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Signal Representation

• What is a signal
• Time-domain description

– Waveform representation
– Periodic vs. non-periodic signals

• Frequency-domain description
– Periodic signals
– Sinusoidal signals
– Fourier series for periodic signals
– Fourier transform for non-periodic signals
– Concepts of frequency, bandwidth, filtering
– Numerical calculation: FFT, spectrogram
– Demo: real sounds and their spectrogram (from DSP First)
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What is a signal

• A variable (or multiple variables) that changes in time
– Speech or audio signal: A sound amplitude that varies in time
– Temperature readings at different hours of a day
– Stock price changes over days
– Etc …

• More generally, a signal may vary in 2-D space and/or time
– A picture: the color varies in a  2-D space
– A video sequence: the color varies in 2-D space and in time

• Continuous vs. Discrete 
– The value can vary continuously or take from a discrete set
– The time and space can also be continuous or discrete
– We will look at continuous-time signal only in this lecture
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Waveform Representation

• Waveform representation
– Plot of the variable value (sound amplitude, temperature 

reading, stock price) vs. time
– Mathematical representation: s(t)
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Sample Speech Waveform
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Entire waveform

» [y,fs]=wavread('morning.wav');
» sound(y,fs);
» figure; plot(y);
» x=y(10000:25000);plot(x);

Blown-up of a section.

» figure; plot(x);
» axis([2000,3000,-0.1,0.08]);

Signal within each short time interval is periodic
Period depends on the vowel being spoken
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Sample Music Waveform

Entire waveform

» [y,fs]=wavread(’sc01_L.wav');
» sound(y,fs);
» figure; plot(y);

Blown-up of a section

» v=axis;
» axis([1.1e4,1.2e4,-.2,.2])

Music typically has more periodic structure than speech
Structure depends on the note being played
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Sinusoidal Signals

• Sinusoidal signals are important because they can be used to 
synthesize any signal 
– An arbitrary signal can be expressed as a sum of many sinusoidal

signals with different frequencies, amplitudes and phases
• Music notes are essentially sinusoids at different frequencies
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What is frequency of an arbitrary 
signal?

• Sinusoidal signals have a distinct (unique) frequency
• An arbitrary signal does not have a unique frequency, but can 

be decomposed into many sinusoidal signals with different 
frequencies, each with different magnitude and phase

• The spectrum of a signal refers to the plot of the magnitudes 
and phases of different frequency components 

• The bandwidth of a signal is the spread of the frequency 
components with significant energy existing in a signal

• Fourier series and Fourier transform are ways to find spectrums 
for periodic and aperiodic signals, respectively
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Approximation of Periodic Signals 
by Sum of Sinusoids
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Each line corresponds to one 
harmonic frequency. The line 
magnitude (height) indicates 
the contribution of that 
frequency to the signal.

The line magnitude drops 
exponentially, which is not 
very fast. The very sharp  
transition in square waves 
calls for very high frequency 
sinusoids to synthesize.
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Period Signal

• Period T: The minimum interval on which a signal 
repeats
– Sketch on board

• Fundamental frequency:  f0 =1/T
• Harmonic frequencies: kf0 
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Approximation of Periodic Signals by 
Sinusoids

• Any periodic signal can be approximated by a sum of 
many sinusoids at harmonic frequencies of the signal 
(kf0 ) with appropriate amplitude and phase. 

• The more harmonic components are added, the more 
accurate the approximation becomes.

• Instead of using sinusoidal signals, mathematically, 
we can use the complex exponential functions with 
both positive and negative harmonic frequencies
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Complex Exponential Signals

• Complex number:  

• Complex exponential signal

• Euler formula
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Fourier Series Representation of 
Periodic Signals
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Fourier Series Representation of 
Square Wave

• Applying the Fourier series analysis formula to the 
square wave, we get

• Do the derivation on the board
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Only the positive frequency 
side is drawn on the left 
(single sided spectrum), with 
twice the magnitude of the 
double sided spectrum.
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Fourier Transform for Non-Periodic 
Signals
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Pulse Function: Time Domain
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Pulse Function: Spectrum
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The peaks of the FT 
magnitude drops slowly. 
This is because the pulse 
function has sharp 
transition, which 
contributes to very high 
frequency in the signal.
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Exponential Decay: Time Domain
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Exponential Decay: Spectrum

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f

|S
(f)

|

S(f)=1/(α +j 2π f),α =1

222 4
1)(;

2
1)(

otherwise0
0)exp(

)(
f

fS
fj

fS
tt

ts
παπα

α
+

=
+

=


 ⇔

>−
=

The FT magnitude drops 
much faster than for the 
pulse function. This is 
because the exponential 
decay function does not 
has sharp transition.
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(Effective) Bandwidth

• fmin (fma): lowest 
(highest) 
frequency where 
the FT magnitude 
is above a 
threshold

• Bandwidth: 
B=fmax-fmin

• The threshold is often 
chosen with respect to 
the peak magnitude, 
expressed in dB

• dB=10 log10(ratio)
• 10 dB below peak = 

1/10 of the peak value
• 3 dB below=1/2 of the 
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More on Bandwidth

• Bandwidth of a signal is a critical feature when 
dealing with the transmission of this signal

• A communication channel usually operates only at 
certain frequency range (called channel bandwidth)
– The signal will be severely attenuated if it contains 

frequencies outside the range of the channel bandwidth
– To carry a signal in a channel, the signal needed to be 

modulated from its baseband to the channel bandwidth
– Multiple narrowband signals may be multiplexed to use a 

single wideband channel
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How to Observe Frequency Content 
from Waveforms?

• A constant -> only zero frequency component (DC compoent)
• A sinusoid -> Contain only a single frequency component
• Periodic signals -> Contain the fundamental frequency and 

harmonics -> Line spectrum
• Slowly varying -> contain low frequency only
• Fast varying -> contain very high  frequency
• Sharp transition -> contain from low to high frequency
• Music: contain both slowly varying and fast varying components, 

wide bandwidth
• Highest frequency estimation? 

– Find the shortest interval between peak and  valleys
• Go through examples on the board
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Numerical Calculation of FT

• The original signal is digitized, and then a Fast 
Fourier Transform (FFT) algorithm is applied, which 
yields samples of the FT at equally spaced intervals. 

• For a signal that is very long, e.g. a speech signal or 
a music piece, spectrogram is used.
– Fourier transforms over successive overlapping short 

intervals
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Sample Speech Waveform
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Entire waveform Blown-up of a section.

Signal within each short time interval is periodic. The period T is called “pitch”.
The pitch depends on the vowel being spoken, changes in time.  T~70 samples in this ex. 

f0=1/T is the fundamental frequency (also known as formant frequency). f0=1/70fs=315 Hz.
k*f0 (k=integers) are the harmonic frequencies.

(click to hear the sound)

T
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Sample Speech Spectrogram
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» figure;
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» figure;
» specgram(x,256,fs);

Time

Fr
eq

ue
nc

y

Spectrogram

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

GOOD                        MOR                  NING 

Signal power drops sharply at about 4KHz Line spectra at multiple of f0,
maximum frequency about 4 KHz

What determines the maximum freq?
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Another Sample Speech Waveform

Entire waveform Blown-up of a section.

“In the course of a December tour in Yorkshire”
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Speech Spectrogram

» figure;
» psd(x,256,fs);

» figure;
» specgram(x,256,fs);

Signal power drops sharply at about 4KHz Line spectra at multiple of f0,
maximum frequency about 4 KHz
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Sample Music Waveform

Entire waveform

» [y,fs]=wavread(’sc01_L.wav');
» sound(y,fs);
» figure; plot(y);

Blown-up of a section

» v=axis;
» axis([1.1e4,1.2e4,-.2,.2])

Music typically has more periodic structure than speech
Structure depends on the note being played
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Sample Music Spectrogram

» figure; » psd(y,256,fs); » figure; » specgram(y,256,fs);

Signal power drops gradually in the entire 
frequency range

Line spectra are more stationary,
Frequencies above 4 KHz, more than 
20KHz in this ex.



©Yao Wang, 2006 EE3414: Signal Characterization 34

Summary of Characteristics 
of Speech & Music

• Typical speech and music waveforms are semi-periodic
– The fundamental period is called pitch period
– The inverse of the pitch period is the fundamental frequency (f0)

• Spectral content
– Within each short segment, a speech or music signal can be 

decomposed into a pure sinusoidal component with frequency f0, 
and additional harmonic components with frequencies that are 
multiples of f0.

– The maximum frequency is usually several multiples of the 
fundamental frequency

– Speech has a frequency span up to 4 KHz
– Audio has a much wider spectrum, up to 22KHz
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Demo

• Demo in DSP First, Chapter 3, Sounds and 
Spectrograms
– Look at the waveform and spectrogram of sample signals, 

while listening to the actual sound
– Simple sounds
– Real sounds
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Advantage of Frequency Domain 
Representation

• Clearly shows the frequency composition of the 
signal 

• One can change the magnitude of any frequency 
component arbitrarily by a filtering operation
– Lowpass -> smoothing, noise removal
– Highpass -> edge/transition detection
– High emphasis -> edge enhancement

• One can also shift the central frequency by 
modulation
– A core technique for communication, which uses modulation 

to multiplex many signals into a single composite signal, to 
be carried over the same physical medium.
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Typical Filters

• Lowpass -> smoothing, noise removal
• Highpass -> edge/transition detection
• Bandpass -> Retain only a certain frequency range
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Low-pass Band-passHigh-pass
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Low Pass Filtering
(Remove high freq, make signal smoother)

Filtering is done by a 
simple multiplification:

Y(f)= X(f) H(f)

H(f) is designed to 
magnify or reduce the 
magnitude (and 
possibly change 
phase) of the original 
signal at different 
frequencies.

A pulse signal after 
low pass filtering (left) 
will have rounded 
corners.

Ideal 
lowpass
filter

Spectrum of the pulse signal



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
The original pulse function and its low-passed versions

original                 
averaging over 11 samples
filter=fir1(10,0.25)     

t

S(t)



©Yao Wang, 2006 EE3414: Signal Characterization 40

1 2 3 4 5 6 7 8 9 10 11
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
Impulse Response of the Filters

averaging over 11 samples
fir1(10,0.25)            

t

h(t)



©Yao Wang, 2006 EE3414: Signal Characterization 41

Frequency Response of the Filters
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High Pass Filtering
(remove low freq, detect edges)
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The High Pass Filter
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Filtering in Temporal Domain 
(Convolution)

• Convolution theorem

• Interpretation of convolution operation
– replacing each pixel by a weighted sum of its neighbors

– Low-pass: the weights sum = weighted average
– High-pass: the weighted sum = left neighbors –right 

neighbors
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Implementation of Filtering

• Frequency Domain
– FT -> Filtering by multiplication with H(f) -> Inverse FT

• Time Domain
– Convolution using a filter h(t) (inverse FT of  H(f))

• You should understand how to perform filtering in 
frequency domain, given a filter specified in 
frequency domain

• Should know the function of the filter given H(f) 
• Computation of convolution is not required for this 

lecture
• Filter design is not required.
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What Should You Know (I)

• Sinusoid signals:
– Can determine the period, frequency, magnitude and phase of a 

sinusoid signal from a given formula or plot
• Fourier series for periodic signals

– Understand the meaning of Fourier series representation
– Can calculate the Fourier series coefficients for simple signals (only 

require double sided) 
– Can sketch the line spectrum from the Fourier series coefficients

• Fourier transform for non-periodic signals
– Understand the meaning of the inverse Fourier transform
– Can calculate the Fourier transform for simple signals
– Can sketch the spectrum
– Can determine the bandwidth of the signal from its spectrum
– Know how to interpret a spectrogram plot
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What Should You Know (II)

• Speech and music signals
– Typical bandwidth for both
– Different patterns in the spectrogram
– Understand the connection between music notes and sinusoidal 

signals
• Filtering concept

– Know how to apply filtering in the frequency domain
– Can interpret the function of a filter based on its frequency 

response
• Lowpass -> smoothing, noise removal
• Highpass -> edge detection, differentiator
• Bandpass -> retain certain frequency band, useful for demodulation



©Yao Wang, 2006 EE3414: Signal Characterization 49

References

• Oppenheim and Wilsky,  Signals and Systems, Sec. 4.2-4.3 
(Fourier series and Fourier transform) 

• McClellan, Schafer and Yoder, DSP First, Sec. 2.2,2.3,2.5 
(review of sinusoidal signals, complex number, complex 
exponentials)


