon cancer; the large star on the lower left denoted by lime green color
corresponds to deafness; and the large star on the right denoted by lime green color corresponds
to leukemia. Notably this figure highlights the few phenotypes (such as colon cancer, leukemia,
and deafness) correspond to hubs (large stars) that are connected to a large number of distinct
disorders, which is consistent with (Goh et al., 2007).

Notably, Figure 7 highlights the few phenotypes (such as colon cancer, leukemia,
and deafness) correspond to hubs (large stars) that are connected to a large
number of distinct disorders, which is consistent with the findings in (Goh
et al., 2007). Note that the same approach is also applicable for finding cliques
and other interesting patterns, since edges with a high number of 4-cliques are
likely to be members of the largest clique in the network. Figure 8 shows how
we can find large cliques in the terroristRel data (Zhao et al., 2006).

6.3. Real-time Visual Graphlet Mining

Visual analytics is the science of analytical reasoning facilitated by interactive
visual interfaces (Thomas and Cook, 2005; Ahmed and Rossi, 2015). This work
develops an interactive visual graph analytics platform based on the proposed
fast graphlet decomposition algorithm. In particular, we integrate interactive vi-

Graphlet Decomposition: Framework, Algorithms, and Applications 29

Fig. 8. Visualization of the terroristRel network: A network of terrorists and their
relationships. Terrorists are linked to each other if they contact each other, use the same
facility, are members of the same family, or belong to the same terrorist organization. Edges
and nodes are weighted/colored by their number of incident cliques of size 4 nodes. Notably
this figure highlights how the structure of terrorist networks is decomposed of various clique
patterns (terrorist organization) and how these cliques are interconnected. The figure highlights
the largest clique on the top left denoted by dark blue.

Fig. 9. Exploration of the brain neural network of C. Elegans (Watts and Strogatz, 1998)
using our interactive graphlet visual analytics tool. Nodes are colored by their k-core number
and weighted by betweenness, whereas the links are colored by eccentricity.

30 N.K. Ahmed et al

sualization with our state-of-the-art parallel graphlet decomposition algorithm
in order to support discovery, analysis, and exploration of such data in real-time.
We utilize this multi-level graphlet analysis engine that uses graphlets as a ba-
sis for exploring, analyzing, and understanding complex networks interactively in
real-time. And, we highlight other key aspects including filtering, querying, rank-
ing, manipulating, and a variety of multi-level network analysis and statistical
techniques based on graphlets.

Notably, our proposed algorithm is shown to be fast and e�cient for real-

time interactive exploration and mining of graphlets. We expect this tool to
be extremely useful to biologists and others interested in understanding biolog-
ical (protein, brain networks, etc.) as well as chemical networks. There are a
number of important and unique challenges in designing methods for interac-
tive exploration and mining of graphlets in real-time. In particular, the real-time
requirement of such a system requires fast parallel methods to achieve real-
time interactive rates (e.g., with response times within microseconds or less). In
particular, we derived dynamic update methods that are localized, that is, the
update methods leverage the local structure of the graph for e�ciently updating
the counts when nodes/edges are selected, inserted, removed, etc. Thus, given a
single node or edge, the method updates the graphlet counts for that edge (as
opposed to recomputing the full graphlet decomposition).

Figure 9 uses the interactive graphlet mining tool for real-time exploration
of the brain neural network from C. Elegans (Watts and Strogatz, 1998). Addi-
tionally, the tool is also useful for exploring many other types of networks, e.g.,
a terrorist relationship network is shown in Figure 10 whereas Figure 11 uses
graphlets as a basis for understanding and characterizing the communities and
their structure. As an aside, the graph in Figure 11 is generated using the block
Chung-Lu graph model. Thus, it is straightforward to see how graphlets can be
used to characterize synthetic graph generators and for evaluating their utility
(e.g., if the synthetic graph preserves the distribution of graphlets observed in a
real-world network.).

The visual graphlet analytics tool is designed for rapid interactive visual explo-
ration and graph mining (Figure 9-11). Graphlets are computed on-the-fly upon
a simple drag-and-drop of a graph file into the web browser. Additionally, the
graphlet counts are updated e�ciently after each selection, insertion, deletion,
or change to the graph data. Furthermore, it is designed to be consistent with
the way humans learn via immediate-feedback upon every user interaction (e.g.,
change of a slider for filtering) (Ahlberg et al., 1992; Thomas and Cook, 2005).
Users have rapid, incremental, and reversible control over all graph queries with
immediate and continuous visual feedback.

7. Conclusion & Future Work

In this paper, we proposed a fast, e�cient, and parallel framework as well as a
family of algorithms for counting k-node graphlets. We provided a novel theoret-
ical analysis of combinatorial arguments that capture the relationships between
various graphlets. The proposed framework leverages these combinatorial argu-
ments to obtain significant improvement on the scalability of graphlet counting.
For each edge, we count a few graphlets and obtain the exact counts of others
in constant time using the combinatorial arguments. We systematically investi-
gate the scalability of our algorithm on a large collection of 300+ networks from

Graphlet Decomposition: Framework, Algorithms, and Applications 31

Fig. 10. Illustration of the graphlet methods for real-time interactive graphlet analysis. This
demonstrates the e�ciency and e↵ectiveness of the proposed methods for interactive real-time
graphlet computations. In the screenshot above, the user selects a subgraph to interactively
analyze via direct manipulation of the visualization using the mouse. That is, the user adjusts
the rectangular region above to highlight the subgraphs to analyze. The graphlet statistics are
updated each time a node/edge is added or removed from the rectangular region used to select
the subgraph to explore via graphlets. Thus, the user can see how the graphlet statistics change
as nodes and edges are added (or removed) from the user-specified rectangular region (which in
turn indicates the nodes and edges to include in the analysis). Note that we leverage localized
graphlet update methods to achieve the performance required for real-time interactive graphlet
mining and sense-making.

Fig. 11. Interactive graphlet exploration of community structure via direct manipulation and
selection of the visual representation

32 N.K. Ahmed et al

a variety of domains. Finally, we provided a systematic investigation across a
variety of existing and new applications for graphlet counting, such as finding
unique patterns in graphs, graph similarity, and graph classification. In future
work, we aim to extend our proposed framework to higher-order graphlets, as
well as extend our approach to the distributed setting.

References

Ahlberg, C., Williamson, C. and Shneiderman, B. (1992), Dynamic queries for information
exploration: An implementation and evaluation, in ‘Proc. of SIGCHI’, pp. 619–626.

Ahmed, N. K., Du�eld, N., Neville, J. and Kompella, R. (2014), Graph sample and hold: A
framework for big-graph analytics, in ‘SIGKDD’.

Ahmed, N. K., Neville, J. and Kompella, R. (2010), Reconsidering the foundations of network
sampling, in ‘Proceedings of the 2nd Workshop on Information in Networks’.

Ahmed, N. K., Neville, J. and Kompella, R. (2012), Space-e�cient sampling from social activity
streams, in ‘Proceedings of the 1st International Workshop on Big Data, Streams and Het-
erogeneous Source Mining: Algorithms, Systems, Programming Models and Applications’,
pp. 53–60.

Ahmed, N. K., Neville, J. and Kompella, R. (2014), ‘Network sampling: From static to stream-
ing graphs’, ACM Transactions on Knowledge Discovery From Data (TKDD) 8(2), 1–56.

Ahmed, N. K. and Rossi, R. A. (2015), Interactive visual graph analytics on the web, in
‘Proceedings of the Ninth International AAAI Conference on Web and Social Media’.

Becchetti, L., Boldi, P., Castillo, C. and Gionis, A. (2008), E�cient semi-streaming algorithms
for local triangle counting in massive graphs, in ‘SIGKDD’.

Bhuiyan, M. A., Rahman, M., Rahman, M. and Al Hasan, M. (2012), Guise: Uniform sampling
of graphlets for large graph analysis, in ‘ICDM’.

Costa, F. and De Grave, K. (2010), Fast neighborhood subgraph pairwise distance kernel, in
‘ICML’.

Faust, K. (2010), ‘A puzzle concerning triads in social networks: Graph constraints and the
triad census’, Social Networks 32(3), 221–233.

Feldman, D. and Shavitt, Y. (2008), Automatic large scale generation of internet pop level
maps, in ‘IEEE GLOBECOM’.

Frank, O. (1988), ‘Triad count statistics’, Annals of Disc. Math. pp. 141–149.
Getoor, L. and Taskar, B. (2007), Introduction to statistical relational learning, MIT press.
Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M. and Barabási, A.-L. (2007), ‘The

human disease network’, PNAS 104(21), 8685–8690.
Gonen, M. and Shavitt, Y. (2009), ‘Approximating the number of network motifs’, Internet

Mathematics 6(3), 349–372.
Granovetter, M. (1983), ‘The strength of weak ties: A network theory revisited’, Sociological

theory 1(1), 201–233.
Gross, J. L., Yellen, J. and Zhang, P. (2013), Handbook of Graph Theory, Second Edition, 2nd

edn, Chapman & Hall/CRC.
Hales, D. and Arteconi, S. (2008), ‘Motifs in evolving cooperative networks look like protein

structure networks’, Journal of Networks and Heterogeneous Media 3(2).
Hayes, W., Sun, K. and Pržulj, N. (2013), ‘Graphlet-based measures are suitable for biological

network comparison’, Bioinformatics 29(4), 483–491.
Hočevar, T. and Demšar, J. (2014), ‘A combinatorial approach to graphlet counting’, Bioin-

formatics 30(4), 559–565.
Holland, P. W. and Leinhardt, S. (1976), ‘Local structure in social networks’, Sociological

Methodology 7, pp. 1–45.
Kashima, H., Saigo, H., Hattori, M. and Tsuda, K. (2010), ‘Graph kernels for chemoinformat-

ics’, Chemoinformatics and Advanced Machine Learning Perspectives: Complex Computa-
tional Methods and Collaborative Techniques p. 1.

Kelly, P. J. (1957), ‘A congruence theorem for trees.’, Pacific Journal of Mathematics 7(1), 961–
968.

Kloks, T., Kratsch, D. and Müller, H. (2000), ‘Finding and counting small induced subgraphs
e�ciently’, Info. Proc. Letters 74(3), 115–121.

Kuchaiev, O., Milenković, T., Memǐsević, V., Hayes, W. and Pržulj, N. (2010), ‘Topological net-

Graphlet Decomposition: Framework, Algorithms, and Applications 33

work alignment uncovers biological function and phylogeny’, Journal of the Royal Society
Interface 7(50), 1341–1354.

Manvel, B. and Stockmeyer, P. K. (1971), ‘On reconstruction of matrices’, Mathematics Mag-
azine pp. 218–221.

Marcus, D. and Shavitt, Y. (2012), ‘Rage–a rapid graphlet enumerator for large networks’,
Computer Networks 56(2), 810–819.

McKay, B. D. (1997), ‘Small graphs are reconstructible’, Australasian Journal of Combina-
torics 15, 123–126.

Milenkoviæ, T. and Pržulj, N. (2008), ‘Uncovering biological network function via graphlet
degree signatures’, Cancer informatics 6, 257.

Milenković, T., Ng, W. L., Hayes, W. and Pržulj, N. (2010), ‘Optimal network alignment with
graphlet degree vectors’, Cancer informatics 9, 121.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. and Alon, U. (2002), ‘Network
motifs: simple building blocks of complex networks’, Science 298(5594), 824–827.

Noble, C. C. and Cook, D. J. (2003), Graph-based anomaly detection, in ‘SIGKDD’.

Pržulj, N., Corneil, D. G. and Jurisica, I. (2004), ‘Modeling interactome: scale-free or geomet-
ric?’, Bioinformatics 20(18), 3508–3515.

Ralaivola, L., Swamidass, S. J., Saigo, H. and Baldi, P. (2005), ‘Graph kernels for chemical
informatics’, Neural Networks 18(8), 1093–1110.

Rossi, R. A. and Ahmed, N. K. (2015a), The network data repository with interactive graph
analytics and visualization, in ‘Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence’.

Rossi, R. A., Gallagher, B., Neville, J. and Henderson, K. (2013), Modeling dynamic behavior
in large evolving graphs, in ‘Proc. WSDM’, pp. 667–676.

Rossi, R. A., McDowell, L. K., Aha, D. W. and Neville, J. (2012), ‘Transforming graph data for
statistical relational learning’, Journal of Artificial Intelligence Research 45(1), 363–441.

Rossi, R. and Ahmed, N. (2015b), ‘Role discovery in networks’, in TKDE .

Schae↵er, S. E. (2007), ‘Graph clustering’, Computer Science Review 1(1).

Shervashidze, N., Petri, T., Mehlhorn, K., Borgwardt, K. M. and Vishwanathan, S. (2009),
E�cient graphlet kernels for large graph comparison, in ‘AISTATS’.

Stanley, R. P. (1986), What Is Enumerative Combinatorics?, Springer.

Thomas, J. J. and Cook, K. A. (2005), Illuminating the Path: the research and development
agenda for visual analytics, IEEE Computer Society.

Traud, A. L., Mucha, P. J. and Porter, M. A. (2012), ‘Social structure of facebook networks’,
Physica A: Statistical Mechanics and its Applications .

Ugander, J., Backstrom, L. and Kleinberg, J. (2013), Subgraph frequencies: Mapping the em-
pirical and extremal geography of large graph collections, in ‘WWW’.

Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R. and Borgwardt, K. M. (2010), ‘Graph
kernels’, JMLR 11, 1201–1242.

Watts, D. and Strogatz, S. (1998), ‘Collective dynamics of small-world networks’, Nature
393(6684), 440–442.

Wernicke, S. and Rasche, F. (2006), ‘Fanmod: a tool for fast network motif detection’, Bioin-
formatics 22(9), 1152–1153.

Zhang, L., Han, Y., Yang, Y., Song, M., Yan, S. and Tian, Q. (2013), ‘Discovering discriminative
graphlets for aerial image categories recognition’, IEEE Transactions on Image Processing
22(12), 5071–5084.

Zhang, L., Song, M., Liu, Z., Liu, X., Bu, J. and Chen, C. (2013), Probabilistic graphlet cut:
Exploiting spatial structure cue for weakly supervised image segmentation, in ‘CVPR’.

Zhao, B., Sen, P. and Getoor, L. (2006), Event classification and relationship labeling in a�l-
iation networks, in ‘ICML Workshop on Statistical Network Analysis (SNA)’.

34 N.K. Ahmed et al

Author Biographies

Nesreen K. Ahmed is a Research Scientist at Intel Labs. She re-
ceived her Ph.D. from the Computer Science Department at Purdue
University in 2015, and her M.S. in statistics and computer science
from Purdue University in 2014. She was a visiting researcher at Face-
book data science, Adobe Labs, Technicolor Labs, and Intel analytics.
Her research interests in machine learning and data mining spans the
theory and algorithms of large-scale graph mining, relational machine
learning, and their applications in social and information networks.
Dr. Ahmed has authored numerous papers/tutorials in top-tier con-
ferences/journals. Her research was selected among the best papers of
ICDM in 2015, BigMine in 2012, and covered by popular press such as

the MIT Technology Review. She was selected by UC Berkeley among the top female rising stars
in computer science and engineering in 2014. Dr. Ahmed holds 2 U.S. patents filed by Adobe,
and co-authored the open source network data repository (http://networkrepository.com).

Jennifer Neville is the Miller Family Chair Associate Professor of
Computer Science and Statistics at Purdue University. She received
her PhD from the University of Massachusetts Amherst in 2006. In
2016, she was the PC chair of the 9th ACM International Conference
on Web Search and Data. In 2012, she was awarded an NSF Career
Award, in 2008 she was chosen by IEEE as one of ”AI’s 10 to watch”,
and in 2007 was selected as a member of the DARPA Computer Sci-
ence Study Group. Her research focuses on developing data mining
and machine learning techniques for relational domains, which include
social, information, and physical networks.

Ryan A. Rossi is a research scientist at Palo Alto Research Center
(PARC). His research is grounded in machine learning and spans the-
ory, algorithms, and applications of large relational (graph/network)
data that arises from social and physical phenomena. Before joining
PARC, Dr. Rossi worked at various industrial, government, and aca-
demic research labs including Lawrence Livermore National Labora-
tory (LLNL), Naval Research Laboratory (NRL), NASA Jet Propul-
sion Laboratory (JPL), University of Massachusetts Amherst, among
others. Dr. Rossi earned his Ph.D. and M.S. in Computer Science at

Purdue University. His dissertation work focused on relational machine learning and mining
of dynamic networks. Dr. Rossi is a recipient of the NSF Graduate Research Fellowship (NSF
GRFP), National Defense Science and Engineering Graduate Fellowship (NDSEG), as well as
two Purdue University Fellowships. He has authored numerous papers at top conferences and
journals as well as a number of patents. He also co-founded the network repository project
(http://networkrepository.com).

Nick G. Du�eld is a Professor in Electrical and Computer Engineer-
ing at Texas A&M University, and Director of the Texas A&M Engi-
neering Big Data Initiative. From 1995 until 2013, he worked at AT&T
Labs-Research, Florham Park, NJ, where he was a Distinguished Mem-
ber of Technical Sta↵ and an AT&T Fellow. He also held positions in
Dublin, Ireland, Heidelberg, Germany, and Rutgers University, NJ.
He received a BA (1982) and a MMath (1983) from the University of
Cambridge, UK, and a PhD (1987) in Mathematical Physics from the
University of London, U.K. His research focuses on data science and it
applications, He is Chief Editor for Big Data at Frontiers in ICT, an
Editor-at-Large for the IEEE/ACM Transactions on Networking, and

a member of the board of directors of ACM SIGMETRICS. He is an IEEE and IET Fellow
and was a co-recipient of the ACM SIGMETRICS Test of Time Award in 2012 and 2013.

Graphlet Decomposition: Framework, Algorithms, and Applications 35

Theodore L. Willke received the EngScD degree with distinction
from Columbia University in 2010. His research interests include par-
allel computing, image processing, machine learning, graph analytics,
and cognitive neuroscience. He is the recipient of the IEEE/MILCOM
postgraduate fellowship and two US Department of Energy graduate
fellowships. He has authored over 25 papers and holds 14 patents. He
won the MASCOTS Best Paper Award in 2013 for work on MapRe-
duce performance modeling. He is currently a Senior Principal Engi-
neer with Intel Labs, where his team focuses on parallel computing

challenges. He is also a co-principal investigator in a multi-year grand challenge project on
real-time brain decoding with the Princeton Neuroscience Institute. Previously, he founded an
Intel venture focused on graph analytics for data science that is now an open source project.
In 2014, he won Intels highest award for this e↵ort. In 2015, he was appointed to the Science
& Technology Advisory Committee of the US Department of Homeland Security.

Correspondence and o↵print requests to: Nesreen K. Ahmed, Intel Labs, Intel Corporation,

Santa Clara, CA 95054, USA. Email: nesreen.k.ahmed@intel.com

